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Diurnal oscillations in gut bacterial load and
composition eclipse seasonal and lifetime dynamics
in wild meerkats
Alice Risely 1✉, Kerstin Wilhelm 1, Tim Clutton-Brock 2,3,4, Marta B. Manser 3,4,5 & Simone Sommer 1

Circadian rhythms in gut microbiota composition are crucial for metabolic function, yet the

extent to which they govern microbial dynamics compared to seasonal and lifetime processes

remains unknown. Here, we investigate gut bacterial dynamics in wild meerkats (Suricata

suricatta) over a 20-year period to compare diurnal, seasonal, and lifetime processes in

concert, applying ratios of absolute abundance. We found that diurnal oscillations in bacterial

load and composition eclipsed seasonal and lifetime dynamics. Diurnal oscillations were

characterised by a peak in Clostridium abundance at dawn, were associated with temperature-

constrained foraging schedules, and did not decay with age. Some genera exhibited seasonal

fluctuations, whilst others developed with age, although we found little support for microbial

senescence in very old meerkats. Strong microbial circadian rhythms in this species may

reflect the extreme daily temperature fluctuations typical of arid-zone climates. Our findings

demonstrate that accounting for circadian rhythms is essential for future gut microbiome

research.
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Gut microbial communities are highly dynamic and rapidly
respond to factors such as host diet and immunity1,2.
These responses can generate predictable community

dynamics that act at varying time scales3,4, including circadian
rhythms triggered by light-dark cycles and food intake5–7, sea-
sonal shifts in response to food availability and climate8–10, and
predictable patterns in microbiome maturation and senescence
across host life11,12. However, these processes have only been
studied independently rather than collectively. Hence, the relative
importance of interacting temporal scales to governing gut
microbiome dynamics remains poorly understood. This gap
limits our ability to identify associations between the gut micro-
biome and host physiology and fitness. For example, accounting
for age-related shifts in the gut microbiome improves the detec-
tion of disease-microbiome interactions13.

Circadian rhythms in gut microbiomes remain particularly
understudied, despite their role in maintaining host physiological
homoeostasis7,14–16. In laboratory mice, microbial circadian
rhythms are characterised by a spike in bacterial load at dusk
when they become active and begin feeding6,17, with members of
Clostridiales becoming particularly inflated5,6,17–19. These diurnal
oscillations trigger a cascade of physiological changes to the host
via alterations to the metabolome and cell transcription patterns6,
and modulate immune function and pathogen susceptibility
across the day16. Whilst control of microbial circadian rhythms
lies largely with host circadian clock genes17, both irregular diets
and prolonged dark exposure disrupt diurnal rhythms18,19.
Notably, these studies have almost exclusively been conducted in
laboratory animals. The exception is a study that identifies weak
diurnal signatures in relative abundances in a large cohort of
humans, where time of day explained 0.1% of microbial
composition7. This raises the question whether circadian rhythms
in gut microbiomes of wildlife reflect those found in model sys-
tems, in particular when accounting for bacterial load.

In addition to diurnal oscillations, gut microbiome composi-
tion changes with season and host age. Whilst seasonal fluctua-
tions are prevalent across studied species and their function
relatively well documented8–10, the development and senescence
of the gut microbiome over host life remain elusive. In humans,
microbiome alpha diversity increases over infancy11, whereas it
decreases in chimpanzees20, although the gut microbiome of
infants tends to have higher inter-individual variation in both
species20. In old age, the gut microbiome of humans and model
animals becomes depleted in core taxa12,21,22. Another potential
characteristic of the aged microbiome may be a decline in
microbial circadian rhythms and subsequent dysbiosis23. Since
physiological circadian rhythms and their associated behaviours
decay with age24–26, it is conceivable that altered hormonal cycles
are reflected in dampened gut microbiome diurnal rhythms, yet
this has so far not been investigated. Crucially, the identification
of predictable dynamics over host life requires long-term and
longitudinal datasets of known individuals, yet in addition
depends on a robust understanding of the short- and medium-
term dynamics that shape gut microbial communities over hours,
days and months. To date, no studies of gut microbiome
dynamics have accounted for interacting temporal scales ranging
from hours to years, nor incorporated fine-grain behavioural and
environmental data to understand the underlying mechanisms.

To investigate how interacting diurnal, seasonal, and lifetime
dynamics together shape estimated bacterial load and diversity in
a wild host system, and to identify their biological and environ-
mental mechanisms, we analysed 1109 faecal samples collected
from 235 wild meerkats (Suricata suricatta) between 1997 and
2019 (mean no. samples per meerkat = 5, min. = 1, max. = 14;
Fig. 1a). Meerkats are small insectivorous mongooses that inhabit
arid regions of southern Africa, and form social groups of two to

fifty individuals led by a dominant pair. The meerkat population
investigated here is located in South Africa and has been mon-
itored since 1995 by the Kalahari Meerkat Project, which collects
detailed data on body condition, behaviour, and life histories of
individually marked individuals27. Meerkats from the study
population experience a number of biological processes that act at
daily, seasonal, and lifetime scales that may be expected to
interact with the gut microbiome. For example, daily foraging
schedules are temperature constrained, with meerkats foraging
most intensely in the early morning and again from mid-
afternoon until sunset when temperatures are cool (Fig. 1b). In
summer, when day temperatures often reach 40 °C, they begin
foraging at sunrise and cease completely during the middle of the
day when they rest28. The Kalahari region is also highly seasonal,
with the climate marked by high temperatures and sporadic
rainfall during the wet summer (October to April), and dry
winters (May to September; Fig. 1c) being cool with almost no
rainfall. Meerkat diet diversity increases in the wet season, yet
arthropods make up the majority of the diet throughout the
year28. Lastly, the timing of relevant life-history stages such as
weaning and senescence are well characterised in this population.
Pups leave their natal burrow to forage at approximately one-
month old and are weaned at approximately 9 weeks. Meerkats
reach sexual maturity at nine months, and biological and repro-
ductive functions begin senescing between 5 and 6 years of age29

(Fig. 1d).
Faecal pellets were collected from individually marked indivi-

duals at the point of defecation, and sampling distribution across
the three temporal scales is shown in Fig. 1e. Samples were col-
lected mostly between 6 am and 1 pm, and again between 3 pm
and 8 pm when meerkats are most active, and were measured
with reference to hours after sunrise. Samples were stored next to
an icepack and then frozen on return to the field station after
either the morning or afternoon field session. For long-term
storage, samples prior to 2008 were mostly frozen at −80 °C
(n= 461), or, after 2008, freeze-dried and kept at room tem-
perature (n= 648; Supplementary Fig. 1a). Microbiome phylo-
genetic profiling was performed using 16S ribosomal RNA
(rRNA) gene amplicon sequencing of the V4 region to generate
Amplicon Sequence Variants (ASVs)30. We estimated total 16S
copy number, often used as a proxy of bacterial load (i.e. the
number of bacterial cells) by scaling reads to an internal standard
that was added to each weighed sample prior to DNA extraction.

Here, we use this large longitudinal dataset of a well-studied free-
ranging wildlife species to (1) compare the strength of diurnal,
seasonal, and lifetime dynamics in bacterial load, alpha diversity, and
beta diversity; and (2) to identify which genera exhibit predictable
dynamics at each scale. Further (3), we test for any environmental
and behavioural mechanisms that may underpin the observed
dynamics, and (4) test whether microbial circadian rhythms decay
with age. We show that diurnal oscillations are stronger and more
prevalent across microbial community and genus-level phenotypes
than seasonal or lifetime processes. These oscillations are linked to
temperature-constrained foraging schedules, with most common
genera spiking at dawn when meerkats begin to feed, and declining
at noon when temperatures often become too hot for foraging.
Lastly, we show that these diurnal oscillations do not appear to
decay in old age.

Results
Effects of storage and technical variation. We first validated our
methods by assessing the effect of storage and technical variation
on microbiome composition. To quantify the effect of the two
storage methods on bacterial composition in fresh samples, we
performed a separate pilot study with nine faecal samples sourced
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from nine captive meerkats at Zurich University. Samples were
immediately frozen after collection, and then either freeze-dried
or kept frozen at −80 °C for seven days. Microbiome composition
clustered strongly by sample identity in their beta diversity
(Supplementary Fig. 1b), and storage did not significantly affect
composition (Weighted Unifrac: F= 0.7, p= 0.52; Unweighted
Unifrac: F= 1.0, p= 0.37). Across samples analysed in this study,
storage had significant yet small effects on estimated bacterial
load, with frozen samples overall having slightly lower estimated
abundance (t= 7.2, p < 0.001, R2= 0.04; Supplementary Fig. 1c).
Observed ASV richness did not differ between storage types
(t= 0.7, p= 0.48; Supplementary Fig. 1d). Storage had weak but
significant effects across four measures of beta diversity
(p < 0.001, R2= 0.01–0.02; Supplementary Fig. 1e). Because sto-
rage had small effects on the measured composition, we account
for storage in all models, and we only consider associations robust
if they exhibit significant trends across both frozen and freeze-
dried samples.

We tested how micro-variation in weighing and other sources
of technical variation affected estimated load and diversity
measures by including 16 extraction replicates, which were
treated separately at every stage of processing. Technical variation
accounted for 10% of variation in estimated bacterial load
(Supplementary Fig. 2a), and 1–2% of variation across measures
of alpha diversity (Supplementary Fig. 2b) and the first axis of
variation of four measures of beta diversity
(Supplementary Fig. 2c–f). Whilst technical variation was non-
negligible, sample ID accounted for 90–98% of variation across
measures.

Time of day is the strongest predictor for bacterial load and
diversity. We first aimed to investigate how estimated bacterial
load, alpha diversity, and beta diversity change over the diurnal,

seasonal, and lifetime scales. We modelled bacterial load and
alpha diversity across the three time scales by fitting generalised
additive mixed models (GAMMs) to log-transformed bacterial
load and (untransformed) ASV richness, applying non-linear
smoothing functions to time of day, month, and meerkat age,
whilst controlling for sampling depth, sequencing run, storage
method, and time in field conditions prior to being frozen as fixed
effects, and including individual ID and social group as random
effects. Definitions of all terms included in models are outlined in
Supplementary Table 1.

Mean bacterial load underwent the largest shifts across the day,
in comparison to seasonal and lifetime scales, which were both
much weaker (Hours after sunrise: F= 54.4, p < 0.0001; Month:
F= 1.1, p= 0.007; Age: F= 9.1, p= 0.003; model R2= 0.47;
Supplementary Table 2). Bacterial load tended to be highest early
in the morning and lowest approximately 10 h after sunrise
(Fig. 2a), although it should be noted there is considerably
uncertainly regarding estimates for the middle of the day when
sampling is sparse. Bacterial load fluctuated only weakly with
season (Fig. 2b) and age (Fig. 2c). Whilst seasonal and lifetime
shifts in bacterial load were weak but significant across the full
dataset, they were not replicable across both frozen and freeze-
dried samples (Fig. S3a). Sequentially excluding terms to assess
the drop in model explanatory power (R2) indicated that diurnal,
seasonal, and lifetime dynamics accounted for 12%, 1%, and 1%
variation in bacterial load, respectively. Individual ID and social
group together accounted for 2% of variation, whilst methodo-
logical variables accounted for 31%.

ASV richness also demonstrated the strongest fluctuations
across the day (Hours after sunrise: F= 20.8, p < 0.0001; Month:
F= 3.4, p < 0.0001; Age: F= 3.8, p= 0.072; model R2= 0.3;
Supplementary Table 3). In contrast to bacterial load, observed
richness was lowest in the early morning and evening, and highest
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Fig. 1 Study system and sampling distribution. a Timeline of samples analysed in this study (1997–2019; n= 1109), with lines connecting samples
collected from the same meerkat individual (y-axis), and coloured by hours after sunrise. Yellow represents samples collected close to sunrise, purple
represents samples collected closer to sunset. Periods of intensive sampling (~2007 and 2015) enable us to account for environmental and social effects at
certain periods. b Proportion of time meerkats spend foraging during wet summer (green dashed line) and dry winter (yellow dashed line). Figure modified
from Doolan and MacDonald28 with permission. Solid lines represent sunrise and sunset in summer (green) and winter (yellow). c Seasonal climate across
the year measured at the Kalahari Research Station, South Africa, averaged from data between 2009 and 2019. Bars represent total rainfall per month, and
red and blue lines represent mean maximum and minimum temperatures, respectively. d Trend in residual body mass across life showing senescence at
approximately 5.5 years and 95% credible intervals, modified from Thorley et al.29. e Sampling distribution for diurnal, seasonal, and lifetime scales. Source
data are provided in the source data file.
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in the middle of the day (Fig. 2d). Across the year, mean ASV
richness increased over the wet summer, and declined over the
dry winter (Fig. 2e). ASV richness did not exhibit significant
changes across life (Fig. 2f). These results were consistent across
frozen and freeze-dried samples (Supplementary Fig. 3b). Overall,
our model accounted for 30% of variation in ASV richness.
However, diurnal, seasonal, and lifetime dynamics accounted for
only 6%, 3% and 1%, respectively; meerkat ID and social group
accounted for 4%, whilst methodological variables accounted for
16%. We tested whether these trends were also evident when
applying the abundance-weighted Shannon diversity, and found
weaker and inconsistent trends across all temporal scales
(Supplementary Fig. 3c). Thus, changes to observed ASV richness
across the day were driven by rare taxa.

We explored shifts in beta diversity across the three temporal
scales by ordinating taxa composition using Multi-Dimensional
Scaling (MDS) analysis of Weighted Unifrac distances, which
accounts for both abundance and phylogeny. Community
composition along the first two ordination axes clustered most
strongly by the time of day (Fig. 2g), and only very weakly by
season (Fig. 2h) or age (Fig. 2i). A PERMANOVA test on the
weighted Unifrac distance matrix indicated that time of day had
the strongest effect size yet explained relatively little variation
(Hours after sunrise: F= 49.7, R2= 0.038, p < 0.001; Month:
F= 3.1, R2= 0.002, p= 0.003; Age: 5.28, R2= 0.004, p < 0.001;
Supplementary Table 4a). Meerkat ID explained a large
proportion of variation yet had a small effect size (i.e. centroids

are close together; F= 1.1, R2= 0.19, p= 0.032), whilst social
group was not significant (F= 0.9, R2= 0.03, p= 0.88). Similar
results were generated when using Unweighted Unifrac (Supple-
mentary Table 4b) and across storage types (Supplementary
Fig. 3d, e).

Genus-level dynamics. We next aimed to identify which genera
were influencing shifts in beta diversity and to model the
dynamics of genus-level abundances across temporal scales.
Changes to beta diversity across the day reflected a decrease in the
relative abundance of the genus Clostridium between morning
and afternoon (Fig. 3a). Axes 1 and 2 of the Weighted Unifrac
ordination shown in Fig. 2g–i largely represented the continuum
of Clostridium and Bacteroides abundances, respectively, and
sample placement along these two axes was strongly influenced
by time of day (R2= 0.27, p < 0.001), but only very weakly by
season (R2= 0.004, p= 0.02) and not by age (R2= 0.001,
p= 0.48). Samples taken in the morning were more likely to be
dominated by Clostridium than those taken in the afternoon,
which tended to be dominated by a more diverse suite of
Raoultibacter, Cellulomonas, Bacillicaceae, Enterococcus and
Lactococcus (Fig. 3b). In contrast, axes 3 and 4 largely represented
the continuum of Paeniclostridium and Blautia abundances,
respectively, and sample placement along these axes was more
associated with age (R2= 0.043, p < 0.001) and weak seasonal
effects (R2= 0.007, p= 0.003), rather than time of day
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(R2= 0.003, p= 0.22; Fig. 3c). The microbiomes of old meerkats
(>5 years old) more likely to be dominated by Romboutsia, and
Paeniclostridium, than the microbiomes of adults (1–5 years old)
and young meerkats (< 1 year old; Fig. 3c).

Changes to beta diversity are driven by shifts in relative
abundance rather than absolute abundance. We therefore
modelled genus-level dynamics in absolute abundance over daily,
seasonal and lifetime scales. We first performed simple
differential abundance non-parametric tests across all genera
with over 15% prevalence across samples (n= 117) to identify
genera that were differentially abundant in the morning
compared to afternoon, in the dry season compared to the wet
season, young meerkats versus adults, and adult meerkats versus

old meerkats (Supplementary Fig. 4). Almost all genera were
significantly associated with time of day (Supplementary Fig. 4a),
suggesting that diurnal oscillations are widespread across gut
microbiome members. Only a few genera significantly differed
between dry and wet seasons (Supplementary Fig. 4b). A small
number of genera were differentially abundant in adults
compared to young meerkats (Supplementary Fig. 4c), whilst
none were differentially abundant in old meerkats compared to
adults (Supplementary Fig. 4d).

We next focused on 16 notable genera in order to model their
temporal dynamics using GAMMs whilst controlling for
potentially confounding methodological variables. We focused
on the most prevalent and abundant genera (n= 13) which all

Genus

Fig. 3 Genera driving temporal trends in beta diversity. a Summary of taxonomic shifts in relative abundance at the genus-level per 30-min interval from
sunrise. The number of samples that were summarised per 30-min slot are indicated by the histogram. b, c Weighted Unifrac ordination plots of (b) axes
one and two and (c) three and four, coloured and grouped by the most abundant genus in each sample. Large circles represent group centroids for samples
sharing the same most abundant genus. Arrows indicate the direction and influence of significant temporal variables when categorised into morning/
afternoon, wet/dry seasons, and young/adult/old. Statistics for temporal variables (arrows) are shown. Source data are provided in the source data file.
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had at least 60% prevalence across samples and together
accounted for 75% relative abundance. However, we used the
results from the differential abundance analysis to select three
additional rarer genera that exhibited notable trends for
additional analysis, including Raoultibacter (43% prevalence),
and Callulomonas (38% prevalence). We also include a
particularly rare genus, Eubacterium (18% prevalence), which
was only present in young individuals.

Thirteen of the 16 focus genera significantly shifted over the day
(Fig. 4a, b), whilst five genera fluctuated with season (Fig. 4c, d), and
six were associated with age (Fig. 4e, f). Relative to their mean
abundance, most genera followed the same diurnal pattern, with the
highest abundance in the early morning, and decreasing until the
late afternoon approximately 10 h after sunrise, before increasing
slightly again prior to sunset (Fig. 4a, b). Clostridium exhibited the
strongest diurnal oscillations, and made up a large proportion of
bacterial load in the morning (Fig. 4b). Raoultibacter, Cellulomonas,
and a Bacillaceae genus increased in the afternoon as the abundances
of most genera fell, yet in general still maintained relatively low
abundances (Fig. 4b). Across the year, Clostridium and Blautia
increased over the dry (winter) season, whilst Raoultibacter,
Cellulomonas, and the Bacillaceae genus increased over the wet
(summer) season (Fig. 4c, d). Over meerkat life, six genera, including
Peptococcus, Paeniclostridium, Romboutsia, and Lachnoclostridium,
increased over the first 1–2 years of life before levelling off (Fig. 4e,
f). In contrast, Eubacterium decreased over the first 6 months of age.
There was no evidence for changes to any taxa in old age (Fig. 4c),
although we note that there was a tendency for old individuals to
have reduced abundance of Christensenellaceae (Supplementary
Fig. 4, Supplementary Fig. 5). Trends for each genus individually,
including 95% confidence internals and split by storage, are
presented in Supplementary Fig. 6 (diurnal trends), Supplementary
Fig. 7 (seasonal trends), and Supplementary Fig. 8 (lifetime trends).

Overall, a summary of effect sizes across diurnal, seasonal, and
lifetime scales for all models presented thus far is presented in
Fig. 5a, showing that diurnal oscillations are generally stronger,
more prevalent, and more robust than seasonal and lifetime
trends for both community and single-genus phenotypes.

Microbiome dynamics is associated with temperature and
foraging schedules. Our third aim was to investigate the

biological mechanisms underpinning gut microbial dynamics. We
were particularly interested in exploring how well climate and
foraging schedules explained diurnal dynamics, which climatic
variables best explain seasonal changes to the microbiome, and
whether body condition and social status underpin changes to
genera associated with ageing. We therefore examined the
potential mechanisms underpinning temporal dynamics in five
measures of bacterial load and diversity and abundance of the 16
focus genera by building GAMMs incorporating eight environ-
mental, biological, and behavioural variables. These mechanistic
variables were cumulative rainfall over the previous month,
maximum and minimum temperature on the day of sample
collection, the temperature at the time of sample collection,
meerkat sex, body condition at the time of sampling, social status
(dominant/subordinate), and the number of hours spent foraging
at the time of sample collection (see Supplementary Table 1 for
definitions). Foraging schedules were estimated from long-term
observational data across the year, and consisted of a foraging
period in the morning and a foraging period in the afternoon
which shifted across the year (Supplementary Fig. 9). To sum-
marise results, we present effect sizes of (non-linear) temporal
trends with mechanistic variables excluded (blue points, Fig. 5a),
and effect sizes for just mechanistic variables with temporal
smooths excluded (red points, Fig. 5b), categorising associations
by how robust they are to methodology.

As demonstrated in Figs. 2–4, diurnal dynamics were much
stronger than seasonal and lifetime scales for both diversity
measures and genus-level abundances, and were also more robust
to splitting the dataset by sample storage (Fig. 5a). When
considering mechanistic variables, diurnal oscillations of bacterial
load, alpha and beta diversity, as well as the abundance of most
genera, were largely associated with temperature and foraging
schedule (Fig. 5b). Most genera, and notably Clostridium,
increased over the foraging period, and decreased as diurnal
temperatures climbed. Conversely, most diurnally oscillating taxa
also increased with maximum temperature. Together, these
indicate that bacterial load and abundances of Clostridium,
Paeniclostridium, and Romboutsia, as well as others, peak early in
the morning on hot days, likely tracking foraging schedule.
Rainfall had little effect on microbiome composition, and neither
did minimum temperature. Bacillaceae, Roultibacter, and Cellu-
lomonas, in contrast, were associated with low maximum

Hours a�er sunrise Month Age (years)

a) c) e)

b) d) f)

DIURNAL SEASONAL LIFETIME

Fig. 4 Temporal dynamics of 16 focus genera across scales. Comparison of temporal dynamics of 16 focus genera across diurnal (a, b), seasonal (c, d),
and lifetime (e, f) scales. Top panel shows GAMM abundance estimates across the three temporal scales compared to the mean, where zero (indicated by
the dashed line) represents the mean (log10) abundance of each genus. Estimates have been back-transformed in the bottom panel to represent absolute
abundance, and bacterial load (grey) is shown for comparison. Only genera that significantly shift across both frozen and freeze-dried samples are shown
(see Supplementary Figs. 6–8 for 95% confidence intervals and trends split by storage). Source data are provided in the source data file.
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temperatures and high sampling temperature, and decreased with
foraging.

We found little robust evidence for sex, body condition, or
social status playing a strong role, although there were a number
of weak signals across the whole dataset, albeit not replicable
between frozen and freeze-dried samples. Abundances of
Paeniclostridiam and Romboutsia, both of which increase with
age, tended to be more abundant in dominant individuals than
subordinates. Yet, these results were not replicable, potentially
due to reduced statistical power in split datasets combined with
the relatively few samples from dominant individuals (201
dominant vs 908 subordinate). Moreover, we found little evidence
for associations between the gut microbiome and body condition
at the time of sampling, although, again, a number of genera such
as Bacteroides were weakly and negatively associated with the
condition when considering all data together.

We partitioned model variance by excluding temporal and
mechanistic terms from the global model that included all terms
(Fig. 5c). Models explained 15–44% in variation in abundance,
including methodological terms. Whilst mechanistic variables
accounted for part of the variation in microbiome dynamics, a
substantial proportion was only explained by temporal variables,
suggesting that additional process (e.g. light-dark cycles) are at
least partially responsible for diurnal oscillations. Overall,
temporal and mechanistic variables accounted for approximately
5–20% in variation across measures.

Diurnal oscillations do not decay with age. Finally, we tested
whether genus-level oscillations decrease in magnitude in older
individuals by splitting samples into three age categories: samples
taken from meerkats under 1 year old (n= 385), from adults
between 1- and 5 years old (n= 627), and samples from old
meerkats that were over 5 years of age (n= 97). Patterns in
diurnal oscillations were very similar across all age categories,
with Clostridium sensu stricto 1 demonstrating the strongest
oscillations across all groups (Fig. 6a–c). We looked in closer

detail at five genera (Clostridium, Bacteroides, Paeniclostridium,
Cellulomonas, and Raoultibacter) that demonstrated the strongest
non-linear diurnal trends and found that confidence intervals
around the mean overlapped across the age categories (Fig. 6d–h).
Therefore, we found no evidence for a reduction in circadian
rhythms with age.

Discussion
Understanding temporal dynamics in gut microbial communities
is essential if we are to identify the mechanisms by which they
shape host health and fitness. To date, many aspects of gut
microbial temporal dynamics, including diurnal oscillations and
changes with age, remain understudied. Our results demonstrate
that gut microbial communities of wild populations can exhibit
strong diurnal oscillations, and that these can dominate over
seasonal or lifetime effects. Meerkat gut microbiomes exhibit a
spike in bacterial load at dawn, peak in observed ASV richness at
noon, and shift from a Clostridium-dominated community in the
morning to a more diverse and low-abundance assemblage in the
afternoon, distinguished by increased abundances of Raoulti-
bacter and Cellulomonas. We provide evidence that these cyclical
fluctuations are explained in part by temperature-constrained
foraging schedules, yet patterns also suggest an equally important
role of light-dark cycles and/or niche modification. Our findings
are in line with those from laboratory mice and humans, which
also report spikes in bacterial load when mice become active at
dusk6,19, and a peak in alpha diversity at noon in humans7.
However, our results are intriguing in that we found strong
diurnal oscillations, but weak seasonal signatures. These are likely
to reflect arid-zone conditions, which are characterised by large
diurnal temperature changes, paired with a largely insectivorous
diet, with limited diet switching between wet and dry seasons28.

We found that diurnal oscillations of Clostridium and a
number of other genera were associated with foraging schedule,
as well as high maximum temperature and, conversely, low
temperature at the time of sampling. Whilst temperature may
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affect the gut microbiome via changes to host physiology31–33,
such associations are potentially more likely due to fine-scale
tracking of meerkat foraging schedules with temperature. Our
foraging schedules, however, are based on average foraging times
across the year, and thus do not capture variation in foraging
times on a day-to-day basis. Increases in taxa abundance with low
sampling temperature and high maximum temperature are
therefore likely to reflect that, on hot days, meerkats begin to
forage particularly early in the morning when temperatures are
cool, thereby triggering a spike in Clostridium and others.
Nevertheless, not all temporal variation was associated with
foraging schedules, potentially indicating a role for light-dark
cycles and subsequent changes to hormones and immunity.

An additional mechanism maintaining diurnal oscillations may
be niche modification over the day, with the spike in bacterial
abundance in the morning, for instance, causing changes to gut
pH and aerobic conditions34. This shift in the gut environment
may generate favourable conditions for Raoultibacter and Cello-
lomonas, and supress Clostridium even during periods of after-
noon foraging. An increase in gut oxygen levels over the day is
supported by the fact that Clostridium is strictly anaerobic, whilst
Cellulomonas is aerobic. Whilst we can only speculate on the
function of these microbial diurnal oscillations, Cellulomonas
degrades chitin35, a key feature of arthropod exoskeletons,
therefore increases in this genus in the afternoon may facilitate
the breakdown of arthropods and other non-soluble fibres such as
cellulose. Moreover, previous research has shown that Clos-
tridium species generate metabolites that alter host metabolism
and immunity36–38, and that segmented filamentous bacteria
(SFB), which are closely related to Clostridium, regulate diurnal
shifts in immunity and susceptibility16. As such, the observed
dawn spike in Clostridium and other Clostridiales members may
be key to mediating meerkat circadian function.

In contrast to other studies on gut microbiome seasonality8–10,
we found only weak seasonal effects on the gut microbiome in

meerkats. Nevertheless, we identified seasonal shifts in a small
number of taxa, including Clostridium, Blautia, and Bacillaceae.
Surprisingly, these shifts were not associated with the amount of
rainfall over the previous month, unlike others39, but were instead
linked to temperature and foraging. This suggests that rain-
associated changes to prey diversity in the wet season may not be
the major mechanism driving seasonal shifts. Instead, seasonal
increases in some taxa over the dry winter may again be due to
reduced foraging constrains in winter. Meerkats spend more time
foraging in the middle of the day during winter28, which may
maintain higher abundances of foraging-associated taxa. It should
be noted that whilst meerkats have a slight shift in diet across
seasons28, this shift is relatively small compared to omnivores that
switch between food types between seasons (e.g. from fruit to
leaves, or from meat to plant-based diets). Therefore, the weak
seasonal effects presented here are likely to be more representa-
tive of insectivores than omnivores inhabiting highly seasonal
environments.

As well as short-term dynamics, we were also particularly inter-
ested in examining lifetime processes such as microbiome devel-
opment and senescence. We found little robust evidence for
directional changes to bacterial load and diversity with age. Never-
theless, we do report higher variation in alpha diversity in younger
meerkats than older meerkats. We also identify some genera that
change over juvenile development, including a decrease in Eubac-
terium over the first year of life. This genus was also more abundant
in juveniles in the Egyptian mongoose40, and is associated with the
transitional state between the infant and adult gut microbiota in
humans11,41,42. Therefore, Eubacterium likely represents the wean-
ing period, when young meerkats transition from a milk-based to an
arthropod diet. Across development, Eubacterium was replaced by a
number of adult-associated taxa, including Lachnoclostridium,
Ruminococcus, Romboutsia and Paeniclostridium. These taxa stabi-
lised at different points, with Romboutsia and Paeniclostridium
stabilising at 2 years of age, when meerkat body mass

a) <1 year (n = 385) b) 1-5 years (n = 627) c) >5 years (n = 97)

Hours a�er sunrise

Fig. 6 Diurnal oscillations do not decay with age. a–c Diurnal oscillations of 16 focus genera in a) young meerkats (<1 year old; n= 385). b adult meerkats
(1–5 years old; n= 627); and (c) particularly old meerkats (>5 years old; n= 97). Zero represents the taxa mean and sample distributions are indicated by
the histograms. d–hModel estimates and 95% confidence intervals for (d) Clostridium (sensu stricto 1); (e) Bacteroides; (f) Paeniclostridium, (g) Cellulomonas,
and (h) Raoultibacter, split by age category (blue= young; grey = adult; red = old). Source data are provided in the source data file.
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plateaus29,whilst the others peaking at approximately 1 year of age,
when meerkats reach sexual maturity. However, since these taxa
were not reliably associated with body condition nor social status,
the underlying reasons for their increase remain unclear.

Lastly, we found little indication of chronological senescence of
the microbiome in old age, although we highlight that there was a
tendency for Christanellaceae R7 group, a genus consistently
linked to health and longevity12,43 to decline in old meerkats. We
also expected that microbial senescence might take the form of
reduced microbial diurnal oscillations, since organismal senes-
cence is characterised by a decline circadian rhythms in circu-
lating hormones and immunity26,44. However, the strength of
microbial diurnal oscillations was remarkably similar across age
groups, although the power to detect declining rhythms is limited
by smaller sample sizes for old individuals. One potential expla-
nation for this is that whilst meerkats undergo reproductive
senescence in older age, this is not paired with reduced survival
rates29, potentially due to the benefits of group living. Whilst
there are few studies investigating age-related decline in wildlife
gut microbiomes, our findings reflect those found in chimpan-
zees, which also are a group-living species and where old indi-
viduals have similar gut microbiomes to other adults20. This
raises the question as to whether the buffering of senescence by
sociality, for which there is some evidence45, may limit microbial
senescence in old age. Nevertheless, older chimpanzees in the
same population have reduced diurnal hormonal cycles26, and
therefore it is conceivable that they may also exhibit diminished
gut microbial circadian rhythms, yet this has not been tested.
Senescence in old age is widespread in wildlife46, and further
investigation on the association between senescence and the
microbiome is needed to elucidate the role of gut microbiota in
host ageing.

Our study combined extensive longitudinal data and micro-
biome load quantification to advance our understanding of
temporal dynamics in gut microbiomes. Nevertheless, it faces
some study design and methodological limitations that may affect
interpretations. Notably, the use of internal standards is likely
prone to high technical variation, since it is challenging to
accurately standardise sample weight, and subsequent technical
variation can be inflated by PCR bias47. Our technical replication
analysis confirmed that technical variation was higher for esti-
mates of bacterial load (10%) than measures of alpha and beta
diversity (~2%). Whilst this variation is non-negligible, sample ID
still accounted for 90% of variation and therefore the identifica-
tion of true biological associations is possible, especially with large
sample sizes. We also minimise the risk of further PCR bias by
controlling for sequencing depth in all analyses47. A perhaps
more serious concern is that variation in 16 S rRNA gene copy
number biases bacterial load estimates due to differences in the
number copies between bacterial species. To date there is no
consensus about how to control for 16S copy number in amplicon
data48, and bacterial genomes can contain between one and 21
gene copies49,50. As such, our estimated abundances are almost
certainly over-estimates. Clostridium species predictably have
high copy numbers (~10 copies), therefore at least part of the
large spike in Clostridium, and reflected in bacterial load, may be
an artefact of high copy number. Nevertheless, we are interested
in estimating relative changes in abundance over time within
communities, rather than comparing abundances amongst tax-
onomically different communities. Therefore, whilst the rates of
change over time are not comparable between different taxa, the
overall direction of change for each taxa is reliable.

Overall, the strength of diurnal oscillations identified here
suggest that circadian rhythms in gut microbiomes are likely to
play a major role in host biological function. Exposing the uni-
versality of gut microbial circadian rhythms among wildlife

species, and the evolutionary and ecological mechanisms that
underpin them, are major avenues of research in the future. The
results of this study therefore form a concrete reference point
from which to develop our understanding of the link between
circadian rhythms in gut microbial communities and host bio-
logical function, fitness, and health.

Methods
Study population and study design. We aimed to understand gut microbiome
dynamics of meerkats (Suricata suricatta) inhabiting the Kalahari desert region in
South Africa (−26.96S, 21.83E). Individuals from this population are individually
marked and have been monitored almost daily since 1995 by the Kalahari Meerkat
Project27. Faecal samples have been collected across the entire study period from
almost all monitored individuals. For this study, we selected a total of 1109 samples
from 235 individuals for microbiome analysis (mean= 5, min. = 1, max. = 14;
Fig. 1a). These individuals were chosen either because they lived beyond the age of
known biological senescence (5.5 years; 16), or because they lived during two focus
periods spanning 2–4 years approximately a decade apart. These focus periods were
chosen to be able to account for environmental variables experienced by multiple
study animals within each timeframe. 70% of samples were collected from meerkats
belonging to eight social groups, whilst the remaining 30% were collected from
across 34 different social groups. Samples were collected mostly between 6 am and
1 pm, and then again from 3 pm until 8 pm, which are the periods that meerkats
are most active. Fifteen sand samples collected across the study area in June 2019
were also included to identify likely sand contaminants.

Sample collection and storage. Faecal samples were collected from the ground
immediately after an individually marked meerkat was observed defecating. Sam-
ples were stored next to an icepack during the remaining morning or afternoon
field session and were immediately frozen after return to the field station. Samples
collected prior to 2008 were almost all stored frozen at −80 °C, whilst those col-
lected after 2008, were freeze-dried for long-term storage and kept at room tem-
perature at the Kalahari Research Centre (see Supplementary Fig. 1).

DNA extraction with internal standard, 16 S rRNA amplification and
sequencing. Before extraction, NAP buffer was added to all faecal samples51. A
subsample of 0.6 ± 0.05 µg (wet) was taken, and sixteen technical replicates (eight
frozen, eight freeze-dried) were also subsampled at this point. 3 µl of Zymo-
BIOMICS Spike-in Control I (High Microbial Load) was added to each subsample
prior to DNA extraction. This internal standard consists of cells belonging to
Imtechella halotans and Allobacillus halotans, two species which are rarely found in
gut microbiome communities. An internal standard allows us to quantify ratios of
absolute abundance by adding a known number of cells to each sample by which to
normalise microbiome counts after sequencing. This method technically measures
16S copy number rather than absolute abundance, but has shown to accurately
reflect variation in absolute abundances when care is taken to standardise faecal
sample mass52–55. The bacterial genomic DNA was extracted using the NucleoSpin
96 Soil kit (Macherey-Nagel) following the manufacturer’s instructions, and the
hypervariable V4 region of the 16S rRNA gene was amplified using the primer pair
515F (5-GTGCCAGCMGCCGCGGTAA-3) and 806R (5-GGAC-
TACHVGGGTWTCTAAT-3). We used the Fluidigm Access ArrayTM for Illumina
Sequencing Systems for indexing and adding Illumina adaptor sequences. After
purification (NucleoMag® NGS Clean-up and Size Select, Macherey-Nagel) and
quantification (QuantiFlour® dsDNA Systemt, Promega) of barcoded samples, the
normalised pooled sample library was sequenced as paired-end run on Illumina
MiSeq platform at the Institute of Evolutionary Ecology and Conservation Geno-
mics, Ulm University. Samples were sequenced across four Illumina runs (MiSeq
Reagent Kit v2, 500-cycles), with samples from different focus periods and storage
methods distributed randomly across extraction plates and runs. Extraction and
PCR negative controls were included on all runs.

Bioinformatics and normalisation. All sequence reads were processed using
QIIME2 version 2020.256. Sequences were merged, quality filtered, and chimera
filtered using the DADA2 pipeline30 to generate amplicon sequence variants
(ASVs)30,57. Primers were trimmed and reads were truncated at 244 (forward) and
235 (reverse) base pairs. ASVs were assigned a taxonomy using SILVA version
13258. A tree was built using QIIME2’s fragment insertion method59, which inserts
sequences into a high-quality reference phylogeny and thus provides more accurate
branch lengths and tip placements than de-novo tree assembly. ASVs were filtered
if they were not bacteria, not assigned to a phylum (as these are assumed to be
spurious), or if they were classified as mitochondria or chloroplasts. This filtering
step removed 1.7% of reads.

We aimed to remove sand contaminants that were added during faecal sample
collection, yet retain sand microbes that were commonly ingested since meerkats
dig for their prey and therefore take-up sand during foraging. We used the function
decontam::isContaminant60 using the ‘prevalence’ method to identify sand
microbes using 15 sand samples as a reference, and to remove them from the
dataset. One ASV, belonging to the genus Geodermatophilus, had very high
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occupancy both for sand and faecal samples, therefore we retained this ASV in the
dataset under the assumption that it is commonly ingested and is a real gut
microbe. This filtering step removed a further 4.3% of reads. In addition, 11 low-
abundance ASVs (making up 0.003% of reads) were identified with the function
decontam::isContaminant as laboratory contaminants and removed from the
dataset.

We used counts of internal reference species Imtechella halotans and
Allobacillus halotans to quantify ratios of absolute abundance across samples. The
two spike-in species together made up a median of 3.3% and a mean of 10% of
overall reads, although a small proportion of samples had much higher percentage.
Imtechella and Allobacillus counts were 99% correlated, therefore we scaled samples
to Allobacillus. The sample scaling factor was generated by multiplying the mean
read count of Allobacillus by its read count in each sample, and sample reads were
then multiplied by the sample scaling factor to normalise the dataset. Both
Allobacillus and Imtechella were then removed, and all further analysis were
conducted on scaled reads. Because some samples had very high relative
abundances of spike-in, we only retained samples where read depth of the true
microbiome (minus the internal reference) was over 10,000 before
normalization (n= 1109). All further analyses were conducted using
normalised data.

Estimating technical variation. We estimated technical variation from the 16
technical replicates by calculating bacterial load, ASV richness, and four measures
of beta diversity for each sample. We then estimated the variation attributed to
sample ID by fitting Generalised Linear Mixed Models (GLMMs) using the
lme4::lmer function61 with sample ID as a random effect to each diversity measure.
Variation was extracted in the form of the Intraclass Correlation Coefficient (ICC)
using the performance::icc function62.

Sample metadata. We collated temporal, biological, environmental and metho-
dological data for each sample (Supplementary table 1). Biological data was
extracted from the Kalahari Meerkat Project database. As well as the time and date
the sample was collected, we included age at sampling, sex, social status (dominant/
subordinate), social group and weight (in grams) at the time of sampling. We
measured time of day in reference to sunrise, because this is more biologically
meaningful than time of day. We calculated sunrise times per day using
suncalc::getSunlightTimes63. Detailed explanations on the calculation of body
condition, foraging schedule, number of hours between sample collection and
freezing, and the collation of weather data is outlined in Supplementary methods 1.

Data analysis. We chose to model temporal dynamics with GAMMs because we
reasoned temporal dynamics across scales were likely to be non-linear, and we
aimed to understand fine-scale temporal trends rather than bin data into coarse
categories (e.g. morning/evening, wet/dry seasons, and young/adult/old). Due to
the complexity of the data and some methodological limitations (e.g. different
storage methods and unequal sampling across the day) we perform a number of
sensitivity analyses to assess the robustness of reported associations which are
described in detail below. Overall, we only consider an association robust if it can
be replicated across both frozen and freeze-dried samples, which removes weak or
spurious results. All analysis was conducted in R version 3.6.2, and analyses and
visualisations were performed with the key packages phyloseq64, vegan65, mgcv66,
and gratia (https://gavinsimpson.github.io/gratia/).

Modelling temporal dynamics in bacterial load (Aim 1.1). We fitted Generalised
Additive Mixed Models (GAMMs) using the mgcv::gamm function with a Gaussian
distribution to model changes to mean log10-transformed bacterial load across the
three temporal scales. Whilst count data is normally modelled with Poisson or
negative binomial distributions, our abundance data spanned three orders of
magnitude, and models using Poisson or zero-inflated negative binomial dis-
tributions did a poorer job of modelling abundance counts than transformed
counts with a Gaussian distribution. We included hours after sunrise, month, age at
sampling, and sequencing depth as continuous smooth terms; individual ID and
social group as smoothed random effects; and storage, sequencing run, and field
time as linear parametric terms. All smoothed terms except month were fitted with
cubic regression splines (bs= “cr”), whilst month was fitted with a cyclic cubic
regression spline (bs= “cc”), because seasonal changes are cyclical (i.e. January
comes after December). Cubic regression splines calculate smoothing knots based
on data density (rather than distributing them equally along a gradient), and
therefore periods of missing data, e.g. during the middle of the day, do not contain
knots nor generate erratic trends. We included individual ID and social group as
random effects by fitting random spline (bs= “re”) to these terms. Because tem-
poral data can be temporally auto-correlated (i.e. samples collected at the same
time are not temporally independent), we added an nested autoregressive model to
account for temporally correlated errors within the GAMM. We nested the auto-
regressive term within sample year, because model comparison indicated this
marginally improved model fit. However, across models presented in the study,
choice of smoothing method and inclusion of an autocorrelation term made little
difference to results.

We validated our results in a number of ways. First, we fitted smoothed trends
separately to frozen (samples collected prior to 2008) and freeze-dried (mostly
collected after 2008) samples, using mgcv’s ‘by’ argument. We present results in the
main text and only consider associations robust if they are replicated across both
storage types. Secondly, because samples were collected unequally across the day,
with few samples in the middle of the day, we randomly subsampled 20 samples
per hour interval (minus two hours at noon that had fewer than 20 samples and
were therefore excluded) and re-ran models on the reduced dataset, and found
results were robust to sampling distribution (Supplementary Fig. 10a). Thirdly,
because methodological variables appeared to have large effects on results, we
repeated analyses without any methodical variables, and found temporal dynamics
were largely unaffected (Supplementary Fig. 10b). This indicates that including
methodological variables increases explanatory power of models but not do not
overly bias estimates. Fourthly, we cross-validated our models by building them on
a random subset of 70% of our dataset, then applying the model to the other 30%
untrained data, and repeated this 100 times. Average R2 of cross-validation models
was 43% (compared to 47% for presented model), indicating our models were not
over-fitted to trained data.

Modelling temporal dynamics in alpha diversity (aim 1.2). ASV richness and
Shannon diversity were calculated on counts normalised to the internal standard
using the function phyloseq::estimate_richness. We focus on observed ASV richness
as a measure of alpha diversity, yet also present results of Shannon diversity, which
weights for abundance and therefore also represents the evenness of the commu-
nity. We modelled temporal dynamics of untransformed ASV richness using the
same GAM model structure as described above for bacterial load.

We performed the same sensitivity analyses as described above for the model on
bacterial load, including running analyses separately on frozen and freeze-dried
samples, presented in the main text. Secondly, we randomly subsampled
20 samples per hour interval (minus two hours at noon) and reran the GAMM on
the reduced dataset, which produced similar results to those presented
(Supplementary Fig. 11a). We also removed methodological variables and reran the
model, which made little difference to model estimates (Supplementary Fig. 11b).
Finally, we validated the model by splitting the dataset into training and test sets
100 times. The model explained on average 24% of variation in the untrained data
(in comparison to the 29% reported), indicating model predictions were likely
over-fitted and true explanatory power was closer to ~24%.

Modelling beta diversity (aim 1.3). To calculate and visualise beta diversity, we
excluded ASVs with total counts under 50 reads (after scaling to the internal
standard). This was to ensure convergence of all ordinations, and resulted in the
retention of 4,666 out of the original 26,122 ASVs, yet excluded only 0.7% of total
reads. We ordinated taxa composition using Multi-Dimensional Scaling (MDS)
analysis of Weighted Unifrac distances, applying counts normalised to the internal
standard. We did not use non-metric MDS (NMDS) ordinations since variation
was extremely high and ordinations did not converge. Whilst we focus on
Weighted Unifrac, we also present results for Unweighted Unifrac, to compare
weighted and unweighted measures. We statistically tested the marginal effect of
temporal and methodological variables on overall beta diversity distance with
PERMANOVAS using the vegan::adonis2 function. We statistically tested for dif-
ferences in centroids across axes 1 and 2 (Fig. 3b) and 3 and 4 (Fig. 3c) by using the
vegan::envfit function, including methodological variables, and with 999 permu-
tations. The envfit function uses linear model permutations to map variables onto
an ordination. To summarise temporal dynamics in beta diversity and to easily
compare them to trends in load and alpha diversity, we also modelled axis 1 of both
Weighted and Unweighted Unifrac ordination using GAMMs, controlling for
methodological variables (Supplementary Fig. 3 and Fig. 5). We fit these GAMMs
to frozen and freeze-dried samples separately to assess robustness (Supplementary
Fig. 3d, e).

Genus-level analyses (aim 2). To understand which genera were associated with
which temporal scale, we merged reads by their genus using the phyloseq::tax_glom
function. We focused on 13 of the most common genera with over 60% prevalence,
which together made up 75% relative abundance. However, we also wished to detect
any meaningful dynamics in rarer taxa. We therefore ran a non-para-
metric differential abundance analysis on all genera with over 15% prevalence to
assess any differences in taxa between morning (< 7 h after sunrise; n= 743) and
afternoon (> 7 h after sunrise; n= 366), dry (May–September; n= 418) and wet
seasons (October–April; n= 691), and young (< 1 year; n= 385) and old (> 5 years;
n= 97) meerkats. To ensure sample sizes were not highly unequal between groups,
we compared samples from both young and old meerkats to a subset of samples
from meerkats between 2 and 4 years old (n= 236). Because most taxa are zero
inflated, we used non-parametric Wilcoxon tests with Bonferroni adjusted p-values
for multiple testing to test for significant differences. We used the differential
abundance analysis to add four genera that exhibited notable temporal dynamics to
our list of focus taxa.

We modelled dynamics of each focus genus over time by fitting a GAMM to
log10-transformed abundance, adding a pseudo-count of one to zeros. GAMMs
were built using an identical model structure to that described for bacterial load,
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and therefore included only temporal and methodological terms, and included
individual ID and social group as random effects. For rarer taxa which were zero
inflated due to low prevalence (Cellulomonas, Raoultibacter, and Eubacterium) we
also modelled abundance using the negative binomial family with zero inflation.
Since these presented overall similar trends, we used the same gaussian model
structure for all genera so that effect sizes are comparable. To ensure robustness, we
present in the main text only trends that were significant when frozen and freeze-
dried samples were analysed separately, but present all trends by storage in
supplementary materials.

Investigating underlying mechanisms (aim 3). We investigated underlying
mechanisms by additionally including eight biological and environmental terms
outlined in Supplementary Table 1 to GAMMs predicting bacterial load, observed
ASV richness, Shannon diversity, ordination axes one and two of weighted and
unweighted Unifrac beta diversity ordinations, and the abundances of the 16 focus
genera. We first present effect sizes for temporal trends minus mechanistic vari-
ables, so that temporal dynamics of each diversity metric and genera can be easily
identified. We then present effect sizes for models with mechanistic but not tem-
poral variables included. We removed temporal non-linear variables from these
models because controlling for them reduced statistical power to detect associations
with underlying mechanistic variables, and to remove issues with co-correlation
between time of day and temperature variables. We partitioned model R2 into
temporal, mechanistic, and methodological variation by removing either temporal
or mechanistic variables or both from the global model (including all terms) and
recording the drop in explanatory power. All models were repeated on frozen and
freeze-dried samples separately and robust associations are presented.

A potential confounding issue was the co-correlation between many of the climatic
variables included in the model (cumulative rainfall, minimum temperature,
maximum temperature, and temperate at the time of sampling). To test whether co-
correlation affected our interpretation of results, we replaced these variables with
uncorrelated principal components from a PCA analysis. Overall, PCs representing
maximum temperature and temperature at sampling demonstrated almost identical
trends to models with the untransformed data (Supplementary Fig. 12), and rainfall
remained overall unimportant. Because principal components are harder to interpret
and results supported models with untransformed climate data, we present models
with the untransformed data. In addition, we tested for seasonal interactions by fitting
smoothing splines by season, and found that associations presented in Fig. 5 were
similar across wet and dry seasons.

Testing interactions with age (aim 4). To test whether diurnal oscillations per
genus decayed with age, we categorised samples by age category (< 1 year; 1–5
years; > 5 years) and rebuilt GAMMs per genus, fitting diurnal smooths by age
category using mgcv’s ‘by’ argument. We assessed whether diurnal oscillations were
comparable across age groups by comparing 95% confidence intervals for five key
genera that demonstrated the largest diurnal fluctuations.

Pilot study to test the effect of storage. Whilst the effects of storage can be
accounted for statistically, we wanted to confirm experimentally that the two storage
methods used here do not overly affect the bacterial composition. We experimentally
tested the effect of freezing versus freeze-drying on overall bacterial community
composition by collecting fresh faecal samples from nine different captive meerkats
housed at the University of Zurich. Faecal samples were frozen immediately on col-
lection. A subsample of the sample was then freeze-dried, whilst another subsample
remained frozen at −80 °C for one week. DNA was extracted and processed following
the same protocols as described above, with the exception that an internal standard
was not added to samples. To analyse the effect on storage on these samples, samples
were normalised by rarefaction and we performed a marginal PERMANOVA on a
Weighted Unifrac distance matrix, including sample ID and storage as terms.

Data availability
All sequences and processed data used in this study are available to download from
Zenodo67. Sequences are additionally stored under NCBI BioProject
PRJNA764180. Source data are provided with this paper.

Code availability
All code used in this study and Rmarkdown reports are available to download from
Zenodo67.
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