Table of Contents

Section	Subsection	Page
Table of contents		i
Abstract		ii
Acknowledgements		iv
Declaration of originality		v
Table of figures		vi
Table of tables		vii
List of abbreviations		viii
Preface	1. Problem Statement; 2. Aims; 3. Layout of Thesis	1
Literature Review		2
	3. A brief history of plant transformation	2
	4. Cell culture systems	12
	5. Biolistics and cereal crops	14
	6. Biolistics vs. biology	22
	7. Approaches to optimisation	23
Materials and Methods		27
	9. Plant growth procedure	27
	10. Sample preparation	28
	11. DNA binding protocol	31
	12. Microprojectile bombardment	33
	13. Sample staining and analysis	34
	14. Data analysis	36
Results		37
	15. Baseline expression experiment	38
	16. Taguchi optimisation experiment	39
	17. Analysis of optimisation experiment data: comparison within sample subsets	40
	18. Analysis of optimisation experiment data: Taguchi analysis	46
	19. Analysis of optimisation experiment data: generalised linear modelling	50
	20. Analysis of optimisation experiment data: comparison of projected optimal conditions	52
	21. Verification of optimal conditions	53
	22. Summary of data quality	56
	23. Microscopy	57
Discussion		62
	24. Interpretation of results	62
	25. Theory vs. practice	64
Conclusion		72
References		75

Abstract

Transient transformation approaches show promise for rapidly assessing specific genes and gene constructs in live tissue. This is especially true in the case of plant leaf tissues, which are hard to culture and provide easy targets for transformation techniques. In the case of maize leaves, the use of biolistic approaches circumvent the problems of *Agrobacterium* host range.

To achieve reliable expression, transient biolistic transformation of maize leaf tissues (taken from within the non-emergent leaf whorl of 8-week-old maize plants) was optimised using a Taguchi design-of-experiments approach and Generalised Linear Modelling. Bombardments were carried out on plants from the B73 inbred line using the PDS-1000/He biolistic device. Input conditions (burst disc pressure, microparticle loading, DNA loading and sample selection within the non-emergent leaf whorl) were varied across three levels over the course of nine trials.

Bombardments were carried out using a BioRad PDS-1000/He gene gun, M17 tungsten microparticles and a pAHC25 reporter gene plasmid; the reporter gene construct consisting of a ubiquitin promoter, intron, beta glucuronidase coding region and NOS terminator. Samples were assessed for beta glucuronidase expression by histological staining in 5-Bromo-4-chloro-1*H*-indol-3-yl β -D-glucopyranosiduronic acid (X-Gluc) solution. This resulted in visible blue 'spots' (each corresponding to a transformed cell) which were then counted under a dissecting microscope.

Additional, qualitative results were generated by sectioning bombarded leaf samples and wet-mounting the sections for observation under a stereo-microscope. An improved sectioning techniques, hand cryo-sectioning, was developed to surmount some of the challenges posed by the thin, friable samples. For the final experiment an additional factor; sample distance along the leaf axis from the ligule (the leaf sheath extension which in non-emergent leaves is coincident with the leaf base) was included due to publication of similar research by another group.

The results established new optimal conditions for maize leaf bombardments and confirmed that ligule distance is an important input factor for achieving high transient transgene expression. Optimal conditions for maize leaf bombardment were determined to be: high burst disc pressures (1350PSI), particle loadings above 2mg of tungsten microparticles per bombardment, DNA loadings of 5ug per bombardment (2.38x10⁻⁶ umol of pAHC25, or 4.8x10¹¹ copies), leaf sample selection from the central leaf whorl out to the 3rd or 4th non-emergent leaves and a distance from the leaf ligule of 0-3cm. In addition, a simple empirical model for microparticle penetration (the newtonian penetration approximation, giving an estimated penetration of 20-40um for the conditions tested) was assessed and found to be well-correlated with the results seen in maize leaf bombardments when attempting to estimate impact depth.

Additional modelling concerning the area ratio of the nucleus versus the rest of the cell was performed, with the result that even when accounting for morphological differences in cell/nuclear ratio between cells closer to the leaf base and those further away, there was still a significant difference in transformation efficiency.

Acknowledgements

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged.

Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF.

The author would like to thank his supervisors, lab-mates, friends and family.

Declaration of Originality

Full names of student: Thomas Gerard Schmidt

Student number: 04399846

Topic of work: Transient Biolistic Transformation in Maize Leaves

Declaration

1. I understand what plagiarism is and am aware of the University's policy in this regard.

2. I declare that this thesis is my own original work. Where other people's work has been used (either from a printed source, internet or any other source), this has been properly acknowledged and referenced in accordance with departmental requirements.

3. I have not used work previously produced by another student or any other person to hand in as my own.

4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work.

SIGNATURE

Table of Figures

Figure	Title	Page
1	Results obtained in another biolistic transient expression assay	19
2	An example of a media-grown maize plant	27
3	Sand-coir grown maize plants	28
4	Maize leaf sample prior to dissection	29
5	Leaf sample selection after dissection	29
6	Selected samples after separation along leaf axis from ligule	30
7	Processed samples immediately prior to bombardment	30
8	pAHC25 plasmid map	32
9	Bio-Rad PDS 1000/He biolistic device	33
10	Schematic of biolistic bombardment process	34
11	Histological staining of beta glucuronidase (GUS)-expressing cells after bombardment	37
12	Frequency distribution of baseline expresison experiment	38
13	Box plot of trial results for Taguchi optimisation experiment	40
14	Notched box plot of pressure versus transformation efficiency	41
15	Notched box plot of particle load versus transformation efficiency	42
16	Notched box plot of DNA loading versus transformation efficiency	44
17	Box plot of sample placement within non-emergent leaf whorl versus transformation efficiency	45
18	Main effect plot of all factors and levels	49
19	A summary of the Generalised Linear Model (GLM) and Taguchi optima	52
20	Box plot of verification experiment results	53
21	Box plot of the baseline vs. optimised expression sample subsets	54
22	Box plot comparing expression efficiencies for sample subsets along the leaf axis from the ligule	54
23	Frequency distributions for the ligule-distance sample subsets of the validation experiment	55
24	Differing spot densities and morphologies seen in sample subgroups	57
25	Composite picture showing typical staining patterns for bombarded samples	58
26	Example of epidermal cell size measurements obtained from cross-section of a 0-3cm ligule-distance leaf sample	59
27	Example of epidermal cell size measurements obtained from a cross-section of a 3-6cm ligule-distance sample.	59
28	Expressing and non-expressing leaf sample cross-sections obtained using standard handsectioning techniques	60
29	A transverse section of maize leaf sectioned using the hand cryo-sectioning approach	61

Table of Tables

Table	Title	Page
1	Survey of South African articles: biolistic transformation of cereals and sugarcane	17
2	Survey of articles: biolistic transient transformation of maize	20
3	Survey of articles: biolistic transient transformation of cereal leaf tissues	21
4	Experimental conditions for Taguchi optimisation experiment	39
5	Samples separated into subgroups according to burst disc pressure	41
6	Comparison of burst disc pressure sample subset medians	42
7	Samples separated into subgroups according to tungsten loading	43
8	Comparison of tungsten loading sample subset medians	43
9	Samples separated into subgroups according to DNA loading	44
10	Comparison of DNA loading sample subset medians	44
11	Samples separated into subgroups according to location within non-emergent leaf whorl	45
12	Comparison of leaf whorl sample subset medians	46
13	Signal-to-noise ratio for each trial within the Taguchi optimisation experiment	47
14	S/N ranks for all factor subgroups, with the effect of factor intensity on ranking score being shown	48
15	Contribution table for optima projections	49
16	Estimated marginal means for all factors and levels, as indicated by GLM	51
17	Experimental conditions for trials during optima validation experiment	53
18	Distribution comparisons between various experiments and sample subsets using the Kolmogorov-Smirnov test	55
19	Median comparison between various experiments and sample subsets using the Wilcoxon ranked-sum test	56
20	Summary of results	56

List of Abbreviations

- 2,4-D 2,4-dichlorophenoxyacetic acid
- ANOVA Analysis of Variance
- EDTA Ethylenediaminetetraacetic acid
- GFP Green Fluorescent Protein
- GLM Generalised Linear Model
- GUS Beta glucuronidase
- PIG Particle Inflow Gun
- SASRI South African Sugarcane Research Institute
- S/N ratio Signal-to-Noise ratio
- X-Gluc 5-Bromo-4-chloro-1*H*-indol-3-yl β-D-glucopyranosiduronic acid
- ZFN Zinc-Finger Nuclease