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A common problem found in boilers in many industries, is fouling accumulation on

the heat transfer surfaces. Recovery boilers in certain paper and pulp industries

are especially vulnerable to ash fouling due to the composition of the fuel used for

them. Typically, soot blowers (long tubes through which pressurised steam or air is

blown) are employed in boilers to deal with fouling accumulation. The high-pressure

steam or air knocks off deposits that have formed on the heat transfer surfaces in the

boiler. Recently, it has become necessary to optimise these soot blowing strategies, to

increase boiler efficiency and longevity. Many methodologies have been implemented

that attempt to optimise the soot blowing schedule and duration of soot blowing in

different boilers. Typically, traditional machine learning models, such as artificial neural

networks, support vector machines and long short-term memory networks, have been

used to predict the fouling levels in boilers as well as the fouling change during soot

blowing processes. However, these models all possess the same flaw, which is a lack of

interpretability. These models are typically described as ‘black-box’ models, and, while

their predictions are generally accurate, they are very difficult to interpret. It is often

impossible to determine where errors come from for these machine learning models.

In this study, a novel approach to machine learning models is implemented, that

attempts to not only fit a dataset with a model, but rather to extract the underlying

physics equations from sensor measurement data, obtained from the recovery boiler at

SAPPI’s Ngodwana mill. A thermodynamic model is first proposed that takes sensor

measurements and boiler parameters into account to calculate an estimated level of
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fouling in the boiler. Previously, no such metric for fouling existed for the boiler, and the

thermodynamic model alone is already a positive result, since the fouling in the boiler can

now be monitored more accurately and can be used in different machine learning applica-

tions. The thermodynamic model also allows one to understand which physics equations

drive the processes within the boiler and which input parameters are important. Once

the fouling levels are determined for the boiler over a fixed period, the model is validated

using the soot blowing schedule and observing the changes in the estimated fouling levels.

The sparse identification of non-linear system dynamics (SINDy) algorithm is then

introduced, which is an algorithm that can extract the underlying physics equations

from measurement data and was developed by Brunton et al. (2016). The SINDy

algorithm is prospectively applied to the Ngodwana dataset, with a default algorithm

setup (algorithm parameters were not specifically selected), to establish basic model

forms typically found in the dataset. The idea was not to test the algorithm on the

real dataset yet, but rather just to extract a few default models that can be used for

setting up verification problems. These verification models are used to test the iden-

tifiability of the underlying physics as well as the recovery ability of the SINDy algorithm.

At first, the basic models’ coefficients are sequentially changed, to determine how

they affect the curve shape of the simulated models. Hence, one can determine in

which coefficient ranges the physics are more identifiable. The recovery ability of the

SINDy algorithm is subsequently tested, by varying the noise and initial conditions

of the artificial dataset curves, which were generated by the verification models. It

was seen that the SINDy algorithm was sensitive to noise and that noise could cause

the algorithm to extract incorrect models. Further, it was seen that the SINDy

algorithm would not extract consistent models when the curve shapes of the data

being fitted changed, or when the initial values of these curves shifted. In a final

verification problem, first and second-order models were fitted to data that was gen-

erated by a second-order model, using the SINDy algorithm. It was seen that the

lower order models were naturally not the optimal fit for the data, however, the results

were still interpretable and conveyed basic information regarding the soot blowing curves.

The SINDy algorithm was then applied to the Ngodwana measurement dataset,

once the verification problem results were interpreted. The optimal polynomial order

models were initially determined, by using the results from the actual dataset as well

as knowledge gained through the verification problems. A baseline algorithm setup was

established and the soot blowing sequence models were extracted for a specific soot

blower pair in the boiler. It was noted that the model coefficients fluctuated severely

from one sequence to the next, even though the sequences came from the same soot
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blower pair. This was expected, since there was a lot of inconsistency regarding the

soot blowing curve shapes and initial values as well as the fact that there was inevitably

noise present in the data that could further impact the algorithm’s performance. A

positive result from the baseline implementation, was the fact that interpretable models

could already be seen even if they were not consistent. The model forms obtained were

logical and showed that one could potentially extract working physics models from the

Ngodwana boiler.

In an attempt to circumvent the data inconsistency, additional measurement in-

puts were given to the algorithm to increase possible model complexity. In some cases,

the additional inputs improved the model consistency, however, general models could

still not be extracted. Some of the additional inputs did improve the prediction accuracy

of the extracted models dramatically and showed which sensor measurements were

important. This was promising, since accurate predictions in a complex physics environ-

ment such as the recovery boiler were difficult to come by. Several additional methods

were tested to try and overcome the data inconsistency. This included optimising the

threshold parameter of the optimiser algorithm sequentially, scaling the fouling factor

and normalising the dataset. None of these proved to be very successful and only slightly

improved model consistency in some cases. Finally, soot blowing sequences, that had

the same basic curve shape and initial values, were manually selected, to introduce some

consistency in the data.The models that were extracted, were slightly more consistent and

it was shown that a general model could then be found for the simple fouling factor input

only models. The more complex models, with additional inputs, however, were too sensi-

tive to even slight data variation. The experiment also showed that sensor measurement

errors were likely one of the causes of data inconsistency that was causing coefficient fluc-

tuation and further highlighted how complex the dataset was that was being worked with.

Overall, the results of this study were positive, since an estimated measurement

of fouling was introduced in the boiler that had not been available before. Further, the

SINDy algorithm had no trouble extracting interpretable models and these models were

able to predict the soot blowing sequences with a high degree of accuracy, despite the

complex nature of the data. Lastly, the study has allowed one to determine how one

would have to approach measurement datasets from the boiler in the future, especially

regarding the data processing and sequence selection. If one would want to implement

the extracted models in a more predictive capacity, one would have to be able to extract

more general models for which this information is invaluable. Overall, the study has laid

a strong foundation for future research regarding the use of SINDy for the extraction of

boiler physics, which could potentially be used in soot blowing optimisation.
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CHAPTER 1

Overview

1.1 Background

All over the world, the manufacturing and power generation sectors are moving towards

becoming more autonomous and requiring less human intervention. Companies are

moving toward the use of Artificial Intelligence (AI) to increase the efficiency of manu-

facturing and power generation processes. Most of these industrial processes generate

large amounts of data, that can be utilized by AI systems to extract useful insights for

the optimisation of plant processes. Many of these AI systems can then monitor the

plants online, and make adjustments on the fly, to optimize manufacturing processes

and hence increase efficiency (Keith Mills 2019). The integration of AI in manufacturing

processes as companies move toward sustainability is of vital importance and many

companies have already managed to integrate such systems with great success (Cioffi

et al. 2020).

A study published by PwC shows that AI systems could boost the worldwide

GDP by as much as 14 % over the next 10 years. China could see an increase in their

GDP of up to 26 % while North America could see an increase of up to 14 % (Verweij

& Rao 2017). It is therefore clear that the use of artificial intelligence in industrial

processes could result in more efficient manufacturing and an increase in a company’s

profit. Furthermore, there has been a worldwide movement toward sustainability and

companies are under pressure from government regulations and other organizations

to evaluate their environmental impact critically (Gunasekaran & Spalanzani 2012).

Increasing manufacturing efficiency, through the use of AI, is directly contributing to

a company’s sustainability as they will consume fewer resources to produce the same

number of products.
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CHAPTER 1. OVERVIEW 2

In the manufacturing and power generation sectors, boilers are widely used to

generate steam for plant processes and energy generation. Because of the high tem-

peratures present in boilers, and the nature of the fuels used for combustion, boilers

typically come with a variety of problems and require extensive maintenance throughout

their service lifetimes. One such problem is the accumulation of deposits on the heat

transfer surfaces of the boiler, known as fouling. These deposits reduce the heat transfer

efficiency of the boiler, as the deposits act as insulation, which prevents heat from

passing through the surfaces to the working fluid. Should the deposit build-up be left

unchecked, the boiler will eventually plug in some sections. Plugging refers to the case

where the deposit build-up in a section of the boiler is so severe that the entire section

is blocked, preventing all airflow (Tran 2007). This requires the boiler to be shut down

and cleaned out before operations can continue, and results in large financial losses for a

company.

Currently, soot blowing is used to prevent as much deposit formation as possible.

Soot blowing refers to the use of high-pressure steam or air, blasted onto the heat

transfer surfaces, to remove deposits. In most boilers found in the industry, very little

has been done to optimise the frequency and duration of soot blowing procedures.

Usually, soot blowing is performed, based on the experience of an operator or by

establishing a schedule through trial and error (Peña et al. 2011). The problem with

this approach is that both over-blowing and under-blowing leads to decreased efficiency.

Over-blowing can lead to corrosion of the heat transfer surfaces, which could incur ex-

pensive maintenance costs. Under-blowing could lead to excessive deposit accumulation

and boiler plugging which will lead to plant shutdowns and maintenance costs (Tran

2007).

Recently, the manufacturing and power generation industries have shown an inter-

est in the optimisation of soot blowing procedures using of artificial intelligence. Peña

et al. (2011) tried to optimise soot blowing through using an artificial neural network

(ANN). Anitha Kumari & Srinivasan (2019) utilised support vector regression and

gaussian process regression to monitor ash fouling and optimised the soot blowing in

a reheater of a thermal power plant. Shi et al. used basic thermodynamic modeling

and a Particle Swarm Optimisation (PSO) algorithm, to optimize the soot blowing

phase and duration (Shi et al. 2019), and Zhang et al. (2018) used a dynamic heat

transfer model in conjunction with other machine learning models to predict the flue

gas exit temperature of a recovery boiler to name but a few examples. It is there-

fore clear that AI can play an important role in the optimisation of boilers in the industry.



CHAPTER 1. OVERVIEW 3

There are many difficulties when one wants to optimize soot blowing in a boiler.

It is very difficult to estimate the level of fouling in boilers, and measurement sensors

that could approximate the level of fouling, such as heat flux sensors, are very expensive.

They also require extensive maintenance because of the high temperatures they have to

operate in and are prone to deterioration. Typically, modifications have to be made to

the boiler to install them. The non-linear nature of the dynamics in a boiler makes it

difficult to build accurate thermodynamic models. Boilers rarely operate at steady-state

conditions as the load requirements change continuously. Additionally, the conditions

within the boiler do not remain constant due to deposit buildup and corrosion. It is

difficult to determine the radiation heat transfer within the boiler accurately, due to the

complex nature of radiation heat transfer. There are substantial challenges to overcome

when trying to optimize the soot blowing procedures, which is why the use of AI models

to help with the optimisation process has become very popular.

SAPPI in South Africa operates the Ngodwana Paper and Pulp mill. The mill

produces paper-grade pulp for various industries around the world. The mill also has its

own recovery boiler to generate electricity and steam for other plant processes. Some

of the excess energy, generated by the turbines that use steam from the recovery boiler,

is sent back into the South African electricity grid. The recovery boiler utilises black

liquor (a by-product of the paper-making process) as fuel. Black liquor contains up to

50 % inorganic materials, which, when burnt, form ash. The ash from the combustion

process deposits on the heat transfer surfaces within the boiler and leads to fouling and

boiler plugging. As is standard in the industry, SAPPI employs soot blowers to alleviate

this problem. However, the soot blowing schedule has not been optimised and excessive

boiler fouling and plugging is a common problem. This results in 2 plant shutdowns

per year, where the boiler has to be cooled off and water washed, in addition to smaller

water washes within the same year. Each day that the boiler is shut down translates to

a monetary loss in excess of R20 million. The current method for determining the soot

blowing schedule is to observe at each water wash where the most deposit build-up has

occurred and then to increase the frequency of the soot blowing in that area. This is not

ideal in terms of boiler efficiency or for obtaining reliable results.

There is thus a need to develop models that can predict the fouling within the

boiler and can potentially be used for the optimisation of the soot blowing schedule to

reduce the number of water washes per year. Since the internal conditions in the boiler

are not well known, the models that are developed for the prediction of the fouling

should also be as interpretable as possible to aid in the understanding of the internal

boiler physics.
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1.2 Literature Review

A literature review is performed on the optimization of soot blowing procedures in the

industry, with the focus being on the use of artificial intelligence and machine learning

models to achieve this. The first few sections look at the characteristics of fouling de-

posits and soot blowing operations, followed by sections dealing with the estimation or

measurement of fouling in a boiler. The final sections deal with the types of machine

learning models that can be used for the prediction of fouling.

1.2.1 Black liquor and deposit characteristics

Black liquor is a fuel that is commonly used in the pulp and paper industry. It is a

by-product that is extracted from the pulp washing process. Black liquor typically

contains up to 50 % inorganic solids, making it a difficult fuel to work with, especially

regarding fouling. When black liquor is combusted, the inorganic solids produce ash that

is prone to deposit on heat transfer surfaces. There are three deposit types: namely, i)

Carry-over, ii) Intermediate Sized Particle (ISP) deposits and iii) fume deposits. (Tran

2007)

Carry-over particles are partially combusted black liquor compounds that are usu-

ally larger than the other deposit sources. These deposits are mainly found in the lower

and upper superheater regions of boilers close to the combustion region. These particles

fuse with heat transfer surfaces and become very hard. ISP deposits are slightly smaller

particles than carry-over deposit particles and are usually found in the same regions as

the carry-over deposits, but may also be found in subsequent sections of the boiler. ISP

particles are usually carried through the boiler by the flue gas. Fume deposits occur

because of the condensation of flue gas. Flue gas comes into contact with cooler surfaces

in the boiler and condenses to form a soft, white deposit. These deposits are mostly

found in the later sections of the boiler near the boiler bank and economizers (Tran 2007).

Spectrum analysis of the deposits revealed that most of these deposits comprise

of alkali compounds (Bernath et al. 1998). Most of these alkalies were found to be

compounds of sodium or potassium. A problem with these alkali compounds is that

they build up rapidly on heat transfer surfaces, making heat transfer inefficient. The

presence of chlorine in some compounds, also becomes problematic when temperatures

in the boiler exceed 490 °C. At this temperature, the compounds containing chlorine

become corrosive and may damage the boiler pipes and surfaces (Leppänen et al. 2014).

The primary type of deposit found on heat transfer surfaces depends on the loca-

tion in the boiler as mentioned previously. Carry-over and ISP deposits are mostly found
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in the superheater regions near the combustion chamber as these particles are larger and

cannot be carried further into the boiler by the flue gas. These deposits also form on the

windward side of the heat transfer surfaces (the side that is closest to the combustion

chamber). Fume deposits, on the other hand, form in the cooler sections of the boiler

and deposits on the leeward side of the heat transfer surfaces which are typically cooler,

with the exception being the economizer sections of the boiler where temperatures are

typically cold enough for deposits to form anywhere on the pipes. Figure 1.1 shows the

prevalence of the deposits in the different sections of the boiler. The thickness of the ar-

rows corresponds to the amount of deposit formation on each of the heat transfer surfaces.

Figure 1.1: Deposit prevalence in different sections of the boiler (Adapted from (Tran
2007)).

Figure 1.2: Typical layout of recovery boiler (Adapted from (Tran 2007)).

Figure 1.2 shows the typical structure and layout of a recovery boiler as well as the
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deposit formation process. The sections indicated in figure 1.1 are also indicated here.

Even though deposits occur throughout the boiler, some section are more problematic

than others. Identifying these regions is important, as one can then determine where the

focus of the soot blowing optimisation should be. To understand why regions experience

more deposit build-up than others, it is necessary to define two important temperatures,

namely the sticky temperature and the radical deformation temperature TRD. The sticky

temperature is the point at which deposits contain 15-20 % liquid. At this temperature,

deposit accumulation occurs unbounded as the deposits cling to each other. Therefore,

the risk of boiler plugging is high at this point. The radical deformation temperature is

the temperature at which deposits contain 70 % liquid. At this temperature, the weight

of the deposits themselves are enough to cause them to drop from the heat transfer sur-

faces and deposit accumulation is bounded. Thus, the risk of plugging is low (Tran 2007).

In the lower superheater, the temperature is typically above 820 °C. The carry-

over and ISP particles are molten, and they fuse to the heat transfer surfaces in this

region when they come into contact with them to form a hard deposit. As more deposits

accumulate, the surface temperature of the pipes increases, due to less heat transfer

taking place. At some point, the surface temperature surpasses TRD, and the deposits

melt. Deposits then simply run off of the tubes and do not continue to grow. A

steady-state point is reached, where the deposit accumulation equals the deposit run-off.

It can be concluded that this might not be such a problematic area in the boiler, as the

deposition rate eventually goes to zero and deposit growth is not unbounded (Tran 2007).

In the upper superheater, the temperature is lower, and deposits fall within their

sticky temperature range. Carry-over and ISP particles continue to fuse to these tubes

as they are always sticky. Deposit accumulation, therefore, occurs rapidly. In this

section of the boiler, the surface temperature never reaches TRD and no steady state

is ever reached. Plugging is therefore a significant risk in this area, as deposits grow

uncontrolled. Rigorous soot blowing is usually employed in this area to knock off

deposits (Tran 2007).

The boiler bank region is particularly susceptible to plugging, especially when the

upper superheater has experienced significant fouling. This is due to the increase in the

flue gas temperature since less heat is being transferred in the upper superheater. The

spacing between the heat transfer tubes is also very narrow. The deposit particles are in

their sticky temperature range or enter their sticky temperature range once the upper

superheater has fouled. Any significant deposit growth blocks these narrow passages

and therefore the boiler bank inlet is the most common location for plugging to occur
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Figure 1.3: Illustration of sootblower operation.

(Tran 2007). The most important thing to note is that plugging tends to occur here if

the upper superheater (Secondary superheater) has already experienced much fouling.

Therefore, if soot blowing is ineffective in the upper superheater, plugging eventually

becomes inevitable in this region. This makes effective soot blowing in the upper

superheater even more critically important.

1.2.2 Removing deposit accumulation through soot blowing

A standard procedure for removing deposits from tubes within boilers in the industry

is to employ soot blowers. This is also the case in the recovery boiler at the Ngodwana

mill. Soot blowers usually employ high-pressure steam or air to knock off fouling deposits

from the heat transfer surfaces. Soot blowers are simply long pipes with nozzles at the

end, which are used to disperse the pressurised steam over the heat transfer surfaces in

the boiler internals. While the steam or high-pressure air is being discharged, the soot

blower tubes are rotated to clean the area surrounding it. The recovery boiler at the mill

makes use of high-pressure steam, taken directly from the boiler itself, to operate the soot

blowers. It is therefore not possible to run the soot blowers continuously, as the efficiency

of the boiler will be severely affected. These soot blowers are currently running on a

schedule that has been determined through trial and error. There is currently no way

of estimating the fouling within the boiler and therefore, the soot blowers are operated

manually, and the schedules are determined by inspecting the fouling accumulation when

the boiler is water-washed. Figure 1.3 illustrates the working of a soot blower as it is

pushed through a section of the boiler. The soot blower tube is inserted between the

boiler tubes or platens, and the steam knocks off some of the deposits as the soot blower

is rotated and moved through a section.
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1.2.3 Estimating the level of fouling in boilers

Estimating the level of fouling within the boiler is no simple task and is a field of ongoing

research in many sectors. It can be an arduous task to determine the level of fouling

within boilers, because of the many non-linearities in the internal physics and random

occurrences taking place within the boiler (Tran 2007). Nonetheless, some techniques

have been established to give one an indication of the level of fouling in a boiler.

Direct measurement techniques

Some of the more accurate methods of measuring fouling in a boiler are through

the use of direct measurement instrumentation. An example of this would be heat

flux sensors. Heat flux sensors can measure the amount of heat that is transferred

from one body to another. A heat flux sensor generates an electrical current that is

proportional to the amount of heat transferred through it. Heat flux sensors can give one

an indication of the amount of heat transferred through the heat transfer surfaces to the

steam. When fouling levels increase, the amount of heat being transferred will decrease.

Therefore, these sensors can be used as an indirect measurement of fouling. This method

of estimating the fouling is used in the paper by Teruel et al. (2005) where the statement

is also made that heat flux sensors are some of the most reliable methods of measuring

fouling in a boiler. Heat flux sensors tend to deteriorate the longer they are in the boiler

and therefore require substantial maintenance. Because of this deterioration, they are

also not very well suited to online monitoring of fouling and should rather be used to ob-

tain a dataset containing fouling estimations that can be used in machine learning models.

In the paper by Peña et al. (2011), heat flux sensors were used to estimate foul-

ing, however, it was seen that the heat flux sensors experienced measurement drift

because of this deterioration, and the data had to be inspected closely to adjust for this

change. Other direct measurement techniques include cameras designed to withstand

the harsh conditions within a boiler. The cameras can record the fouling development

on the pipes and the amount of fouling can be gauged from these images, as well as the

rate of deposit growth. While this method might not be the most accurate, it is a very

direct method for determining the fouling level in the boiler. The paper by Prem et al.

(2014) mentioned a third method of estimating the fouling accumulation directly by

using strain gauges. Strain gauges are attached to the top of the superheater platens and

measure the weight of the platen. When deposit accumulation increases, the weight of

the platens also increases and is picked up by the strain gauges. Thus, one can estimate

the weight of the fouling deposits.
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While direct measurement techniques can work very well for estimating the foul-

ing in the boiler, there are usually a couple of problems that accompany them. The

instrumentation is expensive, not only to buy, but to maintain as well (Teruel et al. 2005).

Installing the instrumentation usually takes time and requires significant modifications

to the boiler, which can be costly and unfeasible since the boilers must be shut down.

Lastly, the instrumentation and sensor accuracy deteriorate over time due to the harsh

conditions in the boiler, making them unsuited for online monitoring of fouling.

Mathematical and thermodynamic modeling

When direct measurement techniques are not feasible, one might want to investi-

gate mathematical and thermodynamic modelling methods to determine the fouling

in a boiler. These methods are inevitably not as accurate as direct measurements, as

many thermodynamic models make use of simplifying assumptions and approximations.

Building a mathematical model to capture all the non-linearities and random occurrences

in the boiler would be a very complicated endeavour that is not currently feasible.

Therefore, one would have to make approximations. Most of the mathematical methods

used to estimate the fouling in the boiler revolve around the calculation of the heat

transfer coefficients in the boiler. The fouling accumulation will cause a decrease

in the actual heat transfer coefficient in the boiler, thus giving one an indication of

the level of fouling in the boiler. Most thermodynamic models of boilers depend on

temperature differences in the boilers. In the paper by Shuiguang Tong (2019), the log

mean temperature difference is used as a temperature difference measure to determine

the heat transfer coefficients. Furthermore, the paper makes use of an energy balance

equation between the heat released by the flue gas and the heat absorbed by the steam to

solve for the heat transfer coefficients. Shi et al. (2015) make use of a similar approach.

However, the paper states that the LMTD method assumes steady-state conditions in

the boiler. They, therefore, adapted their approach to incorporate some of the transient

behaviour in the boiler. Finally, in the paper by Peña et al. (2013) it is stated that one

cannot neglect the radiation heat transfer occurring in the boiler, which the previously

first mentioned paper did not explicitly consider. Therefore, their approach, while being

similar to the previous two papers, also incorporates a radiation heat transfer term in

their heat transfer coefficient calculations.

Despite the differences in the approaches of the papers mentioned above, all of

them used basic thermodynamic relations and equations that share the same base in

literature. It can be noted in these papers, however, that estimating the fouling factor is



CHAPTER 1. OVERVIEW 10

no simple task and some methods require extensive measurements and boiler parameters,

which are not always readily available.

Alternative fouling estimation techniques

If no direct measurement techniques can be used in the boiler and mathematical

models are too complex or one does not have enough measurements available, one

could resort to methods that try to combine these two methods to estimate the level of

fouling. One such a method is proposed in the paper by Anitha Kumari & Srinivasan

(2019), where a dual extended Kalman filter is used to estimate the real heat transfer

coefficient, while basic heat transfer equations are used to estimate the clean heat

transfer coefficient. A dual extended Kalman filter comprises two extended Kalman

filters that simultaneously estimate the states of a system as well as the parameters of

the equations of the system (Wassiliadis et al. 2018). The technique used in the paper

by Anitha Kumari & Srinivasan (2019), is therefore, an example of combining basic

thermodynamic equations and an indirect measurement technique that estimates the

system states to obtain a fouling factor estimation of a boiler.

Ramirez (2000) proposed that one use a fouling status, rather than using a spe-

cific fouling factor, when it is not possible to determine the fouling factor accurately.

In this paper, the fouling status is rather described as a cleanliness status and works

similarly to that of ‘fuzzy logic’ in computer algorithms. Rather than having a specific

value for the fouling, such as 80% fouling in the boiler, the cleanliness status will say

that the boiler fouling level is ‘Severe’, since the fouling lies somewhere between 75 and

95%. The paper states that this allows one to use simple measurements to estimate the

level of fouling and, in their case, the flue gas exit temperature is used for this purpose.

No complex mathematical models have to be built with this method. However, one does

not get a very accurate value for the level of fouling in the boiler, but merely a range of

potential values. This could be problematic when more accurate fouling estimations are

required for optimisation.

Discussion of fouling estimation techniques

It has been discussed how one might determine the amount of fouling in a boiler

using one of three methods, namely direct measurement, mathematical and thermo-

dynamic modelling, and a combination of the other two techniques. While direct

measurement techniques can give one a very accurate estimate of the amount of fouling

in a boiler, the cost of installing and maintaining the instrumentation is very high,



CHAPTER 1. OVERVIEW 11

especially when the boiler does not have such measurement devices by default. These

direct measurement devices have short life cycles in the boiler because of the corrosive

environment and high temperatures, which makes them unsuited for online fouling

monitoring. In this project, online monitoring is crucial as the plant engineers would

like to know how conditions in the boiler change over a long period, as the physics would

undoubtedly change. Therefore, direct measurement techniques would not be well suited

to the current long-term project objective for a recovery boiler.

The fuzzy logic and Kalman filter methods have potential, however, these techniques do

not always give one a very accurate or usable unit of measure for the fouling in the boiler.

If one would want to optimise the soot blowing in the boiler, one would need a foul-

ing estimation that can be used in thermodynamic calculations to calculate energy losses.

For the optimisation end goal of the overall boiler project, the thermodynamic

and mathematical models are well suited. While these models still only approximate the

level of fouling in the boiler, the resulting fouling factor estimation should be accurate

enough to be used in energy calculations, as the fouling level is based on the true physics

that governs the boiler. These methods also allow one to have a good understanding of

the thermodynamics within a boiler that can potentially be used to understand how the

deposit buildup works in a boiler.

1.2.4 Modeling the fouling in boilers

While being able to obtain the fouling factor with thermodynamic models or direct

measurements is useful, it is not always practical to use these methods in an online and

always-on capacity. As mentioned, direct measurement sensors do not last long due to

the sensors corroding in the boiler’s high-temperature environment. Thermodynamic

models, on the other hand, often rely on multiple sensor readings, such as pressure

and temperature measurements as well as steam flow and fuel flow measurements.

For this reason, applying these models in an online capacity is not always reliable, as

sensors are prone to faulty measurements or can break altogether. The more sensors one

requires (as is the case with complex thermodynamic models), the larger the chances

become of one sensor failing at some point. This could cause the models to not work

for an extended period or the models could become extremely inaccurate. Therefore, in

most industry cases, models are built, that attempt to predict the fouling factor using

fewer input sensors to a model to reduce the risk of sensor drift or failure in the long

run. Typically, one of two modeling options is used, namely physical modeling and

data-driven modeling.
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Physical modeling

Physical modeling, in this case, mostly refers to the use of Computational Fluid

Dynamics (CFD) to build a computer-simulated replica of a system that can simulate

different conditions and scenarios to obtain, for example, a fouling factor. Physical

models can be very accurate when one wants to know what exactly is happening in

the boiler over time, and can give one an accurate view of the level of fouling in a

boiler. In the paper by Leppänen et al. (2014), a full-scale 3D model of a boiler was

built to determine where fume deposits will form in the boiler. The model was very

successful in determining the location where severe deposit formation occurs, as the

predicted location of deposit formation was confirmed later on by looking at the boiler

itself. However, a pitfall of these types of physical models is that degradation in the

boiler often leads to these models becoming inaccurate, as the physics in the boiler

change over time. Often, assumptions regarding conditions and physics in the boiler

are made when these types of models are built and if these assumptions do not hold

as the boiler conditions degrade, the models become obsolete (Smrekar et al. 2009).

Furthermore, these models are usually quite complex to build and are not well suited

to online predictions of the fouling factor, as simulations take a long time to run if

the computers running them are not top-of-the-range products. If less computation-

ally expensive models are required, one would rather consider data-driven models as

they are usually faster to apply in online scenarios where frequent predictions are needed.

Data-driven modeling

Data-driven models, especially machine learning models, are nowadays becoming

more and more popular for use in many industry sectors in the world. The reason for

their popularity is due to their ability to take relatively few input parameters and extract

enough information from them to make accurate predictions. Many machine learning

models can also fit very non-linear data sets that were previously not an easy problem

to solve. Recently, due to the increased availability of data in the engineering sectors,

data-driven models have become very popular (Parente et al. 2019). Data-driven machine

learning models can be separated into different categories. The most well-known and

used category being supervised learning methods. Another form of data-driven model

that have become very popular in recent years is the unsupervised or semi-supervised

type machine learning model because of its ability to extract valuable information from

data without having a fixed goal or labeled dataset.
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Supervised machine learning models

Examples of supervised machine learning models include Artificial Neural Networks

(ANNs), Support Vector Machines (SVMs), Recurrent Neural Networks (RNNs) or

Long Short-Term Memory (LSTM) networks and dimensionality reducing models, such

as Sparse Partial Least Squares (SPLS) methods. These models have the requirement

of a labeled dataset, where the target prediction that needs to be made is defined in a

dataset. For example, the fouling factor must already be known for a set of input sensor

measurements. These models have been used extensively in the industry to solve similar

problems to this project.

Teruel et al. (2005) and Peña et al. (2011) both used ANNs to predict, for exam-

ple, efficiency of soot blowing, and the cleanliness of the heat transfer surfaces after

soot blowing in a recovery boiler in China. The models were implemented to a large

degree of success and improved the soot blowing efficiency in the boiler. In the paper by

Anitha Kumari & Srinivasan (2019), an SVM was used to predict the cleanliness factor

of the boiler heat transfer surfaces, which could be used to optimise the soot blowing

strategy in the boiler itself. Radhakrishnan et al. (2007) used an LMST model to predict

the outlet temperatures of fluids from a shell-and-tube heat exchanger, which allowed

them to use the log mean temperature difference method to predict the heat transfer

coefficient of the heat transfer surfaces.

While these methods are often very successful in predicting system parameters in

non-linear systems, the models are seldom interpretable. For example, a neural network,

that has multiple layers, is very difficult to decipher, and it is nearly impossible to

understand all the weights, as there might be millions of interconnected neurons, each

with their own weight. Models such as ANNs are often considered ‘Black box’ models

that one cannot interpret beyond what the inputs and outputs are (Robbins 2017)

because of the complexity of the models themselves. When these machine learning

algorithms inevitably make mistakes, it is challenging to identify where exactly in the

models these mistakes came from, not to mention how to fix them (Wiley 2020).

These models are often also not able to generalise when, for example, conditions

in the boiler change drastically. This is because the models were trained on a specific

input data range and if this range changes significantly, the models usually cannot

compensate for the change. These models simply fit a ‘line’ through data instead of

extracting the true underlying models that govern the system that is being investigated.

This is the reason for the rise in popularity of unsupervised machine learning models

in recent years, where some models try to address the issues of ‘black box’ models and



CHAPTER 1. OVERVIEW 14

try to extract better general models that can be interpreted and used in the long run.

In the paper by Rudin (2019), several compelling arguments are made why one would

rather use interpretable models, the key reason being that machine learning models are

often used for high stakes decision making and having an interpretable model avoids

unnecessary or inexplicable problems, that could have dire consequences and often

accompany black box models.

Unsupervised machine learning models

Unsupervised machine learning models are commonly used to cluster data and to

identify underlying patterns in data sets without being led by a target value that

the models have to reach. For unsupervised machine learning models, it is up to the

models themselves to find structure and patterns in the data that is presented to them

(Mishra 2017). This can be very useful where it is not clear what one wants to extract

from a particular dataset or when labeling the dataset is simply not possible. An

interesting type of machine learning model that has gained some traction recently are

models that extract the system dynamics or physics from the data itself instead of

simply fitting a line through the data to make predictions. These types of models are

classified as unsupervised, as one does not know what the underlying system dynamics

are beforehand. Rather, it is up to the algorithms to extract the correct underlying

models. An advantage of this is the fact that the extracted dynamics or models are more

interpretable and can be used to understand the data-generating systems better. If one

understands the ground truth of a system, it is easier to generalise and make predictions

beyond the training range of the model, as the system dynamics have been extracted

and not just a model that fits data that one already has.

A very recent example of such an algorithm is the Sparse Identification of Non-

Linear System Dynamics (SINDy) algorithm. The SINDy algorithm tries to extract

physics from a dataset that can be used to interpret a system. In the paper by Brunton

et al. (2016), the SINDy algorithm was successfully implemented and discovered the

governing equations of fluid flow past a cylinder where vortex shedding occurs. The

algorithm could extract the equations efficiently from measurement data, where these

equations took scholars years to derive and describe. This shows the potential that

unsupervised learning algorithms could have and may allow one to obtain general models

that can be interpreted and used for long periods without having to retrain complex

‘black box’ models. The SINDy algorithm in particular may be of significant value for

this project, specifically where where the fouling factor development is concerned.
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1.2.5 Sparse Identification of Non-linear System Dynamics

(SINDy)

The sparse identification of non-linear system dynamics or SINDy algorithm was

developed to try to solve the problems of generalisation and interpretability often found

in black-box models. As mentioned earlier, advances in machine learning and artificial

intelligence have made it possible to extract patterns from complex data streams that

would not have been found otherwise. However, extracting models from data that

can predict instances outside of the training data range has been a very slow process

(Brunton et al. 2016). The SINDy algorithm was developed to discover the underlying

governing equations of a system. These governing equations should then be able to

generalize outside the domain of the training data and result in a model that is both

robust and interpretable.

The assumption is made with the SINDy algorithm, that most dynamic models

can be described using only a few significant equations. Therefore, relative to the num-

ber of possible functions and relations that can describe a system, the actual number of

functions describing a particular system is sparse (Brunton et al. 2016). Sparse regression

is a central concept used in the SINDy algorithm, which allows one to determine the

fewest terms needed to describe the training data. This results in an accurate model,

whic is also robust to noise and outliers, as over-fitting is avoided. (Brunton et al. 2016)

Since these models are developed to promote sparsity in combination with the extraction

of physical equations, interpretability is usually an added benefit of using the SINDy

algorithm.

The SINDy algorithm tries to solve the following equation, which is the assumed

form of the dynamical system:

d

dt
x(t) = f(x(t)) (1.1)

The idea of sparsity enters with the function f (the feature library of possible functions

that could describe the physics), which is assumed to have only a few terms that are

active and combined to describe the physics. If the feature library is well chosen to

support the physics, and the terms in the feature library are sparsely active, the resulting

model is a simple differential equation that can generally be interpreted easily. It is also

possible that this model can be used outside the domain of the training data, which is not

possible for many traditional machine learning models. In the paper by Brunton et al.

(2016), the SINDy algorithm is successfully applied to the chaotic Lorenz system and the

problem of fluid flow past a cylinder. For both cases, the SINDy algorithm could discover
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the underlying governing equations of the two systems from noisy measurement data. In

another study by Kaiser et al. (2018), the SINDY algorithm is combined with control

inputs. The idea is to predict the system dynamics that also include the control inputs

so that the effects of different control inputs on the system can also be accounted for in

the models and their predictions. The assumed dynamical form takes on a new form as

follows:

d

dt
x = f(x,u) (1.2)

where x is still a function of time and u refers to the control inputs to the system. This

paper proves that adding control to the SINDy algorithm can be done, by adding control

inputs to the chaotic Lorenz system. The algorithm could recover the system dynamics,

including the control influences, efficiently. Using a predator-prey model, this algorithm

with added control is further illustrated to work, as the SINDy model is once again able

to recover the underlying equations of the true model.

The SINDy algorithm is a robust algorithm that can extract the underlying physics from

data despite noise being present. The resulting models can likely generalize outside the

domain of the training data, which is ideal for case studies where the distribution of the

data does not always remain constant, however generalization is not always guaranteed.

Furthermore, the resulting models can be interpreted relatively easily as the algorithm

returns simple differential equations with clearly defined inputs.

1.3 Scope of research

Boiler fouling estimation and prevention is an ongoing field of research that has gained

much traction because of the worldwide movement towards sustainability and, hence,

higher efficiency requirements. Different methodologies have been developed in papers

by Shi et al. (2019), Peña et al. (2011), Anitha Kumari & Srinivasan (2019) and

many others, where they attempt to predict the fouling level and optimise the soot

blowing strategy in different boiler types. Many of these methodologies incorporated

machine learning models and algorithms to predict the fouling level based on a few

sensor measurements from the boiler. Even though these methods work very well, the

models used to predict the fouling and hence optimise the soot blowing have not been

particularly interpretable. Many of the approaches include black-box type models such

as ANN’s, which makes it difficult to understand why the model is obtaining certain

results and, should predictions be wrong, it is difficult to establish where the fault came

from. Understanding why these errors occur or how the internals of the boilers work
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is invaluable information that can be used for asset integrity management in the long

run and can help with the decision-making regarding soot blowing procedures. Having

a clear picture of the internal mechanisms that drive fouling accumulation and soot

blowing efficiency could provide support for decision-making tasks, such as soot-blowing

schedules and planned downtime of the boilers.

The aim of this study is therefore to develop a fouling prediction methodology that,

• Can estimate the level of fouling in different sections of the boiler based on local

sensor measurement inputs, such as temperature and pressure.

• Investigate the identifiability of the physics in the recovery boiler using verification

problems.

• Obtain basic predictive models that are interpretable and can be used to better

understand the underlying physics within the recovery boiler.

• Investigate methods of obtaining consistent model results for a fixed period in the

boiler that could potentially be used for soot blowing optimisation.

• Allows the predictive models and results to be interpreted by people who are not

necessarily experts in the field of soot blowing.

Several thermodynamic models have been developed in the papers by Shi et al. (2015)

and Peña et al. (2011) that can estimate the level of fouling within a boiler. These

methods are based on simple heat and mass transfer relations that incorporate both

convection and radiation heat transfer. These models often only approximate the physics

within the boiler, but they are sufficient for the estimation of fouling levels and can

be used in machine learning models further on, as was demonstrated in the papers

mentioned above (Shi et al. 2019), (Peña et al. 2011), (Anitha Kumari & Srinivasan 2019).

Interpretable models have become more of a necessity as the need to understand

why errors occur in machine learning models has grown and as models that can

generalize outside the domain of the training data have become necessary. Recent

research into this topic has resulted in an algorithm known as the sparse identification of

non-linear system dynamics (SINDy) algorithm. This algorithm, developed by Brunton

et al. (2016), can extract the physics of a system from measurement data from the same

system. Being able to extract these physics equations is invaluable for obtaining models

that can be interpreted. Since the physics equations are extracted, the models can also

be used to generalise beyond the domain of the training data and can be used in the

decision-making processes regarding the specific system.
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A method is proposed in this study that is not only computationally inexpensive,

relative to other machine learning models, but can also extract the underlying physics

during a soot blowing operation, which results in interpretable models. The method

is based on studies that were conducted using the SINDy algorithm in the papers by

Brunton et al. (2016) and Kaiser et al. (2018), which is combined with fouling estimation

techniques proposed by Shi et al. (2019) and Peña et al. (2011). Initially the algorithm

is tested in a controlled environment with artificial datasets and models, to determine

the strengths and weaknesses of the algorithm. The algorithm is tested under varying

noise and initial value conditions, as well as varying model conditions, to determine the

algorithm’s recovery ability. This has the added benefit of showing one what results can

be expected when the algorithm is implemented on the real dataset and to determine

what possible complications may be encountered. In the preliminary results, it is seen

that the algorithm is more than capable of extracting logical models from typical soot

blowing sequences, however it is sensitive to noise, initial value changes and changes in

the soot blowing sequence curve shape.

The SINDy algorithm is subsequently implemented on the recovery boiler mea-

surement dataset, and the results are seen to be the same as was expected, based on the

initial verification problems. Several attempts to achieve model consistency are made to

try and circumvent the severe variation in the data. Soot blowing sequences are then

manually selected to illustrate what would be needed should one want to extract an

average model from the soot blowing sequence data and to further highlight the data

complexity.

1.4 Document Layout

The development of the thermodynamic model, used to determine the fouling level

within the Kraft recovery boiler, is presented and explained in detail in the second

chapter of this work. Furthermore, the sensor measurement data from the boiler is

analysed and preprocessed before being sent through the thermodynamic model. Finally,

the thermodynamic model is briefly validated and some of the complexities of the data

are highlighted to conclude chapter 2.

In chapter 3, the SINDy algorithm is introduced as well as the methodology and

working of the algorithm. The algorithm is then tested using a verification model to

establish the algorithm’s model extraction capabilities. The soot blowing sequences with

their corresponding fouling factors are then extracted from the Ngodwana dataset. The

SINDy algorithm is broadly applied (a default algorithm setup is used) to these sequences
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to establish a few basic model forms for use in additional validation experiments. The

experiments that follow, look into the identifiability of the underlying physics models

and the influence of the model coefficients on artificial, but representative soot blowing

curves. Lastly, the SINDy algorithm’s recovery ability is tested under different noise and

initial conditions. The algorithm’s recovery ability is also tested when training samples

are limited and lower-order models are fitted to higher-order data.

Chapter 4 sees the implementation of the SINDy algorithm on the Ngodwana

dataset. To start, the optimal polynomial order is determined based on the work done

in chapter 3 and results obtained from the measurement dataset. A baseline algorithm

setup is established, and the extracted models are investigated. New inputs are added

to the SINDy algorithm to attempt to improve model consistency in terms of the

coefficients that are recovered as well as the overall prediction accuracy of the models.

Once the inputs are tested and the results interpreted, the threshold parameter of the

optimisation algorithm is sequentially optimised, and the dataset is normalised and

scaled in an attempt to achieve model consistency. Finally, soot blowing sequences are

manually selected to remove some data variation and to try and illustrate the complexity

of the problem and dataset.

The work is concluded in chapter 5 and several recommendations are given for

future research possibilities regarding this specific project and problem.



CHAPTER 2

Fouling Accumulation Data

To optimise the soot blowing sequences within SAPPI’s recovery boiler, one

would require an indication of the level of fouling within the boiler. Without

such a measurement, optimisation is not possible, as one would have no tangible

way of estimating the effectiveness of the soot blowers and hence no way

of determining whether it is cost-effective to soot blow. Furthermore, if any

predictive models are to be built, one would need a ‘label’ to predict, or a metric

of fouling to extract models from. The lack of a fouling metric is the reason for

the current soot blowing methodology at the plant. The soot blowing sequences

are simply scheduled beforehand and altered manually after a boiler inspection,

instead of having an adaptive program that activates soot blowers when necessary.

Due to the highly corrosive environment and high temperatures within the

boiler, it is difficult to maintain instrumentation, such as heat flux sensors and

cameras, to measure and monitor the degree of fouling on the heat transfer

surfaces. These sensors are also expensive, not only to purchase but also to

install in a boiler, as modifications need to be made to the boiler itself and the

proper infrastructure needs to be installed so that these sensors can integrate

with the existing monitoring system. For this reason, it is not a practical solution

for monitoring the fouling levels in this boiler, as explained before.

Currently, many sensors within the boiler are used to monitor the internal

conditions and to adjust the fuel and air rates as necessary to obtain a specific

boiler output. Typical measurements include pressure and temperature, which are

ideal for developing basic thermodynamic models for the estimation of fouling.

While it is very difficult to develop a model that can capture all the non-linearities

20
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and random occurrences in the boiler, it is also unnecessary to have such a

model. A detailed model would be helpful if the exact level of fouling had to

be calculated. However, in our case, we simply need a representation of fouling

within the boiler that is accurate enough to perform basic calculations with, to

extract physics models and hence potentially optimise the soot blowing sequences.

To represent the degree of fouling within the recovery boiler, a Fouling

Factor (FF) is used which uses the heat transfer as proxy, since the fouling is

difficult to measure. The fouling factor combines real-time data from the data

storage system of the plant (DCS system) as well as some basic thermodynamic

calculations and data to obtain an estimated level of fouling within the boiler.

The fouling factor is defined as follows, adapted from Shi et al. (2019) :

FF =
htheoretical − hactual

htheoretical
(2.1)

where htheoretical refers to the theoretical heat transfer coefficient of the boiler’s

heat transfer surfaces and hactual refers to the real heat transfer coefficient of

the boiler’s heat transfer surfaces. The fouling factor’s definition is chosen so

that an increase in the amount of soot on the heat transfer surfaces would

correlate with an increase in the fouling factor value. The definition also bounds

the fouling factor between 0 and 1, where 0 refers to an ideal clean state in the

boiler and 1 refers to a completely fouled boiler. Any value for the FF above 0

would show that some measure of soot deposition is present on the boiler heat

transfer surfaces. Therefore, to define a fouling factor, it is necessary to ob-

tain the approximate actual and theoretical heat transfer coefficients in the boiler.

In this chapter, a basic thermodynamic model is built, to determine the

level of fouling within the boiler. This metric can be used for data-driven

modeling and also allows one to determine the types of equations that form part

of the underlying physics equations in the boiler, which can help with the SINDy

modelling. It should be noted that the thermodynamic model was built in a joint

effort with André van Zyl. The reason for this collaboration is because the same

boiler problem is being approached in both studies, however, different machine

learning approaches are followed. To ensure that the different approaches can

be compared (should SAPPI need to choose an approach to implement on the

plant), the same method of obtaining a fouling estimation, and thus a labeled

dataset, was used.
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2.1 The theoretical heat transfer coefficient

To obtain the theoretical heat transfer coefficient of the recovery boiler, basic thermo-

dynamic equations and empirical correlations are used. In the boiler, heat is transferred

from the flue gas, through the superheater pipes, into the steam. Therefore, a boiler

can be seen as a type of crossover heat exchanger and thermodynamic calculations

pertaining to heat exchangers are used. In a typical heat exchanger, the internal and

external heat transfer coefficients are not the same. The difference can be due to the

internal and external surface areas not being the same size or the fluid types used in

the heat exchanger. It is therefore necessary to calculate both the external and internal

heat transfer coefficients and then combine them into an overall heat transfer coefficient

to ensure that the model is as accurate as possible. The overall heat transfer coefficient

is usually dominated by the smaller internal or external heat transfer coefficients. This

is because of the method of calculating the overall heat transfer coefficient, where the

smaller of the internal or external coefficients creates a bottleneck (Cengel & Ghajar

2015).

For the calculation of the overall theoretical HTC, the following assumptions

are made:

• Pseudo Steady-state conditions in terms of the mass going in equals the mass going

out. Since the dataset used will be time-series data, it is expected that the system

will evolve over time, however, for short sections of the data, conditions should

remain fairly steady making it a fair assumption.

• Constant surface temperature of heat transfer surfaces over time, as the boiler

conditions on the fireside are kept as consistent as possible and there is no way of

measuring the surface temperature in the boiler currently.

• Smooth tube surfaces.

2.1.1 The internal theoretical heat transfer coefficient

To calculate the internal heat transfer coefficient, the Gnielinski (1976) correlations are

used. This method is also used in the paper by Peña et al. (2013). The Gnielinski

correlation is a relation suited for turbulent flow with a Reynolds number between 3×103

and 5 × 106. To ensure that turbulent flow is present, the Reynolds number must be

confirmed. The Reynolds number can be calculated as follows:

Re =
Vavg ×D

ν
(2.2)
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where Vavg refers to the average velocity of the steam, D refers to the diameter of the

pipe, and ν refers to the kinematic viscosity of the steam. Typically, the flow is turbulent

in the superheaters of boilers and is confirmed with equation 2.2

The Gnielinski relation is then defined as follows:

Nu =
(f/8)(Re− 1000)Pr

1 + 12.7(f/8)0.5(Pr2/3 − 1)

(
0.5 ≤ Pr ≤ 2000

3 × 103 < Re < 5 × 106

)
(2.3)

where Nu refers to the Nusselt number, Pr to the Prandtl number of the steam, and f

refers to the friction factor that can be calculated for smooth tubes as follows:

f = (0.790lnRe− 1.64)−2 (2.4)

Once the Nusselt number has been calculated, the internal heat transfer coefficient can

be calculated by simply rearranging the equation for the Nusselt number:

hint =
kNu

D
(2.5)

where k refers to the thermal conductivity constant of the fluid.

2.1.2 The external theoretical heat transfer coefficient

For the calculation of the external heat transfer coefficient, the Zukauskas correlations

(1987) are used. These correlations are suited for heat transfer calculations of fluid flow

through tube banks. Since the superheaters of the recovery boiler comprise of platens

of tubes forming tube banks, these correlations are well suited for the heat transfer

calculations in the boiler. The same methodology is also employed in the papers by

Peña et al. (2013), Shi et al. (2019) and Shi et al. (2015).

For the Zukauskas correlations, it is once again necessary to calculate the Reynolds

number, however, the average fluid velocity (Vavg), as defined in equation 2.2, is now

replaced with the maximum fluid velocity through the tube bank. The maximum

velocity through the tube bank can be calculated as follows:

Vmax =
ST

ST −D
Vavg (2.6)

where ST refers to the transverse spacing between the tubes. It should be noted that this

calculation for the maximum velocity in the tube bank only holds when the arrangement

of the tube bank is an in-line arrangement. In the case of the recovery boiler at

Ngodwana, all the superheater tube banks are in-line arrangements. An example of
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Figure 2.1: Example of a typical in-line arrangement adapted from Cengel & Ghajar
(2015).

an in-line arrangement can be seen in figure 2.1 where the transverse spacing is also shown.

Once the Reynolds number is known, the Zukauskas correlations can be used for

calculating the Nusselt number. The Zukauskas correlations are shown in Table 2.1 for

an inline arrangement. It should be noted that these correlations only hold when there

are over 16 tubes in the longitudinal direction (NL > 16). If there are fewer tubes,

however, Table 2.2 should be used to obtain a correction factor for the Nusselt number.

It should be noted that all the fluid properties should be evaluated at the arithmetic

mean temperature of the fluid, except for Prs, which should be evaluated at the surface

temperature of the tube bank.

Table 2.1: Zukauskas Correlations for crossflow over tube banks when NL > 16 adapted
from Cengel & Ghajar (2015).

Range of Re Correlation

0-100 Nu = 0.9Re0.4Pr0.36(Pr/Prs)
0.25

100-1000 Nu = 0.52Re0.5Pr0.36(Pr/Prs)
0.25

1000 - 2 × 105 Nu = 0.27Re0.63Pr0.36(Pr/Prs)
0.25

2 × 105 - 2 × 106 Nu = 0.033Re0.8Pr0.4(Pr/Prs)
0.25

Table 2.2: Correction factor for Zukauskas Correlations when NL < 16 adapted from
Cengel & Ghajar (2015). Nu = FNuN>16

NL 1 2 3 4 5 7 10 13

F 0.70 0.80 0.86 0.90 0.93 0.96 0.98 0.99

Once the Nusselt number has been determined, Equation 2.5 can once again be used

to calculate the external heat transfer coefficient for a section of the boiler.
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2.1.3 The theoretical radiation heat transfer coefficient

In a boiler, there are two fundamental mechanisms of heat transfer, namely convective

heat transfer and radiation heat transfer. So far, the external and internal coefficients

have not considered radiation heat transfer, which plays a significant role in a boiler’s

total heat transfer (Peña et al. 2013). This is especially true for the earlier sections in

the boiler that are closer to the furnace. This was confirmed when the plant engineer at

Ngodwana stated that the primary mechanism of heat transfer in the Primary 1 and 2

superheaters of the boiler was radiation. Furthermore, the paper by Peña et al. (2013)

states that in some boiler cases, neglecting the radiation could result in a deviation of

up to 30 % between the heat released by the flue gas and the heat absorbed by the steam.

To calculate the radiation heat transfer coefficient, the Hottel correlations (1954)

can be used. The same radiation heat transfer equations are used in the papers by

Peña et al. (2013), Shi et al. (2015) and Shi et al. (2019) to calculate the radiation heat

transfer coefficient. Hottel’s correlation is defined as follows:

qnet,gray =
εs + 1

2
Asσ(εgT

4
g − αgT

4
s ) (2.7)

where εs refers to the surface emissivity of the walls and pipes, εg refers to the emissivity

of the gas and αg refers to the absorptivity of the gas (Cengel & Ghajar 2015). Tg and

Ts refer to the temperature of the gas and of the surface, respectively. It should be noted

that Hottel’s correlation is developed for nearly black surfaces, or surfaces with εs >

0.7. It is stated in the book by Cengel & Ghajar (2015) that the surfaces of the walls in

furnaces and boilers typically have an emissivity larger than 0.7, therefore this model is

well suited to the boiler problem. Most of the heat transfer surface area in the boiler

is manufactured from ASME 210 A1 steel. Comparing this steel’s estimated emissivity

and other similar steels’ emissivities, it was seen that the typical emissivity was around

0.75 to 0.88. This once again proves that the Hottel correlation should work well for this

case study.

To obtain the emissivity of the flue gas, one would have to know the approximate

constituents of the gas mixture. This is because the emissivity is a function of the

temperature and the partial pressure of the constituent gases. Typically, flue gas is

made up of a mixture of N2, CO2, H2O, O2 and CO. This is also the case for the flue

gas in the recovery boiler. In the book by Cengel & Ghajar (2015), it is stated that CO2

and H2O are typically gasses that participate in radiation heat exchange, while gases

such as N2 and O2, do not participate in this exchange. The concentration levels of CO

is typically so low in flue gas mixtures, that it can be safely neglected for the emissivity

calculations. Plants would typically actively prevent CO from forming by preventing
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incomplete combustion.

Once the flue gas constituents are assumed, one can use the Hottel emissivity ta-

bles to obtain the approximate gas emissivity. First, the emissivity of a gas containing

H2O and other non-participating gases is found in Figure 2.2a. The L in the graph refers

to the mean distance traveled by the radiation beam. Similarly, Figure 2.2b is used

to find the emissivity of a gas containing CO2. Finally, the correction factor for a gas

containing both H2O and CO2 is found using Figure 2.3. To find the overall emissivity,

the following equation can be used:

εg = εCO2 + εH2O − ∆ε (2.8)

The absorptivity of the flue gas can then be determined. Once again, the absorptivity is

determined for the participating gases in the gas mixture separately and then combined

(Cengel & Ghajar 2015):

CO2 : αCO2 = (Tg/Ts)
0.65 × εCO2

H2O : αH2O = (Tg/Ts)
0.45 × εH2O

(2.9)

To find the final gas absorptivity, we use the following equation:

αg = αCO2 + αH2O − ∆α (2.10)

where ∆α = ∆ε

(a) H2O emissivity (b) CO2 emissivity

Figure 2.2: Emissivity of gases with CO2 or H2O and other non-participating gases at
atmospheric pressure (Adapted from: Cengel & Ghajar (2015)).
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Figure 2.3: Correction emissivity for gases containing both CO2 and H2O (Adapted from:
Cengel & Ghajar (2015)).

Once all the factors have been determined, qnet,gray is determined and is used to find

the radiation heat transfer coefficient as follows:

hrad =
qnet,gray

As(Tg − Ts)
(2.11)

where As is once again the heat transfer surface area.

2.1.4 The overall theoretical heat transfer coefficient

Once the external, internal and radiation heat transfer coefficients are determined, the

overall theoretical heat transfer coefficient can be calculated using equation 2.12

1

htheoreticalA
= R =

1

hintAi

+
ln(Do/Di)

2πkLNtubes

+
1

hextAo + hradAo

(2.12)

where Ai and Ao refer to the internal and external surface areas respectively, Ntubes refer

to the number of tubes in the boiler and L refers to the length of the tubes. Do and

Di refer to the outer and inner diameters of the tubes, respectively, and k refers to the

conduction heat transfer coefficient of the tubes. Sometimes, the tubes will be relatively

thin and the material will have a high conductivity. This will cause the middle term

of equation 2.12 to become negligibly small relative to the other two terms (Cengel &

Ghajar 2015). However, for the sake of accuracy, all the terms were included in this study.

The overall heat transfer coefficient should now be a relatively accurate approximation

of the true theoretical heat transfer coefficient and can be used in the calculation of the

fouling factor.
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2.2 The actual heat transfer coefficient

The actual heat transfer coefficient is calculated using an energy balance equation. The

same methodology is used in the papers by Shi et al. (2015) and Shi et al. (2019). Another

soot blowing optimisation project, conducted at SAPPI’s Saiccor mill, used a similar

method of finding the heat transfer coefficients. In this project, the log-mean temperature

difference (LMTD) was also used in their analysis and the engineers confirmed that it

was sufficiently accurate for fouling factor calculations for their project. The following

assumptions are made when calculating the actual heat transfer coefficient:

• Steady-state conditions, similar to the theoretical heat transfer coefficient.

• Boiler loads stay relatively constant and do not fluctuate continuously.Typically,

conditions in the boiler remain constant for at least 6 hours at a time at a minimum,

while the conditions also change very slowly should they be changed as was observed

from the dataset.

• No large leakages in the boiler relative to the amount of air pushed through it, as

was seen when on a plant visit to the boiler itself.

• Boiler conditions remain stable, i.e. the temperature of the metal surfaces and

fluid parameters does not change drastically or fluctuate often similar to that of the

boiler load time frames.

To calculate the actual heat transfer coefficient, the heat absorbed by the steam is cal-

culated using equation 2.13

Q̇absorbed = ṁs(Hout −Hin) (2.13)

where ms refers to the mass flow rate of the steam and H refers to the enthalpy. The

enthalpy of the steam is a function of temperature and pressure and can be determined

from the thermodynamic tables for super-heated steam, once the temperature and

pressures are known.

To determine the actual heat transfer, the log-mean temperature difference (LMTD)

method is used. The LMTD method is a steady-state method that can be used when the

surface temperature of a heat exchanger remains relatively constant (Cengel & Ghajar

2015). In this case, it is assumed that the surface temperature does not fluctuate often

in the boiler and hence the LMTD method should be valid. However, it should be noted

that a dynamic analysis, which incorporates changes to the temperature of the surface

would likely result in a more accurate estimation of the actual heat transfer coefficient.

In this case, however, it is not possible to incorporate such terms, since no surface
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temperature measurements are available in an online capacity in the boiler and can thus

not be incorporated into the model. Since it has been confirmed by the other SAPPI

project that using the LMTD is sufficiently accurate for fouling estimation, this method

will be used. The actual heat transfer coefficient is hence defined as follows:

hactual =
Q̇absorbed

As∆TLMTD

(2.14)

and the log-mean temperature can be calculated using equation 2.15

∆TLMTD =
∆T1 − ∆T2

ln(∆T1/∆T2)
(2.15)

where ∆T1 = Tfi − Tso and ∆T2 = Tfo − Tsi. Here, Tfi and Tfo refer to the flue gas inlet

and outlet temperature respectively, while Tsi and Tso refer to the inlet and outlet steam

temperatures, respectively.

2.3 Data acquisition and pre-processing

From the thermodynamic model, it is possible to determine which parameters and sensor

measurements are required, to determine the fouling factor in the respective sections of

the boiler. The thermodynamic model was be applied to the different sections of the

boiler, respectively, and not to the boiler as a whole. This is done to obtain a more

detailed picture of where in the boiler problems occur and to ensure higher accuracy

in terms of the fouling factor. Since each section also has its respective soot blowers

and heat exchanger configuration, it makes sense to apply the model to each section

individually. The sensor measurements in the boiler are also separated by the sections of

the boiler and therefore, this method is also more practical. The parameters and sensor

measurements required can be seen in table 2.3. In most cases, the sensors mentioned in

the table are roughly located in the middle, referring to the height of the platen, before

and after each superheater or heat exchanger platen.

The boiler consists of several sections, namely, the primary 1, 2, and 3 superheaters, the

secondary superheater, the boiler bank, and the economiser. Sections that are experi-

encing the highest amount of fouling are the superheaters and the boiler bank according

to the operators of the boiler at the plant, since they monitor fouling accumulation hot

spots when the boilers are water washed. The only sections that have sufficient sensor

measurements and information available to build the thermodynamic model, are the

secondary superheater and the primary superheater 2. As mentioned in the literature

review, most boilers experience severe fouling and sometimes plugging in the boiler bank
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Table 2.3: Boiler Parameters and sensor measurements required for the thermodynamic
model.

SYMBOL DESCRIPTION UNITS OBTAIN FROM

ms Steam mass flow rate kg/s Sensor measurement
mf Flue gas mass flow rate kg/s Approximate from measurements
Vw Velocity of the steam through the pipes m/s Derive from measurements
Tiw Inlet temperature of the steam/water ◦C Sensor measurement
Tow Outlet temperature of the steam/water ◦C Sensor measurement
Tif Flue gas Inlet temperature ◦C Sensor measurement
Tef Flue Gas Outlet temperature ◦C Sensor measurement
Ts Surface temperature of the tubes ◦C Approximate from measurements

Vinf
Flue gas velocity into tube banks m/s Approximate from measurements

Do Outside diameter of the tubes m Design parameter
Di Inner diameter of the tubes m Design parameter
ST Transverse spacing of tube bank m Design Parameter
SL Longitudinal spacing of tube banks m Design Parameter
N Number of tubes in tube bank - Design Parameter
Lt Lenth of the tubes in tube bank m Design Parameter
es Surface emmissivity of tubes - Design Parameter
k Tube thermal conductivity W/m.K Design Parameter
L Mean distance traveled by radiation beam m Approximate from schematics
P Flue gas pressure Pa Sensor measurement
Piw Inlet water pressure kPa Sensor measurement
Pow Outlet water pressure kPa Sensor measurement

and the superheaters leading up to the boiler bank. Unfortunately, there are currently

no measurements showing the steam to water ratio in the boiler bank and temperature

measurements are scarce. It is therefore not possible to build our thermodynamic model

for the boiler bank section at this stage.

The two superheaters leading up to the boiler bank are the primary 2 superheater

and the secondary superheater for which there are enough sensor measurements and

information. Thus, the study focuses on determining the level of fouling in these two

sections. The other superheaters and economiser have not experienced as much fouling

according to Johan Kok, a plant engineer at Ngodwana, and optimisation of their soot

blowing sequences are not as critical for the time being.

As seen in table 2.3 some inputs required for the thermodynamic model have to

be derived or approximated from other sensor measurements. To derive the velocity of

the steam, the mass flow rate sensor measurement value is taken and is divided by the

density of steam at the arithmetic mean temperature of the steam as can be seen in

equation 2.16. The volumetric flow rate is then obtained, which is divided by the inlet

flow area of the steam in the boiler section to get the mean velocity seen in equation

2.17.

V̇ =
ṁ

ρs
(2.16)

vsteam =
V̇

Ainlet

(2.17)

The surface temperature of the tubes is assumed to be constant at 540 ◦C, which
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is a value that was obtained as an estimate when visiting the plant. Currently, there

are no sensors measuring the surface temperature online and this assumption must

therefore be used. The surface temperature is only used for the calculation of the

theoretical heat transfer coefficient and it was seen, when performing a basic sensitivity

study, that the surface temperature does not significantly affect the theoretical HTC

value. In the sensitivity study, the surface temperature is varied from -10 % to 10 % of

its original value, which only makes a -1.07 % to 1.14 % difference in the theoretical HTC.

To get an approximation of the flue gas mass flow, the mass balance for the com-

bustion process is used. The approximate mass balance was obtained from Kendrick

Mashego,the process engineer at the plant, and is used in conjunction with the sensor

measurement, measuring black liquor flow, to obtain the amount of black liquor converted

to gas. It was seen that, on average, 42 % of the black liquor is converted to gas when

combusted. This gas flow is added to the total amount of air actively blown into the

boiler, to get the flue gas mass flow. The flue gas calculation can be seen in equation

2.18. The flue gas velocity is calculated using the same principle as the steam velocity

calculation mentioned above.

ṁFlue = ṁair + 0.42 × ṁBlackLiquor (2.18)

2.3.1 Data Acquisition

All the sensor measurement data from the entire Ngodwana plant is stored on a server

called the Distributed Control System (DCS). The dataset required for the thermody-

namic model was drawn from this server. The data was drawn for approximately 4 months

from 10 February 2020 to 10 May 2020. This time interval was chosen as there WAS no

boiler shuts in between those dates due to broken or malfunctioning equipment. The

boiler was water washed the day before the commencement of the dataset and was shut

down for a water wash shortly after the last entry in the dataset. Therefore, the dataset

was chosen in such a way that one could see the fouling factor development over time,

and so that any problems occurring in the boiler, are only because of fouling and not

malfunctioning equipment. The time interval for samples was chosen to be 10 seconds to

take the necessary sensor measurements for the thermodynamic model. This allows the

steady-state assumption to hold as boiler conditions do not change as quickly and hold

steady for time frames typically more than 6 hours as was seen when investigating the

data. Typically conditions also change over several hours, thus small intervals will allow

the pseudo-steady-state assumption to hold. This interval was also chosen because of the

length of the soot blowing sequences. A typical soot blowing sequence lasts between two

and a half to three and a half minutes and, having ten-second interval measurements,
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should give one a good idea of the fouling factor change during a soot blowing sequence.

Drawing the data in such small time steps also ensures that one has enough data to build

accurate models. The final dataset drawn had over a million samples with approximately

800 sequences per soot blowing pair where this pair of soot blowers were active over the

period.

2.3.2 Data pre-processing

Once the data was drawn from the DCS, pre-processing was required, as the data was

contaminated with incorrect measurements and false values. Since the data came from

live sensor measurements, it is also bound to be corrupted by noise, further increasing

the need for pre-processing. Some of the measurement samples will be outliers and will

have to be filtered out. Many of the measurement units from the sensors and the DCS

system are not in standard engineering units or in the unit of measure required for the

thermodynamic model. Therefore, an additional step was required, where the data was

converted into the correct units of measure.

To start with the data pre-processing, all the units of measure were converted to

standard engineering units. The mass flow rates were converted from ‘T/Hr’ to ‘kg/s’,

the pressures were converted from ‘mmH2O’ gauge pressure to ‘kPa’ absolute pressure

and the volumetric flow rates were converted from ‘l/min’ to ‘m3/s’.Once the units were

all converted, equation 2.18 was used to create a new data feature, namely the flue gas

mass flow rate.

When all the features were created and the units are correct, it was necessary to

deal with the empty or ‘Nan’ values in the dataset. These values occur when sensors

malfunction and fail to generate an entry for the dataset. In literature, there are different

ways of dealing with these types of values. According to an article by Kumar (2020),

one can either remove samples with ‘Nan’ values, impute them with specific values such

as 0 or with statistical metrics such as the mean or median. Similar statements are

made in the paper by Sharpe & Solly (1995). Imputing these samples with values, such

as the mean or median, may skew your data to some extent or replace the sample with

a completely incorrect value. This is especially true for this dataset, as some outliers

may affect the mean so much that the value makes no sense in the dataset. Similarly,

imputing the value with a specific entry such as zero might work well in some cases,

however one must have a very good idea of what the actual value should be. Finally, one

can handle these ‘Nan’ values by simply removing them. Removing ‘Nan’ values is not a

good idea when one has a very small dataset, as one loses some information. Since the

data set for this study contains over one million samples, this should not be a problem.
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While removing Nan values could negatively affect the sampling rate, it was noticed in

the dataset that the Nan values were not often found within soot blowing sequences,

and if they were the entire soot blowing sequence would consist of Nan values and would

therefore be dropped for this project. It should however be kept in mind that in some

cases the sampling rate might have been affected slightly, but since there was no viable

alternative, the samples containing ‘Nan’ values were dropped.

Lastly, the dataset had to be filtered for outliers as these samples might slow

down the machine learning models by causing them to converge slower and could

potentially prevent them from finding any solutions. To filter the outliers, each measured

feature was taken, and the mean and standard deviation of that feature was determined

for all the samples. Every sample for the specific feature was then inspected. Should

the sample lie outside of the 99% confidence interval, the entire sample, for all features

in the dataset, was dropped. This filter is a very simple one, however, advanced outlier

detection algorithms are extensive fields of research on their own and are not necessary

nor possible for this specific study. Once this rudimentary filter was applied, the dataset

was ready for use in the thermodynamic model. The fouling factor could be calculated

for each sample using the equations described earlier in the chapter.

2.3.3 Validating the Fouling Factor data and thermodynamic

model

Once the thermodynamic model is applied to every sample in the dataset, it is necessary

to ensure that plausible answers for the fouling factor are obtained and that the fouling

factor development makes sense. To validate the model to some extent, the fouling

factor is plotted, together with the soot blower sequences. This is done to see whether

the fouling factor drops during a soot blowing sequence and increases when no soot

blowers are active. The plot can be seen in Figure 2.4. The fouling factor does indeed

drop when a soot blower is active and rises when no soot blowers are active. The

response of the fouling factor to the soot blowers makes sense and is expected. It is

thus assumed that the thermodynamic model works relatively well and that the model

can pick up the changes in the system when soot blowers are active. Some soot blowers

have more of an influence than other soot blowers, which also helps to validate that

the model works correctly, as their influence depends on their location in the boiler. It

should be noted that the fouling factor data shown in the figure is from the last part

of the dataset, when the fouling in the boiler was already significant and the boiler

was close to being shut down for a water wash. The fouling factor value is relatively

high, at approximately 0.7 which is an expected value, as this part of the dataset

that was tested, was near the end of the boiler cycle, just before it was water washed.
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Figure 2.4: The influence that the soot blowers have on the fouling factor development
in the secondary superheater.

Therefore, the boiler should be fouled heavily and the thermodynamic model seems to

be obtaining plausible answers. It is therefore assumed that the thermodynamic model

is behaving as is expected and the fouling factor data can be combined with the rest

of the measurement dataset for use in machine learning models. The fact that one

now has a measure of fouling in this boiler, is already a very positive result, as it was

mentioned before, that previously, no such measurement or indication existed for the

plant. Before any machine learning models have been applied, one already has a better

view of what is happening in the boiler and the process engineers at the plant can

most likely already use this model to some extent with their soot blowing decision making.

It should be noted that the data from the DCS system as well as the calculated

fouling factor as is, is still very raw and most likely extensively corrupted with noise.

How the data is to be used must therefore be considered carefully as there are several

possible options. One possibility is to take the measurement data and fouling factor for

the entire boiler and pass the entire set to a machine learning model. This however is

most likely not a good idea, as there are too many changes that still occur over time in

the entire boiler for a machine learning model to extract a consistent model. Especially

regarding the SINDy algorithm, this would be a problem, as the soot blowers entering

and leaving the boiler most likely change the physics and would therefore hinder the

algorithm’s capabilities. Another option is to focus on a specific section within the

boiler. This option has many of the same potential problems as focusing on the entire

boiler, as each section still has multiple soot blowers changing conditions in the section.

However, the physics should remain more consistent compared to the entire boiler. This

method is a possibility as each section in the boiler has its own temperature and pressure
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measurement sensors as was seen when building the thermodynamic model.

Lastly one could focus on a pair of sootblowers in a specific section, which would

most likely result in the physics changing the least. In other words, the data set can be

split into sequences where a specific soot blower pair is active. This should minimise the

influence of other soot blowers on the physics, during a specific soot blowing sequence.

However, as is clear, the dataset is complex and it is very difficult to decouple a section

or sootblower pair from the others all together, as there are often more than one soot

blower pair active in the boiler at a time. Most likely, this will cause difficulties in model

extraction with the SINDy algorithm, as the models are likely very intertwined. To

therefore, first test the capabilities of the SINDy algorithm, as well as discover potential

problems one could encounter when using the real dataset, verification problems are

built and tested to ensure the algorithm is capable of extracting these types of models.

Once a full investigation has been completed on a virtual level, the real dataset can be

used to confirm or disprove theories from the verification problems.



CHAPTER 3

Identifiability of the soot blowing physics

In the literature review, it is mentioned that traditional machine learning meth-

ods have developed much over the last decade and can fit very complex data

sets. However, a caveat that usually comes with these models is the loss of in-

terpretability, which makes it difficult to determine where errors come from, why

they occur, and how to fix them. These machine learning models are also rarely

able to generalize beyond the domain of the training data set and, therefore, are

not well suited to adapt to new conditions. It is also mentioned in the literature

review that the SINDy algorithm was developed to circumvent these problems.

This is because the algorithm extracts the governing equations of a system from

raw measurement data, which results in simple and interpretable models that can

generalize well. In this chapter, the SINDy algorithm is tested using different

artificial models and verification problems to establish the strengths and short-

comings of the algorithm. Basic model forms that can be expected from the

Ngodwana dataset are found and the SINDy algorithm’s recovery ability, under

different initial, noise and underlying model conditions, is tested. These experi-

ments are done, so that one can determine what can be expected once the SINDy

algorithm is applied to the real Ngodwana dataset.

3.1 The SINDy algorithm

The SINDy algorithm is a relatively new method of looking at machine learning and

model fitting. The algorithm does not fit a model to the input dataset directly, but rather

tries to extract an ordinary differential equation or set of equations, through sparsity-

promoting methods. The resulting models, assuming the feature library was well defined,

should describe the underlying equations that govern a system. Typically these models

36
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can be interpreted fairly easily and can be used to generalise outside the domain of the

training data (Brunton et al. 2016). As mentioned in the literature review, the SINDy

algorithm tries to extract an ordinary differential equation (ODE) with the following form

(all equations are adapted from the paper by Brunton et al. (2016).):

d

dt
x(t) = f(x(t)) (3.1)

To determine the function f one has to gather time-series data of the states x(t). There-

fore, the inputs to the function are measured at different time steps to form the input

dataset X. To obtain ẋ(t) one can either measure the derivative of the states of the sys-

tem or calculate it using numerical methods, such as the finite difference method. Once

again, the derivative is determined at different time steps to form Ẋ. X and Ẋ, therefore,

form the following two matrices, where n is the number of variables and m refers to the

number of samples:

X =


x1(t1) ... xn−1(t1) xn(t1)

... ... ... ...

x1(tm−1) ... xn−1(tm−1) xn(tm−1)

x1(tm) ... xn−1(tm) xn(tm)



Ẋ =


ẋ1(t1) ... ˙xn−1(t1) ẋn(t1)

... ... ... ...

ẋ1(tm−1) ... ˙xn−1(tm−1) ẋn(tm−1)

ẋ1(tm) ... ˙xn−1(tm) ẋn(tm)


(3.2)

Once the matrices are constructed, a feature library is constructed, where the feature

library comprises the possible functions that can form part of the ODEs describing the

system. These functions can vary from being constant terms to polynomials and even

trigonometric functions. A typical feature library is shown in equation 3.3.

Θ(X) =
[
1 X X2 X3 ... tan(X) cosec(X)

]
(3.3)

where X2 refers to second-order functions of the state x such as x2
n(t) and xn(t)xn−1(t).

X3 refers to third-order functions of state x. As mentioned in the paper by Brunton

et al. (2016), the functions used in the feature library matrix can be chosen freely,

as the sparse regression is assumed to only activate a few of these functions. The

feature library functions should be chosen to represent some of the underlying physics

equations, if some basic knowledge of these equations is found beforehand. Choosing

representative functions could result in SINDy obtaining correlations closer to the true

underlying physics. This is once again, one of the other reasons for building a basic

thermodynamic model in chapter 2. The thermodynamic model gives one a basic idea
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of which functions one would expect to work well with the SINDy model and could help

with the construction of the feature library.

A sparse regression problem can be set up, once the feature library has been con-

structed and the derivative of the states has been measured or calculated. The sparse

regression problem is set up as follows:

Ẋ = Θ(X)Ξ (3.4)

where Ξ =
[
ξ1 ξ2 ... ξn

]
refers to the vector of coefficients of the feature library func-

tions. This vector is assumed to be sparse, due to it being calculated using a sparse

regression optimizer, such as the sequentially thresholded least squares (STLSQ) opti-

mizer (Brunton et al. 2016). Once Ξ has been determined, each of the governing equations

can be found using the following equation:

ẋk = Θ(xT )ξk (3.5)

A schematic of the SINDy algorithm can be seen in figure 3.1 which was adapted from

the paper by Brunton et al. (2016). The schematic shows how the SINDy algorithm is

applied to the chaotic Lorenz system example from the paper, by using sparse regression

to find the active terms in the feature library. Once again it is also shown how the Ξ

matrix is used to obtain each of the equations for the variables in the state x.

Figure 3.1: Schematic of the SINDy algorithm, which is applied to the Chaotic Lorenz
system from the paper by Brunton et al. (2016).
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3.2 The verification problem

To ensure that the SINDy algorithm has the capabilities to recover the underlying equa-

tions for a typical soot blowing sequence, a verification problem is set up using equations

from the paper by Shi et al. (2019). A verification problem is used, to ensure that the

data can be controlled when confirming that the algorithm is working correctly before it

is applied to noise corrupted measurement data. In the paper, they attempt to find the

time-dependent equations that describe the fouling factor development during and after

a soot blowing sequence. The following two equations are given in the paper to represent

the two possible states:

Fd = 10.54 − 10.31e−0.001716t (3.6)

Fb = 0.328e−0.4515t (3.7)

where Fd and Fb refer to the fouling rate change curve during deposition and the fouling

rate change during a soot blow, respectively. To obtain the differential equations of

these equations, the derivative with respect to time is taken. After some mathematical

manipulation, the differential equations can be written in the following form:

F ′d = 0.018086 − 0.001716Fd (3.8)

F ′b = −0.4515Fb (3.9)

These differential equations are the equations that the SINDy algorithm should be able

to extract from the time series data. An artificial time series data set is generated using

equations 3.6 and 3.7 and python’s ODE integrator. The initial value is chosen to be

0.016, based on the paper by (Shi et al. 2019). Initially, no noise is added to the data

set.

The SINDy model is constructed using the Python library known as PySINDy

(de Silva et al. 2020). The SINDy model is constructed by first specifying the differen-

tiation method (used to find the derivative of the input dataset), then specifying the

library of base functions to be used (list of all possible functions that could make up

the differential equations) and lastly specifying the optimizer to be used for the sparse

regression. For the verification problem, most of the default parameters are used. The

differentiation method is set as the central finite difference method, the function library

is set to be a second-degree polynomial library and the optimizer is chosen to be the

recommended sequentially thresholded least squares algorithm, which was also used in
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the papers by Brunton et al. (2016) and (Kaiser et al. 2018). The first dataset, generated

by equation 3.6, is given as input to the SINDy model and the following differential

equation is obtained:

F ′d = 0.018 − 0.002Fd (3.10)

This equation corresponds well with equation 3.8. Similarly, the dataset generated by

equation 3.7 is given as input to the model and an equation, almost identical to equation

3.9 is found and can be seen below:

F ′b = −0.452Fb (3.11)

Satisfied that the SINDy algorithm does indeed extract the correct models, noise is added

to the artificial data set from equation 3.6 to test the ability of the SINDy algorithm to

handle different types of noise. Three types of noise are investigated, namely Gaussian,

Laplacian and t-distributed noise. These noise distribution types are chosen, as they are

commonly used to describe white noise in a system and are all continuous distribution

types. For each noise type, the standard deviation of the noise is varied. The standard

deviation is set to 0.05, 0.1, 0.2 and 0.5 for each noise type with a mean of zero, and the

noise is added to the artificial data set. These noise percentages are chosen as it is highly

likely that the real dataset will contain noise that lies within this range. The dataset

is then given to the SINDy model to test whether the correct underlying equations are

retrieved. Table 3.1 shows the results for this experiment and also indicates the root-

mean-square error (RMSE) of the predicted function and the actual time series data.

Even in very noisy cases, the SINDy algorithm can still retrieve the underlying model.

Table 3.1: SINDy algorithm model extraction capabilities with different types of noise.

Noise type Noise STD Model found by SINDy RMSE

Gaussian Noise 0.05 F ′d = 0.018− 0.002Fd 0.064

0.1 F ′d = 0.018− 0.002Fd 0.122

0.2 F ′d = 0.018− 0.002Fd 0.308

0.5 F ′d = 0.019− 0.002Fd 0.849

Laplacian Noise 0.05 F ′d = 0.018− 0.002Fd 0.074

0.1 F ′d = 0.017− 0.002Fd 0.142

0.2 F ′d = 0.018− 0.002Fd 0.277

0.5 F ′d = 0.020− 0.002Fd 0.761

T-distributed Noise 0.05 F ′d = 0.018− 0.002Fd 0.064

0.1 F ′d = 0.019− 0.002Fd 0.123

0.2 F ′d = 0.018− 0.002Fd 0.278

0.5 F ′d = 0.017− 0.002Fd 0.700

Furthermore, the RMSE does not spike to very large values in any of the experiments.

All the RMSEs increase gradually as the noise standard deviation is increased, which is

expected, as more noise makes it more difficult to identify the underlying physics model
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and the more noise is present the less exact a model will fit through the data which will

result in a slight increase in the RMSE. The experiment shows that the SINDy algorithm

Figure 3.2: Predicted vs computed derivative (left) and the actual data vs simulated data
(right) for a dataset with Laplacian distributed noise of various degrees.

seems to be robust against noise and should be able to determine the underlying
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governing equations in the boiler, even when noise is present. An example of the SINDy

model’s fit to the Laplace distributed noise with different standard deviations can be

seen in figure 3.2. The figure shows the predicted and computed derivatives of the

dataset, as well as the integrated function and the actual dataset.

It should be noted that the equations, used to build the artificial dataset, could

be slightly different for the case study in this project, however the soot blowing curves

obtained with these equations and the soot blowing curves one can extract from the

real dataset looks very similar with the exception being the duration of the curves.

This means that this verification problem is a fairly good representation of the type of

physics the SINDy algorithm would have to extract, however more representative models

will have to be tested that have comparable sampling rates to determine whether it is

important for the algorithms extraction capabilities.

3.3 Establishing basic model forms from the Ngod-

wana dataset

To ensure that the verification problems going forward are more representative of the

true models that are present in the boiler, the SINDy algorithm will be applied to the

Ngodwana dataset in a broad sense to develop an idea of the model forms one can expect.

Understanding what the models look like, will allow one to develop verification models

that can be interpreted. Hence one can understand what can be expected when the SINDy

algorithm is applied to the real dataset. The SINDy algorithm is therefore applied to the

measurement dataset from the plant, not to extract fully developed models, but to simply

obtain basic model forms that can be used to build representative artificial datasets.

3.3.1 Extracting the time series sequences for modeling

As mentioned before, the SINDy models try to determine the physics equations from the

measurement data. When a soot blower activates or deactivates, the underlying physics

change, because of the change in the inputs to the system. The different soot blowers

might also affect the physics in different ways, as they are located in different sections

of the boiler and have been shown to have different influences on the fouling factor.

Therefore, it is decided that the models will be built from small sections of the dataset,

where the physics should remain relatively constant.

Specific soot blowing sequences are thus extracted from the data set for specific

soot blower pairs. The sequences are extracted for pairs, as the soot blower pair always

enters the boiler at approximately the same time and works in unison. Thus, the
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measurement samples are extracted when a specific soot blower pair is active or, just

after a specific soot blower pair has deactivated. Doing this should allow the SINDy

algorithm to find the underlying governing equations more readily, because the physics

does not change during the section of data given to the model. The extraction of these

sequences also allows one to determine how the specific underlying physics change over

time for each soot blower in a section, because of the deposit buildup in the boiler. To

attempt to isolate the soot blower pairs as much as possible, a soot blower pair sequence

is only selected if no other soot blowers in the specific boiler section has been active for

at least 3 minutes and no other pairs activate after this pair for at least 2 minutes. This

should ensure that as many external influences as possible are removed and the physics

remains relatively constant.

Once the active soot blower sequences were extracted, it was seen that some of

the sequences were extremely short and only contained 2 or 3 samples, while other

sequences were too long containing over 100 samples, which relates to a period of 16

minutes. These outliers could be due to sensors malfunctioning and not picking up that

a soot blower is no longer active or erroneously picking up that a soot blower is active.

It was therefore necessary to filter the sequences again, to only extract sequences that

were of the correct length. The mean lengths of the soot blowing sequences for each soot

blower were determined, as well as the 25th, 50th and 75th percentiles. These values

would ensure that the sequences are filtered in such a way, to best represent the nominal

sequence length for each soot blower when a standard outlier filter is run. The statistical

lengths of the sequences, for each of the soot blowers in the different boiler sections, are

summarised in table 3.2. Once the sequences are filtered, the basic SINDy modeling can

begin.

3.3.2 Building basic predictive models

In the verification problem, the only input to the differential equation was the fouling

factor itself. Therefore, it is decided to start the SINDy modeling, using only the fouling

factor as input. Additional inputs to the system can then be investigated once the basic

verification models are built and tested.

To build the initial model, the sequentially thresholded least squares regression

(STLSQ) optimizer is used and the threshold for the weights is set to 0.0001. This

threshold is small, as it was seen that using a higher threshold resulted in the optimizer

eliminating almost all the function coefficients and trivial models are found as a result.

Currently the objective is to obtain only basic model forms and the parameter values are

not adjusted precisely, therefore a default value for the threshold should be sufficient.
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Table 3.2: Statistical lengths of soot blowing sequences for all soot blowers in the different
sections of the boiler.

Boiler section Soot blower Mean STD 25th 50th 75th
pair length of length percentile percentile percentile

Primary SH 1 SB 1 and 2 26.571 3.770 24 26 30
SB 3 and 4 29.743 6.108 24 31 35

SB 11 and 12 25.087 3.884 22 24 28
SB 13 and 14 21.478 3.214 19 21 24
SB 21 and 22 26.591 3.279 24 25 30
SB 23 and 24 21.180 5.115 18 20 24
SB 31 and 32 27.568 25.760 22 25 28
SB 33 and 34 28.114 5.801 25 27 31
SB 39 and 40 26.567 4.682 24 26 30

Primary SH 2 SB 7 and 8 20.786 3.473 18 20 24
SB 9 and 10 27.627 5.0137 25 26 31
SB 17 and 18 20.526 3.643 18 20 24
SB 19 and 20 27.034 3.850 24 26 30
SB 27 and 28 21.125 3.320 18 20 24
SB 29 and 30 27.181 5.781 24 26 30
SB 37 and 38 20.847 3.566 18 20 24
SB 43 and 44 27.096 3.639 24 26 30

Secondary SH SB 3 and 4 29.743 6.108 24 31 35
SB 5 and 6 21.134 3.370 18 20 24

SB 13 and 14 21.478 3.214 19 21 24
SB 15 and 16 21.171 3.627 18 20 24
SB 23 and 24 21.180 5.115 18 20 24
SB 25 and 26 20.909 3.867 18 20 24
SB 33 and 34 28.114 5.801 25 27 31
SB 35 and 36 27.716 4.11 25 26 31
SB 39 and 40 26.567 4.682 24 26 30
SB 41 and 42 20.974 4.520 18 20 24

The threshold value is investigated in-depth once the verification problems are complete.

The differentiation method was chosen as the standard finite difference method. Both

the STLSQ optimizer and the finite difference method is recommended in the paper by

Brunton et al. (2016) The PySINDy implementation in Python has a range of pre-defined

function libraries to choose from, to form the feature library as described in section 3.1

(de Silva et al. 2020). Since most of the non-linearities in the thermodynamic model

were logarithmic and polynomial, the differential equations should also be polynomial.

The verification problem, which was adapted from the paper by Shi et al. (2019), also

showed that the derivative of the soot blowing sequence function seems to be polynomial.

Thus, the polynomial feature library was chosen from the PySINDy libraries and the

default second-order library was used for initial modelling. From the thermodynamic

model validation, it was seen that the most effective soot blower pair was soot blowers 3

and 4. It was decided that initial modeling will be started on this pair of soot blowers,

which were located in the secondary superheater. The same principles can be applied to

the other soot blowers in the respective boiler sections, using the same methodology, if

required.

The fouling factor sequences of soot blowers 3 and 4 are given to the SINDy al-

gorithm and the underlying equations are extracted per sequence. A few examples of the
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models found by this SINDy model can be seen in figure 3.3. The soot blowing curves

do not all have the same shape or curve which may make it difficult for the SINDy

algorithm to extract consistent models.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 3.3: Examples of simulations of the models found by the SINDy algorithm and
the data used in the model extraction.

While the model that is built is very simple (in the sense that it only has one input), the

equations found by the SINDy algorithm, generally fit the data very well and capture the

underlying trends in the sequences. As is expected, the model found is a polynomial of

order 2 (from the second-order feature library) and generally has three coefficients. The

basic form of the differential equations found by the algorithm can be seen in equation

3.12.

FF ′ = C1 + C2 × FF + C3 × FF 2 (3.12)

where C1, C2 and C3 refer to the coefficients found through sparse regression. It was

noted that in some sequence cases certain coefficients would be set to zero, while for

other sequences all coefficients would be present. It was rarely seen that C2 was set to

be zero, however the second-order coefficient was often driven to zero by the algorithm.
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It can be seen that the soot blowing sequences do not seem to have excessive amounts

of measurement noise in them, especially when comparing the examples in figure 3.3 to

those of the initial verification problem in figure 3.2 where different noise levels were

shown. The sequences in figure 3.3 have a noise level that seems to lie below a standard

deviation of 0.2 if the figures are directly compared. Therefore, the models that the

SINDy algorithm extracts, should be valid models to use for verification problems.

It was noted that, while the underlying model equations remained very constant

over the different soot blowing sequences, the coefficient values changed with every

sequence and were not consistent. This might be because of several factors including,

the noise in the system resulting in the soot blowing sequences not having a consistent

shapes or due external factors in the boiler influencing the data. The model might

not have enough defined inputs or the model order may not be well suited to the problem.

Before the cause of the coefficient fluctuations can be discovered it is necessary to

build a few verification problems to better understand what is being seen as well as

determine when the underlying models are difficult to identify. The first verification

problem will be set up to investigate the influence of the coefficients on the sequence

shape and to determine which sequence lengths are required to easily identify model

coefficients.

3.4 Identifiability of underlying physics models and

the SINDy algorithm’s recovery ability

3.4.1 Model coefficient influences for different polynomial order

models and their identifiability

To determine the cause of the coefficient fluctuations for the different sequences, it is

important to understand what each coefficient’s effect is on the shape of the fouling factor

curve for different polynomial order models. Hence, it can be determined whether the

changes in the coefficients are due to shape changes in the soot blowing curves, caused

by varying conditions in the boiler, or whether it is due to noise in the measurement

data and/or other random occurrences. Three verification models are set up that have

three different polynomial orders. The polynomial order will range from 2 to 0, meaning

the first model is a second-order polynomial, similar to what was seen in the initial

experiment on the Ngodwana data, the second model is a first-order polynomial and the

last model will have only a constant term.
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The second-order model

The second-order base model is chosen based on the average of the first 100 se-

quences’ coefficients in the initial Ngodwana experiment of the previous section, as it was

seen a representative soot blowing sequence was found using this method. For simplicity,

the initial value is set to 0. To determine the coefficient influences, each coefficient is

varied, while the other two are kept constant. This way, it can be determined what

influence each coefficient has on the overall fouling factor curve. The equation of the

second-order polynomial ODE chosen can be seen in equation 3.13.

FF ′ = −0.003 + 0.15FF + FF 2 (3.13)

The first coefficient is varied between -0.006 and 0 and its influence can be seen in figure

3.4a. The second coefficient is then varied between 0 and 0.35, while the others remain

constant. Its influence can be seen in figure 3.4b. Finally, the third coefficient is varied

between 0.0 and 1.6 and its influence is shown in figure 3.4c. These values are chosen

as they give one a good idea of how the coefficients influence the curve and how the

identifiability of the models changes for the different coefficient values.

Upon closer inspection of these figures, it can be seen that the first coefficient has

a large influence on the rate of change in the graphs. The more negative the value

becomes, the faster the graph drops to reach an imaginary ‘asymptote’. The second

coefficient has a very large influence on the location of the asymptote in the graph. The

location of the asymptote and the negative value of coefficient 2 are almost directly

correlated. Finally, the third coefficient also has a strong influence on the location of the

asymptote. The value of coefficient 3 and the value at which the asymptote is located,

is indirectly correlated. This means that if coefficient 3 doubles, the value at which the

asymptote is situated halves and vice versa.

It is therefore clear that the coefficient values are highly dependent on the shape of the

fouling factor curves, as well as the end location of the curve, as it was seen that some

of the coefficient values are highly correlated to the ’asymptotic’ line that the curves

approach. Furthermore, the respective coefficients seem to be correlated in such a way

that different combinations of the same coefficient could result in the same answer,

which could lead to possible ill-posedness (more than one combination gives one the

same curve) in the problem.

When investigating the figures from an identifiability point of view, it can be seen

that the soot blowing curves become more difficult to discern from one another when

coefficient C1 becomes more negative and when coefficient C3 becomes a larger positive
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(a) Varying C1 (b) Varying C2

(c) Varying C3

Figure 3.4: Influence of the model coefficients on the shape of the fouling factor curve for
a second-order polynomial model.

value. Coefficient C2 seems to have the least influence on the curve identifiability as

the spacing between the curves remains fairly consistent when its values are varied. If

coefficients C1 and C3 lie within a range that makes the curves less separable, it could

potentially cause difficulties for the SINDy algorithm, as multiple coefficient values

would result in the same basic curve shape and position. This could potentially result

in an ill-posed problem, which could cause fluctuations in the model coefficients and

prevent a consistent model from being extracted by the algorithm. When applying the

SINDy algorithm to the real dataset, one should therefore be aware that this could

be a potential problem that causes coefficient fluctuation and would be difficult to identify.

Finally one can also determine what the minimum sequence lengths need to be

for the SINDy algorithm to efficiently extract distinctive models from the data. If the

number of samples in the sequence is less than 10 time steps, the SINDY algorithm

will likely struggle to extract distinctive models as the curves are very close to each

other in the beginning. This was confirmed with the SINDy algorithm, as it was seen

that the different sequences with only 10 samples obtained almost identical equations

and were not distinguishable. Once more than 25 samples are available, the SINDy
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algorithm should be able to extract more distinct models as the curves can more easily

be differentiated from one another. Since most of the soot blowing sequences in the

Ngodwana dataset contain more than 25 samples, this should not be a problem in this

particular study.

The first-order model

To better understand the influences of the coefficient and to determine a suitable

polynomial order for the SINDy algorithm, the first-order polynomial model is also

tested and the coefficient influences are noted. The first-order model looks similar to

the second-order polynomial model, with the exception being the second-order term

is dropped and the first-order term coefficient is altered to ensure the curve is still

representative of a fouling factor development curve. Two different base equations will

be used as it was seen that changing the sign of the second coefficient altered the shape

of the curve dramatically. The first base equation used can be seen in equation 3.14

while the other can be seen in equation 3.15

FF ′ = −0.003 + 0.02FF (3.14)

FF ′ = −0.003 − 0.02FF (3.15)

Similar to the second-order model, the constant coefficient is varied between -0.006 and

0 while the second coefficient in equations 3.14 and 3.15 is varied between 0 and 0.12.

In figure 3.5, the fouling factor curves are better spaced when the coefficients are being

varied. Similar to the second-order polynomial model, very short sample sequences over

the same range will be difficult to distinguish as the curves are very close to each other.

However once the sequence lengths are more than 20 samples, the curves become more

distinct for each coefficient value. The curves do not seem to converge as much when the

C1 coefficients go closer to 0 as was the case with the second-order polynomial models.

It was noted during the experiments that coefficient C2 was very influential regarding

the curve shape. Very small changes in the coefficient value altered the curve drastically.

This indicates that the SINDy algorithm should not have a problem with extracting

the correct coefficient for a specific curve as the respective coefficient values have very

distinct curves. As coefficient C2 goes closer to 0, the curves once again become difficult

to distinguish from each other. However, as mentioned before it was noted that this

coefficient is very sensitive and therefore, the SINDy algorithm should still be able to
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(a) Varying C1 in equation 3.14 (b) Varying C2 in equation 3.14

(c) Varying C1 in equation 3.15 (d) Varying C2 in equation 3.15

Figure 3.5: Influence of the model coefficients on the shape of the fouling factor curve for
two respective first-order polynomial models.

extract consistent models, should the fouling factor curve shapes be consistent. So far

this polynomial order model seems to result in the most distinguishable models and has

enough complexity to fit the typical soot blowing curves seen in the Ngodwana dataset.

The constant ODE model

The constant model is a model that simply contains only a constant in the differ-

ential equation and does not take any fouling factor inputs into account. The model

that is used in this verification problem, can be seen in equation 3.16 and the base value

of the constant is from the previous two polynomial model’s constant values.

FF ′ = −0.003 (3.16)

Once again, the constant term is varied between -0.006 and 0 similar to the other exper-

iments. Figure 3.6 shows the change in the fouling factor curve when the constant value

is altered. The different fouling curves are very distinguishable in this case. This makes

sense as the underlying model is elementary and the angle of the curve is only dependent

on a single coefficient. The SINDy algorithm should be able to extract these types of
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models easily due to them being very distinguishable, however the likelihood that this

is the true underlying physics model in the boiler is low. This model is very elementary

and will not fit the more complex fouling factor curves of the Ngodwana dataset well,

however it may be a fair approximation of a fouling factor curve, if no other options are

available.

Figure 3.6: Influence of the model coefficients on the shape of the fouling factor curve for
two respective first-order polynomial models.

The following section contains verification problems that test the SINDY algorithm’s abil-

ity to recover representative fouling factor curves when different polynomial order models

are used. SINDy’s recovery ability will also be tested under different noise levels and

initial conditions. This will allow one to further determine what the optimal polynomial

order would be for the Ngodwana dataset and to understand which problems may be

encountered when an actual dataset is used.

3.4.2 Recovery ability of the SINDy algorithm

This section’s verification problems test the SINDy algorithm’s ability to recover

consistent models under different conditions and test whether over-fitting is a problem

that should be addressed when using the algorithm on a real dataset. To test the

model recovery consistency, an artificial soot blowing model will be chosen for each

polynomial model type investigated in the previous section. Each of these models will

be representative of a typical soot blowing sequence, as was seen when the basic models

were extracted from the Ngodwana dataset. Therefore, the coefficients are chosen

through trial and error to represent soot blowing sequences often seen in the dataset. It

was noted in the basic model forms that the algorithm often made the second-order term

zero, however, there were very few times that the algorithm set the first-order term to

zero and kept the second-order one. Therefore, this model form is not considered. The

artificial model equations can be seen in equation 3.17 in descending polynomial order.

The typical shapes of the soot blowing sequences can also be seen in figure 3.7.
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FF ′2nd−order = 0.350 − 1.613FF + 1.806FF 2

FF ′1st−order = 0.013 − 0.036FF

FF ′0−order = −0.0051

(3.17)

Figure 3.7: Representative soot blowing models of different polynomial orders.

General Recovery ability

The first experiment will test the SINDy algorithm’s recovery ability when the

same soot blowing sequence is used but only the even or odd samples in the sequences

are given to the algorithm. Should the SINDy algorithm be able to extract the same or

similar model for the different samples from the same sequence, one can safely assume

that the algorithm is not over-fitting the data given to it. Furthermore it will prove that

the problem is not inherently ill-posed, as different samples with the same underlying

model result in the same model being extracted. If the coefficients are vastly different de-

pending on the samples used, it could indicate that over-fitting is a potential problem or

that the problem is inherently ill-posed and multiple models can give one the same answer.

The SINDy algorithm is set up the same way as it was set up when the basic

models were extracted from the Ngodwana dataset. This means the STLSQ optimizer

is used with a threshold of 0.0001, the finite difference method is used for differentiation

and the second-order polynomial feature library is chosen. The results of this test can

be seen in figure 3.8 for the different polynomial models. Figure 3.8 also shows the

equations of the models that were extracted by the SINDy algorithm for the respective

sequence samples for easy comparison.

The SINDy model can extract consistent models despite the sample types changing.

The second-order polynomial sequence has very slight variations in the extracted model

coefficients when looking at the legend in figure 3.8a. However, these variations are

negligibly small and are most likely only due to slight variations in the samples. This
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(a) Second-order soot blowing model (b) First-order soot blowing model

(c) Zero-order soot blowing model

Figure 3.8: SINDy algorithm recovered models when even and uneven numbered samples
from the same sequence are used.

proves that the problem is not inherently ill-posed, as there exists only one solution

for each type of soot blowing curve. Furthermore, it is clear that the SINDy algorithm

does not seem to overfit the data, since the same model is extracted for the the even

and uneven data samples. The first and zero-order models are the same regardless of

the samples used. This indicates that these models are once again a good option to use

when applying the SINDy algorithm to the real dataset, since many of the soot blowing

sequences look very similar to the first-order polynomial model and the sample selection

do not influence the algorithm’s recovery ability. The results obtained from this model

are representative of the results one can expect from models extracted from the real

measurement dataset, should the same noise conditions or data quality be available.

To further test the algorithm extraction consistency, the number of data samples

sent to the SINDy algorithm is varied. This is done, to see whether the model coefficients

vary significantly if fewer data samples are used, as it was seen in the coefficient influence

experiment that shorter sequences may be difficult to identify. An experiment is set up

where the first 5, 10, 15, 20,and full 25 samples are given to the SINDy algorithm. The

models that the algorithm extracts are then compared to determine how many samples
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are needed before the true underlying model is extracted and to determine when the

extracted models become consistent. This allows one to determine how many training

input samples one typically requires, for use in the Ngodwana dataset. The SINDy

algorithm is set up the same way as the previous experiment and the artificial models,

that are used to generate data, are the same models described in equation 3.17. Figure

3.9 shows the experimental results for different numbers of training data samples for

the different polynomial models. Once again, the equations of the extracted models are

indicated in each figure’s legend for comparison purposes.

(a) Second-order soot blowing model (b) First-order soot blowing model

(c) Zero-order soot blowing model

Figure 3.9: SINDy algorithm recovered models when the number of training samples is
varied.

In figure 3.9 it can be seen that the SINDy algorithm extracts consistent models

when the number of training samples is more than 10 for the second-order model and

seems to extract consistent models for as little as five samples when the polynomial

order is less than 2. This proves that the typical sample length of 25 samples, in the

Ngodwana dataset, is more than sufficient for the extraction of the underlying physics

models in conditions where little to no noise is present. Furthermore, the SINDy

algorithm is capable of extracting not only consistent, but also the correct models fairly

easily, even when data is sparse. This is especially true when the underlying physics
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models are first-order polynomials or lower. This makes sense, as these order mod-

els are fairly simple and would therefore not require as many training samples to discover.

So far no noise has been added to these polynomial curves. Therefore, the next

experiment will test the algorithms recovery ability, when noise is once again added to

more representative artificial sequences than what was used in the very first verification

problem. This will allow one to truly see whether the SINDy algorithm can recover

consistent models when a realistic measurement dataset is given to it.

Recovery ability under different noise conditions

To test the SINDy algorithm’s ability to recover the underlying physics from noisy

measurement data, the same artificial physics models will be used as were tested in

the general recovery section. The artificial dataset will only be altered slightly by

adding Laplace distributed noise to each ‘measurement’ sample. Laplacian noise is

chosen, as this is often assumed in other experiments involving measurement data. Pure

Gaussian distributed noise is relatively rare in measurement datasets and Laplacian

or t-distributed noise is often more common. It was also seen in the previous noise

experiment that the SINDy algorithm seems capable of dealing with multiple types of

noise equally. If it can deal with one type it should be able to deal with other types of

noise as well. The noise standard deviations used in this experiment are 0.001, 0.005,0.01

and 0.05 as it was seen that the true dataset sequences have noise that seems to fall

within this range and higher noise deviations would not be representative of the real

dataset.

The artificial dataset with added measurement noise is once again sent to the

SINDy algorithm in different training sample lengths, to determine whether noise

impacts the algorithm’s ability to extract the physics from shorter training sequences.

The SINDy algorithm setup is not changed for this experiment. The results of the

experiment can be seen in figures 3.10, 3.11 and 3.12 and show the recovered models for

different polynomial order sequences, levels of noise and training sequence lengths. Once

again, the recovered models’ equations are shown in the legend of the plots.

In figures 3.10, 3.11 and 3.12, the addition of noise to the artificial dataset has impacted

the algorithm’s ability to recover the true underlying models significantly. As the

polynomial order of the physics models increases the ability of the algorithm to recover

the underlying model, when noise is added, deteriorates. This may be due to the added

complexity of the models. The SINDy algorithm was able to recover the zero-order

models more often at higher noise levels, than it could when the underlying models were
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(a) Laplacian noise with a standard devia-
tion of 0.001

(b) Laplacian noise with a standard devia-
tion of 0.005

(c) Laplacian noise with a standard devia-
tion of 0.01

(d) Laplacian noise with a standard devia-
tion of 0.05

Figure 3.10: SINDy algorithm’s recovery ability under different noise levels and varying
training sequence lengths for a second-order physics model.

higher-order polynomials. This makes sense, since the more complex the shape of the

curves become, the more possible equations there are, when noise obscures the true form

of the curves.

In most cases the minimum number of samples needed to recover equations that

were close to the true models, was 20 samples. When noise levels became too high, even

25 samples were not enough to recover the true model. When visually comparing the

artificial dataset sequences with those of the Ngodwana dataset earlier in the Chapter,

it can be noted that the Ngodwana dataset seems to contain noise with a standard

deviation that is lower than 0.005. Therefore, it should be possible for the SINDy

algorithm to find the true underlying models if the complexity of the models is not too

high. It was also noted that the higher-order models were very susceptible to divergence

when an ODE integrator was applied to them. This was especially seen with the second-

order polynomial models, which makes sense, as a sudden deviation in the model input

could lead to the squared fouling factor term diverging. This shows that a more reli-

able model to potentially fit to the Ngodwana dataset would be a first or zero-order model.
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(a) Laplacian noise with a standard devia-
tion of 0.001

(b) Laplacian noise with a standard devia-
tion of 0.005

(c) Laplacian noise with a standard devia-
tion of 0.01

(d) Laplacian noise with a standard devia-
tion of 0.05

Figure 3.11: SINDy algorithm’s recovery ability under different noise levels and varying
training sequence lengths for a first-order physics model.

The SINDy package implementation on Python has another built-in differentiator,

namely the smooth finite difference method. The difference between this differentiator

and the basic finite difference method is the fact that the input dataset is filtered and

’smoothed’ before being differentiated. The filter is designed to reduce the effect of noise

when differentiating. The finite difference method is known to deliver extremely noisy

derivative values when a noisy dataset is sent through the algorithm. The smoothed

finite difference method attempts to counter this. This differentiator was tested on

the second and first-order polynomials for noise levels with a standard deviation of

0.005. The results can be seen in figure 3.13. The results are not much improved

from the basic finite difference method. The second-order model fits the actual data

better, however it has an equation that is further from the true underlying model. The

extracted second-order model also has a very unexpected shape and seems to jump to

erroneous values in some cases. It almost seems as if the function over-fits the data. The

same result is obtained for the first-order polynomial where the extracted model with
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(a) Laplacian noise with a standard devia-
tion of 0.001

(b) Laplacian noise with a standard devia-
tion of 0.005

(c) Laplacian noise with a standard devia-
tion of 0.01

(d) Laplacian noise with a standard devia-
tion of 0.05

Figure 3.12: SINDy algorithm’s recovery ability under different noise levels and varying
training sequence lengths for a zero-order physics model.

the smoothed finite difference method fits the noisy data better, however the equation

of this model is further from the ground truth. It therefore, seems that the smooth

finite difference method may aid in fitting the given data better, however it hinders the

discovery of the true underlying model in some cases and will thus not be used for this

project but may be valuable for future research projects.

The addition of noise to the artificial datasets has proven that noise can influence

the recovered model coefficients severely, and if there is a lot of noise present in the

Ngodwana dataset, one can expect fluctuations in the recovered models’ coefficients.

During the experiments so far, it was seen that fluctuations in the initial conditions

could potentially impact the coefficients of the recovered models. Therefore, another

recovery ability experiment is set up, to test the impact that changes in the initial

sequence fouling ‘level’ could have on the model coefficients.
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(a) Second-order model (b) First-order model

Figure 3.13: Testing the smooth finite difference method on noisy data.

SINDy’s recovery ability when initial conditions are varied

To test the influence that different initial conditions have on the recovered mod-

els, the same polynomial models are used as before. For each polynomial model type

four different initial conditions are selected and the artificial sequences are generated.

The initial conditions are chosen arbitrarily as the following: 0.52, 0.48, 0.44, 0.40. No

noise is added to these sequences to purely test the influence of changing the initial

conditions. The SINDy algorithm setup is not changed and the recovered models are

noted. The results for each polynomial model can be seen in figure 3.14.

Different initial values have a slight influence on the extracted models from the SINDy

algorithm when investigating figure 3.14. This is more likely to be the case when the

polynomial order of the underlying models is higher as is highlighted by the figure. The

fluctuations in the model coefficients, however, are relatively small, and do not cause

the extracted models to be far off target. It may cause more fluctuation, however, when

a real dataset is used that contains noise. If noise is present in the system and there

are changes in the initial fouling values, one may start seeing significant fluctuations

in the model coefficients as it was seen that noise can impact the SINDy algorithm’s

recovery ability significantly. If the influence of noise is added to the influence of initial

value changes, one may not be able to extract identical models from one sequence to the

next, even when the underlying model is the same and this should be kept in mind when

applying the SINDy algorithm to the Ngodwana dataset.

An additional test regarding initial values is also performed where the curve shapes of the

sequences are kept identical but the initial values from which these curves originate are

changed. This is done, as it was seen that there are many curves in the Ngodwana dataset

that have near-identical shapes, but have different initial values. The same polynomial



CHAPTER 3. IDENTIFIABILITY OF THE SOOT BLOWING PHYSICS 60

(a) Second-order model (b) First-order model

(c) Zero-order model

Figure 3.14: Influence of varying the initial conditions on the recovered models from the
SINDy algorithm.

models are used in this experiment and a baseline curve is generated. Additional curves

are generated by shifting the baseline curve up or down. The baseline curves used are

the same curves that were seen in figure 3.7 for the respective polynomial order models.

The results of this experiment can be seen in figure 3.15 for these respective polynomial

order models. The equations of the extracted models can also be seen in figure 3.15.

It can be seen in figure 3.15 that the equations extracted from the curves are not identical

for the first and second-order polynomials, even though the curve shapes are. This is

important to note, since it shows that the initial value of the fouling factor sequence

is a critical value that influences the model coefficients. Furthermore, the zero-order

polynomial model is always the same, which makes sense as it is a linear model and the

gradient does not change. The first-order polynomial has a consistent coefficient for the

fouling factor term while the constant term varies. The second-order polynomial on the

other hand has a consistent coefficient for the squared fouling factor term, while the other

two coefficients vary. It, therefore, seems that one could expect more consistency in lower-

order models when curves are similar but do not start at the same point, whereas higher-

order models will have fluctuating coefficients. One can, therefore, not expect completely

consistent models in the Ngodwana dataset, when curves are visually similar but originate



CHAPTER 3. IDENTIFIABILITY OF THE SOOT BLOWING PHYSICS 61

(a) second-order model (b) First-order model

(c) Zero-order model

Figure 3.15: Influence of varying the initial conditions on the recovered models from the
SINDy algorithm.

from different values and is an important finding pertaining to the implementation of the

algorithm on the Ngodwana dataset .

3.4.3 Fitting lower-order models into higher-order physics mod-

els

The next verification problem that is set up, is an experiment where a lower-order

polynomial is fitted to an artificial dataset that was generated with a higher-order model.

This is done, to determine whether the SINDy algorithm will be able to extract logical

models, even though the exact polynomial order is not matched. When fitting real

measurement data, there is a distinct possibility that one might try to fit lower-order

models to data generated by higher-order physics models. For example, this may happen

when one implements the SINDy algorithm on the Ngodwana dataset and lower-order

polynomials are chosen for the feature library than is needed. This experiment will thus

test, whether one would obtain models that are still useful to some extent, even though

the exact physics model is not extracted.
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Table 3.3: Extracted model equations and their RMSE’s when no noise is added vs when
noise is added.

Extracted model equation RMSE of model prediction

No noise ˙FF = −0.029 + 0.050FF 0.011341
˙FF = −0.005 0.021015

With noise ˙FF = −0.025 + 0.042FF 0.012223
˙FF = −0.005 0.019379

The experiment is set up as follows: The second-order polynomial model, used to

generate the curve in figure 3.7 and the previous recovery experiments, is used to

generate an artificial fouling factor sequence. A first-order and zero-order model is fitted

to this sequence. Initially, no noise is added to the artificial sequence. Once the models

have been fit, a small amount of noise (Laplacian noise with a standard deviation of

0.005) is added to the sequence and the models are fitted to the data again. One can then

compare the effect of fitting lower-order models on clean and noisy data respectively, and

evaluate whether plausible answers are obtained. The result of the experiment before

noise is added can be seen in figure 3.16a, while the results when noise is added can be

seen in figure 3.16b. Table 3.3 shows the equations of the extracted models as well as

the root-mean-square-error of the respective models.

(a) Data without noise (b) Data with noise

Figure 3.16: Fitting lower-order models to data, with and without noise, generated by
higher-order physics models.

Figure 3.16a shows that the SINDy algorithm extracts lower-order models that fit the

higher-order curve relatively well if only considering the initial and final fouling factor

values. While the exact shape of the curve is not matched, the endpoints of the extracted

models seem to match up well with that of the higher-order curve. This is important, as

the endpoints of a soot blowing sequence are a measure of how successful a soot blower

pair was. Even though a lower-order model is used one would still be able to determine

how efficient the soot blowing was and one could also roughly determine the energy saved
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because of soot blowing. This would only be true however, when the duration of soot

blowing does not change drastically. The further the predictions are extended, the more

inaccurate the lower-order models would become. In figure 3.16b it can be seen that the

lower-order models still fit the artificial measurement data well, despite the noise being

added. Once again, the endpoints of the soot blowing sequence and the model predictions

match up and the general slope of the curve is captured by the lower-order models. This

shows that one at least recovers some interpretability from the data as one could estimate

the success of the soot blowing sequences should they have the same duration and very

roughly determine the energy saved. It is however clearly not optimal as the rate of

decay is not captured. When investigating table 3.3, one can see that the performance

of the extracted models has not dramatically decreased once the noise was added, as the

RMSE values are within the same range. Overall, the RMSEs are not extremely large,

relative to the range of the fouling factor curve. This proves that fitting higher-order

data with lower-order models is a feasible option, that will not result in illogical answers

being obtained. While it is not optimal to fit lower-order models to higher-order physics,

this experiment proves that the models one obtains should still be usable in a broad sense

and can be interpreted to some degree.

3.4.4 SINDy’s recovery ability for combined soot blowing se-

quences

The final verification problem is set up to test the SINDy algorithm’s recovery ability

when two soot blowing models are entangled. This is tested, as it could be a possibility

that two soot blower pairs could activate in the boiler in approximately the same period,

and have combined effects on the fouling level in the boiler. So far only pure, single

soot blower curves have been tested on the SINDy algorithm and have been shown to

work relatively well, except when substantial noise is present. Now a combination of

soot blower models is tested to see what performance one can expect, from the SINDy

algorithm, if the models are entangled.

To set up the verification problem, the first and second-order models, used in the

previous verification problems are used as the two individual soot blowing models.

The SINDy algorithm is applied to each model’s artificial dataset individually, for the

cases where a pure soot blowing sequence is present. The two artificial datasets are

then combined by taking the average fouling factor value of the two curves for each

sample, to entangle them to some extent. The SINDy algorithm is then applied to this

dataset, and the recovered model is noted. It should be noted that all datasets will

have added laplacian noise with a standard deviation of 0.005 to simulate more realistic

‘measurement’ data. The results of this experiment can be seen in figure 3.17 where
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the individual soot blowing sequences are shown, as well as the combined sequence with

their corresponding extracted models.

The SINDy algorithm extracts physics models very close to the actual models

Figure 3.17: SINDy algorithm recovery ability when models are entangled.

when the pure soot blowing sequences are used, despite low levels of noise being present.

This is expected, as it has already been shown that pure soot blowing models can be

extracted fairly well with the SINDy algorithm. The combined model has a curve shape

that is very similar to that of the second-order model and has the same initial value.

Therefore, one would expect the coefficients of the extracted models to be similar, since

the curves are very similar. When investigating the coefficients of the extracted models

in figure 3.17, however, one can see that the combined curve has drastically different

coefficients from that of the pure second-order model. The combined model that is

extracted, does not have similar coefficients to the second-order model at all, despite

the curve shapes being similar. This highlights a potential problem one may encounter

when applying the SINDy algorithm to the actual dataset. If more than one soot blower

influence is combined in the real dataset, one cannot expect the same model to be

extracted as would be extracted if it were a pure soot blower influence, even though the

curves may look similar. One would therefore have to be aware that, while curves may

look visually similar, the slight variation between them will likely result in substantial

model coefficient differences.

Furthermore, this experiment has shown that curves that look the same may not

always have the same soot blower influences. One curve could be a pure soot blower

influence while the other may be a combination of more than one soot blower’s influence.

It would therefore be very difficult to distinguish between them visually. This potential

problem is minimised, by selecting soot blowing sequences that are as isolated as possible.
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3.4.5 Discussion

Several verification problems and experiments have been completed to test the SINDy

algorithm’s capabilities and shortcomings. Initially, the algorithm was tested on a

verification problem that was taken from a paper by Shi et al. (2019). It was seen

that the SINDy algorithm can extract underlying physics models, similar to what one

would expect to be present in the Ngodwana dataset, even when noise is present. Some

basic model forms were extracted from the Ngodwana dataset to obtain representative

soot blowing curves and models, on which the SINDy algorithm could be tested more

thoroughly. It was noted that the Ngodwana dataset contained what seemed to be zero,

first and second-order polynomial soot blowing curves, and a basic model of each type

was selected for further testing.

The following experiment investigated the influence that the respective polynomial

model coefficients had on the shape of the prediction curve. Furthermore, it was also

noted that it may become difficult for the SINDy algorithm to distinguish between

curves with certain coefficient ranges. It was noted, that curves containing fewer than

10 samples would likely be difficult to distinguish and hence identify with the SINDy

algorithm. Most of the soot blowing sequences in the Ngodwana dataset, contains more

than 25 samples however, and thus the curves should be recoverable since the sampling

rate and the general sootblowing curve shapes remain the same in the real dataset.

Furthermore, when some coefficients approached certain values, the curves would become

almost indistinguishable. Should the Ngodwana dataset have curves that lie within such

regions, one would likely see coefficient fluctuations as the physics is ill-posed in such a

region and multiple models would result in approximately the same curve. This should

be kept in mind when implementing the SINDy algorithm on the Ngodwana dataset

especially when seeing coefficient fluctuations for similar curves, however, it would be a

difficult problem to solve. It was further seen that lower-order polynomial models were

more identifiable, even in the lower sample regions as the curves did not tend to converge

as the coefficients approached certain values.

Once the coefficient influences on the shape of the soot blowing curves were de-

termined, the SINDy algorithm’s recovery ability was put to the test under different

conditions. The first tests ensured that the SINDy algorithm was able to extract

consistent models despite the samples from the same model not being the same to ensure

that one would extract the correct models, irrespective of the type of samples used.

Subsequently, the influence of the number of training samples given to the algorithm was

tested. It was found that the algorithm could extract the correct model, even when as

few as 10 samples were used for most cases, and that the lower-order polynomial models
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could be extracted with even fewer samples.

No noise had been added to the artificial problems up to this point and the influ-

ence of different noise levels were hence tested. High levels of noise influenced the

recovery ability of the SINDy algorithm significantly, especially for the second-order

models. It was noted, that high levels of noise drastically increased the number of

samples one would need to obtain reliable models, and even if sufficient samples were

available, the model coefficients would likely fluctuate. When visually comparing the

Ngodwana soot blowing curves, in figure 3.3, to artificial noise corrupted curves in figures

3.10, it was seen that the Ngodwana data seemed to contain only small amounts of noise

and should not negatively impact the SINDy algorithm’s recovery ability.

The next verification experiment, tested the influence of the initial values of the

soot blowing curves on the recovered models. It was seen that curves with the same

shape but different initial values resulted in different models being recovered. This

should be kept in mind for the Ngodwana dataset, as there are many soot blowing

curves with the same shape but with different initial values. Further,it was tested what

the result would be if lower-order models were fitted to data that is generated with a

higher-order physics model. It was seen that, while the results were not optimal, the

resulting models could still be interpreted and one obtained plausible answers. This

is good news should one accidentally fit lower-order models than necessary on the

Ngodwana data. Finally, the algorithms recovery ability was tested, when more than one

soot blower model influences a soot blowing curve. It was seen that two models, that

were active simultaneously, would result in a completely different model being extracted.

This should be kept in mind in the real dataset if curves, that look visually similar,

obtain completely different model coefficients.

Now that the SINDy algorithms strengths and shortcomings have been evaluated,

it is necessary to implement the algorithm on the real Ngodwana dataset. From the

experiments above the following results can be expected: There will most likely be

significant model coefficient fluctuations, as there are many different curve shapes as

well as curves with similar shapes but different initial values. Noise could affect the

performance of the algorithm, however most sequences contain 25 samples and more

and visually, the noise levels seem to be low enough to not severely impact performance.

Therefore, one can expect to extract realistic model equations from the dataset. Even

when lower-order models are fitted to higher-order data, one should still be able to use

the resulting models for basic fouling factor development predictions. The next chapter

will test these theories, as well as test additional inputs and methods to try and obtain

model consistency, for a limited time interval in the boiler, for a specific soot blower pair.



CHAPTER 4

SINDy algorithm implementation on DCS data

This chapter investigates the performance of the SINDy algorithm when it is

implemented on the measurement data from the Ngodwana mill. The results

found in this chapter are also interpreted with regards to the work done in chapter 3

to determine whether the algorithm performs as expected. It was seen in chapter

3, that significant changes in the data due to noise, or changes to the soot

blowing curve shapes and initial values, could potentially cause model coefficient

fluctuation. Several methods are tested in this chapter to try and circumvent these

issues and to try and extract more consistent model coefficients. These methods

include adding inputs to the SINDy algorithm, optimising the algorithm’s threshold

parameter sequentially and finally, scaling and normalising the data itself. In a

final experiment, several soot blowing sequences are manually selected for the

SINDy algorithm, to illustrate the complexities of the dataset and to understand

how model consistency can be achieved in future research.

4.1 The Case Study

As has been discussed previously, the focus of this study is on the second recovery boiler

at the Ngodwana plant. The boiler is used to generate steam at high pressure that

is sent to turbines in the plant that generates electricity for the plant processes. The

boiler fuel used is black liquor, that is injected using 8 nozzles. The nozzles are designed

to particularize the fuel into droplets for optimal combustion and to allow for more

effective control of the combustion process. The nozzles are situated in the lower part of

the boiler. The net calorific value of the black liquor is approximately constant at 8.96

MJ/kg although this value can change depending on the constituents of the fuel. The

boiler has 4 air intakes to ensure optimal combustion and to control the flame height in

67
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Figure 4.1: Schematic of SAPPI Recovery boiler.

the boiler. The primary and secondary air intakes are situated beneath the black liquor

guns and ensure that an optimal air-fuel ratio is achieved, and no incomplete combustion

occurs. The tertiary and high tertiary air intakes ensure that there is excess oxygen for

the combustion process. Additionally, these two air ducts form a ’blanket’ of air to try

and block carryover deposits as much as possible to prevent deposit formation to some

extent. The boiler consists of superheaters, followed by a boiler bank and finally an

economiser.

There are 4 superheaters present in the boiler. A bullnose in the lower part of

the boiler ensures that the flue gas is forced to flow through the superheaters at all times.

Steam exits the boiler at approximately 8965 kPa and 480 0C. The boiler produces

steam at a rate of approximately 114 kg/s. From these parameters the power output of

the boiler can be calculated. The boiler is approximately a 310 MW boiler. A schematic

of the boiler can be seen in Figure 4.1.

The DCS system, from which the dataset for this work is drawn, interfaces with the
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sensors that are installed in the boiler. In general, there are pressure and temperature

sensors installed before and after each section of the boiler. Currently, there are no

sensor measurements installed within sections of the boiler which is one of the reasons

the thermodynamic model was built per section. Some sections, also did not have

sufficient measurement sensors to apply the current thermodynamic model to and were

left out, as mentioned before. Other sensor measurements in the boiler include airflow

sensors, which measure the amount of air entering the boiler, as well as flow sensors

measuring the amount of fuel entering the boiler, to name but a few. All the necessary

sensor measurements were used for the determination of the fouling factor via the

thermodynamics models and the results were shown in Chapter 2.

There are 82 soot blowers installed in the boiler starting from the superheaters

through to the economizer. The soot blowers utilise steam at 2800 kPa and 390 0C to

clean the heat transfer surfaces. Currently, the system is set up as a dual soot blowing

system meaning 2 pairs of soot blowers can be utilised at a time. The pair of soot

blowers are opposite each other and clean the same region of the boiler from different

sides. As mentioned before soot blowing takes place on a predetermined schedule. In

areas where deposit build-up is substantial, soot blowers blow for 3 min 40 seconds at a

time. In areas where soot blowing is not as critical, the soot blowing operation typically

lasts 2 min 40 seconds. These soot blowing sequences’ measurement data is extracted

from the DCS dataset, including the fouling factor calculation, which is then used to

fit the SINDy algorithm to. In other words, the SINDy algorithm in this chapter, is

fitted to data that was drawn during periods when the soot blowers are active, where

the assumption was made that the physics should remain relatively unchanged. The

differential equations, that are extracted by the SINDy algorithm, describe the gradient

development of these soot blowing sequences. More specifically, the equations describe

the fouling development curve’s gradient during a soot blowing operation. The equations

are integrated in this Chapter, to obtain the fouling factor development prediction.

To start the SINDy algorithm implementation on the measurement dataset and

the above-mentioned sequences, the optimal polynomial order for the feature library of

the algorithm is determined first. In the previous chapter, three polynomial order models

were tested and the first-order model seemed the logical best choice. This is investigated

further in this chapter in terms of prediction performance and consistency. Determining

a polynomial order allows one to establish a baseline algorithm setup to extract initial

models with. The performance of these models is then be compared to more complex

models further on in the chapter to determine whether improvements are made or not.
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4.2 Determining the optimal polynomial order for

the SINDy models

It was seen in the previous chapter, that there are a few possible model orders that

can be used to fit the soot blowing curves in the Ngodwana dataset. It was shown

that the second-order models were complex enough to fit more complex soot blowing

curves very well, while the first and zero-order models were more easily identifiable, but

lacked the complexity of the second-order model. It was also shown in the verification

problems, that the second-order model coefficients were more susceptible to fluctuations

when conditions, regarding the soot blowing curves, changed. High levels of noise,

changing initial conditions and fouling factor curve changes all caused the second-order

model coefficients to fluctuate more than the lower-order models. The zero-order model

was the most consistent under changing conditions as it is the simplest model, while

the first-order model consistency was somewhere between the second and zero-order

model and seemed to be the happy middle ground. To choose an optimal model

order for the establishment of a baseline model, it is necessary to investigate which

polynomial order model best fits the soot blowing sequences of the real dataset. To

determine which polynomial order works best with these models, the model order of the

feature library will be increased from 0 to 4, where a polynomial of order 0 refers to

a constant value and a polynomial of order 4 refers to a polynomial containing terms

up to x4. The reason for testing higher-order polynomials than the second-order, is to

ensure that no assumption errors are made regarding the shape of the soot blowing curves.

The SINDy algorithm setup is as follows: The finite difference method is used for

differentiation and the STLSQ optimizer is chosen for finding the model coefficients. The

threshold value is set to the same value as was used in the verification problems namely,

0.0001. The feature library polynomial order is changed after 20 soot blowing sequences

has been fitted and the RMSE’s for them have been determined. For each polynomial

order, the first 20 sequences for soot blower pair 3 and 4 from the Ngodwana dataset are

fitted one at a time. These soot blowers are located in the secondary superheater, which

is an area prone to fouling, as mentioned before. Once the algorithm has extracted the

respective models for each soot blowing sequence individually, the derivative is predicted

using the extracted model, and the actual derivative is computed using the central finite

difference method. The root mean squared error of the predicted derivative and the

computed derivative is calculated for each sequence and the results are shown in figure

4.2a. The extracted models are also integrated using an ODE integrator from the python

math package, to obtain the fouling factor development curve prediction. Once again,

the root mean squared error is calculated for the actual fouling factor development

sequence and the predicted sequence. The results can be seen in figure 4.2b. It should
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be noted that one would normally test the model fit on test data and not the training

data once again. However, it was seen that the models that were extracted at this point,

differed too much from one sequence to the next and hence, a test dataset would just

confirm that the model from one sequence does not fit the following sequence. This was

most likely due to the inconsistency seen in the data.

In the figures, it is seen that the model that can predict the sequence derivatives

the best, is the fourth-order polynomial model, however SINDy often eliminated the

third and fourth-order terms to simplify the equation into a second-order term. It also

often set the equation to a first-order model, hence the second-order term coefficient

was also zero. This proves that most of the soot blowing sequences have shapes

resembling second or first-order models. The other models also perform very well and

their RMSEs do not increase substantially from the fourth-order model’s RMSE, due

to most sequences being relatively simple. In many cases, the first-order polynomial

model performs just as well as the more complex models. This once again makes sense,

as some sequences are nearly linear and the first-order model would be able to fit them

well. It was seen that most of the extracted models’ predictions resembled a second or

first-order model and not a more complex curve indicating that higher-order models were

unnecessary. When looking at figure 4.2b it can be seen that the zero and first-order

polynomial models never diverge when they are integrated, as their RMSEs do not

jump to a very large values for some of the sequences. It is also interesting to note that

their root mean squared errors, for the actual time series data, are almost exactly the

same as the more complex models. The higher-order polynomial models are seen to

diverge, specifically the second and third-order models. This diverging behaviour was

also seen in the verification problem, when noise was added to the artificial sequences.

The fourth-order model does not diverge in these sequences, however, its performance is

not much better than that of the first-order model and, if more sequences are predicted,

the fourth-order model was seen to diverge often. The fourth-order model is also far

more complex than necessary to predict the soot blowing curves, as these curves visually

seem to be mostly first or second-order curves as can be confirmed in the examples of

the previous chapter in figure 3.3

Thus, looking at the performance of these models, as well as their overall com-

plexity, the first-order model seems to be the logical best choice. It has a very low

level of complexity, while not simply being a straight line as with the zero-order model.

It will therefore be able to fit more complex curve shapes. Furthermore, it performs

nearly as well as the much more complex fourth-order model, when the RMSEs are

compared. The first-order model also does not diverge, while the more complex models

do, especially when there is substantial noise present in the data or when the initial
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(a) Derivative RMSEs (b) Soot blowing curve RMSEs

Figure 4.2: Root mean squared error of the predicted and computed sequence derivatives
for the first twenty sequences of soot blower pair 3 and 4 (a) and the root mean squared
error of the actual sequences and the predicted sequences (b) for different polynomial
orders.

values change too much from what the models had been trained on. This significantly

affects the higher-order models’ performance. Therefore, it is decided that the baseline

models will be built using a first-order polynomial feature library.

4.3 Establishing a baseline algorithm setup for

model extraction

It has been established, that a first-order polynomial for the SINDy feature library, is a

logical best choice when the performance, complexity and consistency of these models

are compared. This is because most soot blowing curves are either linear or parabolic,

and second-order models had the tendency to diverge more often. From the verification

problem it was seen that the coefficients tend to fluctuate less with the first-order model

than with the second-order one and fewer sequence predictions diverge when the ODE is

integrated. These models are also more complex than the zero-order models and should

therefore fit the data better.

To establish a baseline of model performance, the only parameter that has yet to

be determined in-depth, is the threshold parameter of the optimizer. So far, the

threshold has simply been chosen to ensure that no trivial answers are obtained for the

models. To optimise the threshold, a range of threshold values is tested. The sequences

are fitted using the SINDy algorithm, and the extracted models are used to predict the

fouling factor development from an initial value. RMSEs for the actual and predicted

fouling factors are then determined and averaged for all the sequences. A threshold value

with the lowest average RMSE for the sequences is selected to establish the baseline
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model. The threshold range was chosen to start at 1 × 10−6 and to end at 1 × 10−1.

The best threshold for the baseline model, which takes only the fouling factor as input,

is found to be 0.0011 and is selected for the baseline model.

The SINDy algorithm is set up as follows for the baseline model: The feature li-

brary is chosen as the polynomial feature library with first-degree polynomials. The

differentiation method used is the finite difference method and the optimizer of choice

is once again the STLSQ optimizer. The sequences were fitted one at a time using the

SINDy algorithm. Figure 4.3 shows 4 examples of the actual and predicted sequences

once the SINDy algorithm has extracted models from the data set. The predicted models

seem to fit the actual sequences very well and the noise in the sequences are not fitted,

as a general model is extracted from the soot blowing sequence.

Once the sequences are fitted using the SINDy algorithm, the RMSE of each se-

quence is determined, for both the prediction of the sequence derivative and the

time-dependent sequence itself. The RMSEs for the predicted and actual sequence

derivatives can be seen in figure 4.4a for all extracted sequences. The RMSEs, for the

actual and predicted sequences, are also shown in figure 4.4b. By investigating the two

plots shown in figure 4.4, it can be noted that the baseline model performs well, as the

RMSEs for both the predicted derivatives and the predicted sequences are relatively

low. This is a positive result, as it shows that the models that are being extracted are

plausible, that most likely correctly describe the underlying fouling factor development

trend during a soot blowing sequence.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 4.3: Examples of simulations of the models found by the SINDy algorithm when
only the FF is used as input to the system.

(a) RMSE for derivative prediction (b) RMSE for sequence prediction

Figure 4.4: Baseline model performance in terms of the RMSEs for the predicted and
actual derivatives as well as the predicted and actual soot blowing sequences for sequences
from soot blowers 3 and 4.

While the prediction accuracy of the models is important, consistency, in terms of the

extracted models, is also necessary if robust predictions are to be made in the future. If
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(a) Constant coefficient development (b) FF coefficient development

Figure 4.5: Coefficient value development for the different soot blowing sequences over
time, for the model that takes only the fouling factor as input.

the SINDy models perform very well in terms of their predictions, but all the models are

different for each of the sequences, one cannot make justifiable assumptions regarding

the underlying physics in the data. This simply means that one already requires the

data to build a model, which is not very useful in practice, as one would want to predict

the data. Looking at figure 4.5, it can be noted that the model coefficients are not

consistent at all. This is expected to some extent, as it was shown in chapter 3 that the

model coefficients are highly dependent on the shape of the curves, their initial values

and noise in the system. From the examples shown in figure 4.4, one can see that neither

the shape nor the initial values of the curves stay consistent. Thus, one sees significant

fluctuations in the model coefficients. There is also likely some degree of noise present in

the data, since it was derived from measurement data. This could also affect the model

consistency as was shown in Chapter 3.

The SINDy model can therefore not extract a consistent underlying model so far,

since almost every sequence has its own unique model. This makes the models difficult

to analyse and makes it difficult to extract a general model, even for short time intervals

in the boiler. While the results are not optimal thus far, a positive aspect, is the fact

that the models that are recovered, are very interpretable and seem to fit the data very

well. The SINDy algorithm is also performing as one would expect, which is a step in

the right direction. A possible method of improving the model consistency, would be

to investigate additional inputs to the SINDy algorithm. If more inputs are added to

the system, one might provide the algorithm with more information and hence extract

a more general model, since the complexity of the model will be increased without

increasing the polynomial order explicitly.

Since a baseline has now been established, the models can be developed further to include
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additional inputs and to potentially incorporate more complexity. The newer models can

then be compared against the baseline model to determine whether any improvement can

be seen, not only in terms of performance but also in terms of model consistency.

4.4 Adding more inputs to the SINDy models

It has been seen that the SINDy algorithm can extract the underlying equations from

the sequence data efficiently and that these models capture the trend in the soot blowing

sequences. Furthermore, the best polynomial order was shown to be a first-order

polynomial, as its performance was comparable to that of higher-order models, while the

integrated sequences did not diverge due to the low level of complexity of the models.

These changes were implemented and a baseline algorithm setup and model performance

was established.

To further try to improve the model performance, as well as the coefficient con-

sistency of the extracted models, additional inputs to the SINDy algorithm are

investigated. As most thermodynamic models depend on some form of temperature

difference to estimate the amount of heat being transferred, these types of inputs

might add significant value to the SINDy models, since they can indirectly give one an

indication of the level of fouling in the system. The higher the fouling, the less heat is

transferred and vice versa ,therefore, temperature differences seem to be a logical input

choice. The first input that is added to the SINDy algorithm is the flue gas temperature

difference, defined as the difference between the flue gas exit temperature and the flue

gas inlet temperature. The flue gas temperature difference is chosen, as this temperature

change could give one an indication of the amount of heat that could be transferred to

the steam and hence it can also be linked to the level of fouling present in the boiler.

Initially, the input will be given to the SINDy algorithm as a control input, as described

in section 1.2.5 and first explained in the paper by Kaiser et al. (2018). The SINDy

algorithm will thus not have to estimate the temperature difference model in addition

to the fouling development model. This is done purely to investigate whether this

additional input provides any valuable information that can improve model performance

and consistency so that this input type model can be compared directly to the baseline

model.

4.4.1 Using the flue gas temperature difference as control input

The algorithm setup is similar to what has been done before. The finite difference

method is used for the differentiation of the input dataset, the optimizer of choice is the

STLSQ optimizer and the polynomial feature library is populated with polynomials up
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to order 1. Similar to what had been done with the baseline model, the threshold is once

again optimized by finding a threshold value that results in the lowest average RMSE for

all the sequences. The same range of values is tested, as was mentioned in the section

on the baseline model and the best general threshold was found to be 0.00225. The

models are trained using the fouling factor sequences as system input and the flue gas

temperature difference sequences as control inputs. Examples of the model predictions

of the fouling factor can be seen in figure 4.6. It was noted that most of the models

were first-order models, while some were set to be 0 order models by the SINDy algorithm.

It can once again be noted that the models fit the data very well, as the trends

in each soot blowing sequence are captured by the models that were extracted by the

SINDy algorithm for the respective sequences. When one compares the results to those

of the baseline model, shown in figure 4.3, it can be seen that the results look fairly

similar and no significant changes have occurred regarding the general shape of the

predicted models.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 4.6: Examples of simulations of the models found by the SINDy algorithm when
∆Tf is used as control input to the algorithm.

To properly evaluate the performance of the model compared to the baseline model, the
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(a) RMSE for derivative prediction (b) RMSE for sequence prediction

Figure 4.7: Model performance, in terms of the RMSE’s for the predicted and actual
derivatives as well as the predicted and actual soot blowing sequences, when ∆Tflue is
added as control input.

RMSE of the predicted and computed derivatives, as well as the RMSE of the predicted

and actual soot blowing sequence data, is once again plotted. The results can be seen in

figure 4.7. When comparing the average RMSEs of the predicted and actual derivatives of

the models in figures 4.4a and 4.7a it seems that the model has not improved. However,

when comparing the actual sequence and predicted sequence RMSEs of the two models

in figures 4.4b and 4.7b one can note that the model with the added flue gas tempera-

ture input performs significantly better on average, with the average RMSE of sequence

prediction dropping from 0.0457 to 0.0239. Its average RMSE is almost half that of the

baseline model. It, therefore, shows that, by adding the flue gas temperature difference,

one has incorporated extra information regarding the fouling factor into the model, and

this has led to the models being able to better predict the fouling factor development.

It should be noted, however, that this model is not feasible to be used in practice, if

predictions need to be made. This is because the flue gas temperature difference will not

be known beforehand and cannot be used as a control input to the model when simulated

for prediction. To therefore see if a model, that takes the flue gas temperature difference

into account, will be useful in practice, the SINDy algorithm must be altered so that the

flue gas temperature difference is no longer a control input, but rather a system input

that also has to be predicted. This model can then be compared against the previous ones

to determine whether adding this as a system input would be beneficial for prediction

accuracy purposes and whether the model coefficients become more or less consistent.
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4.4.2 Using the flue gas temperature difference as a system in-

put

A model, that estimates the difference in the flue gas temperature as well as the fouling

factor, is built using the same parameters as the model where the flue gas temperature

difference was used as a control input. Now the flue gas temperature difference model

is also extracted and the temperature difference model is not just used as an external

control input to the system. Similar to the previous models, the threshold parameter is

optimized and found to be 0.00065, which differs slightly from the model that takes the

flue gas temperature difference as a control input. The model is fitted to the training

data and it is seen that the plots of the predicted and actual sequences are nearly

identical to those seen in figure 4.6. Once again, the RMSEs for the sequences, for both

the predicted derivative and the predicted sequences of the fouling factor, are plotted,

and can be seen in figure 4.8.

Using the flue gas temperature difference as a system input rather than a control

input, does not negatively affect the model performance and delivers similar results. The

average RMSE for the predicted and actual sequences is slightly lower than the control

input model, showing that this model makes slightly better predictions on average. It

can also be noted that there are fewer spikes in the predicted sequence RMSEs, so the

models are also slightly more consistent when integrated. When evaluating the overall

performance and comparing it to that of the baseline model, this model outperforms the

base model in terms of prediction accuracy, even though the derivative RMSE is slightly

higher. Additionally, this model may perform better than the one with the control

input, because the noise in the flue gas temperature measurement is not incorporated

directly into the model. Instead, the flue gas temperature difference is estimated using a

‘smoother’ model that does not introduce noise to the model system. This then results

in better predictions. The model that uses the flue gas temperature difference as input

directly, directly incorporates the noise in the measurements into the model and the

model has no way of compensating for it, which may result in less accurate predictions.

This model makes better predictions than that of the baseline model, even when having to

predict more than one input. However, as mentioned before, model prediction accuracy

is not the only important requirement and model consistency, in terms of the coefficients,

must also be investigated. Figure 4.9 shows the coefficient development over the different

sequences, where there are now 3 coefficients namely the constant coefficient, the fouling

factor (FF) coefficient and the temperature difference coefficient (∆Tf ). The basic form
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(a) RMSE for derivative prediction (b) RMSE for sequence prediction

Figure 4.8: Model performance, in terms of the RMSEs for the predicted and actual
derivatives as well as the predicted and actual soot blowing sequences,when ∆Tflue is
added as an additional system input.

of the extracted models looks as follows:

FF ′ = C1 + C2 ∗ FF + C3 ∗ ∆Tf (4.1)

where C1, C2 and C3 correspond to the constant, fouling factor and temperature differ-

ence coefficients, respectively.

When comparing figures 4.5 and 4.9, it seems as if the model coefficients have stabilised

slightly. The range of the values of the coefficients are very similar between the baseline

model and the model with the flue gas temperature difference as input, however, the

baseline model coefficients are noisier. The model with the flue gas temperature difference

has fewer irregularities in the coefficient, and noise in the coefficient development graphs

seems to be visually less. This can be seen in both the constant coefficient and the fouling

factor coefficient graphs. It should be noted that the values for the flue gas temperature

difference coefficients are very small. This is because the flue gas temperature difference

is a large input value and the model compensates for this by making its coefficient small.

Therefore, a smaller coefficient, in this case, does not mean that the input is less impor-

tant. It was noticed that the temperature difference input coefficient was slightly less

noisy than that of the other coefficient development plots, with most of the irregularity

occurring near the beginning and end sequences in the dataset. This is promising, as

one would expect the physics to change rapidly after the boiler had just been water

washed, due to deposits forming quickly on the clean surfaces of the boiler. Similarly,

when the boiler is due for another water wash, the flue gas temperature most likely lies

close to the sticky temperature range, mentioned in chapter 1. Deposits will therefore

accumulate fairly quickly on the heat transfer surfaces, which most likely changes the
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(a) Constant coefficient development (b) FF coefficient development

(c) ∆Tf coefficient development

Figure 4.9: Coefficient development for the different soot blowing sequences over time,
for the model that takes the flue temperature difference as a system input.

physics rapidly. A change in physics will result in a change in the coefficients. Therefore,

the irregularities in the flue gas temperature coefficient can be interpreted to some degree.

It can thus be confirmed that adding the flue gas temperature difference to the

model seems to have improved the overall model performance, not only in terms of

prediction accuracy, but also in terms of model consistency to some extent. The coeffi-

cients have become slightly more consistent and the average RMSE has halved. Adding

inputs to the SINDy algorithm, therefore, seems to improve the model, as the underlying

physics can most likely be better extracted by the algorithm or the added complexity of

the models can better describe the soot blowing sequences compared to the very simple

baseline model. The fluctuations in the model coefficients are still significant and more

inputs may further reduce the fluctuation. Since the flue gas temperature difference

improved the model performance, adding another temperature difference metric, namely

the steam temperature difference, might also improve the model performance, especially

considering that it was a key metric used in the calculation of the fouling factor.
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4.4.3 Using both the flue gas and steam temperature differences

as system inputs

As was seen in the previous model, adding the flue gas temperature difference as an input

allowed the model to not only be more consistent, but also improved the average RMSE of

the predicted soot blowing sequences. Therefore, the steam temperature difference might

also add valuable information to the model if it is used as a system input. This is because

the temperature change of the steam correlates directly to the amount of heat transferred

to it and, thus, directly correlates to the amount of fouling present in the boiler. Three

ODEs are extracted by the SINDy algorithm once the steam temperature difference is

added, as there are now three system inputs. ODEs are found for the fouling factor, the

flue gas temperature difference and the steam temperature difference, respectively. A

generic system can be seen in equation 4.2

FF ′ = C1 + C2 × FF + C3 × ∆Tf + C4 × ∆Ts

∆T ′f = C5 + C6 × FF + C7 × ∆Tf + C8 × ∆Ts

∆T ′s = C9 + C10 × FF + C11 × ∆Tf + C12 × ∆Ts

(4.2)

Once again, the SINDy algorithm is set up the same way as with the previous exper-

iments. The threshold value is optimized to ensure the lowest average RMSE value

is obtained for the sequence predictions and is found to be 0.01. The four example

sequences, together with the predicted sequences from the new model, can be seen in

figure 4.10, while the RMSEs of the predicted derivatives and predicted sequences can

be seen in Figure 4.11.

The models fit the actual sequence data poorly when investigating figure 4.10.

Many of the models extracted by the SINDy algorithm are trivial answers (the fouling

factor derivative equation was simply zero), which is mostly due to the threshold being

set to a large value. However, if the threshold is adjusted to be smaller, the resulting

models also do not fit the sequences very well, with many of the predictions diverging

to very large values once the model is integrated. This is why 0.01 is found to be the

best threshold when optimising this value. Adding the steam temperature difference as

an additional input seems to have over-complicated the models and results in trivial or

divergent sequences once these models are integrated.

The RMSE plots in figure 4.11 further show that the model performance has de-

creased. The average RMSE for the predicted derivative has increased substantially

and the average RMSE for the sequence prediction shows the worst performing model

yet. The decrease in performance is also noted when looking at the model coefficients
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for the FF ODE. The fact that the algorithm often extracted trivial models can be

noted when looking at the coefficient development plots in figure 4.12. It can be seen

that both temperature differences were never regarded as important inputs and their

coefficients were always zero. The constant coefficient shows the same trend, except for

the last sequence where a value was found. Finally, the fouling factor coefficient was

the only coefficient that was not always found to be 0 by the algorithm. However, in

many sequences, a trivial answer was still obtained and the entire model was equal to zero.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 4.10: Examples of simulations of the models found by SINDy algorithm when
∆Tflue and ∆Tsteam are used as system inputs to the algorithm.
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(a) RMSE for derivative prediction (b) RMSE for sequence prediction

Figure 4.11: Model performance, in terms of the RMSEs for the predicted sequence
derivatives as well as the predicted sequences,when ∆Tflue and ∆Tsteam are added as
additional system inputs.

Adding the steam temperature difference has not improved the model performance,

and the extracted physics is not interpretable due to trivial answers being extracted

or answers that cannot be used for prediction. It therefore seems that if the wrong

input combination is given to the algorithm, the resulting models can be a very poor

representation of the underlying physics. An explanation for this substantial decrease

in performance might be the fact that the steam temperature is regulated significantly

in the boiler. Since the boiler is delivering steam to a turbine on the plant, the steam

has to leave the boiler at a specific pressure and temperature and adjustments are

made in the boiler regarding fuel and air that ensure the steam is at the correct

temperature. It therefore, makes sense why the SINDy algorithm is struggling to

extract the underlying physics when the steam temperature difference is used in such

a raw form. It was also noted, when plotting the steam temperature difference over

the sequences, that the value does not change much when soot blowing is active.

Therefore the steam temperature difference input is not supplying a significant amount

of information to the algorithm in its current form. If the steam temperature is also

being controlled in the boiler, the SINDy algorithm is trying to extract not only the

physics in the boiler, but also the changes that control systems are making to the

physics. This may cause a discrepancy in the models, where the physics and control

system dynamics are contradicting each other, resulting in trivial models being extracted.

Another possible explanation for the poor performance might be the fact that the

definition of the steam and flue temperature differences is not well suited to the physics

in the boiler. If one recalls the thermodynamic model that was built in chapter 2,

one should keep in mind that the log mean temperature difference (LMTD) was used

in the calculation of the actual heat transfer coefficient. The temperature differences
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(a) Constant coefficient development (b) FF coefficient development

(c) ∆Tf coefficient development (d) ∆Ts coefficient development

Figure 4.12: Coefficient development for the different soot blowing sequences over time,
for the model that takes the flue and steam temperature differences as system inputs.

were then not defined as the inlet and outlet temperature difference of the steam

and flue gases, but rather as the temperature difference between the hot sides of the

fluids for one temperature difference and the cold sides for the other. Additionally, the

LMTD is non-linear, which the SINDy algorithm might not be able to capture with its

polynomial feature libraries. Hence, a model is built that will not take the flue and

steam temperature differences as separate inputs, but will take the LMTD as a single

input to test whether a performance improvement can be seen.

4.4.4 Using the log-mean temperature difference as system in-

put

Since the LMTD was used in the calculation of the theoretical heat transfer coefficient,

adding it as a system input to the model might improve the model performance. As was

seen previously, adding the steam temperature difference as input to the model degrades

the model performance and results in trivial answers from the SINDy algorithm. The

LMTD, on the other hand, still incorporates the steam temperature difference, but in

a different configuration that may provide more useful information to the models, and
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hence improve their prediction capability. Using the same algorithm setup as before and

optimising for the threshold of the STLSQ optimizer, the best threshold value was found

to be 0.000075. Once again, the four example sequences are shown in figure 4.13.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 4.13: Examples of simulations of the models found by the SINDy algorithm when
the LMTD is used as a system input to the algorithm.

It can be seen that the predicted sequences look much better than that of the previous

model, where the temperature differences were added as separate inputs, since no trivial

answers are obtained. The example sequences closely resemble those of the model where

the flue gas temperature difference was used as input to the system. The generic model

form that was extracted can be seen in equation 4.3. The improved model performance

can be confirmed when investigating figure 4.14

FF ′ = C1 + C2 × FF + C3 × ∆LMTD

LMTD′ = C4 + C5 × FF + C6 × ∆LMTD
(4.3)

The predicted sequence average RMSE is the lowest out of all the models thus far. This

shows that the LMTD has provided valuable information to the algorithm, which allows
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(a) RMSE for derivative prediction (b) RMSE for sequence prediction

Figure 4.14: Model performance, in terms of the RMSEs for the predicted sequence
derivatives as well as the predicted sequences,when LMTD is added as system input.

it to extract improved models. It is interesting to note that the RMSE of the derivative

prediction is comparable to that of the model where the steam temperature difference was

added, as the RMSEs are within the same order of magnitude. However, the time-series

sequence prediction of the model with the LMTD as input is far more accurate than

that of the previous one. This could indicate that the model generalises well and does

not fit the noise, which is inevitably present within the derivative. The model possibly

captures the true underlying physics better. Since the derivative is computed using the

finite difference method, the noise in the measurement data is amplified, as noise gets

amplified when numerical differentiation is applied to a dataset (Chartrand 2011). The

fact that this model does not fit the derivative well, but can predict the fouling factor

development curves the best out of all the models so far, gives one an indication that the

correct physics is likely being extracted. The model prediction consistency however, is

still fluctuating too much to test on an out of sample dataset, since the fit will still likely

be poor in most cases.

Figure 4.15 once again, shows the coefficient development over the different sequences.

The model consistency is not as good as that of the models where only the flue gas

temperature difference was used, but the consistency has not decreased dramatically.

The models also fluctuate slightly less than that of the baseline model, showing that the

LMTD does at least improve the model consistency somewhat. It can be seen that the

coefficients stabilise marginally around the middle 200 sequences, which corresponds to

sequences approximately halfway through the dataset of 4 months. This might be due to

the boiler physics not changing as rapidly when compared to the initial and final parts

of the boiler cycle.

The boiler fouls rapidly right after it has been water-washed and the physics hence

changes rapidly as was discussed previously. The conditions in the boiler may stabilise
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slightly when the temperature reaches the radical deformation temperature of the

deposits. This causes them to melt and fall off due to gravity alone (Tran 2007). At this

point the combination of soot blowing and deposits melting off, may be causing a state

of equilibrium in certain sections of the boiler and the physics do not change as rapidly.

Once the fouling reaches a critical level in other sections, the accumulation rate increases

rapidly and the physics start to change rapidly again near the end of the dataset, which

was also discussed earlier. One thus sees significant coefficient fluctuation in the first

and final sequences from the dataset.

(a) Constant coefficient development (b) FF coefficient development

(c) LMTD coefficient development

Figure 4.15: Coefficient development for the different soot blowing sequences over time,
for the model that takes the LMTD as system input.

Since the model predictions are the most accurate when the LMTD is used, this model

seems to be a step in the right direction and slightly improves upon the model that only

uses the flue gas temperature difference as input. So far, adding inputs to the SINDy

algorithm has not resolved the fact, that changes in the soot blowing curves and initial

values cause fluctuations in the extracted model coefficients. While some improvement

in consistency has been seen once inputs are added, there has not been a way to extract

a single physics model, over a fixed period in which the underlying physics should not
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change, for a specific soot blower pair. The initial values and soot blowing curves still

change too much in a space amount of time to achieve this. A positive result, is the

fact that the models are very accurate when certain inputs are added and the physics

models can be interpreted easily, to obtain a general idea of what we expect the physics

to look like. The models that are being obtained, as well as their prediction accuracy is

therefore proving, that the SINDy algorithm is a viable method of model extraction for

the boiler. The inconsistency that is being seen, seems to merely be due to a complex

dataset with many inconsistencies and not due to a flaw or shortcoming in the SINDy

algorithm. To further try and overcome this data problem, the threshold parameter of

the STLSQ optimiser will be investigated further, since this has not been done in the

study so far, even though the parameter plays a significant role in the models that are

extracted.

4.5 Optimising the SINDy threshold parameter se-

quentially

It was seen in the initial implementation of the SINDy algorithm on the Ngodwana

data, that optimising the threshold parameter of the STLSQ optimizer, resulted in more

accurate predictions and slightly improved the consistency of the model coefficients. It

was also noted throughout the previous experiments that the threshold parameter played

a significant role in the general model form that is extracted, i.e. the number of terms in

the ODE that are kept. The threshold parameter could also lead to trivial answers when

the value was set too high. This parameter, therefore, has a significant impact on the

results one obtains and must be investigated further to try to overcome the fluctuations

in the model coefficients due to inconsistent data.

An experiment is set up, where the threshold parameter is optimized for each in-

dividual sequence instead of selecting one value that fits all sequences the best. The

SINDy algorithm may not be extracting the best model for every sequence when a

general threshold parameter is set. Optimising the threshold parameter for every

sequence may result in more consistent model coefficients, as the best performing model

possible (which is likely the model that is closest to the ground truth) will be extracted

for each sequence. To explain this concept, one might imagine that every sequence is a

tree in a forest that has many hills and valleys. If one chops off all the trees at the same

height, some trees may be cut off correctly, while others will only be cut at the top and

some may be cut off beneath the roots. If each tree is chopped individually, the overall

consistency of the cut will be better and all trees will be cut off at the same height.

Similarly, optimising the threshold for every sequence may result in more consistent



CHAPTER 4. SINDY ALGORITHM IMPLEMENTATION ON DCS DATA 90

models being extracted that all have similar forms and coefficients. Therefore, it might

overcome the data inconsistency that is causing fluctuations.

The SINDy algorithm is set up, as has been done in the previous experiments.

The exception for this test is the fact that the threshold value is changed iteratively for

every sequence and the best threshold value is extracted. This best threshold value is

determined by the prediction error of the model on the training data of the sequence.

The threshold value, that results in a model with the lowest prediction error is seen as

the optimal threshold for the specific sequence. The best performing model with the

optimal threshold is saved, and the coefficients are noted for each sequence. This is done

for every input type model that was built in the previous section, up to and including

the model with the LMTD as input. Table 4.1 shows the average prediction RMSEs

and the standard deviation (STD) of the RMSEs for each model type, when a general

threshold was used and when the threshold is optimized for each sequence.

Table 4.1: Average RMSE and RMSE STD for models when a general threshold is used
vs when the threshold is optimized for every sequence.

General threshold Threshold optimized
Model Input Type Mean RMSE RMSE STD Mean RMSE RMSE STD

Only FF 0.0457 0.0285 0.0130 0.00012
∆Tf input 0.0222 0.0373 0.0093 5.6548e-5

∆Tf + ∆Ts input 0.0506 0.02996 0.01695 0.0017
LMTD input 0.0161 0.0581 0.00871 9.3650e-5

Clearly, optimising the threshold for every sequence improved the prediction accuracy

of the respective models for every sequence, as the average RMSEs dropped notably.

While this is a good indication, one still has to determine whether the models have

become more or less consistent when the threshold is optimized. To do this, one has to

look at the coefficients that are extracted once every sequence threshold is optimized

and evaluate their consistency. For comparative purposes, the constant coefficient

development for every input type model is shown in figure 4.16 for the case where a

general threshold was used and for the case where every sequence threshold was optimized.

When investigating figure 4.16 it can be noted that the coefficient fluctuations

have either stayed visually similar or increased for the case where the threshold is

optimized for every sequence versus the case where a constant threshold was chosen.

The fouling factor input only model has a smaller range of coefficient values, however

the same amount of fluctuation is present. The ∆Tf input models have more coefficient

fluctuations and a wider range of possible coefficient values, when the threshold is

sequentially optimized. For the LMTD input model, the range of the coefficient value
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fluctuation has decreased slightly. However, the more consistent coefficient values that

were previously extracted and seen in the middle of the dataset in figure 4.15 has also

now started to fluctuate. The model that takes both the flue gas and steam temperature

differences into account sees the least improvement, with the coefficients becoming more

sporadic and coefficient values becoming very large in some cases which lead to diverging

sequences once the models were integrated. Most of the coefficients from this model

input type are otherwise still trivial (equal to zero).

Optimising the threshold for every sequence has thus not solved the problem of

inconsistent models due to inconsistent data, but has rather increased the fluctuations

in the model coefficients in most cases. This does make sense as the models are fitted

even more specifically to each sequence and small changes between sequences result in

further changes in the extracted model coefficients. Figure 4.16 only shows the constant

coefficient development for the different input type models, however the other coefficients

showed the same behaviour, where the fluctuations were increased rather than improved

when optimising the threshold. It is therefore clear that optimising the threshold for

every sequence individually, does not resolve the problem of inconsistent data sequences

and proves that the fluctuations are not due to incorrect threshold parameters, but

rather due to inherent data inconsistency.

To try and introduce some consistency and standardisation in the data sequences,

and hence the extracted models, scaling of the fouling factor and normalisation of the

dataset will be performed. The scaling of the fouling factor is done to try and manipulate

the extracted model coefficients to lie within a different range. This is done, as it was

seen in the verification problems in Chapter 3, that some ranges of coefficient values

make it difficult to distinguish between respective soot blowing curves. Hence, forcing

the coefficients to be in a different value range might allow the algorithm to more easily

distinguish between respective soot blowing curves. The normalisation of the dataset is

performed to attempt to make input values more uniform and standardized and hence,

one might extract more consistent models in different sections of the dataset.
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(a) General threshold (FF input only) (b) Individually optimized threshold (FF in-

put only)

(c) General threshold (∆Tf input) (d) Individually optimized threshold (∆Tf in-

put)

(e) General threshold (∆Tf and ∆Ts input) (f) Individually optimized threshold (∆Tf and

∆Ts input added)

(g) General threshold (LMTD input) (h) Individually optimized threshold (LMTD

input)

Figure 4.16: Comparison of constant coefficient development for different input type
models when a general threshold is used vs optimising each sequence’s threshold.
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4.6 Scaling and normalising the data

It was seen in the verification problems in Chapter 3, that some ranges of model

coefficient values made it difficult to distinguish between different soot blowing curves

and could cause a manner of ill-posedness in the model coefficients. In other words,

there were potentially more than one coefficient or coefficient combination that could

result in the same general curve shape, which could lead to coefficient fluctuations. It

could be possible that the curve location and coefficient ranges that are being extracted

from the Ngodwana dataset lie in such a range and could be causing some of the fluctu-

ations that are being seen in the model coefficients. An experiment is therefore set up,

to test whether indirect scaling of the model coefficients could improve model consistency

Changing the scale of the coefficients is easy when one has a verification problem

model where you can simply change their values. However, changing the extracted

model coefficients directly for the dataset is not as easy. To change the size of the

model coefficients, one can do one of two things. The dataset can be normalized and, by

doing so, the input values to the model are made smaller or larger, depending on their

initial range. This will force the SINDy algorithm to compensate by making the model

coefficients larger or smaller to still obtain the same prediction curve shape. Hence one

can indirectly adjust the coefficient scales by normalising the data. Another way of artifi-

cially increasing the coefficient values is to increase the target parameter’s value. Similar

to the normalisation, the coefficients have to increase, assuming the inputs are kept

the same, when the target is enlarged, to ensure the model obtains the larger target value.

Normalisation is first tested to try to improve the model consistency, as it is a

fairly standard data handling procedure and has been shown to work well for many

different machine learning models. The entire dataset is normalised except for the

target variable, namely the fouling factor. The normalisation method used is the

z-normalisation method and the formula can be seen in equation 4.4

Z =
x− x̄

σ
(4.4)

where x̄ refers to the mean of the parameters being normalised and σ to the standard

deviation. Normalising the data has the additional benefit of forcing the inputs to all

lie within the same range. This allows for the coefficients of each input to be within the

same range, which could further improve model consistency. Once the data has been

normalised using equation 4.4, the same procedure is followed for setting up the SINDy

algorithm, as was done previously. The finite difference method is used, a polynomial

feature library is chosen and the STLSQ optimizer is once again used. The threshold

is optimized for each sequence individually to ensure optimal results are achieved. For
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comparative purposes, the results of the coefficient development, for the model with the

flue gas temperature difference as input before and after the normalisation of the dataset,

are shown in figure 4.17. This model input type is chosen as it was the one that showed

the most distinct results.

(a) Constant coefficient (No normalisation) (b) Constant coefficient (With normalisation)

(c) FF coefficient (No normalisation) (d) FF coefficient (With normalisation)

(e) ∆Tf coefficient (No normalisation) (f) ∆Tf coefficient (With normalisation)

Figure 4.17: Coefficient development for models with ∆Tf as input when the dataset is
normalised vs when the dataset is kept as is.
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It can be seen in figure 4.17 that normalising has not drastically improved the model

consistency. The constant coefficients have slightly improved, as there are fewer spikes

visible in the coefficient development. However, the fouling factor coefficient has become

more chaotic once the data has been normalised. What can be noted is that the ∆Tf

coefficient values have become much larger as a result of the normalisation. This was

expected, as previously the flue gas input values were larger than the other inputs and

hence the coefficient had to be small to compensate. With normalisation, the input

values are more on par and hence the coefficient was increased. The normalisation,

therefore, managed to scale the model coefficients, however, it did not improve model

consistency. Normalisation alone is, therefore, not enough to make the models more

consistent and to resolve the inconsistent soot blowing sequence data problem.

A more aggressive method of scaling the model coefficients is thus tested, where

the target variable is scaled directly. This ensures that the model coefficients have to be-

come larger as well to obtain the larger fouling factor values. The larger model coefficients

might then be in a range of values that enables SINDy to more effectively distinguish be-

tween respective soot blowing curves, should the model coefficient ranges be the problem.

To set up this experiment, the fouling factor was scaled to different values to de-

termine the effect that scaling has on the coefficient distributions. The scales used were

0.1, 1, 10, 100, 1 000 and 10 000. The SINDy algorithm was set up, as has been done in

previous experiments. These scaled fouling factor values were sent through the SINDy

algorithm for the different input type models and the coefficient distributions were noted

for each fouling factor scale. The distributions of the coefficients are plotted in figures

4.18, 4.19, 4.20 and 4.21, as opposed to the development curves seen before. This allows

one to easily compare whether any true change in the coefficient distribution has occurred.

To ensure that the distributions are comparable in terms of their value ranges,

the coefficient values are divided by the scaling factor that was used in each case. For

example, the constant coefficient values, found when the fouling factor was scaled by

100, are divided by 100 to ensure that the distribution range of these coefficients are in

the same range as the coefficients when the fouling factor was not scaled. This ensures

that the variance of the coefficients is directly comparable, as their values are within

the same order of magnitude. This makes it easier to see whether a specific scaling

value reduced the variance in the coefficients significantly. The division of the coefficient

by their scaled value is done for all distributions except the fouling factor coefficient

distribution, since it was seen that this was already built into the coefficients as the

fouling factor is scaled directly. The Gaussian curve fit of the coefficient distribution is

also shown for each scaling value.
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Figure 4.18: FF input model coefficient distributions for different scaling values.

Figure 4.18 shows the coefficient distributions for the model that takes only the fouling

factor as input. There is no significant change in the coefficient distributions when the

fouling factor is scaled. The variances for all the scaling values are very similar and

do not change significantly. This shows that the coefficients have not become more

consistent and are still fluctuating as before.

Figure 4.19 shows the same trends for the model that takes the flue gas tempera-

ture difference into account. The coefficient distributions change little with scaling and

the coefficient values are merely adjusted higher or lower, depending on the scaling

factor used. Any variations in the distributions are simply individual sequences that

obtain slightly different values, however the general mean and variance of the coefficient

distributions do not change, showing that no improvement is being seen regarding model

consistency.

Figures 4.20 and 4.21 show the coefficient distributions for the remaining two model input

types. It can be seen in Figure 4.20 that most of the variances of the coefficients are still

the same, despite scaling being performed. The very large variance seen in the constant

coefficient distribution for this model input type, is because this coefficient is sometimes

extracted to be extremely large values, even when the majority of values are still 0.

This model therefore clearly does not seem to work well despite the data being scaled or

adjusted and mostly trivial or extreme values for the model coefficients are observed.

The final LMTD input type model shows some variation in the model coefficient distri-

butions, however the change from one scaling value to the next is very slight. In most

cases, the model with no scaling (or a scaling value of 1) has the least variance, therefore

proving that the scaling did not have a positive impact on the model consistency.
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Figure 4.19: ∆Tf input model coefficient distributions for different scaling values.

To summarise, the normalisation of the dataset and scaling of the fouling factor has not

improved the model consistency and, in some cases, made it worse. While the verification

problems in chapter 3 showed that certain coefficient ranges could make it difficult to

distinguish between the respective soot blowing curves, these experiments prove to some

extent, that it is likely not the cause of the coefficient fluctuations for the Ngodwana

dataset. A few methods have been tested to try and circumvent the inconsistent data

with little success, and the other possible causes of coefficient fluctuation have been

ruled out. Hence, the most likely cause of the severe coefficient fluctuations is due to

inconsistent data. The curve shapes and initial values in the dataset have been seen to

vary significantly and it was shown in the verification problems that this would likely

cause significant coefficient fluctuation. To test whether this is definitively the problem,

an experiment is set up where soot blowing curves are handpicked to have the same

general shape and initial values. Their respective extracted models are compared, as it

is then expected that they should have similar equations.
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Figure 4.20: ∆Tf and ∆Ts input model coefficient distributions for different scaling values.

Figure 4.21: LMTD input model coefficient distributions for different scaling values.
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4.7 Manually selecting soot blowing sequences for

model extraction

Thus far, it has been seen that significant variation in soot blowing curves and their

initial values are most likely the cause of the coefficient fluctuation being seen when the

SINDy algorithm is applied to all the soot blowing sequences in the Ngodwana dataset.

To determine whether one would have to more carefully select soot blowing curves to

obtain interpretable answers, sequences will be selected from the dataset manually.

These sequences will be selected to have the same general curve shape and initial values.

The SINDy algorithm will be applied to these sequences and their coefficients will

be compared, since it is expected that they would have similar model equations and

coefficients if the soot blowing sequences are not combined as was shown in Chapter 3

in the final experiment.

To select the soot blowing sequences for this experiment, it was noted which curve shapes

and initial values occurred frequently in the dataset. It was seen that a curve starting

at a fouling level of approximately 0.53 and sloping downwards towards 0.37 was fairly

common in this dataset. From the first 100 sequences in the dataset, 10 sequences were

selected that had similar shapes and initial values. The 10 selected sequences can be

seen in figure 4.22. These sequences still differ from one another despite being carefully

selected. This gives one an indication of the complex nature of the Ngodwana dataset as

even the 10 most similar curves, out of the first 100 sequences, have significant variation

in their shapes. It is therefore expected that the coefficient values of the extracted

models will still fluctuate somewhat, however, the fluctuation should be less than what

was seen in previous SINDy implementations.

The SINDy algorithm setup is the same as has been used in the study so far. The

threshold parameter is set to 0.0001 as this value was seen to work well for the selected

sequences and resulted in the most accurate models. Different input type models are

tested. A model type with only the FF as input is tested as well as models with the

flue gas temperature difference and the LMTD as respective inputs. These models are

chosen, as they are the best performing and most consistent model types thus far. For

each selected sequence, the best fitting model of each input type is extracted and plotted

together with the original sequence. Figure 4.23 shows the extracted models when only

the fouling factor is used, while figures 4.24 and 4.25 shows the extracted models when

the flue gas temperature difference and the LMTD are added respectively.

When investigating figure 4.23 it can be seen that the model coefficients still fluctuate,

which is expected, since the soot blowing curves are not the same. The model coefficients
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Figure 4.22: Manually selected soot blowing curves with similar shapes and initial values.

Figure 4.23: Manually selected soot blowing curves and the extracted SINDy models
when only the FF is used as input.
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are, however, in similar ranges and are comparable to one another. There are a few

exceptions in the extracted models where a curve shape that is concave upwards is

extracted, instead of the usual concave downwards shape. This shows that even the

slightest variation in curve shape could result in significant model coefficient fluctuation

and explains why no consistent models are extracted when the SINDy algorithm is

applied to the dataset of sequences as a whole.

Another explanation for the coefficient fluctuation, could be the fact that more

than one soot blower pair’s influence is being seen for some of these curves. It was

shown in the final verification problem in chapter 3, that curves may look similar but

have significantly different underlying models, especially when it is a combination of

models. This may be why some models that are extracted that do not conform to the

general underlying model trend for these sequences. The chance is slim, however, since

the sequences are selected to be as isolated as possible, but influences from nearby

sections in the boiler could result in a combination of soot blower models that has not

been accounted for in this dataset. The same trends can be seen in the other model

input types in figures 4.24 and 4.25, where there are also significant model differences

due to slight variations in the soot blowing curves or potential soot blower influence

combinations.

When investigating the respective measurement data curves, some curves start to

curve upwards again, indicating an increase in the fouling factor. This is an unexpected

result, since the fouling factor should not increase when a soot blower pair is active. A

possible explanation for this, could be the fact that there is an error in the limit switch

readings that indicate whether a soot blower pair is active or not. The soot blower pair

may already have finished the soot blowing procedure, but the limit switch might not

have engaged properly. Therefore, the switch reading that is sent to the DCS system,

still indicates that the soot blower is active, while it has finished the soot blowing

procedure already. This would also explain why the soot blowing sequences are not all

the same length and why some sequences stop after 25 time steps but others continue

past 30. Before this theory can be confirmed, however, one would have to investigate

this at the plant itself, which is not currently possible. It should however be considered

in future research regarding this topic, since more consistent sequence lengths, as well as

sequences where the fouling factor does not start to rise at the end, will most likely make

the extracted SINDy models more consistent. Once again the complexity of the dataset

that is being worked with is highlighted as there are likely errors like this present.

To truly determine whether manually selecting soot blowing curves has improved model

consistency, one must plot the coefficient development for the different curves for each
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Figure 4.24: Manually selected soot blowing curves and the extracted SINDy models
when the FF and flue gas temperature difference are used as inputs.

Figure 4.25: Manually selected soot blowing curves and the extracted SINDy models
when the FF and LMTD are used as inputs.
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model type. If the coefficients fluctuate about zero, as was often the case with the entire

dataset being fitted, the manual selection did not improve consistency. If, however,

the coefficients generally fluctuate about a a non-zero point, one can extract a mean

underlying model that averages all the models’ coefficients, which has not been possible

before. Figures 4.26 shows the coefficient development of these ten selected sequences

for the different input type models.

(a) FF only input model (b) ∆Tf input model

(c) LMTD input model

Figure 4.26: Model coefficient development for manually selected soot blowing sequences
for different input type models.

Most of the model coefficients are consistently either negative or positive with the average

values of the ten coefficients proving this. There are some cases where the coefficients

jump from a usual positive value to a negative or vice versa, however, it is much less

frequent than it was when the SINDy algorithm is applied to the entire Ngodwana

dataset sequences. These outlier coefficients once again illustrate the complexity of

the problem we are dealing with, as curves that look visually similar, with only slight

shape and initial value variations, may extract completely different coefficients. This

fluctuation may be due to soot bowers in other sections of the boiler combining their

influence with this specific soot blower pair’s influence as mentioned before,or simply
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due to too much variation in the data. It is also interesting to note that the constant

and fouling factor coefficient development plots seem to resemble mirror images. If one

coefficient is more negative the other is more positive and vice versa. This indicates that

there is a possible correlation between the model coefficients. The only model input type

that does not have this is the LMTD model where the these two coefficients rather seem

to follow one another. If one rises the other does as well which also indicates that there

is a correlation between them. This correlation may be a result of the SINDy model

extracting some underlying physics coupling between the two terms. Alternatively it

could simply be, because the curves are similar to one another and hence the coefficients

relate to each other in similar ways.

It can be confirmed that even though the soot blow curves are similar in shape

and initial values, the slight variation present, results in coefficient fluctuation regardless.

There does seem to be some improvement in consistency as one can find average

coefficient values that are non-trivial, where it was not possible before with the entire

dataset. The average models for the entire dataset were often very close to zero or

zero and did not fit the sequences well. This result in itself is therefore already a very

positive finding and indicates that sequence filtering is another step in the right direction.

The average models found for this experiment was simulated and plotted together

with the sequences that were selected and can be seen in figure 4.27. It can be seen that

the average model of the FF only input models, fits the selected sequences fairly well and

captures the trend of the soot blowing curves. The other input models, however, do not fit

the sequences well at all. Both the ∆Tf and LMTD input models start to diverge upward

instead of following a downwards trend. This shows that the more complex models are

very sensitive to coefficient variations (which may be due to underlying variations in the

physics) and to find a working average model, the coefficients should be significantly more

consistent. The simpler fouling factor input model seems to work well when averaged and

the model would make fairly accurate predictions. It makes sense that the less complex

model is the more stable one, as it was already seen in chapter 3 that the complex models

experienced more coefficient fluctuation when conditions regarding the soot blowing

curve changed, while the simpler models were more robust to slight variations in the data.

This experiment has thus illustrated the complexity of the Ngodwana dataset and

shown, that if sequences are manually selected, one can start to see a slight improvement

in model consistency. Further, this experiment has shown that the dataset would have to

be investigated carefully, to identify potential errors in measurement sensors. Carefully

filtering sequences and double-checking sensor readings should allow one to find more

general and consistent models.
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Figure 4.27: Manually selected soot blowing curves and the average model of the extracted
SINDy models for the different input types.

Even though the results are not as clear cut as one would want, the overall study

has proven that the SINDy algorithm is more than capable of extracting interpretable

models, which would be excellent for generalisation outside the domain of the training

data. The study has also shown how one would have to treat future measurement

datasets (in terms of pre-processing) to obtain the results necessary to make robust

predictions. The final experiment has shown that a promising direction for future

research would be, to further subdivide the data into collections of similar soot blowing

curves and fit the SINDy algorithm to them. However, one should keep in mind that

one must then find a way to determine when certain models must be used and how to

switch between the different models during the boiler life cycle. The work in Chapter 4

has highlighted which measurement sensors and inputs are important, to estimate the

fouling in a boiler, and it has been shown how these measurements improve the SINDy

algorithm’s ability to extract models, that can predict the fouling factor development

during soot blowing, accurately. This concludes the work done for this study.



CHAPTER 5

Conclusion and recommendations

5.1 Conclusion

In this dissertation, a methodology is proposed that attempts to extract the underlying

physics from measurement data in, a Kraft recovery boiler, at the SAPPI Ngodwana

paper and pulp mill. The recovery boiler at the plant is prone to significant soot

accumulation on the heat transfer surfaces, which eventually leads to plugging. This

results in frequent shutdowns and water washes being required at the plant, which

wastes production time and thus money. The proposed method, incorporated the

sparse identification of non-linear system dynamics (SINDy) algorithm, to discover

the underlying boiler physics using basic measurement data. The extracted models

could potentially be used for the prediction of the fouling change during soot blowing.

This would allow one to potentially optimise the soot blowing schedule in the boiler to

increase the efficiency and to ensure that fewer water washes are needed per year. This

would save a lot of money in the long run for the company.

A method of estimating the amount of fouling in the boiler was developed first,

where simple measurements, such as temperature and pressure, as well as fixed boiler

design parameters, were used to build a thermodynamic model. This thermodynamic

model was able to obtain an approximate level of fouling in the boiler, where previously,

no such metric existed. This was already a big step towards soot blowing optimisation

at the plant. It was shown that the thermodynamic model performed very well, as the

fouling factor decreased when a soot blower was activated and increased when no soot

blowers in specific sections were active. This confirmed that the thermodynamic model’s

fouling factor values were plausible and could be applied with relative confidence to

machine learning models. The complexity of the dataset that would be used, was also

106
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highlighted with the thermodynamic model to some extent. The labelled fouling factor

dataset could subsequently be used to build different predictive models and be used

specifically in this study for the SINDy algorithm model extraction. Once the fouling

factor was calculated for approximately 4 months, corresponding to the boiler life cycle

after it had just been washed until it was completely fouled, an initial investigation with

the SINDy algorithm was performed.

A verification problem was set up to test the algorithm’s ability to identify a

valid physics model, given only the fouling factor as input. Once it was confirmed that

the algorithm could identify interpretable models from basic data, the SINDy algorithm

was briefly applied to the real measurement dataset to establish basic model forms

for use in additional verification problems. The verification problem that followed,

tested the influence of the model coefficients on the shape of the predicted soot blowing

curves, for models that were typically extracted from the real measurement dataset.

Different polynomial order models were tested to also determine which polynomial order

model was more robust and which was more accurate. The experiment showed that the

first order polynomial model seemed to be both accurate and robust and there were

no obvious coefficient value ranges in which the identifiability of the models was obscured.

Subsequently, the different polynomial models were used to generate artificial soot

blowing sequences. These sequences were used to test the SINDy algorithm’s recovery

ability. The SINDy algorithm’s model recovery was tested for different noise conditions

as well as conditions where the sequence’s initial values changed. The experiments

showed that the algorithm was sensitive to noise, as the extracted model coefficients

started to fluctuate significantly when more than 5% noise was present. Changes in the

initial values while the curve shapes remained the same also proved to result in different

model equations. Furthermore, the verification experiments proved that different curve

shapes resulted in notably different model equations, and that at least 15 measurement

samples were needed to extract consistent models when low levels of noise are present. In

the final verification problem, lower order models were fitted to data that was generated

with higher order models. It was shown that the resulting models did not fit the data

optimally, however, the results were still interpretable and could potentially be used for

broad optimisation of the soot blowing schedule.

Once the verification problems were completed and the SINDy algorithm’s capa-

bilities were determined, the algorithm was implemented on the Ngodwana measurement

dataset. Initially the optimal polynomial order was once again investigated, while

keeping in mind the verification problems’ results. The optimal polynomial order was

shown to be a first order model. Once the model order was determined, a baseline
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algorithm setup was established and simple physics models were extracted from the

dataset. These models described the fouling factor development during a soot blowing

sequence for a specific soot blower pair in a section of the boiler. These models had fairly

good predictive capabilities despite their simplicity and were very interpretable. This

was a positive result that indicated that the SINDy algorithm was more than capable

of extracting plausible models from the measurement dataset that could be used to

discover the underlying boiler physics. It was noted, however, that the models that were

extracted were not particularly consistent, since their coefficients fluctuated significantly,

depending on which soot blowing sequence the SINDy algorithm was applied to. This

made sense as the soot blowing curves had different initial values and shapes, which was

shown in the verification problems to cause fluctuations in the coefficients of extracted

models.

In an attempt to circumvent the inconsistency in the data, additional inputs were

given to the SINDy algorithm, to increase the complexity of the models that are

extracted and hence, potentially improve model coefficient consistency. Inputs that were

added included the flue gas temperature difference, the steam temperature difference

and lastly, the log mean temperature difference for a specific section in the boiler. It

was seen that the additional inputs increased the prediction accuracy of the extracted

models as a result of added complexity. The experiments therefore, also highlighted

which sensor measurements were important for the prediction of the fouling factor

and how they interacted with the thermodynamic model’s fouling factor estimation.

The additional inputs also increased the consistency of the models that were extracted

slightly and made the coefficients interpretable in some cases, however, fluctuations were

still too severe to extract more general models.

To try and improve model consistency further, the optimizer algorithm’s thresh-

old parameter was investigated. The threshold value was optimised for each data sample

sequence individually to allow the algorithm to extract the best fitting model possible

for each sequence. This improved the model prediction accuracy once again resulting in

very accurate predictions regarding the fouling factor curve. This was a positive result

as it illustrated that the SINDy algorithm could extract very accurate models from

relatively complex measurement data. The consistency of the models was not improved

much by optimising the threshold however.

Data manipulation was hence investigated, to once more try and improve model

consistency. The data was first normalised before the fouling factor was scaled. Both

attempts, however, proved to have no significant effect on the model consistency as

there was simply too much variation in the data. Thus, it was decided that sequences
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with similar curve shapes and initial values, would be selected manually in an attempt

to introduce some consistency into the data being sent to the SINDy algorithm. 10

Sequences, out of the first 100 soot blowing sequences for soot blowers 3 and 4 were

selected. It was shown that manually selecting the sequences did indeed improve model

consistency somewhat. There were still coefficient fluctuations present, however, they

were less sporadic compared to applying the algorithm to the entire dataset and an

average model could be extracted for the case where only the fouling factor was used

as input to the SINDy algorithm. The more complex models, with additional inputs,

however, still had too much coefficient fluctuation to extract a working average model

with. The experiment also highlighted that one would have to investigate potential

errors in the sensor readings at the plant, and proved that careful filtering and selection

of sequences might result in very consistent models, that one would be able to use for

fouling factor development prediction and soot blowing optimisation.

Overall, the study has enabled one to estimate the fouling factor in the boiler,

which had not been possible before and is a very useful metric for different machine

learning applications. The study has also shown, that the SINDy algorithm is a valuable

tool for the extraction of simple and interpretable physics models from measurement

data, and that these models can be used to accurately predict a soot blowing procedure’s

fouling factor development. Finally, the study has shown how one would have to

treat future measurement datasets from this boiler, to extract not only accurate, but

consistent physics models and has highlighted where potential areas of focus should be

regarding sensor measurement errors and sequence filtering. Overall the study has laid

a strong foundation for future research regarding this topic and has ironed out some of

the potential kinks one would encounter.
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5.2 Recommendations

The following recommendations are made for future work

• Data consistency should be investigated, since it severely affects the SINDy al-

gorithm’s recovery ability when there is too much variation in the data. Thus

methods of filtering the data, selecting sequences and improving consistency should

be investigated as well as methods of identifying faulty measurement sensors.

• Different feature library functions for the SINDy algorithm need to be investigated

as there could be non-linear basis functions that better describe the fouling accu-

mulation process.

• Data augmentation, in regions where sensor measurements are scarce, need be in-

vestigated to separate the boiler into smaller sections, where the physics should

be less likely to fluctuate. This will also improve the SINDy algorithms extraction

capability.

• In-depth boiler physics experiments should be conducted, for example with CFD

simulations, to better understand how the respective soot blowers influence each

other and to determine for which sequences of a soot blower pair one would ex-

pect similar physics equations. A better understanding of boiler physics could also

improve the thermodynamic model used in this study.

• Investigate the possibility of combining the SINDy algorithm with more traditional

and complex machine learning algorithms, to generate models that are not only

accurate and complex, but also interpretable.
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