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Executive Summary 

Background: DNA methylation is an epigenetic mechanism known to aid the progression of cancer, 

including prostate cancer. It is part of a cluster of molecular processes that initiate tumorigenesis and drive 

its early evolution by altering other molecular processes. While studies have looked at DNA methylation 

in prostate cancer, most have been limited by targeted gene analysis, with further bias towards non-African 

cohorts. Considering the enhanced coverage of more recent genome-wide arrays, such as the Illumina 

Infinium HumanMethylationEPIC BeadChip, which measures DNA methylation over more than 850,000 

CpG sites genome-wide, many studies that have employed a more global approach to DNA methylation 

analysis are further limited by frequently utilising lower-coverage arrays. Due to the bias against African 

cohorts, African-relevant bioinformatic tools for the processing of African DNA methylation data, 

particularly generated by the EPIC array, are scarce. As a result, the genomic mechanisms that underlie 

African prostate cancer as well as the contribution of DNA methylation alterations to African prostate 

cancer are poorly understood.  

Results: Working with EPIC DNA methylation data, I present a novel established African-relevant 

genome-wide bioinformatic pipeline for the processing and normalisation of African tumour-derived 

genome-wide DNA methylation data. Pilot application of this pipeline on prostate tissue identified 

differentially methylated CpG dinucleotides that may contribute to aggressive prostate cancer in a small 

cohort of men of South African ancestry. Additionally, I identified top genes in South African prostate 

cancer that are significantly enriched for differentially methylated CpG sites. Finally, patient-matched 

genomic-epigenomic data integration revealed preliminary evidence for interplay between these two 

systems in African prostate cancer, although the identification of DNA methylation signatures would prove 

more insightful.  

Conclusions: Ultimately, this work highlights the marginalization of Africans in scientific research. As a 

preliminary solution to this underrepresentation, this dissertation provides a novel toolset to appropriately 

handle African DNA methylation data with the ultimate goal of generating a deeper understanding of the 

genomic mechanisms harboured within African prostate cancer, a field with limited knowledge. Potential 

improvements to this tool, complications encountered when interpreting epigenome-wide results as well as 

the near future of cancer genomics is discussed. 
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Chapter 1: General Introduction 

Please note that throughout this dissertation, the mention of “South African” men makes specific reference 
to men of African descent.  
 
1 . 1 .  B ackg roun d  and  re sea rc h  pr ob le m  

Continental Africans are significantly underrepresented in terms of genomic and epigenomic research 

despite knowledge of ethnic-related differences.1 As a result, insight is limited regarding the factors that 

link numerous diseases to African ancestry. Of particular interest to my dissertation are the contributing 

factors that link prostate cancer to African ancestry. Prostate cancer is the most common urological cancer 

affecting aging men in South Africa.2 South African men present with more aggressive disease and display 

higher incidence and mortality rates compared to their European counterparts.3,4 In some cases, this 

presentation is true even in comparison to African Americans.5 However, in light of the African 

marginalization just mentioned, it is unsurprising that the mechanisms that underlie African prostate 

tumorigenesis remain poorly understood. This poses a challenge for cancer pharmacologists and clinicians. 

To better understand the ethnic bias and aggressive nature of African prostate cancer, one cannot ignore 

the possible contribution of genomic factors related to African ancestry. In addition, it is crucial that such 

consideration not disregard the contribution of environmental factors which calls into question epigenomic 

mutational processes, given that the environment is capable of directly, epigenetically inferring disease 

susceptibility, including cancer.6,7 Of course, epigenomic mutational processes may arise in response to 

intrinsic factors and are additionally known to influence genomic events, thereby alluding to a complex 

genomic-epigenomic interplay.8,9 

 

DNA methylation has a well-established role in influencing cancer progression and this includes prostate 

cancer.10 While studies have looked at DNA methylation in prostate cancer, most have been limited by 

targeted gene analysis, with further bias towards non-African cohorts. Presumably as a result of this bias, 

the availability of bioinformatic tools for DNA methylation data processing that accounts for South African 

cohorts at the necessary steps are scarce, if not absent. Ultimately, South African men are overlooked in 

terms of epigenetic prostate cancer research and appropriate African-relevant bioinformatic tools.11 The 

subsequent limited knowledge on the genomics and epigenomics that underlie African prostate cancer 

limits disease screening, diagnostics and treatment. Considering (i) the lack of publicly-available African 

prostate cancer DNA methylation data (both targeted and genome-wide), (ii) the lack of published research 

on this topic, and (iii) prostate cancer incidence and mortality expected to rise over time, it is more apparent 

now than ever before that African-associated prostate cancer receive adequate scientific research attention. 
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1 . 2 .  Hypo th e s i s ,  a i m  and  spe c i f i c  ob j e c t i v es  

I aimed to assess differential genome-wide DNA methylation for numerous variables, in the prostate 

tumours from South African men. My dissertation is built on the hypothesis that epigenetic alterations, such 

as DNA methylation, may (at least in part) explain the differences observed in prostate cancer pathogenesis 

between ethnicities. Additionally, I expect interplay between the prostate cancer genome and epigenome. 

To investigate this, I selected the Illumina Infinium HumanMethylationEPIC BeadChip (further detail 

presented in Chapter 2) as the DNA methylation data source used within the scope of this dissertation 

owing to its high genome-wide coverage.12 To ensure suitable data processing, I chose ChAMP13 (see 

Chapter 2) as the framework on which to develop a novel African-relevant bioinformatic workflow due to 

its comprehensive, user-friendly nature and its support of Illumina EPIC data. Performing analyses on 

prostate tissue from a cohort of South African men, my objectives were to establish a bioinformatic pipeline 

to interrogate African tumour-derived genome-wide DNA methylation (Chapter 3), to apply this novel 

pipeline to investigate DNA methylation in prostate tissue from men of African ancestry (Chapter 4) and 

finally, to integrate and analyse patient-matched prostate cancer genomic and epigenomic data (Chapter 

5). 

 

1 . 3 .  R a t iona le  

The research presented in the following Chapters provides researchers with a novel bioinformatic African-

relevant toolset to appropriately handle and analyse African biopsy-derived DNA methylation data. The 

applicability of this tool is not limited to prostate cancer; on the contrary, it is suitable for any African 

tissue-derived DNA methylation data. In the context of my dissertation, subsequent use of such a tool will 

allow for novel insights to be gained in the field of African prostate cancer genomics with the potential of 

answering clinically-relevant questions. Finally, pilot integration of matched genomic and epigenomic data 

provides preliminary evidence for the interaction of these two systems in African prostate cancer, which 

may fuel further investigation.  

 

Although this dissertation is not presented in a publication format as I do not intend to submit the 

forthcoming research for publication, please note that Chapters 3, 4 & 5 below were written as though 

independent papers, each addressing a single research objective. As such, there is some repetition in the 

methods that were replicated from one Chapter to another. 
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Chapter 2: Literature Review 

2 . 1 .  Ove rv i ew o f  p ro s ta t e  ca nc er  an d  e p igen e t i c s  

Prostate cancer (PCa) is the leading cancer diagnosed in men in the developed world, and is the second 

most common cancer in men worldwide, following lung cancer.1 However, it is true that an ethnic bias 

exists against the African population, whose ancestry is suggested to be a significant risk factor2 

contributing to their populations’ elevated incidence and mortality rates where PCa is concerned and when 

compared to their counterparts of European or Asian descent.1,3–5 In addition to this, PCa is often diagnosed 

at a younger age in African individuals, displays a higher mutational burden6 and presents itself more 

aggressively (Gleason score ³ 8), with the latter explaining the elevated mortality risk.7 It is well-

established that older age, family history and African ancestry are non-modifiable risk factors for PCa but 

lifestyle factors, such as diet, obesity and physical activity cannot alone account for ethnic differences in 

PCa risk2, suggesting African ancestry to have an integrated genomic and epigenomic basis to explain the 

disparity. 

 

Currently, a field of great interest in disease and genome evolution is epigenetics, which aims to shed light 

on gene-environment interactions. Because genetics cannot solely account for disease susceptibility and 

development, epigenetics has made clear that molecular factors and processes exist around DNA, which 

are able to regulate genome activity independent of DNA sequence and are mitotically stable.8 These 

molecular factors include DNA methylation, histone modifications, non-coding RNAs, chromatin structure 

and RNA methylation9, and have well-documented roles in various diseases, including cancer, when 

epigenetic regulation is disrupted.10 When the epigenetic marks these molecular factors leave are aberrant 

and heritable (i.e. in the germline), they are called epimutations.11 More specifically, epimutations refer to 

altered epigenetic marks at specific DNA sites that result in response to an environmental factor12, such as 

toxicants13, nutrition and stress.12 These epimutations are capable of altering genome activity, including 

gene expression9,12, thereby having the potential to introduce disease susceptibility. Conversely, should 

developing somatic tissue be directly exposed to an environmental toxicant, the somatic genome, 

subsequent cell signalling and resultant phenotype will be altered in that individual14, also introducing 

disease susceptibility. Epimutations and epigenetic alterations differ from genetic variations in that genetic 

variations are permanent alterations in the DNA sequence15, whereas epigenetic modifications are 

reversible.16,17 While epigenetic changes are able to activate, silence or influence gene expression, genetic 

variations are able to do this as well as change protein structure and function; either alteration has the ability 

to introduce vulnerability to disease.  
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DNA methylation is a common epigenetic signalling tool that cells use to influence gene expression. 

Typically, DNA methylation is most commonly associated with downregulation of gene expression. As a 

normal and vital component of cell processing, DNA methylation is involved in embryonic development, 

genomic imprinting, X-chromosome inactivation and chromosome stability preservation.18 However, as 

previously mentioned, epigenetic regulation may go awry, resulting in aberrant methylation which is 

characteristic of numerous diseases. Commonly, cytosine residues that lie within a CpG site are subject to 

methylation, resulting in 5-methylcytosine (5-mC).19 However, although CpG dinucleotides remain the 

primary site for DNA methylation in mammals, it is also true that cytosines may be methylated in other 

contexts, such as within CH or CHG sites (where H may be A/T/C)20,21, referred to as non-CpG methylation. 

Methylated cytosine residues are subject to spontaneous deamination to a thymine residue, resulting in a 

mC > T point mutation. This displays a direct link between an epigenetic modification and a more 

permanent sequence change. For this reason, methylated cytosine residues and by extension, CpG sites, are 

considered mutational hotspots in germline and somatic cells.19,22,23 The high mutability of CpG 

dinucleotides not only drives its own genetic variation, but studies have shown that methylation plays a 

role in increasing the mutability of neighbouring nucleotides.24 This is demonstrated by findings of 

methylated CpG sites having ~1.5 times more SNPs (single nucleotide polymorphisms) around them (±10 

bp) compared to unmethylated CpG’s.25 Additionally, a recent study showed C > T variations at CpG sites 

and T > C variations to be common in the germline of individuals, while also noting that these very same 

mutational signatures are known to generate somatic variations.22 This led authors to suggest that these 

mutational signatures operating in the germline underlie those in somatic cells. Ultimately, there appears 

to be a link between DNA methylation and SNP prevalence, at least under normal conditions; and therefore, 

it may be reasonable to suggest that in the presence of aberrant methylation, one may expect an altered or 

even higher incidence of variants under disease conditions. Additionally, these alterations underlie a known 

link between germline and somatic cells, suggesting DNA methylation at CpG sites play a significant role 

in both inherited and acquired disease susceptibility (in response to an environmental factor) as well as in 

genome evolution.  

 

A common and well-known feature of human cancer, and specifically PCa, is the epigenetic silencing of 

cancer-associated genes.26 Typically, these genes undergo hypermethylation of CpG islands (CGIs) in their 

promoter regions, resulting in a partial or complete block of gene expression.27 This is another mechanism 

for achieving gene silencing besides gene mutation or deletion and occasionally hypomethylation renders 

the same effect.28 Additionally, even non-CpG methylation (i.e. CH or CHG sites) has been found in various 

tumorigenic contexts, including PCa29,30, although it is unclear whether non-CpG methylation contributes 

to or is a consequence of cancer. For CGI regions, the CpG island refers to regions of the genome, usually 
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300-3,000 bp in length, that contain a large number of CpG dinucleotide repeats31, providing numerous 

opportunities for aberrant methylation since these are the sites typically subject to methylation. The CGI 

shores lie 2,000 bp upstream and downstream from the nearest boundary of the CGIs (Fig. 2-1). Beyond 

the shores, a further 2,000 bp upstream and downstream from the nearest shore boundary, lie the CGI 

shelves. Regions beyond the shelves are referred to as the open sea, or inter-CGI.  

 
Fig. 2-1 Illustration of a CpG island (CGI) with surrounding CGI shores, CGI shelves and open sea regions. Where 

CGI regions typically map to gene regions is also depicted. CpG density and CpG methylation is most abundant 

within CGIs. Increasing distance from the border of CGIs is associated with decreasing CpG density and CpG 

methylation within CGI shores and CGI shelves. 
Adapted from “DNA methylation/hydroxymethylation in melanoma,” by Fu et al., 2017, Oncotarget, 8(44), p. 78164. Copyright 2017 by The Authors. 

CGI: CpG island | TSS: transcription start site | UTR: untranslated region 

33 

Methylation changes occur predominantly early in cancer development and are also believed to occur in 

non-malignant cells contiguous with cancerous tissue, leading to a field effect (aka field cancerization).26,33 

Another early event in PCa is the TMPRSS2:ERG gene fusion, in which an individual’s fusion status (i.e. 

positive/negative) has been shown to be associated with changes in DNA methylation.34–36 Intriguingly, 

TMPRSS2:ERG gene fusions have been reported to be less common in prostate tumours derived from men 

of African ancestry from South Africa (13 %)37, compared with men of European (49 %) or Asian (27 %) 

ancestry, and half that observed for African American men (25 %).38 Additionally, a large body of evidence 

has shown that a number of cancer-associated genes are not only hypermethylated in PCa, but are 
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methylated to an even higher degree in African American PCa compared to patient-matched tumours from 

men of European ancestry.39–41 This suggests that these epigenetic alterations may (at least partly) explain 

the differences observed in PCa pathogenesis between ethnicities.  

 

It is clear that PCa, as with any cancer, is both a genetic and an epigenetic disease. However, the mere 

activation of an oncogene and accompanying inactivation of a tumour suppressor gene, whether by genetic 

or epigenetic mechanisms or both, does not account for the full spectrum of alterations responsible for 

carcinogenesis. In reality, cancer is the result of a complex network of dysregulated (epi)genomic 

interactions. Thus, to begin to truly understand the depth underlying aggressive African-associated PCa, a 

deeper insight into African-relevant epigenomic variation is necessary, a matter of limited understanding, 

in particular at the genome-wide level.  

 

One such method, whole-genome bisulfite sequencing (WGBS), whereby input DNA is treated with sodium 

bisulfite and sequenced, allows for high-resolution, genome-wide measurement of DNA methylation (see 

Section 2.2. for more detail). However, although comprehensive, WGBS is plagued by several limitations. 

Currently, the NIH Roadmap Epigenomics Project recommends the use of two replicates with a combined 

total coverage of 30x. This requires approximately 800 million aligned, high quality reads for human 

samples, rendering WGBS cost prohibitive, particularly for large scale studies.42 However, even at this 

recommended 30x coverage, up to 50 % of informative methylation data may be lost43 and as such, the use 

of WGBS for high-resolution feature analysis (e.g. differentially methylated probes) is limited. Although a 

number of data recovery methods are available, advertising up to 12 % data rescue43, it remains that multiple 

replicates are necessary for accurate feature identification, reiterating WGBS’s unsuitability for large scale 

studies. In solution to these limitations, a number of array-based platforms for genome-wide DNA 

methylation analysis are available, with popular technologies offered by Illumina. 

 

2 . 2 .  Genom e- wi de  m e thy la t io n  ar ra y  t e chno l ogy  

The Illumina Infinium HumanMethylation BeadChip arrays are based on a popular genome-wide CpG 

methylation profiling technology that is commonly used in large-scale population-based methylation 

studies.44 These studies may be based on thousands of human individuals owing to the arrays’ 

comprehensive coverage and high throughput. The earliest of this technology is the Illumina Infinium 

HumanMethylation27 BeadChip (27K array), which measures the methylation status of 27,578 CpG sites 

across the human genome at single nucleotide resolution.45 Following the 27K array was the release of the 

Illumina Infinium HumanMethylation450 BeadChip (450K array), which offers an even higher genome-

wide coverage, assessing methylation levels at 485,577 individual CpG sites.46,47 These CpG sites span all 
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chromosomes; cover CGIs, shores and shelves; as well as genomic regions including transcription start 

sites (TSSs), gene bodies, first exons and 3’/5’ untranslated regions (UTRs) of 99 % RefSeq (NCBI 

Reference Sequences database) genes. However, considering that the human genome harbours 

approximately 28 million individual CpG sites48, the 27K and 450K arrays can hardly be considered truly 

genome-wide CpG methylation profiling technologies due to their low coverage. The 450K array only 

accounts for about 1.7 % of all CpGs in the human genome. To address this limitation, the more recent 

Illumina Infinium HumanMethylationEPIC BeadChip (EPIC/850K array) was introduced, which boasts a 

much wider genome-wide coverage of 863,904 CpG sites and 2,932 CNG sites on important regulatory 

regions.49 These regions include FANTOM5 (Functional Annotation of the Mammalian Genome) 

enhancers, ENCODE (The Encyclopedia of DNA Elements) open chromatin and enhancers, DNase 

hypersensitivity sites and miRNA promoter regions that previously were not captured by the 450K array. 

In fact, the EPIC array covers more than 90 % of the CpG sites covered by the 450K array.49 The final 

probes contained in the EPIC array includes 59 probes targeting SNP sites to allow for sample matching 

and 636 probes for sample-dependent and sample-independent quality control, totalling to 866,836 EPIC 

probes. 

 

The Illumina Infinium arrays are based on bisulfite conversion, whereby unmethylated cytosine bases are 

converted to uracil bases (read as thymine bases after PCR) and methylated cytosine bases remain 

unconverted. As such, WGBS enables identification of methylated cytosine bases at single base-pair 

resolution. As per Illumina’s protocol, the bisulfite converted DNA is subject to whole genome 

amplification, enzymatic end-point fragmentation, precipitation and resuspension before hybridizing to the 

array.47 The methylation level at each CpG on the array is then measured using one of two probe types, 

namely Infinium type I and Infinium type II probes. Each of the two probe types have different designs 

with different hybridization chemistries49 and as a result, they display different beta-value distributions 

(beta-values discussed in more detail below). The purpose of having two types of probes is to ensure the 

full spectrum of DNA methylation is captured; the two probe types also offer complementary strengths.50  

 

On the EPIC array, Infinium type I probes measure methylation at approximately 16 % of the CpGs and 

Infinium type II probes cover the remaining 84 % of the CpGs.44 Each probe is designed to hybridize a 50 

bp DNA sequence, downstream of the target CpG site. Infinium type I probes use two probes (beads) per 

CpG site, one corresponding to the methylated allele and the other to the unmethylated allele (Fig. 2-

2a).44,49 The methylated probe sequence is designed to match the bisulfite-converted DNA sequence of the 

methylated locus; the methylated probe has a G (guanine) at its 3’ end which will bind to a C (cytosine) at  
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Fig. 2-2 Illumina Infinium methylation probe design. a The Infinium type I assay uses two bead types per CpG locus, 

one for the unmethylated (U) state and one for the methylated (M) state. b The Infinium type II assay uses a single 

bead type per CpG locus, which detects both unmethylated and methylated states (U/M). The state of methylation is 

determined after hybridization, at the single base extension step.  
Adapted from technical note, “Illumina Methylation BeadChips Achieve Breadth of Coverage Using 2 Infinium® Chemistries,” by Illumina, Inc., 2015, retrieved 

November 20, 2020, from https://www.illumina.com/documents/products/technotes/technote_hm450_data_analysis_optimization.pdf. Copyright 2015 by 

Illumina, Inc. 

 

a Infinium type I probes 

b Infinium type II probes 
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a methylated locus. On the other hand, the unmethylated probe sequence is designed to match the bisulfite-

converted DNA sequence of the unmethylated locus; the unmethylated probe has an A (adenine) at its 3’ 

end which will bind to a T (thymine) at an unmethylated locus. Other CpG sites bound by the 50 bp probe 

are assumed to share the methylation status of the target CpG. Once the probe has bound to a bisulfite-

converted DNA fragment, incorporation of a single labelled nucleotide is enabled at the probe’s 3’ end. 

This labelled nucleotide matches the nucleotide immediately upstream of the target CpG site and this single 

base extension event allows the signal detection of a methylated or unmethylated site. Should a methylated 

probe hybridize an unmethylated locus (or vice versa), mismatch at the 3’ end of the probe would occur, 

thereby inhibiting single base extension. 

 

Infinium type II probes use a single probe (bead) per CpG site, and use different dye colours (red/green) to 

differentiate methylated alleles from unmethylated alleles (Fig. 2-2b).44,49 In this case, the probe sequence 

is designed to match the bisulfite-converted DNA sequence of both the methylated locus and the 

unmethylated locus. To achieve this, the cytosine of the target CpG site is made to act as the single base 

extension site. Therefore, in Infinium type II probes, cytosines of all other CpG sites within the probe 

sequence are replaced with degenerate R bases. As such, these probes may hybridize to both T (representing 

unmethylated and converted cytosine) and C (representing methylated and protected cytosine) bases. Probe 

hybridization to a bisulfite-converted DNA fragment enables single base extension and incorporation of a 

single labelled nucleotide. Should a green-labelled G be incorporated (opposite a methylated and protected 

C), signal detection is on the green (methylated) channel. Conversely, should a red-labelled A be 

incorporated (opposite an unmethylated and converted C i.e. T), signal detection is on the red 

(unmethylated) channel. Because Infinium type II probes make use of a single bead type, it increases the 

capacity for the number of CpG sites that can be queried and so, they are applied whenever possible.50 

 

2 . 3 .  Nor mal i s ing  g eno me- wid e  me th y la t ion  da ta  

As previously mentioned, the use of two different probes types results in different beta-value distributions. 

This technical variability needs to be corrected for by normalising the data.44 Normalisation is used to 

reduce the variability that exists between Infinium type I and Infinium type II probe designs; in other words, 

it makes the beta distributions of the two probe types comparable thereby preventing a decrease in data 

quality. Oftentimes, this is essential for downstream data analysis. For example, region-based analyses 

assume that probes within a shared region are comparable, which is only true if probe bias has been 

corrected for.51 Alternatively, when performing clustering, variability that exists between the two probe 

types may drive the clustering rather than variability contributed by a factor of interest. Typically, the 

Infinium type II probes are normalised to the Infinium type I probes, owing to the fact that type II probes 
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are considered to be less reproducible and less sensitive than type I probes.52 Therefore, by extension, 

normalisation of Infinium type II probes to Infinium type I probes improves reproducibility. 

 

There are a number of normalisation methods that may be applied to Illumina methylation array data, 

namely, but not limited to, the beta-mixture quantile (BMIQ)53, subset-quantile within-array normalisation 

(SWAN)51, peak-based correction (PBC)52 and FunctionalNormalization54 methods. PBC was the first 

correction method proposed for adjusting probe type bias and performs correction by rescaling the 

methylation values of Infinium type II probes to the same bimodal distribution of that for Infinium type I 

probes.52 However, this method is sensitive to the shape of beta-value density curves, making it less robust 

when the methylation density distribution does not exhibit well-defined peaks.53 To address this limitation, 

the more recent SWAN and BMIQ normalisation methods were proposed. 

 

For subset-quantile within-array normalisation, a subset of biologically similar probes (based on similarities 

in CpG content) are used to define an average quantile distribution which is then used to normalise Infinium 

type I and type II probes together.51 Similarly, the BMIQ method makes use of quantiles to normalise the 

Infinium type II probe values into a distribution that is comparable to the Infinium type I probes by fitting 

a beta-mixture model.53 However, the BMIQ method differs from the SWAN method in that it does not 

depend on biological characteristics in order to normalise the data, making it the favourable choice for 

correcting probe type bias.55,56 

 

2 . 4 .  Quan t i f y ing  m e th y la t i on  

Quantifying methylation of a particular CpG site involves calculating the beta-value, which is the raw 

methylation level at each CpG site. The beta-value is the ratio of the methylated probe intensity and the 

overall intensity44, and is defined as: 

 

 ! =	 $
($ + ' + 100) (1) 

 

where M is the intensity measured by the methylated probe and U is the intensity measured by the 

unmethylated probe. The alpha value of 100 stabilizes the beta-values when the intensities are low. The 

beta-value approximately represents the percentage of cells for which that particular CpG is methylated 

and it falls on a spectrum between 0 and 1 (or 0 and 100 %). Under ideal conditions, a value of zero would 

indicate that all copies of the CpG site in the sample were completely unmethylated, and a value of one 

would indicate that all copies of the CpG site in the sample were methylated. Of course, such extremes 
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rarely occur, in which case a beta-value ≤ 0.2 may be defined as hypomethylation, a beta-value ≥ 0.8 may 

be defined as hypermethylation and beta-values intervening (0.2 < ! < 0.8), particularly those ~0.5, 

represent sites that are partially methylated.57  

 

An alternative method to using beta-values is the M-value method for quantifying DNA methylation. 

Although beta-values are more widely used and is the recommended method by Illumina58, M-values offer 

a number of benefits for the differential analysis of methylation levels. Firstly, the M-value method displays 

approximate homoscedasticity for highly methylated and unmethylated CpG sites.57 This is in contrast to 

the beta-value method which displays quite the opposite; heteroscedasticity violates a number of 

assumptions for various statistical tests, rendering beta-values inappropriate for several statistical analyses 

e.g. violation of the Gaussian distribution assumption for t-tests.57 It is also true that M-values perform 

better than beta-values in terms of detection rate and true positive rate for both highly methylated and 

unmethylated CpG sites.57 Overall, beta-values are generally preferred when modelling underlying 

biological effects because these values have a direct biological interpretation i.e. the beta-value 

approximately represents the percentage of cells for which that particular CpG is methylated, as mentioned 

above. This is not true for M-values although M-values are more statistically valid in differential and other 

statistical analyses owing to their approximate homoscedasticity. Ultimately, the two statistics each have 

their own benefits and limitations and are interconvertible57 thus the more appropriate one may be chosen 

where applicable. However, the debate on whether or not to transform beta-values is on-going44 and it has 

been shown that whether the data has been transformed or not, does not seriously affect analysis results.59  

 

2 . 5 .  B io in fo rmat i c  t o o l s  f o r  p roc e ss i ng  and  no rm al i s ing  geno me- wid e  me thy l a t ion  

da ta  

There are a number of bioinformatic tools available for the processing and normalisation of Illumina 

Infinium DNA methylation array data. Table 2-1 provides a very brief overview of some of the current 

packages and pipelines currently available although many more exist. From the table, it is evident that these 

tools are somewhat new and that their use is limited to a very particular investigative field. The majority of 

these tools are compatible with Unix/Linux, Mac OS and Windows systems and many are conveniently 

implemented within the R statistical environment, oftentimes available through Bioconductor. While some 

tools provide isolated functions (e.g. minfi60 may be used for data preprocessing and differentially 

methylated region (DMR) analysis), other tools offer full workflows for data preprocessing, differentially 

methylated probe (DMP) and DMR analysis, data visualisation throughout the workflow and gene ontology 

and pathway analysis. Such an extensive workflow is offered by the Bioconductor ChAMP (Chip Analysis 

Methylation Pipeline for Illumina) pipeline.61 An advantage of ChAMP is the tool’s integration of a number 
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of existing analysis methods (such as minfi) to make up a comprehensive workflow, and whose outputs 

may be saved and incorporated with other pipelines. However, a downfall of many of these tools is their 

complex usage which poses a challenge to researchers without proficient programming skills. An additional 

limitation of these tools is their oversight of African-relevance. The latter is particularly evident when 

addressing polymorphisms at methylation probe sites (discussed below). Bioinformatic tools like ChAMP 

do allow for users to specify the population with which they’re working, subsequently accounting for 

population polymorphism differences. However, the list of populations from which to choose are limited 

to western and eastern Africans with no reference available for southern Africans. As such, there is a 

pressing need for the development of a southern African-relevant DNA methylation data processing and 

analysis tool or for the tailoring of an existing workflow to render it southern African-relevant. Establishing 

such a workflow is critical for the analysis of DNA methylation data derived from southern African cancer 

cohorts. 

 

Evidently, numerous tools exist for the processing and normalisation of Illumina DNA methylation data, 

each possessing their own benefits and limitations. However, there is no standardized approach, particularly 

when it pertains to African-relevant studies. With the wide use of DNA methylation data for the exploration 

of associations between DNA methylation and complex diseases, there is an urgency for more efficient and 

population-appropriate tools for processing Illumina DNA methylation array data. 

 

2 . 6 .  Cau se  f o r  me t hy l a t ion  e r ro r:  po l y mor ph i sm s  

It is broadly accepted that the presence of variants affects the performance of the Illumina Infinium arrays 

and that they influence results, so should be considered during filtering.44,62–65 If a SNP is present at or near 

the target CpG site, the methylation value may actually capture the profile of the SNP rather than that of 

the CpG methylation; and SNPs that lie closer to the target CpG site are more influential.64 Typically, SNPs 

at methylation probe sites display a characteristic “methylation” pattern of three discreet levels (modes) of 

methylation that correspond to underlying SNP genotype frequencies rather than actual methylation.64,65 

For example, full methylation would correspond to a methylated CC genotype, partial methylation would 

correspond to a methylated CT genotype and no methylation would correspond to a TT genotype; the beta-

values of these genotypes would fall into three separate levels when plotted on a continuous scale of 0-1 

(Fig. 2-3). This tri-modal distribution of beta-values differs from that of a polymorphism-free site, which 

would display beta-values within a narrow range or across a continuum, lacking those distinct tiers. Other 

SNP “methylation” patterns that have been observed are bi-modal beta-value distributions and cloud-like 

beta-value distributions64, the latter of which shows no clear correlation between beta-values and SNP 

genotypes. Although it is true that SNPs located in the interrogated CpG site (both in the first and second 
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position of the target CpG) have a stronger potential to influence DNA methylation quantification at those 

particular sites compared to SNPs that lie within the body of the probe, it must be noted that these probe 

body SNPs are able to affect the stability of a probe’s hybridization and extension efficiency.64 In addition 

to this, while Illumina cautions against retaining SNPs within 10 bp of the interrogated CpG site, it has also 

been shown that the effect of a SNP within a methylation probe site is present and evident throughout the 

entire length of the 50 bp probe.66 Therefore, it is essential to consider the impact of SNPs on beta-value 

quantification and interpretation whether they lie within the target CpG, the single base extension site (for 

Infinium type I probes) or within the body of the probe. 

 

  
Fig. 2-3 Simulated DNA methylation beta-values at a single CpG site containing a SNP, plotted across 15 simulated 

samples. The presence of a SNP clearly distributes the methylation data into three discreet levels which correspond 

with the underlying SNP genotypes. 
Adapted from “MethylToSNP: identifying SNPs in Illumina DNA methylation array data,” by LaBarre et al., 2019, Epigenetics & Chromatin, 12(1), p. 5. 

Copyright 2019 by The Authors. 

 

When performing SNP-affected probe filtering, it is recommended that the SNP reference be similar in 

ethnicity and population genetic structure to the study population.44 Generalized references include the 

1000 Genomes Project data67 and dbSNP68; lists of recommended probes for filtering have also been 

annotated for the Illumina EPIC array.62,69 However, while these references account for numerous 

populations, the fact remains that they are largely European-relevant and therefore, unsuitable for use in an  
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Table 2-1 A number of bioinformatic tools available for Illumina BeadChip data processing and analysis. 
 

*According to Google Scholar, August 2021. (61, 71, 72, 60, 73)
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African cohort due to potential excessive, unnecessary data loss. This is particularly true considering that 

a number of polymorphisms are population-specific.70 Additionally, this approach to SNP-affected probe 

filtering is not standardized, resulting in published lists that agree on 89 % of problematic probes but differ 

on another 11 % (considering lists published by Zhou et al. 201762 & McCartney et al. 201669). Conversely, 

by combining DNA methylation data with genomic data, it would be possible to remove sequence variants 

that coincide with methylated positions. However, oftentimes genomic data is not available to accompany 

epigenetic studies due to extensively high costs, in which case it can be difficult to distinguish true 

methylation patterns at a CpG site from the presence of a SNP at that very site. The importance of this lies 

in accurately distinguishing epigenetic effects that are independent of genetic effects; this is particularly 

important in distinct populations. 

 

To address this issue, a fairly recent R Bioconductor package, MethylToSNP63, was introduced by LaBarre 

et al. (2019) which detects polymorphisms at methylation probe sites in Illumina 450K and EPIC array 

data, as well as in Illumina 27K array data. MethylToSNP is based on a method called “gap hunting”, in 

which methylation data is parsed to flag locations with characteristic clustered distributions of data points 

that suggest there to be potential problems in the underlying data. In doing so, MethylToSNP detects 

methylation data generated specifically at C or T SNP positions in the Illumina Infinium methylation arrays. 

One alternative approach is to remove all probe locations that are known to harbour human genetic variants 

(e.g. annotation using dbSNP), in which case polymorphisms that may not even be present in the sequences 

of the studied individuals are flagged for overlapping probe removal, resulting in unnecessary exclusion of 

a large amount of methylation data, some of which may have been informative to one’s research question. 

In contrast, MethylToSNP only considers SNPs specific to the individuals in the study thereby preventing 

extensive data loss. Additional benefits include the potential identification of novel variants in 

underrepresented populations and the annotation of identified variants in functional regions. LaBarre et al. 

(2019)63 further highlight the need for SNP-affected probe filtering, in that considering the principle behind 

bisulfite conversion (i.e. an unmethylated C is converted to a T), common C > T polymorphisms may be 

misinterpreted as differential DNA methylation between individuals. For this reason, the majority of sites 

that the MethylToSNP algorithm detects are (methylated) meC > T SNPs, whereby a reliability threshold 

≥ 0.5 is indicative of a true SNP.63 However, this bias towards meC > T SNPs likely creates an overall 

underestimation of SNP-affected probes within a dataset because other types of SNPs are overlooked. 

Indeed, LaBarre et al. (2019)63 confirm that if a C is always unmethylated, this SNP’s location will go 

unpredicted, with the reason being that it will never appear as differential methylation. Additionally, 

MethylToSNP is not able to identify SNP-associated patterns other than the three-tier pattern64, further 

illustrating the underestimation in SNP-affected probes that is suggested by this tool. A final limitation is 
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the recommendation of a minimum of 50 samples to accurately rely on results generated by MethylToSNP. 

Due to the high costs for generating Illumina Infinium DNA methylation array data as well as limited 

sample numbers, especially when considering understudied populations, this sample recommendation may 

render this tool inappropriate for smaller epigenetic studies. While MethylToSNP is a promising tool for 

SNP-affected probe identification, improvements are necessary going forward.  

 

Ultimately, based on the discussion above, it is clear that a standardized approach to SNP-affected probe 

filtering is needed. 

 

2 . 7 .  Cau se  f o r  me t hy l a t ion  e r ro r:  ce l l - t ype  h e t e rog en e i t y  

A common issue that arises in DNA methylation studies is the confounding introduced by cell-type 

heterogeneity.44,74,75 It is true that all cells contain the same genetic code76; however, methylation plays a 

substantial role in cell differentiation77, in that methylation patterns determine cell-type specific functions. 

Ideally, DNA methylation analysis would be conducted exclusively on the tissue of interest. In reality, 

most, if not all, patient samples (e.g. tumour, whole blood, saliva etc.) contain a mixture of different cell 

types, in different proportions.44,75 As a result, differential methylation may be driven by underlying 

changes in cell type composition. Should cell-separated data be available for samples, this confounding 

may be easily corrected for. Unfortunately, researchers often don’t have this information at their disposal, 

requiring the use of analytical tools that can account for this potential confounding in the absence of cell-

separated data. Two popular approaches for such correction includes using a reference-based method74 or 

alternatively, a reference-free method such as surrogate variable analysis.78 By correcting for cell type 

composition in tumour samples, for example, one can be sure that methylation signals from any non-

cancerous cells present would be accounted for, thus ensuring differential methylation analysed in said 

tumour samples is related to disease phenotype (of course assuming other necessary confounders have been 

controlled for as well). A commonly used term to reflect this cell-type heterogeneity is tumour purity, which 

is the proportion of cancer cells in the tumour tissue. 

 

The reference-based method74 for controlling cell-type heterogeneity involves using an appropriate 

reference dataset containing methylation measurements of already-separated cell types in order to directly 

estimate the cell type composition and proportions within one’s own samples. This approach is based on 

the principle that different cell types cluster according to similar or shared methylation patterns.75 The 

estimated cell-type proportions can then be included as covariates for further analysis. This method is 

recommended for when a complete set of the required cell-separated methylation profiles are available.75 

Often, it is applied on methylation data derived from whole blood owing to the availability of an appropriate 
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reference sample; this is offered within the ChAMP pipeline (RefbaseEWAS).61 The minfi package (Table 

2-1) also offers a cell type heterogeneity correction method, with available references of  whole blood, cord 

blood and the frontal cortex.60 However, a notable drawback of this approach is the limited availability of 

appropriate reference samples44,75 which, in part, may be due to difficulty in extracting certain cell types 

e.g. syncytiotrophoblast cells in placenta.79 A commonly used dataset provided by Reinius et al. (2012)80 

contains the methylation profiles of cell-sorted blood samples from adult Swedish men, although the 

appropriateness of this dataset has been questioned.44 Due to the difficulty in identifying appropriate 

references, reference-free approaches have been introduced.  

 

One example of a reference-free approach is termed surrogate variable analysis (SVA).78 Although SVA 

was not initially intended for use on DNA methylation data (it was originally developed for gene expression 

data), it has since become a popular method, being well-suited for controlling cell-type heterogeneity.75 In 

fact, in a comprehensive study that evaluated some of the more popular methods for correcting cell-type 

heterogeneity, SVA was recommended by authors for adjustment owing to its adequate performance under 

multiple simulations and reasonable computation time.75 This recommendation has been reiterated in more 

recent publications.81,82 Briefly, SVA constructs unmodeled confounders (i.e. surrogate variables i.e. cell-

type proportions) directly from high-dimensional data, such as DNA methylation data, which can then be 

used as covariates in subsequent analyses to adjust for unknown or unmodeled sources of noise.78 

 

Ultimately, these methods construct covariates for adjustment, after which one may infer phenotype-

associated changes that are not driven by changes in cell-type composition. However, a number of concerns 

have been raised as to the necessity of these adjustments.44 For example, should cell type sit along the 

causal pathway, then adjusting for cell type may adjust out the signal of interest due to collinearity. 

Additionally, it has been suggested that adjustment by methods like SVA may introduce confounding in a 

dataset that did not require any adjustment to begin with.44 It has even been shown that certain methods 

(not discussed here) are guilty of overcorrecting for cell-type composition.75 Overall, it is recommended 

that analyses be conducted both with adjustment and without adjustment.44 In conclusion, there may not be 

any one adjustment method whose performance is uniformly the best, this includes an adjustment-free 

approach, as all available methods have both benefits and limitations.75 
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Chapter 3: Establishing a bioinformatic pipeline to interrogate genome-wide DNA 

methylation in African-derived tumour tissue 

 

As discussed in Chapters 1 and 2, there is a pressing need for the development of an African-relevant 

genome-wide DNA methylation bioinformatic workflow that is applicable to the South African population. 

To the best of my knowledge, no such workflow has been established. As such, the overall aim of Chapter 

3 was to establish a novel bioinformatic workflow for the processing and normalisation of South African 

DNA methylation data. Additionally, this workflow should allow genome-wide DNA methylation to be 

interrogated in African-derived tumour tissue. 
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Dr Ruth Pidsley and Dr Elena Zotenko, for providing me with bioinformatic resources and support. 
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Abstract 

The emergence of the Illumina Infinium BeadChips has provided researchers with comprehensive, user-

friendly platforms to interrogate genome-wide DNA methylation in human samples. The most recent of 

these technologies, the Illumina Infinium HumanMethylationEPIC BeadChip, measures methylation at 

over 850,000 CpG sites throughout the human genome. However, assay design and bioinformatic tools for 

the suitable processing, normalisation and analysis of Illumina array-generated DNA methylation data, is 

biased towards non-African cohorts. This creates a challenge for researchers working on African-derived 

data because population-specific genomic diversity affects probe hybridization, methylation quantification 

and subsequent data filtering. Although these challenges exist for European-derived data too, it is to a lesser 

extent, as such platforms and bioinformatic tools are largely designed to account for the genomic diversity 

that exists for these more highly-represented populations. Consequently, as far as I am aware, there are no 

available bioinformatic tools that consider South African-relevance at critical points in the workflow. Such 

a tool is necessary to ensure minimal appropriate African-specific data is lost and minimal confounding 

African-specific data is retained. Here, I present a novel established pipeline that allows researchers to 

appropriately process and analyse tumour-derived southern African DNA methylation data while 

accounting for confounding African-relevant polymorphisms and unnecessarily eliminating African-

relevant data. 

 

 

3.1. Introduction 

In recent years, epigenome-wide association studies (EWAS) have gained popularity for allowing 

researchers to investigate variation in the epigenome, with a particular focus on DNA methylation. Similar 

to genetic epidemiology, epigenetic epidemiology is concerned with understanding the molecular basis for 

disease risk. Array-based approaches are a cost-effective means to assess the DNA methylation status 

across tumour genomes, especially for large studies aimed at identifying biomarkers of cancer progression. 

As early as 2006, bead arrays had been developed for high-throughput DNA methylation profiling, although 

only for 1,536 CpG sites.1 The earliest effort to conduct EWAS can be credited to the Illumina Infinium 

HumanMethylation27 BeadChip (27K array), released in 2009, which measures the methylation status of 

27,578 CpG sites across the human genome at single nucleotide resolution.2 However, considering the 

human genome contains over 28 million CpG sites, the 27K array falls terribly short from being considered 

“genome-wide”.  

 

More recently and aiming to address the low coverage of the 27K array, the Illumina Infinium 

HumanMethylation450 BeadChip (450K array) was developed and made available in 2011. This array 
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offers an even higher genome-wide coverage, assessing methylation levels at 485,577 individual CpG 

sites3,4, although this accounts for less than 2 % of the CpG sites in the genome. Regardless, one can reveal 

with a simple literature search that the 450K array is still the most widely-used platform for studies 

reporting EWAS. Finally, the most recent of these technologies and only in its fifth year of use is the 

Illumina Infinium HumanMethylationEPIC BeadChip (EPIC/850K array). Introduced in 2016 and covered 

in detail in Chapter 2, the EPIC array interrogates 863,904 CpG sites and 2,932 CNG sites on important 

regulatory regions.5,6 As such, the genome-wide EPIC array was selected as the platform of choice for my 

thesis. 

 

A notable and broadly accepted limitation of array-based methylation screening is the impact of genomic 

variation on probe hybridization (discussed in Chapter 2).7–11 Given that many SNPs are population-

specific12, these arrays are limited by selecting content according to databases that are heavily reflective of 

Europeans, thereby biasing assay design towards European populations. Additionally, probes annotated for 

SNPs by Illumina reference Genome Build 37, which notoriously underrepresents populations whose 

genetic makeup is not commonly shared in European and North American nations. Of particular interest to 

this work is the underrepresentation of (southern) African populations, which display vast within and 

between genetic diversity.13 Due to this high diversity and the lack of African inclusion in genomic data, 

echoed by Cronjé et al. (2020)14, one cannot be confident in the broad African-relevance of the Illumina 

arrays and one may even be less confident in their applicability to genetically diverse subpopulations within 

Africa. As a result, one might expect African variants, not accounted for in assay design, to greatly affect 

probe hybridization. This could potentially cause a loss of informative sites in African EWAS or could 

affect the accuracy of their DNA methylation quantification. Even within European populations, studies 

have reported erroneous calling as a result of genomic variation impacting probe hybridization.15  

 

Although the above-mentioned assays cannot simply be tailored for the purposes of this study, it is clear 

that polymorphisms at methylation probe sites need to be addressed when processing DNA methylation 

data to reduce the risk of false discoveries, and this can be tackled for the scope of this research. A number 

of bioinformatic tools are currently available for Illumina DNA methylation data processing and analysis 

(see Chapter 2), a number of which provide functions for filtering SNP-affected probes. Though the 

obstacle of European bias persists. The identification of SNP-affected probes is typically conducted using 

generalized references, including the 1000 Genomes Project data16 and dbSNP.17 Additionally, lists of 

recommended probes for filtering have been annotated for the Illumina EPIC array.7,18 However, while 

these references account for numerous populations, the fact remains that they are largely European-relevant 

and therefore, unsuitable for use in an African cohort due to potential excessive, unnecessary data loss. 
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Presently to my knowledge, no such tool accounts for confounding southern African-relevant 

polymorphisms and for unnecessarily eliminating African-relevant data, presumably due to the lack of 

African inclusion in (epi)genomic data and the impact of European-biased array design. 

 

Based on the above discussion, the aim of this study is to establish an African-relevant genome-wide 

bioinformatic pipeline for the processing and normalisation of African DNA methylation data. In addition, 

this novel pipeline should allow genome-wide DNA methylation to be interrogated in prostate tissue from 

men of African ancestry as well as in tumour tissue from other cancer types. This novel toolset will be a 

significant and unique contribution to the field of epigenetic epidemiology. 

 

 

3.2. Materials & Methods 

3 . 2 . 1 .  R esou rc e  &  e th i cs  

Data was made available for eight South African men who consented upon enrolment in the Southern 

African Prostate Cancer Study (SAPCS)19 (further outlined in Chapter 4). Patients were of African 

ethnicity, confirmed using ancestry markers, and self-identified as such. A total of eight patients were 

recruited at diagnosis and clinicopathologically confirmed as either presenting with high-risk prostate 

cancer (HRPCa, 7 patients), defined by a Gleason score of ≥ 8, or with benign prostatic hyperplasia (BPH, 

1 patient). The previous SAPCS as well as the current study outlined here was reviewed and approved by 

the University of Pretoria’s Human Research Ethics Committee (HREC #43/2010 and #37/2021, 

respectively).  

 

3 . 2 . 2 .  DNA  meth y la t i on  da t a  gen er a t io n  and  qua l i t y  co n t ro l  

Raw DNA methylation data was generated at the Australian Genome Research Facility (AGRF, Melbourne, 

Australia) and subsequently provided by the Human Comparative and Prostate Cancer Genomics (HCPCG) 

Research team at the Garvan Institute of Medical Research, for the eight above-mentioned South African 

patients. DNA methylation was quantified using the Illumina Infinium HumanMethylationEPIC BeadChip 

(hereafter referred to as the EPIC (micro)array) following the Illumina Infinium HD Methylation Assay 

(Illumina, CA, USA). The EPIC array quantifies DNA methylation at around 860,000 individual CpG sites 

and just under 3,000 CNG sites on important regulatory regions.5 

 

The data produced and subsequently provided by the AGRF included raw Illumina intensity data (IDAT) 

files, the Illumina manifest file (v1.0 B5, BPM format), a sample sheet (CSV format) and a genotyping 
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service report from the research facility. For each sample, a “red” and a “green” IDAT file is supplied, 

representing the intensities of the methylated and unmethylated probes. These IDAT files contain the actual 

DNA methylation measurements for each probe, represented by a beta-value and corresponding detection 

p-value for each probe. The p-value is a confidence measure for the reported beta-value. The Illumina 

manifest file contains a description of the probes including probe IDs (cg-00000000), chromosome, 

location, relation to epigenetically relevant features, gene membership, nearby SNPs etc. and it references 

Genome Build 37 (hg19). A CSV format of the manifest can be downloaded from Illumina’s website. The 

sample sheet stores phenotypic data associated with the EPIC BeadChip including sample information and 

metadata associated with a given experiment. Finally, the genotyping service report provided by AGRF 

contains a project description, details on project data and a quality control report for the EPIC BeadChip. 

All samples were within the Illumina expectations of ≥ 96 % of CpG sites having been detected (p < 0.01). 

 

3 . 2 . 3 .  Ger ml in e  va r ian t  d a ta  

Variant called germline data (VCFv4.2 format) for the eight patients was made available by the HCPCG 

Research team. The VCF files reference Genome Build 38 (hg38) and chromosome notation is of the UCSC 

style (e.g. chr1) versus the NCBI/Ensembl style (e.g. 1). The tools used for germline variant extraction 

includes Java20 (JDK™, v.1.8.0_111), GATK21 (v.4.1.4.1), HTSlib22 (v.1.10.2) and VCFtools23 (v.0.1.14). 

Data provided is currently unpublished and funded by the Australian National Health and Medical Research 

Council (NHMRC). 

 

R24 ≥ v.4.0.2 and RStudio25 ≥ v.1.3 were used in this study. 

 

 

3.3. Results 

As discussed above, relevant bioinformatic tools for the suitable processing of African data are scarce. As 

such, an African-relevant genome-wide bioinformatic pipeline for DNA methylation data processing and 

analysis had to be established. 

 

3 . 3 . 1 .  Se l ec t ing  th e  b io i n fo rmat i c  ba ck bone  

After a thorough review of the literature (see Chapter 2 for a brief overview), the Chip Analysis 

Methylation Pipeline for Illumina26 (Fig. 3-1), or ChAMP, was chosen for modification (see Fig. 3-2 for 

the novel workflow). Selection criteria included: (i) it supports the processing and analysis of EPIC 

microarray data; (ii) it is a comprehensive and fairly complete analysis pipeline that supports a number of 
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existing DNA methylation microarray data analysis packages; (iii) it allows that each function may be run 

individually and resultant datasets thereof saved individually, to optionally integrate data with other 

pipelines and finally, (iv) it is user-friendly. ChAMP is an R package available from Bioconductor.   

 

3 . 3 . 2 .  P repa r ing  a n  A f r i can- re l eva n t  E P I C ar ray  m e th y la t i on  da ta s e t  

3 . 3 . 2 . 1 .  E xt r a c t ing  t he  da t a  wi t h  cha m p. load ( )  

Beginning with the raw DNA methylation data in the form of IDAT files, the first step in the pipeline is 

data extraction. Data is loaded into R using the champ.load() function, which imports the beta-value for 

each probe and the corresponding detection p-value. The sample sheet provided with the DNA methylation 

data is also imported, hereafter referred to as the phenotypes (pd) file. The champ.load() function performs 

some preliminary probe filtering upon data loading, essentially combining the champ.import() and 

champ.filter() functions available in the original ChAMP pipeline. I found this first step in the pipeline is 

already where one needs to consider and implement African-relevance. This may be achieved with careful 

consideration of function parameters. 

 

3 . 3 . 2 . 2 .  Con s ide r i ng  an d  mod i f y i ng  the  champ. lo ad ( )  f unc t ion  p a r am ete r s  

The champ.load() function parameters are numerous (Table 3-1). Standard filtering involves excluding 

probes that fail in individual samples; typically, this denotes probes with detection p-values greater than 

0.059, although a detection p-value threshold of 0.01 was also employed for comparison. I found probe 

rejection between the p-value thresholds of 0.05 and 0.01 to be highly comparable, which motivated the 

use of the recommended threshold of 0.059 to proceed. Probes that fail the detection p-value threshold in 

more than 20 % of the samples or had a bead count < 3 in at least 5 % of the samples should also be 

removed.9 Probes with a low bead count are not very informative. When considering the African data, while 

a number of parameters were set to default, others needed modification, each discussed further. 

 

“population” and “filterSNPs” parameters. Given that many SNPs are population-specific12, specifying 

the appropriate population is critical to achieve the most accurate SNP filtering. Therefore, to optimize 

accurate filtering, it is essential to consider one’s cohort to ensure minimal appropriate data is lost and 

minimal confounding data is retained. The populations available from the International Genome Sample 

Resource27 (IGSR) may be classified as a “Super Population” (e.g. African, European) or a more specific 

population (e.g. Yoruba, Nigerian; Finnish). However, at the time of this study, the specific African 

populations to choose from did not include southern Africans, only western and eastern Africans. 

Considering the vast genetic diversity that exists between different African populations13, to specify a “non-
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southern” African population at this step would not be suitable. To overcome this limitation, the 

“population” parameter was set to “NULL” and the “filterSNPs” parameter to “FALSE”. 

 
Table 3-1 champ.load() function arguments, indicating both default and modified parameters. 

 

Descriptions adapted from Bioconductor, ChAMP reference manual by Tian et al., 2020, https://bioconductor.org/packages/release/bioc/html/ChAMP.html. 

Copyright 2020 by The Authors. 

 

To further address an oversight at this step, when the default “population” parameter is used, SNP-affected 

probes will be filtered out according to either Nordlund et al. (2013)28 or Zhou et al. (2016)7, references 

which only provide general probe filtering recommendation lists. Although Zhou et al. (2016)’s list 

considers population differences, it remains non-specific to the southern African cohort in this study. Wu 

& Kuan (2018)9 recommend that when filtering SNP-affected probes, the reference should be similar in 

ethnicity and population genetic structure to the study population. Using a generalised list to filter SNP-

affected probes calls into question how many relevant probes would be removed as well as how many 

confounding probes would be retained. For this concern, the “filterSNPs” parameter was set to “FALSE” 

and population-specific SNP-affected probe filtering was carried out downstream (discussed below). 
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Fig. 3-1 The original, unmodified and complete Chip Analysis Methylation Pipeline for Illumina (ChAMP) 

workflow. The green highlight represents a standard analysis workflow that is most likely to be used for various 

datasets. Blue blocks represent functions for methylation data preparation. Yellow blocks represent functions for 

graphical user interface i.e. for dataset and analysis result visualisation. Red blocks represent functions for generating 

analysis results. Solid grey arrows denote the workflow of the pipeline while dashed grey arrows are optional 

functions. The black circle symbolises a fully prepared methylation dataset. 
Reprinted from Bioconductor, by Tian et al., 2017, https://bioconductor.org/packages/release/bioc/vignettes/ChAMP/inst/doc/ChAMP.htht#section-citing-

champ. Copyright 2017 by The Authors. 
 



 
44 
 

© University of Pretoria 

 
Fig. 3-2 The novel African-relevant methylation data processing, normalization and basic analysis pipeline 

developed in this study. Blue blocks represent functions for methylation data preparation. Yellow blocks represent 

functions for graphical user interface i.e. for dataset and analysis result visualisation. Red blocks represent functions 

for generating analysis results. Grey blocks represent functions that may improve this novel pipeline but were not 

successfully run. Rounded-edge blocks represent functions that were selected from ChAMP for integration with this 

pipeline. Sharp-edge blocks circled by dashed green lines represent novel steps relevant for southern African data 

that are unique to this study. Solid grey arrows denote the workflow of the pipeline while dashed grey arrows are 

optional functions. The black circle symbolises a fully prepared methylation dataset, signifying the end-point of this 

developed workflow. 
DMP: differentially methylated probes | GUI: graphical user interface | QC: quality control | SNP: single nucleotide polymorphism | SVA: surrogate variable 

analysis | SVD: singular value decomposition 

Adapted from Bioconductor, by Tian et al., 2017, https://bioconductor.org/packages/release/bioc/vignettes/ChAMP/inst/doc/ChAMP.htht#section-citing-

champ. Copyright 2017 by The Authors. 
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“method” parameter. For data loading, I chose the classic “minfi” method over the “ChAMP” method for 

downstream purposes. Essentially, the two methods return the same data objects, only differing in that the 

minfi29 Bioconductor package loads data to additionally produce “mset” and “rgSet” data objects. The 

“mset”, or MethylSet, object contains the methylated and unmethylated probe signals and the “rgSet”, or 

RedGreenChannelSet, object contains red and green channel intensities as well as phenotype and manifest 

data. These objects store the very same data as the object loaded by the “ChAMP” method; all that differs 

is the format of such objects. Particular functions and analyses require this methylation data to be stored in 

“mset” and “rgSet” object format. 

 

“filterMultiHit” parameter. The “filterMultiHit” parameter removes cross-reactive probes i.e. probes that 

align to multiple genomic locations. However, this filtering is performed according to the Nordlund et al. 

(2013)28 multi-hit probe list, which was determined based on the 450K array. Although the EPIC array 

covers more than 90 % of the CpG sites covered by the 450K array9, a more recent multi-hit probe list is 

available, one that is applicable for the EPIC array.5 For this reason, “filterMultiHit” was set to “FALSE”.   

 

“filterXY” parameter. The “filterXY” parameter removes probes located on the X and Y chromosomes. 

This removal should be performed when analysing both male and female samples; this is to prevent sex 

from being the largest source of variation in a methylation dataset.30 However, since the samples in this 

dataset were all derived from male donors, sex chromosome probes need not be removed. Thus, “filterXY” 

was set to “FALSE”. 

 

“methValue” parameter. For the “methValue” parameter, one may consider the use of either beta or M-

values (see Chapter 2 for further details). However, I made use of beta values (rather than M-values) in 

this study, as recommended by Illumina, as well as for their direct biological interpretation and evidence 

supporting the negligible effect of beta-value transformation on analysis results.31 

 

Finally, after loading the data coupled with some initial filtering as discussed, a suitable dataset was 

available for further processing in R. 

 

3 . 3 . 2 . 3 .  V i su a l i s ing  p r o be  d i s t r i b u t ion  

The CpG.GUI function (see Fig. 3-2) is an optional step in the pipeline that allows a user to visualise the 

distribution of probes in a dataset. This CpG distribution may be analysed in the context of chromosomes, 

CGI regions, gene regions and Infinium probe types. Annotations for CpG islands includes CGIs, CGI 
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shores (<2 kb upstream and downstream of CGIs), CGI shelves (2-4 kb upstream and downstream of CGIs) 

and open sea (non-CGI-related sites). Gene region annotations includes TSS1500 (200-1500 bp upstream 

of the transcription start site, TSS), TSS200 (up to 200 bp upstream of the TSS), 5’UTR (5’ untranslated 

region), 1st exon, Body (gene body), ExonBnd (exon boundaries), 3’UTR and IGR (intergenic regions). 

One may return to this function at any point in the pipeline to check probe distribution e.g. before and after 

normalisation. Probe distribution was examined after data loading and initial filtering (Fig. 3-3a).  

 

3 . 3 . 2 . 4 .  Pe r f o r ming  qua l i t y  con t r o l  &  nor mal i s ing  the  d a t a  t o  co r r e c t  f o r  p r ob e  

b i a s  

Quality control is an important step during data processing as it allows a user to check whether or not their 

dataset is suitable for downstream analysis. One should perform a quality control check both before and 

after normalising the data; this provides a visual confirmation for satisfactory data normalisation. 

Normalisation of the data itself is an essential step. Typically, the goal of normalisation is to remove any 

technical and systematic variability from the data to ensure measurements are comparable across samples.9 

However, within the context of Illumina methylation analysis, it is true that these procedures have an 

emphasis on within-sample normalization. Because the Illumina EPIC array uses two different probe types, 

i.e. Infinium type I & II probes, each of which have different designs with different hybridization 

chemistries, the two different probe types display different beta-value distributions. This is a form of 

technical variability. Normalisation is a means of correcting for this difference, to reduce variability or to 

make the distributions of these two probe types comparable. Oftentimes, downstream analyses assume that 

data has been normalized. Quality control can be visualised with the champ.QC() and QC.GUI() functions; 

normalisation is performed with the champ.norm() function (see Fig. 3-2). 

 

Normalisation methods offered by the ChAMP pipeline include the beta-mixture quantile (BMIQ)32, 

subset-quantile within array normalisation (SWAN)33, peak-based correction (PBC)34 and 

FunctionalNormalization35 methods (see Chapter 2 for more detail on these methods). For this particular 

pipeline, I chose to apply the BMIQ normalisation method to the data because it was previously suggested 

to be the optimal normalisation method for the reduction of technical variability in comparison to SWAN.36 

Consequently, the established workflow includes a quality control check both before and after BMIQ 

normalisation (Fig. 3-4) (see Fig. S1 for individual sample density plots). 
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a 

b 

 

 

 

 
Fig. 3-3 Probe (CpG) distribution in the context of (i) chromosomes, (ii) CpG island features, (iii) gene features and 

(iv) Infinium probe types. a Probe distribution after data loading and initial filtering. b Probe distribution after 

complete filtering and normalisation i.e. distribution of the fully prepared methylation dataset in this study. The y-

axis indicates number of probes. 
chr: chromosome | ExonBnd: exon boundaries | IGR: intergenic region | TSS: transcription start site | UTR: untranslated region | I: Infinium type I probes | II: 

Infinium type II probes 
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3 . 3 . 2 . 5 .  Nove l  Af r i can -r e l ev an t  f i l t e r i ng  o f  SNP- af f e c t ed  p r obe s  

As previously discussed, many bioinformatic tools do not offer appropriate population-relevant filtering 

steps for addressing polymorphisms at DNA methylation probe sites, and this is particularly true when 

considering southern African populations. To overcome this limitation, I discovered two such filtering 

approaches which I then tested for their efficacy on African-relevant data. The approaches outlined below 

are unique to the standard ChAMP workflow and as far as I understand, are novel to any existing Illumina 

DNA methylation data processing pipelines, highlighting the necessity for the integration of such an 

African-relevant filtering tool.  

 

3 . 3 . 2 . 5 . 1 .  Methy lT oSNP  

My initial approach to filter SNP-affected probes from the dataset was performed using the R Bioconductor 

package, MethylToSNP.8 MethylToSNP operates by searching for tri-modal beta-value distribution 

patterns that are commonly characterised by underlying polymorphisms. Detecting this characteristic data 

pattern allows the identification (or inference) of SNPs (mostly meC > T polymorphisms) from the 

methylation data itself. MethylToSNP was performed with gap sum ratio 0.5, gap ratio 0.75 and without 

outlier removal to detect polymorphisms in this southern African cohort’s methylation data. These 

parameters are a replication of those used by LaBarre et al. (2019)8 on southern African data. This tool 

requires an “mset” data object as input hence use of the minfi method for data loading (see Section 3.3.2.2.). 

A reliability score ≥ 0.5 is considered a high-confidence call.8 SNP-affected probes called using 

MethylToSNP were annotated using dbSNP17 release 147. At the time of this study, dbSNP 147 was the 

latest dbSNP release available for SNP annotation provided by the Bioconductor package 

IlluminaHumanMethylationEPICanno.ilm10b4.hg19.37 This tool annotates SNPs from various releases of 

dbSNP as represented on the UCSC Common SNP table. For limitations discussed previously (see Chapter 

2), including a recommended minimum number of 50 samples and underlying SNP underestimation called 

by this tool, I chose not to use the list of probes generated by MethylToSNP (Table S1) for filtering. Instead, 

I proceeded with the second approach in which DNA methylation data was combined with patient-matched 

germline variant data to ensure only African-relevant probes were filtered out. 
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Fig. 3-4 (See legend on next page.) 

a b 

c 
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(See figure on previous page.) 

Fig. 3-4 Density plots representing probe beta-value distributions. a Beta distribution for Infinium type I and type II 

probes in the raw dataset. b Beta distribution for Infinium type I and type II probes in the normalised dataset. c 

Sample beta distribution in the raw dataset. d Sample beta distribution in the normalised dataset. In c & d, orange 

curves represent African prostate cancer patients; the green curve represents the single African benign prostatic 

hyperplasia individual. 

 

3 . 3 . 2 . 5 . 2 .  Af r i can  p a t i e n t -mat che d  ge r ml ine  v a r i an t  d a t a  m etho d  

For the second approach, I assessed the use of patient-matched germline variant data in conjunction with 

the EPIC DNA methylation data to identify polymorphisms at methylation probe sites. The advantage of 

this method is ensuring only African-relevant and patient cohort-relevant SNP-affected probes would be 

identified for filtering. The method developed consists of two parts; first, the preparation of the African 

germline VCF files and second, parsing these germline VCF files for the actual calling of African SNP-

affected probes (Fig. 3-5). The objective, to parse a single reference VCF file to extract all SNP and indel 

variants overlapping EPIC probes and as such, ensuring a streamlined process. Probe coordinates are 

contained in the Illumina EPIC manifest file and in the context of these probe coordinates, variants were 

examined according to three categories: (1) variants overlapping target CpG sites; (2) variants overlapping 

single base extension (SBE) sites for Infinium type I probes; and (3) variants overlapping the rest of the 

probe body, 48 bp for Infinium type I probes and 49 bp for Infinium type II probes (see Chapter 2 for a 

description of these sites). The method of extracting probes overlapping genetic variants has been described 

previously.5 

 

VCF file preparation. Part one was completed on the command line (macOS Terminal v.2.11) and began 

with the raw patient germline VCF files. Using VCFtools23 (v.0.1.16), VCF files were filtered to only 

contain “PASS” variants i.e. variants that passed all necessary filters; this filters out redundant information. 

Next, I used BCFtools38 (v.1.12) to combine all eight African germline VCF files without any duplications 

(bcftools merge), thereby creating a single reference VCF file. As previously mentioned, these African 

VCF files reference the GRCh38 (hg38) genome assembly. However, the Illumina manifest file references 

the GRCh37 (hg19) genome assembly. Therefore, when one parses the VCF file to extract SNPs 

overlapping probe coordinates contained within the manifest file, both the VCF file and the manifest file 

must reference the same genome assembly i.e. hg19. To achieve this, the single reference VCF file needs 

to be “lifted over” from the hg38 to the hg19 genome assembly. I discovered a number of tools available 

for this. In essence, these lift over tools adjust the coordinates of variants in a VCF file to match a new 

reference.  
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Fig. 3-5 Developed workflow for the preparation (1) and parsing (2) of African germline variant files to extract all 

African SNP and indel variants overlapping Illumina Infinium HumanMethylationEPIC probes. 
BCF: binary variant call format | NCBI: National Center for Biotechnology Information | SBE: single base extension | SNP: single nucleotide polymorphism | 

UCSC: University of California Santa Cruz | VCF: variant call format 
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I chose to perform a liftover of the VCF file using Picard (v.2.25.6) LiftoverVcf with the UCSC chain file 

(hg38ToHg19.over.chain available from UCSC’s GoldenPath).39 Liftover also requires the reference 

genome sequence file for the target build, hg19 (obtained via UCSC’s GoldenPath, hg19.fa) as well as an 

accompanying FASTA sequence dictionary file and FASTA index file (created from the FASTA file using 

GATK CreateSequenceDictionary and SAMtools38 faidx, respectively). This procedure and particularly 

Picard LiftoverVCF requires GATK21 (v.4.2.0.0) and Java20 (JDK™ v.16.0.1). Finally, to prevent a Java 

“OutOfMemoryError”, I found it was necessary to specify a higher memory allocation (Xmx8G) than the 

default allocation. Only SNPs that were successfully lifted over to the same chromosome were retained. 

Rejected variants were stored in a separate VCF file. This method rendered a single African germline VCF 

file that references the hg19 genome assembly and is properly headered, sorted and indexed.  

 

An alternative tool, CrossMap40, was initially implemented at this step for liftover, requiring Python41 

(v.3.9). Essentially, the purpose of this tool is the very same as that of Picard LiftoverVcf and both tools 

require a number of the same files as input e.g. the UCSC chain file and the target build reference genome 

sequence file. However, the advantage of using Picard LiftoverVcf rather than CrossMap is that it produces 

a properly headered, sorted and indexed VCF file. Conversely, I found that CrossMap produces an output 

file that is not sorted which then creates a problem when trying to create a tabix index for this VCF file, 

which is necessary for part two of this workflow. 

 

Once liftover had been completed, an additional feature of the VCF file had to be addressed. To reiterate, 

when parsing the VCF file to extract SNPs overlapping probe coordinates contained within the manifest 

file, the VCF file and the manifest file must be in the same format where applicable. In this case, the feature 

being referred to is chromosome notation, which may be of the UCSC style (e.g. chr1) or the NCBI/Ensembl 

style (e.g. 1). I discovered that the Illumina EPIC manifest file details chromosomes using the 

NCBI/Ensembl style whereas the VCF file uses the UCSC style. Therefore, the VCF file needed to be 

edited to remove the term “chr” prior to the chromosome number, thereby creating a VCF file with an 

NCBI/Ensembl chromosome notation that matches that of the manifest file. This was simply achieved using 

the “awk” command to substitute “” (i.e. no text) in place of “chr”; “awk” is a command-line text 

manipulation tool. Finally, this single African germline VCF file (hg19, NCBI/Ensembl chromosome 

notation) then needed to be compressed by bgzip (creating a vcf.gz file) and indexed by Tabix42 (creating 

a vcf.gz.tbi file). These files were then suitable for input into R. This concludes part 1 of the established 

workflow. 

 



 
53 
 

© University of Pretoria 

Calling SNP-affected probes. Part 2 is completed in the R environment, using the GenomicRanges43 and 

VariantAnnotation44 Bioconductor packages. Input includes the bgzip and tabix files as well as the Illumina 

EPIC manifest file (CSV format). I adapted a method presented in the Pidsley et al. (2016)5 paper 

(“Identification of probes overlapping genetic variants”) to achieve this part of the analysis. Authors from 

this paper shared the relevant R script for me to perform the method on my own data. Essentially, the single 

reference African germline VCF file was parsed to extract all African SNP and indel variants that overlap 

with EPIC probe coordinates, according to the manifest file. Relevant ranges were created to further classify 

variants according to the three probe-region categories discussed above and the results were filtered to only 

include genetic variants with a maximum minor allele frequency (MAF) > 0.05. The adapted R script 

required the removal of some features: (i) references to variant type as this was not a feature of the African 

germline VCF file; (ii) references to other populations (e.g. European, Asian); and (iii) missing data values 

(i.e. those variants that did not meet the MAF threshold). This produced a list of EPIC probes that contain 

overlapping African variants (Tables S2, S3 and S4), which I then filtered from the main EPIC dataset to 

reduce the risk of false discoveries. This new filtered dataset object was extracted by embedding a filter 

within the unfiltered object; this way, I could ensure that both the unfiltered and filtered objects could be 

reused. Ultimately, the established workflow presented here (Fig. 3-5), which exists within the larger 

developed pipeline (Fig. 3-2), is a novel and standalone approach to identifying EPIC probes affected by 

southern African polymorphisms. 

 

Finally, commonality was assessed between the SNP-affected probe lists generated by the two approaches 

outlined above (presented in Chapter 4).  

 

3 . 3 . 2 . 6 .  Nove l  f i l t e r i ng  o f  c r o s s - r ea c t i ve  p r ob es  

As previously mentioned, the standard function offered by ChAMP for filtering cross-reactive probes is 

performed according to a 450K array-derived list. To ensure filtering was performed exclusively relevant 

to the EPIC array, I chose to perform more appropriate cross-reactive probe filtering. This filtering step is 

novel to the standard ChAMP workflow. A list of cross-reactive probes (n = 43,254) has been annotated 

for the Illumina EPIC array and is provided in the supplementary data from Pidsley et al. (2016).5 In order 

to further reduce the risk of false discoveries, this list was chosen to be filtered from the main EPIC dataset 

in the same manner as just mentioned for the SNP-affected probe list. Consequently, this is the cross-

reactive probe filtering method that was integrated into the African-relevant developed pipeline (Fig. 3-2).  
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3 . 3 . 2 . 7 .  Cor r ec t ing  f o r  ba t ch  e f f e c t s  an d  b io log i ca l  v a r i a b l e s  

In any dataset, it is common to investigate possible sources of variation, especially those that may largely 

and significantly confound results. It is true that methylation is sensitive to a wide range of factors including 

technical issues such as batch effects (e.g. running samples at different times or using different batches of 

reagents) as well as certain biological variables9 such as age or tumour purity. For this reason, batch effects 

should be avoided and biological sources of variation should be corrected for, where applicable. 

 

Correction functions. In order to identify significant components of variation within one’s dataset, singular 

value decomposition (SVD) may be implemented. The method of SVD applied within the ChAMP package 

is that by Teschendorff et al. (2009).45 The champ.SVD() function is able to identify components of 

variation that correlate with both technical and biological factors of interest within a dataset, provided 

(epidemiological) data has been collected for biological factors of interest. Covariates should contain at 

least two values to be tested. Numeric covariates are calculated using linear regression whilst factor and 

character covariates are calculated using a Kruskal-Wallis test. Batch effects may be corrected for by 

applying the ComBat46 function, which only corrects for technical variation, is embedded within the 

original ChAMP pipeline (champ.runCombat()) and is implemented within the sva package47 in R. ComBat 

is a method of further normalisation. It is essential to understand one’s own data intimately, especially in 

terms of confounders, which is why it is critical to identify possible sources of variation. For this reason, 

an SVD analysis was integrated as part of the novel African-relevant pipeline (Fig. 3-2).  

 

Finally, following the SVD analysis, the pipeline reaches the position represented by the black circle in 

Figure 3-2, which symbolises a fully prepared southern African DNA methylation dataset. This marks the 

point between data processing and data analysis, rendering this suitably processed and normalised southern 

African dataset ready for analysis. 

 

 

3.4. Discussion 

Here I introduce a novel developed bioinformatic workflow for the processing and normalisation of 

southern African DNA methylation data. This workflow may be applied to interrogate genome-wide DNA 

methylation in prostate tissue from men of African ancestry (presented in Chapter 4) as well as in tumour 

tissue from other cancer types. The African-relevant pipeline thoroughly accounts for population-specific 

genomic diversity that may affect appropriate data filtering. Two distinct approaches were tested for their 

efficacy in identifying African polymorphisms overlapping EPIC probes, for which I identified 

MethylToSNP as the lesser of the two approaches for a number of reasons discussed elsewhere (see Section 
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3.3.2.5.1., Chapter 2 and Chapter 4). The SNP-affected probe filtering offered by this novel pipeline is 

both African-relevant and cohort-specific. Additionally, the developed workflow incorporates EPIC array-

relevant cross-reactive probe filtering, which is not offered by the standard ChAMP pipeline. In short, the 

novel pipeline allows researchers to appropriately process and analyse southern African DNA methylation 

data while accounting for (i) confounding African-relevant polymorphisms and (ii) unnecessarily 

eliminating African-relevant data by filtering according to an inappropriate reference population. 

 

The development of a bioinformatic tool such as the one designed in this Chapter, addresses an aspect that 

is overlooked within epigenetic epidemiology, i.e. the inclusion of African populations. The problem being, 

African-relevant tools are scarce, if not entirely absent. However, I acknowledge that several limitations 

exist for this novel pipeline. The small African sample size upon which I developed this pipeline may 

require modification for processing larger cohorts. I refer specifically to Java memory allocation as well as 

CPU core allocation. Additionally, the minfi package has been described as ideal for analysing small 

datasets.48 Future work could assess the suitability of applying minfi to a larger dataset. A further notable 

limitation refers to the SNP-affected probe filtering. While I identified the patient-matched germline variant 

data method as preferred for such filtering, this approach would require that researchers be in possession 

of patient-matched genomic data, often absent in studies due to high costs.14 Finally, although included in 

the novel pipeline (Fig. 3-2), I did not successfully implement the adjustment for potentially confounding 

biological variables (see Chapter 4 for more detail), calling for further future studies. 
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Chapter 4: Application of a novel African-relevant genome-wide bioinformatic 

pipeline to investigate DNA methylation in prostate tissue from men of African 

ancestry: a pilot study 

 

The underrepresentation of African men in prostate cancer research and the lack of subsequent data and 

accompanying bioinformatic African-relevant tools has been discussed throughout this dissertation. 

Although a pilot study, this Chapter aimed to remedy the insufficiency of African-associated prostate cancer 

epigenomic research and knowledge. By applying the novel African-relevant pipeline established in 

Chapter 3, Chapter 4 presents an evaluation of genome-wide DNA methylation in prostate tissue from 

men of African ancestry. 

 

In this Chapter, I would like to acknowledge the patients who consented to donating their tissue for the 

purposes of this research, as well as the many clinicians and staff associated with the Southern African 

Prostate Cancer Study. I would also like to thank the Human Comparative and Prostate Cancer Genomics 

Research team at the Garvan Institute of Medical Research, in Australia, for data availability. 
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Abstract 

Prostate cancer is the second most common cancer in men worldwide and the most prevalent urological 

cancer affecting South African men. Known risk factors for prostate cancer include increasing age, a family 

history of prostate cancer and African ancestry. However, there is a severe underrepresentation of Africans 

in prostate cancer research and as such, contributing factors that link prostate cancer to African ancestry 

remains elusive. Neither genetics nor environment can solely enlighten on such uncertainty but their 

interaction may prove revealing. However, research and knowledge on the African prostate cancer 

epigenome is scarce. DNA methylation has a well-established role in prostate cancer pathogenesis and has 

been shown to differ amongst prostate tumours derived from different ethnicities. Thus, it may be 

reasonable to suggest that differential DNA methylation, at least in part, underlies the African ancestral 

contribution to prostate cancer. Using the Illumina Infinium HumanMethylationEPIC BeadChip, I profiled 

genome-wide DNA methylation from prostate tissue derived from eight South African men. While 

appreciating the small cohort, I applied the novel pipeline established in Chapter 3, as a result of which, I 

identified differentially methylated CpG sites that potentially contribute to aggressive prostate cancer in 

this South African cohort. The novelty of this research is evident in its African-relevance and genome-wide 

approach. 

 

 

4.1. Introduction 

Globally, prostate cancer (PCa) is the second most common cancer in men, following lung cancer.1 

According to the Global Cancer Observatory (GCO) 2020 estimates2, 1,414,259 new cases of PCa were 

reported worldwide, with this figure estimated to increase by 37 % by 2040 (2,235,568). Additionally, the 

GCO reports southern Africa to display one of the highest mortality rates for PCa in the world, along with 

a number of other African regions. By 2040, the African PCa mortality rate is expected to rise by 53 %. 

These estimates illustrate native Africans to be a high-risk population regarding PCa incidence and 

mortality and this is also true when compared with other ethnicities. With PCa incidence and mortality 

expected to rise over time and African ancestry being a known PCa risk factor3, one would expect an 

abundance of available African-relevant PCa research and accompanying data. However, this is not the 

case. In fact, African men are notoriously underrepresented in PCa research. Therefore, there is an urgent 

need to analyse the African PCa (epi)genome to gain insight into the pathogenic nature of African PCa, a 

field with limited understanding. 

 

DNA methylation is an epigenetic mechanism known to aid the progression of cancer, including PCa.4,5 

DNA methylation is part of a cluster of molecular processes that initiate tumorigenesis and drive its early 
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evolution by altering other molecular processes.6 While studies have looked at DNA methylation in PCa, 

most have been limited by targeted gene analysis, with further bias towards non-African cohorts, as just 

mentioned. Considering the enhanced coverage of more recent genome-wide arrays, such as the Illumina 

Infinium HumanMethylationEPIC BeadChip (EPIC array), which measures DNA methylation over more 

than 850K CpG sites genome-wide7 (see Chapter 2 for more detail), many studies that have employed a 

more global approach to DNA methylation analysis are further limited by frequently utilising lower-

coverage arrays (e.g. Illumina Infinium HumanMethylation450 and Illumina Infinium 

HumanMethylation27 BeadChips, see Chapter 2). Nevertheless, the 450K array is still the most widely-

used platform to investigate and report on epigenome-wide studies. For instance, The Cancer Genome 

Atlas’ (TCGA) repository contains 498 prostate case files generated using the 450K array but zero such 

files generated using the EPIC array. Further highlighting the scarcity of this data, publicly-available EPIC 

DNA methylation array data from NCBI’s GEO is limited to only 7 studies (as of August 2021), of which 

none are African-relevant. Due to this bias against African cohorts, African-relevant bioinformatic tools 

for the processing of African DNA methylation data are limited (addressed in Chapter 3).  

 

Overall, it is evident that Africa as a continent is overlooked in PCa (epi)genomic research, thereby 

necessitating expanded knowledge on this topic. Such research is crucial for ultimately improving clinical 

approaches to African PCa disease screening, diagnostics and treatment. Therefore, this research aims to 

apply the novel African-relevant pipeline established in Chapter 3 on a pilot study of prostate tissue-

derived genome-wide DNA methylation data from eight African-ancestral patients from South Africa. 

Application of this novel pipeline will identify differentially methylated CpG sites that contribute to 

aggressive prostate cancer in this southern African cohort. While appreciating the small study size, certainly 

no definitive conclusions can be drawn from the data but given the argument presented above, the novelty 

of this study cannot be overlooked. The undertaking of a global approach rather than a targeted one, as well 

as an African focus rather than a European one, has the potential to provide an in-depth understanding of 

southern African PCa, and at the very least, will act as a foundation on which more sizable studies can be 

built. 

 

 

4.2. Materials & Methods 

4 . 2 . 1 .  R esou rc e  &  e th i cs  

Data was made available for eight South African men who consented upon enrolment in the Southern 

African Prostate Cancer Study (SAPCS). Initiated in 2008, the SAPCS is a unique study that provides an 

epidemiological, genetic and prostate tissue resource to ultimately define the contributing factors that link 
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PCa to African ancestry.8 The previous SAPCS as well as the current study outlined here was reviewed and 

approved by the University of Pretoria’s Human Research Ethics Committee (HREC #43/2010 and 

#37/2021, respectively). A total of eight patients were recruited at diagnosis and clinicopathologically 

confirmed as either presenting with high-risk prostate cancer (HRPCa, 7 patients), defined by a Gleason 

score of ≥ 8, or with benign prostatic hyperplasia (BPH, 1 patient). Prostate tissue was taken at biopsy and 

all patients self-identified as being of African ethnicity. African ethnicity was further confirmed using 

ancestry markers. The age distribution of the patients ranged from 54-99 (Table 4-1). Tissue-blood pairs 

were snap frozen and shipped to the Garvan Institute of Medical Research (Sydney, Australia) in 

accordance with institutional Material Transfer Agreements (MTA) with the University of Pretoria. DNA 

was extracted from blood and tissue using the commercially available Qiagen DNeasy blood and tissue kit 

protocol (Qiagen, Maryland, USA). Genomic screening and analysis were performed in accordance with 

approval granted by St. Vincent’s Hospital HREC (SVH/15/227) and governance review authorisation 

granted for human research at the Garvan Institute of Medical Research (GHRP1522). 

 

4 . 2 . 2 .  Ger ml in e  &  som at i c  d a ta  

DNA extracted from tumour-blood pairs underwent whole genome sequencing (60x, 30x coverage) on the 

Illumina NovaSeq platform at the Garvan Institute’s Kinghorn Centre for Clinical Genomics (KCCG) and 

was analysed by the Human Comparative and Prostate Cancer Genomics (HCPCG) Research team using 

in-house pipelines and high-performance compute (HPC) infrastructure provided by the University of 

Sydney Informatics Hub (SIH) and the National Compute Infrastructure (NCI) in Canberra. Data provided 

is currently unpublished and funded by the Australian National Health and Medical Research Council 

(NHMRC). 

 

For each tumour sample, high-confidence somatic variants (single nucleotide variants and indels) were 

called against patient-matched blood samples using GATK’s Mutect29 (v.2.2). Calls were additionally 

filtered to label false positives with a list of failed filters and true positives with “PASS”. Variant called 

somatic data (VCFv4.2 format) for the eight patients was made available and I further filtered the VCF files 

using VCFtools10 (v.0.1.16) to only contain true positive variants. Additionally, the HCPCG Research team 

used Mutect2 to extract C:G > T:A somatic variants that lie within a CpG context, providing flanking bases 

(3 bp) and referencing hg38. I then filtered and counted these CpG C > T variants (Table 4-1) within the R 

statistical environment using the dplyr package.11 In addition, variant called germline data (VCFv4.2 

format) for the eight patients was made available. The VCF files reference Genome Build 38 (hg38) and 

chromosome notation is of the UCSC style (e.g. chr1) versus the NCBI/Ensembl style (e.g. 1). The tools 
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used for germline variant extraction includes Java12 (JDK™, v.1.8.0_111), GATK13 (v.4.1.4.1), HTSlib14 

(v.1.10.2) and VCFtools10 (v.0.1.14). 

 

In addition to raw variant data, summary data was provided for the eight patients, as summarised in Table 

4-1, including (besides age and pathology) genomic-derived features such as: tumour purity, tumour 

mutational burden (TMB), percentage of genome alteration (PGA), structural variant (SV) calls and 

microsatellite (in)stability (MSI/MSS) status. TMB refers to small somatic mutations; it is defined by the 

total number of small somatic variants, divided by genome size 3,088 Mbp, as previously described by 

Jaratlerdsiri et al. (2018).15 Small variants include single nucleotide variants (SNVs) and indels < 50bp; 

SVs refer to alterations (gain or loss events) > 50bp. PGA refers to the sum of the number of base pairs 

altered by SVs for each patient, divided by genome size 3,088 Mbp.15 Tumour purity was estimated for 

each patient based on WGS data (a combination of somatic SNV and SCNA data), using Sequenza software 

and the THetA2 program.16,17 A five-tooled MetaSV analysis was used to detect high-confidence somatic 

SVs, as previously described.18 Finally, MANTIS v1.0.5 was used to detect MSI versus MSS calls.19 

 
Table 4-1 Clinicopathological, sequencing and somatic variation data for African patients. 

BPH: benign prostatic hyperplasia | HRPCa: high-risk prostate cancer | MSI-H: microsatellite instability-high | PGA: percentage of genome alteration | SV: 

structural variant | TMB: tumour mutational burden | UP0000: African patient identifier | WGS: whole-genome sequencing 
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4 . 2 . 3 .  DNA  meth y la t i on  da t a  &  pro ce s s ing  

Raw DNA methylation data was generated from tissue DNA for the eight African patients at the Australian 

Genome Research Facility (AGRF, Melbourne, Australia) and subsequently provided by the HCPCG 

Research team at the Garvan Institute. DNA methylation was quantified using the Illumina Infinium 

HumanMethylationEPIC BeadChip (hereafter referred to as the EPIC (micro)array) following the Illumina 

Infinium HD Methylation Assay (Illumina, CA, USA). The data provided by the AGRF included raw 

Illumina intensity data (IDAT) files, the Illumina manifest file (v1.0 B5, BPM format), a sample sheet 

(CSV format) and a genotyping service report from the research facility. 

 

I processed and analysed the African EPIC data using the novel African-relevant bioinformatic pipeline 

developed in Chapter 3 (Fig. 3-2). Briefly, raw data was loaded into R using the minfi method20 

accompanied by a number of function parameter modifications (see Section 3.3.2.2. for more detail). 

During initial filtering, some probe exclusion criteria was specified: (i) probes with detection p-values 

greater than 0.05; (ii) probes that failed the detection p-value threshold in more than 20 % of samples; and 

(iii) probes with a bead count < 3 in at least 5 % of samples. Sex chromosomes were retained and no missing 

values were present in the data thus no imputation for missing values was performed. Quality control tests 

confirmed all 8 samples suitable for inclusion. Normalisation of data was performed using the selected 

beta-mixture quantile (BMIQ)21 method and beta-values were chosen for their direct biological 

interpretation. I identified SNP-affected probes using both the MethylToSNP and patient-matched germline 

variant approaches (see Section 3.3.2.5.), tested the performance of both approaches and assessed the 

commonality between the probe lists generated by each of the methods. For the latter approach, I filtered 

results to only include genetic variants with a maximum minor allele frequency (MAF) > 0.05. 

Consequently, I filtered the probe list generated by the patient-matched germline variant method. As per 

the novel African-relevant pipeline, cross-reactive probes were filtered according to Pidsley et al. (2016).7 

Finally, a singular value decomposition (SVD) analysis was chosen for application to identify significant 

components of technical and/or biological variation within the African dataset. 

 

4 . 2 . 4 .  I den t i f y ing  d i f f e ren t ia l l y  me th y l a t ed  p rob es  

The analyses detailed below were carried out by myself and using the hg19 genome assembly. Initial 

visualisation of the processed EPIC dataset was generated using the QC.GUI() function integrated in the 

African-relevant pipeline (Fig. 3-2) to produce multidimensional scaling (MDS) plots. Differential 

methylation analysis was then performed between African HRPCa patients versus the single BPH patient, 

MSI-H versus MSS tumours as well as among a range of ages, tumour purity predictions, TMB 

measurements, PGA measurements, SV counts, Gleason scores, C > T mutation counts and CpG C > T 
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mutation counts (as presented in Table 4-1). I used the champ.DMP() function to identify significantly 

differential methylated probes (DMPs) for a particular variable of interest. It was necessary to recode 

categorical variables to numeric variables (i.e. HRPCa = 1 and BPH = 0) and I then used DMP.GUI() to 

visualise the results. Linear regression was conducted on each CpG site within the African dataset to 

identify covariate-related CpG sites and for visualisation, the function grouped numeric variables into 

intervals. It was decided that DMPs be selected based on a BH-adjusted threshold of p < 0.05. The 

Benjamini-Hochberg p-value adjustment controls the false discovery rate.22 DMPs were categorized as 

displaying hypermethylation (beta ≥ 0.8), partial methylation (beta ~ 0.5) or hypomethylation (beta ≤ 0.2), 

as per recommendations from Du et al. (2010).23 For each covariate, I chose the top three genes (most 

abundant for significant CpGs) for closer DNA methylation pattern analysis. 

 

DMPs were annotated according to CpG island (CGI) and gene regions. Annotations for CpG islands 

includes CGIs, CGI shores (<2 kb upstream and downstream of CGIs), CGI shelves (2-4 kb upstream and 

downstream of CGIs) and open sea (non-CGI-related sites), (see Fig. 2-1). Gene region annotations 

includes TSS1500 (200-1500 bp upstream of the transcription start site, TSS), TSS200 (up to 200 bp 

upstream of the TSS), 5’UTR (5’ untranslated region), 1st exon, Body (gene body), ExonBnd (exon 

boundaries), 3’UTR and IGR (intergenic regions). 

 

All data processing and analyses were performed with R24 ≥ v.4.0.2 and RStudio25 ≥ v.1.3 statistical 

software. 

 

 

4.3. Results 

4 . 3 . 1 .  P roce s s ing  the  A f r i c an  da ta s e t  u s ing  a  nov e l  A f r i can- re l ev an t  b i o in fo rm at i c  

p ipe l i ne  

4 . 3 . 1 . 1 .  Ass e ss i ng  th e  e xt r a c t e d  da t as e t  and  no r m al i sa t i o n  

Prior to any initial filtering, the EPIC microarray consists of 867,531 probes for genome-wide DNA 

methylation quantification. After data loading and initial filtering using the champ.load() function (see Fig. 

3-2), 13,683 probes were filtered out, rendering an extracted dataset made up of 853,848 probes. Probes 

that were filtered out did not meet the selected criteria specified by the developed pipeline (see Table 3-1) 

including: (i) probes that failed in individual samples (detection p-value > 0.05, n = 2,024 probes); (ii) 

probes that failed the detection p-value threshold in greater than 20 % of the samples (n = 1,293 probes); 

and (iii) probes that had a bead count < 3 in at least 5 % of the samples (n = 10,366 probes). A detection p-
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value threshold of 0.01 removed 2,650 probes. Since this number of rejected probes was so similar to the 

number rejected by the detection p-value threshold of 0.05, I proceeded with the recommended threshold 

of 0.05.26 Of course, it is also possible that entire samples fail due to inadequate input DNA concentrations 

or other processing issues26; however, all 8 samples in this analysis were retained. Additionally, there were 

no missing values in this data matrix, thus imputation was not necessary.  

 

Of the 853,848 probes initially loaded into R, most lie within the open sea when considering CGI 

annotations (Fig. 3-3a.ii) and within gene bodies when considering gene region annotations (Fig. 3-3a.iii). 

Evidently, probe distribution is largely similar before (Fig. 3-3a) and after (Fig. 3-3b) complete filtering 

and normalisation. One must inspect these distributions to ensure evenly distributed probe filtering was 

performed i.e. filtering was not biased towards any particular region of the genome. Of course, the 

difference between probe distributions before and after complete filtering and normalisation can be 

observed in probe quantities. Additionally, I found that BMIQ normalisation of the data across the eight 

samples reduced the variability seen in the beta-value distributions of Infinium type I and Infinium type II 

probes (Fig. 3-4b), and although normalisation of Illumina methylation data is usually focused on within-

sample correction, it is evident that the BMIQ normalisation method selected and employed here reduced 

variability between samples too (Fig. 3-4d). 

 

4 . 3 . 1 . 2 .  I den t i f y i ng  a nd  f i l t e r ing  S NP -af f ec t ed  p r o be s :  Meth y lT oSNP ver su s  t he  

nove l  p a t i e n t -mat ch ed  ge r ml ine  v a r i an t  da t a  me thod  

MethylToSNP. Application of the tool MethylToSNP for SNP-affected probe filtering identified 14,474 

potential SNPs (Table S1) underlying methylation probes in the southern African cohort, 3,572 of which 

MethylToSNP labelled as high-confidence predictions (reliability score ≥ 0.5, see Table 4-2). Notably, I 

found the median reliability score of the 14,474 SNPs to be 0, suggesting that most of these sites are not 

viable meC > T SNP candidates. Of the high-confidence predictions, 2,963 SNPs were identified as being 

potentially novel in their absence of dbSNP27 release 147.  

 

The patient-matched germline variant data method. Using the developed patient-matched germline 

variant data workflow (see Fig. 3-5), I identified a substantially larger number of 179,918 EPIC probes as 

having SNP or indel variants overlapping them (maximum MAF > 0.05) (Tables S2, S3 and S4). More 

specifically, the number of SNPs affecting EPIC probes were further classified according to identification 

at a target CpG site (n = 30,483 SNPs) (Table S2), at an SBE site (for Infinium type I probes, n = 918 

SNPs) (Table S3) and within the probe body (n = 174,316 SNPs) (Table S4). In considering the total 

number of SNPs identified, I found that a number of EPIC probes overlapped more than one polymorphism 
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(n = 25,799 probes). To note, as part of the patient-matched germline variant data SNP-affected probe 

filtering method, liftover of the single reference germline VCF file from hg38 to hg19 using Picard 

LiftoverVcf (see Section 3.3.2.5.2.) resulted in 91,994 variants being rejected. This amounts to a minimal 

0.66 % loss of SNPs and indels that could not be lifted over to the target genome assembly. This is expected 

considering sequence incompatibilities between the source (hg38) and target (hg19) reference genomes. 

 
Table 4-2 MethylToSNP predictions in the southern African cohort. 

Adapted from “MethylToSNP: identifying SNPs in Illumina DNA methylation array data,” by LaBarre et al., 2019, Epigenetics & Chromatin, 12(1), p. 7. 

Copyright 2019 by The Authors. 
 

4 . 3 . 1 . 2 . 1 .  Ass es s in g  common al i t y  b e t ween  th e  two  SNP -af f e c t ed  p r ob e  f i l t e r ing  

appr o ach es  

I investigated the degree of overlap between the high-confidence SNP-affected probe lists generated by the 

two above methods and found a total of 1,089 shared probes. Considering African patient-matched germline 

variant data was used in one approach, one would expect all MethylToSNP-identified probes to be common 

in the African reference probe list assuming accuracy of the MethylToSNP tool. However, it appears as 

though while MethylToSNP identified a number of true SNPs, another 2,483 SNPs weren’t accounted for 

in the African germline variant data. As previously mentioned, MethylToSNP filtering was not selected for 

application to the African dataset; limitations are discussed in Chapter 2. Instead, the African reference 

approach was selected to proceed in order to ensure only cohort-specific, African-relevant probes were 

filtered out. Of course, a number of probes present on this filtering list may have already been removed 

from the dataset during data extraction.  

 

4 . 3 . 1 . 3 .  F i l t e r ing  SNP - af f ec t ed  p r o be s  and  c r o s s - r ea c t iv e  p r ob es  

Once I had performed SNP-affected probe filtering using the African reference approach, as well as cross-

reactive probe filtering, a total of 653,337 probes remained for data analysis. From beginning (raw data) to 

end, this amounts to a loss of approximately 25 % of the total probes. 
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4 . 3 . 1 . 4 .  I den t i f y in g  comp one n t s  o f  v a r i a t i on  

An SVD analysis was run as per the developed workflow (Fig. 3-2) to identify the source and nature of 

both technical and biological variation within the African DNA methylation dataset (Fig. 4-1). It was 

necessary to add epidemiological data to phenotypic data in the pd file in order to include biological 

variables in the analysis. The analysis revealed two principal components to explain the majority of the 

variance (> 98 %) observed in the dataset. In Figure 4-1a, pale pink blocks (p < 0.05) indicate a significant 

correlation between the deconvoluted components and select covariates. To elaborate, I found that principal 

component 1 significantly correlated with PGA (p = 0.0352) and explained ~77 % of the variation in the 

dataset whilst principle component 2 significantly correlated with tumour purity (p = 0.0327) and was able 

to explain ~23 % of the variation (Fig. 4-1b). Although no batch effects were identified as part of the SVD 

analysis, this finding highlights substantial contributions from confounding biological factors that ideally 

should be adjusted for. The absence of batch effects in this dataset was expected. Because this African 

cohort is comprised of only eight individuals, samples were all run on the same array plate at the same time, 

minimising potential batch effects and negating the need for ComBat implementation. 

 

Although the standard ChAMP package offers a function to correct for cell-type heterogeneity, it may only 

be implemented on samples derived from whole blood and as a result, is not applicable for tumour-derived 

data. However, beyond the scope of the ChAMP pipeline, I suggest that the sva package may be applied to 

model and correct for biological sources of variation such as tumour purity (see Chapter 2 for further 

discussion). Regrettably, I was not able to successfully perform an adjustment for the confounding 

biological variables due to several reasons including project time constraints (see Discussion). 

 

4 . 3 . 2 .  P i lo t  i n t er rog a t ion  o f  D NA  m ethy l a t ion  in  p ro s ta t e  t i s su e  f ro m e igh t  

sou t he rn  A f r i can  men  

Once data processing and normalisation had been successfully completed with the novel African-relevant 

pipeline, analysis of this dataset identified significant DMPs for a number of covariates within the small 

African cohort (Table 4-3). Of particular interest were DMPs I identified between the single BPH 

individual and the HRPCa patients. In this case, only 4 DMPs were identified, with the BPH individual 

(UP2037) displaying overall partial methylation at these 4 CpG sites (! = ~0.4) and the HRPCa patients 

displaying hypermethylation at 2 CpG sites and hypomethylation at the other 2 CpG sites (Fig. 4-2). Probe 

cg04295700 overlaps with the TSS1500 of the CMSS1 gene whereas the remining 3 probes fall within IGRs 

in the open sea. Although only 4 probes (i.e. CpG sites) were identified here, it is still evident that a 

difference in DNA methylation exists between HRPCa and BPH (albeit small). It is worth mentioning that 

I expected a greater number of DMPs. 
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Fig. 4-1 Singular value decomposition analysis identifying the a source of and b percentage contributed by significant 

components of variation observed in the African DNA methylation dataset. Two principal components were 

identified. A p-value < 0.05 was regarded as statistically significant. 
Cancer status: Gleason score | Case: PCa or BPH | DNA conc: DNA concentration | MSI: microsatellite (in)stability | PC: principal component | PGA: percentage 

of genome alteration | SV: structural variant | TMB: tumour mutational burden | Volume: DNA volume 

a 

b 
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An MDS plot was selected to initially visualise the prepared African dataset (Fig. 4-3). The MDS plot is a 

visual representation of the level of similarity of individual cases of a dataset. In terms of methylation 

patterns, while we would expect the BPH individual to map distinctly from the HRPCa patients, Figure 4-

3 shows that the BPH individual maps with two of the HRPCa patients, suggesting the three individuals 

share similar methylation patterns. This finding is interesting considering DNA methylation profiles have 

been shown previously to accurately distinguish between PCa and BPH tissue samples.28,29 The DMP 

results related to tumour purity could shed light on this finding. 

 

 
Fig. 4-2 Heatmap displaying significant differentially methylated probes (cg00000000) between a single African 

BPH individual (UP2037) and seven African HRPCa patients (p < 0.05). 

 

I identified a large number of tumour purity-related CpG sites within this African cohort (Table 4-3). The 

DMPs identified relating to this covariate were the most abundant of all covariates tested, highlighting the 

confounding nature of this variable. Once again, the BPH individual was not distinct from the HRPCa 

patients; rather, I found that the BPH sample grouped with the HRPCa samples in the lower tumour purity 

interval, all of which displayed similar methylation patterns for the identified CpG sites (Fig. S2a). The 

fact that the BPH sample has a tumour purity estimation and that I found it to 
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Table 4-3 Differentially methylated probes identified by the novel African-relevant pipeline for a number of covariates in African prostate cancer. 
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Table 4-3 (continued) Differentially methylated probes identified by the novel African-relevant pipeline for a number of covariates in African prostate cancer. 

 

 

BPH: benign prostatic hyperplasia | CGI: CpG island | HRPCa: high-risk prostate cancer | IGR: intergenic region | indel: insertions and deletions | MSI-H: microsatellite instability-high | MSS: microsatellite stability | PGA: percentage of 

genome alteration | SV: structural variant | TMB: tumour mutational burden | TP: tumour purity | TSS: transcription start site 
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consistently map with HRPCa samples (for all covariates tested, Fig. S2), strongly suggests that this 

histopathologically normal sample harbours underlying aberrant DNA methylation that may be predictive 

of PCa. 

 
Fig. 4-3 Multidimensional scaling plot of the 1,000 most variably methylated CpG sites between a single African 

BPH individual and African HRPCa patients. 
BPH: benign prostatic hyperplasia | HRPCa: high-risk prostate cancer 
 

While no significant DMPs were identified for the covariates age and Gleason score, it is evident that TMB, 

MSI-H versus MSS, the CpG C > T variant count and the C > T variant count are all highly correlated, as 

expected. This can be seen in the number of DMPs identified and the top genes enriched for significant 

CpG sites (Table 4-3). Additionally, a number of DMPs were identified for the covariates SV calls and 

PGA. 

 

 

4.4. Discussion  

In this pilot study, I successfully applied the novel African-relevant genome-wide bioinformatic pipeline, 

established in Chapter 3, to tissue-derived DNA methylation data generated from eight South African men. 

The pipeline suitably processed African data and generated a fully prepared methylation dataset for 

analysis. I assessed the performance of two SNP-affected probe filtering approaches, which consequently 

revealed the patient-matched germline variant data method to produce a more comprehensive probe list for 

filtering. The workflow was able to identify differentially methylated CpG sites contributing to aggressive 
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prostate cancer in South African men, although no real conclusions can be drawn from findings presented 

here due to the small study size. However, this tool is a first-of-its-kind and provides a foundation upon 

which larger studies may expand in future. 

 

In terms of SNP-affected probe filtering and considering some methods remove as much as 60 % of array 

probes, an advantage MethylToSNP claims to offer is the prevention of excessive unnecessary probe 

removal. Comparing the two approaches outlined in this study, namely MethylToSNP and the patient-

matched germline variant data method, the former method identified a substantially lower number of 

African-specific SNP-affected probes (3,572 vs. 179,918, respectively). This may be explained by the 

principle underlying the algorithm of MethylToSNP, in which there is a bias towards identifying methylated 

C > T polymorphisms in methylation data.30 As such, a number of other variant types, particularly C > T 

polymorphisms where the C is never methylated, are likely to be overlooked or completely missed. 

Additionally, SNP-associated patterns other than the three-tier pattern (discussed in Chapter 2), are not 

currently supported by MethylToSNP.30 Overall, I believe MethylToSNP offers an underestimation of the 

true number of Illumina array probes that overlap polymorphisms. In highlighting this, it is my opinion that 

MethylToSNP is not a sufficient tool if used exclusively. Because of its underestimation in identified SNP-

affected probes within a dataset, should this tool be used for DNA methylation data filtering, it should be 

used in conjunction with other, more thorough SNP-affected probe identification methods. Conversely, 

using the patient-matched germline variant data method developed in Chapter 3, a comprehensive list of 

African-relevant, cohort-specific variants were identified as overlapping with EPIC probes. I found the 

number of SNP-affected probes identified in this African cohort to be slightly higher than but still consistent 

with alternative methods using general references such as dbSNP30 (~100-144K) or 1000 Genomes7 

(~110K) as a variant reference. Because polymorphic sites are known to influence DNA methylation 

quantification, it is essential that one performs comprehensive filtering of SNP-affected probes. 

 

To further comment on results generated by MethylToSNP, I identified a total of 2,963 SNPs as potentially 

novel in their absence of dbSNP27 release 147. As new information is obtained by dbSNP, vast amounts of 

new variants are incorporated, released and validated in an updated “build”.27 The dbSNP build 147 was 

made available in 2016 and more recently, the dbSNP build 153 was made available in 2019. Therefore, 

should a more updated dbSNP annotation reference for EPIC array data become available, the total number 

of novel SNPs identified by MethylToSNP would likely decrease. 

 

The SVD analysis revealed PGA and tumour purity to be significant confounders within the African DNA 

methylation dataset. Interestingly, genomic alterations have been suggested to play a role in mediating 
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changes in the PCa epigenome, specifically with regard to DNA methylation.31 However, if this is true in 

the context of PCa development and progression, to adjust for this may actually remove African PCa-

relevant methylation signals that are of interest to this study. On the other hand, it is not surprising that I 

found tumour purity to be a significant confounding biological factor within this DNA methylation dataset. 

After all, cell-type heterogeneity is an issue that confounds all DNA methylation studies.26,32,33 It is 

unfortunate though that as part of this study, I was unable to implement an adjustment for these confounders 

using the sva package in R, that I later discovered. In part, this was due to project time constraints i.e. I 

would have needed a few more weeks to successfully run the adjustment on the African methylation dataset. 

However, I also believe the filtering performed throughout this pipeline to have been rather thorough, so 

much so that I would fear any further corrections may result in a loss of significant probes when analysing 

DMPs. Due to the small cohort size, further adjustments may be too harsh for this dataset. As previously 

discussed, corrections of this nature may actually adjust out the signal one is searching for26 i.e. should 

significant components of variation be highly correlated with the phenotype of interest, one may choose to 

ignore said variation. 

 

An objective for this research was to assess whether the novel African-relevant pipeline would be able to 

identify differentially methylated CpG sites in the aggressive PCa African cohort. My analyses revealed a 

number of significant DMPs for several covariates within the African cohort (Table 4-3), providing very 

preliminary evidence for the role of DNA methylation in aggressive African PCa. Again, I must note that 

these findings should be interpreted with great caution due to the low power of this study. Comparison of 

DNA methylation at CpG sites between the BPH individual and HRPCa patients identified only 4 

significant DMPs. In addition, I found that the BPH individual consistently displayed DNA methylation 

patterns similar to that of the HRPCa patients for all covariates (barring BPH versus HRPCa). DNA 

methylation changes are said to occur early in cancer development, are present in non-malignant cells 

contiguous with cancerous tissue, leading to a field effect5,34 and can even distinguish BPH from PCa 

samples.28 In light of this, this lack of distinction between the two groups seen here is interesting given that 

BPH is not considered to be a precursor of PCa nor does it increase your risk of developing prostate 

cancer.35,36 However, it is the role of the histopathologist to classify samples as either BPH or cancerous, 

thereafter allocating malignant samples with a Gleason score, although this is subjectively done. Therefore, 

I believe it is possible that this particular BPH sample, although not displaying any abnormal cell 

histomorphology, is in fact characterised by underlying aberrant methylation that may be predictive of PCa 

development. This very occurrence of epigenomic alterations in benign tissue being able to act as a marker 

for PCa prediction has been reported previously.37 
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My analysis of DMPs related to tumour purity revealed an overwhelming number of significant CpG sites 

that are associated with this covariate. The number of DMPs identified was roughly three times as many 

DMPs that were identified for the next most abundant covariate (i.e. SV Calls). Ideally, one would expect 

few-to-no CpG sites associating with tumour purity and this is especially true for BPH, in which case we’d 

expect an absence of cancerous cells. However, this observation highlights the immense influence this 

confounding variable wields on this African dataset. It is worth noting that tumour purity estimates for the 

8 African individuals were highly variable (0.37-0.79, Mdn = 0.44), and it is true that DNA methylation 

studies typically include samples with high tumour purities, such as those greater than 95 %33 (as measured 

by a pathologist), in order to limit potential confounding. However, it should be noted that tumour purities 

measured by pathologists are usually higher than sample-matched estimates derived from WGS data. 

Interestingly, the BPH individual was assigned a tumour purity estimation (0.37), which was predicted 

based on WGS data. This alone indicates underlying somatic and epigenetic alterations in this sample that 

precedes any visual cell abnormalities. One may question the age of this particular BPH individual and 

whether or not the tumour purity estimation could be explained by age-accumulated mutations. However, 

the BPH individual was the fourth-youngest patient in the cohort at just 65 years old, making it unlikely 

that his tumour purity estimation, which is similar to that of HRPCa patients, is due to age-accumulated 

alterations alone. To further support the malignant nature of this BPH-classified sample is the MDS plot of 

the 1,000 most variably methylated CpG sites between the BPH individual and HRPCa patients (Fig. 4-3), 

in which it is evident that the BPH individual maps closely with two HRPCa patients, rather than mapping 

distinctly from them.  

 

In a recent study by Parry et al. (2019)29, DNA methylation analysis was conducted on adjacent benign and 

prostate tumour cores for six patients. In terms of DNA methylation, they found clear distinctions between 

benign and tumour cores with the exception of a single core in two separate cases. They observed these two 

tumour cores appearing more similar to benign cores in heatmaps similar to that shown in Figure 4-2 and 

in an MDS analysis similar to that shown in Figure 4-3, said tumour cores mapped closely to benign cores. 

Owing to the fact that in each case, these cores were sampled from the same patient, authors suggest this 

finding to be explained by a cancer-proximity field effect or field cancerization i.e. aberrant methylation 

present in the contiguous benign cores. However, apart from these two exceptions and as shown in a 

previous study28, DNA methylation was able to distinguish between benign and tumour cores29, 

highlighting the existence of distinct methylation profiles between these two tissue states. Although a field 

effect cannot be cited in this current study to explain the observation of the African BPH individual, the 

findings by Parry et al. (2019)29 further supports the notion that the African BPH individual included in this 

current study does in fact contain underlying epigenomic changes with a likeness to that of HRPCa. Should 
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a true BPH individual have been included in this African study (i.e. one with a tumour purity close or equal 

to zero), it is likely that I would have observed a higher number of significant DMPs between BPH and 

HRPCa. I believe the finding in Figure 4-2 to be limited by the particular BPH individual chosen for 

inclusion in this study; in my opinion, this BPH individual is not enough of a contrast to the HRPCa patients 

in terms of DNA methylation so I was not able to identify any more significantly associated CpGs in this 

case. Furthermore, to sufficiently identify aggressive PCa-associated CpG sites, I would suggest a 

comparison of true controls (i.e. non-cancerous, non-BPH samples) with HRPCa samples. Of course, this 

may be difficult to achieve considering healthy men are not likely to provide a biopsy sample should it not 

be directly necessary for their own healthcare. 

 

Evidence presented in Table 4-3 suggests high correlation between the covariates TMB, MSI-H versus 

MSS, CpG C > T count and C > T count. All covariates share similar numbers of DMPs identified as well 

as the top genes enriched for significant CpG sites. The correlation between TMB and variant counts is 

expected considering TMB is defined as the total number of small somatic variants, divided by genome 

size 3,088 Mbp.15 Moreover, a correlation between TMB and MSI-H may also be expected since MSI refers 

to cells that have a high number of mutations within microsatellites, caused by the loss of DNA mismatch 

repair activity.38 Deficient DNA mismatch repair in PCa can result from mutational inactivation or 

epigenetic silencing of any genes within the mismatch repair pathway. Interestingly, this finding for MSI 

provides a direct link between DNA methylation in African HRPCa and deficient DNA mismatch repair 

activity. Although only a single African HRPCa individual was of MSI-H status, MSI is used as a biomarker 

indicative of deficient DNA mismatch repair.38 However, it has been suggested that low tumour purity (< 

70 %) could confound the identification of MSI status in gastric and colon cancer.39 The single MSI-H 

individual displayed a low tumour purity (0.38). Thus, these findings are likely insignificant. 

 

The DMP analysis further revealed SVs and PGA to have a number of significant CpG sites associated with 

these covariates. As mentioned previously, genomic alterations have been suggested to play a role in 

mediating changes in the epigenome in PCa and this is particularly true when considering DNA 

methylation.31 Dhingra et al. (2017)31 propose that SVs dysregulate transcription factor hubs within the 

prostate regulatory network. Subsequent crosstalk between the dysregulated transcription factor hub 

expression can lead to DNA methylation changes, thereby promoting global expression changes in the 

network. One model to explain this proposes that upregulated transcription factor expression leads to 

increased recruitment of histone H3 lysine 4 (H3K4) methyltransferase, which will protect bound regions 

from methylation.40 Conversely, upregulated transcription factor expression may be associated with 

increased recruitment of DNA methyltransferases, which promotes methylation at bound regions.41 Either 
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way, SVs may be the initiators that disrupt the expression of transcription factor hubs and DNA methylation 

changes promote gene expression changes in the regulatory network.31 Overall, these changes support 

prostate tumorigenesis. Ultimately, the true carcinogenic effect of SVs in PCa is reflected not by the number 

of SV events that take place in a genome, but rather the cumulative effect of the number of base pairs 

affected by such events, as defined by the PGA. 

 

A large number of the top genes enriched for significant CpGs that were associated with the respective 

covariates, as outlined in Table 4-3, have not been mentioned in relation to PCa in existing literature (as of 

July 2021) and if mentioned, I have found that it is not typically in the context of aberrant DNA methylation; 

furthermore, no mentions were made in regard to African (American) PCa. CMSS1 was a top gene identified 

in the BPH versus HRPCa DMP analysis; under normal conditions, CMSS1 (CMS1 ribosomal small subunit 

homolog) has been shown to interact with MDM242, a negative regulator of the tumour suppressor p53, 

thereby potentially promoting cell proliferation if dysregulated in cancer. However, no mention is made of 

the role of DNA methylation. It appears as though the closest connection is offered by two identified genes; 

BCL11A, whose paralog, BCL11B, has been shown to be aberrantly methylated in treatment-naïve, (mostly) 

high-risk PCa43, and RASA3, in which case other RAS-family genes have similarly been shown to be 

aberrantly methylated.43 When aberrant DNA methylation is noted, it is often in relation to hepatocellular 

carcinoma (HCC, e.g. ADARB2, RASA3).44,45 It is worth noting that several of the top genes that are usually 

mentioned when aberrant DNA methylation in PCa is discussed (such as GSTP1, APC and RAR!) were not 

identified in this African analysis; however, these genes are usually identified when comparing PCa versus 

normal samples or even African American verses Caucasian PCa.34,46–48 In general, methylation patterns 

observed along the length of the top genes in Table 4-3 included declines in DNA methylation over CGIs 

that frequently overlapped with functional gene regions e.g. TSS and UTRs, indicative of an open 

chromatin conformation for gene expression. Genes that displayed this pattern were MECOM, GABBR1 

and ACACB, suggesting potential upregulated gene expression. Notably, overexpression of the oncoprotein 

MECOM is well-documented in acute myeloid leukemia.49 Conversely, there was also evidence for higher 

levels of methylation over certain CGIs, most often occurring within gene bodies. The genes DSCAML1 

and RASA3 displayed this methylation pattern. While gene promoter CGI hypermethylation has been well-

documented in PCa50, gene body CGI hypermethylation has been shown to be associated with gene 

overexpression in HCC.51 In fact, hypermethylation of gene body CGIs is considered to be predictive of 

elevated oncogene levels in HCC. Either way, aberrant methylation is capable of reprogramming gene 

expression, thereby potentially promoting tumorigenesis. Further analyses should be conducted to 

determine whether aberrant methylation of the particular genes mentioned here correlates with altered gene 

expression. From what has been presented above and what one may reveal in a simple literature search, it 
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is overwhelmingly clear that there is a lack of published literature on the PCa epigenome with the depth 

achieved by Illumina’s EPIC array and frankly, an absence of published literature on the African PCa 

epigenome, making this study unquestionably novel. Next to no information is available on African PCa 

epigenomics, highlighting the profound contribution of this work, despite the small sample size, and the 

potential future research that may be built thereon. 

 

There are a number of limitations to this current study that I recognize and are necessary to point out. 

Firstly, the small African cohort upon which this study was based is not truly representative of the whole 

southern African PCa population and as such, caution must be taken when interpreting results based on the 

eight individuals’ DNA methylation patterns. Furthermore, this study lacked suitable controls i.e. one of 

these eight individuals’ samples was histopathologically classified as BPH, possibly erroneously so in terms 

of underlying (epi)genomic alterations indicative of HRPCa, which of course cannot be seen with the naked 

eye. As a result, an objective of this study has gone partly unanswered. That is to say I was only able to 

identify 4 DMPs associated with African BPH versus African HRPCa, a value I presume would be much 

higher should a true BPH individual have been included for analysis. In future, I recommend that inclusion 

criteria for BPH samples should refer to a tumour purity cut-off. It remains largely unanswered just how 

distinct African BPH is from African HRPCa in terms of DNA methylation. A further limitation is having 

only one BPH individual to draw conclusions on as well as to make a comparison on. Additionally, the 

HRPCa African individuals displayed a range of tumour purities, with some as low as 38 %. In future, only 

high tumour purity samples should be chosen for analysis to minimise potential confounding from cell type 

compositions. Even so, I believe these confounders should ideally be adjusted for which I did not implement 

on this African dataset, unfortunately. However, I stand by my stating any further corrections on this small 

African cohort would have been too harsh on the data resulting in a loss of significant DMPs during data 

analysis. Overall, there is scope for improvement but the novelty of this current study remains.  
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Chapter 5: Pilot interrogation of the association between somatic mutational 

signatures and genome-wide DNA methylation in prostate tissue from men of African 

ancestry 

 

As discussed in Chapter 2, a complex interaction exists between genomic and epigenomic processes in 

cancer. A dysregulating factor for the epigenome may result in indirect dysregulation for the genome, and 

vice-versa. Findings presented in Chapter 4 provide evidence for the role of aberrant DNA methylation in 

African prostate cancer, although the driving factors for such observations are unknown. In this Chapter, I 

present a pilot investigation of the association between mutational signatures and global DNA methylation 

to speculate on the contribution of intrinsic and extrinsic factors to signatures observed in prostate tissue 

from men of African ancestry. 

 

In this Chapter, I would like to acknowledge the patients who consented to donating their tissue for the 

purposes of this research, as well as the many clinicians and staff associated with the Southern African 

Prostate Cancer Study. I would also like to extend a special thanks to Dr Weerachai Jaratlerdsiri, of the 

Human Comparative and Prostate Cancer Genomics Research team at the Garvan Institute of Medical 

Research, for generating the mutational signature data utilized in this Chapter. 
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Abstract 

An emerging field in cancer genomics is the identification of mutational signatures that provide novel 

insights into individual cancer aetiology. The power harnessed by these mutational signatures lies in their 

ability to reveal both endogenous and exogenous factors that contribute to cancer development. While a 

number of mutational signature classes have been identified, namely single-base-substitution, doublet-base-

substitution, clustered-base-substitution, small insertion-and-deletion, and genome rearrangement 

signatures, DNA methylation signatures are absent from these catalogues. Given the genomic-epigenomic 

interaction that exists not only for normal cellular processing, but also tumorigenesis, as well as the fact 

that epigenetic mechanisms offer environmental agents a direct link to mediate their carcinogenic properties 

on the human genome, resulting in altered DNA methylation, the addition and analysis of DNA methylation 

signatures will prove invaluable for providing further insight to the endogenous and exogenous contributors 

to cancer. The identification of DNA methylation signatures is beyond the scope of the work presented in 

this Chapter. However, herein I present a novel pilot investigation of the association between single-base-

substitution signatures and genome-wide DNA methylation to provide evidentiary support for the 

interaction that exists between these two processes. Additionally, I present a brief discussion on the value 

of DNA methylation signatures for the future of cancer genomics. 

 

 

5.1. Introduction 

The somatic mutations in a cancer genome are the result of multiple mutational processes.1 Each of these 

processes gives rise to a characteristic pattern of mutations, termed a mutational signature, and are caused 

by the activity of endogenous and/or exogenous mutational processes.2 Some of these processes have been 

active throughout one’s lifetime whilst others have been sporadically triggered by exogenous factors such 

as lifestyle choices.1 Recently, mathematical methods have been developed to decipher these distinct 

mutational signatures from large sets of somatic mutations.3,4 Such models extract these signatures by 

identifying the minimal set of mutational signatures that is able to best explain the proportion of each 

mutation type found in each cancer sample. Thereafter, the model estimates the contribution of each 

mutational signature to each sample. The value of identifying mutational signatures rests in their ability to 

provide new insights into the causes of individual cancers and are able to propose endogenous and 

exogenous factors that have influenced oncogenesis. By characterising the mutational processes that 

contribute to cancer, mutational signatures provide researchers with a tool to better understand cancer 

aetiology. 
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Mutational signatures are classed by type, namely (i) single-base-substitution (SBS), (ii) doublet-base-

substitution (DBS), (iii) clustered-base-substitution, (iv) small insertion-and-deletion (ID), and genome 

rearrangement signatures. SBSs are examined using 96 mutation types i.e. for each of the six types of 

somatic substitutions (C>A, C>G, C>T, T>A, T>G and T>C), the base immediately 5’ before the somatic 

mutation and the base immediately 3’ after the somatic mutation is included, resulting in 16 mutation types 

for each somatic substitution.4 SBS signatures are the most prevalent of the mutational signatures, with 

former studies having identified more than 30, as previously reported in COSMIC v.2. To date, this has 

been expanded to 49 identified SBS signatures.4 While many of these signatures are of known cause, there 

are numerous signatures of unknown aetiology. Some signatures are common, while others are rare and 

some represent normal biology, while others are more sinister, reflective of carcinogenic exposure or 

tumorigenic processes.4 For instance, SBS1 and SBS5 are universally-present signatures whereas SBS3, 

SBS6, SBS8 and SBS21 represent rarer mutational processes. Mutational signatures SBS1, SBS5 and 

SBS40 have previously been shown to associate with age, with SBS1 arising in response to 5-

methylcytosine deamination, a normal cellular event, and the mechanism by which SBS5 and SBS40 arises 

being unknown.4 Notably, SBS5 and SBS40 are flat signatures that share a high degree of similarity, 

sparking debate as to whether or not they represent the same signature. A number of signatures, such as 

SBS6 and SBS21, have been attributed to defective DNA maintenance processes but for a number of 

signatures, such as SBS8, mere speculation exists to explain the signature’s origins (DNA damage to 

guanine in response to an unknown, possibly external, DNA-damaging agent).  

 

Similar to somatic mutations, cancer-associated DNA methylation alterations may also be due to 

endogenous and/or exogenous mutational processes.5,6 Epigenetic dysregulation may arise in response to 

methylation alterations driven by factors such as age, innate susceptibility, the tumour microenvironment, 

toxicants, nutrition and stress.7–9 While epigenetic changes are reversible, if this dysregulation is not 

corrected for, they may accumulate over time. Therefore, the epigenome holds clues about one’s life stage 

and previous exposures, given the ability of the epigenome to be replicated during somatic cell mitosis.10 

DNA methylation is well-established as a key regulator of gene expression, thus alterations to this 

epigenetic mechanism can result in the activation of oncogenes and/or silencing of tumour suppressor 

genes, when considering cancer. Although once considered independent mechanisms contributing to cancer 

progression, it is now well-understood that a complex interaction exists between genomic and epigenomic 

mechanisms to aid tumorigenesis (see Chapter 2 for further detail).8 Ultimately, accumulated genomic and 

epigenomic aberrations result in the evolution of a malignant cell. 
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The genomic-epigenomic interplay has been demonstrated for prostate cancer (PCa); however, there is 

currently no known modifiable risk factor for this disease.11 Although great insights have been gained 

through deciphering the mutational signatures described above, there is much to be discovered by 

identifying and incorporating DNA methylation signatures with these signature catalogues given the 

genomic-epigenomic interaction that exists for oncogenesis. Perhaps the identification of a modifiable risk 

factor for PCa lies in the proposed aetiology of an as-yet unidentified DNA methylation signature. Such an 

accomplishment is beyond the scope of this current work and would require the development of 

bioinformatic tools and novel machine learning methods. However, to the best of my knowledge, 

researchers have yet to correlate matched mutational signature and DNA methylation data to confirm the 

role of DNA methylation in signature aetiology. Using African prostate tissue-derived data, the genomic-

epigenomic interaction will be explored in this pilot analysis. Furthermore, in light of DNA methylation 

profiles established for available signatures, I will address the applicability of previously-proposed 

aetiologies for SBS mutational signatures present in this African cohort.  

 

 

5.2. Materials & Methods 

5 . 2 . 1 .  R esou rc e  &  e th i cs  

Data was made available for eight South African men who consented upon enrolment in the Southern 

African Prostate Cancer Study (SAPCS).12 Patients were of African ethnicity, confirmed using ancestry 

markers, and self-identified as such. The previous SAPCS as well as the current study outlined here was 

reviewed and approved by the University of Pretoria’s Human Research Ethics Committee (HREC 

#43/2010 and #37/2021, respectively). The age distribution of the patients ranged from 54-99 and further 

summary data provided for the eight patients can be viewed in Table 4-1. Such data was provided by the 

Human Comparative and Prostate Cancer Genomics (HCPCG) Research team at the Garvan Institute of 

Medical Research, located in Sydney, Australia. Data provided is currently unpublished and funded by the 

Australian National Health and Medical Research Council (NHMRC). 

 

5 . 2 . 2 .  S ing l e - b as e - s ubs t i t u t i on  s igna t u re  da ta  

Single-base-substitution (SBS) signature data was made available for the eight African samples by the 

HCPCG Research team. Somatic mutational signatures were identified using SigProfiler4,13, whereby the 

number of somatic mutations associated with each mutational signature was estimated for each sample. De 

novo extraction of SBS mutational signatures and existing global COSMIC (Catalogue of Somatic 
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Mutations in Cancer v3.2) signatures were used for analysis. Single-base-substitution signatures identified 

in this cohort includes SBS1, SBS3, SBS5, SBS6, SBS8, SBS21 and SBS40 (see Fig. 5-1).  

 

5 . 2 . 3 .  DNA  meth y la t i on  da t a  &  pro ce s s ing  

Raw DNA methylation data was generated for the eight African patients at the Australian Genome Research 

Facility (AGRF, Melbourne, Australia) and subsequently provided by the HCPCG Research team at the 

Garvan Institute. DNA methylation was quantified using the Illumina Infinium HumanMethylationEPIC 

BeadChip following the Illumina Infinium HD Methylation Assay (Illumina, CA, USA). The data provided 

by the AGRF included raw Illumina intensity data (IDAT) files, the Illumina manifest file (v1.0 B5, BPM 

format), a sample sheet (CSV format) and a genotyping service report from the research facility. DNA 

methylation data was processed and analysed by myself using the novel African-relevant pipeline 

established in Chapter 3 and applied as previously described in Chapter 4. 

 

 
Fig. 5-1 Single-base-substitution (SBS) signature contributions present in each African sample (UP0000). 
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5 . 2 . 4 .  I den t i f y ing  d i f f e ren t ia l l y  me th y l a t ed  p rob es  

I performed differential methylation analysis among the African samples to identify significant differential 

methylated probes (DMPs) that correlate with each of the above-mentioned mutational signatures. I used 

the champ.DMP() function to identify significant DMPs and the DMP.GUI() function to visualise the 

results. Linear regression was conducted on each CpG site within the African dataset to identify signature-

related CpG sites. It was decided that DMPs be selected based on a BH-adjusted threshold of p < 0.05. The 

Benjamini-Hochberg p-value adjustment controls the false discovery rate.14 DMPs were categorized as 

displaying hypermethylation (beta ≥ 0.8), partial methylation (beta ~ 0.5) or hypomethylation (beta ≤ 0.2), 

as per recommendations from Du et al. (2010).15 For each signature, I chose the top three (where applicable) 

genes (most abundant for significant CpGs) for closer DNA methylation pattern analysis. Analyses were 

conducted using the hg19 genome assembly. 

 

5 . 2 . 5 .  S ta t i s t i ca l  a na ly s i s  

Spearman’s rank correlation was computed to assess the relationship between mutational signatures and 

clinical/genomic variables (as summarised in Table 4-1). Spearman’s correlation was selected for being 

robust to non-normally distributed data and for not assuming a distribution of the data. A p-value < 0.05 

was considered to be statistically significant. 

 

All data processing and analyses were performed with R16 ≥ v.4.0.2 and RStudio17 ≥ v.1.3 statistical 

software. 

 

 

5.3. Results 

5 . 3 . 1 .  I nve s t i ga t ing  t he  a s soc i a t ion  b e tw een  s in g l e - b as e - s ubs t i t u t i on  s igna t ure s  

and  gen ome- wid e  DNA  m eth y la t io n  

I found a number of significant DMPs to be associated with each of the SBS signatures identified within 

the small African cohort (Table 5-1). Additionally, the DNA methylation profiles associated with each 

SBS signature (Fig. 5-2) was analysed, each discussed further, below. However, the pilot nature of this 

analysis must be emphasised, in that no definitive conclusions can be drawn from results presented below. 

 

SBS1 and SBS5. All African patients in this cohort displayed mutational signatures SBS1 and SBS5, which 

are traditionally age-related.4 Figure 5-2 shows that for SBS1 and SBS5, patient UP2113 exhibited a 

distinct methylation profile compared to the other African patients. If these signatures were related to age, 
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one would expect all African individuals to display similar DNA methylation profiles that were reflective 

of age-accumulated DNA methylation changes. However, the vastly distinct DNA methylation profile 

displayed by UP2113 cannot be attributed to age but perhaps could be explained by an environmental 

exposure. Interestingly, I noted that this individual is an outlier for TMB (see Table 4-1).  

 

Table 5-1 Differentially methylated probes identified by the novel African-relevant pipeline to be associated with 

single-base-substitution signatures in the African cohort. 

 

SBS3. A single African patient, UP2048, displayed mutational signature SBS3. The proposed aetiology for 

SBS3 is homologous recombination deficiency (HRD) due to germline and/or somatic mutations, 

frequently in BRCA1 and BRCA2.4 As evidenced by a single patient displaying SBS3, HRD is not a 

common occurrence in PCa (more so in ovarian and breast cancer) and I only identified 17 DMPs to be 

associated with this mutational signature (Table 5-1). Aberrant BRCA1 promoter methylation has been 

suggested as a possible mechanism for HRD in ovarian cancer.18 Although BRCA1 (or BRCA2) was not 

enriched for any significant DMPs in this African prostate tissue-derived cohort, UP2048 did display a 

distinct methylation profile in comparison to the individuals that did not display SBS3 (Fig. 5-2). 

 

SBS6 and SBS21. Mutational signatures SBS6 and SBS21 are proposed to be the result of defective DNA 

mismatch repair.4 African patients UP2113 and UP2048 both displayed SBS6 and SBS21. In Figure 5-2, 

patient UP2113 clearly displays a distinct DNA methylation profile compared to the other patients, for both 

SBS6 and SBS21. Considering the defective DNA mismatch repair nature of these SBS signatures, I noted 

that UP2113’s tumour sample displayed MSI-H, which itself is characterised by a DNA mismatch repair 

deficiency. However, UP2048 showed MSS and a methylation profile for SBS6 and SBS21 that was  
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Fig. 5-2 Heatmaps displaying significant differentially methylated probes (cg00000000) between African individuals 

for a number of single-base substitution (SBS) signatures (p < 0.05). 

 

comparable to the other MSS samples (Fig. 5-2). This may be explained by the contribution of somatic 

mutations that UP2048 displayed for SBS6 and SBS21 compared to contributions displayed by UP2113 

(11 and 18 versus 39,133 and 36,686, respectively). It appears as though a higher mutational contribution 

is indicative of a more distinct methylation profile. 

 

SBS8. A single African patient, UP2039, displayed mutational signature SBS8, for which the aetiology is 

currently unknown.4 Figure 5-2 shows UP2039 to display a distinct DNA methylation profile for SBS8 

compared to the other African patients, although which factor(s) may be driving this differential 

methylation associated with SBS8 is unclear. 

 

SBS40. African patients UP2133, UP2099 and UP2116 displayed mutational signature SBS40. Currently 

the aetiology of SBS40 is unknown.4 As evidenced in Figure 5-2, patients UP2133, UP2099 and UP2116 

all display DNA methylation profiles that are unique in contrast to patients that did not display SBS40. 

Notably, UP2133 exhibits its own methylation profile that differs somewhat from UP2099 and UP2166. 

This may be explained by UP2133’s higher mutational contribution to SBS40 compared to UP2099’s and 

UP2116’s (6,903 versus 3,764 and 2,483, respectively). This suggests that different SBS mutational 

contributions associate with different DNA methylation profiles. Which factors potentially account for 

different SBS40 mutational contributions is unknown, as previously mentioned. Furthermore, although 

SBS40 often appears similar to SBS5 in multiple cancer types, I found the two mutational signatures to be 
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rather different from one another in this small African cohort for a number of reasons: (i) SBS5 has 

substantially more associated DMPs than SBS40 (although this may be reflective of more patients 

displaying SBS5), (ii) SBS5 and SBS40 show different top genes enriched for significant CpGs (Table 5-

1), (iii) SBS5 and SBS40 display different DNA methylation profiles (Fig. 5-2), and (iv) SBS5 and SBS40 

correlate with different genomic variables (see below, Section 5.3.2.). 

 

5 . 3 . 2 .  A sse s s ing  t he  co r re l a t ion s  o f  m u ta t iona l  s ig na tu re s  

From the DMP analysis presented above, I aimed to investigate whether or not SBS signatures within this 

African cohort associated with the clinical and genomic variables they had traditionally been shown to in 

previous studies. 

 

5 . 3 . 2 . 1 .  Cor r e l a t i on s  wi th  age  

Mutational signatures SBS1 and SBS5 traditionally correlate with age.4 However, I did not find a 

statistically significant correlation between age and SBS1 (r(6) = 0.45, p = 0.268) nor between age and 

SBS5 (r(6) = 0.45, p = 0.268) despite a range of ages amongst the Africans at diagnosis (54-99, Mdn = 68). 

Due to the small cohort size, one cannot conclude that no correlation exists between these variables but 

rather that in this study, I do not have sufficient evidence to suggest that there is a correlation between age 

and SBS1/SBS5. However, as noted above, patient UP2113, whose sample displayed a distinct DNA 

methylation profile for both SBS1 and SBS5 (Fig. 5-2), was an outlier for TMB. 

 

5 . 3 . 2 . 2 .  Cor r e l a t i on s  wi th  t umour  mut a t iona l  b u r den  

Interestingly, I found that both mutational signatures SBS1 and SBS5 showed a significantly strong positive 

correlation with TMB (r(6) = 0.93, p = 0.002 and r(6) = 0.86, p = 0.011, respectively) in the African cohort. 

 

5 . 3 . 2 . 3 .  Cor r e l a t i on s  wi th  h igh  mi c r os a t e l l i t e  i n s t a b i l i t y  

The mutational signatures SBS6 and SBS21 are known to associate with deficiency in DNA mismatch 

repair.4 A single African sample (UP2113) in this cohort displayed MSI-H cancer cells (see Table 4-1), 

characterized by impaired DNA mismatch repair. Consistent with previous findings, I found a significant 

positive correlation between MSI-H status (i.e. deficient DNA mismatch repair) and SBS6 (r(6) = 0.76, p 

= 0.030) as well as between MSI-H status (i.e. deficient DNA mismatch repair) and SBS21 (r(6) = 0.76, p 

= 0.030) in the African cohort. 
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5 . 3 . 2 . 4 .  Cor r e l a t i on s  wi th  p e r c en ta ge  o f  genome a l t e r a t i on  

Mutational signature SBS40, for which the aetiology is currently unknown, showed a significant positive 

correlation with PGA (r(6) = 0.79, p = 0.019) in the African cohort. 

 

 

5.4. Discussion 

Here I present a novel investigation, albeit pilot, of the association between genomic mutational signatures 

and genome-wide differential DNA methylation in prostate tissue from South African men. Additionally, I 

assessed correlations between these mutational signatures and known clinical and genomic variables to 

ascertain whether proposed aetiologies for single-base-substitution signatures in previous studies were 

explicable for findings generated within this small African cohort. However, it must be noted that no 

significant conclusions can be drawn from findings presented here owing to the limited cohort size. 

 

Investigating the association between SBS signatures and genome-wide DNA methylation, I identified a 

wealth of significant CpG sites to be associated with each of the SBS signatures of relevance to this study 

(Table 5-1). This link between SBS signatures and DNA methylation profiles is perhaps reflective of the 

genomic-epigenomic interplay known to underlie not only normal cell processes, but also oncogenesis.19,20 

In other words, DNA methylation at significant CpG sites identified for an SBS signature may interact with 

the genomic and/or environmental processes that ultimately give rise to that signature. 

 

Mutational signatures SBS1 and SBS5 have previously been suggested to be reflective of age-accumulated 

alterations.4 However, in this study, the distinct methylation profile demonstrated by UP2113 for both these 

signatures (Fig. 5-2) was likely reflective of an extreme TMB. This observation was supported by a 

significantly strong positive correlation between SBS1 and TMB as well as between SBS5 and TMB. The 

proposed aetiology for SBS1 is 5-methylcytosine deamination whereas the mechanism by which SBS5 

arises is unknown. Interestingly, a high TMB is suggestive of an environmental/carcinogenic exposure21,22, 

such as UV radiation in melanoma and tobacco smoke in lung cancer.23,24 Given that African prostate 

tumours display significantly higher TMBs than European prostate tumours25, it may be that an 

environmental exposure underlies this observation and by extension, SBS1 and SBS5 mutational signatures 

in African prostate tumours. Indeed, it has been suggested that SBS5 may be the result of DNA damage to 

adenine in response to an unknown (external) DNA-damaging agent.4 Furthermore, it may be that the 

degree of exposure is associated with the extent to which DNA is aberrantly methylated. Further 

investigation on a much larger cohort accompanied by patient exposure data is needed to confirm this.  
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Some contention exists as to whether or not mutational signatures SBS5 and SBS40 represent distinct 

signature profiles.4 The uncertainty is attributed to the great similarity that exists for these two signatures. 

However, the aetiology for both is currently unknown. A number of existing identified signatures are split 

into several constituent signatures, reflecting several distinct mutational processes. Such processes may be 

initiated by the same exposure that have closely, but not perfectly, correlated activities (e.g. SBS7a, SBS7b, 

SBS7c and SBS7d all due to UV light exposure). In agreement with findings for SBS5, I found no 

correlation between age and SBS40 (not shown), despite previous studies showing otherwise.4 However, I 

did find SBS40 showed a significant positive correlation with PGA. Intriguingly, a high PGA may be 

indicative of an external exposure26,27, which makes one question whether the same could be said for 

SBS40. As discussed just above, SBS5 too may possibly arise in response to an external exposure. Should 

it be that the similarity observed between SBS5 and SBS40 could be credited to the same exposure initiating 

processes that have closely correlated activities, it would support the classification of these signatures as 

constituent signatures (e.g. SBS5a and SBS5b) rather than distinct signature profiles. However, this is pure 

speculation and a much larger, comprehensive investigation would be required to explore this further.  

 

MSI is a hypermutable phenotype characterised by the loss of DNA mismatch repair activity and can arise 

through CpG island hypermethylation.28 Signatures SBS6 and SBS21 are proposed to result in response to 

defective DNA mismatch repair.4 A single African patient (UP2113) displayed MSI-H and showed a unique 

DNA methylation profile for both SBS6 and SBS21 (Fig. 5-2). Additionally, I found a significant positive 

correlation between MSI-H and SBS6 as well as between MSI-H and SBS21. Consistent with the 

previously proposed aetiology for SBS6 and SBS21, it appears as though these signatures are associated 

with defective DNA mismatch repair in this African cohort. 

 

Finally, neither mutational signature SBS3 nor SBS8 correlated with any of the variables measured in this 

study. SBS3 is characterised by HRD due to BRCA1 and/or BRCA2 mutations whereas for SBS8, the 

aetiology is currently unknown. However, it has been suggested that SBS8 is associated with DNA damage 

to guanine in response to an unknown (external) DNA-damaging agent.4 Because so many signatures are 

still of unknown cause and assuming intrinsic associations have been investigated for said signatures (with 

insignificant findings), it may be reasonable to assume that environmental (as yet, unmeasured) factors are 

at play. 

 

Although I identified SBS signature-associated DNA methylation profiles, the question remains as to which 

of those significant CpG sites are representative of a genome-wide DNA methylation signature i.e. a 

generic pattern of aberrant DNA methylation that arises during tumorigenesis. A greater spectrum and 
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understanding of the mutational processes that contribute to cancer could be attained from identifying such 

DNA methylation signatures. To achieve this, large sample numbers and tools to extract DNA methylation 

signatures would be required. Furthermore, and beyond the scope of this present study, the true insight to 

be gained from genomic-epigenomic assimilation would be to integrate genomic signatures with 

epigenomic signatures. Such integration would require the development of novel machine learning 

methods. 

 

Genomic signatures provide novel insights into the causes of individual cancers and reveal intrinsic and 

extrinsic factors (where known) that have contributed to cancer development.4 A number of mutational 

signatures, SBS signatures aside, have been identified in human cancer, namely doublet-base-substitution 

(DBS), clustered-base-substitution and small insertion-and-deletion (ID) signatures.4 However, many of 

these signatures are still of unknown cause. An individual cancer may be characterised by a number of 

these signatures and the addition of epigenomic signatures would undoubtedly provide further insight into 

cancer aetiologies. Of particular interest for PCa, for which there is no known modifiable risk factor11, the 

identification of possible external driving factors would be an invaluable discovery, allowing clinicians to 

advise at-risk individuals against such exposures. The key to such a discovery may very well lie in the 

identification of DNA methylation signatures further associated with patient external exposure data. Indeed, 

it is well-established that environmental exposures are capable of influencing epigenomic changes.6 To 

revisit the integration of genomic and epigenomic signatures, should an extrinsic contributing factor be 

identified for a DNA methylation signature and should said DNA methylation signature correlate with a 

known genomic signature, a potential cascade of oncogenic processes may be identified. I propose a 

mechanism in which an environmental exposure drives aberrant DNA methylation, which in turn causes 

genetic alterations i.e. a carcinogen directly associates with the epigenome and indirectly associates with 

the genome. Such investigations may propose aetiologies for genomic signatures currently of unknown 

cause.  

 

From the discussion above, it is evident that there is much to be gained from investigating cancer with a 

genome-wide versus targeted approach. Should the environment be credited for a role in tumorigenesis, it 

seems only logical to assume such an influence would be genome-wide. Given that cancer arises in response 

to complex cooperation between a multitude of events, a greater potential for uncovering cancer aetiology 

lies in genomic, versus genetic, investigations. This underscores the very power harnessed by mutational 

signatures. Although currently an emerging field in cancer genomics, advances in mutational signature 

knowledge promise to uncover new insights into the causes of individual cancers and the addition of DNA 

methylation signatures will surely aid this endeavour.  
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To my knowledge, the integration of DNA methylation data with existing genomic signatures is a novel 

concept that has not yet been investigated, and is challenged by the rarity of researchers possessing matched 

genomic and epigenomic data due to high costs. This highlights the unique nature of the research and 

discussions presented in this Chapter. However, I acknowledge that the limited cohort size is a considerable 

limitation that exists for this present study and as such, interpretations of findings presented here are mere 

speculation. Evidently, there is a need for large volumes of such matched data to identify global DNA 

methylation signatures and to ultimately answer clinically-relevant questions as a direct achievement of 

genomic-epigenomic integration. No doubt future research will aim to address this. 
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Chapter 6: Conclusions & Future Directions 

As part of this research, I successfully established a novel African-relevant genome-wide bioinformatic 

pipeline for the processing and normalisation of African DNA methylation data (Chapter 3). I then applied 

this pipeline, enabling the identification of differentially methylated CpG sites (DMPs) that potentially 

contribute to aggressive prostate cancer (PCa) in a small cohort of South African men (Chapter 4). Finally, 

I assessed the association between mutational genomic signatures and DNA methylation to confirm whether 

or not there is evidence that epigenomic alterations interact with genomic processes that ultimately give 

rise to such signatures (Chapter 5). In Chapters 4 and 5, although a number of significant DMPs and 

genes enriched therewith were identified, caution should be taken in interpreting these results due to the 

small African cohort analysed. Furthermore, the novel pipeline established herein is not only relevant 

within the context of PCa, but other cancer types too.  

 

Considering that African-relevant tools are extremely scarce, the development of a bioinformatic tool such 

as this was necessary. Such a scarcity may be explained by the vast lack of published African PCa 

epigenomic literature, suggesting African men to be underrepresented in this field. Hence, should there be 

no African DNA methylation (EPIC) data to process and analyse, it follows that there would be no 

appropriate tools to suitably do so. It is even true that European EPIC PCa data is scarce, with only 7 studies 

providing such publicly-accessible data via NCBI’s Gene Expression Omnibus (GEO, as of August 2021; 

no African data is available), making this African study a first of its kind. Therefore, despite the small 

African cohort upon which DNA methylation analysis was conducted, the novelty of this current study 

cannot be overlooked. Even more importantly, the findings of this research provide a glimpse of the 

epigenomics that underlies African PCa, which no doubt holds vital insights to expand our understanding 

of African PCa and which ultimately, will hopefully motivate more comprehensive, sizable work in future. 

 

For future research, naturally a much larger African cohort would be ideal for data processing and analysis. 

This would allow for more sound interpretation of DNA methylation’s influence on PCa for the larger 

southern African population. If possible, only samples with a high tumour purity (e.g. greater than 90 %, 

as estimated by a histopathologist) should be chosen for analysis and suitable controls should be included; 

that is, either non-BPH, non-malignant samples or true BPH samples with very low tumour purity estimates. 

Additionally, a greater number of controls should be included. Analysis on a larger cohort may even 

motivate the use of M-values rather than beta-values, where appropriate, for statistical validity. 

 

As discussed in Chapter 4, confounding variables should ideally be adjusted for within the data. In this 

study, PGA (percent genome alteration) and tumour purity were identified as such. Necessity for this 
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adjustment is particularly true with regards to tumour purity because confounding introduced by cell-type 

heterogeneity is a common issue that arises in DNA methylation studies1–3 (see Chapter 2 for a discussion 

on this topic), and as seen in this current study, it had a significant effect on the African dataset (presented 

in Chapter 4). Under ideal circumstances, one should be sure that DMPs inferred are not driven by 

underlying changes introduced by confounders. On that note, an improvement I could suggest for this study 

would be to utilize the 18 red and green internal control probes included within Illumina’s EPIC array. In 

doing so, one could assess bisulfite conversion efficiency as well as identify any possible variability in the 

data that was introduced by the control probes. An SVD (singular value decomposition) analysis using the 

champ.SVD() function could achieve this. Should significant components of variation correlate with the 

control probes, such variability could be adjusted for in a similar manner to that of biological confounders. 

A method introduced in Chapter 2, namely surrogate variable analysis (SVA), appears to be an appropriate 

manner for performing such corrections, having been recommended numerous times.3–5 This may be 

implemented within the sva package in R.6 

 

In terms of SNP-affect probes, for future, it may even be sufficient to flag and filter SNPs that lie in the 

first and second CpG positions for these being the SNPs that exert the strongest effect on influencing 

methylation value callouts.7 In contrast to this study, SNPs that lie along the body of the probe may just be 

flagged for the purpose of being cautious when interpreting results from these probes. In light of these 

suggestions, the full SNP-affected probe filtering used here may have been too harsh. Furthermore, a 

limitation I touched on in Chapter 3 is that the established novel African-relevant pipeline requires that 

researchers be in possession of patient-matched genomic data to filter SNP-affected probes, which I 

acknowledge is often absent in studies due to high costs. Future studies may consider developing a 

consensus panel of African SNP-affected probes recommended for filtering, that is designed according to 

population genetics rather than individual patients. Development of such a panel would require large 

volumes of African germline variant data but would universalize SNP-affected probe filtering for 

researchers working on any African-related DNA methylation dataset. 

 

For data analysis, should time have allowed for it, an intriguing comparison would be between African 

versus European HRPCa for the identification of significant ethnicity-associated DMPs. As mentioned 

above, NCBI’s GEO contained a limited number of publicly-accessible European EPIC PCa data and of 

those studies, only one or two were suitable for comparison with the African cohort in terms of matching 

for treatment-naïve and appropriate Gleason score patients. However, an issue that exists with the publicly-

available data is the absence of a sample sheet (see Section 3.2.2.). This file, which stores phenotypic data 

associated with the EPIC BeadChip, is needed by methods like ChAMP and minfi for the data extraction 



 
102 

 
© University of Pretoria 

step in the bioinformatic pipeline. Should this file have been available, the accompanying European EPIC 

PCa data could be processed and analysed within the ChAMP pipeline utilizing many of the default 

parameters that assume European ethnicity of a cohort (e.g. SNP filtering according to dbSNP). Upon recent 

investigation into the sample sheet issue, I came across a Python-based package, methylprep8, which is 

available for Illumina methylation array processing of public datasets from NCBI’s GEO, and includes a 

function for creating a sample sheet from a public dataset. Therefore, this tool may offer a promising 

solution. 

 

Further analyses that may be performed on this dataset or on a larger African cohort would be to confirm 

the effects of aberrant DNA methylation on gene expression for a number of identified top candidate genes. 

In findings presented here (Chapter 4), potential candidate genes may be MECOM, GABBR1, ACACB, 

DSCAML1 and RASA3 due to suspected gene expression changes in response to aberrant DNA methylation 

in African HRPCa (high-risk prostate cancer) and for their respective roles, although not all epigenomic, in 

numerous cancer types. Targeted bisulfite sequencing could then be performed to confirm DNA 

methylation patterns at single-base resolution along the length of these genes. Following this, the DNA 

methylation data of said genes could be correlated with expression data to assess potential functional 

impacts.  

 

As discussed in Chapter 5, mutational signatures are an emerging field in cancer genomics that are able to 

shed light on the mutational processes that contribute to cancer development. There is great potential to 

expand on knowledge within this field by identifying and integrating DNA methylation signatures with 

existing genomic signatures. Large patient numbers and appropriate bioinformatic tools would be required 

to decipher DNA methylation as a global signature. I believe the addition of such signatures would prove 

invaluable to better understanding cancer aetiology, including PCa, and particularly where external 

exposures are concerned, given that epigenetics provides a molecular mechanism for the environment to 

directly infer disease susceptibility in an individual.9 

 

Overall, the research presented throughout this dissertation is novel in its African-relevance and contributes 

to the African genomic knowledge economy. Although based on a small cohort, I believe this work provides 

a secure foundation on which the improvements and possible advances, discussed above, may be built. 

Additionally, future prospects addressed in this Chapter encompass budding fields within cancer genomics 

that promise to deliver on new and exciting discoveries. It is imperative that researchers grasp the immense 

value to be gained should future research efforts be focussed within the context of the African continent. 
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Appendices 

Appendix 1: Figure S1 

Individual sample density plots displaying Infinium type I and Infinium type II probe beta-value 

distributions before and after BMIQ normalisation. Patients a UP2037, b UP2039, c UP2048, d UP2099,  

e UP2113, f UP2116, g UP2119 and h UP2133 are displayed. 
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Appendix 2: Table S1 (Additional File) 

Probes overlapping African genetic variants, as identified by MethylToSNP, at targeted CpG sites, at single 

base extension sites (for Infinium type I probes) and within the body of the probe (48 base pairs for Infinium 

type I probes and 49 base pairs for Infinium type II probes). Annotation according to dbSNP release 147. 

Attached and accessible via https://drive.google.com/drive/folders/1EGYbH3z5XXeBrpRpCnY7P73f7 

Aql84Mp?usp=sharing.  

Filename: A2_MethylToSNP_variants.csv 

 

Appendix 3: Table S2 (Additional File) 

Probes overlapping genetic variants at targeted CpG sites, as identified by the established African patient-

matched germline variant data method.  

Attached and accessible via https://drive.google.com/drive/folders/1EGYbH3z5XXeBrpRpCnY7P73f7 

Aql84Mp?usp=sharing.  

Filename: A3_EPIC_variants_CpG.csv 

 

Appendix 4: Table S3 (Additional File) 

Probes overlapping genetic variants at single base extension sites (for Infinium type I probes), as identified 

by the established African patient-matched germline variant data method.  

Attached and accessible via https://drive.google.com/drive/folders/1EGYbH3z5XXeBrpRpCnY7P73f7 

Aql84Mp?usp=sharing.  

Filename: A4_EPIC_variants_SBE.csv 

 

Appendix 5: Table S4 (Additional File) 

Probes overlapping genetic variants within the body of the probe (48 base pairs for Infinium type I probes 

and 49 base pairs for Infinium type II probes), as identified by the established African patient-matched 

germline variant data method.  

Attached and accessible via https://drive.google.com/drive/folders/1EGYbH3z5XXeBrpRpCnY7P73f7 

Aql84Mp?usp=sharing.  

Filename: A5_EPIC_variants_Body.csv 

 

Appendix 6: Figure S2 

Heatmaps displaying significant differentially methylated probes (cg00000000) between African 

individuals for a number of clinical and genomic variables (p < 0.05). Displayed are DMPs associated with 
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a tumour purity, b TMB, c PGA, d SV calls, e MSI-H versus MSS, f CpG C > T variant count and g C > 

T variant count. Heatmaps show a maximum of 5,000 significant DMPs. 
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