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Abstract

The purpose of finite mixture regression (FMR) is to model the relationship between a

response and feature variables in the presence of latent groups in the population. The

different regression structures are quantified by the unique parameters of each latent

group. The Gaussian mixture regression model is a method commonly used in FMR

since it simplifies the estimation and interpretation of the model output. However, it is

highly affected if outliers are present in the data. Failing to account for the outliers may

distort the results and lead to inappropriate conclusions. We consider a mean-shift ro-

bust mixture regression approach to address this. This method uses a component specific

mean-shift parameterisation which contributes towards both the successful identification

of outliers as well as robust parameter estimation. The technique is demonstrated by a

simulation study and a real-world application. The mean-shift regression method proves

to be highly robust against outliers.
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Chapter 1

Introduction

1.1 Motivation

Mixture regression models, made popular by Goldfeld and Quandt (1973), are used to

capture unobserved heterogeneity in the effects of the feature variables on the response.

A mixture model consists of a combination of probability density functions (pdf) or

mass functions (pmf). If it is suspected that the data can be clustered into different

latent groups, each group can be modelled with its own regression component. Latent

groups are unobservable groupings of data points with similar group membership. Each

group shares a meaningful pattern of responses on the measure of interest. To “identify”

these groups, we use the observed data to obtain the probability that an observation

belongs to a group. In mixture regression we also refer to these groups as components.

Suppose we have m latent groups. We can model these groups with m linear regression

components, which is refered to as a finite mixture regression model. If (y,x) belongs to

the jth component with j=1, 2, . . . , m and y = xTβj + εj, then the conditional density

of y given x is

f(y | x,θ) =
m∑
j=1

πjφ(y; xTβj, σj
2),

where

βj is a vector of dimension p and contains the regression coefficients of component j,

εj ∼ N(0, σj
2) with σj

2 > 0, is a random error term of component j,

1
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φ(.;µ, σ2) indicates a Gaussian pdf with mean µ and variance σ2,

πj is the mixing probability of component j and

θ = (π1, β1, σ1, ... πm, βm, σm) is the collection of unknown parameters.

In the presence of latent variables, the maximum likelihood estimates of the parame-

ters are determined by the Expectation Maximisation (EM) algorithm (Dempster et al.

(1977)). This is imperative as no closed form expression exists to estimate the unknown

parameters. The formula to estimate θ by using maximum likelihood estimation (MLE)

is

θ̂mle = argmax
θ

n∑
i=1

log

{
m∑
j=1

πjφ(yi; xi
Tβj, σj

2)

}
.

As a result of the normality-assumption based MLE, which is extremely sensitive to

outliers, there is a clear need to re-assess the estimation process. An outlier is defined as

an observation with an unusual response value y. In other words, the observation falls

outside the general trend of the other response values. Outliers in the sample lead to

inaccurate parameter estimation and incorrect conclusions. An observation that differs

from the others in the x direction, i.e. in the predictor variables, is called a high leverage

point. Based on the above, a robust method to estimate the parameters needs to be

explored.

Robust regression can overcome the limitations associated with parametric and non-

parametric regression methods in the presence of outliers. Robust estimation refers to

the “less affected” estimation results if the data consist of outliers. The robustness of

an estimator can be determined by the break down point (BDP). The BDP determines

the proportion of “unusual observations” (or outliers) which the estimation process can

accommodate, otherwise it will produce incorrect estimation results. Stated differently,

it measures the smallest proportion of outliers in the sample that causes the estimator

to break down or become less useful. A higher BDP indicates a more robust estimator.

In Section 2.4 we discuss different model performance measures that will be used in the

application.

Many robust mixture regression methods have been developed since the late 1990s.

Gershenfeld (1997) introduced the cluster-weighted model (CWM), which jointly models

the random covariates with the response variable. Markatou (2000) and Shen et al. (2004)
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developed robust methods which uses weighted likelihood to create a robust estimation

procedure. Neykov et al. (2007) proposed a trimmed likelihood estimator (TLE) to

achieve robust mixture estimates. Garćıa-Escudero et al. (2010) presented a robust

clusterwise linear regression method to trim high leverage points through a process of

“second” trimming. Bai et al. (2012) adopted a robust rule in the maximisation step

of the traditional EM algorithm. Bashir and Carter (2012) introduced a new class of

robust estimators using S-estimators. These have the same flexibility and asymptotic

properties as that of M-estimators, of which maximum likelihood estimation is a special

case.

Both Song et al. (2014) and Yao et al. (2014) proposed to use a heavy-tailed distri-

bution to model the error density. Song et al. (2014) used the Laplace distribution and

Yao et al. (2014) the t-distribution. In addition, Yao et al. (2014) further proposed a

trimming of the t-distribution.

Zeller et al. (2016) used a scale mixture of skew-normal distributions which accom-

modates asymmetry and heavy tails. Hu et al. (2016, 2017) developed a robust EM algo-

rithm for log-concave mixture regression models. Garćıa-Escudero et al. (2017) achieved

robust mixture regression estimation with random covariates using both constraints and

trimming. Punzo and McNicholas (2017) proposed robust clustering in the regression

contex using a contaminated Gaussian cluster weighted approach.

The aim is to explore some of these robust regression methods contained in the

literature. The main focus of this mini-dissertation is the robust mixture regression

using mean-shift penalisation (RM2) approach by Yu et al. (2017). This method can

detect outliers and yields robust parameter estimation, thereby allowing for flexibility to

the previous model by Yu et al. (2015).

Some challenges arise when using regularisation methods under the general structure

of mixture regression models. In short, regularisation refers to the tuning of the objec-

tive function by adding a penalty term which controls for severe fluctuation and in turn

prevents extreme parameter estimates. The RM2 method accounts for this. Computa-

tion becomes complex when maximising the mixture likelihood since it is a non-convex

problem. To compensate for the non-convexity of the penalised mixture likelihood, a

thresholding-embedded EM algorithm is used. If observations have different outlying
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effects across the mixture components, it tends to misconstrued the conception. In this

case the definition of an outlier becomes unclear. The mean-shift penalisation approach

also addresses the unequal variances in the mixture components. Each observation is

free to have different outlying effects across the components. The mean-shift parame-

terisation creates sparsity and is scale dependent. This enable us to follow the “simple

normal mixture regression model” assumption.

We consider the mean-shift parameters for each observation in each mixture com-

ponent in the RM2 method. The crux of this approach is underlined by the sparsity

structures created by the mean-shift parameters. This assist in identifying and accom-

modating the outliers. The interpretation of a mean-shift parameter is the number of

standard deviations the outlying observation (outlier) is shifted from the mean structure

of the regression component. We validate the findings of the RM2 approach by compar-

ing it to the outcome of other robust mixture regression methods. This method proves

to be highly robust when outliers are present, both in the simulation study and in a

real-world application.

1.2 Objectives

The research objectives are outlined below:

� To investigate the purpose of the mean-shift parameters,

� compare the RM2 method to other robust mixture regression methods,

� apply the RM2 method to a data set, and to

� determine and discuss the performance of the RM2 method.
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1.3 Outline

The structure of this mini-dissertation is as follows:

� Chapter 2 focusses on documenting the robust mixture regression method using

mean-shift penalisation. We give a comprehensive description of the model and

show how it performs if applied to a simulated data set.

� Chapter 3 covers a simulation study where we compare the performance of the

RM2 method to other robust mixture regression methods.

� Chapter 4 illustrates the performance of the RM2 method in a real-world regres-

sion problem.

� Chapter 5 provides a conclusion on the findings.

� Appendix A lists the acronyms used in this mini-dissertation and the associated

definitions.

� Appendix B provides extracts of the code used in the real-world application.



Chapter 2

Robust Mixture Regression using

Mean-Shift Penalisation (RM2)

2.1 Introduction

This chapter considers the RM2 model proposed by Yu et al. (2017). Two prominent

features make this approach appealing: 1) the method assumes a normal mixture regres-

sion model to simplify computation and interpretation, and 2) the mean-shift parameters

create different outlying effects for each observation across the components. In Section

2.2 and Section 2.3, we formulate the regression model in the Gaussian mixture setting

and for the RM2 method, respectively. We explain the thresholding-embedded EM al-

gorithm for this method and derive the equations to be used to estimate the unknown

parameters. Model performance measures are given in Section 2.4. In Section 2.5 we

demonstrate this approach on simulated examples and provide a brief overview of two

other robust regression methods.

6
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2.2 Gaussian mixture regression

2.2.1 Model formulation

Assume we have a random vector y and let

y =


y1

y2

...

yn

 =


xTi β1 + εi1

xTi β2 + εi2
...

xTi βj + εij


with probability π1

with probability π2

...

with probability πj,

where

yi the ith observation of the response (i = 1, 2, ..., n),

xTi a vector of dimension p of feature variables,

βj a vector of dimension p with regression coefficients of component j (j = 1, 2, ...,m),

πj the mixing probability of component j and

εij ∼ N(0, σj
2) random error terms.

Note that x =


xT1

xT2
...

xTn

 is an n× p matrix.

If yi ∼ N(xTi βj, σj
2) we have a Gaussian mixture regression model. The mixture

distribution of y is

f(y) = f(y|x,θ) =
m∑
j=1

πjφ(y; xTβj, σj
2), (2.1)

where πj is the jth mixing proportion, xTβj is the conditional mean, σj
2 is the variance

of component j, φ(.) indicates a Gaussian pdf and θ = (π1, β1, σ1, ... πm, βm, σm) is

the collection of unknown parameters.

The likelihood function is constructed from the joint distribution as a function of the

parameters only. This means that we fix the random variables at its observed values.

The likelihood determines how good the model fits the data for given values of the

unknown parameters. We are interested in the combination of model parameter values
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which maximises the likelihood function. If the samples Y1, Y2, ..., Yn are independent,

then the likelihood function is

L(θ|y) =
n∏
i=1

fY (yi) =
n∏
i=1

m∑
j=1

πjφ(yi; xi
Tβj, σj

2).

Instead of using the likelihood, we use the log-likelihood as it changes the product of

probabilities into the sum of probabilities in the computation process. This is possible

because the natural logarithm is a monotonically increasing concave function, hence the

location of the maximum does not change. The log-likelihood is

l(θ|y) = log

n∏
i=1

(
m∑
j=1

πjφ(yi; xi
Tβj, σj

2)

)
=

n∑
i=1

log

(
m∑
j=1

πjφ(yi; xi
Tβj, σj

2)

)
.

Let z = (zij) be the collection of binary latent variables such that

zij =

1 if observation i is from component j

0 otherwise,
(2.2)

and P (zij = 1|θ) = πj. Each observation has only one zij, i.e. each observation belongs

to only one component. The complete data are (y,x, z). The joint distribution of y and

z is

P (y, z|θ) = P (y|z,θ)P (z|θ) =
n∏
i=1

P (yi|zi,θ)P (zi|θ)

which, since P (yi|zi,θ) = f(yi), yields

P (y, z|θ) =
n∏
i=1

m∏
j=1

[f(yi) πj]
zij .

It follows that the complete data log-likelihood is

lc(θ) =
n∑
i=1

m∑
j=1

zijlog{πjφ(yi; xi
Tβj, σj

2)}.

2.2.2 Model estimation

One common method to estimate the parameters is maximum likelihood estimation using

the EM algorithm. A detailed discussion of the EM algorithm is given in Section 2.3.2

for the RM2 model outlined in Section 2.3.1.
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2.3 RM 2 model

2.3.1 Model formulation

Yu et al. (2017) proposed a robust mixture regression model given by

f(yi | xi,θ,γi) =
m∑
j=1

πjφ(yi; xi
Tβj + γijσj, σj

2) for i = 1, 2, ..., n, (2.3)

where θ = (π1, β1, σ1, ... πm, βm, σm) is the unknown parameter vector, γi =

(γi1 γi2 ... γim)T is a vector of mean-shift parameters for observation i, m is the

number of regression components and φ( . ) indicates a Gaussian pdf. The model in (2.3)

is known as a mean-shifted normal mixture regression model, because each observation is

assigned a mean-shift parameter γij. This parameter is added to the mean structure for

each observation in each mixture component. The magnitude of this shift is proprotional

to the scale of the regression component.

It is clear that without any contraints imposed on these new parameters γ, the

model is over-parameterised. The crux of the model is in the structure of the mean-shift

parameters. For non-outlying observations the mean-shift parameters are zero, with only

a few non-zero mean-shift parameters for each of the outliers, i.e. a sparse structure.

By introducing sparsity in the mean-shift parameters, we can identify and accommodate

outliers in the model. The outlying effect of observation i to component j is modelled

by γijσj. This model achieves robust estimation by making use of well-known penalised

estimation approaches, whilst retaining the simplicity of a normal mixture model.

So then, in summising that Γ = (γ1
T γ2

T ... γn
T )T is the collection of mean-shift

parameters, the penalised log-likelihood to estimate the unknown parameters in (2.3) is

given by

(θ̂, Γ̂) = argmax
θ,Γ

Jn(θ,Γ)

where

Jn(θ,Γ) = ln(θ,Γ)−
n∑
i=1

Pλ(γi) (2.4)
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and

ln(θ,Γ) =
n∑
i=1

log

{
m∑
j=1

πjφ(yi − xi
Tβj − γijσj; 0, σj

2)

}
. (2.5)

Similar to the Gaussian mixture regression model formulation, the log-likelihood in (2.5)

is obtained by taking the log of the likelihood using the product rule for logarithms,

log(
∏

( . )) =
∑
log( . ). The argument of the penalty function, Pλ(γi) in (2.4), is a

vector with a tuning parameter λ which controls the degree of penalisation. The penalty

function addressess the over-parameterisation by penalising the optimisation function,

i.e. the log-likelihood.

The penalty function can be chosen to produce vector-wise sparsity or element-wise

sparsity. Vector-wise sparsity promotes the entire vector, γi, to be zero (across mixture

components). The group lasso penalty, Pλ(γi) = λ‖γi‖q, and the group l0 penalty,

Pλ(γi) = λ2

2
I(‖γi‖q 6= 0), are examples of penalty functions that produce vector-wise

sparsity. I(.) represents the indicator function and if q = 2, it indicates that the l2 norm

is penalised. In the course of this work, we focus on element-wise sparsity. To achieve

this, we set Pλ(γi) =
∑m

j=1 Pλ(|γij|) in (2.4). Examples of element-wise sparsity are the

l1 norm penalty

Pλ(γi) = λ
m∑
j=1

|γij| (2.6)

and the l0 norm penalty

Pλ(γi) =
λ2

2

m∑
j=1

I(γij 6= 0). (2.7)

Other choices of penalty functions are the SCAD penalty (Fan and Li (2001)) and the

MCP (Zhang (2010)).

The penalised log-likelihood in (2.4) is unbounded as in the case of the Gaussian

mixture model in (2.1). This means that the penalised log-likelihood tends to infinity

when yi = xi
Tβj + γijσj and σj → 0. To avoid this, we restrict the scale parameters

(σ1, σ2, ..., σm) ∈ Ωσ, where Ωσ is given by

Ωσ = {(σ1, σ2, ..., σm) : σj > 0 for 1 ≤ j ≤ m;

σj/σl ≥ ε for j 6= l and 1 ≤ j, l ≤ m},
(2.8)
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and ε > 0 is a small value (see Hathaway (1985)). The parameter space of θ is therefore

defined as

Ω = {(πj, βj, σj), j = 1, 2, ...,m : 0 ≤ πj ≤ 1,
m∑
j=1

πj = 1, (σ1, σ2, ..., σm) ∈ Ωσ}. (2.9)

2.3.2 Model estimation

The modelling problem involves estimating the conditional density of y given the pre-

dictor variables x, for a given data set. Density estimation can be performed using MLE

given that the relevant interacting random variables are present, i.e. we have a com-

plete data set. Simply put, a complete data set contains all the variables relevant to the

problem. The EM algorithm is a common maximisation approach to MLE when there

are latent variables present. It first estimates the values for the latent variables in the

E-step, and then optimises the model in the M-step. These two steps are repeated until

convergence, i.e. until a stopping criterion is satisfied.

The EM algorithm for the RM2 model by Yu et al. (2017) is a thresholding-embedded

EM algorithm which maximises the penalised log-likelihood in (2.4). Consider again

(θ̂, Γ̂) = argmax
θ∈Ω,Γ

{
n∑
i=1

log

{
m∑
j=1

πjφ(yi − xi
Tβj − γijσj; 0, σj

2)

}
−

n∑
i=1

m∑
j=1

Pλ(|γij|)

}
(2.10)

where Pλ( . ) can be chosen as the l1 or l0 penalty function in (2.6) and (2.7), respectively.

To simplify (2.10), we introduce a latent variable z as in (2.2). We denote the complete

data by (yi,xi, zi : i = 1, 2, ..., n). The complete data log-likelihood function is

lcn(θ,Γ) =
n∑
i=1

m∑
j=1

zij log{πjφ(yi − xi
Tβj − γijσj; 0, σj

2)}.

For a given i there are j latent variables. However, only one of them is equal to one,

while the others are zero. Hence, the penalised complete log-likelihood function is

J cn(θ,Γ) = lcn(θ,Γ)−
n∑
i=1

m∑
j=1

Pλ(|γij|). (2.11)

Since we do not observe the values of the latent variables, the expected value of the

complete log-likelihood is calculated in the E-step. The responsibility of each observation
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belonging to component j is

pij = E[zij | yi;θ,Γ] = P (zij = 1 | yi;θ,Γ)

=
P (zij = 1, yi |θ,Γ)

P (yi |θ,Γ)

=
P (yi | zij;θ,Γ)P (zij = 1 |θ,Γ)

P (yi |θ,Γ)

=
πj φ(yi − xi

Tβj − γijσj; 0, σj
2)∑m

j=1 πj φ(yi − xiTβj − γijσj; 0, σj2)
.

(2.12)

The conditional expectation of the penalised complete log-likelihood to use in the M-step

is obtained by replacing zij in lcn(θ,Γ) in (2.11) with pij from (2.12) which gives

Q(θ,Γ) =
n∑
i=1

m∑
j=1

pij log{πjφ(yi − xi
Tβj − γijσj; 0, σj

2)} −
n∑
i=1

m∑
j=1

Pλ(|γij|). (2.13)

In the M-step, we maximise (2.13) with respect to (θ,Γ), i.e. we update (θ,Γ) until

convergence of the Q function.

The estimating equations

We derive the equations used in the EM algorithm of the RM2 model. For fixed Γ and

σj, by using a weighted least squares procedure, each βj can be explicitly solved. From

the penalised complete log-likelihood in (2.13), we differentiate with respect to β:

∂Q

∂β
=

n∑
i=1

m∑
j=1

pij
1

φ(yi − xiTβj − γijσj; 0, σj2)

∂

∂β
φ(yi − xi

Tβj − γijσj; 0, σj
2)︸ ︷︷ ︸

(*)

(2.14)
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Let us first consider (*),

∂

∂β
φ(yi − xi

Tβj − γijσj; 0, σj
2)

=
∂

∂β

1√
2πσj2

exp

(−(yi − xi
Tβj − γijσj)2

2σj2

)
=

1√
2πσj2

exp

(−(yi − xi
Tβj − γijσj)2

2σj2

)
.

(
2(yi − xi

Tβj − γijσj)
2σj2

)
.xi

=
xi . exp

(
−(yi−xi

Tβj−γijσj)2

2σj2

)
.
(
yi − xi

Tβj − γijσj
)√

2πσj2 . σj2

=
xi . exp

(
−(yi−xi

Tβj−γijσj)2

2σj2

)
.
(
yi − xi

Tβj − γijσj
)

√
2π (σj2)

3
2

.

(2.15)

If we replace (*) in (2.14) with (2.15) we get

∂Q

∂β
=

n∑
i=1

m∑
j=1

pij

√
2π (σj

2)
1
2

exp
(
−(yi−xiTβj−γijσj)2

2σj2

)
×

xi . exp
(
−(yi−xi

Tβj−γijσj)2

2σj2

)
.
(
yi − xi

Tβj − γijσj
)

√
2π (σj2)

3
2

0 =
n∑
i=1

m∑
j=1

pij
xi . (yi − xi

Tβj − γijσj)
σj2

0 =
n∑
i=1

m∑
j=1

pij
(
xiyi − xixi

Tβj − xiγijσj
)

n∑
i=1

m∑
j=1

pij xixi
Tβj =

n∑
i=1

m∑
j=1

pij (xiyi − xiγijσi)

βj =

(
n∑
i=1

pij xixi
T

)−1 ( n∑
i=1

pij xi(yi − γijσi)

)
.

For fixed Γ and βj, there is no explicit solution for σj as it appears in the mean

structure, hence there is no closed-form expression to estimate it. This is solved by

using a non-linear optimisation algorithm. We briefly discuss the R-package, nloptr (see

Conn et al. (1991)), that will be used to solve for σ1, σ2, ..., σm (see Algorithm 2.1).
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The nloptr package is an R interface to NLopt (see Johnson (2012); Ypma (2014)).

NLopt optimises non-linear equations of the form

min
x∈Rn

f(x) such that

g(x) ≤ 0,

h(x) = 0,

xL ≤ x ≤ xU ,

where f(.) is the function to optimise and x is the n optimisation parameters. The

following constraints are optional: the bound constraints, xL and xU , can take values

between −∞ and ∞, the non-linear inequality constraints can be specified in g(.) and

the equality constraints can be specified in h(.). Note that the inequality constraints

need to be specified in the nloptr function in the form g(.) ≤ 0.

The basic inputs to nloptr for our problem are the lower bound imposed on the stan-

dard deviations and the objective function. The lower bound imposed on the standard

deviations is given in (2.8) and the objective function to maximise is given in Algorithm

2.1. Note that the nloptr package minimises the objective function, therefore in our

problem we will multiply the objective function with negative one in order to maximise

the function. The constrained estimation is typically performed in practice when the

ratio conditions are violated. We follow Yu et al. (2017) and disregard it in the applica-

tions in this mini-dissertation, i.e. the standard deviation is set equal to a small value

(0.1) if the estimate thereof is close to zero.

To update the mixing probabilities πj, and enforce the constraint on the πj’s given

in (2.9), we need to maximise the Lagrangian function

Q∗(θ,Γ) =
n∑
i=1

m∑
j=1

pij log{πjφ(yi−xi
Tβj−γijσj; 0, σj

2)}−
n∑
i=1

m∑
j=1

Pλ(|γij|)−δ(
m∑
j=1

πj−1)

where δ is the Lagrange multiplier. Differentiating with respect to πj and δ gives

∂Q∗(θ,Γ)

∂πj
=

n∑
i=1

pij
πj
− δ set

= 0

∂Q∗(θ,Γ)

∂δ
=

n∑
i=1

πj − 1
set
= 0.

(2.16)
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If we sum over j in the first equation in (2.16) and multiply by πj we get

n∑
i=1

m∑
j=1

pij − δ
m∑
j=1

πj
set
= 0

∴ δ = n

(2.17)

since
∑n

i=1

∑m
j=1 pij =

∑n
i=1 1 = n and

∑m
j=1 πj = 1. To solve for πj we substitute (2.17)

into (2.16),

∂Q∗(θ,Γ)

∂πj
=

n∑
i=1

pij
πj
− n set

= 0

∴ πj =
n∑
i=1

pij
n

=
nj
n

where nj =
∑n

i=1 pij is the number of observations designated to component j.

For fixed θ, Γ is updated by maximising

n∑
i=1

m∑
j=1

pij
(l+1)log φ(yi − xi

Tβj − γijσj; 0, σj
2)−

n∑
i=1

m∑
j=1

Pλ(|γij|). (2.18)

The optimisation involves estimation of each mean-shift parameter, hence the equation

in (2.18) is separable in each γij. Simplifying yields

pij
(l+1)log

(
1√

2πσj
exp

(
−1

2

(
yi − xi

Tβj − γijσj
σj

)2
))
− Pλ(|γij|)

= pij
(l+1)log

(
1√

2πσj

)
− pij(l+1) 1

2

(
γij −

yi − xi
Tβj

σj

)2

− Pλ(|γij|).

This is a function for optimisation of γij and therefore pij is considered to be a constant.

To maximise, we only keep the terms which contains γij and re-arrange to aid in the

computation, i.e. maximise

−1

2

(
γij −

yi − xi
Tβj

σj

)2

− 1

pij(l+1)
Pλ(|γij|)

which is equivalent to minimising

1

2

(
γij −

yi − xi
Tβj

σj

)2

+
1

pij(l+1)
Pλ(|γij|). (2.19)
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The problem in (2.19) has an exact solution depending on the chosen penalty.

If we use the l1 norm penalty function, the solutions of γij are

for γij > 0,

∂

∂γ

[
1

2

(
γij −

yi − xi
Tβj

σj

)2

+
λ

pij(l+1)
γij

]

= γij −
yi − xi

Tβj
σj

+
λ

pij(l+1)

set
= 0

∴ γij =
yi − xi

Tβj
σj

− λ

pij(l+1)
⇒ yi − xi

Tβj
σj

− λ

pij(l+1)
> 0 and

for γij < 0,

∂

∂γ

[
1

2

(
γij −

yi − xi
Tβj

σj

)2

+
λ

pij(l+1)
γij

]

= γij −
yi − xi

Tβj
σj

+
λ

pij(l+1)

set
= 0

∴ γij =
yi − xi

Tβj
σj

− λ

pij(l+1)
⇒ yi − xi

Tβj
σj

− λ

pij(l+1)
< 0

⇒ −
(
yi − xi

Tβj
σj

− λ

pij(l+1)

)
> 0.

(2.20)

The general form for the two solutions in (2.20) that corresponds to a soft thresholding

rule, Θsoft, is

γ̂ij = Θsoft(ξij;λij
∗) = sgn(ξij)(|ξij| − λij∗)+ (2.21)

where λij
∗ = λ

pij(l+1) , ξij =
yi−xi

T βj
σj

and c+ = max(c, 0).

If we use the l0 norm penalty function the general form for the solution of γij that

corresponds to a hard thresholding rule, Θhard, is

γ̂ij = Θhard(ξij;λij
∗) = ξijI(|ξij| > λij

∗) (2.22)

where λij
∗ = λ√

pij(l+1)
and I(.) is an indicator function.

The thresholding-embedded EM algorithm is given in Algorithm 2.1 with λ as the

tuning parameter. Note that the penalised log-likelihood in (2.4) is an increasing func-

tion, that is

Jn(θ̂
(l+1)

, Γ̂
(l+1)

) ≥ Jn(θ̂
(l)
, Γ̂

(l)
)
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Algorithm 2.1: The thresholding-embedded EM algorithm for the RM2 model

Initialise θ(0) and Γ(0), and set l← 0.

repeat

1. E-step: Calculate Q(θ,Γ|θ(l),Γ(l)) as in (2.13).

2. M-step: Maximise Q(θ,Γ|θ(l),Γ(l)) by updating π
(l+1)
j = (

∑n
i=1 pij

(l+1))/n and the other

unknown parameters by iterating the steps below (i = 1, 2, ..., n, j = 1, 2, ...,m):

2.1 βj
(l+1) ←

(∑n
i=1 pij

(l+1) xixi
T
)−1 (∑n

i=1 pij
(l+1) xi(yi − γijσj)

)
,

2.2 (σ1, ..., σm)(l+1) ← argmax
(σ1,...,σm)∈Ωσ

∑n
i=1

∑m
j=1 pij

(l+1)log φ(yi − xi
Tβj

(l+1) − γij(l)σj ; 0, σj
2),

2.3 γij
(l+1) ← Θ(ξij ;λ

∗
ij)

where Θ is a thresholding rule given in (2.21) or (2.22) which depends on the choice of penalty.

l← l + 1

until convergence

for all l > 0. Algorithm 2.1 converges as a result of this property. If component variances

are equal, the algorithm can be adapted in the m component mixture model in (2.3) by

setting σj = σ, σ > 0.

We use the Bayesian Information Criterion (BIC) by Yi et al. (2015); Yu et al. (2017)

to select an appropriate value for the tuning parameter λ, given as

BIC(λ) = −l(λ) + log(n) df(λ),

where l(λ) is the log-likelihood of the mixture model determined at the solution of the

tuning parameter λ and df(λ) is the degrees of freedom of the estimated model. It is

calculated as the sum of the number of non-zero elements in Γ̂ (the collection of mean-

shift vectors) and the number of parameters across all the components pertaining to the

mixture model. We then follow the approach by Zou (2006) in choosing the “best” value

for λ; we fit the model for a range of tuning parameter values in equal intervals on the

log scale. The smallest tuning parameter, λmin, is the λ for which ± 50% of the values
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in Γ are non-zero and the largest tuning parameter, λmax, is the λ for which Γ results

in a zero matrix.

2.4 Model performance measures

The mean squared error (MSE) is used to determine the parameter estimation per-

formance and the below measures are used to determine the performance of outlier

identification:

1. the proportion of good points labelled as outliers (I),

2. accuracy (A),

3. specificity (S) and

4. recall (R).

We calculate these performance measures when we compare robust mixture regression

methods in a simulation study in Chapter 3.

2.5 Simulated example

We consider observations simulated from a mixture regression model which we then con-

taminate with additive outliers. Since the focus is on investigating the outlier detection

performance, we keep the number of regression components small by choosing m = 2.

2.5.1 Initial values setup for parameter estimates

The RM2 approach is illustrated with a simulation in the case of equal and unequal

component variances. A vital point in parameter estimation remains choosing the initial

values for each parameter in the EM algorithm. We follow the approach by Yu et al.

(2017). Start by drawing (10 ×m) random samples with replacement as to mimic the

m regression components, with the sample size of each the same as that of the data.

The parameters are estimated with ordinary least squares (OLS) estimation. For equal
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component variances we use a pooled standard deviation. To find initial estimates for

the mean-shift parameters γij, we select 20% of the points with the smallest ordered

densities. If the response value for these points with the smallest ordered densities

is greater than the maximum of the m component means, we assign the mean-shift

parameter for that observation equal to the difference between the response and the

maximum of the m component means. In other words, an ‘unusual’ observation close to

the maximum component mean is assigned a value y −max(µ1,i, ..., µm,i) if it is greater

than the maximum component means, and a value y −min(µ1,i, ..., µm,i) otherwise. As

stated previously, m = 2 in the following examples.

2.5.2 Equal component variances

The response yi, i = 1, 2, ..., n, is independently generated with

yi =

1− 2xi1 + γi1σ + εi1 if zi1 = 1

1 + 4xi1 + γi2σ + εi2 if zi1 = 0,
(2.23)

where zi1 is a Bernoulli random variable indicating the component that observation

i came from with P (zi1 = 1) = 0.3, xi1 is independently generated from a standard

normal distribution and the error terms εi1 and εi2 are independently generated from a

N(0, σ2) where σ2 = 1.

We generate n = 200 observations from the model in (2.23) with all mean-shift

parameters (MSP) equal to zero. We then replace 5% of the observations with outliers.

The MSPs are generated from a UNI(11, 13) distribution and the absolute value of a

non-zero MSP i.e. |γij| is used as follows:

We randomly replace 2 observations from component one with yi = 1−2xi1−|γi1|σ+εi1,

and 8 observations from component two with yi = 1 + 4xi1 + |γi2|σ + εi2, where σ = 1

and xi1 = 2 for both components.

Data exploration

The purpose of data exploration is to assess the data to inform and guide the model

building process. One will usually have questions regarding the data at hand which can
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be resolved (partially or completely) by visualising, transforming and then modelling the

data. Data exploration assists in refining the questions regarding the target definition

(what we want to achieve with the model). There is no strict set of rules, hence the type

of problem at hand dictates the best process to follow. In our simulation example, the

truth is known, however in practice when the truth is unknown, data exploration is a

good starting point. Below are the steps we use in the examples:

1. Draw visualisations of the variables.

2. Search for unusual observations.

3. Check for variation in the observations.

4. Establish patterns.

We start by visualising histograms of our response and feature variables in Figure 2.1.

From Figure 2.1a, it is not entirely evident that there are outliers present in the response.

Also, one might hesitate to believe that the response is normally distributed. The scat-

terplot in Figure 2.2 gives a clear indication of the relationship between the response

and feature variable i.e. the trends/patterns present.

Model fitting and results

We model the distribution of the response with a Gaussian mixture regression model

(using MLE) to illustrate how the estimation is distorted in the presence of outliers

and then compare the estimation results to that when fitting the RM2 model. We

first estimate the parameters by fitting a Gaussian mixture regression model with two

components with no added outliers and then fit the same model when the outliers are

present, see Figure 2.2. The estimation results are given in Table 2.1. With reference to

the original data, the RM2 method yields remarkable similarities in parameter estimates

compared to that of the MLE. It is clear from the estimation results that MLE fails when

there are outliers present, MLE (with outliers). The RM2 method yields better results

than that of the MLE in the presence of outliers, RM2 (with outliers). The RM2 model

fit is given in Figure 2.3.
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Figure 2.1: Histograms of the response (a) and feature (b) variables for equal component

variances.

Table 2.1: Estimation results for the MLE and the RM2 model fit on simulated data from a

mixture regression model with two components with equal variances.

Method π1 π2 β0,1 β1,1 β0,2 β1,2 σ

MLE (no outliers) 0.3117 0.6883 1.1634 -1.9849 0.8750 4.0977 0.9969

MLE (with outliers) 0.2875 0.7125 0.6177 -2.4212 1.5614 5.0492 1.6389

RM2 (no outliers) 0.3085 0.6915 1.1653 -1.9894 0.8751 4.0933 1.0000

RM2 (with outliers) 0.2570 0.7430 1.4398 -2.1186 0.8441 4.0619 1.1544
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Figure 2.2: A scatter plot of simulated data from a mixture regression model with two

components with equal variances and contaminated with outliers (in blue).
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Figure 2.3: RM2 model fit on simulated data from a two component regression model with

equal component variances and 95% confidence bands.
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2.5.3 Unequal component variances

The response yi, i = 1, 2, ..., n, is independently generated with

yi =

1− 2xi1 + γi1σ1 + εi1 if zi1 = 1

1 + 4xi1 + γi2σ2 + εi2 if zi1 = 0,
(2.24)

where zi1 is a Bernoulli random variable indicating the component that observation

i came from with P (zi1 = 1) = 0.3, xi1 is independently generated from a standard

normal distribution and the error terms εi1 and εi2 are independently generated from a

N(0, σ1
2) and a N(0, σ2

2) with σ1
2 = 4 and σ2

2 = 1, respectively.

We generate n = 200 observations from the model in (2.24) with all mean-shift

parameters (MSP) equal to zero. We then replace 5% of the observations with outliers.

The MSPs are generated from a UNI(11, 13) distribution and the absolute value of a

non-zero MSP i.e. |γij| is used as follows:

We randomly replace 2 observations from component one with yi = 1−2xi1−|γi1|σ1 +εi1,

where σ1 = 2 and xi1 = 2, and 8 observations from component two with yi = 1 + 4xi1 +

|γi2|σ2 + εi2, where σ2 = 1 and xi1 = 2.

Data exploration

We start by visualising histograms of our response and feature variables in Figure 2.4.

From Figure 2.4a, it is evident that there are outliers present in the response. The

scatterplot in Figure 2.5 gives a clear indication of the relationship between the response

and feature variable i.e. the trends/patterns present. The two regression trends are

obvious and the difference in the component variations is visible.

Model fitting and results

Similar to the equal component variance example, we model the distribution of the

response with a Gaussian mixture regression model (using MLE) to illustrate how the

estimation is distorted in the presence of outliers and then show the estimation results

when fitting the RM2 model.

We first estimate the parameters using a Gaussian mixture regression model with two

components before adding outliers to the data and then fit the same model when the
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Figure 2.4: Histograms of the response (a) and feature (b) variables for unequal component

variances.

outliers are present, see Figure 2.5. The estimation results are given in Table 2.2. With

reference to the original data, the RM2 method yields similarities in parameter estimates

compared to that of the MLE. However, the parameter estimates for the component

variances are slightly different. This is due to the detection of possible outliers in the

data by the RM2 method. Again, it is clear from the estimation results where there

are outliers present, MLE fails. The RM2 method yields similar results when outliers

are present to that of the MLE if there are no outliers, thereby verifying the efficacy of

detecting outliers. The RM2 model fit is given in Figure 2.6.
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Figure 2.5: A scatter plot of simulated data from a mixture regression model with two

components with unequal variances and contaminated with outliers (in blue).

2.5.4 Other robust methods

In the simulation study in Chapter 3, we compare the results of the RM2 with two

selected robust methods: the TLE and robust mixture regression making use of the

t-distribution. These methods are briefly discussed here. For completeness, let z be

defined as in (2.2). Let zi = (zi1 zi2 ... zim)T the collection of latent variables for

observation i, where m indicates the number of regression components.
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Table 2.2: Estimation results for the MLE and the RM2 model fit on simulated data from a

two component mixture regression model with unequal variances.

Method π1 π2 β0,1 β1,1 β0,2 β1,2 σ1 σ2

MLE (no outliers) 0.3076 0.6924 1.1722 -1.9826 0.8717 4.0878 2.2280 0.9680

MLE (with outliers) 0.3200 0.6801 2.7979 0.8390 0.8701 4.0251 8.7347 1.0104

RM2 (no outliers) 0.2885 0.7115 1.2326 -2.3289 0.8722 4.0879 1.3760 0.9946

RM2 (with outliers) 0.3625 0.6375 1.1668 -1.9251 0.8724 4.0916 2.1302 0.9813

Trimmed Likelihood Estimator (TLE)

Neykov et al. (2007) proposed a TLE method which is defined as

θ̂TLE = argmax
θ,Sh

∑
i∈Sh

log

{
m∑
j=1

πjφ(yi; xi
Tβj, σj

2)

}

where x is a vector with p dimensions, Sh is a subset of observations (1, 2, ..., n) with

h = n(1− α) the number of elements in the subset and α is the trimming percentage of

the data. Estimating the parameters θ̂TLE involves two steps namely “trial” and “refine-

ment”. The final estimates are those where the negative log-likelihood is the smallest.

The proportion of trimming α needs to be predetermined. Caution needs to be taken

when choosing the trimming proportion. The TLE loses efficiency if α is too large and

if it is too small (smaller than the outliers’ percentage), the TLE fails. The two step

procedure for estimation is given in Algorithm 2.2.

t-distribution

Yao et al. (2014) proposed to model the error density with a t-distribution. The density

function of yi given xi is f(yi; xi, θ) =
∑m

j=1 πjht(yi − xTi βj;σ, νj) where the component

error density ht(ε;σ, νj) is

ht(ε;σ, νj) =
Γ(ν+1

2
)σ−1

(πν)
1
2 Γ(ν

2
)
{

1 + ε2

νσ2

} 1
2

(ν+1)

and ht ∼ t(ν) with scale parameter σ. The unknown parameter θ can be estimated by
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Figure 2.6: RM2 model fit on simulated data from a two component regression model with

unequal component variances and 95% confidence bands.

maximising the log-likelihood

l(θ) =
n∑
i=1

log

{
m∑
j=1

πjht(yi − xTi βj;σ, νj)

}
(2.25)

Yao et al. (2014) proposed a simplified EM algorithm to maximise (2.25). It makes use

of a t-distribution consisting of a mixture of continuous scale normal distributions. If

u is a latent variable with a gamma(1
2
ν, 1

2
ν) distribution and ε|u ∼ N(0, σ

2

u
), then the

density of a variable gamma(α, γ) is f(u;α, γ) = Γ(α)−1γαuα−1e−γu, u > 0. As a result,

ε has a marginal t-distribution with ν degrees of freedom and σ the scale parameter.
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Algorithm 2.2: Iterative process for obtaining the estimates when fitting a mixture regression

model using the TLE method.

1. Trial step

Randomly select a few subsamples of size h? from the data.

Fit the model to obtain trial MLE sub-samples.

Note: h? should not be smaller than m(p+ 1).

repeat

2. Refinement step

2.1 Use each trial MLE as initial values and obtain the h cases with the smallest negative

log-likelihood.

2.2 Fit the model (1.1) to the h cases to obtain an enhanced fit, i.e. a larger trimmed likelihood.

Note: To achieve highest BDP the refinement subsample size h should be (n+m(p+ 1))/2.

If the percentage of contamination is known, a recommended choice for h = n(1− α).

until convergence

Therefore, given X, the complete log-likelihood for (y, u, z) is

lc(θ; y, u, z) =
n∑
i=1

m∑
j=1

zij log

{
πjφ

(
yi; x

T
i βj,

σ2

ui

)
f

(
ui;

1

2
νj,

1

2
νj

)}
,

where u = (u1, u2, ..., un); z and u are independent. The EM algorithm for this method

is given in Algorithm 2.3.

2.6 Summary

In this section we explained the details and showed the computations relating to the RM2

model. The crux of this method lies in the sparsity produced by the mean-shift param-

eters to simultaneously perform outlier detection and robust estimation. We recorded

the estimation results after fitting a Gaussian mixture regression model using MLE and
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Algorithm 2.3: EM algorithm for modelling the error density in the mixture regression model

with a t-distribution.

Initialise θ(0), and set l← 0.

repeat

1. E-step: Calculate

pij
(l+1) = E(zij |X, y, θ(l)) =

πj
(l)ht(yi−xiT βj(l);σ(l),νj)∑m

j=1 πj
(l)ht(yi−xiT βj(l);σ(l),νj)

and

δij
(l+1) = E(ui|X, y, θ(l), zij = 1) = ν+1

ν+∆2(yi−xi
T βj

(l);σ2(l))

where ∆2(yi − xiTβj ;σ2) = (yi − xiTβj)2/σ2.

2. M-step: Update parameter estimates

2.1 πj
(l+1) ←

∑n
i=1 pij

(l+1)/n,

2.2 βj
(l+1) ←

(∑n
i=1 xixj

T pij
(l+1)uij

(l+1)
)−1(∑n

i=1 xiyi pij
(l+1)uij

(l+1)
)
, j = 1, 2, ...,m,

2.3 σ2(l+1) ←
∑n
i=1 pij

(l+1)uij
(l+1)(yi−xi

T βj
(l+1))2

n ,

2.4 νj
(l+1) ← argmax

νj

∑n
i=1 pij

(l+1)

×[−logΓ(1
2νj) + 1

2νj log(1
2νj) + 1

2νj
{
νij

(l+1) − uij(l+1)
}
− νij(l+1)]

where νj is the degrees of freedom for component j.

l← l + 1

until convergence

the RM2 method to a simulated data set with two regression components for equal and

unequal component variances. The estimation results for the Gaussian mixture regres-

sion model using MLE revealed its sensitivity to outliers present in the data. The RM2

method proved to be highly robust against outliers. The outlier detection performance

may yield different results when making use of other penalty functions. In our examples
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we have used the l0 penalty. We also briefly discussed two other robust mixture regres-

sion methods which are used in a simulation study in the next chapter. For further detail

concerning the robustness properties of the RM2 method see Yu et al. (2017).
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Simulation Study

3.1 Introduction

We consider data simulated from a mixture regression model where outliers were added to

the observations. Since the focus is on testing the performance of detecting the outliers,

we keep the component structure simple i.e. only two components, with two feature

variables. We illustrate the case when component variances are equal. To correct the

label switching issues in the simulation study, we assign the estimates to the component

where the distance to the true parameter values, is minimised.

3.2 Simulation design

The response yi, i = 1, 2, ..., n is independently generated with

yi =

1− 2xi1 + xi2 + γi1σ + εi1 if zi1 = 1

1 + 5xi1 + xi2 + γi2σ + εi2 if zi1 = 0,
(3.1)

where zi1 is a Bernoulli random variable indicating the component that observation i

came from with P (zi1 = 1) = 0.3, xi1 and xi2 are generated independently from a stan-

dard normal distribution and the error terms εi1 and εi2 are generated independently

from a N(0, σ2) with σ2 = 1.

32
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We generate n = 200 observations from the model in (3.1) with all mean-shift parameters

(msp) equal to zero. We then replace 5% of the observations with outliers. The msp’s

are generated from a UNI(11, 13) distribution and the absolute value of a non-zero msp

i.e. |γij| is used as follows:

We randomly replace 2 observations from component one with yi = 1 − 2xi1 + xi2 −
|γi1|σ+ εi1, and 8 observations from component two with yi = 1+5xi1 +xi2 + |γi2|σ+ εi2,

where σ = 1, xi1 = 2 and xi2 = 2. We only repeat this process a 100 times in light of

computational expense and time.

We provide visualisations for a single data set simulated by the model in (3.1). A

visualisation of the relationship between the response and feature variables is given in

Figure 3.1 with the outliers marked in blue.

It is reasonably visible from the plot that the data points lie along two regression

planes. A mixture regression model with two components is fitted to the data with each

method (in Section 3.3). Selecting the number of regression components plays a critical

role in mixture modelling and remains a challenge in practice. An ordinary approach is

to run the model for a different number of components and then choose the model which

yields the lowest information criterion.

3.3 Model fitting

We compare the RM2 estimator (using the l0 penalty) to the trimmed likelihood estima-

tor, the mixture regression using the t-distribution and the Gaussian model using MLE,

per the below:

1. The MLE of a Gaussian mixture regression model (MLE).

2. The TLE with the trimming percentage set to 10% (TLE0.1).

3. The MLE of a mixture regression model that assumes the error has a t-distribution

with 3 degrees of freedom (Mixregt).

4. The RM2 element-wise estimator utilising the l0 penalty (RM2(l0)).
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Figure 3.1: A 3D scatter plot for a single data set in the simulation study contaminated with

outliers.

For these methods we use code by Yu et al. (2017), however, for the RM2 method we

include a non-linear optimisation algorithm to estimate the component variances, as

discussed in Section 2.3.2.
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Table 3.1: MSE of the parameter estimates in the simulation study

Method π1 = 0.3 β0,1 β1,1 β2,1 β0,2 β1,2 β2,2 σ

MLE 0.0026 0.2982 0.2667 1.0982 0.3148 0.6286 1.2117 2.5921

TLE0.1 0.0017 0.0429 0.0387 0.0443 0.0122 0.0119 0.0105 0.0304

Mixregt 0.0013 0.0257 0.0241 0.0336 0.0119 0.0132 0.0130 0.0100

RM2(l0) 0.0016 0.0256 0.0205 0.0359 0.0092 0.0093 0.0078 0.0003

3.4 Results

Estimator accuracies relating to the above methods are compared using the MSE of

the parameter estimates. The mean of the squared difference in the true and predicted

parameter values is measured by the MSE, hence a lower MSE indicates a better model

fit. The MSE results are given in Table 3.1. It is evident that MLE fails when there are

outliers present. The other methods perform well, but overall the RM2 model presents

the lowest MSE. The RM2 model fit for a single data set as per the model in (3.1) is

shown in Figure 3.2 (an interactive graph is available 1). We show the distribution of

the parameter estimates for the second feature variable of component two i.e. β2,2, fitted

with each of the different estimators, in Figure 3.3. This shows how the outliers distort

the estimation results in the case of MLE and fluctuate around the true parameter value

for the other methods. However, the estimation is the most consistent in the RM2(l0)

case.

1file:///C:/Users/anika/Documents/2021/University/WST%20895/graphs/

RM2-3D-fit-html.html

file:///C:/Users/anika/Documents/2021/University/WST%20895/graphs/RM2-3D-fit-html.html
file:///C:/Users/anika/Documents/2021/University/WST%20895/graphs/RM2-3D-fit-html.html
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Figure 3.2: A 3D scatter plot for a single data set in the simulation study. The planes are

fitted with the RM2(l0) method and the 5% outliers are visible in blue.
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Figure 3.3: Histograms for the 100 estimates of β2,2 by fitting each of the methods on the

simulated data. The true parameter value is marked with a vertical red line.
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Table 3.2: The outlier detection performance of the RM2 model on simulated data

Measure

Average proportion of good points labelled as outliers 0.0077

Average accuracy 0.9919

Average precision 0.8866

Average recall 0.9840

The measures to evaluate the outlier detection, as per Section 2.4, is only applied to

the RM2 method since this method explicitly identifies the outliers. To summarise:

� The average recall is 0.9840, which means that the average proportion of undetected

outliers is 0.016. Put differently, of all the actual outliers, 98% were correctly

predicted as outliers i.e. the success rate.

� The average proportion of good points labelled as outliers (I) is 0.0077. This means

that the chance of flagging an observation “incorrectly” as an outlier is a mere 0.8%.

� The average precision of the model is 0.8866, which means that the model has an

extremely low false positive rate.

� The average accuracy of the model is 0.9919 which validates that the model give

a correct prediction 99% of the time.

These results are evident of a highly accurate robust model. The results are summarised

in Table 3.2.
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3.5 Summary

We have provided a comparison between a few robust mixture regression methods fitted

to a simulated data set with 200 observations, which were repeated a 100 times. The

MSE values for the parameter estimates were recorded. The RM2 model showed an

overall better fit than the other methods; a Gaussian mixture regression using MLE,

the TLE and the heavy-tailed t-distribution. In addition, the RM2 method succeeded

in identifying the outliers in the data. It is imperative to take cognisance of the label

switching issues and formulate a fix when comparing mixture models in a simulation

study. For more detail on this see Celeux et al. (2000); Stephens (2000); Yao and Lindsay

(2009); Yao (2012).
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Real-World Application

4.1 Introduction

In this chapter we apply the RM2 method to wine data (see Dua and Graff (2017)). We

compare the results of the RM2 with that of a Gaussian mixture regression model using

MLE. These models are fitted on the original data as well as to the data after adding

outliers.

4.2 Data description

A chemical analysis was conducted on wines from grapes gathered from three differ-

ent cultivars, originating from a common region in Italy. In the analysis 13 common

ingredients were identified in each of the three types of wines. The data set has 178

observations and 14 variables. For the purpose of illustration we only use two types of

wines, class 1 and class 3, therefore we have 107 observations. We will use three variables

i.e. ‘Class’, ‘Colour intensity’ and ‘Total phenols’. The variable ‘Class’ is only used to

verify the prediction results of the model. We therefore choose ‘Colour intensity’ to be

the response variable and ‘Total phenols’ the feature variable. We add ten outlier pairs

to the data with the following rules:

1. (1.5, a) where a = 20 + 0.1i , i=1,2,3,4,5

2. (3.5, b) where b = −5 + 0.1j , j=1,2,3,4,5.

40
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Figure 4.1: Histograms of the response (a) and feature (b) variables for the wine data.

4.3 Exploratory data analysis

Histograms of both the response and feature variables are visualised in Figure 4.1. The

extremes in the distribution of the response in Figure 4.1a is indicative that outliers

are present in the vicinity of both −10 Au and 25 Au (colour intensity is measured in

absorbance units Au). A scatter plot to visualise the relationship of the response and

feature variables is given in Figure 4.2. From this we can easily identify the outliers

(blue points).
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Figure 4.2: A scatter plot of the wine data with added outliers (in blue).

4.4 Model fit and results

The RM2 method (using the l0 penalty) is compared to a Gaussian mixture regression

model using MLE, by recording the parameter estimates both with and without outliers

present. We fit the mentioned Gaussian model with two components.

Firstly we illustrate how the models fit the data without outliers. A Gaussian mixture

regression model fitted with two components, is shown in Figure 4.3. The parameter

estimates for this model is given in Table 4.1 MLE (no outliers). The RM2 model

performs similar to the MLE when there are no outliers present, see Table 4.1 RM2(l0)

(no outliers). Now we fit the Gaussian model (also with two components) to the data

with outliers. If we refer to Figure 4.4 it is obvious that the outliers have a huge influence
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Figure 4.3: A Gaussian mixture model with two components fitted to the wine data without

outliers and 95% confidence bands.

on the component structure and hence, on the parameter estimates as also reflected in

Table 4.1 MLE (with outliers). The results in Table 4.1 for the RM2 model shows a

similar performance when outliers are present (see RM2(l0) (with outliers)), to the MLE

without outliers. This model fit is reflected in Figure 4.5 and indicates that the model

can detect the outliers and perform accurate parameter estimation.
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Table 4.1: Parameter estimates for the wine data

Method π1 β0,1 β1,1 β0,2 β1,2 σ1 σ2

MLE (no outliers) 0.5367 4.3201 0.3031 10.0632 -0.9649 0.7923 1.7597

MLE (with outliers) 0.0943 39.5061 -12.7973 7.7270 -0.5825 0.1441 1.9774

RM2(l0) (no outliers) 0.6405 4.5372 0.2560 10.8815 -1.2440 0.9711 1.0471

RM2(l0) (with outliers) 0.6715 4.3622 0.3544 11.1974 -1.4085 0.9937 1.0262
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Figure 4.4: A Gaussian mixture model with two components fitted to the wine data with

outliers and 95% confidence bands.
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Figure 4.5: The RM2 model fitted to the wine data with outliers and 95% confidence bands.

4.5 Summary

In this chapter a Gaussian mixture regression model using MLE was fitted on the original

wine data (before we added outliers). The results from the original data were compared

to the results after deliberate contamination of the data with outliers. It showed that the

MLE fails when there are outliers present. To account for the outliers, we use the RM2

method. This method proved to be robust against outliers, and therefore, estimates the

parameters very close to the results of the MLE in the case of no outliers.



Chapter 5

Conclusions

This chaper gives a summary on our findings of exploring robust mixture regression in

the presence of outliers. We provide possible future research opportunities related to

robust mixture regression models.

5.1 Summary of conclusions

The main focus of this mini-dissertation was to explore robust mixture regression meth-

ods and their performance when outliers form part of the data. An in-depth analysis

was conducted on the RM2 method. We opted to investigate the mean-shift parameters

in the RM2 method. During this part of the process we re-affirmed that the essence lies

in the sparsity of the mean-shift parameters. If the model identifies an observation as

an outlier, the assigned mean-shift parameter adjusts the mean to prevent the regression

component from shifting towards the outliers.

A comparison of the RM2 method, the Gaussian mixture regression model using

MLE, TLE and the heavy-tailed t-distribution was performed using a simulation study.

The MSE for the RM2 method was overall the lowest.

In the wine cultivars example we established the effect of total phenols on the colour

intensity of the wine. The parameter estimates of the RM2 method were compared to

that of the Gaussian mixture regression model. From the results it was evident that the

traditional MLE failed in the presence of outliers, whilst the RM2 method proved to be

46
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robust. It also showed its ability to identify and accommodate outliers.

This research confirms that the RM2 method is highly robust against outliers.

5.2 Future work

The RM2 method was fitted to a mixture regression model with two components to

illustrate the concept of outlier identification and robust parameter estimation. It will be

valuable to determine the performance of this method when fitting it to a finite mixture

regression (FMR) problem with more than two components, as the determination of

the number of components is an essential step in the process of mixture modelling.

BIC was used to measure the model performance based on the tuning parameter. The

performance of the RM2 method can be enhanced by improving the selection of the

tuning parameter. When comparing mixture model performance using a simulation

study, there are label switching issues which can be solved with different strategies. The

examples in this mini-dissertation had one or two feature variables. In practice, a feature

selection method needs to be adopted when fitting the RM2 method. For the purpose

of illustration we have used one penalty function, the l0 penalty. The method could

possibly yield different results when making use of other penalty functions.
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Acronyms

AIC Akaike Information Criterion

BDP break down point

BIC Bayesian Information Criterion

CWM cluster-weighted model

EM Expectation Maximisation

FMR finite mixture regression

LAD least absolute deviation

MCP minimax concave penalty

MLE maximum likelihood estimation

MSE mean squared error

MSP mean-shift parameter

OLS ordinary least squares

pdf probability density function

pmf probability mass function
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RM2 robust mixture regression using mean-shift penalisation

SCAD smoothly clipped absolute deviations

TLE trimmed likelihood estimator



Appendix B

Code

An example on how to simulate a random sample with added outliers is given here. The

code used to achieve robust mixture regression using mean-shift penalisation in the case

of equal component variances is also provided.

%let perc=0.05;

%put &perc.;

/*Univariate example*/

/*Equal OR unequal component variances data*/

data data_uni;

seed = 1234;

call streaminit(seed);

p=0.3;

n=200;

a=11;

b=13;
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var1=1;

var2=1;

sigma1=sqrt(var1);

sigma2=sqrt(var2);

perc=&perc.; *percentage of outliers;

it=perc*n;

bound1 = floor(0.25*it);

bound2 = ceil(0.75*it);

do obs = 1 to n;

z = rand("Bernoulli", p);

x1 = rand("Normal",0,1);

/* x2 = rand("Normal",0,1);*/

err1 = rand("Normal",0,sigma1);

err2 = rand("Normal",0,sigma2);

gamma1 = a + (b-a)*rand("Uniform");

gamma2 = a + (b-a)*rand("Uniform");

output;

end;

call symput("bound1",bound1);

call symput("bound2",bound2);

call symput("sigma1",sigma1+1);

call symput("sigma2",sigma2+1);

run;

%put &sigma1.; *Only to be used as starting values in proc IML below;

%put &sigma2.; *Only to be used as starting values in proc IML below;

%put &bound1.;

%put &bound2.;
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/*Randomly select outliers from component1*/

proc surveyselect data=data_uni out=outlier_comp1_uni method=srs

sampsize=&bound1. seed=1234 noprint;

where z=1;

run;

proc sql noprint;

select obs into:outl_ind1 separated by "," from outlier_comp1_uni;

quit;

%put &outl_ind1.;

/*Randomly select outliers from component2*/

proc surveyselect data=data_uni out=outlier_comp2_uni method=srs

sampsize=&bound2. seed=1234 noprint;

where z=0;

run;

proc sql noprint;

select obs into:outl_ind2 separated by "," from outlier_comp2_uni;

quit;

%put &outl_ind2.;

data data_uni_final;

set data_uni;

if z=1 then do; *component 1 ;

if obs in (&outl_ind1.) then do;

x1=2;

gamma1=gamma1;

gamma2=0;
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gamma_ind1=1;

gamma_ind2=0;

y = 1 - 2*x1 - abs(gamma1)*sigma1 + err1;

end;

else do;

x1=x1;

gamma1=0;

gamma2=0;

gamma_ind1=0;

gamma_ind2=0;

y = 1 - 2*x1 + 0*sigma1 + err1;

end;

end;

else do; *if z=0, i.e. component 2 ;

if obs in (&outl_ind2.) then do;

x1=2;

gamma1=0;

gamma2=gamma2;

gamma_ind1=0;

gamma_ind2=1;

y = 1 + 4*x1 + abs(gamma2)*sigma2 + err2;

end;

else do;

x1=x1;

gamma1=0;

gamma2=0;

gamma_ind1=0;

gamma_ind2=0;

y = 1 + 4*x1 + 0*sigma2 + err2;

end;
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end;

if gamma_ind1=1 or gamma_ind2=1 then outlier=1;

else outlier=0;

run;

data data_uni_final_nooutl;

set data_uni;

if z=1 then do; *component 1 ;

x1=x1;

gamma1=0;

gamma2=0;

gamma_ind1=0;

gamma_ind2=0;

y = 1 - 2*x1 + 0*sigma1 + err1;

end;

else do; *if z=0, i.e. component 2 ;

x1=x1;

gamma1=0;

gamma2=0;

gamma_ind1=0;

gamma_ind2=0;

y = 1 + 4*x1 + 0*sigma2 + err2;

end;

if gamma_ind1=1 or gamma_ind2=1 then outlier=1;

else outlier=0;
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run;

dm ’odsresults;clear’;

title ;

options nodate ;

ods noproctitle ;

/*MIXTURE MODELING*/

/***************************/

/*EQUAL COMPONENT VARIANCES*/

/***************************/

proc iml;

use data_uni_final_outl;

read all var {"x1"} into X;

read all var {"y"} into y;

read all var {"gamma1" "gamma2"} into gamma;

read all var {"gamma_ind1" "gamma_ind2"} into gamma_ind;

read all var {"err1" "err2"} into err;

read all var {"outlier"} into outlier_ind;

close;

x_f=repeat(1,nrow(X))||x; *including intercept;

/*print y x gamma;*/

data_mat = y||x_f;

do s = 1 to nrow(lambda1);
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pi_1path = J(k,initial,.);

beta_1path = J(k,k*nrow(lambda1),.);

sig_1path = J(k,initial,.);

gamma_1path = J(n,initial,.);

gamma_1path_ind = J(n,initial,.);

lh_1 = 0;

obj = 0;

if s > 1 then do; *from the second lambda, the initial=10th set of;

*inital pi, mu, sigma and gamma be the solution of the previous gamma;

pi_0[,initial] = pi_path[,s-1];

beta_0[,(k*initial)-1:(k*initial)] = beta_path[,(k*s)-3:(k*s)-2];

sig_0[,initial] = sig_path[,s-1];

gamma_0[,initial] = gamma_path[,s-1];

end;

beta_new_save=J(ncol(x_f)*initial,ncol(x_f),.);

obj=J(initial,1,.);

do num = 1 to initial;

pi0=pi_0[,num];

beta0=beta_0[,(k*num)-1:(k*num)];

sig0=sig_0[,num];

gamma0=gamma_0[,num];

lambda0=lambda1[s];

***Initialize parameters;
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/************************* NB NB NB NB **********************/

***Choose thresholding rule to be used when determining gamma;

***Choose between "hard" or "soft";

threshold_rule="hard";

/************************************************************/

n=nrow(y);

k=ncol(x_f);

pi=pi0;

beta=beta0;

sigma=sig0; *component variances/std deviations;

sigma_t = sigma‘;

sigma_rep_t = repeat(sigma‘,nrow(X));

iter=nrow(pi);

gamma=gamma0; *mean-shift parameters;

gamma_ind=J(nrow(x_f),1,0);

do i=1 to nrow(x_f);

/* do j=1 to k; */

if gamma[i]^=0 then gamma_ind[i]=1;

else gamma_ind[i]=0;

/* end;*/

end;

lambda=lambda0; *tuning parameter controlling the degrees of penalization;

/* beta_new_save=J(initial+1,ncol(x_f),0);*/

check=J(nrow(y),k,0);

/* check=y-x_f*beta-gamma#sigma_rep_t; *n x m;*/
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check=y-x_f*beta-gamma; *n x m;

***********************;

***Starting value of the log-likelihood;

denom = J(nrow(X),1,.);

Q0 = J(nrow(X),k,.);

pij0 = J(nrow(X),k,.);

pij = J(nrow(X),k,.);

/* lg_pdf = J(nrow(X),k,.);*/

/* lg_pi_t = repeat((log(pi))‘,nrow(X));*/

penalty = J(nrow(X),1,0);

***************************************;

***Initialize the log-likelihood;

/* LLH[1] = 0; */

LLH_diff=0;

diff_beta=0;

diff_sigma=0;

diff_gamma=0;

count=0;

**********************;

***Initialize the Expectation step (E-step);

sums=J(nrow(x),k,.);

do i = 1 to nrow(X);

do j = 1 to k;
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sums[i,j] = pi[j]*pdf("Normal", check[i,j], 0, sigma_t[j]);

end;

/* ind_sum = ind_sum + gamma_old[i,j];*/

if threshold_rule="soft" then do;

penalty[i]=lambda*abs(gamma[i]);

end;

if threshold_rule="hard" then do;

penalty[i]=((lambda##2)/2)*gamma_ind[i];

end;

end;

tot=sums[,+];

lh=J(nrow(x),k,0);

s_lh=J(nrow(x),k,0);

l_lh=J(nrow(x),k,0);

do i = 1 to nrow(X);

do j = 1 to k;

pij0[i,j] = pi[j]*max(10e-100, pdf("Normal", check[i,j], 0, sigma_t[j]));

pij[i,j] = pij0[i,j]/tot[i];

/* Likelihood */

lh[i,j] = pi[j]*max(10e-100, pdf("Normal", check[i,j], 0, sigma_t[j]));

end;
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end;

s_lh = lh[,+];

l_lh = log(s_lh);

/* Q-function */

Q = l_lh[+] - penalty[+];

/* print Q;*/

***EM loop;

LLH0=LLH[iter];

/* run=run+1;*/

diff=0;

oldpi=pi;

oldbeta=beta;

oldsigma=sigma; *component variances/std deviations;

oldsigma_t = oldsigma‘;

oldsigma_rep_t = repeat(oldsigma‘,nrow(X));

iter=nrow(oldpi);

oldgamma=gamma; *mean-shift parameters;

oldgamma_ind=J(nrow(x_f),1,0);

do i=1 to nrow(x_f);

/* do j=1 to k; */

if oldgamma[i]^=0 then oldgamma_ind[i]=1;

else oldgamma_ind[i]=0;

/* end;*/

end;
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check=J(nrow(y),k,0);

/* check=y-x_f*oldbeta-oldgamma#oldsigma_rep_t; *n x m;*/

check=y-x_f*oldbeta-oldgamma; *n x m;

***********************;

do until(diff < 0.1);

***Expectation step (E-step);

sums=J(nrow(x),k,.);

do i = 1 to nrow(X);

do j = 1 to k;

sums[i,j] = oldpi[j]*pdf("Normal", check[i,j], 0, oldsigma_t[j]);

end;

/* ind_sum = ind_sum + gamma_old[i,j];*/

if threshold_rule="soft" then do;

penalty[i]=lambda*abs(oldgamma[i]);

end;

if threshold_rule="hard" then do;

penalty[i]=((lambda##2)/2)*oldgamma_ind[i];

end;

end;

tot=sums[,+];

lh=J(nrow(x),k,0);

s_lh=J(nrow(x),k,0);

l_lh=J(nrow(x),k,0);

do i = 1 to nrow(X);
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do j = 1 to k;

pij0[i,j] = oldpi[j]*max(10e-100, pdf("Normal", check[i,j], 0, oldsigma_t[j]));

pij[i,j] = pij0[i,j]/tot[i];

/* Likelihood */

lh[i,j] = oldpi[j]*max(10e-100, pdf("Normal", check[i,j], 0, oldsigma_t[j]));

end;

end;

***Update the log-likelihood;

s_lh = lh[,+];

l_lh = log(s_lh);

/* Q-function */

Q0 = l_lh[+] - penalty[+];

/* print Q0;*/

**********************;

***Maximization step (M-step);

n_ks=pij[+,];

pi_new=J(k,1,0);

do j= 1 to k;

pi_new[j] = n_ks[j]/nrow(X);

end;

/* print pi_new;*/
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/* ***Calculate Beta;*/

beta_new=J(ncol(x_f),k,0);

do j=1 to k;

w=diag(pij[,j]);

/* beta_new[,j] = inv(x_f‘*w*x_f)*x_f‘*w*(y-oldgamma#sigma_rep_t[,j]);*/

beta_new[,j] = ginv(x_f‘*w*x_f)*x_f‘*w*(y-oldgamma);

end;

/* print beta_new ;*/

R_data1_uni=pij||y||x_f||gamma;

R_data2_uni=beta_new‘||beta‘||pi_new||pi||sigma;

create R_data1_uni from R_data1_uni[colname={"pi1" "pi2" "y" "x_f1" "x_f2"

"gamma_old1" "gamma_old2"}]; /** create data set **/

append from R_data1_uni; /** write data in vectors **/

close R_data1_uni; /** close the data set **/

create R_data2_uni from R_data2_uni[colname={"B0" "B1" "B0_old" "B1_old"

"pi_new" "pi_old" "sigma_old"}]; /** create data set **/

append from R_data2_uni; /** write data in vectors **/

close R_data2_uni; /** close the data set **/

***Calculate Sigma;
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call ExportDataSetToR("R_data1_uni", "df1");

call ExportDataSetToR("R_data2_uni", "df2");

submit / r;

# Nonlinear optimization problem

# install.packages("nloptr")

library(nloptr)

#library(readxl)

n <- nrow(df1)

m <- nrow(df2)

# Will work if all pi_s are together

pij <- NULL

for(i in 1:m){

startcol <- which(names(df1) == "pi1")

endcol <- as.integer(startcol + m - 1)

pij <- as.matrix(df1[,startcol:endcol])

}

yi <- NULL

for(i in 1:m){

startcol <- which(names(df1) == "y")

# endcol <- as.integer(startcol + m)

yi <- as.matrix(unlist(df1[,startcol]))
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}

x_f <- NULL

for(i in 1:m){

startcol <- which(names(df1) == "x_f1")

endcol <- as.integer(startcol + 1)

x_f <- as.matrix(df1[,startcol:endcol])

}

gamma <- NULL

for(i in 1:m){

startcol <- which(names(df1) == "gamma_old1")

#endcol <- as.integer(startcol + m - 1)

#gamma <- as.matrix(df1[,startcol:endcol])

gamma <- as.matrix(unlist(df1[,startcol]))

}

beta_new <- NULL

for(i in 1:m){

startcol <- which(names(df2) == "B0")

endcol <- as.integer(startcol + 1)

beta_new <- as.matrix(df2[,startcol:endcol])

}

beta_newt <- t(beta_new)

beta_old <- NULL

for(i in 1:m){

startcol <- which(names(df2) == "B0_old")

endcol <- as.integer(startcol + 1)

beta_old <- as.matrix(df2[,startcol:endcol])

}
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beta_oldt <- t(beta_old)

pi_new <- NULL

for(i in 1:m){

startcol <- which(names(df2) == "pi_new")

# endcol <- as.integer(startcol + m)

pi_new <- as.matrix(unlist(df2[,startcol]))

}

pi_newt <- t(pi_new)

pi_old <- NULL

for(i in 1:m){

startcol <- which(names(df2) == "pi_old")

# endcol <- as.integer(startcol + m)

pi_old <- as.matrix(unlist(df2[,startcol]))

}

pi_oldt <- t(pi_old)

sigma <- NULL

for(i in 1:m){

startcol <- which(names(df2) == "sigma_old")

# endcol <- as.integer(startcol + m)

sigma <- as.matrix(unlist(df2[,startcol]))

}

sigmat <- sigma[1]

#sigmatf <- matrix(rep(sigmat,n), ncol=ncol(sigmat),byrow=T)
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# Objective function

eval_f <- function(sigma)

{

pij <- pij

yi <- yi

x_f <- x_f

beta_newt <- beta_newt

gamma <- gamma

n <- n

m <- m

func <- matrix(rep(0,n*m),ncol=m)

for(i in 1:n)

{

for(j in 1:m)

{

func[i,j] <- -1*pij[i,j]*log(dnorm(yi[i] - x_f[i,]%*%beta_newt[,j] - gamma[i]*sigmat,

0, sigmat ))

func[i,j] <- replace(func[i,j], is.na(func[i,j]), 0)

func[i,j] <- replace(func[i,j], func[i,j]==-Inf, 0)

func[i,j] <- replace(func[i,j], func[i,j]==Inf, 100000)

}

}

final_func <- sum(func)

return (final_func)
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}

# Starting parameter values

x0 <- as.numeric(sigmat)

# Lower and upper bounds

lb <- rep(0.01, 1)

ub <- rep(20, 1)

local_opts <- list( "algorithm" = "NLOPT_LN_COBYLA",

"xtol_rel" = 1.0e-4, "print_level" = 3 )

res1 <- nloptr(x0=x0,

eval_f=eval_f,

# eval_grad_f=grad.norm,

lb = lb,

ub = ub,

# pij=pij,

# yi=yi,

# x_f=x_f,

# beta_newt=beta_newt,

# gamma=gamma,

# n=n,

# m=m,
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# eval_g_ineq = eval_g0,

opts = local_opts)

res1

sigma_new0 <- sqrt(res1$solution)

sigma_new0[sigma_new0<0.1] <- 0.1

endsubmit;

call ImportMatrixFromR(sigma_new0, "sigma_new0");

sigma_new = J(2,1,sigma_new0);

sigma_new_t = sigma_new‘;

sigma_new_rep_t = repeat(sigma_new_t,nrow(X));

sigma_new_t1 = 1/(sigma_new‘);

sigma_new_rep = repeat(sigma_new_t1,n);

/* print sigma_new;*/

***Calculate Gamma;

/* zi = (y-x_f*beta_new)#sigma_new_rep; *sigma_new_rep = 1/sigma_new; */

w0 = J(nrow(X),k,0);

do j = 1 to k;

w0[,j] = pij[,j]/(sigma_new[j,])##2;

end;

w = w0[,+];
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zi0 = ((pij#(y-x_f*beta_new))/(2#sigma_new_t##2))/(0.5#w);

zi = zi0[,+];

lambda_star=J(nrow(X),k-1,0);

do i = 1 to nrow(X);

***lambda to be used in soft thresholding rule (l1 penalty);

if threshold_rule="soft" then do;

/* if pij[i,j]=0 then lambda_star[i]=0 else;*/

lambda_star[i] = lambda/w[i];

end;

***lambda to be used in hard thresholding rule (l0 penalty);

if threshold_rule="hard" then do;

/* if pij[i,j]=0 then lambda_star[i,j]=0; else*/

lambda_star[i] = lambda/sqrt(w[i]);

end;

end;

***Indicator function used in hard thresholding rule;

dum=J(nrow(X),k-1,.);

gamma_new_ind=J(nrow(X),k-1,.);

do i = 1 to nrow(X);

/* do j = 1 to k;*/

dum[i]=(abs(zi[i])-lambda_star[i]);

if dum[i]>0 then gamma_new_ind[i]=1;

else gamma_new_ind[i]=0;
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/* end;*/

end;

/* print zi dum ind lambda_star;*/

***Soft thresholding rule (l1 penalty);

if threshold_rule="soft" then gamma_new = sign(zi)#((abs(zi)-lambda_star) <> 0);

***Hard thresholding rule (l0 penalty);

if threshold_rule="hard" then gamma_new = zi#gamma_new_ind;

/* print gamma_new;*/

***Update the log-likelihood;

check=y-x_f*beta_new-gamma_new; *n x m;

/* print check;*/

sums=J(nrow(x),k,.);

do i = 1 to nrow(X);

if threshold_rule="soft" then do;

penalty[i]=lambda*abs(gamma_new[i]);

end;

if threshold_rule="hard" then do;

penalty[i]=((lambda##2)/2)*gamma_new_ind[i];

end;

end;
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lh=J(nrow(x),k,0);

s_lh=J(nrow(x),k,0);

l_lh=J(nrow(x),k,0);

check_pdf=J(nrow(x),k,0);

do i = 1 to nrow(x);

do j = 1 to k;

/* Likelihood */

lh[i,j] = pi_new[j]*max(10e-100, pdf("Normal", check[i,j], 0, sigma_new[j]));

end;

end;

s_lh = lh[,+];

l_lh = log(s_lh);

/* Q-function */

Q = l_lh[+] - penalty[+];

diff = Q - Q0 ;

/* print s_lh, Q diff;*/

***Set old parameters (step k) equal to new (step k+1) and repeat;

oldbeta = beta_new;

oldsigma = sigma_new;

oldsigma_t = oldsigma‘;

oldsigma_rep_t = repeat(oldsigma‘,nrow(X));

oldgamma = gamma_new;
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oldgamma_ind=J(nrow(X),1,0);

do i=1 to nrow(X);

/* do j=1 to k; */

if oldgamma[i]^=0 then oldgamma_ind[i]=1;

else oldgamma_ind[i]=0;

/* end;*/

end;

oldpi = pi_new;

iter=iter+1;

check = J(nrow(y),k,0);

check = y - x_f*oldbeta - oldgamma;

pij0 = J(nrow(X),k,.);

pij = J(nrow(X),k,.);

count=count+1;

penalty = J(nrow(X),k,.);

/* print diff;*/

end; *EM loop;

beta_new_save[(2*num)-1:(2*num),] = beta_new;

/* beta_new_savef = beta_new_save[2:(initial+1),];*/

print beta_new_save;

****************************;

pi_1path[,num] = pi_new;

beta_1path[,(2*num)-1:(2*num)] = beta_new;

sig_1path[,num] = sigma_new;

gamma_1path[,num] = gamma_new;
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gamma_1path_ind[,num] = (gamma_1path[,num]^=0)[,+];

obj[num]= Q;

llh[num] = l_lh[+];

end; *num;

sol_llh = obj[<:>];

/* print llh sol_llh;*/

pi_path[,s] = pi_1path[,sol_llh];

beta_path[,(k*s)-1:(k*s)] = beta_new_save[(sol_llh*2)-1:(sol_llh*2),];

sig_path[,s] = sig_1path[,sol_llh];

gamma_path[,s] = gamma_1path[,sol_llh];

gamma_path_ind[,s] = gamma_1path_ind[,sol_llh];

df_lambda[s] = sum(gamma_path_ind[,s]);

BIC[s] = -1*llh[sol_llh] + (log(n))*(df_lambda[s]+(3*k-1));

end; *s;

print pi_path beta_path sig_path gamma_path gamma_path_ind df_lambda;

print s BIC;

final_sol = BIC[>:<];

pi_final = pi_path[,final_sol];

beta_final = beta_path[,(final_sol*2)-1:(final_sol*2)];

sig_final = sig_path[,final_sol];

gamma_final = gamma_path[,final_sol];
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gamma_ind_final = gamma_path_ind[,final_sol];

lambda_final = lambda1[final_sol];

print final_sol pi_final beta_final sig_final gamma_final lambda_final;

quit;
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