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Preface

Over 50% of the forestry plantations in South Africa are planted with Pinus species. They
are valued for their solid timber, pulp, paper, oils and as biofuel. Insect pests pose a threat
to pine plantation forestry. One of the most significant insect pests is the woodwasp Sirex
noctilio (Hymenoptera: Siricidae), which is estimated to have caused hundreds of millions
of rands of losses in the forestry sector. Females Kill pine trees by depositing their eggs,
venom and its symbiotic white rot fungus, Amylostereum aerolatum, into the wood. Sirex
noctilio and its symbiotic fungus are invasive in the Southern Hemisphere, including South
Africa, where it is introduced. In its native range, in Europe, North Africa and parts of Asia,

it is of less concern.

Due to the economic impact of this pest, means to improve its management in the
Southern Hemisphere has been the focus of studies for more than a century. Currently,
the most effective strategy to manage Sirex noctilio is through the biocontrol nematode,
Deladenus siricidicola. This nematode has a free-living stage that reproduces in wood
while feeding on Amylostereum areolatum. The nematode also has a parasitic phase
during which it infects Sirex noctilio larvae and eventually also the developing eggs. As a
result, infected adult female woodwasps lay packets of nematodes into trees instead of
viable eggs. In some areas, such as South Africa and South America, a lower-than-
expected nematode parasitism has created the need to improve the selection of effective

biological control strains.

One of the possible reasons for variable infection rates is differences in the interaction
between Sirex noctilio and Deladenus siricidicola, where some populations of the wasp
IS more resistant against the current strain of the nematode. A better understanding of the
mechanisms underlying this interaction would be helpful to address this question.

The aim of the study was to characterize potential imnmune-related genes of S. noctilio
and identify which of these genes are regulated by D. siricidicola parasitization, in
comparison to infection by the entomopathogenic fungus Beauveria bassiana and a
wounding control. We use both genome and transcriptome sequence data to explore

these immunity pathways of this economically important, non-model insect.
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Chapter one is a review of the literature on the mechanisms of innate immunity within
Hymenoptera. Here | focus on the genes, proteins and behavioural mechanisms involved
in Hymenoptera immunity. This chapter begins by illustrating how Hymenoptera deal with
invading pathogens, from mechanisms recognizing the pathogens to how they are
eliminated. The chapter also describes Sirex noctilio as an important forestry pest, which

include its symbioses, life history and population control.

In Chapter two, homology-based approaches are used to investigate the composition of
innate immunity orthologs of the invasive woodwasp, S. noctilio, in comparison with
information from other Hymenoptera. The comparison with orthologs from other
Hymenoptera species is said to provide clues on the composition of the conserved
immune signalling pathways, as well as the more rapidly continuously evolving
recognition and effector components in S. noctilio. Alignment tools were used to identify
putative immune-related gene orthologs from the S. noctilio genome and protein
databases. Expression patterns of the putative immune-related genes were characterized
in S. noctilio larvae in response to D. siricidicola infection, B. bassiana infection and

wounding.
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Innate immunity mechanisms in
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1. Introduction

The Hymenoptera is amongst the most diverse insect orders known to science with
various lifestyles and impacts on agriculture (Sharkey 2007). Hymenoptera include
various well-known groups such as wasps, bees and ants (Aguiar et al. 2013). Some
insects in the order are of ecological, agricultural and economic importance (Sharkey
2007). For example, bees play a crucial role in most ecosystems as pollinators of
flowering plants, which is of importance for the agricultural sector (Michener 2000).
Certain parasitic wasps play an integral role in pest management as they act as biological

control agents of harmful insect pests (Machtinger et al. 2015).

There are several members of the Hymenoptera that are invasive pests, responsible for
causing disastrous damage to plants worldwide. They, therefore, have significant
negative impact on the economy and environment (Holway et al. 2002; Lach and Thomas
2008). An example of this is the invasive wasp species, Sirex noctilio that is considered
the most harmful pest of pine trees in plantation forests (Slippers et al. 2015). These trees
are amongst the dominant plantations in South Africa and elsewhere in the world (FSA
2009) (Slippers et al. 2015).

Insects are vulnerable to all sorts of harmful microorganisms (Gupta et al. 2015). Insects,
including hymenopterans, are lacking an adaptive immune system, they must rely solely
on innate immunological processes or external immune defences to survive (Brennan and
Anderson 2004). Physical barriers, humoral responses, and cellular responses are all part
of the insect's innate immune system (Lavine and Strand 2002; Kanost et al. 2004).
Physical barriers, which include the principal passive protective barriers such as the
cuticle and the peritrophic membrane in the gut, serve as the initial line of defence (Ashida
and Brey 1995; Hegedus et al. 2009). Invading pathogens that breach these barriers are
met with immediate-response defences such as phagocytic cells, phenoloxidase activity,
and reactive oxygen species (Jiang et al. 2010; Browne et al. 2013; Vlisidou and Wood
2015). As a second line of defence, a potent antimicrobial immune response occurs,

which is mostly based on antimicrobial peptides (AMPs), however, it also comprises



serine proteases, stress factors, and opsonization and clotting factors (Bulet et al. 2004;
Lemaitre and Hoffmann 2007).

Pattern recognition receptors (PRRs) identify invading pathogens by recognizing
conserved structural motifs in microorganisms such as meso-diaminopimelic acid (DAP)
or lysine (Lys)-containing peptidoglycan (PGN) of Gram-negative or Gram-positive
bacteria, respectively (Lemaitre and Hoffmann 2007). Microbe-associated molecular
patterns (MAMPS) are the conserved molecular patterns of invading pathogens that are
detected (Royet and Dziarski 2007). The PRRs subsequently interact with cellular
signalling pathways such Toll-like receptors (TLRs) Toll, Immune Deficiency (IMD), Janus
kinase (JAK)-signal transducer and activator of transcription (JAK-STAT), and c-Jun N-
terminal kinase (JNK), which leads to the activation of an immune response (Ferrandon
et al. 2007; Leulier and Lemaitre 2008).

The hymenopteran societies can be either eusocial or solitary and these lifestyles
influence the properties of their immune system against pathogens. Due to their greater
genetic relatedness and large population densities, eusocial hymenopterans are more
likely to be cross-infected by pathogens (Cremer et al. 2007; Stroeymeyt et al. 2014;
Meunier 2015; Cremer et al. 2018). As a result, these species have evolved a variety of
defence systems, including behavioral mechanisms, to combat and limit the spread of
infections within their colonies (Evans et al. 2006). On the other hand, solitary
hymenopterans rely solely on the innate immune system to combat infections (Evans et
al. 2006; Cremer et al. 2018).

This review gives an overview of the current knowledge about the mechanisms of the
immune responses in Hymenoptera, these include both humoral and cellular responses
to bacteria, fungi and parasites, specific receptors that recognize pathogen invasions and
signalling pathways that activates genes for antimicrobial peptides synthesis. In addition,
we discuss the Sirex noctilio insect pest and its parasitic nematode Deladenus siricidicola,
and how a better understanding of the immune response of the wasp to the nematode

can contribute to better population management.
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2. Background to the Hymenoptera

Hymenoptera (sawflies, wasps, ants, and bees) is one of the four most diverse
holometabolous insect orders, with over 153 000 documented species and an estimated
one million undescribed extant species (Grimaldi et al. 2005; Aguiar et al. 2013). The
paraphyletic Symphyta and the monophyletic Apocrita have traditionally been used to
divide Hymenoptera taxa (Figure 1.1) (Peters et al. 2011). Symphytans are further
subdivided into the sawflies and the woodwasps (Davis et al. 2010). The members of the
symphyta have complete venation, phytophagous larvae and their adults lack a petiole.
Apocrita is separated into two groups: parasitica (parasatoids) and Acuelata (acuelata)
(stinging wasps, bees and ants) (Figure 1.1) (Davis et al. 2010). Apocritans are

characterized by a stalk between their abdominal segment and thorax (Sharkey 2007).

The transition from an ancestral ectophytophagous lifestyle, which was retained by the
majority of sawflies (“Symphyta”), to parasitoidism, a lifestyle in which a larva develops
by feeding on and killing a single host, is primarily responsible for Hymenoptera
diversification (Dowton and Austin 2001; Whitfield 2003; Mrinalini and Werren 2017;
Peters et al. 2017). The Hymenoptera's diverse lifestyles necessitate not only
physiological adaptations for a wide range of food sources, but also the evolution of

diverse defence mechanisms hostile to other organisms (Kaltenpoth et al. 2014).

Hymenoptera are of ecological, agricultural and economic importance. For example
parasitoid Hymenoptera are often used in biological control programs to control insect
pest populations (Wilson 1971). Aculeate Hymenoptera, particularly bees, are important
pollinators of flowering plants and producers of honey (Michener 2000). Ants are
important decomposers, herbivores, and predators (Holldobler and Wilson 1990). Army
ants and paper wasps are important predators in the ecosystem (Hanson 2016). There
are also a number of pests amongst the Hymenoptera, including woodwasps (Siricidae),
some leaf feeders (Tenthredinoidea), stinging wasps (Vespidae) and bees (Apoidea)
(zhang et al. 2007).
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3. Hymenoptera immune system and its components
The evolutionary biologist Leigh van Valen (Van Valen 1973), in his Red Queen theory

proposed that evolution must continuously occur in organisms for it to sustain itself in the
changing ecosphere. In terms of the host-parasite interaction, this means that in order to
survive, both the insects and their pathogens must constantly improve their defence
mechanisms. This coevolution, also known as the "arms race," has resulted in a plethora
of interaction strategies between the invading host and the pathogen (Dawkins and Krebs
1979). Insects, including the hymenopterans have anatomical and physiological barriers
that provide protection against invading pathogens. These include the exoskeleton,
cuticle, tracheal tubes, and intestinal mucosa. They provide the insects with protection
against infection and mechanical injury (Moussian 2010). When the physiological barriers

are broken, the immune response is activated.

Hymenoptera like other insects relies on the innate defence mechanisms to recognize
and clear infections (Vallet-Gely et al. 2008; Otti et al. 2014). There are two types of innate
immune responses: humoral and cellular defence responses. Cellular responses rely on
haemocytes, which are blood cells that can engulf invading pathogens via phagocytosis
or trap them in multicellular structures known as capsules and nodules (Lavine and Strand
2002). The production of defence molecules and the prophenoloxidase cascade are
examples of humoral immune responses. These defence molecules are reactive oxygen
and nitrogen intermediates, as well antimicrobial peptides (AMPs) with antifungal and
antimicrobial properties (Nappi and Ottaviani 2000). Insect’s humoral immune responses
also involve complex enzymatic cascades that control melanisation of the haemolymph.
Melanin is produced at the site of injury because of the melanisation process, as well as
during the nodulation and encapsulation processes. The physical barriers together with
cellular and humoral immune responses are powerful tools that act synergistically to
neutralize pathogens and parasites (Schmid-Hempel 2003). In summary, immune
responses consist of a series of events that can be divided into three stages: 1) pathogen
recognition, 2) signalling pathway activation, and 3) effector mechanisms aimed at
pathogen elimination (Figurel.2) (Guzman-Novoa 2011). The recognition process, in
which pathogen associated molecular patterns (PAMPS) are detected by PRRs, activates
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the immune response. Core signalling pathways are activated in response, resulting in
the production of effectors and receptors involved in cellular and humoral immune

responses (Dubovskiy et al. 2016).

3.1 Recognition of pathogens
Insects' ability to fight off invading pathogens is largely dependent on pathogen

recognition as non-self and then activation of the appropriate innate immune response
(Yano and Kurata 2011). Thus, the detection of conserved pathogen motifs is required
for the activation of innate immunity in response to pathogens (Hillyer 2016). In innate
immunity, PAMPs are detected to recognize the invading pathogen. These are pathogen
components that are conserved, such as lipopolysaccharides (LPS), peptidoglycan
(PGN), lipoteichoic acids, 1,3 glucans, integrins, flagellin, and nucleic acids from viruses,
bacteria, or fungi, and are essential for pathogen survival but are not found in higher
eukaryotes (Yano and Kurata 2011; Murphy and Weaver 2016).

Recognition of the invading pathogen is mediated by receptor proteins PRRs, which can
detect the conserved PAMPs. The pattern recognition receptors are produced by cells
and tissues in the hemocoel (Schluns and Crozier 2009). The attachment of PRRs to the
invaders’ PAMPs triggers the humoral and cellular immune responses. Phagocytosis,
encapsulation, opsonization, melanisation, coagulation, and the synthesis of AMPs,
reactive oxygen and nitrogen species, and some proteins with lytic activities are all part
of the immune system process (Schmid-Hempel 2003). Through these processes, the
invading pathogen is secluded and eventually killed. Pattern recognition receptors are
classified into various protein families that have been found to be evolutionarily
conserved. These protein families have a high level of diversity, which could be attributed
to differences in the ecology of the members of the class Insecta (Hillyer 2016).
Peptidoglycan recognition proteins (PGRPs), B-1,3-glucan recognition proteins (also
known as Gram-negative binding proteins), the nimrod superfamily, C-type lectins,
galectins, scavenger receptors, fibrinogen-related proteins (FREPS), thioester-containing
proteins (TEPs), and leucine-rich repeat-containing proteins are the different classes of

pattern recognition receptors in insects (Zhang and Gallo 2016). Many pathogen
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recognition protein families have expanded or contracted in different taxa. In
Hymenoptera, for example, Nasonia vitripennis, Apis mellifera, Bombus terrestris,
Componotous floridanus, and Megachille rotundata have 12, 4, 4, 4, and 2 members of
the peptidoglycan recognition protein family, respectively (Evans et al. 2006; Xu and
James 2009; Sackton et al. 2013; Gupta et al. 2015).

Peptidoglycan recognition proteins (PGRPS) are innate immunity molecules with a type 2
amidase domain that binds peptidoglycans. Previous research revealed that the domain
is a homolog of bacteriophage and bacteria type 2 amidase (Dziarski and Gupta 2006).
These proteins are classified into two types in insects, including hymenopterans: short
(S) and long (L) (Dziarski 2004). Short-form PGRPs (PGRP-S) are extracellular proteins
with a short length and a signal peptide. Long PGRPs (PGRP-L) are typically longer, lack
a signal peptide, and are either intracellular, extracellular, or membrane-spanning
proteins (Dziarski and Gupta 2006). A few PGRPs recognize and bind to Lys-type
peptidoglycan and others to DAP-type peptidoglycan. The PGRP-SA, PGRP-SC1, and
PGRP-SD proteins are involved in the recognition of Gram-positive bacteria that contain
Lys-type peptidoglycan, which results in the activation of the Toll pathway or the
melanisation process (Takehana et al. 2002). The PGRP-LB, PGRP-LC, and PGRP-LE
recognize Gram-negative bacteria with DAP-type peptidoglycan and activate the
immunodeficiency (IMD) pathway (Choe et al. 2002; Gottar et al. 2002; Ramet et al.
2002).

B-1,3-glucan recognition proteins (also known as Gram-negative binding proteins) are
thought to be able to recognize Gram-positive bacteria and Gram-negative bacteria
(Lemaitre and Hoffmann 2007)(Ma and Kanost 2000). It is thought that 3-1,3-glucan
recognition proteins form a complex with peptidoglycan recognition proteins (Gerardo et
al. 2010). Following complex formation, B-1,3-glucan recognition proteins hydrolyze
Gram-positive peptidoglycans into tiny fragments that can then be recognized by
peptidoglycan recognition proteins (Lemaitre and Hoffmann 2007). This implies that an
insect must have both 3-1,3-glucan recognition proteins and peptidoglycan recognition

proteins to detect bacteria.
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Lectins are a class of sugar-binding proteins that play a role in immune-related reactions
that allow organisms to distinguish between self and non-self (Gerardo et al. 2010). These
proteins are characterized by various binding activities. Numerous lectins play a role in
recognition in insect immunity by binding to polysaccharide chains on the surface of the
invading pathogen (Tanji et al. 2006). The most common are the C-type lectins which
consist of a variety of soluble and membrane-bound proteins. In several insects, lectins
are involved in the activation of prophenoloxidase, nodule formation and phagocytosis
(Ao et al. 2007).

Galectins are a set of lectins that are extensively distributed in insects. Insects galectins
are believed to be playing a role in either recognition of pathogens through the detection
of B-galactoside, or in phagocytosis (Gerardo et al. 2010). Fibrinogen-related proteins
(FREPs) have a carboxyl-terminal fibrinogen-like domain linked to a variety of amino-
terminal regions. In insects including the hymenopterans, fibrinogen-related proteins play
a role in cell to cell interaction, detection of bacteria and antimicrobial responses (Zou et
al. 2007).

Several Nimrod members appear to be phagocytosis and bacterial binding receptors
(Lazzaro 2005). The Nimrod superfamily genes in insects include eater and nimrod
(Gerardo et al. 2010). The Nimrod superfamily genes are distinguished by a specific EGF
(epidermal growth factor) repeat and are found in D. melanogaster and A. mellifera
genomes (Somogyi et al. 2008). Hemolin is part of the immunoglobulin superfamily. In
insects, hemolin recognize and attach to lipopolysaccharides on Gram-negative bacteria
and lipoteichoic acid on Gram positive bacteria, resulting in their aggregation (Daffre and
Faye 1997; Yu and Kanost 2002). Lipopolysaccharides and lipoteichoic acid bind to the
hemolin molecule at the same site. Hemolin act as a broad-spectrum pattern recognition
receptor for infection by binding to glycolipids in bacterial cell walls (Tsakas and
Marmaras 2010). Integrins are surface proteins that play a role in migration, adhesion
and tissue organization (Hughes 2001). These surface proteins recognize and bind

amino-acid triplet Arg-Gly-Asp (RGD motif) in extracellular matrix or soluble proteins such
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as collagen, fibronectins, and laminins. Integrins play a key role in recognizing invading
pathogens and initiating immune responses (Tsakas and Marmaras 2010). Binding of
pattern recognition receptors to specific components of invading pathogens activates the
signal transduction system (Gupta et al. 2015). This activation can be direct or occur after
a series of serine proteases-mediated proteolytic events which eventually promote
antimicrobial defences that include the expression of antimicrobial peptides (AMPS)
(Lemaitre and Hoffmann 2007).

Pattern recognition receptors have a variety of activities in addition to their genetic
diversity. For example, the nimrod gene family has a few members that code for cell
surface receptors with multiple transmembrane domains, while others code for secreted
proteins. Different members of the nimrod gene family also detect different pathogen
compositions (Zsamboki et al. 2013; Estévez-Lao and Hillyer 2014). Some pattern
recognition receptors immediately activate immune effector activities such as
phagocytosis and melanisation, while others initiate intracellular signalling pathways that
stimulate the production of immune effector genes, and still others activate both effector
and signalling pathways (Levashina et al. 2001; Choe et al. 2002). Members of the
leucine-rich repeat-containing protein family, which are usually assumed to be pattern
recognition receptors, may not interact directly with pathogen-associated molecular
patterns. They can also control immune responses by interacting with other host proteins
directly (Fraiture et al. 2009).

3.2 Humoral immune responses
One of the earliest insect defence mechanisms found was the production of antimicrobial

peptides (AMPs). When an invading pathogen is detected, a sequence of small peptides
and proteins are produced and released into the haemolymph (Cao et al. 2015). In
response to pathogen infection, AMPs are produced in large quantities, rising from nearly
undetectable in uninfected animals to micromolar amounts in infected individuals'
haemolymph (Imler and Bulet 2005). Although haemocytes contribute to the generation
of these AMPs, they are mostly expressed in the fat body (Hoffmann 2003; Marmaras
and Lampropoulou 2009; Zheng et al. 2016). Invading pathogens activate genes

associated with immunity in the fat body, which encode antimicrobial peptides that are
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released into the hemolymph after expression (Hanson et al. 2019; Hanson and Lemaitre
2020). In the hemolymph the AMPs act synergistically to eliminate the invading pathogen
(Takov et al. 2020).

3.2.1 Antimicrobial immunity: Function of antimicrobial peptides (AMPS)
Insect’s fat bodies, which are similar to mammalian livers, produce antimicrobial peptides

in response to pathogen recognition (Bulet et al. 2004). Antimicrobial peptides are small
and cationic molecules with a broad spectrum of activities against various pathogens,
including fungi (Viljakainen 2015). Insect antimicrobial peptides can assume certain
structures or have unique sequences and they consist of 12-50 amino acids (Hoffmann
2003; Yi et al. 2014; Hanson and Lemaitre 2020). As a result, cysteine-rich peptides,
proline-rich peptides, glyceine-rich peptides, and -helical peptides are divided into four

categories (Tsakas and Marmaras 2010).

The key features of antimicrobial peptides include: (1) broad spectrum of activity which
enables them to react against various pathogen classes, (2) selective toxicity as they can
react against the invading pathogen without disturbing host cells and (3) having shorter
action time than the doubling time of the invading pathogen (Matsuzaki 2009). The Toll
and IMD (immunodeficiency) pathways are the two primary signalling mechanisms that
control the synthesis of antimicrobial peptides. These pathways, respectively, regulate
the synthesis of antimicrobial peptides in response to Gram-positive and Gram-negative
bacterial infections (Tanji et al. 2006). Antimicrobial peptides families can be identified
only in a single insect order or even in a more restricted taxonomic group. Apidaecin,
which is only found in bees (genera Apis, Bombus, Megachila and Melipona), is one of
the few AMPs that are unique to the Hymenoptera (Casteels et al. 1989). The proline-rich
peptide abaecin is found in the bees, ants, the genus Nasonia and other wasps (Casteels
etal. 1990; Tian et al. 2010; Ratzka et al. 2012; Zhang and Zhu 2012). Finally, the glycine-
rich peptide hymenoptaecin is exclusively found in bees, ants and the wasps in the genus

Nasonia (Casteels et al. 1993).
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3.2.2 Signalling pathways that activate genes encoding antimicrobial peptides
The activation of well conserved signal transduction pathways, immunodeficiency (IMD),

Toll and Janus kinase/Signal Transducers, and activators of Transcription (JAK-STAT) is
promoted by the detection of the invading pathogen as bacteria, fungus, or even viruses
(Salcedo-Porras and Lowenberger 2019). These pathways enhance immune responses,
promote the synthesis of factors with antimicrobial activity, and increase the effect of
effector mechanisms. The various pathways form signal transduction cascade where they
cross communicate with each other by creating a complex network. This cross-
communication ultimately results in suitable response following external stimuli (Garcia-
Lara et al. 2005).

The Toll pathway induces an immune response against Gram-positive bacteria and fungi
(Evans et al. 2006; Lemaitre and Hoffmann 2007; Lazzaro 2008) (Figure 1.3). The
pathogen-associated molecular patterns of Gram-positive bacterial cell wall are Lysine
(Lys)-type peptidoglycan. Toll mediated peptidoglycan recognition protein (PGRP-SA)
binds to the Lys-type peptidoglycan and engages Gram-negative binding protein-1
(GNBP-1) and modular serine protease zymogen in the availability of Ca2*. The Gram-
positive bacteria Lys-type peptidoglycan-PGRP-SA-GNBP-1 complex then lead to the
activation of the modular serine protease zymogen to active modular serine protease.
Active modular serine protease enhances the conversion of peptidoglycan recognition
protein (PGRP-SA) zymogen to activated SPE protease which plays a role in the
cleavage of the circulating cytokine-like ligand SPAETZLE proprotein to processed
SPAETZLE. The Spaetzle protein then forms a bond with the extracellular domain of the
transmembrane receptor Toll. Then TUBE binds to the TOLL receptor protein though the
Myeloid differentiation primary response 88 (Myd88). The TUBE protein brings PELLE
protein to the TOLL protein and results in the formation of a TOLL-TUBE-PELLE complex.
The PELLE protein is a protein kinase that play a role in the phosphorylation of the NF
kappa B inhibitor (IkBA) CACTUS protein. Due to this, the Nf-kB-like transcription factors
DORSAL and DIF (Dorsal-related immunity factor) proteins dissociate from the CACTUS

protein and translocate to the nucleus. In the nucleus, the DORSAL protein (a
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transcription factor) binds with DNA and results in the expression of antimicrobial
peptides.

The Toll pathway is also triggered by fungal pathogen invasion. 3-1,3 glucan is a
pathogen-associated molecular pattern in fungi. Fungi also produce protease virulence
factors as part of the infection process. The fungal 3-1,3 glucan is recognized by Gram-
negative binding protein-3 (GNBP3) or protease virulence factors are detected through
the activation of Persephone gene product (Evans et al. 2006; Lemaitre and Hoffmann
2007; Lazzaro 2008; Lindsay and Wasserman 2014).

The IMD pathway is activated in insects following infection with Gram-negative bacteria
(Evans et al. 2006; Gupta et al. 2015). After recognition of the bacterial peptidoglycan by
the PGRPs, the ‘danger’ signal is transmitted into the cell by the IMD pathway (Evans et
al. 2006; Lemaitre and Hoffmann 2007; Clayton et al. 2015) (Figure 1.4). The pathogen-
associated molecular patterns of Gram-negative bacteria are lipopolysaccharides,
identified by the pattern recognition receptor PGRP-LC. The recognition of the bacterial
lipopolysaccharides by PGRP-LC results in the activation of IMD receptors. The receptor
has a death domain that interacts with dFADD (TAK1 activator) and DREDD (a caspase)
to form IMD-dFADD-DREDD protein complex. The IMD-dFADD-DREDD protein complex
activates the IAP2 protein. The IAP2 protein then associates with TAB2 and TAK1
proteins, these proteins further interact with the IKK complex. The IKK complex activates
RELISH through phosphorylation, resulting in the release of RELISH from the IKK
complex (Erturk-Hasdemir et al. 2009). The RELISH protein then translocates to the
nucleus, where it induces the expression of antimicrobial peptides that work against

Gram-negative bacteria.

In Drosophila melanogaster, the IKK complex is made up of an active Ird5 subunit and
kenny, a regulatory subunit. Previous studies have shown an absence of the kenny
subunit in hymenopteran species including A. mellifera, C. floridanus and N. vitripennis.
This demonstrated that the hymenopterans have a communal character of the IKK
complex (Gupta et al. 2015). In addition to activating RELISH, the IMD signalling pathway
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activates elements of the JNK signalling pathway (Agaisse et al. 2003). A protein kinase
of the IMD pathway, TAK1 activates JNK pathway when active. The JNK pathway controls
various developmental processes, wound healing, expression of stress proteins and
cellular immune responses (Bidla et al. 2007). Genes involved in JNK pathway include
hep, kayak (kay), basket and JRA (Figure 1.4) (Gerardo et al. 2010).

The JAK-STAT pathway is triggered by wounding and it plays a role in development and
immunity (Evans et al. 2006; Xu and Cherry 2014; Cao et al. 2015; Clayton et al. 2015).
The activation of JAK-STAT pathway lead to overproliferation of haemocytes, up-
regulation of thiolester-containing proteins (TEPS), as well as antiviral response in
honeybees (Evans et al. 2006). The core genes playing a role in JAK-STAT pathway
include genes encoding the cytokine receptor domeless, JAK tyrosine kinase (aka
Hopscotch), Upd, negative pathway regulators SOCS (Suppressor of cytokine signalling),
PIAS (Protein inhibitor of activated STAT) and the STAT92E transcription factor (Evans
et al. 2006; Gerardo et al. 2010). Steps involved in the JAK/STAT pathway are as follows
(Hillyer 2017) (Figure 1.5): (1) An extracellular ligand binds to domeless transmembrane
receptor and induce structural change. (2) The structural change results in the self-
phosphorylation of JANUS KINASE protein. (3) Activated JAK phosphorylates the DOME
protein. This results in the formation of a docking site on the DOME protein for STATs
(signal transducers and activators of transcription) proteins. (4) STATs then translocate
into the nucleus where it allows transcription of specific genes that play a primary role in

stress/viral infection response.

3.2.3 The prophenoloxidase activation cascade/ Melanisation
The biochemical pathway of the prophenoloxidase-based melanisation is summarized in

Figure 1.6. Melanisation is a cuticle hardening, wound healing, and immunological
mechanism used by insects. Melanisation is an effector mechanism in immunity that helps
to eliminate bacteria, fungus, nematodes, protozoan parasites, and parasitic wasp eggs
(Lavine and Strand 2003; Nappi and Christensen 2005). Nodulation or encapsulation is
the term used when this process involves the aggregation of haemocytes (Lavine and
Strand 2003; Nappi and Christensen 2005). The process of melanisation involves a series

of reactions that include the conversion of tyrosine to melanin. The melanin is deposited
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around the invading pathogen to encapsulate it or at the wound site to facilitate wound
healing. Invading pathogens that have been encapsulated die as a result of oxidative
stress or starvation as they become isolated from nutrient-rich parts of the insect
(Cerenius and Soderhall 2004; Nappi and Christensen 2005). Furthermore, melanisation
aids in the removal of dead pathogens. Melanisation is the result of a coordinated
interaction between pattern recognition receptors, serine proteases, serine protease

inhibitors, and enzymes involved in melanin production (Volz et al. 2006; Hillyer 2017).

Melanisation begins when pattern-recognition proteins such as Peptidoglycan recognition
proteins, B-1,3-glucan recognition proteins, C-type lectins, and Gram-negative binding
proteins detect pathogen-associated molecular patterns (Cerenius and Soderhéall 2004;
Wang et al. 2014). This activates prophenoloxidase activating enzymes, which cleave
prophenoloxidase into its active form, phenoloxidase, through a serine protease cascade.
Once activated, phenoloxidase is secreted into the hemolymph and delivered to the
cuticle. By converting tyrosine to DOPA, active phenoloxidase fights pathogen infection.
DOPA can then be decarboxylated to dopamine by DOPA decarboxylase (Ddc) or
oxidized to dopaquinone by phenoloxidase. Both products are subsequently converted to

eumelanin, which is then converted to melanin (Nappi and Christensen 2005).

When the melanisation system is activated, it produces a variety of chemicals that, if
produced in excess, can be toxic to the host insect. As a result, it must be controlled under
most circumstances in order to produce a local response at a specified location and for a
short period of time (Cerenius and Sdderhall 2004; Nappi and Christensen 2005). Serpins
suppress excess melanisation and the generation of harmful reactive oxygen species
(ROS) by decreasing the activity of PO. Pacifastin, serpin27A, serpin-1, serpin-3, and
serpin-6 are all common insect serpins (Gonzalez-santoyo and Cordoba-aguilar 2012).

3.3 Cellular immune responses
The insect cellular immune system evolved to include haemocytes (blood cells),

phagocytosis, encapsulation, and nodulation as part of its defence mechanism
(Dubovskiy et al. 2016). These processes allow insects to isolate and neutralise invading

pathogens. The physiological characteristics of insects, like the open circulatory system,
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present several benefits for cellular immune reactions (Dubovskiy et al. 2016). For
example, haemocytes can be spread much faster to provide a rapid immune response
(Dubovskiy et al. 2013). Encapsulation and nodulation are frequently called capsule
formation, and they are very crucial defence mechanisms in insects. These mechanisms
ensure that the the immune response is directed to the real site of injury, allowing the
disease or parasite to be killed or destroyed (Garcia et al. 2007; Satyavathi et al. 2014).
Unlike the humoral responses that occur several hours after infection, cellular immune

responses occur immediately after an invasion (Im et al. 2016).

3.3.1 Haemocytes
Insects have no blood vessel, and consequently there is no distinction between blood and

interstitial fluid. Collectively, blood and interstitial fluids are referred to as the hemolymph.
All internal tissues, organs, and haemocytes are bathed in hemolymph, which aids in the
movement of nutrients, waste products, and metabolites (Tsakas and Marmaras 2010).
The most common types of circulating haemocytes, in the hemolymph of insects, are
granular cells, crystal cells, oenocytoids and plasmatocytes (Lavine and Strand 2003).
Haemocytes are also involved in the response to external wounding by aiding in the
formation of clots (Lavine and Strand 2003). Crystal cells, plasmatocytes, and
lamellocytes are three types of haemocytes studied in greater detail in the model insect
Drosophila melanogaster (Lavine and Strand 2003; Kanost et al. 2004). Crystal cells are
relatively large cells that include crystalline inclusions. They are involved in the formation
of prophenoloxidase, a zymogen that is triggered during the melanisation process.
Melanin deposits are necessary for wound healing and encapsulation of invading
microorganisms (Crozatier and Meister 2007; Hillyer 2016). Plasmatocytes are
phagocytes that facilitate the process of phagocytosis which facilitates the rapid removal
of dead cells, during embryogenesis and metamorphosis, as well as pathogens during
infections (Tsakas and Marmaras 2010). In response to pathogen infection,
plasmatocytes generate and exude antimicrobial peptides (Agaisse et al. 2003; Tanaka
and Yamakawa 2011). The key defence responses that require the action of haemocytes

include phagocytosis, nodulation and encapsulation (see below).
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3.3.2 Phagocytosis
Phagocytosis is a generally conserved defence response in which cells recognize and

bind to invading pathogens that are relatively large (Rosales 2005). The detection of the
invading pathogen activates the immune cell to form a phagosome (Strand 2008). This
results in signalling cascades that regulate phagosome formation phagosome and target
ingestion via actin polymerization-dependent mechanisms (Hillyer and Strand 2014).
Vesicle fusion events then allow the phagosome to mature into a phagolysosome,
allowing effector molecules to be injected. The target is finally killed or degraded by these
effector molecules (Lavine and Strand 2003). Scavenger receptors, the EGF-domain
protein Eater, croquemort family members, nimrod and draper, vitellogenin, Dscam,
peptidoglycan recognition protein family members and thioester-containing proteins
(TEPs) are among the receptors involved in phagocytosis (Kocks et al. 2005; Kurucz et
al. 2007).

3.3.3 Nodulation
When the phagocytic immune response is insufficient to suppress pathogen infections,

haemocytes assist in the activation of other mechanisms such as nodulation (Lavine and
Strand 2002). Haemocytes produce nodules to manage infections when there are a lot of
bacteria. The formation of multicellular hemocyte aggregates that entrap vast numbers of
bacteria is known as nodulation. Haemocytes first surround bacteria before joining with
other haemocytes to create small aggregates (Satyavathi et al. 2014). More haemocytes
are added to these cell aggregates, and they continue to proliferate until huge nodules
appear. The nodule is eventually coated in layers of haemocytes and melanized. Bacteria
are effectively isolated from the hemolymph by melanin-covered nodules. Although the
process of nodule formation is not totally understood, eicosanoids, prophenoloxidase, and
dopa decarboxylase (Ddc) are all important in the formation of nodules in many insect
species (Gandhe et al. 2007; Satyavathi et al. 2014).
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3.3.4 Encapsulation
Encapsulation is a potent defence response in which multicellular haemocytes adhere to

large targets that are too large for a single cell to swallow (Strand 2008). Such large
targets may be parasitoids and nematodes. Haemocytes form a multilayer capsule
around the invading pathogen after attaching to it, which is followed by a melanisation
process. The invading pathogen is killed either by the synthesis of reactive cytotoxic
chemicals or by suffocation within the capsule (Napping 1995). During this process
granulocytes interacts with the invading parasite and release chemotactic elements that
will engage plasmatocytes (Hillyer 2016). The plasmatocytes promote the formation of a
multi-layered capsule; within the capsule, the parasite is ultimately killed (Lavine and
Strand 2003). Two components of the Rho GTPase family, Racl and Rac2 appear to
function in this process controlling some features of cytoskeleton remodelling (Williams
et al. 2005).

4. Social and Solitary Hymenoptera
Social insects are part of the most dominant and prolific life-forms on earth. The most

familiar examples of social hymenopterans are ants, bees and wasps. Colonies of social
insects are characterized by dense clusters of individuals who are typically closely
related. These characteristics facilitate disease transmission, making social insect
colonies particularly vulnerable to diseases and parasites (Meunier 2015). Additionally,
social insects have evolved advanced mechanisms to inhibit pathogen spread within their
colonies. Behavioral adaptations such as nest defence, nestmate recognition, and
sanitary behavior such as self- and allogrooming are examples of these mechanisms.
There is also an additional layer of defence in social insects called ‘social immunity’
(Cremer et al. 2007). ‘Social immunity’ is the collective immune functions that are
performed by a group of individuals to counteract invading pathogen threats (Cremer et
al. 2007). Some examples of social immunity include covering the nest with materials that
have antimicrobial properties, allogrooming, and infected or dead individuals that are
removed from the nests (Walker and Hughes 2009; Baracchi et al. 2012; Diez et al. 2012;

Reavey et al. 2014). As a result, changes in the genetic and phenotypic traits that function
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in how organisms deal with pathogen threats may occur during the evolution from solitary

to eusocial lifestyles (Otani et al. 2016).

According to research on the genomic comparison of social and solitary insects, A.
mellifera has fewer immune-related genes than D. melanogaster and the only insect
genomes available at the time (Evans et al. 2006). The authors hypothesized that
because of the emergence of social immunity, honeybees no longer rely solely on innate
immunity like solitary insects. However, previous research on Apocrita has found that the
repertoire of immune response genes, vision genes (opsins), and the GC content of
Hymenoptera genomes are reduced when compared to other insect genomes (Evans et
al. 2006; Gadau et al. 2012; Barribeau et al. 2015; Henze and Oakley 2015; Standage et
al. 2016). According to a recent study, there is also a decrease in the diversity and
abundance of transposable elements (TESs) in social Apocrita; in insects, TEs are the
primary drivers of genome size evolution (Kapheim et al. 2015; Petersen et al. 2019).
However, more research is needed to determine whether these characteristics are shared

by all Hymenoptera or are unique to Apocrita (Oeyen et al. 2020).

5. Contribution of defensive symbionts to Hymenoptera defences
In addition to innate immune defences, several insect taxa, including those in the

Hymenoptera, collaborate with microbial symbionts to protect themselves (Kaltenpoth
2014). When compared to solitary insects, social insects have more specialized and
structured gut symbionts, according to developments in insect microbial investigations
(Sabree et al. 2012; Engel and Moran 2013; Otani et al. 2014). The number of
antimicrobial peptide-producing bacteria sequenced in bees is an example of this in
Hymenoptera. This was performed to demonstrate that antimicrobial peptide-producing
bacteria are much more common in bees than in Drosophila (Wong et al. 2011). Several
studies have found that gut bacteria in honeybees, such as Snodgrasella alvi and
Gilliamella apicola, protect the bees from trypanosomatid parasite Crithidia bombi (Koch
et al. 2012; Cariveau et al. 2014; Moran 2015). In addition, a study of antibiotic-treated A.
mellifera revealed that destroying their gut bacteria may make honeybees more

susceptible to Nosema infection (Li et al. 2017).
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Studies focusing primarily on the distinctions between social and solitary insect gut
symbionts have the potential to shed light on the symbionts' role in eusociality (Otani et
al. 2016). A CORRELATED study was carried out on the general characterization of gut
symbionts in social and solitary bee species. The study reported that there are differences
in gut symbionts between the social and solitary bee species. These differences were
correlated to changes in diet and environmental factors (Martinson et al. 2011; Voulgari-
Kokota et al. 2019). The evolution from solitary to eusociality involves a range of
adaptations, and as a result defensive symbiont adaptation differ according to the host’s

lifestyle.

6. Sirex noctilio
The woodwasp, Sirex noctilio (Hymenoptera: Siricidae) is a member of the horntail family

under the suborder Symphyta within the Hymenoptera (Bordeaux et al. 2014). This wasp
is an invasive pest of pine species in numerous parts of the world including South Africa.
Sirex noctilio in association with its fungal symbiont Amylostereum areolatum
(Basidiomycotina: Corticiaceae) infests and kills pine trees (Fernandez Ajo et al. 2015).
Adult wasp species have a long cylindrical body that lacks a petiole, two sets of
transparent wings, and a cornus at their tails. In its native environment, S. noctilio is not
known to cause any considerable damage to its conifer hosts, but in the Southern
Hemisphere where it is introduced, it has been causing severe damage and death to trees
in commercial pine plantations. These resulted in substantial economic losses to forestry

companies and the country (Slippers et al. 2012).

6.1 Symbioses and interactions
Sirex noctilio has a mutual association with a fungal symbiont, Amylostereum areolatum.

This interaction is beneficial for both the woodwasp and the fungus. The benefits that the
fungus acquire from its relationship with the woodwasp include protection and growth in
the wasp’s mycangia. The wasp’s mycangia are bordered with glands that produce
secretions that are believed to activate fungal growth. The presence of the A. aerolatum
is important for the development of immature woodwasp. Madden (1981) showed that
there is a delay in egg eclosion when conditions in the tree disrupt fungal development,

and symbiotic growth is hindered by the presence of other fungi, larvae starvation is likely
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to occur (Coutts and Dolezal 1965; King 1966). The development of larvae and the growth
of fungi have a beneficial relationship. The fungus produces larger adults when the
conditions are favorable (Madden 1981). The fungus is also capable of modifying
environmental conditions. It dries up the wood substrate, creating a better micro-
environment for the development of the eggs and larvae (Coutts and Dolezal 1965). The
fungus degrades the wood to facilitate tunnelling of the larvae (Gilmour 1965), but most
critically also ensures degradation of cellulose to sugars as nutrition for the larvae
(Thompson et al. 2014).

The wasp's lifestyle and morphology are modified to maintain the wasp's relationship with
its symbiont. Adult females carry the fungus in paired mycangia that open into the oviduct
at the anterior end of the ovipositor (Boros 1968). During oviposition, the female
woodwasp uses the ovipositor to inject asexual spores or arthrospores of the symbiotic
fungus into the host sapwood and into a secondary drill beside the egg. Occasionally,
only the fungus and the phytotoxic mucus are deposited, rather than eggs. (Coutts 1965;
Coutts and Dolezal 1969). Starting from the second instar, the fungus is transferred from
one larva to the next in externally opening sacs. The adult female woodwasps take it up
into their mycangia when they shed their pupal skin, this ensures that the association with

the fungus is continued between generations (Parkin 1941; Boros 1968).

6.2 The life history of Sirex noctilio
The complex life history of S. noctilio has been well-studied. The woodwasp goes through

one generation per year, however, development can take two or more years under cold
climate conditions (Ryan and Hurley 2012). Oviposition occurs in mid-summer which is
mediated by the synergistic interaction between the females and their obligate fungal
symbiont (Amylostereum areolatum). This interaction weakens the resistance of the pine
trees and presents them as suitable hosts for development of the larvae (Talbot 1977).
Possible oviposition sites are evaluated by the females through drilling of the bark.
Several chambers are drilled into the bark, into which eggs, phytotoxic mucus, and the
wood-decay fungus carried by S. noctilio will be injected (Haavik et al. 2015). The eggs
hatch inside the chambers and the developing larvae depend on predigested wood by A.

areolatum for nutrition (Thompson et al. 2014). The fungal associate is thus used as
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external digestion of the xylem (Thompson et al. 2014). The larvae of S. noctilio complete
a variety of developmental stages before pupation, which occurs in late spring, normally
in the following year (Haavik et al. 2015). Drilling of pine trees by S. noctilio eventually
leads to death from the combined action of the phytotoxic mucus and the wood-decaying
fungus (Carnegie et al. 2005). Sirex noctilio favours the attack of weakened trees which
can be killed in under a single season. However, healthy trees can also be killed if they

suffer multiple attacks from the wasp (Madden 1968).

6.3 Population control of Sirex noctilio
Biological control is one of the main methods used for effective population control for S.

noctilio. Due to the magnitude of the threat that S. noctilio posed to pine plantations the
Australian Congress of Scientific and Industrial Research Organization and the
Commonwealth Institute of Biological Control begun a worldwide campaign in the 1960s-
1970s to explore natural enemies of S. noctilio in its native ranges (Williams and Hajek
2017). This program led to the identification of parasitoid wasps and nematodes species

as biocontrol agents of S. noctilio (Hurley et al. 2012; Williams and Hajek 2017).

The entomophagous-mycetophagous nematode, Deladenus siricidicola Bedding
(Nematoda: Neotylenchidae), is the main biocontrol agent used to control S. noctilio
(Collett and Elms 2009). Deladenus siricidicola is an effective control agent due to its
lifestyle which is almost ideal to control the woodwasp. The nematode has a complex bi-
cyclic lifecycle in which there is both a fungus-feeding as well as a parasitic phase (Morris
et al. 2012). The fungus-feeding phase free-living nematodes feed on A. areolatum
(Morris et al. 2012; Slippers et al. 2012). During the parasitic phase, the nematodes can
either parasitize female woodwasps, in the process sterilizing the eggs that are laid
(Hurley et al. 2012; Morris et al. 2012). The emergence of the parasitized woodwasp
females from the infested trees contributes to the distribution of the nematodes.

Biological control agents used against S. noctilio have variable levels of efficacy which
threaten the future of these control strategies. There are a number of factors that influence
the efficacy of the control strategy, which include environmental conditions, rearing,

handling and storage of the biological control agents, biological variations, nematode
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virulence, S. noctilio resistance and population incompatibility (Hurley et al. 2012; Morris
et al. 2012). These factors or combinations of factors may affect the efficacy of D.
siricidicola. The inconsistency in the efficacy of biological control raises a need for
improvement of the current control strategies and the development of new strategies.
Deladenus siricidicola must develop and complete its lifecycle inside the S. noctilio host.
The success of the nematode depends on its ability to evade the host immune response
to survive and complete its life cycle. To date, the mechanisms that are utilized by the D.
siricidicola nematodes to modulate the S. noctilio immune responses have not been
studied.

Current research on insects’ immune responses to nematode parasites commonly focus
on entomopathogenic nematodes. Entomopathogenic nematodes are a type of
roundworm that can infect and kill insects. To assist in this, these nematods have
developed mutualistic associations with certain bacterial symbionts. Entomopathogenic
nematodes provide shelter and serve as a vector for bacteria, allowing them to spread
from one host to another. After the nematodes have infested the insect host, the bacteria
are regurgitated and released within the insect hemocoel (Cooper and Eleftherianos
2016). Studies on entomopathogenic nematodes mainly focus on two genera, namely
Steinernema (associated with Xenorhabdus bacteria) and Heterorhabditis (associated
with Photorhabdus bacteria) (Cooper and Eleftherianos 2016). The entomopathogenic
nematodes contribute shelter and act as a vector for the bacteria and transfer them from
one host to another. In return, after the invasion of the insect host with the nematodes,
the bacteria are regurgitated and released within the insect hemocoel. The bacteria then
secrete toxins and virulence factors. The bacteria replicate rapidly in various tissues of

the insect, the carcass of which is finally consumed by the nematode parasites.
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Infection by nematode-bacteria complexes does not go unrecognized by the insect host.
To stop the distribution of the nematode-bacteria complexes in the host, the insect innate
immune system has a series of mechanisms ready to stimulate the recognition of the
mutualistic partners (Castillo et al. 2011). Humoral and cellular immune responses
constitute most of the insect innate immune response (Cooper and Eleftherianos 2016).
These studies provide an opportunity to act as a starting point for the study of the
mechanisms that are utilized by the D. siricidicola nematodes to modulate the S. noctilio

immune responses.

7. Conclusions

The insects, including Hymenoptera, rely on an innate immune system. The innate
immune system is made up of molecular mechanisms to defend the host insect against
pathogen infections in a nonspecific manner. Therefore, insects are adapted to
recognizing and responding to pathogens in a universal way. Insects are under constant
threat of pathogens and the action of the pathogen infection facilitates to constant
evolutionary adaptation of the insect immune system. For this reason, immune genes are
a typical example of genes in which positive selection is expected to occur. Pathogens
can evolve rapidly to evade the immune system of their host, resulting in a selection
pressure on the host to evolve counter-adaptations. The “arms race” between the host
and parasite/pathogen is expected to result in rapid evolution of the genes involved in the

interaction.

Hymenoptera is second only to Diptera in terms of the number of sequenced genomes
amongst the insect orders. The increasing availability of genetic tools and published
genome sequences of Hymenoptera provide an opportunity for comparative
phylogenomic analyses of the immune repertoire within Hymenoptera. Comparisons of
the immune gene “repertoire” of different Hymenoptera could help us understand both
the variation and conservation in Hymenoptera host defence mechanisms. Such an
approach can be useful for non-model, but ecomically important, insects such as Sirex

noctilio and the parasites used in its biological control.
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Chapter 1: Tables and figures

Table 1.1: List of abbreviations and acronyms

Functional category Full name Abbreviation

E)s}&hw(ljgse)n-associated molecular patterns lipopolysaccharide LPS
peptidoglycan PGN
B-1,3 glucans B-glu

Recognition peptidoglycan recognition proteins PGRPs
F()Brz)eir;;]r;f;gative binding proteins (B-glucan recognition GNBPs(BGRPs)
fibrinogen-related proteins FREPs
Thioester-containing proteins TEPs
down syndrome cell adhesion molecule DSCAM
leucine-rich repeat containing proteins LRRs

Signal transduction Toll-like receptor protein Toll
Myeloid differentiation factor 88 Myd88
TNF receptor associated factor Traf
Modulo serine protease ModSP
Wingless-type family member 11 Wnt-11
SUMO-conjugating enzyme UBC9
Spaétzle processing enzyme SPE
Immunodeficiency IMD
NF-kappa B transcription factor, Relish Rel
Inhibitor of apoptosis 2 IAP2
Inhibitor of apoptosis 1 IAP1
Fas-associated death domain protein FADD
Caspase-8 homolog Dredd
|-Kappa-B kinase 1 Ird5
c-Jun N-terminal kinase JINK
Transforming growth factor activated kinase TAK1
Takl-associated binding protein TAB2
Hemipterous Hep
Rho type GTPase Racl
Rho type GTPase Rhol
Mitogen-activated protein kinase kinase kinase 4 Mekk1
Dual specificity protein phosphatase 10 Puc
fri?éi rlfgrt\i%?]e/Signal transducers and activator of Jak/Stat
Suppressor of cytokine signalling Socs
E3 SUMO-protein ligase PIAS1
Cyclin dependent kinase Cdk
Unpaired Upd
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Domeless Dome
Janus kinase Hopscotch Hop
Signal transducers and activator of transcription STAT
p85 protein Pi3K
3-phosphoinositide-dependent protein PDK1
Serine/threonine protein kinase Akt
Phosphatase and tensin homolog Pten
Effectors Antimicrobial peptides AMPs
Prophenoloxidase proPO
Oxidative Stress Superoxide dismutase SOD
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Figure 1.1: Hymenoptera classification. Symphyta (Woodwasps, saw flies, horntails)

and Apocrita (Wasps, bees, and ants), the two traditional suborders of Hymenoptera, are
represented in capital letters. Superfamilies are indicated by terminal taxa. Hypothesized
sister group relationships are represented by dashed lines. (Adapted from Davis et al.
2010).
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Figure 1.2: Summary of defence strategies that insects use against a various
pathogens and parasites. Various pattern recognition molecules detect invading
pathogens when they breach the physical barriers of the insect host. When the pathogen
is successfully recognized cellular and humoral immune responses are triggered. Cellular
response mechanisms such as phagocytosis, encapsulation, and nodulation are part of
the immediate defense responses. Humoral responses provide sustainable defence by
massively synthesizing antimicrobial peptides (AMPs) and activating the ProPO cascade,
which releases other effector components. Both the cellular and humoral mechanisms
release effectors that eliminate pathogens and parasites. (Adapted from Andrew et al.
2007, Larsen et al. 2019).
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Figure 1.3: The Toll signalling pathway. Pathogen recognition receptor Gram-negative
binding protein 3 recognizes the fungal cell wall component 3-1.3-glucan (GNBP3). The
receptors, peptidoglycan recognition proteins PGRP-SA and GNBP1 detect
peptidoglycan of Gram-positive bacteria. A protease cascade is established when an
invading pathogen interacts with its respective recognition receptors. Serine protease
ModSP activates the Grass protease, which then activates the Spatzle processing
enzyme. Some pathogens produce virulence factors that can be recognized by the
protease Persephone. When Persephone is cleaved, SPE is activated, resulting in active
Spatzle. Active Spatzle is required for the activation of the transmembrane receptor Toll.
Activated Toll binds to Myd88 through TIR domains. The kinase Pelle is activated by
autophosphorylation. Active Pelle phosphorylates cactus, an NF-kB inhibitor. The
phosphorylated cactus is marked for degradation. The NF-kB transcription factors
Dorsal/DIF become free and translocate to the nucleus. In the nucleus. Antimicrobial
peptide production is triggered by these transcription factor genes. (Adapted from Evans
et al. 2006; Xu and James 2009; Gupta et al. 2015, Rosales 2016).
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Figure 1.4: The Immune Deficiency (IDM) and c-Jun N-terminal kinase (JNK)

signalling pathways. PGRP-LC recognizes DAP-type peptidoglycan (poly PGN) and
activates the Imd signalling pathway. IMD interacts with FADD (Fas-associated protein
with death domain), this results in the recruitment of a caspase, DREDD (FADD-death
related protein. TAB2 recruits and activates TAK1, which activates the IKK complex,
which then phosphorylates the NF-kB-like nuclear factor Relish. When TAK1 is activated,
it also activates the JNK pathway. (Adapted from Evans et al. 2006; Xu and James 2009;
Gupta et al. 2015, Rosales 2016).
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Figure 1.5: The Janus kinase-signal transducer and activator of transcription (JAK-
STAT) signalling pathway. Unpaired (upd) cytokine-like proteins indicate pathogen
invasion through the receptor domeless, which binds to JAK and hopscotch. Upon the
activation of the receptor, hopscotch phosphorylates itself and specific tyrosine residues
on the cytoplasmic part of the receptor. The phosphorylated tyrosine molecules serve as
docking sites for the STAT transcription factor STAT92E. Hopscotch phosphorylates
STAT92E at tyrosine residues, allowing it to dimerize and translocate to the nucleus.
STAT92E binds to the promoters of their target genes in the nucleus (Adapted from Evans
et al. 2006; Xu and James 2009; Gupta et al. 2015, Larsen et al. 2019).
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LPS R-Glu PGN
PAMPs

}

Serine proteinase cascade

|

Serine protease

 PoPO —— PO
Melanin formation

——— Release of ROS
- / Pathogen encapsulation
> > — - \
-I-  Domminone  ——  popacrome

Figure 1.6: The prophenoloxidase-based melanisation biochemical process. This is

a process produce melanin during wound healing, as well as in nodule and capsule
formation against large invading pathogens. The enzyme phenoloxidase (PO), which is
activated by a serine proteinase cascade, is the primary enzyme in this process. When
pattern recognition proteins like PGRP or GRP identify certain PAMPs on the surface of
an invading pathogen, the serine protease cascade is activated. The activated PO then
attaches to pathogen surfaces, such as hemocyte membranes, where it starts the melanin
production process. PO acts on tyrosine and converts it to dopa. Ddc can then
decarboxylate dopa to produce dopamine, or PO can further oxidize it to produce
dopaquinone. Both products are then further metabolized to finally produce melanin.
(Adapted from Garcia et al. 2009, Rodriguez-Andres et al. 2012, Dubovdkiy et al. 2016).
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Chapter 2

Immune-related genes activated in response to
three different treatments in Sirex noctilio
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1. Abstract

The woodwasp, Sirex noctilio, in association with its mutualistic fungus, Amylostereum
areolatum, pose a threat to forest plantations in the Southern Hemisphere. This invasive
pest insect is controlled with a biological control agent, a parasitic nematode, Deladenus
siricidicola. This biological control method has previously been successful in controlling
S. noctilio populations, achieving over 90% parasitism. Recent studies have shown that
there is a variability in the efficiency of the nematode and there are some S. noctilio
populations that are resistant to certain nematode strains. A better understanding of the
immune response of the wasp during its interaction with the nematode has relevance to
the evolution of immune response pathways in Hymenoptera in general and may also
assist in the selection of more virulent/effective nematode strains in the future. The
molecular mechanisms underlying the interaction between S. noctilio and D. siricidicola
are, however, unknown. In this study, we aimed to identify the immune-related genes of
this wasp. To enhance our findings, we used transcriptome analysis on immune
challenged and unchallenged S. noctilio larvae to identify additional components
implicated in immune reactions. A total of 180 immune-related genes were identified
through the comparison of the S. noctilio genome with the genes and genomes of other
Hymenoptera. Key elements of the conserved Toll, IMD, JNK and JAK-STAT signalling
pathways were identified in the S. noctilio genome. Differential gene expression analyses
performed on infected S. noctilio larvae demonstrated that typical wounding response
mechanisms are activated by this insect in response to all the treatments. This study
provides insight into the molecular pathways of innate immune processes in S. noctilio
larvae and will serve as the foundation of future studies on the interaction between the

woodwasp and pathogens/parasites.

Keywords: Hymenoptera, host-parasite interactions, immune response, Sirex

noctilio, comparative genomics
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2. Introduction
Arthropods are among the most successful life forms on earth, regarding species richness

and abundance (Gupta et al. 2015). Like all other living organisms, they frequently
encounter a wide range of pathogens. These pathogenic microorganisms include
bacteria, fungi, viruses, protozoans and nematodes (Palmer and Jiggins 2015). These
pathogens invade and colonize the host insect they encounter, and in most cases a
successful colonization might result in harmful effects in the host (Hillyer 2016). Insects
have anatomical and physiological barriers that provide a first line of defence against
invading pathogens. For example, the body of the insect is covered with a single layer of
epithelium (epidermis), which rests on the basal membrane. The epithelium, which is
impregnated with chitin, is the foundation of the cuticle's structure (Siva-Jothy et al. 2005;
Lundgren and Jurat-Fuentes 2012). This tough insect body coating guards against

infection and mechanical injury (Moussian 2010).

When the physiological barriers are breached, the insect's immune system is switched
on as a second line of defence. Insects rely on an innate immune system, although innate
priming or innate memory has recently been discovered as a sort of adaptive immunity in
insects (Ben-Ami et al. 2020). The innate immune response is made up of both humoral
and cellular responses (Hoffmann 2003; Lemaitre and Hoffmann 2007). Haemocytes,
which are blood cells that can engulf intruders in the process of phagocytosis or capture
them in multicellular formations termed nodules or capsules, play a role in cellular immune
responses (Strand 2008). The humoral immune responses involve the production of
defence molecules. Reactive oxygen and nitrogen intermediates, as well as antimicrobial
peptides (AMPs) are amongst the defence molecules (Aggrawal and Silverman 2007).
Drosophila melanogaster has been the most thoroughly studied insect in terms of genetic
mechanisms involved in defence reactions. In this model organism, NF-kB transcription
factors activate genes encoding AMPs in response to infection via the Toll and immune
deficiency (IMD) signalling pathways (Hetru and Hoffmann 2009). Other immune
signalling pathways are the JNK and JAK-STAT pathways, which play a role in response
to cell stress or wounding. The JAK-STAT pathway also play a role in antiviral response
(Lemaitre and Hoffmann 2007).
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Different pattern recognition receptors (PRRs) such as beta-1, 3-glucan recognition
proteins (BGRPs), peptidoglycan recognition proteins (PGRPs) and down syndrome cell
adhesion molecules (DSCAM) detect infection and trigger the signalling cascades to
activate Toll and IMD pathways (Palmer and Jiggins 2015; Zhang and Gallo 2016).
Whole-genome analyses have revealed that key immune pathways and gene families are
highly conserved among insect species, including hymenopterans. The Toll, IMD, JAK-
STAT and JNK signalling pathways are highly conserved and are often in 1:1 orthologous
relationship between species (Evans et al. 2006; Waterhouse et al. 2007; Gupta et al.
2015; Sackton et al. 2017; Zhou et al. 2017). However, there is still significant variation
with regards to the presence/absence, copy number, and sequence divergence of genes
that code for recognition and effector molecules (Sackton et al. 2007; Waterhouse et al.
2007). This could be because insects are exposed to a wide spectrum of continuously
evolving pathogens, making upstream recognition and downstream effector genes
targets of selection, leading to diversification (Evans et al. 2006; Sackton et al. 2007;
Waterhouse et al. 2007).

The woodwasp, Sirex noctilio (Hymenoptera: Siricidae), belongs to the ancient
Hymenoptera suborder Symphyta (Klopfstein et al. 2013). Sirex noctilio is native to North
America, Eurasia, North Africa and Japan, where it is not considered a pest (Spradbery
and Kirk 1978). Sirex noctilio in association with its symbiotic fungus, Amylostereum
areolatum are globally invasive pests that attack pine species, causing significant
economic and ecological damage (Tribe and Cillié 2004; Hurley et al. 2007; Foelker
2016). Female woodwasp infests pine trees by injecting the symbiotic fungus and
phytotoxic mucus into the trees during oviposition (Bordeaux et al. 2014).The mucus
substance weakens the pine trees and allows for the establishment of the fungus (Haavik
et al. 2015). The fungus colonizes the wood and disrupts water flow, eventually killing the
tree. The fungus participates in breaking down the cellulose which is essential for larval
feeding. Sirex noctilio larvae do not have all the enzymes required to completely degrade
cellulose, which is its principle source of carbon (Talbot 1977).
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The parasitic nematode, Deladenus siricidicola, is the main biological control agent used
against S. noctilio. The nematode has a bicyclic life cycle, feeding on A. areolatum in one
part of its life cycle (mycetophagous), and infecting S. noctilio in the other (infective)
(Morris et al. 2012). The infective nematodes penetrate the larvae and occupy the
haemoceal, where they will develop for the duration of the life of the larvae. When the
larvae pupate and the adult emerge, infective females will produce thousands of juveniles
that will migrate to the developing eggs of the wasp and penetrate them. This sterilizes
the female wasps. The infected eggs will serve as a vehicle for the transport of the
nematodes to other trees, where they can parasitize other larvae (Hurley et al. 2012;
Morris et al. 2012).

The biological control of the wasp using the nematode has been highly effective, reaching
levels of >90% parasitism after inoculation (Hurley et al. 2007). Unfortunately, this
success has not been the same throughout the regions where the wasp occurs and where
the nematode is used for biological control. In various parts of South America and South
Africa, parasitism levels have often been <10% (Hurley et al. 2007). One possible reason
for this might be various levels of “resistance” in S. noctilio population to D. siricidicola.
Bedding (1972) showed that different levels of parasitism occur when using the same
nematode strain, but in different S. noctilio populations (Bedding 1972). Boissin et al.
(2012) demonstrated that S. noctilio populations differ greatly between invaded regions
(Boissin et al. 2012).

In different organisms, including non-model insects, RNA-Seq is commonly used to get
transcriptomes of the organisms, tissues, or organs, to identify genes that are controlled
under certain conditions, and to uncover regulatory processes (Oppenheim et al. 2015).
In the past decade, there has been an increase in the application of RNA-Seq in biological
control agents to identify the interaction mechanisms in complex parasite-host systems
(Yek et al. 2013; de Bekker et al. 2015; Elya et al. 2018; Brettell et al. 2019; Lester et al.
2019). Transcriptome profiling of organisms under parasitisation might assist in gaining a

better understanding of host responses, as well as possible effects on host growth and
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development (Galetto et al. 2018). Many genes linked to insect’s immunity has shown to
be differentially expressed following an immune challenge (Salazar-Jaramillo et al. 2017).
In this study, provide the first overview of the S. noctilio defence system. We first describe
the putative immunity pathway models of S. noctilio using a homology approach with
immune related genes identified in other insects. Subsequently, we use high-throughput
RNA sequencing (RNA-seq) to identify which of these pathways are regulated by D.
siricidicola parasitisation, in comparison to wounding and entomopathogenic fungal

parasitisation.

3. Materials and Methods

3.1 Genome data

3.1.1 Sirex noctilio genome assembly and annotation

A good quality draft genome of S. noctilio from South Africa (unpublished data, Bernard
Slippers and Alisa Postma-Smidt) was used in this study. The de novo genome assembly
was built using VelvetOptimizer and SSPACE (Zerbino and Birney 2008; Boetzer et al.
2011). This resulted in the draft S. noctilio genome with an N50 of approximately 825 Kb,
and a total size of 185 Mb. Completeness of the genome based on comparisons of
conserved single copy orthologs using BUSCO v3 (Simao et al. 2015) was 95.4% and
annotation completeness of 94%.The assembly and annotation statistics for this genome

are shown in Table 2.1.

3.1.2 Identification and characterization of putative immune-related genes in S. noctilio
CLC Main Workbench 7.6.2 (https://www.giagenbioinformatics.com/) was used to create

local databases for our genome assembly and annotation data. Lists of immune-related
gene sequences associated with insect’'s innate immunity were compiled based on
literature (Supplementary Table S2.1). The immune-related gene sequences were then
obtained from OrthoDB v8 (http://www.orthodb.org/) (Waterhouse et al. 2013). These
immune-related gene sequences are referred to as the query sequences. As far as
possible, only immune-related gene sequences that were well-annotated and functionally
characterised were used as query sequences. Default BLAST parameters were used.

Results identified the top scoring S. noctilio BLAST hit sequences for each query
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sequence and the associated statistics of pairwise alignments, such as the E-values,
bitscores and percentage identity.

Orthologs between the top hit S. noctilio protein and query protein was assigned when
three criteria were met. The criteria included (a) the same putative S. noctilio protein
sequence was identified as the top hit with the ortholog query of multiple other
hymenopteran species, (b) when the E-value of a BLASTp hit was <10-1° and (c) when
the bit score was above 60. The top S. noctilio putative innate immunity orthologs
identified by local BLASTp analyses were extracted as fasta files from CLC Main
Workbench 7.6.2. The extracted sequences were submitted for BLASTp analyses against
the OrthoDB and NCBI databases, Hence, the percentage identity, percentage coverage,
E-values, and bitscores of putative S. noctilio proteins could be compared with many more
Hymenoptera species than in the local BLASTp analyses. In this way, the initial
identification of putative S. noctilio innate immunity orthologs could be supported.

The selected immune-related genes were also analysed using CDD database to detect
corresponding conserved domain structures (Marchler-Bauer et al. 2010). The function of
an identified ortholog is often predicted based on the sequence similarity it shares with
functionally characterised orthologs in other organisms (Pearson 2013). This is based on
the concept that homologous sequences have similar secondary protein structures and
are, therefore, often similar in function. The protein domains were analysed in particular
as each domain is involved in specific interactions and/or functions, with evolution at
these domains being more constrained than other protein regions (Bagowski et al. 2010).
Throughout the study, we used protein sequences as queries as they allow for the
detection of more distantly related sequences than DNA sequences, which is due to the
degeneracy of the genetic code. These methods were employed to identify orthologs and

protein domains, but also to estimate authenticity of the protein annotations.
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Manual curation of the S. noctilio genes which passed the above-mentioned criteria were
performed in WebApollo (Lee et al. 2013). WebApollo is a web-based JBrowse plug-in
that allows the user to perform manual curation and visualisation of the changes made to
the annotation. The WebApollo graphical interface was used to identify and manually
curate the candidate immune-related gene orthologs. This was done by considering RNA-
Seq data from the immune challenged S. noctilio larvae. Changes to the initial models
were validated using Clustal Omega to ensure sequence is complete/correct (Sievers and
Higgins 2014).

3.2 Transcriptome analysis

3.2.1 Sample preparation, RNA extraction and sequencing

Four treatments were tested for their impact on immune-related transcripts in S. noctilio,
including a control. Ten S. noctilio larvae were exposed in each of the treatments. In the
first, early-stage S. noctilio larvae were infected by D. siricidicola nematodes. Deladenus
siricidicola nematodes of the strain SA107 (2013) were sub-cultured in 500 ml Erlenmeyer
flasks. The flasks contained 160 g sterilised media (mix of 70% wheat and 30% brown
rice), that was inoculated with A. areolatum, as well as 85 ml of water. The flasks were
incubated, and nematodes were harvested 6-8 weeks post incubation. Sirex noctilio
larvae were added into the flask containing harvested nematodes. In the second
treatment, the immune responses in S. noctilio are considered following infection with the
fungus Beauveria bassiana isolate HBD241. A volume of 3 ml of a spore suspension of
the fungus was directly pipetted onto S. noctilio larvae. Lastly, the impact of a wounding
response was assessed by pricking each individual larva twice, once at the anterior body
and once at the posterior body using the tip of a disposable hypodermic needle. The

samples, along with unchallenged control, were collected at 72h.

The larvae were homogenized using a mortar and pestle. Total RNA was extracted from
individual larvae using a standard TRIzol method (Invitrogen, California, USA). Total RNA
was re-suspended in 50ul of sterile nuclease free water. A nanodrop was used to
measure the concentration of the RNA. RNA quality and integrity were assessed using a

Bioanalyser. Only the RNA samples with Azeo/Azso ratios in a range from 1.8 to 2.0 and
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Aze0/A230 >1.5 were selected for further processing. All buffers were treated with DEPC
solution and autoclaved before use. Three biological replicates containing three
separately prepared RNA samples each from the control or treated larvae at the 72h time
point were included for RNA-Seq analysis of S. noctilio transcriptome (Figure 2.1).
Separate libraries for the four experimental conditions were prepared, and the samples
were sent to Beijing genomics institute (BGI) for sequencing. The libraries were labelled,

pooled and sequenced using paired end libraries on the lllumina HiSeq platform.

3.2.2 Alignment of reads and coverage analysis
At one timepoint, samples representing the three infection types were collected and

processed for sequencing. FASTQC and MultiQC was used to assess the quality of the
raw sequencing data. Trimmomatic was used to trim and filter contaminating adapter
sequences and low-quality reads from the raw Illumina RNA-Seq data (Andrews 2010;
Bolger et al. 2014). The read alignment tool, TopHat2, was used to align the short RNA-
seq reads to the S. noctilio reference genome for each of the sequencing datasets (Kim
et al. 2013). The output from TopHat2 was obtained as BAM format files which contain
information on the mapping position and quality of the individual reads in relation to the
reference genome. Quality control was done on the BAM files using MultiQC.
Subsequently, FeatureCounts was used to quantify the genetic features contained within

the mapping results (Liao et al. 2014).

3.2.3 Differential gene expression analysis and statistical analysis
The read counts were used as input for DESeq (v1.10.1) and edgeR (v3.4.0) (Anders

2010; Robinson et al. 2010). Both programs are R Bioconductor packages that assess
variance-mean dependency in count data from high-throughput sequencing assays,
normalize count data for library sizes and dispersion, and test for differential expression
using a negative binomial distribution model (Anders and Huber 2010). Compared to
edgeR, DESeq algorithms are more conservative. Even though the two statistical
methods may generate different significantly differentially expressed gene lists, we expect
some overlap in the results. After applying significance cut-offs (adjusted p-value 0.05),
the significantly differentially expressed genes were identified for multiple comparisons.
BLAST2GO was used for Gene ontology (GO) analysis using the list of the significantly

differentially expressed genes (www.blast2go.com). Gene ontology (GO) is an
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internationally standardized functional classification system that covers three categories:
biological process, molecular function, and cellular component. In our study we performed

the classification of GO terms at level two in each category.

3.2.4 Primer design
Primers were designed for seven candidate genes of interest (thioredoxin, integrin beta,

epidermal growth factor receptor, superoxide dismutase (Mn), cytochrome P450,
glutathione peroxidase and dynamin). These genes were selected as they were uniquely
induced by D. siricidicola and are not shared with other infection models. We also
designed primers for four reference genes (GADPH, actin, alpha tubulin and Rp49) that
were selected based on reference genes that are already described for insects in the
literature. The primer pairs were designed using Primer3 software v.0.4.0 (Rozen and
Skaletsky 2000) and the Oligo-analyzer online tool from Integrated DNA Technology
website (www.idtdna.com) was used to identify any secondary structures in the designed
primer pairs. The criteria used for the primer design were as follows: (i) the primers had
to have a minimum melting temperature (Tm) range of 40°C-62°C (ii) with the last base

pairs not having more than 3 C’s or G’s (iii) they should be designed towards the 5’ end.

4. Results

4.1 Identification and characterization of putative immune-related genes in
S. noctilio
The genome of S. noctilio was searched for possible immune-related genes. A total of

180 immune-related genes were identified in S. noctilio by sequence-based protein
orthology to previously published data of other Hymenoptera species (Supplementary
Table S2.1). Genes that are involved in insect’'s pathogen recognition include those
encoding PGRPs, BGRPs, galectins, C-type lectins, scavenger receptors (SCRs) and
croquemort. Genes involved in signal transduction were grouped into pathway-related
categories of Toll, IMD, JNK and JAK-STAT. The immune effector category comprised of
prophenoloxidase, thioester-containing protein (TEPs) and antimicrobial peptides

(AMPs). Other genes included those encoding antioxidant enzymes SOD, catalases and
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peroxidases which play a role in detoxification of reactive oxygen species (ROS), as well
as genes involved in phagocytosis, encapsulation, and nodulation.

Pattern recognition receptors (PRRs) mediate the identification of pathogen invasion,
which is the first step in the innate immune response (PRRs) (Akira et al. 2006). We have
identified 14 PRRs in S. noctilio including two PGRPs, two BGRPs, one galectin, three C-
type lectins, one Scavenger receptor B subfamily member, one Drapper and one DSCAM
(Supplementary Table S2.1). The S. noctilio PGRP-LC and PGRP-SA has a N-
acetylmuramoyl-L-alanine amidase domain and peptidoglycan recognition protein
domain (Supplementary Figure S2.1 and Supplementary Figure S2.2). One of the S.
noctilio BGRPs genes (B-glucl) contain the Carbohydrate binding domain (family 32)
which is normally found at the N-terminus of beta-1,3-glucan-binding proteins. The two S.
noctilio BGRPs genes contains the glycosyl-hydrolase family 16 domain (Supplementary
Figure S2.3 and Supplementary Figure S2.4). The domain architecture analysis
indicates that the putative S. noctilio galectin possesses conserved galactoside binding
domain (Supplementary Figure S2.5). The C-type lectins identified in S. noctilio contain
carbohydrate-recognition domains (Supplementary Figure S2.6 and Supplementary
Figure S2.7). Croquemort and Scavenger receptor class B member 1 identified in S.
noctilio both contain the CD36 domain (Supplementary Figure S2.8 and
Supplementary Figure S2.9).

In terms of the presence of orthologs in S. noctilio, the Toll Signalling pathway was
discovered to be highly conserved (Figure 2.2). In S. noctilio three PRRs likely activating
the Toll pathway are found: PGRP-SA, two beta-1,3-glucan binding proteins GNBP1 and
GNBP3. A single gene encoding Dorsal was identified in S. noctilio, however, as in A.
mellifera no ortholog of the dorsal-related immunity factor, Dif, was present. The IMD and
JNK pathways were also conserved in S. noctilio (Figure 2.3). In S. noctilio, we found a
single gene PGRP-LC that encodes one PRR that is involved in the activation of the IMD
pathway. There is an absence of IKK complex in S. noctilio. The data also indicate that
the JNK pathway in S. noctilio is like the pathway in other hymenopterans as most of the
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core components of the JNK pathway of the hymenopterans have orthologs in S. noctlio
(Figure 2.3).

Scavenger receptors, Croquemort family members, Nimrod, Galectins, C-type lectins,
Hopscotch, Domeless, signal transducer STAT, Fibrinogen-related protein, Down
syndrome cell adhesion molecular (Dscam) and Thioester containing proteins (TEPS).
These are known to be involved play a role in the JAK-STAT pathway. Some of the
components of the JAK-STAT pathway are presentin S. noctilio (Figure 2.4). Two AMPs,
Defensin and Hymenoptaecin were identified in the genome of S. noctilio. Immune
effectors genes including a single ProPO gene, and one Lysozyme was identified in S.
noctilio genome (Figure 2.5, Supplementary Table S2.1). Among signal modulation
genes, a few genes encoding three Serpins and three Serine Proteases were found in
the genome of S. noctilio. Genes encoding antioxidant enzyme were also identified in the
genome of S. noctilio, these included two SOD genes, one was the Cu-Zn SOD and the
other was the Mn-Fe SOD, two peroxidases and one catalase (Figure 2.5). The summary
of the proposed immune signalling pathways in S. noctilio is shown in Figure 2.6.

4.2 RNA sequencing
cDNA libraries were generated RNA isolated from immune challenged (infected with D.

siricidicola and B. bassiana, and wounded) and control S. noctilio larvae, and then
sequenced using Illumina HiSeq. The average number of reads across all the libraries is
32465911 and the average GC content was calculated to be 42% (Table 2.2). Overall,
the reads in clean data showed good mapping rates and concordant pair alignments
(95.60%-97.9%) to the reference genome (Table 2.3).

4.3 Differential gene expression analysis
Following statistical analysis and a statistical threshold of adjusted p-value < 0.05, the

combination of the results from edgeR and DESeq enabled the identification of 4862
genes which were significantly differentially expressed in the immune challenged S.
noctilio larvae compared to the control. DESeq exclusively identified a total of 540 and
edgeR exclusively identified 148 significantly differentially expressed genes in the

immune challenged S. noctilio larvae compared to the control (Figure 2.7 and Table 2.4).
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There was an approximately 85% overlap amongst the significantly differentially
expressed genes identified through the two analysis approaches. The genes that are

present in the overlap of the DESeq and edgeR are used in the analysis that follow.

RNA-Seq was used to determine the expression profiles of immune-related genes in
early-stage S. noctilio larvae following immune challenges to show the regulation patterns
of the different immune-related genes in S. noctilio. Out of the 4862 significantly
differentially expressed genes, 1270 (608 upregulated and 662 downregulated), 1817
(902 upregulated and 915 downregulated), and 3212 (1749 upregulated and 1463
downregulated) genes that were significantly differentially expressed in S. noctilio after
nematode infection, fungal infection, and wounding, respectively (Table 2.4). There were
342 significantly downregulated genes and 257 significantly upregulated genes that were
commonly expressed among all the treatments (Figure 2.8a and Figure2.8b). There
were 62 downregulated genes that were common between fungal infection and wounding,
170 between wounding and nematode infection and 159 between fungal infection and
nematode infection, respectively (Figure 2.8a). Moreover, there were 103 upregulated
genes that were common between fungal infection and wounding, 236 between wounding
and nematode infection and 129 between fungal infection and nematode infection,

respectively (Figure 2.8b).

The overall comparison of the differential gene expression activated by the three
treatments through MA plots revealed that wounding activated large response, as
expected (Figure 2.9). Wounding is a mechanical process that does not involve strategies
to evade the host immune response, therefore, it was expected that it will show large
immune activation in comparison to the response activated by the D. siricidicola
nematode and B. bassiana fungus. In the PCA plot for S. noctilio immune response,
wounding grouped differently while nematode, fungi and control grouped together (Figure
2.10).
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4.3.1 D. siricidicola nematode infection, B. bassiana fungal infection and wounding
regulates several molecular pathways and biological activities in S. noctilio.
In the dataset of genes that were significantly upregulated by D. siricidicola infection,

“‘metabolic processes” and “biosynthetic processes” were the most common GO
biological process categories. In the molecular function category, “binding” and “kinase
activity” were the most abundant. In the cellular component category, “nucleus” and
“cytoskeleton” represented the most abundant subcategories (Figure 2.11). The overall
gene repertoire that was significantly downregulated by the D. siricidicola nematode
infection, the most abundant GO biological process categories were “metabolic
processes” and “biosynthetic process”. In the molecular function category, “binding” and
“hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides” were
the most abundant. We found that in the cellular component category “nucleus” and

“mitochondrion” represented the most abundant subcategories (Figure 2.12).

The gene repertoire that was significantly downregulated by B. bassiana fungal infection,
“‘metabolic processes” and “biosynthetic processes” were most enriched in the GO
biological process category. In the category molecular function, the subcategories
‘binding” and “kinase activity” were the most abundant. In the category cellular
component “nucleus” and “mitochondrion” represented the most abundant subcategories
(Figure 2.13). The gene repertoire that was significantly upregulated by B. bassiana
fungal infection, in the GO biological process category “metabolic processes” and
“biosynthetic processes” were the most enriched. In the category molecular function
“binding” and “transferase activity” were the most enriched subcategories. In the cellular
component category, “nucleus” and “cytoskeleton” were the most enriched subcategories
(Figure 2.14).
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The gene repertoire that was significantly downregulated by wounding, “metabolic
processes” and “biosynthetic processes” were most enriched in the GO biological process
category. We found “binding” and “kinase activity” to be the most abundant subcategories
in the molecular function category. In the cellular component category, “nucleus” and
“mitochondrion” were the most enriched subcategories (Figure 2.15). The gene repertoire
that was significantly upregulated by wounding, “metabolic processes” and “biosynthetic
processes” were the most enriched in the category GO biological process. The
subcategories “binding” and “transporter activity” were the most abundant in the
molecular function category. In the cellular component category, the subcategories

“nucleus” and “mitochondrion” were the most enriched (Figure 2.16).

4.3.2 Regulation of candidate immune-related genes by S. noctilio larvae in response to D.
siricidicola nematode infection, B. bassiana fungal infection and wounding
The number of common and exclusive immunity-related differentially expressed genes

(DEGs) among the treatments was determined using a Venn diagram analysis (Figure
2.17). There are 18 DEGs that were commonly expressed among all the treatments, while
5, 3, 12 were commonly expressed among D. siricidicola nematode infection and B.
bassiana fungal infection, B. bassiana fungal infection and wounding, and wounding and
D. siricidicola nematode infection, respectively. Additionally, 3, 10 and 24 DEGs were
specifically expressed in B. bassiana fungal infection, D. siricidicola nematode infection
and wounding, respectively (Figure 2.17). The immune-related differentially expressed
genes in S. noctilio included genes involved in recognition (B-gluc2, PGRP-SA, SRCBM1
and vigilin), Toll, IMD, JNK, and JAK-STAT signalling pathways (SPZ, Toll, Tube, Rel,
Fadd, Imd, STAT), effectors, serine proteases, Prophenoloxidase and serine protease
inhibitors. Other wound healing genes with chitinase activity (Cht3, Cht5) were also
included.
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In the immune recognition group, two genes were significantly differentially expressed,
PGRP-SA and B-gluc2. PGRP-SA was significantly upregulated by D. siricidicola and B.
bassiana infections. One gene encoding B-gluc2 was upregulated during B. bassiana
infection. Wounding resulted in significant upregulation of vigilin and downregulation of
scavenger receptor SRCBML1. Genes that play a role in signal modulation such as serine
proteases and serine protease inhibitors were also regulated in our dataset. These
include serine protease 48 and serpin B8 which were significantly upregulated, as well as

serpin B10 that was significantly downregulated by the D. siricidicola infection.

In the signal transduction group the Toll pathway genes spaetzle, protein spaetzle, tube,
toll, toll6, toll8 and pelle were significantly regulated following the immune challenges.
Among them protein spaetzle and tube were significantly upregulated in response to all
the three infection types. spaetzle was significantly downregulated in response to
wounding and significantly upregulated in response to B. bassiana infection. Wounding
led to significant downregulation of Toll and toll6 was significantly upregulated by D.
siricidicola infection. The gene pelle was significantly upregulated by wounding. The gene
Toll8 was found to be significantly upregulated by D. siricidicola infection and significantly
downregulated by wounding. We also found that Tolloid-like protein 2 was significantly

downregulated by wounding (Figure 2.18).

In the IMD pathway the following genes were regulated IMD, dfadd, relish and ank-1.
Among these genes Imd and dfadd were siginificantly upregulated in response to all the
infection types. The IMD pathway transcription factor Relish was significantly upregulated
in response to wounding while ank-1 was significantly upregulated in response to D.
siricidicola infection and wounding (Figure 2.19). In the JNK pathway, JNK was
significantly upregulated in response to wounding, rhol was significantly downregulated
by D. siricidicola and B. bassiana infections. Jra was significantly downregulated in
response to D. siricidicola infection and wounding. The gene puc was significantly
upregulated by D. siricidicola infection and wounding (Figure 2.19). In the JAK-STAT

pathway stat and pdkl were significantly upregulated in response to all the infection
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conditions. Agrin was significantly upregulated in response to D. siricidicola infection and
significantly downregulated in response to wounding. Lastly, polo was significantly
downregulated by wounding (Figure 2.20).

The immune effector genes such as PPO, hymenoptaecin, defensin, quinone reductase
and putative cht3 were regulated in our dataset. PPO and putative cht3 were significantly
upregulated in response to all the infection conditions. The gene Quinone reductase was
significantly downregulated in response to all the infection conditions. The antimicrobial
peptide gene Hymenoptaecin was significantly upregulated in response to wounding and
D. siricidicola infection, and significantly downregulated in response to B. bassiana
infection. Genes encoding enzymes that play a role in reactive oxygen species (ROS)
detoxification were also induced in our dataset. These include thioredoxin, MnSOD,
catalase, glutathione-S-transferase and glutathione peroxidase. The genes MnSOD,
thioredoxin and glutathione peroxidase were uniquely significantly downregulated by D.
siricidicola infection. We found catalase to be upregulated by both D. siricidicola infection
and wounding. The antimicrobial peptide gene Defensin was significantly downregulated
by wounding, while B. bassiana infection significantly upregulated its expression levels.
Components of the extracellular matrix were also regulated in our gene set. These
includes paxillin, integrin beta and epidermal growth factor receptor. The gene paxillin
was significantly upregulated by all the treatment conditions. We found integrin beta to be
significantly upregulated by both D. siricidicola infection and wounding. Finally, we found
epidermal growth factor receptor to be significantly upregulated by D. siricidicola infection

only.

We further noticed other genes to be significantly differentially expressed, these included
hexamerin, myosin regulatory light chain 2, myosin IA, myosin XV, cytoskeleton-
associated protein 5, microtubule-associated protein, croquemort, structural cuticle
protein, zinc finger protein 609, dynamin, engulfment and cell motility protein 1,
phospholipase A2, phospholipase D, prostaglandin E synthase2, peroxiredoxin,
DDC/Aromatic-L-Amino-Acid decarboxylase, proclotting enzyme, cytochrome P450-16,

zinc transporter 2. Hexamerin was upregulated by D. siricidicola infection and
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downregulated by wounding. Three differentially expressed genes myosin regulatory light
chain 2, myosin IA, myosin XV were shared between D. siricidicola infection, B. bassiana
infection and wounding, all of which were upregulated. Wounding resulted in the
downregulation of cytoskeleton-associated protein 5 and upregulation of microtubule-
associated protein. Downregulation of croquemort was shared between D. siricidicola
infection and wounding. Wounding resulted in upregulated expression of phospholipase
A2. Phospholipase D was significantly downregulated by all the treatment conditions.
Upregulation of prostaglandin E synthase2 was shared between D. siricidicola infection
and wounding. D. siricidicola infection and B. bassiana infection both resulted in
downregulated expression of peroxiredoxin. Both D. siricidicola infection and wounding
resulted in the upregulated expression of DDC/Aromatic-L-Amino-Acid decarboxylase,
and downregulated expression of cytochrome P450-16. Proclotting enzyme was
downregulated by wounding only. The expression of zinc transporter 2 was
downregulated by D. siricidicola infection and upregulated by wounding. We generated
heat maps to illustrate the regulation patterns of the different immune-related gene in
S.noctilio in response to D. siricidicola nematode infection, B. bassiana fungal infection

and wounding in comparison to the uninfected control (Figure 2.21-Figure 2.23).

4.4 Primer design
Seven significantly differential expressed genes related with the wounding and defence

responses were selected to be used in the future for real-time gPCR confirmation. These
genes were uniquely regulated in response to D. siricidicola nematode infection. Four
reference gene primers were also designed. The eleven primer sequences and related

information are given in Table 2.6.

5. Discussion

5.1 A brief overview of the S. noctilio immune system
We present the first view of the immune-related gene repertoire of S. noctilio, using

sequence-based protein similarities with the previously published data of Hymenoptera
species with the assumption that their roles and mechanisms of action are conserved.
We found 180 immune-related genes in the genome of S. noctilio, and we propose models

of the potential immune signalling pathways in S. noctilio that need to be validated
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experimentally. Like other systems, the core signalling pathways seem to be more
conserved, with large number of 1:1 orthologs, than the recognition and effector
molecules that are often expanded and diverse (Gupta et al. 2015). We further evaluated
the transcriptional changes that takes place following infection of S. noctilio larvae with
the D. siricidicola nematode and B. bassiana fungus, as well as wounding. Our results
indicate that there are hallmarks of a wound response that is shared amongst the infection

models.

5.1.1 Pathogen recognition
When an insect comes into contact with a pathogen, it activates its innate immune system

by attaching to or recognising pathogen-associated molecular patterns (PAMPS)
(bacterial peptidoglycan, lipopolysaccharides, B-glucans, lipoproteins, CpG dinucleotides
or flagellin) (Shelby and Popham 2012). Pattern recognition receptors (PRRs) identify
these molecules. Known insect PRRs include peptidoglycan recognition proteins
(PGRPs), B-1, 3-glucan recognition proteins (BGRPs), galectins, C-type lectins (CTLS)
and scavenger receptors (SCRs). Peptidoglycan recognition proteins (PGRPs) are
divided into two types: short (S) and long (L) (Liu et al. 2014; Nayduch et al. 2014).

In this study, we identified two PGRP genes in the genome S. noctilio, PGRP-SA and
PGRP-LC. These are fewer than four PGRPs found in the honeybee genome and 4-6
PGRPs in the bumble bee (Evans et al. 2006; You et al. 2010). Sirex noctilio PGRP-LC
and PGRP-SA has a N-acetylmuramoyl-L-alanine amidase domain and peptidoglycan
recognition protein domain. This suggests that it may be able to cleave the amide bond
between N-acetylmuramoyl and L-amino acids in bacterial cell walls, as well as to bind
and hydrolyse peptidoglycans (PGNSs) of bacterial cell walls (Xin et al. 1991; Cheng et al.
1994).

We identified two BGRP genes in the genome of S. noctilio. The first insect GRPs were
discovered in B. mori and were linked to the activation of the prophenoloxidase (PPO)
activation system and since then they have been discovered in various insects including
Drosophila, Anopheles and Tribolium, as well as the Hymenoptera Apis (Ochiai and
Ashida 1988; Christophides et al. 2002; Evans et al. 2006; Liu et al. 2014; Yokoi et al.
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2015). BGRPs are involved in the activation of a serine protease cascade that triggers a
phenoloxidase cascade and AMP gene expression in insects (Bang et al. 2015). The
Carbohydrate binding domain is found in one of the S. noctilio GRP genes (-glucl). One
of the S. noctilio BGRP genes (B-glucl) contain the Carbohydrate binding domain (family
32) which is generally present at the N-terminus of beta-1,3-glucan-binding proteins that
are involved in pathogen recognition. This domain recognizes and attach to a triple-helical
beta-1,3-glucan structure of the invader. Both genes contained the glycosyl-hydrolase
family 16 domain which allows these pattern recognition receptors to form complexes with
pathogen-associated beta-1,3-glucans and subsequently transduce the signals needed
to activate an adequate innate immune response (Mertz et al. 2009; Kanagawa et al.
2011; Sun et al. 2011).

One galectin was identified in the genome of S. noctilio and possesses conserved
galactoside binding domain. Galectins are a family of lectins that are characterised by the
presence of evolutionary conserved family of beta-galactoside-binding proteins (Taylor
and Drickamer 2003). Galectins in insects take part in the regulation of immune
responses against protozoa, bacteria, and viruses (Rao et al. 2016; Sreeramulu et al.
2018). Thus, the domain in the sequence indicates a possible immune function in S.

noctilio.

C-type lectins identified in S. noctilio contain carbohydrate-recognition domain. C-type
lectins include a wide range of soluble and membrane-bound proteins that contain
calcium-dependent carbohydrate-recognition domains (CRD) (Zhu et al. 2020). They
play essential roles in insects’ innate immunity in pattern recognition, agglutination,

encapsulation, melanisation phagocytosis and ProPO activation (Zhu et al. 2020).

No member of the scavenger receptor A subfamily and scavenger receptor C subfamily
was identified in the genome of S. noctilio. The scavenger receptor family has multiple
domains and functions as pattern recognition receptors in innate immunity. Based on their
functional domains, this family can be grouped into three subfamilies: scavenger receptor

A (SCRAs), scavenger receptor B (SCRBs), and scavenger receptor C (SCRACS).
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Scavenger receptors A have been found to play a role in host defense by binding
polyanionic ligands like lipopolysaccharide (LPS) and lipoteichoic acid (LTA) (Lu et al.
2020). A scavenger receptor Cysteine-Rich domain is found in several members of the
scavenger receptors A subfamily, which aids in the binding of Gram-positive and Gram-
negative bacteria. Scavenger receptors C had previously been discovered to take part in
phagocytosis and innate immunity as pattern recognition receptors (Kim et al. 2018). The
absence of scavenger receptor A subfamily and scavenger receptor C subfamily
members in S. noctilio might be due to the homologue search method that was utilized
which is based on sequence similarity, it can also be possible that this gene is missing
from the genome assembly. Further investigations would be needed to identify the cause.

Scavenger receptor class B member 1 and Croquemort were identified in S. noctilio as
members of the scavenger receptor B subfamily. Scavenger receptors B are referred to
as a novel class of scavenger receptors designated by a CD36 domain. Croquemort
participates in phagocytosis, which allows it to efficiently absorb a wide spectrum of

bacteria and fungi (Guillou et al. 2016).

5.1.2 Signal transduction pathways
In insects, signal transduction mechanisms involved in immune response are well-known.

In insects, the Toll and Imd signalling pathways are the most well-known immune-related
signalling pathways (Liu et al. 2014). Fungi and Gram-positive bacteria activate the Toll
pathway, whereas most Gram-negative bacteria and some Gram-positive bacteria
activate the IDM pathway (Lemaitre and Hoffmann 2007). JNK and JAK-STAT signalling
pathways are also known to be involved in insect immunity. The signal transduction
pathways are initiated following an invasive signal to produce effector molecules (Weston
and Davis 2002).

Two SPZ genes and four Toll receptor genes were identified in S. noctilio genome.
Spatzle functions as a Toll receptor ligand in the Toll pathway. Spatzle binds to the Toll
receptor and activates the Toll pathway. When Toll receptors are activated, they bind with
cytoplasmic MyD88 and, as a result, MyD88, tube and pelle create a complex to

phosphorylate cactus, resulting in degradation of cactus and the release of Dorsal and
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DIF (Dorsal-related immunity factor), which translocate to the nucleus to induce
antimicrobial peptide gene expression (Evans et al. 2006; Roh et al. 2009; Hillyer 2016;
Rosales 2017) . The Toll pathway genes of tube, MyD88, pelle, TRAF6 and cactus were
also identified in the genome of S. noctilio. Dorsal is encoded by a single gene in S.
noctilio, however, as in A. mellifera and C. floridanus no ortholog of DIF was found (Evans
et al. 2006; Gupta et al. 2015). This is in support of a previous suggestion that DIF is part
of a highly derived evolutionary branch, possibly occurring only in brachyceran flies and
not in other insects. As in C. floridanus and A. mellifera, Dorsal in S. noctilio appears to

be a functional alternate of DIF.

Our results indicate that most components of the IMD pathway are present in S. noctilio.
The Imd pathway is mainly activated by infection with Gram-negative bacteria (Rosales
2017). Genes involved in the IMD pathway including IMD, Dredd, FADD, TAK1, TAB2,
Relish, but not IKK complex, were identified in the S. noctilio genome. A major difference
is observed in S. noctilio IMD signalling pathway in comparison to the model species D.
melanogaster’s IKK complex which phosphorylates the NF-B-like transcription factor
Relish, activating it. The IKK complex in Drosophila is made up of the enzymatically active
Ird5 subunit and the regulatory subunit Kenny (Gupta et al. 2015). However, in S. noctilio
both the enzyme subunit and regulatory subunit are missing. Further analysis is needed
to identify the cause of the missing enzyme subunit. Iterative sequence analyses have
identified the lack of the Kenny subunit in several hymenopteran species, including A.
mellifera, N. vitripennis and C. floridanus (Evans et al. 2006; Sackton et al. 2013; Gupta
et al. 2015). This shows that the IKK complex has a common feature in Hymenoptera. It's
unclear whether the absence of the Kenny subunit reflects Hymenoptera's lower immune
potential or if there are other undiscovered components involved in the formation of the

functional IKK complex.
JNK, kay and TRAF4 genes in the JNK pathway were all identified in S. noctilio genome.

TAK1 is a protein kinase that activates the JNK pathway in response to cell stress or
injury, as well as a downstream component of Imd (Ramet et al. 2002). The common 1:1
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orthologs of genes involved in the IMD and JNK pathways of S. noctilio and other insects
suggest that these pathways are complete and conserved.

In the S. noctilio genome we have identified Domeless, one Hopscotch and one STAT as
components of the JAK-STAT pathway. The JAK-STAT signalling pathway aids insect’s
innate immunity by inducing complement-like factors and proliferation of haemocytes. The
JAK-STAT pathway has shown to be activated through cytokine-like molecules in blood
cells (Hillyer 2016; Larsen et al. 2019). In the model insect Drosophila melanogaster Upd,
an extracellular glycosylated protein, acts as a ligand to activate the JAK-STAT pathway,
which enhances haemocyte phagocytic activity (Myllyméaki et al. 2014). In Drosophila, the
JAK-STAT pathway has also been demonstrated to have a role in antiviral response. JAK-
STAT is made up of several components which include the cytokine receptor domeless,
JAK tyrosine kinase (Hopscotch), transcription factor, two negative pathway regulators
SOCS (suppressor of cytokine signalling) and PIAS (protein inhibitor of activated STAT).
The genes encoding extracellular ligand proteins identified in Drosophila, which activates
the pathway were not found in S. noctilio, as they were not found in other insects,
including A. mellifera and C. floridanus (Evans et al. 2006; Gupta et al. 2015). The
downstream effectors of the JAK-STAT pathway in D. melanogaster include Thioester
containing proteins (TEPs) and Turadont proteins, like A. mellifera and C. floridanus

Turadont proteins homologs were not identified in S. noctilio, but one TEP was found.

5.1.3 Immune effectors
In insects, a proPO-based melanisation reaction can be seen at the site of injury or on

the invading pathogen's surface (Christensen et al. 2005). The activation of proPO is
required for melanisation, and multiple genes encoding serine proteinases and their
inhibitors (serpins), proPO-activating enzyme (PPA), proPO, and its active enzyme PO
are involved (Cerenius et al. 2008). In our study several members of the proPO system
were found in the genome of S. noctilio. This indicate that this system might be playing a

similar role in S. noctilio.
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In the S. noctilio genome we have identified several genes encoding enzymes known to
be involved in detoxification of reactive oxygen species (ROS), such as catalase,
superoxide dismutases, glutathione peroxidases (GPOs) and glutathione-S-transferases
(GSTs). These enzymes regulate the concentration and conversion of ROS. Superoxide
dismutases (SODs) convert superoxide radical (O2-) into a less toxic product, hydrogen
peroxide (H202) (Oliveira et al. 2017). Catalases convert H202 to water and oxygen. H20:2
is converted to hydroperoxide by Peroxidases. The presence of the genes encoding
catalase, SODs, GPOs and GSTs in the genome of S. noctilio reflect that they might be
playing their roles in ROS detoxification in the woodwasp. In the genome of S. noctilio,
two genes encoding antimicrobial peptides (AMPs), defensin and hymenoptaecin were
found. Because our results were based on homologous searches, we may have missed
certain AMP genes with significantly divergent sequences. The distribution of AMPs is, in

general, highly complicated.

5.1.4 Cytoskeleton reorganization
Genes that encode proteins that play a role in cytoskeleton reorganization such as serine

proteinase stubble and myosin were characterised in the S. noctilio genome. The immune
system of insects is divided into two types: cellular and humoral responses. Phagocytosis,
encapsulation, and nodule formation are examples of cellular responses mediated by
haemocytes (Kim et al. 2009). Phagocytosis responses require host hemocyte
cytoskeletal remodelling (Wu and Yi 2018). These proteins are important during the
process of wound closure in insects. The epidermal growth factor receptor (EGFR) and
other receptor tyrosine kinases are also essential for wound healing (Geiger et al. 2011).
These also include the Ret-family receptor Stitcher (Tsarouhas et al. 2014). Epidermal
growth factor receptor encoding gene was found in S. noctilio. This suggest that this gene

play a role in wound healing in S. noctilio.

5.2 Effects of the immune challenges on the expression of immune-related
genes in S. noctilio larvae
GO analysis using BLAST2GO indicated an effect of wounding which was supported by

the fact that Wnt signalling pathway, small GTPases signal transduction pathway, as well

as cytoskeleton organization were amongst the enriched terms in all our infection models
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data sets. These pathways have been shown to be important during wound healing in
vertebrates and may play comparable roles in insects including S. noctilio (Stramer et al.
2005; Lesch et al. 2010). The expression of PGRP-SA was induced in our study, PGRP-
SA is responsible for recognizing bacterial peptidoglycan and activating the Toll pathway
in response to Gram-positive bacteria (kordaczuket al 2020). In the present study we have
found PGRP-SA expression to be induced by D. siricidicola and B. bassiana infections.
The induction of PGRP-SA suggests that D. siricidicola nematodes and B. bassiana
fungus or molecules that they produce are recognized by the Toll pathway receptor. We
have also found B-gluc2 to be significantly upregulated upon B. bassiana infection. This
result indicates that this BGRP may be required for the immune response against the

fungal infection.

In our study we found that a spétzle gene was induced by all the infection models. In D.
melanogaster spatzle protein act as a ligand for Toll receptor and activate the synthesis
of AMP genes (Chowdhury 2017). The infection by D. siricidicola nematodes and
wounding induced the expression of several components of the Toll pathway. These
include Toll-6, Toll-8, Tube, protein spétzle and pelle. Since only 72hpi samples were
analysed in our study, we expect that at the later stage of infection other downstream
components of the Toll pathway might also be induced to follow a sequential
transcriptional regulation of this pathway. Therefore, our results suggest that our infection

models lead to transcriptional regulation of the Toll pathway in S. noctilio larvae.

No PGRPs associated with the IMD pathway were induced by our infection models.
However, there are downstream components of the IMD pathway that were induced.
These include Imd, dFadd, relish, neuron navigator 2 and ankyrin. This suggest that like
the Toll pathway, at certain stages of the infection there are components of the IMD

pathway that are activated to follow a sequential transcriptional regulation of this pathway.

The regulation of the Toll pathway and IMD pathway in response to D. siricidicola
nematode infection which uses wounding as part of infection process is supported by a

study that suggests that AMPs can be activated by bacteria-free nematodes, most likely
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as a form of wounding defence (Castillo et al. 2013).This might also apply to the B.
bassiana fungal infection and wounding as they also use wounding as part of their

infection process and they also regulated the Toll and the IMD pathways.

The Jun N-terminal kinase (JNK) pathway was largely regulated by wounding in
comparison to the D. siricidicola infection and B. bassiana infection. In insects, this
pathway is involved in immune responses, wound healing, and oxidative homeostasis
(Sluss et al. 1996; Silverman et al. 2003; Khoshnood et al. 2016; Su et al. 2017). This
indicates that the JNK pathway is active and necessary for wound healing in S. noctilio.

In our results components of the melanisation pathway ProPO, dopa decarboxylase,
serine proteases and their inhibitors were significantly regulated. ProPO and dopa
decarboxylase were significantly upregulated by all our infection models. The expression
of the serine proteases was upregulated in the D. siricidicola challenged larvae. This
indicates that the serine proteinase cascade was activated during immune defence. The
profiles of the serpins were also upregulated by D.siricidicola. This seem to be
incompatible with their function in the regulation of the melanisation pathway. A similar
result was reported in M. domestica in response to a bacterial challenge (Tang et al.
2014). This suggests that this could be a protective mechanism for host cells and tissues
against the excess reactive components produced by the melanisation pathway. The
results also indicate that the wounds caused during infection induced the melanisation

process and they were ultimately melanized.

Our analysis showed that levels of genes encoding superoxide dismutase, glutathione
peroxidase and thioredoxin were uniquely significantly downregulated by D. siricidicola
infection. The expression of these enzymes must be induced in high levels for them to be
able to play their roles. This suggests that the nematode might use the expression of the
antioxidant enzymes in lower levels in their host as part of its immunosuppression

strategy.
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Two genes encoding antimicrobial peptides (AMPs), defensin and hymenoptaecin were
significantly differentially expressed in response to all the infection models. Defensin was
significantly downregulated by wounding and significantly upregulated by B. bassiana
infection compared to controls. In insects defensins have antimicrobial effects against
Gram-positive bacteria, however in other insects they seem to act against Gram-negative
bacteria and fungi. This suggests that humoral immune responses in S. noctilio were
active against B. bassiana infection. Hymenoptaecin was significantly upregulated by D.
siricidicola infection and wounding, and significantly downregulated by B. bassiana
infection. In this regard humoral immune response in S. noctilio were active against D.
siricidicola infection and wounding, while B. bassiana seem to have a capability to
suppress the humoral immune response of the woodwasp. The hymenoptaecin gene has
been reported to be one of the most strongly induced genes following immune challenge.
(Gupta et al. 2015).

Two chitinases were significantly upregulated by D. siricidicola and B. bassiana
infections. Chitin can be found in the cell walls of bacteria and fungi, as well as in insects
and the microfilarial sheaths of parasitic nematodes (Araujo et al. 1993; Shahabuddin and
Kaslow 1994). Chitin-containing organisms utilize this polymer for protection against
harsh environmental conditions and host immune responses. This suggests that a lack of
chitin may result in the pathogen's death. Chitinase is an enzyme that breaks down chitin
(Lee et al. 2011). The host produce chitinases in sufficient quantities as defence against
infection with chitin-containing organisms. The latter is an attempt to destroy the infecting
agent's chitin coat, thereby eliminating the pathogen (Burton and Zaccone 2007). This
suggests that D. Siricidicola and B. bassiana have chitin. For this reason, S. noctilio
produced the chitinases in significant amounts to try and degrade their chitin coat as part

of its innate immune response.

Some genes linked to the extracellular matrix that were characterized in this study in S.
noctilio was regulated following our immune challenges. These include paxillin, integrin
beta and epidermal growth factor receptor, which were all upregulated. Epidermal growth

factor receptor was uniquely regulated by the D. siricidicola infection. This provides
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evidence that D. siricidicola nematodes, like some entomopathogenic nematodes, may
include wounding as part of the infection process (Wertheim et al. 2005; Hallem et al.
2007; Arefin et al. 2014).

Phospholipase A2 and phospholipase D were induced following D. siricidicola infection
and wounding. Phospholipases are involved in eicosanoids production and play a
protective role in infection model that include wounding (Hyrsl et al. 2011; Stanley and
Kim 2019). Eicosanoids are used by cross-talks between immune mediators as
downstream signals (Sadekuzzaman and Kim 2018). They have also been found to
participate in the immune response of D. melanogaster larvae in response to infection by
H. bacteriophora nematodes (Hyrsl et al. 2011). In this study the levels of phospholipase
A2 and phospholipase D were significantly downregulated. There are studies that have
shown that S. carpocapsae nematodes produce proteases and other substances that
prevent clot formation, allowing them to avoid the insect's eicosanoid production and
melanisation reaction (Stanley et al. 2012; Toubarro et al. 2013). The downregulated
levels of the components of the eicosanoid pathway in S. noctilio by D. sirircidicola
suggest that this nematode might be using the same strategy to evade the eicosanoid
biosynthesis and melanisation response in the woodwasp.

Our analysis showed a significant upregulation of vitellogenin in response to all our
infection models. Vitellogenin play an essential role mainly in reproduction and in wound
healing, immunity, life span regulation and as an antioxidant in insects (Singh et al. 2013;
Salmela et al. 2015; Park et al. 2018; Salmela and Sundstrom 2018). Our result suggests
that vitellogenin might play similar roles in wound healing, immunity and as an antioxidant
in S. noctilio. The possible role of vitellogenin in Hymenoptera immunity was described in
a previous study which showed that vitellogenin is actively involved in defence reaction
of A. mellifera towards the entomopathogenic fungus B. bassiana (Park et al. 2018). This
study demonstrated that A. mellifera vitellogenin bound to B. bassiana cells, causing
structural damage to the cell wall and anti-microbial activity against the fungus. The
upregulated expression of vitellogenin in response to B. bassiana infection in our data

indicate that S. noctilio might be using a similar immunity strategy against the fungus.
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In addition to the known immune-related genes, we found that hexamerin was significantly
upregulated by D. siricidicola infection. In general, hexamerin act as storage protein used
as a source of amino acids and energy for protein synthesis during metamorphosis (Pan
and Telfer 1996; Martins et al. 2010). Hexamerin has already been described to be
downregulated in response to immune challenge in other insects (Gupta et al. 2015).
Downregulation of expression and accumulation of storage proteins occur because of
immune system activation, and this represents a strategy to redirect resources away from
costly defense reactions (Lourenco et al. 2009; Gupta et al. 2015). Recently it was
discovered that hexamerin involved in the activation of the prophenoloxidase system
(Melanisation) (Liu et al. 2020). Whether D. siricidicola has a strategy to evade S. noctilio
and does not cause a robust immune response or hexamerin in S. noctilio activate
prophenoloxidase as an immune response against D. siricidicola remains to be

investigated.
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6. Conclusions

This is the first study to characterize immune-related genes in the Hymenopteran
(Suborder Symphyta) S. noctilio and their regulation in larvae during parasite infection.
The preliminary identification of putative immune-related genes and pathways exhibited
differential expression after D. siricidicola infection. The results of our study provide a
basic yet valuable insight that improves the general understanding of the host-parasite
interaction of Sirex-Deladenus system. The inclusion of additional treatments, including
a fungal infection by B. bassiana and physical wounding, gave us an opportunity to get
insights into the mechanisms of S. noctilio response to other types of infection models.
The host response to infection was strong and complex for each treatment, implying that
numerous processes, including immune response, development, metabolism, and
pathogenesis, are involved. Hundreds of genes' expression were either generally or
specifically modulated by the three treatments. These data provide numerous candidate
immune-related genes that could serve as a focus for future studies on the woodwasp

immunity.
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Chapter 2: Tables and Figures
Table 2.1: The summarised assembly and annotation statistics of Sirex noctilio genome data used in the study.

Velvet and

Sirex noctilio | SSPACE 6215 185 20629 122x 825 95.4 94
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Table 2.2: Transcriptome data summary. This an output of raw sequence data from BGI. The abbreviations ‘GC percentage’ refers

to the percentage of the transcriptome that are G and C nucleotides.

Library name NUmBET @f GC content
reads
B1F 33437346 42%
B1R 33437346 41%
B2F 30557606 42%
B2R 30557606 41%
B3F 31859999 42%
B3R 31859999 41%
C1F 36464171 42%
CiR 36464171 41%
C2F 31185398 42%
C2R 31185398 41%
C3F 33656587 42%
C3R 33656587 41%
N1F 33147709 42%
N1R 33147709 41%
N2F 33609141 42%
N2R 33609141 41%
N3E 33542102 42%
N3R 33542102 41%
W1F 32505013 42%
WI1R 32505013 41%
W2F 26035750 43%
W2R 26035750 42%
W3F 33590110 43%
W3R 33590110 42%
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Table 2.3: Summary of transcriptome mapping data.

Overall mapping

Concordant pair

Treatment group rate alignment
Nematode infection (N1) 95,60% 93.3%
Nematode infection (N2) 97.9% 95.6%
Nematode infection (N3) 97.8% 95.4%
Fungal infection (B1) 97.7% 95.1%
Fungal infection (B2) 97.3% 94.9%
Fungal infection (B3) 96.2% 93.9%
Wounding (W1) 97.4% 95.0%
Wounding (W2) 97.9% 95.6%
Wounding (W3) 97.6% 95.3%
Control (C1) 97.9% 95.5%
Control (C2) 97.9% 95.5%
Control (C3) 97.8% 95.3%
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Table 2.4: Summary of differential expression data results obtained from DESeq and edgeR.
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Table 2.5: Information of the primers designed in this study.

Sequence Definition Sense Primer ™Tm | GC% Anti-sense Primer ™Tm | GC%
GADPH ATCAAAGCCAAGGTCAAG 59 | 44,4 | CATCGTCTTCGGTGTATC 58,7 | 50
Actin CGGCATTCACGAGACTAC 61,7 | 55,6 | ACGGTGTTGGCATAAAGG 61,8 | 50
Alpha tubulin AGCCATCTATGACATCTG 57,2 | 44,4 | TCCGATAAGTCTGTTGAG 571 | 44,4
Rp49 TAAGCAAGCAATGTGGATAC | 60 | 40 | CTGTAAACTGGGCGAATC 59,6 | 50
Thioredoxin ACGGCAAAGAGAAAGGCATA | 598 | 45 | CAGATCGATCAGCAGGAACA | 599 | 50
Integrin beta CGGTGTATGCGAATGTTACG | 60 | 50 | TTCCGGATTCTCCCTTTCTT | 60 | 45
rEe’l'SS{E?a' growih factor CTGGTCGATGCTGACGAGTA | 60 | 55 | CAACAACTCCCTGTCCCAGT | oy | 55
Superoxide dismutase [Mn] CCACCGTTTGGACTAGCATT | 599 | 50 | CCTATCGCTGCCATCTAAGC | 999 | 55
Cytochrome P450 TCCGGATCATCGAATCGT 59,9 50 ATCGAAGCACCGCAAGAG 55,5 55
Glutathione peroxidase GGCGACAATGCTCATCCT 59,7 | 55,5 | TCGAGGGATCCGTGTTTG 60,6 | 55,5
Dynamin GTCCCTTGAGGCCTTACCTC | 60 | 60 | CGTGAAACTGGTGGATGTTG | 60 | 50

101
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Figure 2.1: Experimental design for the RNA-Seq experiment performed in this study.
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Figure 2.2: The proposed model of the potential Toll-like receptors (Toll) signalling pathway in S. noctilio. Sirex noctilio

immune-related genes are indicated with blue colour and bold text. Missing immune-related genes are shown in grey colour and
normal text. The putative pathway genes for S. noctilio were predicted based on sequence similarities compared to other
hymenopteran species and the model insect D. melanogaster.
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Figure 2.3: The proposed model of the potential Imnmune Deficiency (IMD) and c-Jun N-terminal kinase (JNK) signalling
pathways in S. noctilio. Sirex noctilio immune-related genes are indicated with blue colour and bold text. Missing immune-related

genes are shown in grey colour and normal text.
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Figure 2.4: The proposed model of the potential Janus kinase (JAK)-signal transducer and activator of transcription pathway

(JAK-STAT) signalling pathways in S. noctilio. Sirex noctilio immune-related genes are indicated with blue colour and bold text.

Missing immune-related genes are shown in grey colour and normal text.
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Figure 2.5: The proposed model of the potential ProPO system in S. noctilio. Sirex noctilio immune-related genes involved in

the ProPO-based melanisation are indicated with blue colour and bold text. Missing immune-related genes are shown in grey colour

and normal text.
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Figure 2.6: Pathways in Summary of the overall potential immune response S. noctilio.
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EdgeR
Figure 2.7: A Venn diagram analysis indicating the total number of significantly differentially expressed genes as well as the
number of common and exclusive DEGs between the two programs used for the expression analysis (DESeq and edgeR).
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Figure 2.8: A Venn diagram analysis indicating the number of a. downregulated genes and b. upregulated genes across all
treatments.
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Figure 2.9: MA plots of all the expressed genes in S. noctilio in response to (a) B. bassiana fungal infection, (b) D. siricidicola
nematode infection, (¢) wounding. The x-axis represents the log fold change value of gene expression and the y-axis represent the
mean of normalized counts. Each dot represents a gene, red represent significantly differentially expressed genes with genes below

the vertical line being downregulated and those above the vertical line being upregulated.
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Figure 2.10: PCA plot of RNA-Seq data showing immune response of S. noctilio to D. siricidicola nematode infection, B. bassiana

infection and wounding. Here we show how the samples are associated based on their gene expression.
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Figure 2.11: Gene ontology (GO) assignments for the enriched significantly upregulated immune-related genes following infection

with D. siricidicola nematode.
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Figure 2.12: Gene ontology (GO) assignments for the enriched significantly downregulated immune-related genes following
infection with D. siricidicola nematode.
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Figure 2.13: Gene ontology (GO) assignments for the enriched significantly upregulated immune-related genes following infection

with B. bassiana fungus.
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Figure 2.14: Gene ontology (GO) assignments for the enriched significantly downregulated immune-related genes following
infection with B. bassiana fungus.
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Figure 2.15: Gene ontology (GO) assignments for the enriched significantly upregulated immune-related genes following
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Figure 2.16: Gene ontology (GO) assignments for the enriched significantly downregulated immune-related genes following
wounding.
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Figure 2.17: A Venn diagram of immunity-related differentially expressed genes in S. noctilio in response to D. siricidicola nematode
infection, B. bassiana fungus infection and wounding. The numbers in each circle show immunity-related differentially expressed

genes in each comparison treatment and the overlapping regions display genes that are commonly expressed among the comparison

treatments.
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Figure 2.18: Summary of the Toll pathway DEGs identified in S. noctilio to be up regulated (green) and down regulated (red) after D.

siricidicola infection, B. bassiana infection and wounding. One asterisk indicates up or down-regulated gene by one treatment, two

asterisks indicate up or down-regulated gene by two treatments and three asterisks indicate up or down-regulated gene by all the
three treatments.
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Figure 2.19: Summary of the IMD and JNK pathways DEGs identified in S. noctilio to be up regulated (green) and down regulated
(red) after D. siricidicola infection, B. bassiana infection and wounding. One asterisk indicates up or downregulated gene by one
treatment, two asterisks indicate up or down-regulated gene by two treatments and three asterisks indicate up or down-regulated

gene by all the three treatments.
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Figure 2.20: Summary of the Jak-stat pathway DEGs identified in S. noctilio to be up regulated (green) and down regulated (red)

after D. siricidicola infection, B. bassiana infection and wounding. One asterisk indicates up or downregulated gene by one treatment,

two asterisks indicate up or down-regulated gene by two treatments and three asterisks indicate up or down-regulated gene by all

the three treatments.
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Figure 2.21: The heatmap shows significant differential expression of regulated immune-related genes 72h after infection of S. noctilio
larvae with D. siricidicola nematodes of the strain SA107 (2013). Up and downregulated genes are colour coded with different shades,
green shade indicate significant upregulation in the nematode vs control and blue shades indicate significant down-regulation in D.

siricidicola nematode infection vs control.
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Figure 2.22: The heatmap shows significant differential expression of regulated immune-related genes 72h after infection of S. noctilio
larvae with B. bassiana fungus. Up and downregulated genes are colour coded with different shades, green shade indicate significant

upregulation in the fungus vs control and blue shades indicate significant downregulation in fungus vs control.
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Figure 2.23: The heatmap shows significant differential expression of regulated immune-related genes 72h after S. noctilio larvae
were wounded. Up and downregulated genes are colour coded with different shades, green shade indicate significant upregulation

in the wounded vs control and blue shades indicate significant downregulation in wounded vs control.
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Chapter 2: Supplementary Tables and Figures

Supplementary Table S2.1: Candidate immune-related genes identified in the genome of S. nocitilio.

Sirex noctilio ID's Description Species top blast hit E-value ELECE
A. rosae 2,00E-136 | 401
SNOC_002449-RA|size2366004-augustus-gene-14.101 PGRP-Ic
C. floridanum 1,00E-44 154
SNOC_000684-RA|size3365038-exonerate_protein2genome-gene-21.89 | PGRP-SA
A. rosae 3,00E-163 | 476
SNOC 003453-RA|size2163639-processed-gene-6.129 B-glucl
H. laboriosa 2,00E-124 | 369
SNOC _004654-RA|size1755071-exonerate_protein2genome-gene-1.68 B-gluc2
E. dilemma 2,00E-14 73
SNOC 005303-RA|size1678705-processed-gene-2.2 Galectin-1
C. floridanus 4,00E-119 | 343
SNOC_002569-RA|size2248198-processed-gene-3.112 CTL2D3
A. mellifera 1,00E-150 | 421
SNOC_008496-RA|size1001638-augustus-gene-8.4 CTLS5 precursor
T. zeteki 2,00E-84 253
SNOC_011061-RA|size641777-augustus-gene-3.51 C-type lectin mannose-binding isoform
B. impatiens 0.0 2095
SNOC 011163-RA|size641365-augustus-gene-5.102 Contactin
A. echinatior 5,00E-28 124
SNOC_014089-RA|size236076-augustus-gene-0.0 Titin
A. rosae 0.0 3559
SNOC_000306-RA|size5241802-augustus-gene-33.71 Titin
B. bifarius 0.0 845
SNOC_003020-RA|size2204710-processed-gene-5.73 SRCBM1
C. floridanus 0.0 2074
SNOC_007179-RA|size1086615-augustus-gene-0.157 vigilin
A. mellifera 0.0 2040
SNOC _012101-RA|size453568-processed-gene-3.108 DSCAM
A. mellifera 0.0 1514
SNOC_004888-RA|size1697473-processed-gene-2.138 Drapper
C. floridanus 3,00E-06 60
SNOC_007161-RA]|size1105877-augustus-gene-8.8 dumpy
C. cinctus 8,00E-90 259
SNOC_002723-RA|size2248198-processed-gene-17.41 profilin
L. niger 0.0 1379
SNOC_006060-RA|size1504730-augustus-gene-5.117 Engulfment and cell motility protein 1
NADPH oxidase (NOX) A. mellifera 2,00E-104 | 321
SNOC _014481-RA|size172559-processed-gene-0.109
NOS C. cinctus 0.0 2145
SNOC _002346-RA|size2366004-augustus-gene-1.20
Phospholipase A2 A. mellifera 7,00E-45 148
SNOC_011285-RA|size638645-exonerate_protein2genome-gene-2.22
Phospholipase D A. echinatior 0.0 1739

SNOC

011773-RA|size589636-processed-gene-1.6
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prostaglandin E synthase2 C. cinctus 0.0 573
SNOC_010669-RA|size687644-augustus-gene-0.19

prostaglandin reductase-1 C. cinctus 1,00E-172 | 488
SNOC_000468-RA|size5241802-augustus-gene-51.3

Peroxiredoxin B. impatiens 1,00E-132 | 377
SNOC_009869-RA]|size787876-augustus-gene-3.60

Peroxiredoxin-1 A. echinatior 3,00E-129 | 365
SNOC_010169-RA|size734633-exonerate_est2genome-gene-5.87

Peroxiredoxin-6 F. arisanus 5,00E-126 | 359
SNOC_008502-RA|size1001638-augustus-gene-9.3

DDC/Aromatic-L-Amino-Acid decarboxylase M. quadrifasciata 0.0 894
SNOC_004555-RA|size1760177-augustus-gene-8.207

Ras-related protein Racl A. mellifera 1,00E-139 | 391
SNOC _010713-RA|size687644-augustus-gene-5.5

Ras-like GTP-binding protein RhoL C. floridanus 2,00E-115 | 329
SNOC 010309-RA|size733809-processed-gene-5.26

paxillin C. floridanus 0.0 857
SNOC _008417-RA|size1001802-processed-gene-9.30

transglutamase A. mellifera 0.0 1174
SNOC_009569-RA|size833181-augustus-gene-4.193

Proclotting enzyme A. mellifera 1,00E-62 216
SNOC_002714-RA|size2248198-augustus-gene-16.13

cytochrome P450-16 C. cinctus 0.0 875
SNOC_008122-RA|size1016601-processed-gene-2.32

Glycerol-3-dehydrogenase (NAD+) cytoplasmic | A. echinatior 0.0 607
SNOC_009362-RA|size864392-processed-gene-6.26

Acylphosphatase-1 C. cinctus 6,00E-48 150
SNOC_007618-RA|size1061917-augustus gene-3.129

Acylphosphatase-2 A. echinatior 1,00E-45 145
SNOC_006381-RA|size1469172-exonerate_est2genome-gene-4.93

zinc transporter 2 T. zeteki 0.0 603
SNOC_014342-RA|size194932-augustus-gene-0.284

Catalase A. rosae 3,00E-177 | 505
SNOC_012015-RA|size473363-exonerate_protein2genome-gene-3.131

MnSOD A. mellifera 1,00E-131 | 373
SNOC_009935-RA|size787876-processed-gene-6.122

Cu-ZnSOD C. cinctus 3,00E-94 273
SNOC_015907-RA|size85242-augustus-gene-0.2

Glutathione peroxidase N. vitripennis 2,00E-104 | 300
SNOC_006558-RA|size1374663-augustus-gene-7.105

Glutathione peroxidase N. vitripennis 2,00E-81 270
SNOC_000435-RA|size5241802-processed-gene-47.38

Glutathione S-transferase 1 A. mellifera 2,00E-76 242
SNOC_010938-RA|size663648-processed-gene-2.94

Vitellogenin A. rosae 0.0 1634
SNOC _014856-RA|size140371-processed-gene-0.35

Thioredoxin M. rodundata 2,00E-82 241
SNOC_006943-RA|size1170633-augustus-gene-8.0

GST8 C. floridanus 1,00E-153 | 431
SNOC _002418-RA|size2366004-augustus-gene-10.9

SPZ5 H. laboriosa 6,00E-15 74
SNOC _008456-RA|size1001638-processed-gene-2.51

protein spaetzle A. compressa 5,00E-74 236

SNOC

013207-RA|size336147-exonerate_protein2genome-gene-1.0
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tube N. vitripennis 1,00E-56 197
SNOC _013089-RA|size345363-augustus-gene-2.177

myd88 C. cinctus 9,00E-144 | 421
SNOC _013354-RA|size323794-augustus-gene-1.61

cactin B. terrestris 0.0 1053
SNOC _001209-RA|size3272368-processed-gene-3.162

Cactus A. mellifera 4,00E-27 112
SNOC_008204-RA|size1016601-processed-gene-9.9

toll C. floridanus 0.0 875
SNOC_015308-RA|size109487-processed-gene-0.78

Protein toll N. vitripennis 0.0 879
SNOC_011176-RA]|size639514-augustus-gene-0.61

toll-6 B. terrestris 0.0 1086
SNOC_016107-RA|size77364-processed-gene-0.40

toll8/Trex A. mellifera 0.0 2172
SNOC_007226-RA|size1086615-processed-gene-5.44

Toll-interacting protein (Tollip) F. arisanus 1,00E-82 252
SNOC_010272-RA|size733809-augustus-gene-2.107

Tolloid-like protein 2 A. colombica 3,00E-32 129
SNOC_005248-RA|size1690910-augustus-gene-13.3
SNOC_006068-RA|size1504730-augustus-gene-6.156 Dorsal 6,00E-10 61

A. mellifera

Dorsal A. mellifera 2,00E-09 59
SNOC 017776-RA|size36041-augustus-gene-0.17

TNF receptor-associated factor 6 (TRAF6) A. colombica 0.0 944
SNOC _004508-RA|size1760177-augustus-gene-3.188

pelle T. zeteki 0.0 667
SNOC _010752-RA|size679134-processed-gene-3.4

pellino C. floridanus 0.0 759
SNOC 009460-RA|size848173-augustus-gene-7.3

wntll C. floridanus 2,00E-68 223
SNOC_009455-RA|size848173_processed-gene-7.99

wnt4 O. biroi 0.0 612
SNOC_009723-RA|size825924-exonerate_protein2genome-gene-7.53

wnt6 C. cinctus 0.0 623
SNOC_014042-RA|size238000-exonerate_protein2genome-gene-1.41

wntl A. echinatior 0.0 763
SNOC_014047-RA|size238000-exonerate_protein2genome-gene-1.133

Ubc9-B T. zeteki 2,00E-116 | 332
SNOC _009307-RA|size875148-processed-gene-7.326

Agrin A. mellifera 3,00E-25 109
SNOC_000075-RA|size5241802-augustus-gene-7.4

Agrin A. echinatior 0.0 904
SNOC_006074-RA|size1504730-augustus-gene-7.0

Hopscotch A. cerana 0.0 1524
SNOC_009698-RA|size825924-augustus-gene-5.175

STAT M. quadrifasciata 0.0 1414
SNOC_016115-RA|size77299-exonerate_protein2genome-gene-0.35

SOCS7 A. mellifera 0.0 1204
SNOC_003768-RA|size2110464-augustus-gene-18.105

SOCS5 A. mellifera 0.0 860
SNOC_004542-RA|size1760177-augustus-gene-6.83

PIAS1/PIAS2/PIAS3 C. floridanus 0.0 938

SNOC

007595-RA|size1061917-augustus-gene-0.3
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PDK1 A. echinatior 0.0 885
SNOC_001080-RA|size3354006-augustus-gene-27.11

IAP1 T. longispinosus 1,00E-88 282
SNOC_003086-RA|size2204710-processed-gene-13.102

Pi3K E. mexicana 0.0 1067
SNOC_003638-RA|size2110464-augustus-gene-5.33

Pten T. cornetzi 0.0 924
SNOC_005503-RA|size1648946-augustus-gene-1.4

WNK-1 A. echinatior 0 1296
SNOC_004005-RA|size2083609-augustus-gene-19.204

Polo A. mellifera 0.0 1001
SNOC_000936-RA|size3354006-augustus-gene-10.0

dRAF-1 C. floridanus 0.0 1133
SNOC _005625-RA|size1648946-exonerate_est2genome-gene-11.109

TEPA A. mellifera 4,00E-78 286
SNOC _001102-RA|size3354006-processed-gene-29.42

G1/S-specific cyclin-E L. niger 0.0 679
SNOC 003113-RA|size2204710-processed-gene-17.18

JINK L. niger 0.0 742
SNOC_014883-RA|size139032-processed-gene-0.67

Hep F. arisanus 1,00E-91 294
SNOC_005663-RA|size1648946-processed-gene-15.123

rhol C. floridanus 5,00E-18 78
SNOC_013417-RA]size300537-processed-gene-0.5

rhol A. mellifera 1,00E-16 74
SNOC_011816-RA]size561864-augustus-gene-1.89

rhol A. mellifera 3,00E-18 79
SNOC_011815-RA|size561864-processed-gene-1.17

mig-15 C. costatus 0.0 1129
SNOC_004278-RA|size2040173-processed-gene-17.5

Jra A. cerana cerana 2,00E-155 | 437
SNOC_007289-RA|size1086615-exonerate_est2genome-gene-9.63

kay A. colombica 4,00E-172 | 486
SNOC_015850-RA|size87683-augustus-gene-0.22

EGFR A. mellifera 0.0 2377
SNOC_008836-RA|size937237-processed-gene-1.29

puc T. zeteki 1,00E-93 277
SNOC_019443-RA|size7153-processed-gene-0.7

puc H. laboriosa 4,00E-61 191
SNOC_018859-RA|size15935-processed-gene-0.0

traf4 A. echinatior 0.0 944
SNOC_004508-RA|size1760177-augustus-gene-3.188

IDM A. mellifera 3,00E-55 177
SNOC_015436-RA|size102882-processed-gene-0.35

dFadd P. gracilis 2,00E-55 181
SNOC_008185-RA|size1016601-processed-gene-8.142

Relish A. dorsata 0.0 563
SNOC _008204-RA|size1016601-processed-gene-9.9

dredd F. arisanus 2,00E-62 211
SNOC_009039-RA|size925038-augustus-gene-5.3

Takl H. laboriosa 2,00E-44 170
SNOC_005717-RA|size1620047-processed-gene-3.142

Tab E. mexicana 5,00E-171 | 498
SNOC _005734-RA|size1620047 processed-gene-5.42

1AP2 C. floridanus 7,00E-129 | 394

SNOC

003087-RA|size2204710-augustus-gene-13.64
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IAP5 C. floridanus 0.0 866
SNOC _002344-RA|size2366004-augustus-gene-0.76

mylip C. floridanus 0.0 866
SNOC_008224-RA|size1006308-augustus-gene-1.65

Neuron navigator-2 A. cerana cerana 0.0 1508
SNOC _001426-RA|size3272368-processed-gene-21.0

Ank-1 A. mellifera 4,00E-89 288
SNOC_012564-RA|size395255-processed-gene-2.165

Ank-1 A. mellifera 6,00E-59 186
SNOC 014797-RA|size142934-processed-gene-0.34

Caspase-1 N. vitripennis 2,00E-173 | 484
SNOC _013989-RA|size242859-augustus-gene-1.16

DUOX A. echinatior 0.0 2656
SNOC_008044-RA|size1031301-processed-gene-7.43

Dual oxidase maturation factor 1 T. septentrionalis 0.0 632
SNOC _008045-RA|size1031301-processed-gene-8.116

mekkl B. impatiens 0.0 1641
SNOC _013220-RA|size336147-processed-gene-1.126

p38/MAPkkk14B P. gracilis 1,00E-104 | 317
SNOC_000911-RA|size3354006-exonerate_protein2genome-gene-6.51

Askl A. echinatior 0.0 2472
SNOC_004935-RA|size1697473-processed-gene-6.22

MAPK1 O. biroi 0.0 681
SNOC_013715-RA|size277051-processed-gene-1.151

Lic C. floridanus 0.0 1697
SNOC_003094-RA|size2204710-augustus-gene-14.3

Slpr A. colombica 0.0 2353
SNOC_007016-RA|size1131650-processed-gene-4.1

MAPKKk12 D. novaeangliae 0.0 1440
SNOC_002447-RA|size2366004-processed-gene-14.87

Ptr H. laboriosa 0.0 2034
SNOC_005316-RA|size1678705-augustus-gene-2.66

defensin H. laboriosa 3,00E-10 64
SNOC_003596-RA|size2110464-processed-gene-0.40

hymenoptaecin A. mellifera 4,00E-39 140
SNOC_000231-RA|size5241802-processed-gene-25.8

chitotriosidase-1 C. floridanus 2,00E-89 309
SNOC_015770-RA|size91327-exonerate_protein2genome-gene-0.7

chitotriosidase-1 H. laboriosa 6,00E-62 205
SNOC_015773-RA|size91327-exonerate_protein2genome-gene-0.3

ProPO A. mellifera 0.0 1231
SNOC_000429-RA|size5241802-augustus-gene-46.13

Phenyalanine hydroxylase P. vicina 0.0 775
SNOC_006415-RA|size1469172-processed-gene-8.167

Quinone oxidoreductase A. echinatior 0.0 572
SNOC_009108-RA|size890669-processed-gene-3.0

Octopamine receptor M. rodundata 0.0 937
SNOC_007999-RA|size1031301-processed-gene-4.130

Dopamine receptor D1 D. novaeangliae 0.0 659
SNOC_012162-RA|size446351-augustus-gene-3.22

Protein yellow C. cinctus 1,00E-58 206
SNOC _002117-RA|size2667483-augustus-gene-3.50

hexamerin C. floridanus 0.0 705
SNOC _001848-RA|size2854333-processed-gene-1.51

hemocytin D. novaeangliae 0.0 2771

SNOC

016310-RA|size70023-processed-gene-0.3
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apolipophorin A. cerana 0.0 5162
SNOC _012198-RA|size445744-augustus-gene-3.193

apolipophorin D O. biroi 7,00E-106 | 347
SNOC_010927-RA|size663648-augustus-gene-0.0

Limulus clotting factor C A. echinatior 1,00E-54 204
SNOC _004316-RA|size1849273-processed-gene-0.12

Cht5 T. longispinosus 0.0 670
SNOC_006608-RA|size1374663-augustus-gene-11.4

putative cht3 H. laboriosa 0.0 1149
SNOC _007633-RA|size1061917-augustus-gene-4.46

prp3 C. floridanus 1,00E-30 129
SNOC_006328-RA|size1493491-exonerate_protein2genome-gene-13.79

Lys-cl A. echinatior 6,00E-65 199
SNOC_000972-RA|size3354006-exonerate_est2genome-gene-14.33

AK B. impatiens 0.0 702
SNOC_007069-RA|size1131650-processed-gene-8.10

ferritin T. longispinosus 1,00E-88 263
SNOC _006103-RA|size1504730-processed-gene-9.39

stubble L. niger 5,00E-55 198
SNOC_003856-RA|size2083609-processed-gene-5.81

neurotrypsin D. novaeangliae 0.0 1853
SNOC_006740-RA|size1209655-processed-gene-2.28

snake O. biroi 3,00E-98 300
SNOC_002853-RA|size2226856-augustus-gene-8.13

venom serine protease 34 O. biroi 4,00E-91 290
SNOC_013659-RA|size284868-processed-gene-1.243

serine protease 48 A. cerana 1,00E-37 145
SNOC_009542-RA|size833181-exonerate_protein2genome-gene-1.62

serpin B8 D. novaeangliae 2,00E-10 64
SNOC_012665-RA]|size386173-augustus-gene-1.39

Serpin 10 L. niger 2,00E-95 302
SNOC_017955-RA|size31723-processed-gene-0.3

Serpin 12 H. saltator 1,00E-52 182
SNOC_014061-RA|size236911-processed-gene-0.71

Hsp90 P. puparum 0.0 1202
SNOC_005495-RA|size1678705-augustus-gene-15.125

Hsp90 P. puparum 0.0 1317
SNOC_013373-RA|size323794-processed-gene-2.61

Hsp60 P. puparum 0.0 1020
SNOC_007524-RA|size1067625-augustus-gene-7.20

Hsp70 T. chilonis 0.0 1177
SNOC_013304-RA|size332486-exonerate_protein2genome-gene-2.60

Hsp70 E. mexicana 0.0 755
SNOC_005147-RA|size1690910-processed-gene-5.86

Hsp83 N. vitripennis 0.0 1326
SNOC _013373-RA|size323794-processed-gene-2.61

Hsc3 A. echinatior 0.0 1241
SNOC_005617-RA|size1648946-augustus-gene-11.140

Hsc5 L. niger 0.0 1247
SNOC_004730-RA|size1755071-processed-gene-7.42

Hsc70 P. vicina 0.0 1229
SNOC_001611-RA|size2909140-processed-gene-4.21

myosin regulatory light chain 2 A. echinatior 1,00E-83 249
SNOC _012217-RA|size441294-exonerate_protein2genome-gene-0.53

myosin |A C. floridanus 0.0 1805

SNOC

018102-RA|size28649-augustus-gene-0.0

130




myosin XV H. saltator 0.0 4088
SNOC_009808-RA|size824638-processed-gene-5.106

Transmembrane protein 179 L. niger 6,00E-131 | 371
SNOC _010624-RA|size696552-augustus gene-5.343

Nephrin H. laboriosa 0.0 669
SNOC _000492-RA|size3365038-processed-gene-1.1

Cytoskeleton-associated protein 5 A. rosae 0.0 2734
SNOC_008109-RA|size1016601-augustus-gene-1.3

Microtubule-associated protein A. mellifera 4,00E-120 | 378
SNOC_013223-RA|size336147-exonerate_protein2genome-gene-2.300

Croquemort A. mellifera 0.0 609
SNOC_014234-RA|size214696-processed-gene-1.4

Larval cuticle protein 8 C. floridanus 1,00E-56 176
SNOC _010613-RA|size696552-processed-gene-4.155

Larval cuticle protein a2b 4,00E-50 172
SNOC_012504-RA|size410872-processed-gene-3.18 D. novaeangliae

Structural cuticle protein A. mellifera 2,00E-75 224
SNOC_011877-RA|size524835-processed-gene-4.139

integrin beta A. echinatior 0.0 1424
SNOC_007953-RA|size1052808-processed-gene-9.35

integrin alpha PS-2 T.zeteki 0.0 1594
SNOC _005950-RA|size1562650-processed-gene-11.29

metap2 A. mellifera 0.0 804
SNOC _007498-RA|size1067625-augustus-gene-5.117

Akirin M. quadrifasciata 1,00E-117 | 334
SNOC _008470-RA|size1001638-processed-gene-3.73

sno T. cornetzi 0.0 2249
SNOC _007413-RA|size1067625-augustus-gene-0.25

apterous A. echinatior 2,00E-166 | 484
SNOC 014561-RA|size161172-processed-gene-0.29

carboxypeptidase B T.longispinosus 9,00E-84 281
SNOC_010857-RA|size670485-augustus-gene-0.0

zinc finger protein 609 H. saltator 0.0 1149
SNOC _007633-RA|size1061917-augustus-gene-4.46

protein scabrous T. cornetzi 0.0 897
SNOC _010871-RA|size670485-processed-gene-2.96

Dynamin C. biroi 0.0 1655
SNOC_001546-RA|size3272368-processed-gene-31.66

Dorsal-ventral patterning protein sog E. Mexicana 0.0 1311

SNOC

008398-RA|size1001802-processed-gene-7.90
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Supplementary Figure S2.1: Multiple sequence alignment for PGRP-Lc. The red boxes indicate the acetylmuramoyl-L-alanine
amidase domain and the Highlighted text indicate the Peptidoglycan recognition protein domain.
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Supplementary Figure S2.2: Multiple sequence alignment for PGRP-SA. The green box indicates the acetylmuramoyl-L-alanine

amidase domain and the red box indicate the Peptidoglycan recognition protein domain.
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Supplementary Figure S2.3: Multiple sequence alignment for B-glucl (Gram-negative bacteria-binding protein 1-2). The red boxes
indicate the Carbohydrate binding domain (family 32), and the green boxes indicate the glycosyl hydrolase family 16 domain.
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Supplementary Figure S2.4: Multiple sequence alignment for B-gluc2 (Gram-negative bacteria-binding protein 1-1). The red boxes

indicate the glycosyl hydrolase family 16 domain.
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Supplementary Figure S2.5: Multiple sequence alignment for galectin. The red boxes indicate the galactoside binding domain.
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Supplementary Figure S2.9: Multiple sequence alignment for croquemort. The red boxes indicate the CD36 family domain.
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Summary

In this study we characterized immune-related genes of S. noctilio. We provide the first comparative overview of the S. noctilio defence
system and describe the putative immunity pathway models of this woodwasp. An increasing number of genome-wide analyses have
contributed to the identification of immune-related genes and gene families in various insect species. These studies, and our study
presented in this dissertation, show that the core signalling pathways are conserved among insects, including in S. noctilio.
Furthermore, we characterised and analysed the immune-related genes of S. noctilio in response to nematode infection, fungal
infection, and physical wounding, in comparison to uninfected controls, to better understand the regulation of these immune-related
genes. We compared the RNA expression profiles in S. noctilio during these infections and control only at one-time point (72 h). The
comparison of control with the three treatments performed was sufficient to show dynamic changes of differentially expressed genes
(DEGS) in S. noctilio. Future studies will involve gene expression profiling at different time points to improve our understanding of the
Sirex-Deladenus interactions. A control will be compared with two different nematode strains (more virulent and less virulent) at three-
time point of the larval infection stages using RNA-Seq and DGE methods. Functional tests will be included for the candidate genes
that shows unique results utilizing CRISPR to perform gain-of-function or loss-of-function analysis. Our findings not only shed more
light on the immunogenetics of S. noctilio in response to parasite infection, but it will also improve general understanding of this

system's host-pathogen interactions.
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