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Nothing in life is to be feared, only understood. Now is the time to 

understand more, so that we may fear less 

~Marie Curie 
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Summary 

Faculty of Natural and Agricultural Sciences 

Magister Scientiae Bioinformatics 

By Mia Truter 

The intestinal microbiome (IM) comprises all the microorganisms in the human gastro-

intestinal tract, including bacteria, fungi, viruses, archaea and protozoans. Over millennia, these 

microorganisms have formed intimate relationships with the human host, providing the host 

with benefits such as optimal nutrient absorption and the priming of the immune system. The 

relationship between host and microbe has developed over at least 200,000 years of human 

evolutionary history, providing humanity with a means of faster, more flexible adaptation than 

their own genomes would allow. The advent of Westernisation has brought about many 

lifestyle changes, some of which are causing changes in IM community structure and function, 

which may have unforeseen and adverse consequences for human health. The IMs of traditional 

societies have been studied as examples of the “pre-Westernised” human IM, so that IM 

changes in response to Westernisation, and the consequences thereof, can be elucidated.  

In Chapter 1, some of the factors that have been found to impact the composition and function 

of the human IM, are discussed, as well as how various lifestyle factors differ between 

traditional and Western societies, leading to the differences in IM structure observed between 

these two societies. The bioinformatic and statistical approaches employed in microbiome 

studies are summarised and critically compared. 

Studies investigating changes in IM composition have either investigated the IM differences 

between traditional and Western populations or examined how IM composition changes in 

response to certain lifestyle factors, largely in a Western context. Furthermore, no IM data has 

been collected from traditional societies within southern Africa.  

Chapter 2 aims to fill this knowledge gap, through the analysis of 40 faecal samples derived 

from the Ju|’hoansi San/Bushman hunter-gatherers who reside in north-eastern Namibia. This 

community is in the process of Westernisation, presenting an opportunity to study the evolution 

of the IM from a traditional to a Western lifestyle. IM composition within the Ju|’hoansi 

community is also analysed with respect to 1) the ages of research participants, 2) their former 

use of antibiotic treatment for tuberculosis, 3) their biological sex, 4) whether diarrhoea is or 

had been experienced following the consumption of certain foods, 5) whether participants have 

ever experienced an intestinal infection, 6) their former or current use of malaria medication, 

7) their exposure to local, regional and international travel, and 8) the villages of primary 

residency of each research participant. The Ju|’hoansi IM was comparable to those of other 

hunter-gatherer societies, being enriched for Prevotella, Blautia, Faecalibacterium, 

Succinivibrio and Treponema. No significant differences were found in terms of any lifestyle 
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factors, except for village of primary residence. Chapter 2 aims to serve as a baseline 

characterisation of the Ju|’hoansi IM from which to conduct future research pertaining to the 

evolution of the IM during the process of Westernisation. Chapter 2 is written in the format 

of a draft article intended for publication in Cell Press Community Review. 

Finally, Chapter 3 provides a brief summary of the work carried out in this dissertation, 

addresses the limitations of the study, and offers insight into future research concerning the 

Ju|’hoansi IM. 
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Chapter 1: The intestinal microbiome in traditional and 

Western populations: Implications for human health 

Abstract 

The intestinal microbiome (IM) has been implicated in various human physiological processes. 

Dysbiosis of the IM is also noted in many diseases, highlighting a possible role of the IM in 

health and disease. Many studies have been conducted to determine how the IM changes in 

healthy and diseased cohorts, as well as in traditional and Westernised human populations. 

These studies indicate that a Western lifestyle has a profound effect on the IM, and possibly on 

human health. This review will discuss the literature concerning how certain factors shape the 

composition of the IM, how these factors contribute to observed differences in Western and 

traditional IMs, and the possible implications for health in traditional and Western societies, 

alike. The considerations regarding bioinformatics and statistics for microbiome studies will 

also be briefly discussed. Finally, this review will propose future research focus areas aimed at 

further exploration of the traditional IM, particularly in southern Africa. 

Introduction 

The intestinal microbiome (IM) (Lederberg and McCray, 2001) comprises all the micro-

organisms living in the gastrointestinal tract (GIT). The density of microorganisms residing in 

the GIT increases longitudinally from mouth to rectum, and cross-sectionally from mucosa to 

lumen (Tropini et al., 2017). The IM comprises over 200 000 prokaryotic genomes, which 

encode about 171 million protein sequences (Almeida et al., 2020). The number of eukaryotic 

genomes in the human IM is less certain, partly because IM research is mainly focused on 

bacteria (Hernández-Santos and Klein, 2017). Innovative development of new algorithms to 

detect eukaryotes in microbial environments will hopefully mitigate this issue (Lind and 

Pollard, 2021). Given the substantial metabolic potential that so many encoded genes represent, 

the influence of the IM on its host becomes apparent. This includes performing a vast array of 

functions ranging from digestion and utilisation of nutrients (Oliphant and Allen-Vercoe, 

2019), to playing a role in tissue homeostasis (Domingues and Hepworth, 2020), as well as 

maturation of the immune system in infants (KE et al., 2016; Sanidad and Zeng, 2020).  

It is intuitive that a change in taxonomic composition of the IM could impact the human host 

by altering the metabolic profile and functionality of the IM. This adaptability of the human 

IM in response to changing food availability, geographic location, and climate, is thought to 

have aided human survival historically (Amato et al., 2019). The Neolithic revolution 

represents such a change in lifestyle and diet that probably led to alterations of human IM 
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composition and functionality. While the Neolithic revolution, and the subsequent 

Westernisation of societies, undoubtedly had positive implications for humanity such as the 

discovery of modern medicine and provision of a constant food supply, the prevalence of 

“diseases of civilisation” (Gupta, Paul and Dutta, 2017) is on the rise in the Western world. 

These diseases, including obesity (Davis, 2016), diabetes (Dunne et al., 2014), and anxiety 

(Martin et al., 2018), have been linked to dysbiosis, or an imbalance, of the IM. Therefore, it 

is of interest to elucidate precisely how Westernisation impacts IM composition and host 

health, since this is still largely unknown (Blaser and Falkow, 2009).  

Studies aimed at understanding the effect of the Neolithic revolution and Westernisation on the 

human IM focus on comparing the IMs of traditional, non-industrialised societies to those of 

Western, industrialised societies, both in terms of IM composition and functionality (Schnorr 

et al., 2014; Martínez et al., 2015; Dubois et al., 2017; Vangay et al., 2018). These studies 

show that the IM adapts in response to different lifestyles (Schnorr et al., 2014), which could 

possibly be associated with the different diseases seen among different societies.  

While traditional societies in present day are not entirely representative of a pre-Neolithic IM, 

they represent the most accurate way of studying the effect of Westernisation on the IM 

(Crittenden and Schnorr, 2017). Moreover, an implication of the Westernisation of traditional 

societies, is that they are at a risk of Westernising into a low socioeconomic setting, thus 

monitoring their IMs and health in general could lead to improved healthcare in these 

populations as they modernise. Indeed, comparative studies between Western and traditional 

societies should include informing better healthcare practice in traditional societies as a study 

goal.   

It is the aim of this review to discuss the factors that shape the bacterial and fungal composition 

of the IM, how these factors differ between traditional and modern societies, and highlight 

challenges and future perspectives in this field. This dissertation will focus specifically on the 

bacterial and fungal components of the microbiome. 

Intestinal microbes and humans 

Microbial composition of the GIT 

The abundance and types of microbes present in different niches of the GIT is dependent on 

the physiological factors within that niche, such as morphology and pH (Tropini et al., 2017). 

The human small intestine is characterised by a lower abundance of microbial diversity, largely 

owing to its very low pH and fast luminal flow. This is in contrast with the large intestine, 

where the microbial load is much higher due to slower peristalsis and a more neutral pH 

(Donaldson, Lee and Mazmanian, 2016). The lack of diversity in the small intestine is thought 

to prevent microbes from outcompeting the host for substrate. In other words, it is in the host’s 
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best interest to prevent microbes from colonising the stomach and small intestine so that the 

host gets the first opportunity to absorb nutrients from food. More microbes can then colonise 

the large intestine, where the host benefits from microbial fermentation products that it would 

otherwise not be able to utilise (Walter and Ley, 2011). 

In terms of the bacterial taxonomic composition of the IM, 4 phyla are dominant: Firmicutes, 

Bacteroidetes, Actinobacteria and Proteobacteria. Other phyla in the IM include Chlamydiae, 

Cyanobacteria, Deferribacteres, Deinococcus–Thermus, Fusobacteria, Spirochaetes and 

Verrucomicrobia (Dethlefsen, McFall-Ngai and Relman, 2007). However, when analysing the 

taxonomic composition of the IM at a deeper level, one finds a vast array of species and strains, 

and large inter-individual variability that some have likened to a genomic fingerprint (Franzosa 

et al., 2015). This inter-individual variability seems to be a Western trait, however, and in 

traditional societies, the IM at species level seems to be more cohesive across the population 

(Martínez et al., 2015; Vangay et al., 2018), possibly owing to more shared communal space 

in traditional societies that facilitate exposure to common microbes. Another possibility is that 

the study design when analysing Western or traditional societies often differ. In traditional 

studies, cohorts often come from the same village or family whereas in Western studies, cohorts 

are chosen more randomly. This might artificially affect the differences in inter-individual 

variability seen between these two populations.  

The fungal component of the IM (the mycobiome) has not been studied as extensively as the 

bacterial component for several reasons. Fungi have mainly been studied in culture-

dependent ways and since many fungi cannot be cultured (Hallen-Adams and Suhr, 2016), 

insight has been limited in terms of the fungal diversity in many ecosystems. This limitation 

has been somewhat mitigated with the advent of novel high-throughput sequencing 

technologies that enable fungal classification without culturing. Furthermore, (Qin et al., 

2010) stated that bacteria comprise around 99.1% of the IM, with archaea comprising most of 

the remainder, and viruses and eukaryotes only accounting for 0.1% of the IM. This estimate 

has led to an incorrect general assumption that non-bacterial microorganisms play an 

insignificant role in human health and homeostasis (Chin et al., 2020). However, the 

mycobiome has more recently been implicated in diseases like IBD (Sokol et al., 2017) and 

alcoholic hepatitis (Lang et al., 2020),  and also possibly acts as a reservoir for disease in 

immune-compromised patients (Chen et al., 2011; Polvi et al., 2015). Moreover, the 

mycobiome could actually comprise more of the IM than previously thought, since the 

estimation from Qin et al., 2010 was obtained by using pre-existing annotated reference 

databases, in which fungi are largely underrepresented (Underhill and Iliev, 2014). It is 

expected that a better understanding of the mycobiome will follow in the next few years.  
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While some studies have investigated the composition of the intestinal mycobiome in 

diseased cohorts, attention is now also shifting to include the composition of the intestinal 

mycobiome in healthy cohorts. Such studies report the dominant phyla to be Basidiomycota 

and Ascomycota (Hoffmann et al., 2013; Sam, Chang and Chai, 2017), and the dominant 

species to be Saccharomyces, Malassezia, and Candida (Nash et al., 2017; Chin et al., 2020). 

However, in comparison to intestinal bacterial communities, intestinal fungal communities 

seem to be less stable and less diverse over time (Hallen-Adams et al., 2015; Sam, Chang and 

Chai, 2017), and are subject to more inter-individual variability and variability over time 

(Hallen-Adams et al., 2015; Nash et al., 2017).  

There is much speculation as to how host-microbe relationships arose over time 

While the host and its microbiome are clearly intimately associated, how this relationship arose 

over time is a subject still under investigation. Several new terms have been coined to explain 

the relationship between host and microbiome. One such term is “holobiont”, in which host 

and microbiome genomes comprise a “hologenome” (Bordenstein and Theis, 2015). Under this 

perspective, the host and microbiome genomes are seen as a single biological unit on which 

natural selection acts. The hologenome concept thus encourages consideration of interactions 

within the hologenome as genotype/genotype interactions, rather than genotype/environment 

interactions. However, this theory implies that microbiome and host have imposed selective 

pressures on one another over thousands of years, resulting in evolutionary changes in each 

lineage; a term coined coevolution. Coevolution is very difficult to prove and is probably 

unlikely in several scenarios (Moran and Sloan, 2015). For example, host and microbiome 

could be subjected to similar environmental pressures, and as a result, follow a similar 

evolutionary trajectory without necessarily imposing any selective pressures on one another. 

Or one entity, for example the host, could act selectively on the other entity, for example the 

microbiome, without reciprocal selection taking place. The relationship between host and 

various microbes within the microbiome could also be different, so considering the microbiome 

as a single entity instead of individual microbes is problematic.  

Phylosymbiosis (Lim and Bordenstein, 2020), in which the phylogeny of the host is reflected 

in the phylogeny of the microbiome, is evident in many host lineages. In effect, the microbiome 

is more similar in hosts that are phylogenetically more related. This is thought to occur because 

the microbiome offers functional traits to the host, and similar hosts require similar functional 

traits. Phylogenetically related hosts could also harbour similar microbiomes because they 

provide similar ecological niches for microbial colonisation. Phylosymbiosis is not intended to 

imply anything about the way in which host-microbiome associations arose but is simply an 

observation regarding the current nature of host-microbiome interactions. As such, the term 

provides a more accurate framework from which to study hosts and their microbiomes. 
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Environmental variables like soil type and subsequent food availability, which are often shared 

between phylogenetically related species, could also influence the phylosymbiotic signal seen 

between microbiomes of different host species (Grieneisen et al., 2019). More recently, certain 

bacteria such as Prevotella copri and Eubacterium rectale were found to exhibit parallel 

evolutionary histories with humans and have been preserved in the human IM for thousands of 

generations via vertical transmission (Suzuki et al., 2021). Persistence of certain strains within 

the IMs of different human populations could thus contribute to population-specific health 

benefits. 

The mycobiome’s evolutionary relationship with the host has not been investigated as closely 

for evidence of phylosymbiosis. However, (Harrison et al., 2021) showed that host-specific 

covariation exists between fungi and phylosymbiotic bacteria in many species, potentially 

hinting at a phylosymbiotic signal between host and fungi. However, some fungal species are 

present in the IM as a result of diet, passing through the GIT but never actually colonising it 

(Raimondi et al., 2019). The factors that drive intestinal mycobiome composition present an 

interesting avenue for future research. 

Regardless of how host-microbe interactions arose over time, humanity’s spread across the 

globe likely caused changes in host and microbial environments that led to adaptation in both 

entities (Amato et al., 2019). It therefore follows that geographical location and degree of 

modernisation in a society could influence the microbial structure in the IM. Indeed, different 

human populations in various geographic locations harbour different sets of microbes (Gupta, 

Paul and Dutta, 2017), which perform different functions suited to the needs of the host 

population. For example, Prevotella is an important genus that produces short chain fatty acids 

(SCFAs) which are beneficial to the host (Sivaprakasam, Prasad and Singh, 2016). The 

Prevotella clade, which is conserved among non-human hominid species, is less evident in 

traditional human populations, and almost absent in Western populations (Gaulke et al., 2018). 

Similarly, the divergence of humans from chimpanzees led to increased consumption of animal 

proteins and fats which was accompanied by a drastic reduction in IM diversity and fibre-

degrading enzymes like Fibrobacter (Moeller et al., 2014), a trend which is exacerbated in the 

IMs of Western cultures (Moeller, 2017).  

Studying the IMs of people from various geographic locations, as well as from non-human 

hominid species, could shed light on how the microbiota has changed throughout human 

history, and what the impact of those changes are for human health.   
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Studying traditional societies 

Studying the IMs of populations across the globe is an endeavour that requires expertise in 

many different scientific fields. Not only is scientific competence in terms of sampling, 

sequencing and data analysis required, but also a thorough understanding of the anthropological 

factors that from the basis of the differences seen in IM composition across different 

populations.  This necessitates the involvement of people from different scientific fields, 

including biology, anthropology, nutrition and evolution (Crittenden and Schnorr, 2017). 

While that complicates the logistics of such research, it is necessary for several reasons.  

The transition from a hunter-gatherer lifestyle, through the Neolithic revolution, to a 

modern lifestyle: What did it mean for human health? 

The Neolithic revolution, which occurred in the Fertile Crescent around 10 000 years ago and 

subsequently spread to other parts of the world (Zeder, 2011), had many implications on 

human health, diet, and social dynamics; some positive and some adverse. The Neolithic 

revolution increased fertility rates and population size (Bentley, Goldberg and Jasielqska, 

2010), mitigated food scarcity and enabled scientific and creative advancement. It also paved 

the way for future human progress such as the innovations of the Industrial revolution 

(Weisdorf, 2005). However, increased population size and living in closer proximity also 

created an environment very well-suited for higher pathogenic loads and infectious diseases 

(Larsen et al., 2019). The advent of agriculture also led to a higher incidence of dental caries 

(Eshed, Gopher and Hershkovitz, 2006) due to increased consumption of carbohydrates 

(Masood, 2020), as well as increased musculoskeletal stress associated with the physical 

demands of farming (Eshed et al., 2004).  

Prior to the Neolithic revolution and the advent of agriculture, humanity subsisted by way of 

hunting and gathering. The composition of the hunter-gatherer diet depended largely on 

where the specific population lived, and the climate of that area. For example, palaeolithic 

populations in the arctic would have subsisted on a diet far higher in animal fat (around 80-

90%) than those from Africa or Australia (less than 50%) (Isaac, 2010). As such, there is no 

single diet that all pre-agricultural populations adhered to; the success of humanity can 

largely be attributed to the ability to adapt to and thrive in different environments and 

climates (Brand-Miller, Mann and Cordain, 2018).  

The hunter-gatherer period of human evolution, and all its associated dietary and behavioural 

norms, led to the bigger brain size and increased intelligence that is typical of the human 

species today (Milton, 1999, 2000; Robson and Kaplan, 2003). Then, upon the advent of the 

Neolithic revolution, foods were introduced into the human diet that had never been 

consumed before. These included non-human milk and dairy products, refined cereals, 
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refined sugars, refined vegetable oils and fatty meats (Cordain, 2006). While humanity had 

ample time to evolve to suit the conditions of the pre-Neolithic, it is highly unlikely that any 

genetic changes occurred during the Neolithic revolution that allowed humanity to thrive in 

this new environment (Carrera-Bastos et al., 2011). It is thus thought that the Neolithic 

revolution, and the subsequent Westernisation of humanity, has led to disparity between 

human environment and human genetics, which is likely contributing to the high incidence of 

certain diseases seen in Western societies such as obesity and diabetes (Carrera-Bastos et al., 

2011). While a palaeolithic diet and total conversion to our ancestral hunter-gatherer way of 

life is not feasible and in many ways undesirable, consumption of more fresh produce and 

fibre in the Western diet might help mitigate some of the diseases associated with it.  

The IM is of interest in this context, since evidence suggest that the microbes therein have a 

long history with humanity. How did the IM contribute to human fitness and survival? How 

did the IM change in response to Westernisation? How is dysbiosis of the IM linked to 

diseases of civilisation? Are there therapeutic avenues to mitigate these diseases by altering 

the IM? These questions can be answered by studying the IMs of traditional societies as a 

proxy for the IMs of pre-Neolithic civilisations.  

Although traditional societies are not completely untouched by Westernisation (Crittenden 

and Schnorr, 2017), they are the closest extant examples of pre-Neolithic humans and 

therefore offer a feasible way of attempting to understand how geographical location, diet and 

lifestyle factors influence IM composition and human health.  

Different lifestyles lead to different IM composition and functionality  

Thus far, many studies have been conducted investigating the IM differences between Western 

and traditional populations. These studies have only elucidated the composition and 

functionality of the bacterial component of the IM, and studies including other components of 

the IM would be of interest.  Nonetheless, several differences are highlighted between the 

bacterial component of the IMs of traditional and Western populations. 

The diversity of the IM in Western populations is drastically less than the diversity observed 

in traditional populations, which is highlighted in nearly all of the studies comparing traditional 

and Western IMs (Gupta, Paul and Dutta, 2017). For example, in a study comparing the IMs 

of urban and rural Nigerian Bassa populations (Ayeni et al., 2018), it was found that the 

abundance of fibre-degrading bacteria was progressively lost with urbanisation. Another 

example is the study by (De Filippo et al., 2017), in which children from Burkina Faso 

exhibited greater intestinal bacterial diversity than did children from Italy.    

The lack of bacterial diversity in Western IMs is thought to be linked to diversity in diet, since 

the consumption of a more varied diet results in a greater variety of substrates, which in turn 
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creates more environmental niches in the GIT that can support increased microbial diversity 

(Walter and Ley, 2011). A decrease in bacterial diversity of the human IM is associated with 

the onset of non-communicable diseases, probably due to disruption of immunoregulatory 

networks, as well as increased inflammatory responses (West et al., 2015).  

Diversity in the mycobiome has so far only been studied in Western populations. Fungal 

diversity of the IM was found to be increased in patients with Chron’s disease but decreased in 

patients with diabetes (Mar Rodríguez et al., 2015). While these studies hint at a possible fungal 

role in diseases, the mechanisms through which this occurs is largely understudied, as are the 

effects of geographic location and lifestyle habits on fungal diversity.  

Moreover, traditional societies allow the study of adaptability of the IM in response to 

environmental changes. A remarkable example of this is the evolution of xenobiotic 

degradation in the human IM. Evidence from an ancient coprolite shows that xenobiotic 

degradation is a feature absent in ancient human IMs and that this trait probably developed in 

response to modern pollutants (Rifkin et al., 2020). The same can be seen when comparing 

extant traditional and Western populations; modern Bantu individuals have a higher abundance 

of xenobiotic degrading pathways than do BaAka hunter-gatherers, enabling them to better 

degrade food additives common in industrialised societies (Gomez et al., 2016a). The 

adaptability of the IM in response to new environmental pressures may have enabled human 

survival across the ages (Amato et al., 2019).  

How can traditional societies benefit from these studies? 

There are many benefits for Western societies in studying traditional ones, including 

elucidating the effect of Westernisation on human health, and possible therapeutic intervention 

for diseases in which the IM plays a role. However, what are the benefits of these studies for 

traditional populations? Traditional populations represent the minority of today’s society and 

are therefore more vulnerable to exploitation and marginalisation than people in the Western 

world. A study by (Anderson et al., 2016) showed that indigenous people have poorer health 

and social outcomes than do non-indigenous people. The reasons for this are complex and 

numerous and include social determinants such as the use of health care facilities and the 

“socio-economic policies that shape the conditions of daily living”. Indigenous societies are 

also often excluded from the decision-making process with regards to these socio-economic 

policies. The inequities between populations of different socio-economic status is highlighted 

in a study by (Carson et al., 2019)), in which BaAka and Bantu individuals from Cameroon 

were interviewed regarding their perception of health challenges in the country. The BaAka 

live a largely traditional way of life and are typically excluded from participation in economic 

activity. The result is that in comparison to the Bantu, the BaAka are unable to afford health 

care and education, are subjected to poorer living circumstances, have less frequent access to 
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clean water, and have a generally lower socio-economic status. This complicated geo-political 

and socio-economic situation is not unique to the BaAka, but is seen in many indigenous 

societies across the world (Anderson et al., 2016; Jackson, 2021). Furthermore, a lower 

socioeconomic status results in more frequent exposure to pollutants (Clark, Millet and 

Marshall, 2017; Jiao, Xu and Liu, 2018), consumption of a lower quality diet  (Zagorsky and 

Smith, 2017), and increased psychosocial stress (Chen and Miller, 2013). Interplay between 

the abovementioned factors, IM composition and health have been well documented, and 

probably result in health inequities seen between individuals of different socioeconomic groups 

(Amato et al., 2021). Care should therefore be taken that the study of IMs in traditional, low 

socioeconomic populations also benefit the subjects themselves, and that research of this nature 

is not contributing to the exploitation of already subjugated societies. 

Factors that contribute to IM variation between Western and 

traditional populations 

The factors that shape the composition of the IM are highly complex. It is therefore difficult to 

assess the contribution of an individual factor in determining the composition of the IM. 

Despite these difficulties, several studies have been conducted to understand what factors 

contribute to IM composition, and what role these play in human health and disease. Many 

factors have been identified thus far, including host genotype (Kurilshikov et al., 2021), diet 

(Kovatcheva-Datchary et al., 2015), geographic location (Kabwe et al., 2020), socioeconomic 

status (Miller et al., 2016), use of antibiotics (Pérez-Cobas et al., 2013), age (Yatsunenko et 

al., 2012), and biological sex (Haro et al., 2016).  

Host Diet  

Host diet is arguably the most influential determinant in terms of the composition of the 

bacterial component of the IM and confounds other IM determining factors such as host 

genetics, environment, geographic location and culture (Wilson et al., 2020). The relationship 

between host diet, the IM and human fitness has probably changed pre- and post-Neolithic 

revolution. For example, an IM that enables efficient nutrient extraction from diet would have 

been beneficial to the pre-Neolithic human host and could possibly have provided a fitness 

advantage. However, because food is far more readily available in modern settings, the ability 

to extract extra nutrients from food might be disadvantageous (Walter and Ley, 2011). This 

IM trait, in combination with increased sedentarism in the modern era, is likely contributing 

to the obesity epidemic facing modern society (Turnbaugh et al., 2006; John and Mullin, 

2016). 

Among the most important dietary transitions that took place from our hunter-gatherer past, 

through the more recent agro-pastoralist era, to the Westernised world today, is a gradual 



 

10 

 

decrease in fibre intake (Eisenstein, 2020). Western societies have exchanged the traditional 

high carbohydrate, high fibre diets, for high fat and animal protein diets (Thorburn, Macia 

and Mackay, 2014); a trait that is reflected in the composition and functionality of the 

Western IM.  

For example, the Hadza hunter-gatherers from Tanzania consume about 75-100g of fibre per 

day (de Vrieze, 2014), which is very little in comparison to the Western recommendation of 

around 30g of fibre per day (Lupton, 2002). Upon comparison to Italians, the Hadza harbour 

higher abundances of key fibre fermenters such as Prevotella, Treponema, Clostridiales and 

Bacteroidota, and an absence of common Western IM members such as Bifidobacterium 

(Schnorr et al., 2014). Furthermore, the Hadza IM is functionally enriched for genes involved 

in complex carbohydrate metabolism and bioconversion of complex plant polysaccharides 

from plant dietary sources. In contrast, the Italian cohort is functionally enriched for the 

digestion of simple sugars such as those derived from pasta and bread (Rampelli et al., 2015). 

The by-products of complex plant polysaccharide fermentation, propionate, butyrate, and 

acetate, have anti-inflammatory and anti-carcinogenic properties (Sivaprakasam, Prasad and 

Singh, 2016) and are thought to play a protective role in the development of colorectal cancer 

(Shuwen et al., 2019), obesity, and asthma (Wood, 2017).  

The lack of SCFA production in the Western IM, as a result of a decreased intake of dietary 

fibre, is therefore thought to be a major contributor to the high incidence of these diseases of 

civilisation (Carrera-Bastos et al., 2011; Sonnenburg and Sonnenburg, 2014). Indeed, in a 

diet-switch study between rural Africans and African Americans (O’Keefe et al., 2015), in 

which rural Africans consumed a high fat and protein diet and African Americans consumed 

a high fibre and carbohydrate diet, reciprocal changes in the IM were observed. After 

consuming a high fat, low fibre diet, IM changes in the rural African cohort included lower 

SCFA production, higher colonic secondary bile acids and higher mucosal proliferative 

biomarkers which are associated with an increased risk for colorectal cancer. The converse 

occurred in the African American cohort – IM biomarkers for colorectal cancers were 

reduced, suggesting that diet has a great impact on cancer risk. Similarly, the period from 

1949-1992 in China was marked by a transition from a high fibre, high carbohydrate diet to a 

higher intake of meat and fat, which has been implicated in the rise of incidence of non-

communicable diseases in China during this time (Du et al., 2014). Moreover, Thai 

immigrants who immigrated to the United States experience IM changes that increase their 

risk of non-communicable diseases in comparison to Thai citizens who stay in their country 

of origin (Vangay et al., 2018). Evidence thus suggests that transition from a high fibre, high 

carbohydrate diet to a Western diet high in saturated fats and animal protein exacerbates the 

risk of non-communicable diseases (Wilson et al., 2020).  
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The mycobiome is understudied in comparison the bacterial IM. Nonetheless, it is thought 

that many fungi are present in the GIT as foodborne microbes (Kong and Morris, 2017). 

(Hoffmann et al., 2013), found that Candida abundance was positively correlated to 

carbohydrate consumption and negatively correlated to a diet high in amino acids, protein and 

fatty acids. Interestingly, Candida abundance was also positively associated with the 

abundance of Methanobrevibacter. While the study draws no conclusions about the 

functional significance of these associations, it does suggest that such a significance might 

exist. Moreover, the fungal landscape in the GIT differs between obese and non-obese 

individuals, with the abundance of Mucor racemosus and M. fuscus being significantly higher 

in non-obese individuals. Curiously, the decreased abundance of these fungal species in obese 

subjects was reversible upon weight loss, suggesting that Mucor might play a role in obesity 

(Mar Rodríguez et al., 2015).  

The effects of a dietary transition from traditional to modern, and the ensuing changes in IM 

composition and function, can be investigated in the form of longitudinal studies in the IMs 

of traditional cohorts. Studies of this nature would elucidate the effects of an introduction of 

Western foods into a largely traditional diet, in situ. However, it is important that the health 

of the traditional community in question is included as a study priority since transition to a 

Western lifestyle increases the risk of Western diseases. 

Host genotype 

Evidence suggests that microbiome composition is influenced by host genotype. For example, 

in most human populations, the ability to digest lactose is quickly lost after weaning due to 

reduced expression of the enzyme lactase-phlorizin hydrolase (LPH) (Walter and Ley, 2011). 

However, in societies where milk consumption is practiced into adulthood, LPH persists due 

to variation in the genes controlling for its expression (Tishkoff et al., 2007). In several studies 

investigating the corelations between host genotype and bacterial abundance, Bifidobacterium 

abundance was found to be positively correlated to lactase-persistence, presumably because 

the ability to digest lactose leads to a higher consumption of dairy products, which in turn 

promotes the growth of lactose-digesting bacteria (Blekhman et al., 2015; Kurilshikov et al., 

2021). 

Another interesting example of interplay between host genetic selection and microbiome 

composition is brought to light by (Walter and Ley, 2011)). This article posits that competition 

between microbiome and host was brought about by the advent of agriculture, during which 

time the consumption of easily digestible starch became more frequent. Since starch-digesting 

microbes residing in the small intestine would divert some of the energy derived from starch 

for their own growth, it is more energetically viable for humans to digest the starch directly. 

This is suggested to have led to two developments. Firstly, an expulsion of microbes from the 
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small intestine, and secondly, selection for oral digestion of starch. Both would ensure 

maximum host absorption of starch-derived nutrients. Indeed, AMY1, the gene encoding for 

salivary amylase, is more prevalent among historically agricultural societies than those from 

circum-arctic hunter-gatherer backgrounds  (Perry et al., 2007). Interestingly, in modern times 

type 2 diabetes mellitus is treated by administration of acarbose, an inhibitor of salivary 

amylase (Zhao et al., 2018). Acarbose thus allows starch to pass to the colon undigested, where 

it is fermented by bacteria into SCFAs; SCFAs alleviate the symptoms of T2DM. This 

highlights how the relationship between microbiome and host changes over time, and what was 

potentially beneficial to humanity in ancient times, could be detrimental in a modern era 

(Walter and Ley, 2011).   

In a recent human genome-wide association study (GWAS), 31 loci were identified as having 

an effect on the IM (Kurilshikov et al., 2021). One such locus is FUT2-FUT21. FUT2 is 

responsible for the production of alpha-1,2-fucosyltransferase, which secretes fucosylated 

mucus glycans in the gastrointestinal mucosa. It was observed in this study that individuals 

homozygous for the secretor allele had an increased abundance of Ruminococcus. It was also 

found that the secretor allele was negatively associated with risk for cholelithiasis and Crohn’s 

disease, and positively associated with fish intake, highlighting the complex interplay between 

dietary preferences, host genetics, IM composition and disease susceptibility. Other genes 

found to be correlated with the IM in this study were involved in innate and adaptive immunity, 

as well as genes expressed in the brain, which adds to the supposition of the existence of the 

gut-brain axis (Kushak and Winter, 2018; Martin et al., 2018).  

Comparatively, far less studies have been conducted on the interaction between host genotype 

and intestinal fungi. However, one interesting study showed an association between different 

variants of Dectin-1 and ulcerative colitis susceptibility (Iliev et al., 2012). Dectin-1 and 

Dectin-2 are part of a family of C-type lectin receptors (CTLRs) which are known for their 

ability to recognise fungal β-glycans, and play a role in immunity against fungi, including 

Candida, Aspergillus and Pneumocystis. Dectin-1 also plays a role in intestinal homeostasis, 

autoimmunity and allergy (Dambuza and Brown, 2015). These studies hint at a fungal role in 

human health and disease susceptibility,  

While many comparative studies between traditional and Westernised populations control for 

genetic variation by ensuring the cohort is genetically similar (Ayeni et al., 2018; Keohane et 

al., 2020), very few studies have actually investigated the link between host genotype and IM 

composition in a traditional setting. This warrants further investigation for many reasons. Some 

of these populations, like the Ju|’hoansi hunter-gatherers in Namibia, have not been exposed to 

much admixture throughout the years, due to their geographic isolation (Owers et al., 2017). 

Populations with such genetic makeups could provide novel insights into the link between 
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genotype and IM composition and should be included in such studies for more informative 

power. 

Antibiotics 

The use of antibiotics is one of the biggest aspects of modern society that alters the microbiome. 

While antibiotics have undoubtedly changed quality of life for people across the world, there 

are also negative aspects of this medication that should be noted, particularly in terms of the 

effect on the IM. Most antibiotics do not only kill the pathogenic bacteria, but also commensals 

that reside in the GIT and offer benefits to the host. The loss of commensals results in a loss of 

colonisation resistance. Colonisation resistance is mediated by commensal microbes in two 

ways. Directly, through outcompeting pathogenic microbes for space and resources, and 

indirectly, through training and modulating the immune system (Casals-Pascual, Vergara and 

Vila, 2018). An example of the consequences of a loss of colonisation resistance is the 

increased prevalence of antibiotic-associated infections with Clostridium difficile in hospitals 

(Rupnik, Wilcox and Gerding, 2009; Johanesen et al., 2015). Moreover, metronidazole has 

been shown to decrease expression of Muc2, which is the major component of the mucous 

layer (Wlodarska et al., 2011). A thinned intestinal mucous layer could lead to inflammation 

and a higher risk of invasion by pathogenic microbes (Francino, 2016). There is also an 

increased prevalence of Crohn’s disease in adults who frequently used antibiotics in childhood, 

presumably as a result of long term changes in IM structure (Hildebrand et al., 2008).  

Interestingly, the fungal composition of the IM also plays a role in the effectiveness of C. 

difficile treatment (Zuo et al., 2018). Fungi benefit from the use of antibiotics due to the 

increased availability of space and nutrients, which could result in opportunistic fungal 

infections (Cottier and Pavelka, 2012). However, it has also been posited that beneficial fungi 

take over the functional role of commensal bacteria post-antibiotic use (Jiang et al., 2017). 

Furthermore, the IM is regarded as the epicentre for antimicrobial resistance (Carlet, 2012). 

This is because the Western GIT is more frequently exposed to antibiotics in medicine and via 

consumption of foods that are routinely treated with antibiotics (Francino, 2016), which then 

encourages more rapid development of antibiotic resistance mechanisms that can be spread to 

other microbes via horizontal gene transfer (McInnes et al., 2020). The acquisition of resistance 

mechanisms in the GIT could then influence the efficacy of antibiotic treatment, and possibly 

contribute to the antibiotic resistance crisis (Schaik, 2015).  

Of particular interest is the effect of tuberculosis (TB) on the IM. TB treatment requires six 

months of intensive antibiotic treatment, and even longer if the patient has drug resistant TB. 

This, in combination with the high incidence of TB globally (around 10 million infections in 

2019) (Geneva: World Health Organization, 2020), and especially within indigenous 

communities (Tollefson et al., 2013), probably significantly affects IM composition. Indeed, 
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there is some evidence for an association between TB susceptibility, TB recurrence, and IM 

composition (Eribo et al., 2019). However, a distinction must be made between the effects of 

TB itself on the IM, and effects of anti-TB treatment. In a recent study, TB itself was shown 

not to significantly affect α-diversity or the abundance of individual taxa. However, upon anti-

TB treatment, a significant difference in terms of α-diversity and individual taxon abundance 

was observed. Patients undergoing anti-TB treatment showed a decrease in abundance of 

Clostridiales and an enrichment of Bacteroides (Hu et al., 2019). The effect of TB on the 

indigenous IM has not yet been elucidated but would perhaps make for an interesting study. 

Furthermore, the role of fungi in anti-TB pharmacokinetics, TB susceptibility and recurrent TB 

infection is yet to be studied.  

Age 

It is now well-established that the IM is colonised at birth, at which point the IM is subject to 

high levels of inter-individual variability. Throughout the first year of life, the IMs of neonates 

increase in diversity and eventually converge to resemble an adult IM. This increase in diversity 

can continue up to around 3 years of age, when most IMs stabilise (Yatsunenko et al., 2012). 

More recently, studies have been conducted investigating the influence of certain factors, such 

as feeding regime and mode of delivery, on neonatal IM colonisation (Bager, Wohlfahrt and 

Westergaard, 2008; Cong et al., 2016). Such studies are generally in agreement that natural 

birth and breast feeding result in increased microbial diversity (Wong et al., 2021) and support 

the growth of beneficial taxa such as Bifidobacterium and Lactobacillus (Kumbhare et al., 

2019).  The health of the mother has also been implicated in neonate health. Breast milk from 

obese mothers harbour a less diverse microbial community (Cabrera-Rubio et al., 2012), which 

is posited to affect neonate IM composition, although the latter was not explicitly tested. 

Prepartum maternal diets are also posited to induce epigenetic changes in the neonate, which 

could then lead to alterations in the neonate IM that could predispose to the onset of late-life 

obesity (Li, 2018). Although there is reason to believe that the health of the mother could 

influence neonatal IM colonisation and neonate health, many of these suppositions need to be 

explicitly tested before any conclusions can be reached. Studies pertaining to the influence of 

a traditional lifestyle on neonate health are scarce, although one such study finds that the rural 

Nigerian infant and adult microbiome are more similar than the urban Nigerian infant and adult 

microbiome. This is thought to be due to the introduction of adult foods earlier in life, as well 

as the earlier exposure of infants to the environment (Ayeni et al., 2018). The study of the 

neonatal IM is promising in terms of therapeutic intervention, but many questions are as yet 

unanswered. For example, how is the neonatal mycobiome colonised? Moreover, how is the 

covid-19 pandemic affecting the IM health of neonates born during this time-period, 

considering the increased sanitation and the lack of exposure to environmental microbes?  
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Some studies have noted the effect of old age on IM composition, for example that the elderly 

IM harbours decreased levels of Bacteroides and Faecalibacterium (Nuria et al., 2013). It is 

thought that bodily changes brought about by old age, including intestinal senescence and an 

impaired ability to absorb nutrients, could, along with changes in the IM, contribute to the pro-

inflammatory state often seen in the elderly (Nagpal et al., 2018). These findings suggest that 

the IM could contribute to inflammatory disease pathophysiology in the elderly, as well as 

providing potential for dietary intervention to counteract the effects of ageing (Salazar et al., 

2014). It is also suggested that an intake of pre- and pro-biotics could significantly improve 

metabolism in the IM and increase SCFA production (Roberfroid et al., 2010). However, few 

studies have been conducted on the direct links between ageing, inflammation, and IM 

composition (Buford, 2017). As a result, there is no clear consensus on the exact age at which 

IM composition starts to change in response to ageing, or enough data on the effects of ageing 

on the IM.  

Biological sex 

Biological sex is also suspected to influence the composition of the IM and in doing so, partially 

contribute to the sex-bias seen in certain diseases. For example, IBD is more frequent in women 

than in men (Klem et al., 2017), and the IM is also implicated in the pathophysiology of this 

disease (Vich Vila et al., 2018). Auto-immune diseases, such as rheumatoid arthritis, are also 

more common in women (Intriago et al., 2019). Rheumatoid arthritis is a multifactorial disease 

that is caused when immune cells incorrectly attack healthy tissue (Hassanzadeh and 

Gholamnezhad, 2020). Since the IM is known to prime the immune system, teaching it to 

discern between harmful and healthy cells (Sommer and Bäckhed, 2013), it is suspected that 

incorrect priming of the immune system as a result of dysbiosis in the IM could be implicated 

in the onset of autoimmune diseases such as rheumatoid arthritis. This, in combination with 

sex hormones, could potentially cause the sex-bias seen in such auto-immune diseases (Gomez, 

Luckey and Taneja, 2015). Other examples of sex-biased diseases in which the IM may be 

involved are cardiovascular disorders. The risk factors for cardiovascular disorders, glucose 

regulation, dyslipidaemia, hypertension, and obesity, exhibit sexual dimorphism due to varied 

excretion of sex hormones between the sexes. Since sexual dimorphisms also exist in the IM, 

it is posited that in combination with sex hormones, the IM could contribute to the 

pathophysiology of cardiovascular diseases (Razavi et al., 2019). However, whether the IM, in 

context of sex, plays a clinically significant role in cardiovascular disease onset is still unclear 

(Cross, Kasahara and Rey, 2018).    

In context of traditional vs Western societies, the role of sex in IM composition is largely 

uncertain. Gender roles are more conservative in traditional societies in comparison to urban 

ones (Evans, 2019), such that tasks like work and child-tending are more often shared between 
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men and women in urban settings. This could result in a more homogeneous IM composition 

between the sexes in urban areas in comparison to traditional areas, where men frequently hunt 

while women gather, tend to children, and cook. However, since men and women live in close 

association with one another in traditional settings, the effect of gender tasks on IM 

composition may be mitigated.  

Travel 

Some studies have documented the effect of IM composition on the susceptibility of diseases 

during travel (O’ Donovan et al., 2020; Youmans et al., 2015), and it is thought that certain 

members of the IM, particularly SCFA producing bacteria, could offer protective benefits while 

traveling (Riddle and Connor, 2016). Traveling between continents can also influence the 

abundance of antibiotic resistance genes in the IM (Bengtsson-Palme et al., 2015). Thus, 

traveling possibly has an effect on IM composition, but conclusive evidence from studies 

employing robust sample sizes is lacking. A possible reason for the IM fluctuations seen after 

traveling could be increased exposure to different foods, people, and microbes. Traditional 

societies, such as the Ju|’hoansi from southern Africa, are relatively isolated and do not travel 

frequently (Owers et al., 2017), thus come into contact with foreign microbes less often. The 

effects of travel on traditional IMs are unknown at present. 

While many studies have been conducted to determine the impact of certain lifestyle factors on 

IM composition and functionality, the way in which these studies are performed is noteworthy. 

Since the field of metagenomic analysis is still in its infancy in comparison to other scientific 

fields, there is a need for protocol standardisation in order to ensure reproducible and reliable 

results.  

Bioinformatic considerations surrounding microbiome studies 

The general workflow of a microbiome analysis study should start with proper planning. 

Experimental design must encompass determination of the number of samples, inclusion of 

proper controls, establishment of what metadata is appropriate to collect, as well as a clear, 

testable hypothesis (Bharti and Grimm, 2021). The choice of sequencing technique is also 

largely dependent on the needs of the project and on resource availability (Galloway-Peña and 

Hanson, 2020). The resulting samples should then undergo DNA extraction, sequencing, and 

quality control. The data can then be used for statistical analysis to prove or disprove the 

hypothesis, often in correlation with the collected metadata. Finally, functionality can be 

inferred to gain insight into the metabolic potential of the microbiome.  

Sampling, storage, and DNA extraction protocols 

The most common way of investigating IM composition is via the collection of faecal 

samples, from which resident microbiota are extracted and sequenced. Using faeces as a 
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proxy for IM composition is non-invasive and cost effective (Tang et al., 2020). However, 

studies show that the colonic microbial community differs from the faecal microbial 

community, suggesting that perhaps faecal samples are not the best method of analysing the 

IM (Zoetendal et al., 2002; Rangel et al., 2015). Moreover, the microbial composition 

between various parts of the GIT also differs (Tropini et al., 2017), so referring to the colonic 

microbes as the collective “IM” is also somewhat misleading. Comparatively, very little is 

known about how certain lifestyle factors affect other parts of the GIT such as the stomach.   

The way in which faecal samples are stored are known to affect the DNA yield and microbial 

profile of samples, thereby influencing the outcome of microbiome studies (Ezzy et al., 

2019). While immediate storage of faecal samples in -20 °C is the golden standard, this is 

often impractical in the field. Because research of this nature is often conducted in rural 

areas, samples may be subjected to temperature fluxes and several weeks of transportation. 

To investigate the effect of sample storage conditions on IM community composition, (Song 

et al., 2016) elucidated the changes in community composition of human and dog faecal 

samples using a variety of storage methods, subjected to a variety of temperature changes. 

They found that immediate freezing of a sample, in combination with a preservative, resulted 

in the least amount of community changes. Several sample preservation methods were 

deemed sufficient when samples were frozen, including 95% ethanol, FTA cards, OMNIgene 

Gut, and RNAlater. However, RNAlater resulted in greater change in taxon abundance at 

ambient temperatures than did the other methods, suggesting that RNAlater may not be the 

ideal solution if sample freezing cannot be guaranteed. Moreover, 70% ethanol was cautioned 

against, owing to its lack of preservation power.  

Furthermore, fungal DNA extraction from faeces is complicated by the fact that DNA 

extraction protocols have largely been developed around bacteria, as well as the 

comparatively low yield of fungus in faecal samples (Angebault et al., 2018). Fungal cell 

walls are complex structures that cell impede lysis and nucleic acid recovery (Fredricks, 

Smith and Meier, 2005). Different methods of fungal DNA extraction also work optimally on 

different species, so finding a DNA extraction method that works well for all fungal species 

in a sample is challenging (Fiedorová et al., 2019). Sample storage and DNA extraction of 

both fungal and bacterial microbes is an ongoing field of research.  

Sequencing  

Next generation sequencing (NGS) has greatly sped up the sequencing process by allowing 

millions of small fragments of DNA to be sequenced in parallel (Behjati and Tarpey, 2013). 

NGS, in combination with techniques like PCR, have circumvented the need for culturing prior 

to microbial sequencing, thereby enabling deeper exploration of novel microbial environments 

(Malla et al., 2019). It must be noted, however, that NGS does not completely mitigate the need 
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for culturing. While NGS provides the genomic sequence, linking a phenotype to specific 

microbial strains and investigating interactions between microbes is best done via microbial 

cultivation (Sommer, 2015). 

There are two common ways of sequencing microbial genes. One could either perform whole 

genome shotgun sequencing (WGS), which targets the genomes of all microbial species in an 

environment. WGS has several advantages, including enabling better taxonomic resolution, 

increased diversity detection, and better functional prediction. However, WGS is very costly 

and is not feasible for researchers with limited budgets (Ranjan et al., 2016). Alternatively, 

sequencing certain household genes, such as the commonly used 16S rRNA gene or the Internal 

Transcribed Spacer (ITS) region for bacteria and fungi respectively, yields satisfactory results. 

Such marker genes contain both conserved regions and hypervariable regions, rendering them 

useful for taxonomic classification, since the conserved regions are ubiquitous enough to be 

used for primer design, while the hypervariable regions differ enough for adequate 

distinguishment between microbial communities (Tringe and Hugenholtz, 2008; Schoch et al., 

2012). Sequencing these marker genes, otherwise known as amplicon gene sequencing, is more 

cost effective than WGS and is adequate for taxonomic classification (Mizrahi-Man, Davenport 

and Gilad, 2013). Moreover, amplicon gene sequencing requires less extensive data analysis 

and therefore is not as bioinformatics intensive (Ranjan et al., 2016).  

However, certain limitations exist for amplicon gene sequencing. In some cases, the 16S gene 

is too homologous to identify taxa up to a species level, resulting in low taxonomic resolution. 

Over-estimation of diversity can also occur using 16S sequencing due to presence of multiple 

copies of this gene in one bacterial cell (Bailén et al., 2020). Functional prediction is also 

compromised due to absence of the entire genome (Galloway-Peña and Hanson, 2020), and 

genome reconstruction is impossible.  

The use of controls  

While improved sensitivity has been brought about by the use of new sequencing techniques, 

this has also led to increased amplification of contaminant DNA that could skew research 

results (Eisenhofer et al., 2019). The lack of standardised controls in microbiome studies could 

lead to overzealous conclusions that misinform knowledge about certain ecosystems. This is 

well-illustrated in a study by (Salter et al., 2014), in which the theory that the infant 

nasopharyngeal microbiome shows age-related clustering, is disproved. Once contamination 

from the DNA extraction kit was removed, there was no age-related clustering between the 

nasopharyngeal samples. Contamination can arise from many sources throughout the process, 

including via the use of unsterile sampling tools (Weiss et al., 2014), or as a result of cross-

contamination between samples (Cando-Dumancela et al., 2021). 
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The use of controls is thus a necessity in microbiome studies. Positive controls can comprise 

defined mock communities, although because they are comparatively less complex than actual 

microbial environments, their usefulness in microbiome studies is still uncertain (Hornung, 

Zwittink and Kuijper, 2019). Negative controls should include a sampling container without 

any sample, to detect contamination from the container. DNA extraction kits have been 

implicated as causative of contamination (Salter et al., 2014) and should thus also be included 

as a negative control.  

Although the importance of the use of controls is widely accepted, there is no common practice 

in terms of how contamination is dealt with in microbiome studies, and a result, handling 

contamination is widely ignored. Because contamination can come from actual biological 

sources through cross-contamination of samples, removing all reads found in controls from 

samples could result in the loss of biological signal. It is therefore recommended that a less 

conservative approach be taken to only remove contamination that is statistically probable 

(Eisenhofer et al., 2019; Minich et al., 2019). To this end, an R package has been developed 

(Davis et al., 2017) called decontam. Decontam works by either assessing the frequencies of 

reads as a function of DNA concentration, where contaminant reads are classified by their 

inversely proportional relationship with DNA concentration, or the prevalence of reads 

between controls and samples, in which the probability of a read being a contaminant is 

presented as a p-value. To improve the reproducibility, and validity of findings in the 

microbiome field, it is imperative to employ controls and remove contamination.  

Quality control 

Quality control is another crucial step in the process and can account for the largest variability 

in a study (Sinha et al., 2015). Quality control is conducted on the raw DNA sequences and 

includes steps like primer removal, trimming and filtering low quality reads, as well as the 

removal of chimeras. During quality control, reads can either clustered into operational 

taxonomic units (OTUs) at a user-define sequence similarity (often 97% for species-level 

resolution), or kept as amplicon sequence variants (ASVs), which are single base resolution 

OTUs. The latter is more accurate (Callahan, McMurdie and Holmes, 2017).  

Many programs exist that perform quality control and user choice dictates which one is used. 

All available software programs have their advantages and disadvantages. For example, 

DADA2 (Callahan et al., 2016) is one of the most sensitive software programs available for 

quality control, but is less specific than other programs such as USEARCH-UNOISE3 (Edgar, 

2010, 2016) and Qiime2-Deblur (Amir et al., 2017; Bolyen et al., 2019; Prodan et al., 2020).  
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Normalisation 

Variations in sample collection, library preparation, and sequencing can result in biases that 

are not a true representation of actual biological variation in the microbial environment (Weiss 

et al., 2017). As such, microbiome data are unequal in library size across samples, are sparse 

(meaning the data contains many zeros), and are compositional (Gloor et al., 2017). 

Microbiome data therefore contravene the assumptions of many standard biological tests (Xia, 

2020), such as the assumptions of normality and homoscedasticity (Odintsova, Tyakht and 

Alexeev, 2017). Normalisation, the process of transforming the data to enable statistical 

comparison across groups, is thus a necessity for any microbiome study (McKnight et al., 

2019).   

Rarefying is the most common normalisation technique, and comprises user selection of a 

minimum library size, discarding samples with a read abundance less than the chosen 

minimum, and random sub-sampling of the remaining samples without replacement until they 

all have an equal library size (Hughes and Hellmann, 2005). However, this discards valid 

biological data, resulting in decreased sensitivity, overdispersion, and the addition of artificial 

uncertainty. These consequences are particularly relevant to small or uneven datasets, the 

prevalence of which is quite high in microbiome studies, owing to the cost of sequencing 

(McMurdie and Holmes, 2014).   

Other methods of data transformation include mathematically simple transformations like 

changing absolute abundances to proportions, or using the total read count as a factor to 

estimate library size (Total Sum Scaling) (Xia, 2020). Mathematically more complex 

normalisation methods have been developed from Aitchison’s log ratio (Aitchison, 1982), such 

as the centred-log ratio (CLR). By log-transforming data, a variance-stabilising transformation 

is applied, thereby meeting the assumptions for downstream statistical analysis (Odintsova, 

Tyakht and Alexeev, 2017). The use of log-transformation presents a problem in that 

microbiome datasets contain many zeros and the log of zero is undefined. To circumvent this 

problem, a small pseudo-count is added to the data before log-transformation. However, the 

use optimal value of a pseudo-count has not been established (Weiss et al., 2017), and has been 

shown to affect statistical outcome (Kaul et al., 2017). More sophisticated normalisation 

techniques have also been adopted from RNA-seq analyses, and packages like DESeq2 (Love, 

Huber and Anders, 2014) and EdgeR (Robinson, McCarthy and Smyth, 2010) are widely used 

in microbiome studies. More recently, normalisation methods have been developed specifically 

for microbiome studies (Xia, 2020), including Cumulative Sum Scaling (Paulson et al., 2013), 

which is designed to account for under-sampling, and Geometric Mean of Pairwise Ratios 

(Chen et al., 2018), which deals with zero-inflation (an excess of zeros). Once the data are 

normalised, various statistical methods can be used to answer the research question. 
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Statistical tests 

Ultimately, the goal of a microbiome research project is to test the hypothesis in question by 

statistically analysing the correlations between collected metadata and the microbial 

community structure. This could comprise several tests to elucidate the overall community 

composition between different groups. For example, to test whether IM α-diversity (the 

diversity within groups) is the same between neonates of different sexes (Cong et al., 2016). 

Alternatively, one could test whether the β-diversity (the diversity between groups) is different 

between various human microbiomes (Huttenhower et al., 2012). 

Researchers can also test whether individual taxa abundances are statistically significantly 

different between certain groups. This is particularly useful in the identification of microbes 

that could play a functional role. For example, Akkermansia muciniphila has been identified as 

a potential mediator of obesity and type 2 diabetes (Dao et al., 2016). Moreover, correlations 

between members of the IM from different kingdoms, from example bacteria and fungi, can be 

elucidated in context of the collected metadata.  

Functional prediction  

While taxonomic assignments attempt to determine “who is there”, functional prediction 

attempts to find out “what they are doing”. The efficacy of functional prediction is largely 

determined by the type of sequencing that was conducted. WGS results in far more accurate 

functional predictions, since it enables identification of reads within the entire metagenome, 

which can then be compared to databases of known genes, proteins, and protein families to 

infer functionality of the metagenome (Sharpton, 2014). In contrast, the use of amplicon data 

limits the study in that only a specific gene can be used for functional prediction, hence 

amplicon functional prediction relies on taxonomic classification to infer functionality rather 

than comparison with known genes and proteins.  

All of the abovementioned steps in the microbiome workflow can influence the results of the 

study at hand. Caution is thus advised when drawing conclusions about the nature of the 

microbiome, especially since protocols in this field are not yet standardised. 

 

A word of caution 

While the IM is implicated in the onset of various diseases, care should be taken not to perceive 

and promote the IM as a single solution to all Western health-related problems. Correlation 

does not imply causation, and studies in which causation of the IM in disease onset and 

progression is directly tested, are largely lacking. This constitutes a major problem, especially 

from the consumer’s point of view. Consumers are not scientists, and advertising pre- and 
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probiotics, and “functional foods”, as a cure to all diseases for the sake of making money is 

unethical and dangerous (Slashinski et al., 2012).  

Furthermore, many microbiome studies have been conducted on mice, which are genetically 

and physiologically different from humans. Identifying possible interplay between the IM and 

certain medications or diseases in a mouse-model could help inform human-focused studies. 

However, it should not be assumed that the same effect will be seen in humans until the 

hypothesis was explicitly tested on humans (Bik, 2016).  

The IM offers promising opportunities for therapy, and this is mentioned in many articles (West 

et al., 2015; Kho and Lal, 2018). However, there are many factors that contribute to the risk of 

contracting diseases, particularly non-communicable diseases. Thus, while the microbiome 

should be included in the treatment of these diseases, and IM-targeted therapy warrants further 

investigation, it should be noted that altering the IM by itself may not have long-lasting effects. 

For example, IM-therapy may improve the treatment of obesity, but without a change in diet 

and exercise regime, it is doubtful whether long-term improvement will be seen. After all, a 

diverse diet supports a diverse array of microbes in the GIT (Walter and Ley, 2011), so without 

long term consumption of diverse foods, the GIT might not support the growth of beneficial 

microbes for long enough to mitigate obesity. Vaginal swabbing as a way of transmitting 

microbes to babies, especially in cases where the mother underwent c-section as opposed to 

natural birth, has become quite popular amongst women. This practice is risky, especially when 

not performed by a qualified doctor, as one could also pass harmful microbes to the baby that 

could lead to severe infection (Ma et al., 2018). Much more research is needed to determine 

the underpinnings of the IM in human health and disease, and until research is conclusive 

enough to inform the healthcare sector, caution is advised when considering IM-therapy. 

 

 

 

 

Future perspectives 

While the study of the human microbiome presents a promising avenue for therapy and could 

help shed light on the commonality of certain diseases in Western populations, much research 

is still needed before this can be put into practice. Furthermore, standardisation of protocols, 

including sampling, DNA extraction, sequencing, and analysis protocols, is a necessity if this 

field is to move forward.  

Comparative analyses between the IMs of traditional and Western societies have highlighted 

compositional and functional differences between them. Analyses of how certain factors, like 
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antibiotic use, age, and genotype, influence IM composition in Western contexts have also been 

fruitful. However, to gain a deeper understanding of how those factors influence the IM in light 

of Westernisation, studies investigating the influence of those factors in traditional, pre-

Western settings must be undertaken. Such studies should be performed with the intention of 

bettering the lives of traditional communities as well and not just with the aim of improving 

life for Western populations. Additionally, investigation of the IM in traditional populations 

from southern Africa has not been conducted. 

The Ju|’hoansi people from the Nyae Nyae conservancy (NNC) in north-eastern Namibia 

present an opportunity to study the traditional IM in a southern African context. The Ju|’hoansi 

lived a largely traditional lifestyle before the 1960s, subsisting by way of hunting and 

gathering. However, due to the influences of colonisation in Africa, the Ju|’hoansi adopted a 

more sedentary way of life inclusive of agricultural practices (Hitchcock, 2020). They hunt and 

gather what they can, but also farm, and increasingly more frequently, consume Western foods 

available from a small shop in Tsumkwe. Tsumkwe also has a small clinic, where the people 

obtain antibiotics for tuberculosis, as well as malaria medication. Occasionally, the Ju|’hoansi 

will make use of paracetamol or ibuprofen for stomach ailments. However, there is limited 

availability of medicine. As such, the Ju|’hoansi are in the process of Westernising. They live 

in traditional environments and have access to bush food and traditional medicine, but also 

have increasingly more frequent access to Western commodities. Studying the IMs of 

traditional people in relation to factors known to influence the IMs of Westerners, such as age, 

use of modern medication, biological sex, and residential environment, could shed light on how 

the IM functions in a traditional context, as well as what the consequences of Westernisation 

are on IM health. 

 

 

Conclusion 

Fluctuations in IM composition and functionality has been associated with many aspects of 

human lifestyle, from drug use to age. Although a causal relationship has not been established 

in many cases in terms of disease, there is ample evidence to justify the notion that such a 

relationship does exist. Much research is currently being conducted with the specific aim being 

to find evidence of causality, and the underpinning mechanisms thereof in disease onset and 

progression, which will hopefully bring us closer to practical application of microbiome 

research.  

The potential applications for microbiome research include informing lifestyle choices, such 

as dietary choices, frequency of exercise, and use of medication. The effect of a Western 
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lifestyle on the IM and human health in general should be investigated rigorously to ensure that 

maximum benefit can be extracted from Westernised living, without its accompanying 

disadvantages. Hopefully, considerations regarding the microbiome will also be included to 

inform policies, from the food given to children at school, to the amount of antibiotics 

prescribed by doctors.  

Traditional societies can be used to supplement this research, as their IMs are less affected by 

Westernisation, and could thus aid the understanding of the effect of Westernisation on the IM. 

Longitudinal investigations of their IM composition as traditional individuals Westernise could 

also aid understanding of the evolution of the IM from a traditional to a Western state. 

Additionally, these societies are at risk of modern-day diseases, without necessarily having the 

financial means to seek healthcare. Therefore, traditional IM studies, as well as monitoring the 

health of traditional populations, should be conducted not only with the aim of better informing 

health in a Western context, but to ensure the health of traditional populations as they enter the 

Western world. 

Finally, more research is needed regarding the bioinformatic aspects of microbiome research. 

Because the field is relatively new, methods and packages to analyse this data generate highly 

variable outcomes, which complicates any attempt to reach solid conclusions. To generate 

reproducible, comparable results in the microbiome field, standardisation of procedures is 

necessary. 
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Abstract 

To elucidate the taxonomic composition of a traditional southern African hunter-gatherer 

intestinal microbiome (IM), we analyse 40 faecal samples derived from the Ju|’hoansi 

San/Bushmen of north-eastern Namibia. This population subsists largely by hunting and 

gathering but is increasingly exposed to Western commodities. The Ju|’hoansi therefore 

presents an opportunity to study the evolution of the IM during transition from a hunter-

gatherer to a Western lifestyle, in situ. We analyse their IM composition in relation 1) the ages 

of research participants, 2) their former use of antibiotic treatment for tuberculosis, 3) their 

biological sex, 4) whether diarrhoea is or had been experienced following the consumption of 

certain foods, 5) whether participants have ever experienced an intestinal infection, 6) their 

former or current use of malaria medication, 7) their exposure to local, regional and 

international travel, and 8) the villages of primary residency of each research participant. The 

Ju|’hoansi IM resembles a typical hunter-gatherer IM, being enriched for Prevotella, Blautia, 

Faecalibacterium, Succinivibrio and Treponema. No significant differences were found in IM 

composition in relation to any of the factors tested, except between subjects of different primary 

villages of residence. This is expected to change over time, as exposure to Western dietary 

resources and medication becomes more frequent. This draft article is prepared for publication 

in Cell Press Community Review. 

 

 

 

Introduction 

The human gastrointestinal tract (GIT) harbours a dynamic population of bacteria, archaea, 

fungi, protozoa and viruses, i.e., the intestinal microbiota. The human intestinal microbiome 

(IM) (Lederberg and McCray, 2001) performs critical functions in digestion, development, 

and immunity (Thursby and Juge, 2017). Modifications of IM composition (dysbiosis) have 

been associated with the pathogenesis of inflammatory and auto-immune diseases, including 

allergies (Hansen, Gerasimidis and Turner, 2019), obesity (Mar Rodríguez et al., 2015; 

Davis, 2016), diabetes (Dunne et al., 2014), and inflammatory bowel disease (Ott et al., 

2009; Vich Vila et al., 2018). Prior to the advent of agriculture, following the beginning of 

the Neolithic c. 10,000 years ago, humans subsisted solely by hunting and gathering. The 

lifestyle changes associated with the Neolithic are stated to have significantly impacted our 

IM taxonomic composition, and metabolic capacity. But precisely how our IMs changed, is 
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largely unresolved (Blaser and Falkow, 2009; Adler et al., 2013). Currently, traditional 

populations provide the only available examples of a ‘pre-Neolithic’ human IM, owing 

largely to their comparatively limited exposure to Western lifestyle factors, including various 

novel sources of food, medication and toxic pollutants. However, even these communities are 

subject to the influences of Westernisation (Crittenden and Schnorr, 2017) and as such, 

represent a window of opportunity to study the evolution of the IM during transition from a 

pre-Western, non-industrialised, to a Western, industrialised lifestyle. 

Differences in IM adaptations to diverse lifestyles are prevalent between industrialised 

Western societies from Europe and North America, and non-industrialised rural populations 

from Africa and South America (Schnorr et al., 2014). Several socio-economic differences 

exist between traditional and Western populations, many of which may exert an impact on 

human IM composition. Traditional populations typically adhere to a high-fibre, low-fat and 

low-sugar diet, and generally have limited access to contemporary medicine. They also live 

in closer association with one another, with their pets, livestock and wildlife, and with 

environmental microbes. In contrast, Western diets tend to comprise processed, high-fat, low-

fibre foods, combined with increased sedentarism and easier access to modern medication. 

Westerners also tend to experience less exposure to the natural environment and associated 

environmental microbes (Rook, Raison and Lowry, 2014; Thorburn, Macia and Mackay, 

2014). These factors are consequently thought to drive the compositional differences seen 

between the IMs of traditional and Western populations. Traditional populations tend to 

harbour a more diverse IM which contains a higher abundance of short chain fatty acid 

(SCFA) producing bacteria, such as Prevotella, Succinivibrio and Treponema (De Filippo et 

al., 2010; Gupta, Paul and Dutta, 2017). The shift in taxonomic composition, including the 

disappearance of ‘cornerstone’ IM members and changes in structural composition, are 

suspected to partially contribute to the higher prevalence of inflammatory diseases commonly 

seen in Western populations (Yatsunenko et al., 2012; Sonnenburg and Sonnenburg, 2014; 

Amato et al., 2019).  

Studies concerning the Tanzanian Hadza hunter-gatherers (Schnorr et al., 2014), Venezuelan 

Yanomami Amerindians (Clemente et al., 2015), the BaAka in the Central African Republic 

(Gomez et al., 2016b) and the Arctic Inuit (Dubois et al., 2017) have provided insight into the 

IM composition of ‘traditional’ societies. To date, comparable research has not been 

conducted in southern Africa. Moreover, whereas multiple comparative studies between 

traditional and Western IMs have been carried out in other parts of the world, few studies 

explicitly investigate the effect of certain lifestyle factors (such as medical history and 

residential mobility) within traditional communities in terms of their effect on IM variability.  
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The Ju|’hoansi (pronounced ‘zhu-t-wasi’) San/Bushmen hunter-gatherers inhabit the Nyae 

Nyae Conservancy (NNC) in north-eastern Namibia, which was established in 1998 and 

covers 8,992 square kilometres (Figure 1). It is home to around 2,300 Juǀʼhoansi, and also to 

Bantu-speaking Herero agro-pastoralists. Prior to the 1970s, the Ju|’hoansi traditionally 

subsisted by way of hunting and gathering no less than 85 species of wild plant, including 

mongongo nuts (Schinziophyton rautanenii) (Lee, 2017). Following the onset of the summer 

rains in December, the Juǀʼhoansi diet mostly comprise ‘bush-food’, including bush-potatoes, 

water-carrots, various species of geophytes termed ‘wild onions’ and also Grewia sp. and 

baobab (Adansonia digitata) fruits and honey. Hunting and trapping focused on game such as 

kori bustard (Ardeotis kori), helmeted guineafowl (Numida meleagris), steenbok (Raphicerus 

campestris), springhare (Pedetes capensis) and porcupine (Hystrix africaeaustralis) 

throughout the year. By July, foraging was less important as natural resources became less 

abundant, although certain rhizomes and Acacia tree resins were still collected (Imamura-

Hayaki, 1996). 

In the 1970s, several small shops, a liquor store and a clinic were introduced to the NNC. 

This exposed the Ju|’hoansi to Western commodities like sugar, canned foods, coffee, tea, 

and mielie meel. Charity organisations in the area provide food packages once a month, 

which contain the abovementioned commodities. In the 1980s, several foundations assisted 

the Ju|’hoansi to plant gardens and raise livestock such as cattle (Gargallo, 2020). Such 

agricultural initiatives also included the planting of papaya (Carica papaya), beetroot (Beta 

vulgaris), carrots (Daucus carota), onions (Allium cepa) and tomatoes (Solanum 

lycopersicum) in several Juǀʼhoansi villages.  

The Ju|’hoansi are thus reliant on a complicated mixture of subsistence strategies (Denker, 

Thompson and Jarvis, 2012). The Western food packages provided by charity organisations, 

as well as vegetables grown in their gardens and gathered from the bush, form the basis of the 

Ju|’hoansi diet. Each village has one or two men that hunt opportunistically, providing game 

meat for the whole village as often as they can, which ranges anywhere between once a week 

and once a month.  

To determine the taxonomic composition and metabolic functionality of both the bacterial 

and fungal IMs in a traditional, southern African context, we analysed faecal samples derived 

from 40 Juǀʼhoansi community members inhabiting four villages, namely Duinpos, Den/ui, 

Mountain Pos and !Om!o!o. The faecal samples were collected in July 2019, during the dry 

season (winter). Our study focused on how the taxonomic and metabolic variations of the 

Juǀʼhoansi IM might relate to eight biological and abiotic environmental variables, namely; 1) 

the ages of research participants, 2) their former use of antibiotic treatment for tuberculosis, 
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Figure 1: Lifestyle of the Namibian Ju|'hoansi. 

(A) The Ju|'hoansi live in the Nyae Nyae Conservancy in north-eastern Namibia. 

(B, C) Historically, they subsist by way of hunting and gathering, but also have increasingly more frequent access to 

Western commodities. 

(D) To elucidate the taxonomic composition and metabolic functionality of their bacterial and fungal intestinal 

microbiomes, faecal samples were collected for analysis. During ethnographic interviews, questionnaires were 

completed and with the assistance of Leon ≠Oma Tsamkxao, translated from Ju|’hoansi to English, to determine how 

certain lifestyle factors influence the composition of the IM. 

3) their biological sex, 4) whether diarrhoea is or had been experienced following the 

consumption of certain foods, 5) whether participants have ever experienced an intestinal 

infection, 6) their former or current use of malaria medication, 7) their exposure to local, 

regional and international travel, and 8) the villages of primary residency of each research 

participant.  
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Results 

Characterising the Juǀʼhoansi IM by 16S rRNA and ITS sequencing 

Forty faecal samples and two controls, namely KIT-CTRL (kit control – buffers of the used 

extraction kit, no sample) and CON-CTRL (sampling container control) were analysed in this 

study. A total of 4,679,902 16S forward and reverse reads were imported into QIIME2 and 

merged, resulting in a mean read count of 38,031 reads per sample. A total of 5,938,170 ITS 

forward reads were imported into QIIME2, resulting in a mean read count of 88,116.4 reads 

per sample. Reverse ITS reads were not included in the analysis, since merging forward and 

reverse reads only resulted in a mean read count of 5,446.4 reads per sample. Quality control 

with DADA2 yielded 4,184 and 1,271 ASVs (Amplicon Sequence Variants) for 16S and ITS 

data, respectively. As initial ITS taxonomic classification of the ASVs resulted in 

identification of very few taxa, ITS reads were first clustered at 98% sequence similarity and 

then re-classified, which resulted in 167 OTUs (Operational Taxonomic Units) (SI Table 2).  

Following taxonomic classification, the 16S ASV table was filtered to only include reads that 

appeared in more than two samples, which resulted in the loss of CON-CTRL. The ITS OTU 

table was left unfiltered to preserve as many OTUs as possible, in light of the comparatively 

lower OTU count.  

ASV/OTU and taxonomy tables were then imported into R and contaminant reads were 

identified using the “prevalence” contamination identification method of decontam (Davis et 

al., 2017). This method evaluates the probability of each ASV/OTU being a contaminant by 

comparing its prevalence between true samples and negative controls using the chi-square 

statistic, under the assumption that contaminants are more prevalent in negative controls than 

true samples.  Twelve reads from three bacterial taxa were identified as contaminants using 

this method, namely Streptococcus salivarius, Parabacteroides merdae and the Eubacterium 

coprostanoligenes group. Following the removal of these three species, Firmicutes (26.6%) 

and Bacteroidota (8.5%) emerged as the dominant bacterial phyla, resulting in a Firmicutes: 

Bacteroidota ratio of 3.1. Other phyla present included Proteobacteria (3.16%), 

Spirochaetota (0.28%) and Actinobacteria (0.24%). In total, 131 bacterial genera were 

identified, with the top 5 taxa comprising Prevotella (6.6%), Blautia (3.3%), 

Faecalibacterium (2.0%), Succinivibrio (1.8%) and Christensenellaceae R-7 group (1.5%). 

Treponema was also present at an abundance of 0.3% (SI Table 3.1-3.6). 

Fungal contaminant identification (using the same method as above) yielded 12 contaminant 

reads from four species, namely Malassezia globosa, Pleosporales sp., Saccharomycetales 

sp. and Candida albicans, which were subsequently removed from the samples. The two 

most abundant phyla were Ascomycota (19.4%) and Basidiomycota (18.6%), with 
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Chytridiomycota (7.4%) and Mucoromycota (5.8%) comprising the remainder. In total, 81 

fungal genera were identified, with the top three genera comprising Malassezia (7.4%), 

Candida (6.4%) and Naganishia (4.3%) (SI Table 4.1-4.6). 

 

 

Core bacterial and fungal taxa of the Ju|’hoansi IM 

Core IM taxa are shared across human populations (Martínez et al., 2015) and are thought to 

perform important metabolic functions (Turnbaugh et al., 2007). One aim of this study was to 

determine whether a core IM was shared among individuals inhabiting the NNC. Core IM 

members were defined as those taxa that were present in 60% and 50% of all bacterial and 

fungal datasets, respectively, at a relative abundance of at least 0.008%. These parameters 

were chosen using a computational method developed by (Salonen et al., 2012), in which 

multiple prevalence and detection thresholds are investigated in terms of their effect on core 

size. The optimal parameters are then chosen such that they have the least effect on core size 

(SI Figures 1A and B). There are currently no standardised prevalence and detection 

thresholds for elucidating the core microbiome. Prevalence thresholds of 50% (Martínez et 

al., 2015) and 90% (Mancabelli et al., 2017) have been used, with no mention of detection 

threshold. The method employed by (Salonen et al., 2012) is the recommended method as per 

the Microbiome R-package documentation (Lathi and Shetty, 2017). The Ju|’hoansi bacterial 

and fungal core microbiomes comprised 54 and 8 genera, respectively (Figure 2). A large 

proportion of both the bacterial (5%) and fungal (17%) core microbiomes consisted of 

unknown taxa.  
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Figure 2: The core bacterial and fungal microbiome of the Ju|’hoansi hunter-gatherers. 

(A) The bacterial core microbiome 

(B) The fungal core microbiome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Community composition and differentially abundant taxa of the Ju|’hoansi IM 

The Ju|’hoansi IM exhibited an even and diverse bacterial landscape, however, the fungal 

landscape varied widely in terms of evenness and diversity between cohorts. The controls had 

very low α-diversity in comparison to the true samples (Figure 3A (16S) and Figure 4A 

(ITS)). No statistically significant differences in α-diversity were detected between groups for 

any of the factors tested (SI Table 5.1-5.3, SI Table 6.1-6.3).  

Whereas the weighted UniFrac metric showed statistically significant (p = 0.001) bacterial β-

diversity differences between IM populations in residents from different villages (i.e., 

Duinpos, Den/ui, Mountain Pos and !Om!o!o.), the Jensen-Shannon metric did not (p = 

0.086) (SI Table 7.1-7.2, Figure 3B and C). Fungal IM populations of residents from 

different villages exhibited differences in β-diversity that were statistically significant using 

both distance metrics (Bray-Curtis p = 0.003, Jensen-Shannon p = 0.001) (SI Table 8.1-8.2, 

Figure 4B and C). No other groups presented statistically significant differences in either 

bacterial or fungal community structures.  

Further analysis of average pairwise Weighted UniFrac distances between specific villages of 

residence exhibited no statistically significant differences between bacterial community 

composition, while Jensen-Shannon distance indicated that four out of six village 
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comparisons were significant in terms of bacterial community composition (Figure 3D and 

E). Analysis of fungal community composition between specific villages showed one (Bray-

Curtis distance) and five (Jensen-Shannon distance) out of six significant differences between 

villages (Figure 4D and E).  

Due to uneven sample sizes between groups and subsequent statistical inaccuracy, 1) the ages 

of research participants, 2) their former use of antibiotic treatment for antibiotics, 6) their 

former or current use of malaria indication and 7) their exposure to local, regional and 

international travel were excluded from differential abundance analysis. 

ANCOM-BC was used to identify genera that exhibited statistically significant differences in 

abundance between groups. A few genera were statistically significantly different between 

subjects of different biological sex, those who have and have not used antibiotics, and those 

who have and have not experienced diarrhoea and intestinal infection (SI Tables 9.1-9.3 

(16S) and 10.1-10.3 (ITS)). Owing to the significant differences in β-diversity between 

subjects from different villages however, the different abundance genera between villages 

was of more interest (Figure 3F and Figure 4F). The bacterial genera included Eubacterium 

ruminantium group, Anaerostipes, Butyrivibrio, Desulfovibrio, Ruminococcus and 

Treponema. The fungal genera included Aspergillus, Candida, Mycoacia, Panellus, 

Porodisculus, Sacchararomyces, Schizophyllum and Stagonospora. The functional 

significance underlying these differences would make for an interesting study.  
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Figure 3: Bacterial community composition of the Ju|’hoansi IM. 

(A) Per-sample α-diversity computed with Shannon and Simpson indices. 

(B) Weighted UniFrac and (C) Jensen-Shannon NMDS plots for village of primary residence, the only factor 

that showed significant community structure differences with PERMANOVA. 

Average pairwise distances between villages using D) Weighted UniFrac and E) Jensen-Shannon distance 

metrics. False Discovery Rate (FDR) corrected p-values included on top of each bar. FDR corrected p-values < 

0.05 were considered significant. 

(F) Differentially abundant genera between villages as identified by ANCOM-BC. Genera were considered 

significant if Benjamin-Hochberg adjusted p-values (q-values) were <0.05. 
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Figure 4: Fungal community composition community composition of the Ju|’hoansi IM. 

(A) Per-sample α-diversity computed with Shannon and Simpson indices. 

(B) Bray-Curtis and C) Jensen-Shannon NMDS plots for village of primary residence. The only factor that 

showed significant community structure differences with PERMANOVA. 

Average pairwise distances between villages using D) Bray-Curtis and E) Jensen-Shannon distance metrics. 

False Discovery Rate (FDR) corrected p-values included on top of each bar. FDR corrected p-values < 0.05 

were considered significant. 

(F) Differentially abundant genera between villages as identified by ANCOM-BC. Genera were considered 

significant if Benjamin-Hochberg adjusted p-values (q-values) were <0.05. 
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Discussion 

To determine the bacterial and fungal taxonomic composition of the Ju|’hoansi IM, 40 faecal 

samples were sequenced and analysed. We observe that 1) Ju|’hoansi IM is enriched for 

bacteria commonly found in other traditional populations, and 2) the only factor for which 

taxonomic IM differences were statistically significant between subjects, was village of 

primary residence.  

The Ju|’hoansi IM harbours a high abundance of microbes that ferment fibre and plant 

polysaccharides, including Prevotella, Blautia, Faecalibacterium, Succinivibrio and 

Treponema. These bacteria convert fibre into metabolically advantageous SCFAs, namely 

propionate, acetate and butyrate, which have anti-carcinogenic and anti-inflammatory 

properties (Cordain et al., 2005; Sivaprakasam, Prasad and Singh, 2016). The high abundance 

of fibre fermenting bacteria in the Ju|’hoansi IM is likely a reflection of their fibre-rich diet, 

including food items such mongongo nuts, which have around 3.5 g and 2.7g of fibre per 

100g in the flesh and kernel respectively(Lee, 2010). Additionally, the presence of 

Treponema in the Ju|’hoansi IM is arguably indicative of a traditional lifestyle, as this 

organism is thought to occur in the IMs of traditional societies as a result of cross-

contamination from termites or swine and is rare in the IMs of Western populations 

(Angelakis et al., 2019).  

The high abundance of fibre fermenters in the Ju|’hoansi IM is similar to what is found in the 

IMs of other traditional societies that adhere to a similar lifestyle. Children from Burkina 

Faso harbour high abundances of the same bacteria (De Filippo et al., 2017), as do 

individuals from rural Nigeria (Ayeni et al., 2018), as well as the Hadza hunter-gatherers 

from Tanzania (Schnorr et al., 2014). Interestingly, these populations adhere to a similar diet 

as the Ju|’hoansi – a diet high in carbohydrates and fibre, and relatively low in animal fats 

and proteins. The Tanzanian Hadza gatherers, for example, are documented as consuming 

tubers, berries, baobab fruit and occasionally game, which is very similar to the Ju|’hoansi 

diet (Marlowe, 2002). The similarities in diet across these rural populations could explain the 

similarity in IM composition.  

Thus far, the majority of studies investigating the mycobiome have been in the context of 

healthy vs. diseased patients. For example, elucidating mycobiome composition between 

patients with and without Crohn’s disease (Li et al., 2014), or between obese and healthy 

subjects (Mar Rodríguez et al., 2015). The inclusion of the mycobiome in a study 

investigating the IM of a traditional population is novel, and as such, comparison of our 

results to existing literature is challenging. Nonetheless, Candida and Malassezia were the 

most abundant fungal species in the Ju|’hoansi IM. Unlike the stark differences between 
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bacterial residents of the GIT in Western and traditional populations, the fungal residents are 

somewhat similar. Both Candida and Malassezia have been identified as common inhabitants 

of the Western IM (Nash et al., 2017). Interestingly, Nash et al., 2017 also identifies 

Saccharomyces as part of a healthy Western IM, however, this organism does not form part 

of the core Ju|’hoansi microbiome, although it is present at a low abundance (0.3%). The 

significance of the fungal landscape in the Ju|’hoansi in terms of its relation to diet, 

geographic location and culture is somewhat unclear, and will hopefully be elucidated upon 

further research.  

The statistically significant difference in β-diversity observed between residents from 

different villages could be a result of several factors, including 1) socio-economic status, 2) 

different vegetation surrounding each village and 3) different water sources at each village. 

The villages (Duinpos, Den/ui, Mountain Pos and !Om!o!o) have varying degrees of 

affluence, with some possessing commodities like gardens and cattle, while others do not. 

Socio-economic status is known to affect IM composition (Bowyer et al., 2019), since socio-

economic status determines factors such as the type of food that is accessible to the individual 

and the level of psychosocial stress that the individual experiences (Amato et al., 2021). 

Furthermore, the vegetation type surrounding each village is different leading to slight 

changes in the type of food that is consumed most frequently. Similarly, each village has its 

own borehole that could be supporting different types of microbial growth, which could in 

turn affect which microbes the village residents are exposed to. It would be of interest to 

elucidate what underlying factors drive IM differences between villages of primary residence.  

Contrary to expectation, other factors that were investigated, namely 1) the ages of research 

participants, 2) their former use of antibiotic treatment for tuberculosis, 3) their biological 

sex, 4) whether diarrhoea is or had been experienced following the consumption of certain 

foods, 5) whether participants have ever experienced an intestinal infection, 6) their former or 

current use of malaria medication, 7) their exposure to local, regional and international travel, 

did not significantly alter IM composition. This suggests that factors such as diet and culture 

may have a greater effect on IM composition than do medical history, age, biological sex and 

travel.  

As the Ju|’hoansi Westernise, gaining more frequent access to Western foods and medical 

care, their IMs are expected to adapt to resemble a Western IM more closely. A longitudinal 

study in which the Ju|’hoansi IM is analysed in context of gradual Westernisation, presents an 

interesting opportunity to investigate the effects of Westernisation on a traditional IM, in situ. 

This could shed light on the changes that occurred in the IM as a response to Westernisation 

during the Neolithic revolution and could aid the understanding of the IM’s role in the onset 

of Western diseases such as obesity, diabetes, cardiovascular disorders and cancer. 
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Additionally, monitoring the Ju|’hoansi IM during this period of transition to a Western 

lifestyle could help prevent the Ju|’hoansi from losing their IM diversity as Westerners have, 

hopefully mitigating against some of the diseases of civilisation that inevitably accompanies 

Westernisation.   

Conclusion 

To gain insight into the taxonomic composition and metabolic capacity of a southern African 

IM transitioning from a hunter-gatherer to a Western lifestyle, faecal samples from 40 

Ju|’hoansi participants were sequenced. To analyse how their IMs might differ in response to 

lifestyle factors within the community, interviews were also conducted to determine to 1) the 

ages of research participants, 2) their former use of antibiotic treatment for tuberculosis, 3) 

their biological sex, 4) whether diarrhoea is or had been experienced following the 

consumption of certain foods, 5) whether participants have ever experienced an intestinal 

infection, 6) their former or current use of malaria medication, 7) their exposure to local, 

regional and international travel, and 8) the villages of primary residency of each research 

participant. The Ju|’hoansi harboured bacteria associated with plant fibre fermentation, namely 

Prevotella, Blautia, Faecalibacterium, Succinivibrio and Treponema. These microbes are 

present in traditional societies that follow a similar lifestyle to the Ju|’hoansi, indicating that 

diet could be a significant determinant of IM composition. The Ju|’hoansi IM also contained a 

high abundance of Candida and Malassezia, both of which are common in Western IMs. 

However, the Ju|’hoansi IM lacked the common Western fungi, Saccharomyces. The functional 

significance of this is uncertain.  

The statistically significant difference in β-diversity between subjects from different villages 

is curious and could be a result of 1) socio-economic status, 2) different vegetation surrounding 

each village and 3) different water sources at each village. Contrary to expectation, the use of 

antibiotics, biological sex, age and exposure to travel did not significantly affect β-diversity 

between subjects. This suggests that factors such as diet and culture may have a greater effect 

on IM composition than do medical history, age, biological sex and travel. 

The intention of this study was to function as a baseline characterisation of the Ju|’hoansi IM 

from which a longitudinal analysis, documenting the evolution of the IM from a traditional to 

a Western state, can be conducted. 
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Materials and Methods 

Study design  

This study was approved by the Research Ethics Committee, Faculty of Health Sciences at the 

University of Pretoria, South Africa (Protocol number TEMP 2017-01469, Reference Number 

NAS032/2021). The research permit for this study was approved by the Namibian National 

Commission on Research and Technology (NCRST) (RPIV00692019). The Juǀʼhoansi 

Traditional Authority (JUTA) provided consent for the enrolment of project participants from 

the Nyae Nyae Conservancy. Research participants were recruited with the assistance of our 

Tsumkwe San co-researcher, research facilitator and interpreter, Leon ≠Oma Tsamkxao, who 

is fluent in Juǀʼhoansi, Afrikaans and English, and written informed consent was obtained from 

all participants. All participants provided consent for publication of study results of the 

collected biomaterials, agreeing that all information required for the study (i.e., their location, 

gender, age, and medical history), except for their names, could be disclosed in this study. All 

the research methods occurred in accordance with the Helsinki Declaration. 

Along with these samples, metadata was also collected in relation to 1) the ages of research 

participants, 2) their former use of antibiotic treatment for tuberculosis, 3) their biological sex, 

4) whether diarrhoea is or had been experienced following the consumption of certain foods, 

5) whether participants have ever experienced an intestinal infection, 6) their former or current 

use of malaria medication, 7) their exposure to local, regional and international travel, and 8) 

the villages of primary residency of each research participant. Although it was specifically 

asked whether diarrhoea occurred upon consumption of bush or shop-bought food, we 

combined this information into ‘Yes’ or ‘No’ for whether diarrhoea occurs regardless of food 

type, to enable statistical analysis with a large enough sample size. 

SI Table 1: Metadata collected for this study. 

Data availability: NGS data will be made available after publishing, or upon request. 

DNA extraction and sequencing  

The samples were stored in faecal collection tubes containing 9 ml DNA/RNA ShieldTM 

(Zymo Research Corp, Irvine, CA, USA). After homogenizing the samples through vortexing, 

~1 ml was transferred to a clean 2 ml tube, spun for 5 min at 10.000 x g and the supernatant 

removed. The average weight of the resulting pellets was 125 mg, which was subsequently 

resuspended in 750 µl bead solution from the DNeasy® PowerLyzer® PowerSoil® Kit 

(Qiagen GmbH, Hilden, Germany). The DNA isolation was performed according to the 

manufacturers protocol, with the following adaptations: two rounds of beadbeating (1 min and 

4000 rpm, PowerLyzerTM, Mo Bio Laboratories, Inc., Carlsbad, Ca, USA) followed by 5 min 
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incubation on ice, the beadbeating tubes were spun for 5 min. After addition of Solution C6 

(elution buffer) the spin columns were incubation at RT for 5 min before centrifugation. Paired-

end (2 x 300bp) sequencing of the isolated DNA (V3-V4 16S rRNA for bacteria, and ITS1 and 

2 for fungi) was performed at Applied Biological Materials Inc., Richmond, B.C. Canada using 

the MiSeq platform (Illumina, San Diego, CA, USA). (SI Table 9) 

Two controls were used in this study. CON-CTRL contained DNA/RNA ShieldTM (Zymo 

Research Corp, Irvine, CA, USA) used to preserve the samples, while KIT-CTRL comprised 

the contents of the DNeasy® PowerLyzer® PowerSoil® Kit (Qiagen GmbH, Hilden, 

Germany). 

Bioinformatic analysis 

Raw paired-end 16S and forward ITS reads were imported into QIIME2-2021.2 (Bolyen et 

al., 2019). Reads underwent quality control using DADA2 (Callahan et al., 2016), including 

denoising, dereplication, and filtering of chimeras. The 16S reads were also merged during 

the quality control process. The 3’ ends of the 16S forward reads were truncated to a length 

292 bp, and 25 bp were trimmed from the 5’ end. The 3’ ends of the 16S reverse reads were 

truncated to a length of 250 bp, and 25 bp were trimmed from the 5’ end. ITS forward reads 

were truncated to a length of 297 bp at their 3’ ends, and 26 bp were trimmed from the 5’ 

end. The rest of the parameters were left at default. The ITS reads were subsequently 

clustered using closed-reference clustering at 98% similarity using qiime vsearch (Rognes et 

al., 2016). 16S taxonomic classification was performed by extracting V3-V4 regions from the 

SILVA-138-99 database (Quast et al., 2013) using q2 feature-classifier extract-reads, based 

on the primer sequences used to amplify the 16S data. A naïve-Bayes classifier was then 

trained on the extracted SILVA sequences, and full-length UNITE version 8 (Nilsson et al., 

2019) dynamic sequences for 16S and ITS data respectively. The classifiers were then used to 

taxonomically classify the respective datasets using the qiime fit-classifier naïve-Bayes plug-

in (Pedregosa et al., 2011). Post-classification, the 16S feature table was filtered to only 

include reads that appeared in more than two samples, resulting in the loss of CON-CTRL. 

The ASV table was then imported into R-4.1.0 (Team, 2013), along with the unfiltered ITS 

OTU table. Feature tables were normalised to relative abundance and contaminants were then 

removed using decontam in R (Davis et al., 2017) at a prevalence threshold of 0.1. Decontam 

works by determining the likelihood of a read being a contaminant based on the prevalence of 

the read between controls and true samples. The identified contaminant reads were then 

removed from the phyloseq objects for downstream analysis. Exploring taxonomic 

abundance in R was done using dplyr (Wickham et al., 2018) and plotrix (J, 2006) in R. The 

core microbiome was elucidated using the microbiome package in R (Lahti and Shetty, n.d.). 
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α- and β-diversity was visualised in R using the phyloseq (McMurdie and Holmes, 2013), 

microbiome, tidyverse (Wickham et al., 2019), vegan (Oksanen et al., 2020), pairwise adonis 

(Martinez Arbizu, 2017), and mctoolsr (https://github.com/leffj/mctoolsr/) packages. 

Statistical significance for α-diversity was computed using Kruskal Wallace (two groups) and 

Dunn’s tests (more than two groups). Where applicable, p-values were corrected using the 

Benjamini Hochberg method. Differential abundance testing was performed with ANCOM-

BC (Lin and Peddada, 2020). All R-code is provided as supplementary material 

(Supplementary R-Code). All visualisations were created using ggplot2 (Wickham, 2016) 

and RColorBrewer (Neuwirth, 2014) in R. All SI Tables were created in Microsoft Excel 

(Microsoft Corporation, n.d.). 
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Chapter 3: Summary 

The intestinal microbiome is thought to have aided human survival through the ages by 

allowing fast, flexible mechanisms of adaptation. For example, the IM’s ability to extract extra 

nutrients from food sources could provide a fitness advantage to the host. As such, hosts and 

many of the microbes in the IM have likely formed intricate relationships over millennia, 

providing benefits to one another in a reciprocal fashion.  

A pre-Neolithic lifestyle commonly included hunting, gathering, the use of traditional 

medicine, nomadism, and frequent exposure to environmental microbes. Transition to a 

Western lifestyle brought about many changes to humanity, such as increased sedentarism, the 

consumption of processed foods, access to modern medication, and more sanitary living 

environments. It is expected that this lifestyle shift will be accompanied by a corresponding 

shift in the taxonomic structure and functionality of the IM.  

The consequences of the advent of Westernisation on the IM is studied by comparing the IMs 

of traditional and modern societies. Traditional societies, such as those residing in parts of 

Western Africa, and South America, typically harbour microbes associated with the 

degradation of fibrous plant material and the production of short chain fatty acids (SCFAs). 

Their IMs are also more diverse than the IMs of Westerners. In contrast, Western IMs are 

abundant in microbes associated with the degradation of fats and animal products and have the 

capability to degrade xenobiotics. The lack of diversity and the loss of some microbes in the 

Western IM is thought to contribute to the high incidence of certain diseases in Western 

countries like the United States of America, and Italy. These diseases include obesity, asthma, 

cancer, and irritable bowel disease. While structural IM changes have been observed following 

the onset of such diseases, investigation of the biological mechanisms that underpin the 

correlation between disease and IM composition is yet to be elucidated.   

Studies investigating traditional IM structure have largely been conducted in comparison to 

Western IMs, yet certain factors that are known to influence IM composition in Western 

contexts have not been investigated in traditional contexts. Furthermore, research on traditional 

IMs from southern Africa is lacking.  

To determine the taxonomic composition and metabolic functionality of both the bacterial and 

fungal IMs in a traditional, southern African context, 40 faecal samples from the Ju|’hoansi 

community in north-eastern Namibia were analysed. The Ju|’hoansi largely adhere to a 

traditional way of life, subsisting by way of hunting and gathering, but are also more frequently 

exposed to Western commodities like processed foods and modern medication. As such, the 

Ju|’hoansi are in the process of Westernising and present an opportunity to study the evolution 

of the IM in a southern African context.  
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The taxonomic structure of the IM was elucidated, and correlations between IM composition 

and 1) the ages of research participants, 2) their former use of antibiotic treatment for 

tuberculosis, 3) their biological sex, 4) whether diarrhoea is or had been experienced following 

the consumption of certain foods, 5) whether participants have ever experienced an intestinal 

infection, 6) their former or current use of malaria medication, 7) their exposure to local, 

regional and international travel, and 8) the villages of primary residency of each research 

participant, was also investigated. Functionality of the Ju|’hoansi IM was predicted by 

considering the known roles of fungi and bacteria that were classified in this study. This 

dissertation aims to be a preliminary investigation into the taxonomic structure and function of 

the Ju|’hoansi IM, so as to provide a platform from which to study its evolution in response to 

future Westernisation. 

The Ju|’hoansi harboured an IM that resembles typical traditional IMs, such as those of the 

Hadza hunter-gatherers and children from Burkina Faso, and was enriched for Prevotella, 

Blautia, Faecalibacterium, Succinivibrio, and Treponema. The Ju|’hoansi lacked common 

Western microbes such as Bifidobacterium. Contrary to expectation, the taxonomic structure 

of the Ju|’hoansi IM was not significantly different between subjects in terms of in relation to 

1) the ages of research participants, 2) their former use of antibiotic treatment for tuberculosis, 

3) their biological sex, 4) whether diarrhoea is or had been experienced following the 

consumption of certain foods, 5) whether participants have ever experienced an intestinal 

infection, 6) their former or current use of malaria medication, 7) their exposure to local, 

regional and international travel, and 8) the villages of primary residency of each research 

participant. However, subjects from different villages harboured IMs with significantly 

different structural diversity, although the effect size was small. Some of the bacterial genera 

responsible for these structural differences included Eubacterium, Treponema, Anaerostipes, 

Butyrivibrio, Ruminococcus, and Desulfovibrio. Some of the fungal genera that were 

differentially abundant between subjects from different villages included Aspergillus, Candida, 

Panellus, Mycoacia, and Saccharomyces. The reasons that underpin the differences seen in IM 

composition between the different villages is yet to be discovered, but could include socio-

economic status, the use of different boreholes, consumption of different types of bushfoods, 

or varying ease of transport to and from Tsumkwe. The predicted functional capabilities 

included chemoheterotrophy and fermentation in terms of bacteria, while most of the fungi 

identified in the Ju|’hoansi IM were plant- and animal-associated commensals and pathogens.  

Due to the covid-19 pandemic, the samples were left in storage from July 2019 to the end of 

2020, which may have resulted in the extraction of less microbial DNA. Furthermore, 

clustering the ITS reads by various methods (open- and closed-reference clustering) and 

various similarities (90% and 98%), led to differing success in terms of taxonomic 
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classification. Standardised methods for quality control and pre-processing of microbial data 

should be prioritised, to ensure reproducibility and reliability of such investigations.  

Moreover, the sample sizes between some of the groups were uneven, rendering statistical 

analysis difficult. For example, when analysing how IM composition changes with age, the 

“early adult” group comprised only three out of the 40 participants, which affected the number 

of differentially abundant microbes identified by ANCOM-BC. This can be seen by removing 

the “early adult” group, since the number of differentially abundant microbes decreased 

drastically. The “travel” and “malaria medication” groups also had uneven sample sizes, so it 

is expected that the statistical analyses pertaining to those groups are also somewhat inaccurate.  

The use of controls and the removal of contaminant reads in this study is in line with 

recommended best practices for microbial studies. While many research projects make use of 

controls, few actually remove the identified contamination prior to statistical analysis. The 

removal of controls based on the statistical probability of a read being a contaminant is strongly 

advised, as contamination is a big source of confoundment for microbial research 

investigations.  

In future, the evolution of the Ju|’hoansi IM during transition from a traditional to a Western 

lifestyle will be documented. This is predicted to include a taxonomic shift in response to a 

shift in diet, as well as the disappearance of some microbes associated with traditional IMs, 

such as Treponema. The effect 1) the ages of research participants, 2) their former use of 

antibiotic treatment for tuberculosis, 3) their biological sex, 4) whether diarrhoea is or had been 

experienced following the consumption of certain foods, 5) whether participants have ever 

experienced an intestinal infection, 6) their former or current use of malaria medication, 7) their 

exposure to local, regional and international travel, and 8) the villages of primary residency of 

each research participant will continue to be studied and will hopefully elucidate the effect of 

Westernisation on IM composition in terms of the abovementioned factors.  
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SI Figure 1: A) Bacterial and B) fungal core IM size at various prevalence and detection thresholds. 

Thresholds were chosen such that they had the least effect on core size. Areas of the graph where the lines are 

parallel were thus considered. The bacterial core microbiome was therefore elucidated at 50% prevalence, and 

the fungal core microbiome at 60% prevalence. Both were elucidated at a detection threshold of 0.008%. 
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SI Figure 2: Bacterial NMDS plots showing β-diversity between subjects in relation to 1) the ages of research participants, 2) 

their former use of antibiotic treatment for tuberculosis, 3) their biological sex, 4) whether diarrhoea is or had been experienced 

following the consumption of certain foods, 5) whether participants have ever experienced an intestinal infection, 6) their former 

or current use of malaria medication, 7) their exposure to local, regional and international travel, and 8) the villages of primary 

residency of each research participant. 
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SI Figure 3: Fungal NMDS plots showing β-diversity between subjects in relation to 1) the ages of research participants, 2) 

their former use of antibiotic treatment for tuberculosis, 3) their biological sex, 4) whether diarrhoea is or had been 

experienced following the consumption of certain foods, 5) whether participants have ever experienced an intestinal infection, 

6) their former or current use of malaria medication, 7) their exposure to local, regional and international travel, and 8) the 

villages of primary residency of each research participant 
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SI Table 1: Metadata collected for this study. 
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SI Table 2: Clustering was performed on the fungal ITS reads at 90% and 98% similarity using open- or closed-reference 

clustering with QIIME’s vsearch plug-in. Open-reference clustering clusters reads against a reference database at a user-

defined similarity threshold. Reads that do not match are then clustered de novo. Closed-reference clustering clusters reads 

against a user-defined similarity threshold. Reads that do not match are then discarded. Taxonomic classification was compared 

across clustering groups. 98% closed-reference clustering allowed the identification of the most reads. 

 

SI Table 3.1: The Ju|’hoansi IM comprised 13 identified bacterial phyla, of which Firmicutes and 

Bacteroidota represent the majority. 

 

 

Phylum Relative Abundance

Firmicutes 26.62028

Bacteroidota 8.45785

Proteobacteria 3.16558

Spirochaetota 0.28313

Actinobacteriota 0.24214

Desulfobacterota 0.0836

Elusimicrobiota 0.05528

Verrucomicrobiota 0.04495

Fusobacteriota 0.0144

WPS-2 0.01042

Campilobacterota 0.0099

Cyanobacteria 0.00683

Synergistota 0.00563
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SI Table 3.2: The Ju|’hoansi IM harboured 18 bacterial classes.  

 

 

 

Class Relative Abundance

Clostridia 23.14241

Bacteroidia 8.45785

Gammaproteobacteria 2.89622

Bacilli 2.16553

Negativicutes 1.31234

Spirochaetia 0.28313

Alphaproteobacteria 0.26937

Actinobacteria 0.15465

Coriobacteriia 0.0875

Desulfovibrionia 0.0836

Elusimicrobia 0.05528

Lentisphaeria 0.03668

Fusobacteriia 0.0144

WPS-2 0.01042

Campylobacteria 0.0099

Verrucomicrobiae 0.00827

Vampirivibrionia 0.00683

Synergistia 0.00563
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SI Table 3.3: Thirty-seven bacterial orders were classified in the 

Ju|’hoansi IM. 

Order Relative Abundance

Lachnospirales 11.2506

Bacteroidales 8.45785

Oscillospirales 7.88274

Aeromonadales 2.78278

Christensenellales 1.5066

Lactobacillales 1.24688

Clostridiales 1.05027

Acidaminococcales 1.022

Erysipelotrichales 0.86541

Peptostreptococcales-Tissierellales 0.71767

Clostridia_vadinBB60_group 0.41722

Veillonellales-Selenomonadales 0.29034

Spirochaetales 0.28313

Rhizobiales 0.25115

Clostridia_UCG-014 0.2057

Micrococcales 0.15465

Coriobacteriales 0.0875

Desulfovibrionales 0.0836

Monoglobales 0.07082

Burkholderiales 0.06133

Elusimicrobiales 0.05528

Enterobacterales 0.05211

Peptococcales 0.04079

Oligosphaerales 0.02538

Izemoplasmatales 0.02038

Rhodospirillales 0.01822

RF39 0.01587

Staphylococcales 0.01462

Fusobacteriales 0.0144

Victivallales 0.0113

WPS-2 0.01042

Campylobacterales 0.0099

Gastranaerophilales 0.00683

Opitutales 0.00577

Synergistales 0.00563

Verrucomicrobiales 0.00249

Acholeplasmatales 0.00236
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SI Table 3.4: The Ju|’hoansi IM harboured 61 bacterial families. 

Family Relative Abundance

Lachnospiraceae 11.2506

Prevotellaceae 7.09186

Ruminococcaceae 4.47111

Succinivibrionaceae 2.78278

Oscillospiraceae 2.48284

Christensenellaceae 1.5066

Streptococcaceae 1.14909

Clostridiaceae 1.05027

Acidaminococcaceae 1.022

Erysipelotrichaceae 0.64852

Peptostreptococcaceae 0.58953

Bacteroidaceae 0.54071

[Eubacterium]_coprostanoligenes_group 0.52825

Clostridia_vadinBB60_group 0.41722

Rikenellaceae 0.38075

Spirochaetaceae 0.28313

UCG-010 0.26985

Muribaculaceae 0.25487

Xanthobacteraceae 0.25115

Selenomonadaceae 0.2328

Erysipelatoclostridiaceae 0.21689

Clostridia_UCG-014 0.2057

Micrococcaceae 0.15465

Butyricicoccaceae 0.13069

Anaerovoracaceae 0.1269

p-2534-18B5_gut_group 0.12239

Desulfovibrionaceae 0.0836

Monoglobaceae 0.07082

Lactobacillaceae 0.06534

Veillonellaceae 0.05755

Elusimicrobiaceae 0.05528

Enterobacteriaceae 0.05211

Coriobacteriaceae 0.05093

Peptococcaceae 0.04079

Sutterellaceae 0.03602

Porphyromonadaceae 0.03036

Eggerthellaceae 0.0276

Oligosphaeraceae 0.02538

Neisseriaceae 0.02531

Carnobacteriaceae 0.02237

Izemoplasmatales 0.02038

uncultured 0.01986

Tannerellaceae 0.01965

RF39 0.01587

Gemellaceae 0.01462

Fusobacteriaceae 0.0144

vadinBE97 0.0113

WPS-2 0.01042

Enterococcaceae 0.01008

Campylobacteraceae 0.0099

Marinifilaceae 0.00753

Gastranaerophilales 0.00683

Atopobiaceae 0.00614

Puniceicoccaceae 0.00577

Synergistaceae 0.00563

Barnesiellaceae 0.00525

Bacteroidales_RF16_group 0.00285

Coriobacteriales_Incertae_Sedis 0.00283

Akkermansiaceae 0.00249

Acholeplasmataceae 0.00236

Peptostreptococcales-Tissierellales 0.00124
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SI Table 3.5: The Ju|’hoansi IM contained 131 bacterial genera. 

Genus Relative Abundance Genus cont. Relative Abundance cont.

Prevotella 6.61396 CAG-873 0.05912

Blautia 3.46243 Elusimicrobium 0.05528

Faecalibacterium 2.05266 Veillonella 0.05485

Succinivibrio 1.75435 Escherichia-Shigella 0.05211

Christensenellaceae_R-7_group 1.5066 Collinsella 0.05093

UCG-002 1.24138 Lachnospiraceae_UCG-010 0.04523

Streptococcus 1.14909 Paeniclostridium 0.04471

Ruminobacter 1.02844 Colidextribacter 0.04369

Phascolarctobacterium 1.022 [Eubacterium]_ruminantium_group 0.04204

[Ruminococcus]_torques_group 1.01007 Sutterella 0.03602

Clostridium_sensu_stricto_1 0.84804 Prevotellaceae_UCG-003 0.03512

Ruminococcus 0.7926 Candidatus_Soleaferrea 0.03433

Lachnospiraceae_NK4A136_group 0.78222 [Eubacterium]_xylanophilum_group 0.03234

Agathobacter 0.75194 Lachnospiraceae_FCS020_group 0.03079

UCG-005 0.6757 Prevotellaceae_NK3B31_group 0.03076

Coprococcus 0.63911 Lachnospiraceae_NK4B4_group 0.03047

Bacteroides 0.54071 Porphyromonas 0.03036

[Eubacterium]_coprostanoligenes_group 0.52825 Peptococcus 0.02938

Romboutsia 0.5018 Ruminococcaceae 0.02605

uncultured 0.49498 Z20 0.02538

Dorea 0.4645 Neisseria 0.02531

Roseburia 0.4402 Faecalitalea 0.02441

Clostridia_vadinBB60_group 0.41722 Granulicatella 0.02237

[Eubacterium]_hallii_group 0.39507 Fournierella 0.02209

Rikenellaceae_RC9_gut_group 0.37034 Intestinibacter 0.02149

Marvinbryantia 0.3509 Incertae_Sedis 0.02131

Holdemanella 0.35047 Erysipelotrichaceae_UCG-003 0.02117

Fusicatenibacter 0.3211 Hungatella 0.02096

Subdoligranulum 0.30717 Izemoplasmatales 0.02038

Treponema 0.28313 Parabacteroides 0.01965

Alloprevotella 0.27727 Terrisporobacter 0.01895

NK4A214_group 0.27432 Lachnospiraceae_AC2044_group 0.01776

UCG-010 0.26985 Lachnospira 0.01768

CAG-56 0.23935 Lachnospiraceae_NK3A20_group 0.01602

Anaerovibrio 0.2328 RF39 0.01587

Lachnospiraceae_ND3007_group 0.20922 Paraprevotella 0.01498

Clostridia_UCG-014 0.2057 Gemella 0.01462

Muribaculaceae 0.19576 Senegalimassilia 0.01449

Catenibacterium 0.19478 Fusobacterium 0.0144

Sarcina 0.18876 Clostridium_sensu_stricto_6 0.01347

Butyrivibrio 0.17334 [Eubacterium]_ventriosum_group 0.01296

Anaerostipes 0.16943 Family_XIII_UCG-001 0.01289

Turicibacter 0.16027 Mogibacterium 0.01256

CAG-352 0.15552 vadinBE97 0.0113

Rothia 0.15465 WPS-2 0.01042

Negativibacillus 0.14 Alistipes 0.01041

[Ruminococcus]_gauvreauii_group 0.13336 Enterococcus 0.01008

UCG-003 0.13183 Campylobacter 0.0099

p-2534-18B5_gut_group 0.12239 UBA1819 0.00769

Lachnospiraceae_UCG-007 0.12001 Odoribacter 0.00753

[Eubacterium]_siraeum_group 0.11442 Gastranaerophilales 0.00683

Lachnoclostridium 0.11128 Coriobacteriaceae_UCG-003 0.00614

[Ruminococcus]_gnavus_group 0.10992 Cerasicoccus 0.00577

Oribacterium 0.10037 Cloacibacillus 0.00563

Family_XIII_AD3011_group 0.09794 Enterorhabdus 0.00529

Butyricicoccus 0.08459 Barnesiella 0.00525

Desulfovibrio 0.07337 [Eubacterium]_nodatum_group 0.00352

Monoglobus 0.07082 [Eubacterium]_eligens_group 0.00311

Tyzzerella 0.06993 Bacteroidales_RF16_group 0.00285

Prevotellaceae_UCG-001 0.06716 Eisenbergiella 0.00261

Solobacterium 0.06543 Peptostreptococcus 0.00258

Lactobacillus 0.06534 Akkermansia 0.00249

Bradyrhizobium 0.06009 Anaeroplasma 0.00236

Slackia 0.00181

Dialister 0.00135

Allisonella 0.00134

Finegoldia 0.00124

UCG-004 0.00093
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SI Table 3.6: Seventy-seven bacterial species were present in the 

Ju|’hoansi IM. 

Species Relative Abundance Species cont. Relative Abundance cont.

uncultured_bacterium 4.31731 Bacteroides_plebeius 0.03309

gut_metagenome 2.22252 uncultured_Blautia 0.03297

uncultured_organism 1.5766 uncultured_Roseburia 0.03291

metagenome 1.44977 Bacteroides_intestinalis 0.03223

Prevotella_copri 0.70065 uncultured_Eubacterium 0.03076

Streptococcus_salivarius 0.61974 Ruminococcus_flavefaciens 0.03027

human_gut 0.42827 Lactobacillus_ruminis 0.03014

Prevotellaceae_bacterium 0.35476 Bacteroides_massiliensis 0.02767

Prevotella_melaninogenica 0.32349 Roseburia_sp. 0.02393

uncultured_rumen 0.28455 Prevotella_histicola 0.02371

uncultured_spirochete 0.25562 Roseburia_hominis 0.02351

Ruminococcus_champanellensis 0.19577 bacterium_YE57 0.02292

uncultured_Porphyromonadaceae 0.18417 Bacteroides_dorei 0.02077

uncultured_Ruminococcaceae 0.15067 uncultured_Faecalibacterium 0.01826

Dorea_formicigenerans 0.14641 Eubacterium_coprostanoligenes 0.01558

Treponema_succinifaciens 0.13291 Bacteroides_uniformis 0.01525

Butyrivibrio_crossotus 0.1236 Fusobacterium_mortiferum 0.0144

uncultured_prokaryote 0.12013 Bacteroides_thetaiotaomicron 0.01398

uncultured_Wautersiella 0.10746 Clostridium_bornimense 0.01347

[Eubacterium]_siraeum 0.10345 unidentified 0.01207

Bacteroides_vulgatus 0.09648 uncultured_Desulfovibrionaceae 0.01023

Prevotella_stercorea 0.08877 Campylobacter_upsaliensis 0.0099

Desulfovibrio_piger 0.07337 Ruminococcus_sp. 0.00896

uncultured_Lachnospiraceae 0.07294 Catenibacterium_mitsuokai 0.00592

Ruminococcus_bicirculans 0.07209 bacterium_enrichment 0.00556

Ruminococcus_torques 0.07159 Odoribacter_splanchnicus 0.00487

Bacteroides_ovatus 0.0698 Treponema_berlinense 0.00383

Ruminococcus_lactaris 0.06721 Bacteroides_cellulosilyticus 0.00375

Bacteroidaceae_bacterium 0.06402 Eubacterium_sulci 0.00352

Coprococcus_eutactus 0.05808 uncultured_Clostridiales 0.00327

Massiliprevotella_massiliensis 0.05613 Parabacteroides_merdae 0.00314

Clostridium_perfringens 0.05582 uncultured_Ruminococcus 0.00269

Bacteroides_sp. 0.0557 Akkermansia_muciniphila 0.00249

Ruminococcus_callidus 0.05384 Slackia_isoflavoniconvertens 0.00181

Bacteroides_fragilis 0.04495 Sutterella_wadsworthensis 0.00154

uncultured_Clostridium 0.04319 Alistipes_shahii 0.00076

uncultured_Clostridia 0.03858 uncultured_marine 0.00052

Eubacterium_ramulus 0.03639 uncultured_beta 0.00029

Lactobacillus_mucosae 0.03521 Parabacteroides_distasonis 0.00025
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SI Table 4.1: Four fungal phyla inhabited the Ju|’hoansi IM. 

SI Table 4.2: Twelve fungal classes were identified in the Ju|’hoansi 

IM. 

Phylum Relative Abundance

Ascomycota 20.28184

Basidiomycota 18.70786

Chytridiomycota 0.0074

Mucoromycota 0.00058

Class Relative Abundance

Malasseziomycetes 9.52235

Saccharomycetes 9.01533

Dothideomycetes 6.53822

Tremellomycetes 4.83069

Agaricomycetes 3.88144

Eurotiomycetes 2.31786

Sordariomycetes 2.24014

Pezizomycetes 0.16889

Agaricostilbomycetes 0.01571

unidentified 0.00493

Cystobasidiomycetes 0.00088

Mucoromycetes 0.00058
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SI Table 4.3: There were 26 fungal orders in the Ju|’hoansi IM. 

Order Relative Abundance

Malasseziales 9.52235

Saccharomycetales 9.01533

Filobasidiales 4.28792

Pleosporales 3.66531

Capnodiales 2.81038

Eurotiales 2.24091

Agaricales 2.11903

Hypocreales 1.48718

Russulales 0.79681

Polyporales 0.55373

Tremellales 0.54277

Xylariales 0.30466

Cantharellales 0.27254

Microascales 0.17029

Pezizales 0.16889

Diaporthales 0.14991

Hymenochaetales 0.13582

Chaetothyriales 0.07694

Sordariales 0.0602

Dothideales 0.05792

Agaricostilbales 0.01571

unidentified 0.00493

Trechisporales 0.00351

Cystobasidiomycetes_ord_Incertae_sedis 0.00088

Mucorales 0.00058

Botryosphaeriales 0.00035
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SI Table 4.4: There were 63 fungal families in the Ju|’hoansi IM. 

Family Relative Abundance Family cont. Relative Abundance cont.

Malasseziaceae 9.52235 Didymosphaeriaceae 0.03365

Saccharomycetales_fam_Incertae_sedis 7.14983 Zopfiaceae 0.02935

Filobasidiaceae 4.28792 Dipodascaceae 0.02717

Cladosporiaceae 2.81038 Chaetomiaceae 0.02605

Didymellaceae 2.64559 Lasiosphaeriaceae 0.01738

Aspergillaceae 2.12285 Sordariaceae 0.01677

Tricholomataceae 2.10318 Massarinaceae 0.01622

Saccharomycetaceae 1.63478 Bionectriaceae 0.01613

Nectriaceae 1.45071 Agaricostilbaceae 0.01571

Stereaceae 0.79681 Pleosporales_fam_Incertae_sedis 0.01453

Bulleribasidiaceae 0.43965 Cordycipitaceae 0.01429

Sporormiaceae 0.39553 Trichomeriaceae 0.00698

Fomitopsidaceae 0.31471 Halosphaeriaceae 0.00569

Pleosporaceae 0.28202 Pichiaceae 0.00527

Botryobasidiaceae 0.27254 Psathyrellaceae 0.00497

Xylariaceae 0.26484 unidentified 0.00493

Phaeosphaeriaceae 0.18516 Hypocreaceae 0.00475

Pyronemataceae 0.16889 Dothideales_fam_Incertae_sedis 0.00401

Microascaceae 0.1646 Fistulinaceae 0.00394

Valsaceae 0.14991 Schizophyllaceae 0.00393

Schizoporaceae 0.1349 Hydnodontaceae 0.00351

Debaryomycetaceae 0.12529 Strophariaceae 0.00301

Trichocomaceae 0.11806 Periconiaceae 0.0021

Meruliaceae 0.10409 Irpicaceae 0.00201

Polyporaceae 0.08001 Stachybotryaceae 0.00129

Phaffomycetaceae 0.07265 Hymenochaetales_fam_Incertae_sedis 0.00092

Herpotrichiellaceae 0.06996 Symmetrosporaceae 0.00088

Trimorphomycetaceae 0.06341 Microdochiaceae 0.00084

Phanerochaetaceae 0.05291 Rhizopodaceae 0.00058

Aureobasidiaceae 0.04384 Botryosphaeriaceae 0.00035

Sporocadaceae 0.03844 Metschnikowiaceae 0.00035

Xylariales_fam_Incertae_sedis 1.00E-04
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SI Table 4.5: Eighty-one fungal genera inhabited the Ju|’hoansi IM. 

Genus Relative Abundance Genus cont. Relative Abundance cont.

Malassezia 7.45879 Chaetomium 0.02605

Candida 7.14983 Sclerostagonospora 0.02452

Naganishia 4.28792 Exserohilum 0.02282

Cladosporium 2.81038 Preussia 0.01917

unidentified 2.06849 Wojnowiciella 0.01768

Panellus 1.66334 Stagonospora 0.01622

Issatchenkia 1.33052 Clonostachys 0.01613

Aspergillus 1.24564 Sterigmatomyces 0.01571

Fusarium 1.16107 Triangularia 0.01483

Penicillium 0.87721 Leptobacillium 0.01229

Stereum 0.79681 Veronaea 0.01046

Mycena 0.43984 Pseudorobillarda 0.00972

Vishniacozyma 0.43965 Cumuliphoma 0.00722

Westerdykella 0.37636 Knufia 0.00698

Neoascochyta 0.36568 Alternaria 0.0068

Amyloporia 0.31471 Cirrenalia 0.00569

Saccharomyces 0.30425 Pichia 0.00527

Botryobasidium 0.27254 Gibberella 0.00511

Curvularia 0.25241 Coprinellus 0.00497

Epicoccum 0.24503 Pleiochaeta 0.00482

Hypoxylon 0.18694 Trichoderma 0.00475

Lasiobolidium 0.16889 Hortaea 0.00401

Petriellopsis 0.1646 Neurospora 0.00396

Cryptosphaeria 0.14991 Porodisculus 0.00394

Didymella 0.14978 Schizophyllum 0.00393

Phaeosphaeria 0.13703 Subulicystidium 0.00351

Hyphodontia 0.1349 Hypholoma 0.00301

Meyerozyma 0.12529 Phlebia 0.00264

Talaromyces 0.11806 Podospora 0.00256

Mycoacia 0.10144 Periconia 0.0021

Trametes 0.08001 Irpex 0.00201

Cyberlindnera 0.07265 Lecanicillium 0.00201

Hypocopra 0.06386 Dipodascus 0.00146

Saitozyma 0.06341 Striaticonidium 0.00129

Exophiala 0.0595 Trichaptum 0.00092

Phanerochaete 0.05291 Symmetrospora 0.00088

Hymenopleella 0.03844 Idriella 0.00084

Paraconiothyrium 0.03365 Rhizopus 0.00058

Didymocrea 0.02935 Macrophomina 0.00035

Aureobasidium 0.02661 Kodamaea 0.00035
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SI Table 4.6: There were 87 fungal species residing in the Ju|’hoansi 

IM. 

Species Relative Abundance Species cont. Relative Abundance cont.

Malassezia_restricta 7.45025 Sterigmatomyces_halophilus 0.01571

Candida_albicans 6.83224 Westerdykella_nigra 0.01537

Cladosporium_delicatulum 2.56632 Triangularia_mangenotii 0.01483

unidentified 2.14754 Aspergillus_penicillioides 0.01446

Panellus_serotinus 1.66334 Westerdykella_ornata 0.01303

Issatchenkia_orientalis 1.33052 Leptobacillium_leptobactrum 0.01229

Penicillium_penicillioides 0.74403 Veronaea_compacta 0.01046

Fusarium_oxysporum 0.67325 Pseudorobillarda_phragmitis 0.00972

Mycena_renati 0.43984 Phaeosphaeria_caricis 0.00939

Vishniacozyma_globispora 0.43965 Fusarium_delphinoides 0.00786

Westerdykella_centenaria 0.34758 Malassezia_globosa 0.00749

Aspergillus_conicus 0.32281 Cumuliphoma_indica 0.00722

Candida_tropicalis 0.31759 Alternaria_tenuissima 0.0068

Amyloporia_sinuosa 0.31471 Epicoccum_dendrobii 0.00564

Saccharomyces_cerevisiae 0.30411 Pichia_mandshurica 0.00527

Botryobasidium_candicans 0.27254 Gibberella_intricans 0.00511

Curvularia_hawaiiensis 0.25241 Coprinellus_curtus 0.00497

Cladosporium_langeronii 0.24143 Pleiochaeta_carotae 0.00482

Lasiobolidium_orbiculoides 0.16889 Hortaea_werneckii 0.00401

Petriellopsis_africana 0.1646 Porodisculus_pendulus 0.00394

Cryptosphaeria_subcutanea 0.14991 Schizophyllum_commune 0.00393

Hyphodontia_pallidula 0.1349 Aspergillus_wentii 0.00337

Penicillium_bialowiezense 0.13253 Hypholoma_fasciculare 0.00301

Meyerozyma_guilliermondii 0.12529 Preussia_terricola 0.00299

Hypoxylon_griseobrunneum 0.11033 Phlebia_acerina 0.00264

Mycoacia_fuscoatra 0.10144 Podospora_prethopodalis 0.00256

Hypoxylon_macrocarpum 0.07661 Irpex_lacteus 0.00201

Trametes_versicolor 0.07534 Dipodascus_geotrichum 0.00146

Cyberlindnera_fabianii 0.07265 Striaticonidium_synnematum 0.00116

Fusarium_brachygibbosum 0.06401 Malassezia_arunalokei 0.00105

Hypocopra_rostrata 0.06386 Trichaptum_biforme 0.00092

Saitozyma_paraflava 0.06341 Symmetrospora_vermiculata 0.00088

Phanerochaete_stereoides 0.05291 Periconia_neobrittanica 0.00083

Epicoccum_thailandicum 0.05226 Aspergillus_lanosus 0.00075

Hymenopleella_subcylindrica 0.03785 Penicillium_kongii 0.00065

Paraconiothyrium_archidendri 0.03365 Periconia_macrospinosa 0.00063

Didymocrea_sadasivanii 0.02935 Hymenopleella_austroafricana 0.00059

Aureobasidium_namibiae 0.02661 Westerdykella_cylindrica 0.00038

Chaetomium_atrobrunneum 0.02605 Macrophomina_phaseolina 0.00035

Aspergillus_flavus 0.0247 Kodamaea_ohmeri 0.00035

Sclerostagonospora_rosae 0.02452 Rhizopus_caespitosus 0.00029

Exserohilum_gedarefense 0.02282 Rhizopus_microsporus 0.00029

Stagonospora_pseudovitensis 0.01622 Neoidriella_desertorum 1.00E-04

Clonostachys_miodochialis 0.01613
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Early adult Late adolescent Late adult

Late adolescent 0.6881

Late adult 0.9415 0.4177

Middle adult 0.3752 0.6901 0.7178

SI Figure 5.2: Dunn’s tests for bacterial α-diversity shows no significant differences between subjects of different ages. Benjamini 

Hochberg corrected p-values < 0.05 were considered significant. 

p-value

Antibiotics 0.8797

Biological sex 0.6652

Diarrhoea 0.2502

Intestinal Infection 0.475

SI Figure 5.1: Kruskal Wallis tests for bacterial α-diversity shows no significant differences between subjects who have and have not 

used antibiotics, biological sex, subjects who do and do not experience diarrhoea, and those who do and do not experience intestinal 

infections 

!Om!o Den/ui Duinpos

Den/ui 1

Duinpos 0.4771 1

Mountain Pos 1 1 0.8185

Figure 5.3: Dunn’s tests for bacterial α-diversity shows no significant differences between subjects from different villages 

of primary residence. Benjamini Hochberg corrected p-values < 0.05 were considered significant. 

p-value

Antibiotics 0.4792

Biological sex 0.2672

Diarrhoea 0.6678

Intestinal Infection 0.1246

Figure 6.1: Kruskal Wallis tests for fungal α-diversity shows no significant differences between subjects who have and have not used 

antibiotics, biological sex, subjects who do and do not experience diarrhoea, and those who do and do not experience intestinal 

infections 

Early adult Late adolescent Late adult

Late adolescent 0.9157

Late adult 0.8742 0.3629

Middle adult 0.9221 0.6435 0.8283

Figure 6.2: Dunn’s tests for fungal α-diversity shows no significant differences between subjects of different ages. Benjamini 

Hochberg corrected p-values < 0.05 were considered significant. 

!Om!o Den/ui Duinpos

Den/ui 1

Duinpos 1 0.488

Mountain Pos 0.87 1 1

Figure 6.3: Dunn’s tests for bacterial α-diversity shows no significant differences between subjects from different villages 

of primary residence. Benjamini Hochberg corrected p-values < 0.05 were considered significant 
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SI Table 7.1: Weighted UniFrac PERMANOVA results regarding differences in bacterial community structure in relation to 1) the ages 

of research participants, 2) their former use of antibiotic treatment for tuberculosis, 3) their biological sex, 4) whether diarrhoea is or 

had been experienced following the consumption of certain foods, 5) whether participants have ever experienced an intestinal infection, 

6) their former or current use of malaria medication, 7) their exposure to local, regional and international travel, and 8) the villages of 

primary residency of each research participant 

 

 

SI Table 7.2: Jensen-Shannon PERMANOVA results regarding differences in bacterial community structure in relation to 1) the ages of 

research participants, 2) their former use of antibiotic treatment for tuberculosis, 3) their biological sex, 4) whether diarrhoea is or had 

been experienced following the consumption of certain foods, 5) whether participants have ever experienced an intestinal infection, 6) 

their former or current use of malaria medication, 7) their exposure to local, regional and international travel, and 8) the villages of 

primary residency of each research participant 
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SI Table 8.1: Bray-Curtis PERMANOVA results regarding differences in fungal community structure in relation to 1) the ages of research 

participants, 2) their former use of antibiotic treatment for tuberculosis, 3) their biological sex, 4) whether diarrhoea is or had been 

experienced following the consumption of certain foods, 5) whether participants have ever experienced an intestinal infection, 6) their 

former or current use of malaria medication, 7) their exposure to local, regional and international travel, and 8) the villages of primary 

residency of each research participant 

 

SI Table 6.1:  Bray-Curtis PERMANOVA results regarding differences in fungal 

community structure with respect to 1) age, 2) antibiotic treatment for 

tuberculosis, 3) biological sex, 4) whether diarrhoea was experienced from certain 

foods, 5) whether the subject has ever experienced an intestinal infection, 6) the 

use of malaria medication, 7) travel, and 8) the village of primary residence 

 

 

SI Table 8.2: Jensen-Shannon PERMANOVA results regarding differences in fungal community structure in relation to 1) the ages of 

research participants, 2) their former use of antibiotic treatment for tuberculosis, 3) their biological sex, 4) whether diarrhoea is or had 

been experienced following the consumption of certain foods, 5) whether participants have ever experienced an intestinal infection, 6) 

their former or current use of malaria medication, 7) their exposure to local, regional and international travel, and 8) the villages of 

primary residency of each research participant 

 

SI Table 1.1: Differentially abundant bacterial genera between subjects of 

different agesSI Table 6.2: Jensen-Shannon PERMANOVA results regarding 

differences in fungal community structure with respect to 1) age, 2) antibiotic 

treatment for tuberculosis, 3) biological sex, 4) whether diarrhoea was 

experienced from certain foods, 5) whether the subject has ever experienced an 

intestinal infection, 6) the use of malaria medication, 7) travel, and 8) the village 

of primary residence 
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SI Table 9.1: Differentially abundant bacterial genera between subjects who have 

and have not used antibiotics. 

SI Table 9.2: Only one bacterial genus was differentially abundant between subjects 

who have and have not experienced intestinal infection. 

SI Table 9.3: Differentially abundant bacterial genera between subjects from 

different villages 

 

Genus q-value

Butyrivibrio q = 0.00043

Escherichia-Shigella q = 0.01566

Izemoplasmatales q = 0.042

Lachnospiraceae_UCG-010 q = 0.04281

Treponema q = 1e-05

Genus q-value

Alloprevotella q = 0.01898

Genus q_value

[Eubacterium]_ruminantium_group q = 0.00095

Alistipes q = 0.01204

Anaerostipes q = 0.00088

Barnesiella q = 0.00691

Butyrivibrio q = 0.00012

CAG-352 q = 0.00263

Collinsella q = 0.04686

Desulfovibrio q = 0.00012

Family_XIII_UCG-001 q = 0.00689

Intestinibacter q = 0.00746

Izemoplasmatales q = 0.00249

Lachnospira q = 0.00088

Lachnospiraceae_NK4A136_group q = 0.03858

Lachnospiraceae_NK4B4_group q = 0.04686

Lachnospiraceae_UCG-010 q = 0.01469

Marvinbryantia q = 0.00082

Monoglobus q = 0.00077

Negativibacillus q = 0.00681

Odoribacter q = 0.03817

Paraprevotella q = 0.00691

Peptococcus q = 0.03119

Ruminococcus q = 0.00142

Treponema q = 0

UCG-004 q = 0.04623

Z20 q = 0.03119
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SI Table 10.1: Differentially abundant fungal genera between male and female 

subjects. 

SI Table 10.2: Only one fungal genus was differentially abundant between subjects 

who have and have not experienced intestinal infections. 

SI Table 10.3: Differentially abundant fungal genera between subjects from 

different villages. 

 

SI Table 11: Primers used for the amplification of V3-V4 16S rRNA and ITS1 and 2. 

 

Genus q_value

Aureobasidium q = 0.0383

Westerdykella q = 0.0045

Genus q_val

Aureobasidium q = 2e-05

Genus q_value

Aspergillus q = 0.02816

Candida q = 0.00173

Mycoacia q = 0

Panellus q = 0.00034

Porodisculus q = 0.02816

Saccharomyces q = 0.00018

Schizophyllum q = 0.02816

Stagonospora q = 0

Region amplified Primer name Primer sequence

V1-V3 (16S rRNA) 337F 5-GACTCCTACGGGAGGCWGCAG-3

V1-V3 (16S rRNA) 805R 5-GACTACHVGGGTATCTAATCC-3

ITS1-F (ITS) 5-CTTGGTCATTTAGAGGAAGTAA-3

ITS4 (ITS) 5-TCCTCCGCTTATTGATATGC-3
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Supplementary R-code 

library(tidyverse) 

library(microbiome) 

library(phyloseq) 

library(decontam) 

library(tibble) 

library(metagMisc) 

library(dplyr) 

library(plotrix) 

library(ggplot2) 

library(RColorBrewer) 

library(ggpubr) 

library(reshape2) 

library(ggpubr) 

library(mctoolsr) 

library(gridExtra) 

library(grid) 

library(ANCOMBC) 

library(vegan) 

library(patchwork) 

library(agricolae) 

library(FSA) 

library(rcompanion) 

Reading in 16S data (using unfiltered feature table) 

#create phyloseq object from unfiltered feature table  

setwd("<path/to/wd") 

biom_path_alpha <- file.path("<file-name> ")  

tree_path <- file.path("<file-name>”) 

map_path <- file.path("<file-name>") 

tree <- read_tree(tree_path) 

table <- import_biom(BIOMfilename = biom_path_alpha,parallel = T) 

sample_map <- import_qiime_sample_data(map_path) 

pseq.unfiltered <- merge_phyloseq(table,sample_map,tree) 

colnames(tax_table(pseq.unfiltered)) <- c("Domain", "Phylum", "Class", "Order", "Family",  "Genus","Species") 

 

#change metadata fields to factors 

pseq.unfiltered@sam_data$Sampleid <- as.factor(pseq.unfiltered@sam_data$Sampleid) 

pseq.unfiltered@sam_data$Village<- as.factor(pseq.unfiltered@sam_data$Village) 

pseq.unfiltered@sam_data$Sex<- as.factor(pseq.unfiltered@sam_data$Sex) 

pseq.unfiltered@sam_data$Travel<- as.factor (pseq.unfiltered@sam_data$Travel) 

pseq.unfiltered@sam_data$Diarrhoea <- as.factor (pseq.unfiltered@sam_data$Diarrhoea) 

pseq.unfiltered@sam_data$Intestinal.Infections<- as.factor(pseq.unfiltered@sam_data$Intestinal.Infections) 

pseq.unfiltered@sam_data$Malaria<- as.factor(pseq.unfiltered@sam_data$Malaria) 

pseq.unfiltered@sam_data$Malaria.Medication<- as.factor (pseq.unfiltered@sam_data$Malaria.Medication) 

pseq.unfiltered@sam_data$TB<- as.factor(pseq.unfiltered@sam_data$TB) 

pseq.unfiltered@sam_data$Antibiotics<- as.factor(pseq.unfiltered@sam_data$Antibiotics) 

pseq.unfiltered@sam_data$Age <- as.factor(pseq.unfiltered@sam_data$Age) 

pseq.unfiltered@sam_data$Sample_or_Control <- as.factor(pseq.unfiltered@sam_data$Sample_or_Control) 

 

#inspect contaminant using prevalence (presence/absence) at p < 0.1 (default threshold) 

sample_data(pseq.unfiltered)$is.neg <- sample_data(pseq.unfiltered)$Sample_or_Control == "Control Sample" 

contamdf.prev <- isContaminant(pseq.unfiltered, method="prevalence", neg="is.neg") 

table(contamdf.prev$contaminant) #2 contaminants 
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#get list of contaminant names 

contamdf.prev <- rownames_to_column(contamdf.prev, var="Taxon") 

contam.df <- subset(contamdf.prev, contamdf.prev$contaminant =="TRUE") 

contam.list <- contam.df$Taxon 

 

#remove contaminant from pseq 

allTaxa = taxa_names(pseq.unfiltered) 

allTaxa <- allTaxa [!(allTaxa %in% contam.list)] 

pseq.unfiltered.clean = prune_taxa(allTaxa, pseq.unfiltered) 

 

Reading in 16S data (using filtered feature table) 

#create phyloseq object from feature table pre-filtered with QIIME to only include reads that appeared in more 

than two samples  

setwd("<path/to/wd>") 

biom_path <- file.path("<file-name>")  

tree_path <- file.path("<file-name>") 

map_path <- file.path("<file-name>") 

tree <- read_tree(tree_path) 

table <- import_biom(BIOMfilename = biom_path, 

                     parallel = T, taxa_are_rows=T) 

sample_map <- import_qiime_sample_data(map_path) 

pseq <- merge_phyloseq(table,sample_map,tree, taxa_are_rows=T) 

colnames(tax_table(pseq)) <- c("Domain", "Phylum", "Class", "Order", "Family",  "Genus","Species") 

 

#change metadata fields to factos 

pseq@sam_data$Sampleid <- as.factor(pseq@sam_data$Sampleid) 

pseq@sam_data$Village<- as.factor(pseq@sam_data$Village) 

pseq@sam_data$Sex<- as.factor(pseq@sam_data$Sex) 

pseq@sam_data$Travel<- as.factor (pseq@sam_data$Travel) 

pseq@sam_data$Diarrhoea <- as.factor (pseq@sam_data$Diarrhoea) 

pseq@sam_data$Intestinal.Infections<- as.factor(pseq@sam_data$Intestinal.Infections) 

pseq@sam_data$Malaria<- as.factor(pseq@sam_data$Malaria) 

pseq@sam_data$Malaria.Medication<- as.factor (pseq@sam_data$Malaria.Medication) 

pseq@sam_data$TB<- as.factor(pseq@sam_data$TB) 

pseq@sam_data$Antibiotics<- as.factor(pseq@sam_data$Antibiotics) 

pseq@sam_data$Age <- as.factor(pseq@sam_data$Age) 

pseq@sam_data$Sample_or_Control <- as.factor(pseq@sam_data$Sample_or_Control) 

 

#inspect contaminant using prevalence (presence/absence) at p < 0.1 (default threshold) 

sample_data(pseq)$is.neg <- sample_data(pseq)$Sample_or_Control == "Control Sample" 

contamdf.prev <- isContaminant(pseq, method="prevalence", neg="is.neg") 

table(contamdf.prev$contaminant) #3 contaminants 

 

#get list of contaminant names 

contamdf.prev <- rownames_to_column(contamdf.prev, var="Taxon") 

contam.df <- subset(contamdf.prev, contamdf.prev$contaminant =="TRUE") 

contam.list <- contam.df$Taxon 

 

#remove contaminant from pseq 

allTaxa = taxa_names(pseq) 

allTaxa <- allTaxa [!(allTaxa %in% contam.list)] 

pseq.clean = prune_taxa(allTaxa, pseq) 
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Read in ITS data 

#create phyloseq object using ITS feature table  

setwd("<path/to/wd>") 

biom_path <- file.path("<file-name>")   

map_path <- file.path("<file-name>") 

table <- import_biom(BIOMfilename = biom_path, 

                     parallel = T) 

sample_map <- import_qiime_sample_data(map_path) 

pseq <- merge_phyloseq(table,sample_map) 

colnames(tax_table(pseq)) <- c("Domain", "Phylum", "Class", "Order", "Family",  "Genus","Species") 

 

#change metadata fields to factos 

pseq@sam_data$Sampleid <- as.factor(pseq@sam_data$Sampleid) 

pseq@sam_data$Village<- as.factor(pseq@sam_data$Village) 

pseq@sam_data$Sex<- as.factor(pseq@sam_data$Sex) 

pseq@sam_data$Travel<- as.factor (pseq@sam_data$Travel) 

pseq@sam_data$Diarrhoea <- as.factor (pseq@sam_data$Diarrhoea) 

pseq@sam_data$Intestinal.Infections<- as.factor(pseq@sam_data$Intestinal.Infections) 

pseq@sam_data$Malaria<- as.factor(pseq@sam_data$Malaria) 

pseq@sam_data$Malaria.Medication<- as.factor (pseq@sam_data$Malaria.Medication) 

pseq@sam_data$TB<- as.factor(pseq@sam_data$TB) 

pseq@sam_data$Antibiotics<- as.factor(pseq@sam_data$Antibiotics) 

pseq@sam_data$Age <- as.factor(pseq@sam_data$Age) 

pseq@sam_data$Sample_or_Control <- as.factor(pseq@sam_data$Sample_or_Control) 

 

#ITS contamination 

#inspect contaminant using prevalence (presence/absence) at p < 0.1 (default threshold) 

sample_data(pseq)$is.neg <- sample_data(pseq)$Sample_or_Control == "Control Sample" 

contamdf.prev <- isContaminant(pseq, method="prevalence", neg="is.neg") 

table(contamdf.prev$contaminant) #4 contaminants 

 

#get list of contaminant names 

contamdf.prev <- rownames_to_column(contamdf.prev, var="Taxon") 

contam.df <- subset(contamdf.prev, contamdf.prev$contaminant =="TRUE") 

contam.list <- contam.df$Taxon 

 

#remove contaminant from pseq 

allTaxa = taxa_names(pseq) 

allTaxa <- allTaxa [!(allTaxa %in% contam.list)] 

pseq.clean = prune_taxa(allTaxa, pseq) 

 

#write decontaminated feature table to a tsv file for later use with FUNGuild  

otu <- as.data.frame(pseq.clean@otu_table) 

otu <- rownames_to_column(otu, var = "OTU ID") 

tax <- as.data.frame(pseq.clean@tax_table) 

tax <- rownames_to_column(tax, var="taxonomy") 

write_delim(otu, file ="<path>/decontam_feature_table_ITS.tsv", delim ="\t") 

write_delim(tax, file ="<path>/decontam_tax_ITS.tsv", delim ="\t") 

 

Function Round_df 

#round numeric dataframe columns to a specified number of digits 

round_df <- function(x, digits) { 

  # round all numeric variables 

  # x: data frame  
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  # digits: number of digits to round 

  numeric_columns <- sapply(x, mode) == 'numeric' 

  x[numeric_columns] <-  round(x[numeric_columns], digits) 

  x 

} 

16S Relative abundance  

#Get relative abundance 

pseq.rel<-microbiome::transform(pseq.clean,"compositional") 

 

#Turn tax and otu tables into dataframes and combine 

tax<- as.data.frame(pseq.rel@tax_table) 

tax<-rownames_to_column(tax,var = "Taxon") 

otu<-as.data.frame(pseq.rel@otu_table) 

otu<-rownames_to_column(otu,var = "Taxon") 

combined_table<-merge(x = tax, y = otu, by = "Taxon", all = TRUE) 

 

#Add total relative abundance column 

combined_table$RelAb <- rowSums( combined_table[,9:48] ) 

 

#Aggregate to see amount of taxa  

#run round-df first 

SI Table 3.1 

#phylum 

grouped_tbl_phylum <- aggregate (RelAb ~Phylum, combined_table, sum) 

grouped_tbl_phylum<- grouped_tbl_phylum[order(-grouped_tbl_phylum$RelAb),] 

grouped_tbl_phylum$rank <- 1:13 

grouped_tbl_phylum$Phylum <- gsub("p__","",grouped_tbl_phylum$Phylum) 

grouped_tbl_phylum$RelAb<-round_df(grouped_tbl_phylum$RelAb,5) 

write.csv(grouped_tbl_phylum,file="<file/path>/phylum_list.csv") 

#get FB ratio 

fb_ratio <- 26.620283064/8.457853914 

fb_ratio #3.117 

 

SI Table 3.2 

#class 

grouped_tbl_class <- aggregate (RelAb ~Class, combined_table, sum) 

grouped_tbl_class<- grouped_tbl_class[order(-grouped_tbl_class$RelAb),] 

grouped_tbl_class$rank <- 1:18 

grouped_tbl_class$Class<-gsub("c__","",grouped_tbl_class$Class) 

grouped_tbl_class$RelAb<-round_df(grouped_tbl_class$RelAb,5) 

write.csv(grouped_tbl_class,file="<file/path>/class_list.csv") 

 

SI Table 3.3 

#order 

grouped_tbl_order <- aggregate (RelAb ~Order, combined_table, sum) 

grouped_tbl_order<- grouped_tbl_order[order(-grouped_tbl_order$RelAb),] 

grouped_tbl_order$rank <- 1:37 

grouped_tbl_order$Order<- gsub("o__","",grouped_tbl_order$Order) 

grouped_tbl_order$RelAb<-round_df(grouped_tbl_order$RelAb,5) 

write.csv(grouped_tbl_order,file="<file/path>/order_list.csv") 

 

SI Table 3.4 

#family 

grouped_tbl_fam <- aggregate (RelAb ~Family, combined_table, sum) 

grouped_tbl_fam<- grouped_tbl_fam[fam(-grouped_tbl_fam$RelAb),] 
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grouped_tbl_fam$rank <- 1:61 

grouped_tbl_fam$Family<-gsub("f__","",grouped_tbl_fam$Family) 

grouped_tbl_fam$RelAb<--round_df(grouped_tbl_fam$RelAb,5) 

write.csv(grouped_tbl_fam,file="<file/path>/fam_list.csv") 

 

SI Table 3.5 

#genus 

grouped_tbl_genus <- aggregate(RelAb ~Genus, combined_table, sum) 

grouped_tbl_genus<- grouped_tbl_genus[order(-grouped_tbl_genus$RelAb),] 

grouped_tbl_genus$rank <- 1:131 

grouped_tbl_genus$Genus<-gsub("g__","",grouped_tbl_genus$Genus) 

grouped_tbl_genus$RelAb<-round_df(grouped_tbl_genus$RelAb,5) 

write.csv(grouped_tbl_genus,file="<file/path>/genus_list.csv") 

 

SI Table 3.6 

#species 

grouped_tbl_species <- aggregate (RelAb ~Species, combined_table, sum) 

grouped_tbl_species<- grouped_tbl_species[order(-grouped_tbl_species$RelAb),] 

grouped_tbl_species$rank <- 1:78 

grouped_tbl_species$Species<- gsub("s__","",grouped_tbl_species$Species) 

grouped_tbl_species$RelAb<-round_df(grouped_tbl_species$RelAb,5) 

write.csv(grouped_tbl_species,file="<file/path>/species_list.csv") 

 

#create relative abundance bargraphs per sample 

Figure 2A 

#raw unfiltered data use pseq.unfiltered---- 

#phylum-level - aggregate to phylum 

pseq.phylum.raw <- aggregate_taxa(pseq.unfiltered,"Phylum") 

pseq.phylum.rel.raw <- microbiome::transform(pseq.phylum.raw,"compositional") 

#remove unknown phyla 

pseq.phylum.rel.raw= subset_taxa(pseq.phylum.rel.raw, Phylum!="Unknown") 

 

dat.raw <- psmelt(pseq.phylum.rel.raw) 

dat.raw$Phylum <- gsub("p__","",dat.raw$Phylum) 

dat.raw$Phylum <- with(dat.raw, reorder(Phylum,-Abundance)) 

p1 <- ggplot(data=dat.raw, aes(x=Sample, y=Abundance, fill=Phylum)) 

p1<-p1 + geom_bar(aes(), stat="identity", position="stack") + 

  scale_fill_manual(values = c("darkblue", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", 

"lightskyblue", "darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4", 
"darksalmon", "darkblue"))+ 

  theme(legend.position="right")+  

  theme(legend.title = element_blank(),text = element_text(size=15,face="bold"),axis.text.x = 

element_text(angle=90, hjust=1,size=15,face="bold"),legend.text=element_text(size=20, face="italic"))+ 

  labs(y = "Relative Abundance (%)", x = "")+ 

  guides(fill=guide_legend(ncol=2)) 

p1 

 

Figure 2B 

#bar plot using filtered data, without contamination removal --> use pseq ---- 

#phylum-level - aggregate to phylum 

pseq.phylum.contaminated <- aggregate_taxa(pseq,"Phylum") 

pseq.phylum.rel.contaminated <- microbiome::transform(pseq.phylum.contaminated,"compositional") 

#remove unknown phyla 

pseq.phylum.rel.contaminated = subset_taxa(pseq.phylum.rel.contaminated, Phylum!="Unknown") 

dat.contaminated <- psmelt(pseq.phylum.rel.contaminated) 

dat.contaminated$Phylum <- gsub("p__","",dat.contaminated$Phylum) 
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dat.contaminated$Phylum <- with(dat.contaminated, reorder(Phylum,-Abundance)) 

 

p2 <- ggplot(data=dat.contaminated, aes(x=Sample, y=Abundance, fill=Phylum)) 

p2<-p2 + geom_bar(aes(), stat="identity", position="stack") + 

  scale_fill_manual(values = c("darkblue", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", 

"lightskyblue", "darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4", 

"darksalmon", "darkblue"))+ 

  theme(legend.position="none") +  

  theme(text = element_text(size=15,face="bold"),axis.text.x = element_text(angle=90, 

hjust=1,size=15,face="bold"),legend.text=element_text(size=20, face="italic"))+ 

  labs(y = "Relative Abundance (%)", x = "")+ 

  guides(fill=guide_legend(nrow=4,byrow=TRUE)) 

p2 

Figure 2C 

 

#bar plot with contamination removal --> use pseq.clean ---- 

#phylum-level - aggregate to phylum 

pseq.phylum.uncontaminated <- aggregate_taxa(pseq.clean,"Phylum") 

pseq.phylum.rel.uncontaminated <- microbiome::transform(pseq.phylum.uncontaminated,"compositional") 

#remove unknown phyla 

pseq.phylum.rel.uncontaminated = subset_taxa(pseq.phylum.rel.uncontaminated, Phylum!="Unknown") 

dat.uncontaminated <- psmelt(pseq.phylum.rel.uncontaminated) 

dat.uncontaminated$Phylum <- gsub("p__","",dat.uncontaminated$Phylum) 

dat.uncontaminated$Phylum <- with(dat.uncontaminated, reorder(Phylum,-Abundance)) 

 

p3 <- ggplot(data=dat.uncontaminated, aes(x=Sample, y=Abundance, fill=Phylum)) 

p3<-p3 + geom_bar(aes(), stat="identity", position="stack") + 

  scale_fill_manual(values = c("darkblue", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", 

"lightskyblue", "darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4", 

"darksalmon", "darkblue"))+ 

  theme(legend.position="none") +  

  theme(text = element_text(size=15,face="bold"),axis.text.x = element_text(angle=90, 

hjust=1,size=15,face="bold"),legend.text=element_text(size=20, face="italic"))+ 

  labs(y = "Relative Abundance (%)", x = "")+ 

  guides(fill=guide_legend(nrow=4,byrow=TRUE)) 

p3 

leg <- get_legend(p1) 

p1 <- p1 + theme(legend.position = "none") 

ggarrange(p1, p2, p3, leg, nrow = 2, ncol=2, labels = c("A","B","C"), font.label = list(size=35)) 

 

ITS Relative abundance 

#Get relative abundance 

pseq.rel<-microbiome::transform(pseq.clean,"compositional") 

 

#Turn tax and otu tables into dataframes and combine 

tax<- as.data.frame(pseq.rel@tax_table) 

tax<-rownames_to_column(tax,var = "Taxon") 

otu<-as.data.frame(pseq.rel@otu_table) 

otu<-rownames_to_column(otu,var = "Taxon") 

combined_table<-merge(x = tax, y = otu, by = "Taxon", all = TRUE) 

 

#Add total relative abundance column 

combined_table$RelAb <- rowSums( combined_table[,9:47] ) 

 

#Aggregate to see amount of taxa  

#run round-df first 
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SI Table 4.1 

#phylum 

grouped_tbl_phylum <- aggregate (RelAb ~Phylum, combined_table, sum) 

grouped_tbl_phylum<- grouped_tbl_phylum[order(-grouped_tbl_phylum$RelAb),] 

grouped_tbl_phylum$rank <- 1:4 

grouped_tbl_phylum$Phylum <- gsub("p__","",grouped_tbl_phylum$Phylum) 

grouped_tbl_phylum$RelAb<-round_df(grouped_tbl_phylum$RelAb,5) 

write.csv(grouped_tbl_phylum,file="<file/path>/phylum_list.csv") 

 

SI Table 4.2 

#class 

grouped_tbl_class <- aggregate (RelAb ~Class, combined_table, sum) 

grouped_tbl_class<- grouped_tbl_class[order(-grouped_tbl_class$RelAb),] 

grouped_tbl_class$rank <- 1:12 

grouped_tbl_class$Class<-gsub("c__","",grouped_tbl_class$Class) 

grouped_tbl_class$RelAb<-round_df(grouped_tbl_class$RelAb,5) 

write.csv(grouped_tbl_class,file="<file/path>/class_list.csv") 

 

SI Table 4.3 

#order 

grouped_tbl_order <- aggregate (RelAb ~Order, combined_table, sum) 

grouped_tbl_order<- grouped_tbl_order[order(-grouped_tbl_order$RelAb),] 

grouped_tbl_order$rank <- 1:26 

grouped_tbl_order$Order<- gsub("o__","",grouped_tbl_order$Order) 

grouped_tbl_order$RelAb<-round_df(grouped_tbl_order$RelAb,5) 

write.csv(grouped_tbl_order,file="<file/path>/order_list.csv") 

 

SI Table 4.4 

#family 

grouped_tbl_fam <- aggregate (RelAb ~Family, combined_table, sum) 

grouped_tbl_fam<- grouped_tbl_fam[order(-grouped_tbl_fam$RelAb),] 

grouped_tbl_fam$rank <- 1:63 

grouped_tbl_fam$Family<-gsub("f__","",grouped_tbl_fam$Family) 

grouped_tbl_fam$RelAb<-round_df(grouped_tbl_fam$RelAb,5) 

write.csv(grouped_tbl_fam,file="<file/path>/fam_list.csv") 

 

SI Table 4.5 

#genus 

grouped_tbl_genus <- aggregate(RelAb ~Genus, combined_table, sum) 

grouped_tbl_genus<- grouped_tbl_genus[order(-grouped_tbl_genus$RelAb),] 

grouped_tbl_genus$rank <- 1:81 

grouped_tbl_genus$Genus<-gsub("g__","",grouped_tbl_genus$Genus) 

grouped_tbl_genus$RelAb<-round_df(grouped_tbl_genus$RelAb,5) 

write.csv(grouped_tbl_genus,file="<file/path>/genus_list.csv") 

 

SI Table 4.6 

#species 

grouped_tbl_species <- aggregate (RelAb ~Species, combined_table, sum) 

grouped_tbl_species<- grouped_tbl_species[order(-grouped_tbl_species$RelAb),] 

grouped_tbl_species$rank <- 1:87 

grouped_tbl_species$Species<- gsub("s__","",grouped_tbl_species$Species) 

grouped_tbl_species$RelAb<-round_df(grouped_tbl_species$RelAb,5) 

write.csv(grouped_tbl_species,file="<file/path>/species_list.csv") 

 

#create relative abundance bargraphs per sample  
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SI Table 5.1-5.3  

alphaObserved = estimate_richness(pseq.unfiltered.clean, measures="Observed") 

alphaSimpson = estimate_richness(pseq.unfiltered.clean, measures="Shannon") 

alphaChao = estimate_richness(pseq.unfiltered.clean, measures="Chao1") 

 

alpha.stats <- cbind(alphaObserved, sample_data(pseq.unfiltered.clean)) 

alpha.stats2 <- cbind(alpha.stats, alphaSimpson) 

alpha.stats3 <- cbind(alpha.stats2, alphaChao) 

 

#for two factors 

kruskal.test(Shannon~Antibiotics, data = alpha.stats3) 

 

#for more than 2 factors 

dunn.test(alpha.stats3$Shannon, alpha.stats3$Travel, method="hochberg") 

 

Figure 3A 

#before contamination removal --> use pseq ---- 

#phylum-level - aggregate to phylum 

pseq.phylum.contaminated <- aggregate_taxa(pseq,"Phylum") 

pseq.phylum.rel.contaminated <- microbiome::transform(pseq.phylum.contaminated,"compositional") 

#remove unknown phyla 

pseq.phylum.rel.contaminated = subset_taxa(pseq.phylum.rel.contaminated, Phylum!="Unknown") 

dat.contaminated <- psmelt(pseq.phylum.rel.contaminated) 

dat.contaminated$Phylum <- gsub("p__","",dat.contaminated$Phylum) 

 

p1 <- ggplot(data=dat.contaminated, aes(x=Sample, y=Abundance, fill=Phylum)) 

p1<-p1 + geom_bar(aes(), stat="identity", position="stack") + 

  scale_fill_manual(values = c("darkblue", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", 

"lightskyblue", "darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4", 

"darksalmon", "darkblue"))+ 

  theme(legend.position="right")+  

  theme(legend.title = element_blank(),text = element_text(size=15,face="bold"),axis.text.x = 

element_text(angle=90, hjust=1,size=15,face="bold"),legend.text=element_text(size=20, face="italic"))+ 

  labs(y = "Relative Abundance (%)", x = "")+ 

  guides(fill=guide_legend(ncol=4)) 

p1 

 

Figure 3B 

#after contamination removal --> use pseq.clean ---- 

#phylum-level - aggregate to phylum 

pseq.phylum.uncontaminated <- aggregate_taxa(pseq.clean,"Phylum") 

pseq.phylum.rel.uncontaminated <- microbiome::transform(pseq.phylum.uncontaminated,"compositional") 

#remove unknown phyla 

pseq.phylum.rel.uncontaminated = subset_taxa(pseq.phylum.rel.uncontaminated, Phylum!="Unknown") 

dat.uncontaminated <- psmelt(pseq.phylum.rel.uncontaminated) 

dat.uncontaminated$Phylum <- gsub("p__","",dat.uncontaminated$Phylum) 

 

p2 <- ggplot(data=dat.uncontaminated, aes(x=Sample, y=Abundance, fill=Phylum)) 

p2<-p2 + geom_bar(aes(), stat="identity", position="stack") + 

  scale_fill_manual(values = c("darkblue", "darkgoldenrod1", "darkseagreen", "darkorchid", "darkolivegreen1", 

"lightskyblue", "darkgreen", "deeppink", "khaki2", "firebrick", "brown1", "darkorange1", "cyan1", "royalblue4", 

"darksalmon", "darkblue"))+ 

  theme(legend.position="none") +  

  theme(text = element_text(size=15,face="bold"),axis.text.x = element_text(angle=90, 

hjust=1,size=15,face="bold"),legend.text=element_text(size=15, face="italic"))+ 

  labs(y = "Relative Abundance (%)", x = "")+ 
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  guides(fill=guide_legend(nrow=4,byrow=TRUE)) 

p2 

 

leg <- get_legend(p1) 

p1 <- p1 + theme(legend.position = "none") 

ggarrange(p1,p2, common.legend = T, labels = c("A","B"),font.label = list(size=20)) 

 

16S Core Microbiome 

#clean 

pseq.unfiltered.clean <-prune_samples(pseq.unfiltered.clean@sam_data$Sampleid!="KIT-

CTRL",pseq.unfiltered.clean) 

pseq.unfiltered.rel <- microbiome::transform(pseq.unfiltered.clean, "compositional") 

pseq.unfiltered.rel@tax_table <-gsub("g__","",pseq.unfiltered.rel@tax_table) 

 

#combine unidentified and NA taxa 

df <- data.frame(pseq.unfiltered.rel@tax_table) 

df$Genus <- gsub("unidentified",NA, df$Genus) 

tax_table(pseq.unfiltered.rel) <- as.matrix(df) 

#determine detection and prevalence for core microbiome ---- 

det <- c(0, 0.1, 0.5, 2, 5, 20)/100 

#prevalences <- seq(from = 10, to = 100, by = 10) 

prevalences <- c(10,20,30,40,50,60,70,80,90,100) 

#prev 0%, 50%,  

SI Figure 1A 

p.16<-plot_core(pseq.unfiltered.rel, prevalences = prevalences,  

          detections = det, plot.type = "lineplot") + 

  xlab("Detection threshold (%)") + 

  theme_bw() 

 

#the lines are parallel between 0.75-0.5 prevalence 

#chosen prevalence: 60%, chosen det. threshold: 0.008% 

#plot core genera ---- 

pseq.core.taxa <- aggregate_taxa(pseq.unfiltered.rel,"Genus") 

pseq.core.taxa <- core(pseq.core.taxa, detection = 0.008/100, prevalence = .6) 

#clean 

tax <- as.matrix(pseq.core.taxa@tax_table) 

tax<- tax[-c(32,46),] 

tax_table(pseq.core.taxa) <- tax 

Figure 4 

p <- plot_core(pseq.core.taxa, plot.type = "heatmap",  

               prevalences = prevalences, 

               detections = det, 

               colours = rev(brewer.pal(5, "Spectral")), 

               min.prevalence = .5, horizontal = F) 

p + theme(axis.text = element_text(size = 12, face="bold.italic"), 

          axis.title = element_text(size=15, face="bold"), 

            legend.title = element_text(face="bold",size=15))+ 

  coord_fixed(ratio=.2) 

 

ITS Core Microbiome 

#convert to relative abundance, clean, and remove controls ---- 

pseq.core.rel <- microbiome::transform(pseq.clean, "compositional") 

pseq.core.rel<-prune_samples(pseq.core.rel@sam_data$Sampleid!="CON-CTRL",pseq.core.rel) 

pseq.core.rel@tax_table <-gsub("g__","",pseq.core.rel@tax_table) 
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#combine unidentified and NA taxa 

df <- data.frame(pseq.core.rel@tax_table) 

df$Genus <- gsub("unidentified",NA, df$Genus) 

tax_table(pseq.core.rel) <- as.matrix(df) 

#determine detection and prevalence for core microbiome ---- 

det <- c(0, 0.1, 0.5, 2, 5, 20)/100 

prevalences <- seq(from = 10, to = 100, by = 5) 

 

SI Figure 1B 

p.ITS <-plot_core(pseq.core.rel, prevalences = prevalences,  

          detections = det, plot.type = "lineplot") +  

  xlab("Detection threshold (%)") +  

  theme_bw() 

#a core microbiome of under 50 taxa 

#the lines are parallel between 0.25-0.60 prevalence 

#chosen prevalence: 50%, chosen det. treshold: 0.008% 

 

#plot core taxa ---- 

pseq.core.taxa <- aggregate_taxa(pseq.core.rel,"Genus") 

pseq.core.taxa <- core(pseq.core.taxa, detection = 0.008/100, prevalence = .5) 

 

Figure 5 

p <- plot_core(pseq.core.taxa, plot.type = "heatmap",  

               prevalences = prevalences, 

               detections = det, 

               colours = rev(brewer.pal(5, "Spectral")), 

               min.prevalence = .5, horizontal = F)  

p+ theme(axis.text = element_text(size = 12, face="bold.italic"), 

         axis.title = element_text(size=15, face="bold"), 

         legend.title = element_text(face="bold",size=15))+ 

  coord_fixed(ratio=1) 

 

#combine 16S and ITS cores into one figure 

p.final <-ggarrange(p.16, p.ITS, nrow = 1, common.legend = T, labels = c("A","B"),  

                    font.label = list(size=20,face="bold")) 

p.final 

16S PERMANOVA (SI Table 7.1-7.2) 

#use compositional abundance 

#clean 

pseq.rel<- microbiome::transform(pseq.clean, "compositional") 

pseq.rel<-prune_samples(pseq.rel@sam_data$Sampleid!="KIT-CTRL",pseq.rel) 

pseq.rel <- phyloseq_rm_na_tax(pseq.rel) 

#make matrix of wunifrac and jensen-shannon distances for groups in which no subject answered "Uncertain" 

perm.wunifrac <- phyloseq ::distance (pseq.rel,"wunifrac") 

perm.jsd <- phyloseq::distance(pseq.rel, "jsd") 

#permanova and disp tests 

 

#age 

vegan::adonis(perm.wunifrac ~ phyloseq::sample_data(pseq.rel)$Age) 

age.wunifrac <- vegan::betadisper(perm.wunifrac, phyloseq::sample_data(pseq.rel)$Age) 

anova(age.wunifrac) 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Age) 

age.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Age) 

anova(age.jsd) 
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#antibiotics 

pseq.ant = subset_samples(pseq.rel, Antibiotics != "Uncertain") 

perm.wunifrac.ant <- phyloseq ::distance (pseq.ant,"wunifrac") 

perm.jsd.ant <- phyloseq::distance(pseq.ant, "jsd") 

vegan::adonis(perm.wunifrac.ant ~ phyloseq::sample_data(pseq.ant)$Antibiotics) 

ant.wunifrac <- vegan::betadisper(perm.wunifrac.ant, phyloseq::sample_data(pseq.ant)$Antibiotics) 

anova(ant.wunifrac) 

vegan::adonis(perm.jsd.ant~phyloseq::sample_data(pseq.ant)$Antibiotics) 

ant.jsd<-vegan::betadisper(perm.jsd.ant , phyloseq::sample_data(pseq.ant)$Antibiotics) 

anova(ant.jsd) 

 

#biological sex 

vegan::adonis(perm.wunifrac ~ phyloseq::sample_data(pseq.rel)$Sex) 

sex.wunifrac <- vegan::betadisper(perm.wunifrac, phyloseq::sample_data(pseq.rel)$Sex) 

anova(sex.wunifrac) 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Sex) 

sex.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Sex) 

anova(sex.jsd) 

 

#Diarrhoea 

vegan::adonis(perm.wunifrac ~ phyloseq::sample_data(pseq.rel)$Diarrhoea) 

diar.wunifrac <- vegan::betadisper(perm.wunifrac, phyloseq::sample_data(pseq.rel)$Diarrhoea) 

anova(diar.wunifrac) 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Diarrhoea) 

diar.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Diarrhoea) 

anova(diar.jsd) 

 

#Intestinal infections 

pseq.int = subset_samples(pseq.rel, Intestinal.Infections != "Uncertain") 

perm.wunifrac.int <- phyloseq ::distance (pseq.int,"wunifrac") 

perm.jsd.int <- phyloseq::distance(pseq.int, "jsd") 

vegan::adonis(perm.wunifrac.int ~ phyloseq::sample_data(pseq.int)$Intestinal.Infections) 

int.wunifrac <- vegan::betadisper(perm.wunifrac.int, phyloseq::sample_data(pseq.int)$Intestinal.Infections) 

anova(int.wunifrac) 

 

vegan::adonis(perm.jsd.int~phyloseq::sample_data(pseq.int)$Intestinal.Infections) 

int.jsd<-vegan::betadisper(perm.jsd.int , phyloseq::sample_data(pseq.int)$Intestinal.Infections) 

anova(int.jsd) 

 

#Malaria medication  

pseq.mal = subset_samples(pseq.rel, Malaria.Medication != "Uncertain") 

perm.wunifrac.mal <- phyloseq ::distance (pseq.mal,"wunifrac") 

perm.jsd.mal <- phyloseq::distance(pseq.mal, "jsd") 

vegan::adonis(perm.wunifrac.mal ~ phyloseq::sample_data(pseq.mal)$Malaria.Medication) 

mal.wunifrac <- vegan::betadisper(perm.wunifrac.mal, phyloseq::sample_data(pseq.mal)$Malaria.Medication) 

anova(mal.wunifrac) 

 

vegan::adonis(perm.jsd.mal~phyloseq::sample_data(pseq.mal)$Malaria.Medication) 

mal.jsd<-vegan::betadisper(perm.jsd.mal , phyloseq::sample_data(pseq.mal)$Malaria.Medication) 

anova(mal.jsd) 

 

#Travel 

vegan::adonis(perm.wunifrac ~ phyloseq::sample_data(pseq.rel)$Travel) 

trav.wunifrac <- vegan::betadisper(perm.wunifrac, phyloseq::sample_data(pseq.rel)$Travel) 

anova(trav.wunifrac) 
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vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Travel) 

trav.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Travel) 

anova(trav.jsd) 

 

#Village 

vegan::adonis(perm.wunifrac ~ phyloseq::sample_data(pseq.rel)$Village) 

vil.wunifrac <- vegan::betadisper(perm.wunifrac, phyloseq::sample_data(pseq.rel)$Village) 

anova(vil.wunifrac) 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Village) 

vil.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Village) 

anova(vil.jsd) 

 

SI Table 6.1-6.3 

alphaObserved = estimate_richness(pseq.clean, measures="Observed") 

alphaSimpson = estimate_richness(pseq.clean, measures="Shannon") 

alphaChao = estimate_richness(pseq.clean, measures="Chao1") 

 

alpha.stats <- cbind(alphaObserved, sample_data(pseq.clean)) 

alpha.stats2 <- cbind(alpha.stats, alphaSimpson) 

alpha.stats3 <- cbind(alpha.stats2, alphaChao) 

 

#for two factors 

kruskal.test(Shannon~Antibiotics, data = alpha.stats3) 

 

#for more than 2 factors 

dunn.test(alpha.stats3$Shannon, alpha.stats3$Malaria, method="hochberg") 

 

ITS PERMANOVA (SI Table 8.1-8.2) 

#use compositional abundance 

#clean 

pseq.rel<- microbiome::transform(pseq.clean, "compositional") 

pseq.rel<-prune_samples(pseq.rel@sam_data$Sampleid!="CON-CTRL",pseq.rel) 

pseq.rel <- phyloseq_rm_na_tax(pseq.rel) 

#make matrix of bray-curtis and jensen-shannon distances for groups in which no subject answered "Uncertain" 

perm.bray <- phyloseq ::distance (pseq.rel,"bray") 

perm.jsd <- phyloseq::distance(pseq.rel, "jsd") 

 

#permanova and disp tests 

#age 

vegan::adonis(perm.bray ~ phyloseq::sample_data(pseq.rel)$Age) 

age.bray <- vegan::betadisper(perm.bray, phyloseq::sample_data(pseq.rel)$Age) 

anova(age.bray) 

 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Age) 

age.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Age) 

anova(age.jsd) 

#antibiotics 

pseq.ant = subset_samples(pseq.rel, Antibiotics != "Uncertain") 

perm.bray.ant <- phyloseq ::distance (pseq.ant,"bray") 

perm.jsd.ant <- phyloseq::distance(pseq.ant, "jsd") 

vegan::adonis(perm.bray.ant ~ phyloseq::sample_data(pseq.ant)$Antibiotics) 

ant.bray <- vegan::betadisper(perm.bray.ant, phyloseq::sample_data(pseq.ant)$Antibiotics) 

anova(ant.bray) 

vegan::adonis(perm.jsd.ant~phyloseq::sample_data(pseq.ant)$Antibiotics) 

ant.jsd<-vegan::betadisper(perm.jsd.ant , phyloseq::sample_data(pseq.ant)$Antibiotics) 
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anova(ant.jsd) 

 

#biological sex 

vegan::adonis(perm.bray ~ phyloseq::sample_data(pseq.rel)$Sex) 

sex.bray <- vegan::betadisper(perm.bray, phyloseq::sample_data(pseq.rel)$Sex) 

anova(sex.bray) 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Sex) 

sex.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Sex) 

anova(sex.jsd) 

 

#Diarrhoea 

vegan::adonis(perm.bray ~ phyloseq::sample_data(pseq.rel)$Diarrhoea) 

diar.bray <- vegan::betadisper(perm.bray, phyloseq::sample_data(pseq.rel)$Diarrhoea) 

anova(diar.bray) 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Diarrhoea) 

diar.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Diarrhoea) 

anova(diar.jsd) 

 

#Intestinal infections 

pseq.int = subset_samples(pseq.rel, Intestinal.Infections != "Uncertain") 

perm.bray.int <- phyloseq ::distance (pseq.int,"bray") 

perm.jsd.int <- phyloseq::distance(pseq.int, "jsd") 

vegan::adonis(perm.bray.int ~ phyloseq::sample_data(pseq.int)$Intestinal.Infections) 

int.bray <- vegan::betadisper(perm.bray.int, phyloseq::sample_data(pseq.int)$Intestinal.Infections) 

anova(int.bray) 

vegan::adonis(perm.jsd.int~phyloseq::sample_data(pseq.int)$Intestinal.Infections) 

int.jsd<-vegan::betadisper(perm.jsd.int , phyloseq::sample_data(pseq.int)$Intestinal.Infections) 

anova(int.jsd) 

 

#Malaria medication  

pseq.mal = subset_samples(pseq.rel, Malaria.Medication != "Uncertain") 

perm.bray.mal <- phyloseq ::distance (pseq.mal,"bray") 

perm.jsd.mal <- phyloseq::distance(pseq.mal, "jsd") 

vegan::adonis(perm.bray.mal ~ phyloseq::sample_data(pseq.mal)$Malaria.Medication) 

mal.bray <- vegan::betadisper(perm.bray.mal, phyloseq::sample_data(pseq.mal)$Malaria.Medication) 

anova(mal.bray) 

vegan::adonis(perm.jsd.mal~phyloseq::sample_data(pseq.mal)$Malaria.Medication) 

mal.jsd<-vegan::betadisper(perm.jsd.mal , phyloseq::sample_data(pseq.mal)$Malaria.Medication) 

anova(mal.jsd) 

 

#Travel 

vegan::adonis(perm.bray ~ phyloseq::sample_data(pseq.rel)$Travel) 

trav.bray <- vegan::betadisper(perm.bray, phyloseq::sample_data(pseq.rel)$Travel) 

anova(trav.bray) 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Travel) 

trav.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Travel) 

anova(trav.jsd) 

 

#Village 

vegan::adonis(perm.bray ~ phyloseq::sample_data(pseq.rel)$Village) 

vil.bray <- vegan::betadisper(perm.bray, phyloseq::sample_data(pseq.rel)$Village) 

anova(vil.bray) 

 

vegan::adonis(perm.jsd~phyloseq::sample_data(pseq.rel)$Village) 

vil.jsd<-vegan::betadisper(perm.jsd , phyloseq::sample_data(pseq.rel)$Village) 
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anova(vil.jsd) 

Function: Annote_Figure 

#annotate figures 

#age 

age <-annotate_figure( 

  age, 

  top = NULL, 

  bottom = NULL, 

  left = NULL, 

  right = NULL, 

  fig.lab ="1) Age", 

  fig.lab.pos = c("top.left"), 

  fig.lab.size = 35, 

  fig.lab.face = "bold" 

) 

age 

 

#antibiotics 

ant <-annotate_figure( 

  ant, 

  top = NULL, 

  bottom = NULL, 

  left = NULL, 

  right = NULL, 

  fig.lab ="2) Antibotics", 

  fig.lab.pos = c("top.left"), 

  fig.lab.size = 30, 

  fig.lab.face = "bold" 

) 

ant 

 

#biological sex 

sex <-annotate_figure( 

  sex, 

  top = NULL, 

  bottom = NULL, 

  left = NULL, 

  right = NULL, 

  fig.lab ="3) Biological Sex", 

  fig.lab.pos = c("top.left"), 

  fig.lab.size = 30, 

  fig.lab.face = "bold" 

sex 

 

#diarrhoea 

diar <-annotate_figure( 

  diar, 

  top = NULL, 

  bottom = NULL, 

  left = NULL, 

  right = NULL, 

  fig.lab ="4) Diarrhoea", 

  fig.lab.pos = c("top.left"), 

  fig.lab.size = 35, 

  fig.lab.face = "bold" 
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) 

diar 

 

#intestinal infection 

int <-annotate_figure( 

  int, 

  top = NULL, 

  bottom = NULL, 

  left = NULL, 

  right = NULL, 

  fig.lab ="5) Intestinal \nInfection", 

  fig.lab.pos = c("top.left"), 

  fig.lab.size = 30, 

  fig.lab.face = "bold" 

) 

int 

 

#malaria 

mal <-annotate_figure( 

  mal, 

  top = NULL, 

  bottom = NULL, 

  left = NULL, 

  right = NULL, 

  fig.lab ="6) Malaria \nMedication", 

  fig.lab.pos = c("top.left"), 

  fig.lab.size = 30, 

  fig.lab.face = "bold" 

) 

Mal 

 

#travel 

trav <-annotate_figure( 

  trav, 

  top = NULL, 

  bottom = NULL, 

  left = NULL, 

  right = NULL, 

  fig.lab ="7) Travel", 

  fig.lab.pos = c("top.left"), 

  fig.lab.size = 35, 

  fig.lab.face = "bold" 

) 

trav 

 

#village 

vil <-annotate_figure( 

  vil, 

  top = NULL, 

  bottom = NULL, 

  left = NULL, 

  right = NULL, 

  fig.lab ="8) Village", 

  fig.lab.pos = c("top.left"), 

  fig.lab.size = 30, 
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  fig.lab.face = "bold" 

) 

vil 

16S Community Composition 

Figure 6A 

#alpha div ---- 

p.alp=plot_richness(pseq.unfiltered.clean, color="Sampleid", measures=c("Simpson", "Shannon"),nrow = 3) 

p.alp + geom_point(size=10, alpha=0.7)+ 

  theme(strip.text = element_text(size=30, face= "bold"), 

        legend.position = "none", 

        axis.text = element_text(size = 20, face="bold"), 

        plot.title = element_text(size=35, face="bold"))+ 

  labs (x="",y="")+ 

  ggtitle("A") 

 

#beta div must be run on filtered phyloseq object ---- 

#run 1-create-phyloseq-16S 

#remove controls for beta div 

#relative abundance 

pseq.rel <- microbiome::transform(pseq.clean, 'compositional') 

pseq.rel<-prune_samples(pseq@sam_data$Sampleid!="KIT-CTRL",pseq.rel) 

 

#weighted unifrac and jensen-shannon matrices 

wunifrac_matrix <- ordinate(pseq.rel, method = "NMDS", distance = "wunifrac") 

jsd_matrix <- ordinate(pseq.rel, method = "NMDS", distance = "jsd") 

 

Figure 6 B, C 

p.nmds.wu<-plot_ordination(pseq.rel, wunifrac_matrix, color = "Village") + geom_point(size = 10)+ 

  theme(axis.title = element_text(size = 20, face = "bold"), 

        axis.text = element_text(size = 20, face="bold"), 

        legend.text = element_text(size = 35, face="bold"), 

        legend.title = element_text(size=35, face="bold"), 

        plot.title = element_text(size=35, face="bold"))+ 

  ggtitle("B") 

  p.nmds.wu 

p.nmds.jsd<-plot_ordination(pseq.rel, jsd_matrix, color = "Village")+geom_point(size = 10)+ 

  theme(axis.title = element_text(size = 20, face = "bold"), 

        axis.text = element_text(size = 20, face="bold"), 

        legend.text = element_text(size = 35, face="bold"), 

        legend.title = element_text(size=35, face="bold"), 

        plot.title = element_text(size=35, face="bold"))+ 

  ggtitle("C") 

p.nmds.jsd 

#run annotate-figure 

 

SI Figure 2 

#beta div must be run on filtered phyloseq object ---- 

#run 1-create-phyloseq-16S 

#remove controls for beta div 

#relative abundance 

pseq.rel <- microbiome::transform(pseq.clean, 'compositional') 

pseq.rel<-prune_samples(pseq@sam_data$Sampleid!="KIT-CTRL",pseq.rel) 

 

#weighted unifrac and jensen-shannon matrices 

wunifrac_matrix <- ordinate(pseq.rel, method = "NMDS", distance = "wunifrac") 
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jsd_matrix <- ordinate(pseq.rel, method = "NMDS", distance = "jsd") 

 

#Age 

pseq.rel@sam_data$Age <- factor(pseq.rel@sam_data$Age, levels = c("Late-adolescent","Early-adult","Middle-

adult","Late-adult")) 

age1 <- phyloseq::plot_ordination(pseq.rel, wunifrac_matrix, color = "Age") + geom_point(size = 10)+ 

theme(legend.text=element_text(size=30,face="bold"), 

             legend.title = element_text(size=30,face="bold")) 

age2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Age") + geom_point(size = 10) 

leg <- get_legend(age1) 

age <-ggarrange(age1, age2, leg,nrow = 1,common.legend=T,labels = c("Weighted UniFrac" 

                                                                        ,"Jensen-Shannon"),  

                font.label = list(size=35,face="bold"), 

                legend = "right", 

                widths = c(2,2,.15), 

                label.x = .1) 

#run annotate-figure 

 

#Antibiotics 

#remove uncertain subjects 

pseq.rel.ant = subset_samples(pseq.rel, Antibiotics != "Uncertain") 

pseq.rel.ant<-prune_samples(pseq.rel.ant@sam_data$Sampleid!="KIT-CTRL",pseq.rel.ant) 

pseq.rel.ant@sam_data$Antibiotics <- factor(pseq.rel.ant@sam_data$Antibiotics, levels = c("Yes","No")) 

wunifrac_matrix.ant <- ordinate(pseq.rel.ant, method = "NMDS", distance = "wunifrac") 

jsd_matrix.ant <- ordinate(pseq.rel.ant, method = "NMDS", distance = "jsd") 

ant1 <- phyloseq::plot_ordination(pseq.rel.ant, wunifrac_matrix.ant, color = "Antibiotics") + geom_point(size = 

10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

ant2 <- phyloseq::plot_ordination(pseq.rel.ant, jsd_matrix.ant, color = "Antibiotics") + geom_point(size = 10) 

ant.leg <- get_legend(ant1) 

ant <-ggarrange(ant1, ant2, ant.leg,nrow = 1,common.legend=T,labels = c("Weighted UniFrac","Jensen-

Shannon"),  

                font.label = list(size=35,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .15, 

                legend = "right") 

#run annotate-figure 

 

#Biological sex 

sex1 <- phyloseq::plot_ordination(pseq.rel, wunifrac_matrix, color = "Sex") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

sex2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Sex") + geom_point(size = 10) 

sex.leg <- get_legend(sex1) 

sex <-ggarrange(sex1, sex2, sex.leg, nrow = 1,common.legend=T,labels = c("Weighted UniFrac","Jensen-

Shannon"),  

                font.label = list(size=30,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .3, 

                legend = "right") 

#run annotate-figure 

 

#Diarrhoea 

diar1 <- phyloseq::plot_ordination(pseq.rel, wunifrac_matrix, color = "Diarrhoea") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 



 

82 

 

        legend.title = element_text(size=30,face="bold")) 

diar2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Diarrhoea") + geom_point(size = 10) 

diar.leg <- get_legend(diar1) 

diar <-ggarrange(diar1, diar2, diar.leg, nrow = 1,common.legend=T,labels = c("Weighted UniFrac","Jensen-

Shannon"),  

                font.label = list(size=30,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .3, 

                legend = "right") 

#run annotate-figure 

 

#16S Intestinal Infections 

#remove uncertain subjects 

pseq.rel.int = subset_samples(pseq.rel, Intestinal.Infections != "Uncertain") 

pseq.rel.int<-prune_samples(pseq.rel.int@sam_data$Sampleid!="KIT-CTRL",pseq.rel.int) 

pseq.rel.int@sam_data$Intestinal.Infections <- factor(pseq.rel.int@sam_data$Intestinal.Infections, levels = 

c("Yes","No")) 

wunifrac_matrix.int <- ordinate(pseq.rel.int, method = "NMDS", distance = "wunifrac") 

jsd_matrix.int <- ordinate(pseq.rel.int, method = "NMDS", distance = "jsd") 

int1<- phyloseq::plot_ordination(pseq.rel.int, wunifrac_matrix.int, color = "Intestinal.Infections") + 

geom_point(size = 10)+ 

  scale_color_discrete("Intestinal Infections")+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

int2<- phyloseq::plot_ordination(pseq.rel.int, jsd_matrix.int, color = "Intestinal.Infections") + geom_point(size = 

10)+ 

  scale_colour_discrete("Intestinal Infections") 

int.leg <- get_legend(int1) 

int <-ggarrange(int1, int2, int.leg, nrow = 1,common.legend=T,labels = c("Weighted UniFrac","Jensen-

Shannon"),  

                 font.label = list(size=30,face="bold"), 

                 widths = c(2,2,.15), 

                 label.x = .15, 

                 legend = "right") 

#run annotate-figure 

 

#16S Malaria Medication  

#remove uncertain subjects 

pseq.rel.mal = subset_samples(pseq.rel, Malaria.Medication != "Uncertain") 

pseq.rel.mal<-prune_samples(pseq.rel.mal@sam_data$Sampleid!="KIT-CTRL",pseq.rel.mal) 

pseq.rel.mal@sam_data$Malaria.Medication <- factor(pseq.rel.mal@sam_data$Malaria.Medication, levels = 

c("Yes","No")) 

wunifrac_matrix.mal <- ordinate(pseq.rel.mal, method = "NMDS", distance = "wunifrac") 

jsd_matrix.mal <- ordinate(pseq.rel.mal, method = "NMDS", distance = "jsd") 

mal1<- phyloseq::plot_ordination(pseq.rel.mal, wunifrac_matrix.mal, color = "Malaria.Medication") + 

geom_point(size = 10)+ 

  scale_color_discrete("Malaria Medication")+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

mal2<- phyloseq::plot_ordination(pseq.rel.mal, jsd_matrix.mal, color = "Malaria.Medication") + 

geom_point(size = 10)+ 

  scale_colour_discrete("Malaria Medication") 

mal.leg <- get_legend(mal1) 

mal <-ggarrange(mal1, mal2, mal.leg, nrow = 1,common.legend=T,labels = c("Weighted UniFrac","Jensen-

Shannon"),  

                font.label = list(size=30,face="bold"), 

                widths = c(2,2,.15), 
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                label.x = .15, 

                legend = "right") 

#run annotate-figure 

 

#16S Travel 

trav1<- phyloseq::plot_ordination(pseq.rel, wunifrac_matrix, color = "Travel") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

trav2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Travel") + geom_point(size = 10) 

trav.leg <- get_legend(trav1) 

trav <-ggarrange(trav1, trav2, trav.leg, nrow = 1,common.legend=T,labels = c("Weighted UniFrac","Jensen-

Shannon"),  

                font.label = list(size=30,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .15, 

                legend = "right") 

#run annotate-figure 

 

#16S Village 

#for Supplementary  

vil1<- phyloseq::plot_ordination(pseq.rel, wunifrac_matrix, color = "Village") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

vil2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Village") + geom_point(size = 10) 

vil.leg <- get_legend(vil1) 

vil <-ggarrange(vil1, vil2, vil.leg, nrow = 1,common.legend=T,labels = c("Weighted UniFrac","Jensen-

Shannon"),  

                 font.label = list(size=30,face="bold"), 

                 widths = c(2,2,.15), 

                 label.x = .15, 

                 legend = "right") 

#run annotate-figure 

 

Figure 6D and E 

#barplots of village average distances ---- 

#first get p-values using pairwise adonis 

i.wunifrac="wunifrac" 

pseq.rel %>% 

  phyloseq::distance(method = i.wunifrac) ->  dist.wunifrac 

wunifrac.p<-mctoolsr::calc_pairwise_permanovas(dist.wunifrac, as(sample_data(pseq.rel), "data.frame"), 

"Village") 

 

#then construct graphs 

wu = phyloseq::distance(pseq.rel, "wunifrac") 

wu.m = melt(as.matrix(wu)) 

wu.m = wu.m %>% 

  filter(as.character(Var1) != as.character(Var2)) %>% 

  mutate_if(is.factor, as.character) 

 

#village 

sd.village <- data.frame(pseq.rel@sam_data$Sampleid, pseq.rel@sam_data$Village) 

sd.village <- sd.village %>%  

  rename(Village = pseq.rel.sam_data.Village) 

sd.village <- sd.village %>%  

  rename(Sampleid = pseq.rel.sam_data.Sampleid) 

colnames(sd.village) = c("Var1", "Type1") 
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wu.sd = left_join(wu.m, sd.village, by = "Var1") 

colnames(sd.village) = c("Var2", "Type2") 

wu.sd = left_join(wu.sd, sd.village, by = "Var2") 

 

#remove self from wu.sd 

wu.sd = wu.sd %>% 

  filter(as.character(Type1) != as.character(Type2)) %>% 

  mutate_if(is.factor, as.character) 

 

#duinpos vs denui 

duinpos.denui <- subset(wu.sd, wu.sd$Type1 == "Duinpos") 

duinpos.denui <- subset(duinpos.denui, duinpos.denui$Type2 == "Den/ui") 

duinpos.denui.avg <- mean(duinpos.denui$value) 

 

#duinpos vs MP 

duinpos.MP <- subset(wu.sd, wu.sd$Type1 == "Duinpos") 

duinpos.MP <- subset(duinpos.MP, duinpos.MP$Type2 == "Mountain Pos") 

duinpos.MP.avg <- mean (duinpos.MP$value) 

 

#duinpos vs OM 

duinpos.OM <- subset(wu.sd, wu.sd$Type1 == "Duinpos") 

duinpos.OM <- subset(duinpos.OM, duinpos.OM$Type2 == "!Om!o") 

duinpos.OM.avg <- mean(duinpos.OM$value) 

 

#denui vs MP 

denui.MP <- subset(wu.sd, wu.sd$Type1 == "Den/ui") 

denui.MP <- subset(duinpos.MP, denui.MP$Type2 == "Mountain Pos") 

denui.MP.avg <- mean(duinpos.MP$value) 

 

#denui vs OM 

denui.OM <- subset(wu.sd, wu.sd$Type1 == "Den/ui") 

denui.OM <- subset(denui.OM, denui.OM$Type2 == "!Om!o") 

denui.OM.avg <- mean(denui.OM$value) 

 

#MP vs OM  

MP.OM <- subset(wu.sd, wu.sd$Type1 == "Mountain Pos") 

MP.OM <- subset(MP.OM, MP.OM$Type2 == "!Om!o") 

MP.OM.avg <- mean(MP.OM$value) 

 

vals <- c(duinpos.denui.avg,duinpos.MP.avg,duinpos.OM.avg,denui.MP.avg,denui.OM.avg,MP.OM.avg) 

col <- c("Duinpos vs Den/ui", "Duinpos vs Mountain Pos", "Duinpos vs !Om!o", 

         "Den/ui vs Mountain Pos", "Den/ui vs !Om!o","Mountain Pos vs !Om!o") 

 

village.df.wu <- data.frame(col,vals) 

village.df.wu$FDRp <- wunifrac.p$pvalFDR 

village.df.wu$FDRp <- sub("^","p =", village.df.wu$FDRp) 

 

p.bar.wu<-ggplot(village.df.wu, aes(x=reorder(col,vals), y=vals,fill= col)) +  

  geom_bar(stat = "identity") + 

  theme_bw()+ 

  theme(axis.title = element_text(size = 30,face="bold"), 

        axis.text.x = element_blank(), 

        axis.text.y = element_text(size=25, face="bold"), 

        legend.title = element_blank(), 

        legend.text = element_text(face="bold",size=30), 
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        legend.position = "right", 

        aspect.ratio = 5/5)+ 

  geom_text(aes(label=FDRp),vjust=0, fontface = "bold",size=8)+ 

  expand_limits(y=0.5)+ 

  labs (y="Weighted UniFrac", x="")+ 

  scale_fill_discrete() 

p.bar.wu 

 

#jsd 

#get p-values  

i.jsd="jsd" 

pseq.rel %>% 

  phyloseq::distance(method = i.jsd) ->  dist.jsd 

 

jsd.p<-mctoolsr::calc_pairwise_permanovas(dist.jsd, as(sample_data(pseq.rel), "data.frame"), "Village") 

 

jsd = phyloseq::distance(pseq.rel, "jsd") 

jsd.m = melt(as.matrix(jsd)) 

jsd.m = jsd.m %>% 

  filter(as.character(Var1) != as.character(Var2)) %>% 

  mutate_if(is.factor, as.character) 

 

#village 

sd.village <- data.frame(pseq.rel@sam_data$Sampleid, pseq.rel@sam_data$Village) 

sd.village <- sd.village %>%  

  rename(Village = pseq.rel.sam_data.Village) 

sd.village <- sd.village %>%  

  rename(Sampleid = pseq.rel.sam_data.Sampleid) 

colnames(sd.village) = c("Var1", "Type1") 

jsd.sd = left_join(jsd.m, sd.village, by = "Var1") 

colnames(sd.village) = c("Var2", "Type2") 

jsd.sd = left_join(jsd.sd, sd.village, by = "Var2") 

 

#remove self from jsd.sd 

jsd.sd = jsd.sd %>% 

  filter(as.character(Type1) != as.character(Type2)) %>% 

  mutate_if(is.factor, as.character) 

 

#duinpos vs denui 

duinpos.denui <- subset(jsd.sd, jsd.sd$Type1 == "Duinpos") 

duinpos.denui <- subset(duinpos.denui, duinpos.denui$Type2 == "Den/ui") 

duinpos.denui.avg <- mean(duinpos.denui$value) 

 

#duinpos vs MP 

duinpos.MP <- subset(jsd.sd, jsd.sd$Type1 == "Duinpos") 

duinpos.MP <- subset(duinpos.MP, duinpos.MP$Type2 == "Mountain Pos") 

duinpos.MP.avg <- mean (duinpos.MP$value) 

 

#duinpos vs OM 

duinpos.OM <- subset(jsd.sd, jsd.sd$Type1 == "Duinpos") 

duinpos.OM <- subset(duinpos.OM, duinpos.OM$Type2 == "!Om!o") 

duinpos.OM.avg <- mean(duinpos.OM$value) 

 

#denui vs MP 

denui.MP <- subset(jsd.sd, jsd.sd$Type1 == "Den/ui") 
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denui.MP <- subset(duinpos.MP, denui.MP$Type2 == "Mountain Pos") 

denui.MP.avg <- mean(duinpos.MP$value) 

 

#denui vs OM 

denui.OM <- subset(jsd.sd, jsd.sd$Type1 == "Den/ui") 

denui.OM <- subset(denui.OM, denui.OM$Type2 == "!Om!o") 

denui.OM.avg <- mean(denui.OM$value) 

 

#MP vs OM  

MP.OM <- subset(jsd.sd, jsd.sd$Type1 == "Mountain Pos") 

MP.OM <- subset(MP.OM, MP.OM$Type2 == "!Om!o") 

MP.OM.avg <- mean(MP.OM$value) 

 

vals <- c(duinpos.denui.avg,duinpos.MP.avg,duinpos.OM.avg,denui.MP.avg,denui.OM.avg,MP.OM.avg) 

col <- c("Duinpos vs Den/ui", "Duinpos vs Mountain Pos", "Duinpos vs !Om!o", 

         "Den/ui vs Mountain Pos", "Den/ui vs !Om!o","Mountain Pos vs !Om!o") 

 

village.df.jsd <- data.frame(col,vals) 

village.df.jsd$FDRp <- jsd.p$pvalFDR 

village.df.jsd$FDRp <- sub("^","p =", village.df.jsd$FDRp) 

 

p.bar.jsd <-ggplot(village.df.jsd, aes(x=reorder(col,vals), y=vals,fill= col)) +  

  geom_bar(stat = "identity") + 

  theme_bw()+ 

  theme(axis.title = element_text(size = 30,face="bold"), 

        axis.text.x = element_blank(), 

        axis.text.y = element_text(size=25, face="bold"), 

        legend.title = element_blank(), 

        legend.text = element_text(face="bold",size=30), 

        legend.position = "right", 

        aspect.ratio = 3/3)+ 

  geom_text(aes(label=FDRp),vjust=0, fontface = "bold", size=8)+ 

  labs (y="Jensen-Shannon", x="")+ 

  scale_fill_discrete() 

p.bar.jsd 

p.final <-ggarrange(p.bar.wu, p.bar.jsd, nrow = 1, common.legend = T, labels = c("D","E"),  

                    font.label = list(size=35,face="bold")) 

p.final 

 

Figure 6F 

#Village ---- 

outVillage = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                     p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                     group = "Village", struc_zero = F, neg_lb = F, tol = 1e-5,  

                     max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_village = outVillage$res_global 

#adj p values < 0.05  

tab_q_vil = res_global_village[, "q_val", drop = FALSE] 

tab_q_vil<-filter(tab_q_vil, q_val <= 0.05) 

tab_q_vil <- rownames_to_column(tab_q_vil,var="Genus") 

tab_q_vil$Genus <- gsub("g__","",tab_q_vil$Genus) 

#run round_df function first 

tab_q_vil <- round_df(tab_q_vil,5) 

tab_q_vil$q_val <- sub("^","q = ",tab_q_vil$q_val) 
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write.csv(tab_q_vil,file="<file/path>ancombc_village.csv") 

 

#remove controls, convert to relative abundance, aggregate to genus level 

pseq.clean<-prune_samples(pseq.clean@sam_data$Sampleid!="KIT-CTRL",pseq.clean) 

pseq.ra <- microbiome :: transform (pseq.clean,'compositional') 

pseq.genus <- tax_glom(pseq.ra, "Genus", NArm=T) 

#DA_genera will change depending on what was identified by ANCOM-BC 

DA_genera <- 

c("g__Bacteroides","g__Barnesiella","g__Odoribacter","g__Muribaculaceae","g__Paraprevotella","g__Prevotel

laceae_NK3B31_group","g__Alistipes","g__Gastranaerophilales","g__Desulfovibrio","g__Catenibacterium","g

__Solobacterium","g__RF39","g__Clostridia_UCG-

014","g__Clostridia_vadinBB60_group","g__[Eubacterium]_eligens_group","g__[Eubacterium]_xylanophilum

_group","g__[Ruminococcus]_gauvreauii_group","g__[Ruminococcus]_torques_group","g__Agathobacter","g_

_Blautia","g__Butyrivibrio","g__Dorea","g__Lachnospiraceae_AC2044_group","g__Lachnospiraceae_FCS020

_group","g__Lachnospiraceae_ND3007_group","g__Lachnospiraceae_NK4A136_group","g__Lachnospiraceae

_NK4B4_group","g__Lachnospiraceae_UCG-007","g__Lachnospiraceae_UCG-
010","g__Marvinbryantia","g__Roseburia","g__[Eubacterium]_coprostanoligenes_group","g__Butyricicoccus",

"g__Colidextribacter","g__NK4A214_group","g__UCG-

002","g__[Eubacterium]_siraeum_group","g__Candidatus_Soleaferrea","g__Faecalibacterium","g__Fournierell

a","g__Ruminococcaceae","g__Ruminococcus","g__UCG-

010","g__Intestinibacter","g__Romboutsia","g__Phascolarctobacterium","g__Sutterella") 

 

#turn pseq into df 

melt.pseq.genus <-psmelt(pseq.genus) 

#subset to only include selected genera 

melt.pseq.genus <- subset(melt.pseq.genus, Genus %in% DA_genera) 

#clean and incorporate q-values from ancom-bc 

melt.pseq.genus$Genus <- gsub("g__","",melt.pseq.genus$Genus) 

melt.pseq.genus.final <- merge(melt.pseq.genus,tab_q_vil,by="Genus") 

melt.pseq.genus.final$plot_text = paste(melt.pseq.genus.final$Genus," ", melt.pseq.genus.final$q_val) 

 

#village 

ggplot(data = melt.pseq.genus.final, aes(x = Village, y = Abundance)) + 

  geom_boxplot(outlier.shape  = NA) + 

  geom_jitter(aes(color = Genus), height = 0, width = .2, size=5) + 

  labs(x = "", y = "Relative Abundance (%)\n") + 

  facet_wrap(~ plot_text, scales = "free",ncol = 2)+ 

  theme(axis.title = element_text(size = 20, face = "bold"), 

        axis.text = element_text(size = 20, face="bold"), 

        legend.title = element_blank(), 

        legend.position = "none", 

        strip.text = element_text(size=20, face= "bold.italic"), 

        plot.title = element_text(size=35, face="bold"))+ 

  scale_color_discrete(name="Differentially abundant genera")+ 

  ggtitle("F") 

 

Differentially abundant genera 

#Age ---- 

outAge = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Age", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_age = outAge$res_global 

#adj p values < 0.05  

tab_q_age = res_global_age[, "q_val", drop = FALSE] 

tab_q_age<-filter(tab_q_age, q_val <= 0.05) 
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tab_q_age <- rownames_to_column(tab_q_age,var="Genus") 

tab_q_age$Genus <- gsub("g__","",tab_q_age$Genus) 

#run round_df function first 

tab_q_age <- round_df(tab_q_age,5) 

tab_q_age$q_val <- sub("^","q = ",tab_q_age$q_val) 

 

pseq.genus.age.2 = subset_samples(pseq.genus, Age != "Early-adult") 

outAge2 = ancombc(phyloseq = pseq.genus.age.test,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Age", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_age2 = outAge2$res_global 

#adj p values < 0.05  

tab_q_age2 = res_global_age2[, "q_val", drop = FALSE] 

tab_q_age2<-filter(tab_q_age2, q_val <= 0.05) 

write.csv(tab_q_age2,file="<file/path>ancombc_age_no_early-adults.csv") 

 

#Antibiotics ---- 

#remove TDP06 and TDP04 

pseq.genus.Ant = subset_samples(pseq.genus, Antibiotics != "Uncertain") 

outAnt = ancombc(phyloseq = pseq.genus.Ant,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Antibiotics", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resAnt = outAnt$res 

 

#adjusted p 

tab_q_ant = resAnt$q_val 

tab_q_ant<- tab_q_ant["AntibioticsYes"] 

tab_q_ant<-filter(tab_q_ant, AntibioticsYes <= 0.05) 

tab_q_ant <- rownames_to_column(tab_q_ant,var="Genus") 

tab_q_ant$Genus <- gsub("g__","",tab_q_ant$Genus) 

#run round_df function first 

tab_q_ant <- round_df(tab_q_ant,5) 

tab_q_ant$q_val <- sub("^","q = ",tab_q_ant$AntibioticsYes) 

 

write.csv(tab_q_ant,file="<file/path>ancombc_antibiotics.csv") 

 

#Intestinal Infection ---- 

#remove TDE03, TDE08, TOM01 

pseq.genus.Int = subset_samples(pseq.genus, Intestinal.Infections != "Uncertain") 

outInt = ancombc(phyloseq = pseq.genus.Int,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Intestinal.Infections", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resInt = outInt$res 

#adjusted p 

tab_q_int = resInt$q_val 

tab_q_int<- tab_q_int["Intestinal.InfectionsYes"] 

tab_q_int<-filter(tab_q_int, Intestinal.InfectionsYes <= 0.05) 

tab_q_int <- rownames_to_column(tab_q_int,var="Genus") 

tab_q_int$Genus <- gsub("g__","",tab_q_int$Genus) 
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#run round_df function first 

tab_q_int <- round_df(tab_q_int,5) 

tab_q_int$q_val <- sub("^","q = ",tab_q_int$Intestinal.InfectionsYes) 

write.csv(tab_q_int,file="<file/path>ancombc_intestinal_infections.csv") 

 

#Malaria.Medication ---- 

#remove Uncertain  

pseq.genus.Mal = subset_samples(pseq.genus, Malaria.Medication != "Uncertain") 

outMal = ancombc(phyloseq = pseq.genus.Mal,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Malaria.Medication", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resMal = outMal$res 

 

#adjusted p 

tab_q_mal = resMal$q_val 

tab_q_mal<- tab_q_mal["Malaria.MedicationYes"] 

tab_q_mal<-filter(tab_q_mal, Malaria.MedicationYes <= 0.05) 

tab_q_mal <- rownames_to_column(tab_q_mal,var="Genus") 

tab_q_mal$Genus <- gsub("g__","",tab_q_mal$Genus) 

#run round_df function first 

tab_q_mal <- round_df(tab_q_mal,5) 

tab_q_mal$q_val <- sub("^","q = ",tab_q_mal$Malaria.MedicationYes) 

write.csv(tab_q_mal,file="<file/path>ancombc_malaria.csv") 

 

#Travel ---- 

outTrav = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                  p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                  group = "Travel", struc_zero = F, neg_lb = F, tol = 1e-5,  

                  max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_trav = outTrav$res_global 

#adj p values < 0.05  

tab_q_trav = res_global_trav[, "q_val", drop = FALSE] 

tab_q_trav<-filter(tab_q_trav, q_val <= 0.05) 

tab_q_trav <- rownames_to_column(tab_q_trav,var="Genus") 

tab_q_trav$Genus <- gsub("g__","",tab_q_trav$Genus) 

#run round_df function first 

tab_q_trav <- round_df(tab_q_trav,5) 

tab_q_trav$q_val <- sub("^","q = ",tab_q_trav$q_val) 

write.csv(tab_q_trav,file="<file/path>ancombc_travel.csv") 

 

#Village ---- 

outVillage = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                     p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                     group = "Village", struc_zero = F, neg_lb = F, tol = 1e-5,  

                     max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_village = outVillage$res_global 

#adj p values < 0.05  

tab_q_vil = res_global_village[, "q_val", drop = FALSE] 

tab_q_vil<-filter(tab_q_vil, q_val <= 0.05) 

tab_q_vil <- rownames_to_column(tab_q_vil,var="Genus") 

tab_q_vil$Genus <- gsub("g__","",tab_q_vil$Genus) 
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#run round_df function first 

tab_q_vil <- round_df(tab_q_vil,5) 

tab_q_vil$q_val <- sub("^","q = ",tab_q_vil$q_val) 

write.csv(tab_q_vil,file="<file/path>ancombc_village.csv") 

#Diarrhoea ---- 

outDiar = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                  p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                  group = "Diarrhoea", struc_zero = F, neg_lb = F, tol = 1e-5,  

                  max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resDiar = outDiar$res 

 

#adjusted p 

tab_q_diar = resDiar$q_val 

tab_q_diar<- tab_q_diar["DiarrhoeaYes"] 

tab_q_diar<-filter(tab_q_diar, "DiarrhoeaYes" <= 0.05) 

tab_q_diar <- rownames_to_column(tab_q_diar,var="Genus") 

tab_q_diar$Genus <- gsub("g__","",tab_q_diar$Genus) 

#run round_df function first 

tab_q_diar <- round_df(tab_q_diar,5) 

tab_q_diar$q_val <- sub("^","q = ",tab_q_diar$q_val) 

write.csv(tab_q_diar,file="<file/path>ancombc_diar.csv") 

 

#Sex ---- 

outGen = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Sex", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resGen = outGen$res 

#adjusted p 

tab_q_gen = resGen$q_val 

tab_q_gen<- tab_q_gen["SexMale"] 

tab_q_gen<-filter(tab_q_gen, SexMale <= 0.05) 

write.csv(tab_q_gen,file="<file/path>ancombc_sex.csv") 

 

ITS Community Composition 

Figure 7A 

#alpha div  

#leave controls in analysis 

p.alp=plot_richness(pseq.clean, color="Sampleid", measures=c("Simpson", "Shannon"),nrow = 3) 

p.alp<-p.alp+ geom_point(size=10, alpha=0.7) + 

  theme(strip.text = element_text(size=30, face= "bold"), 

        legend.position = "none", 

        axis.text = element_text(size = 30, face="bold"), 

        plot.title = element_text(size=35,face="bold"))+ 

  ggtitle("A")+ 

  labs (x="",y="") 

 

#relative abundance 

pseq.rel <- microbiome::transform(pseq.clean, 'compositional') 

pseq.rel<-prune_samples(pseq@sam_data$Sampleid!="CON-CTRL",pseq.rel) 

 

#Bray-Curtis and jensen-shannon matrices 

bc_matrix <- ordinate(pseq.rel, method = "NMDS", distance = "bray") 
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jsd_matrix <- ordinate(pseq.rel, method = "NMDS", distance = "jsd") 

 

Figure 7B and C 

#Village 

#for article 

p.nmds.bc <- plot_ordination(pseq.rel, bc_matrix, color = "Village") + geom_point(size = 10)+ 

  theme(axis.title = element_text(size = 20, face = "bold"), 

        axis.text = element_text(size = 20, face="bold"), 

        legend.text = element_text(size = 35, face="bold"), 

        legend.title = element_text(size=35, face="bold"), 

        plot.title = element_text(size=35, face="bold"))+ 

  ggtitle("B") 

p.nmds.bc 

p.nmds.jsd <- plot_ordination(pseq.rel, jsd_matrix, color = "Village")+geom_point(size = 10)+ 

  theme(axis.title = element_text(size = 20, face = "bold"), 

        axis.text = element_text(size = 20, face="bold"), 

        legend.text = element_text(size = 35, face="bold"), 

        legend.title = element_text(size=35, face="bold"), 

        plot.title = element_text(size=35, face="bold"))+ 

  ggtitle("C") 

p.nmds.jsd 

 

SI Figure 3 

#for Supplementary  

vil1<- phyloseq::plot_ordination(pseq.rel, bc_matrix, color = "Village") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

vil2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Village") + geom_point(size = 10) 

vil.leg <- get_legend(vil1) 

vil <-ggarrange(vil1, vil2, vil.leg, nrow = 1,common.legend=T,labels = c("Bray-Curtis",”Jensen-Shannon"),  

                font.label = list(size=30,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .15, 

                legend = "right") 

#run annotate-figure 

 

#Age 

pseq.rel@sam_data$Age <- factor(pseq.rel@sam_data$Age, levels = c("Late-adolescent","Early-adult","Middle-

adult","Late-adult")) 

age1 <- phyloseq::plot_ordination(pseq.rel, bc_matrix, color = "Age") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

age2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Age") + geom_point(size = 10) 

leg <- get_legend(age1) 

age <-ggarrange(age1, age2, leg,nrow = 1,common.legend=T,labels = c("Bray-Curtis","Jensen-Shannon"),  

                font.label = list(size=35,face="bold"), 

                legend = "right", 

                widths = c(2,2,.15), 

                label.x = .1) 

#run annotate-figure 

 

#Antibiotics 

#remove uncertain subjects 

pseq.rel.ant = subset_samples(pseq.rel, Antibiotics != "Uncertain") 

pseq.rel.ant<-prune_samples(pseq.rel.ant@sam_data$Sampleid!="CON-CTRL",pseq.rel.ant) 
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pseq.rel.ant@sam_data$Antibiotics <- factor(pseq.rel.ant@sam_data$Antibiotics, levels = c("Yes","No")) 

bc_matrix.ant <- ordinate(pseq.rel.ant, method = "NMDS", distance = "bray") 

jsd_matrix.ant <- ordinate(pseq.rel.ant, method = "NMDS", distance = "jsd") 

ant1 <- phyloseq::plot_ordination(pseq.rel.ant, bc_matrix.ant, color = "Antibiotics") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

ant2 <- phyloseq::plot_ordination(pseq.rel.ant, jsd_matrix.ant, color = "Antibiotics") + geom_point(size = 10) 

ant.leg <- get_legend(ant1) 

ant <-ggarrange(ant1, ant2, ant.leg,nrow = 1,common.legend=T,labels = c("Bray-Curtis","Jensen-Shannon"),  

                font.label = list(size=35,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .25, 

                legend = "right") 

#run annotate-figure 

 

#Biological sex 

sex1 <- phyloseq::plot_ordination(pseq.rel, bc_matrix, color = "Sex") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

sex2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Sex") + geom_point(size = 10) 

sex.leg <- get_legend(sex1) 

sex <-ggarrange(sex1, sex2, sex.leg, nrow = 1,common.legend=T,labels = c("Bray-Curtis","Jensen-Shannon"),  

                font.label = list(size=30,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .4, 

                legend = "right") 

#run annotate-figure 

 

#Diarrhoea 

diar1 <- phyloseq::plot_ordination(pseq.rel, bc_matrix, color = "Diarrhoea") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

diar2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Diarrhoea") + geom_point(size = 10) 

diar.leg <- get_legend(diar1) 

diar <-ggarrange(diar1, diar2, diar.leg, nrow = 1,common.legend=T,labels = c("Bray-Curtis","Jensen-Shannon"),  

                 font.label = list(size=30,face="bold"), 

                 widths = c(2,2,.15), 

                 label.x = .3, 

                 legend = "right") 

#run annotate-figure 

 

#Intestinal Infections 

#remove uncertain subjects 

pseq.rel.int = subset_samples(pseq.rel, Intestinal.Infections != "Uncertain") 

pseq.rel.int<-prune_samples(pseq.rel.int@sam_data$Sampleid!="CON-CTRL",pseq.rel.int) 

pseq.rel.int@sam_data$Intestinal.Infections <- factor(pseq.rel.int@sam_data$Intestinal.Infections, levels = 

c("Yes","No")) 

bc_matrix.int <- ordinate(pseq.rel.int, method = "NMDS", distance = "bray") 

jsd_matrix.int <- ordinate(pseq.rel.int, method = "NMDS", distance = "jsd") 

int1<- phyloseq::plot_ordination(pseq.rel.int, bc_matrix.int, color = "Intestinal.Infections") + geom_point(size = 

10)+ 

  scale_color_discrete("Intestinal Infections")+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

int2<- phyloseq::plot_ordination(pseq.rel.int, jsd_matrix.int, color = "Intestinal.Infections") + geom_point(size = 

10)+ 
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  scale_colour_discrete("Intestinal Infections") 

int.leg <- get_legend(int1) 

int <-ggarrange(int1, int2, int.leg, nrow = 1,common.legend=T,labels = c("Bray-Curtis","Jensen-Shannon"),  

                font.label = list(size=30,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .3, 

                legend = "right") 

#run annotate-figure 

 

#Malaria Medication  

#remove uncertain subjects 

pseq.rel.mal = subset_samples(pseq.rel, Malaria.Medication != "Uncertain") 

pseq.rel.mal<-prune_samples(pseq.rel.mal@sam_data$Sampleid!="CON-CTRL",pseq.rel.mal) 

pseq.rel.mal@sam_data$Malaria.Medication <- factor(pseq.rel.mal@sam_data$Malaria.Medication, levels = 

c("Yes","No")) 

bc_matrix.mal <- ordinate(pseq.rel.mal, method = "NMDS", distance = "bray") 

jsd_matrix.mal <- ordinate(pseq.rel.mal, method = "NMDS", distance = "jsd") 

 

mal1<- phyloseq::plot_ordination(pseq.rel.mal, bc_matrix.mal, color = "Malaria.Medication") + geom_point(size 

= 10)+ 

  scale_color_discrete("Malaria Medication")+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

mal2<- phyloseq::plot_ordination(pseq.rel.mal, jsd_matrix.mal, color = "Malaria.Medication") + 

geom_point(size = 10)+ 

  scale_colour_discrete("Malaria Medication") 

mal.leg <- get_legend(mal1) 

mal <-ggarrange(mal1, mal2, mal.leg, nrow = 1,common.legend=T,labels = c("Bray-Curtis"Jensen-Shannon"),  

                font.label = list(size=30,face="bold"), 

                widths = c(2,2,.15), 

                label.x = .15, 

                legend = "right") 

#run annotate-figure 

 

#Travel 

trav1<- phyloseq::plot_ordination(pseq.rel, bc_matrix, color = "Travel") + geom_point(size = 10)+ 

  theme(legend.text=element_text(size=30,face="bold"), 

        legend.title = element_text(size=30,face="bold")) 

trav2<-phyloseq::plot_ordination(pseq.rel, jsd_matrix, color = "Travel") + geom_point(size = 10) 

trav.leg <- get_legend(trav1) 

trav <-ggarrange(trav1, trav2, trav.leg, nrow = 1,common.legend=T,labels = c("Bray-Curtis","Jensen-Shannon"),  

                 font.label = list(size=30,face="bold"), 

                 widths = c(2,2,.15), 

                 label.x = .15, 

                 legend = "right") 

#run annotate-figure 

 

Figure 7 D and E 

#barplots of village average distances ---- 

#first get p-values using pairwise adonis 

i.bray="bray" 

pseq.rel %>% 

  phyloseq::distance(method = i.bray) ->  dist.bray 

bray.p<-mctoolsr::calc_pairwise_permanovas(dist.bray, as(sample_data(pseq.rel), "data.frame"), "Village") 

bc = phyloseq::distance(pseq.rel, "bray") 

bc.m = melt(as.matrix(bc)) 



 

94 

 

bc.m = bc.m %>% 

  filter(as.character(Var1) != as.character(Var2)) %>% 

  mutate_if(is.factor, as.character) 

 

#village 

sd.village <- data.frame(pseq.rel@sam_data$Sampleid, pseq.rel@sam_data$Village) 

sd.village <- sd.village %>%  

  rename(Village = pseq.rel.sam_data.Village) 

sd.village <- sd.village %>%  

  rename(Sampleid = pseq.rel.sam_data.Sampleid) 

colnames(sd.village) = c("Var1", "Type1") 

bc.sd = left_join(bc.m, sd.village, by = "Var1") 

colnames(sd.village) = c("Var2", "Type2") 

bc.sd = left_join(bc.sd, sd.village, by = "Var2") 

 

#remove self from bc.sd 

bc.sd = bc.sd %>% 

  filter(as.character(Type1) != as.character(Type2)) %>% 

  mutate_if(is.factor, as.character) 

 

#duinpos vs denui 

duinpos.denui <- subset(bc.sd, bc.sd$Type1 == "Duinpos") 

duinpos.denui <- subset(duinpos.denui, duinpos.denui$Type2 == "Den/ui") 

duinpos.denui.avg <- mean(duinpos.denui$value) 

 

#duinpos vs MP 

duinpos.MP <- subset(bc.sd, bc.sd$Type1 == "Duinpos") 

duinpos.MP <- subset(duinpos.MP, duinpos.MP$Type2 == "Mountain Pos") 

duinpos.MP.avg <- mean (duinpos.MP$value) 

 

#duinpos vs OM 

duinpos.OM <- subset(bc.sd, bc.sd$Type1 == "Duinpos") 

duinpos.OM <- subset(duinpos.OM, duinpos.OM$Type2 == "!Om!o") 

duinpos.OM.avg <- mean(duinpos.OM$value) 

 

#denui vs MP 

denui.MP <- subset(bc.sd, bc.sd$Type1 == "Den/ui") 

denui.MP <- subset(duinpos.MP, denui.MP$Type2 == "Mountain Pos") 

denui.MP.avg <- mean(duinpos.MP$value) 

 

#denui vs OM 

denui.OM <- subset(bc.sd, bc.sd$Type1 == "Den/ui") 

denui.OM <- subset(denui.OM, denui.OM$Type2 == "!Om!o") 

denui.OM.avg <- mean(denui.OM$value) 

 

#MP vs OM  

MP.OM <- subset(bc.sd, bc.sd$Type1 == "Mountain Pos") 

MP.OM <- subset(MP.OM, MP.OM$Type2 == "!Om!o") 

MP.OM.avg <- mean(MP.OM$value) 

 

vals <- c(duinpos.denui.avg,duinpos.MP.avg,duinpos.OM.avg,denui.MP.avg,denui.OM.avg,MP.OM.avg) 

col <- c("Duinpos vs Den/ui", "Duinpos vs Mountain Pos", "Duinpos vs !Om!o", 

         "Den/ui vs Mountain Pos", "Den/ui vs !Om!o","Mountain Pos vs !Om!o") 

village.df.bc <- data.frame(col,vals) 

village.df.bc$FDRp <- bray.p$pvalFDR 
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village.df.bc$FDRp <- sub("^","p =", village.df.bc$FDRp) 

p.bar.bc<-ggplot(village.df.bc, aes(x=reorder(col,vals), y=vals,fill= col)) +  

  geom_bar(stat = "identity") + 

  theme_bw()+ 

  theme(axis.title = element_text(size = 30,face="bold"), 

        axis.text.x = element_blank(), 

        axis.text.y = element_text(size=25, face="bold"), 

        legend.title = element_blank(), 

        legend.text = element_text(face="bold",size=30), 

        legend.position = "right", 

        aspect.ratio = 5/5)+ 

  geom_text(aes(label=FDRp),vjust=0, fontface = "bold",size=8)+ 

  expand_limits(y=0.5)+ 

  labs (y="Bray-Curtis", x="")+ 

  scale_fill_discrete() 

p.bar.bc 

 

#jsd 

i.jsd="jsd" 

pseq.rel %>% 

  phyloseq::distance(method = i.jsd) ->  dist.jsd 

jsd.p<-mctoolsr::calc_pairwise_permanovas(dist.jsd, as(sample_data(pseq.rel), "data.frame"), "Village") 

jsd = phyloseq::distance(pseq.rel, "jsd") 

jsd.m = melt(as.matrix(jsd)) 

jsd.m = jsd.m %>% 

  filter(as.character(Var1) != as.character(Var2)) %>% 

  mutate_if(is.factor, as.character) 

#village 

sd.village <- data.frame(pseq.rel@sam_data$Sampleid, pseq.rel@sam_data$Village) 

sd.village <- sd.village %>%  

  rename(Village = pseq.rel.sam_data.Village) 

sd.village <- sd.village %>%  

  rename(Sampleid = pseq.rel.sam_data.Sampleid) 

colnames(sd.village) = c("Var1", "Type1") 

jsd.sd = left_join(jsd.m, sd.village, by = "Var1") 

colnames(sd.village) = c("Var2", "Type2") 

jsd.sd = left_join(jsd.sd, sd.village, by = "Var2") 

 

#remove self from jsd.sd 

jsd.sd = jsd.sd %>% 

  filter(as.character(Type1) != as.character(Type2)) %>% 

  mutate_if(is.factor, as.character) 

 

#duinpos vs denui 

duinpos.denui <- subset(jsd.sd, jsd.sd$Type1 == "Duinpos") 

duinpos.denui <- subset(duinpos.denui, duinpos.denui$Type2 == "Den/ui") 

duinpos.denui.avg <- mean(duinpos.denui$value) 

 

#duinpos vs MP 

duinpos.MP <- subset(jsd.sd, jsd.sd$Type1 == "Duinpos") 

duinpos.MP <- subset(duinpos.MP, duinpos.MP$Type2 == "Mountain Pos") 

duinpos.MP.avg <- mean (duinpos.MP$value) 

 

#duinpos vs OM 

duinpos.OM <- subset(jsd.sd, jsd.sd$Type1 == "Duinpos") 



 

96 

 

duinpos.OM <- subset(duinpos.OM, duinpos.OM$Type2 == "!Om!o") 

duinpos.OM.avg <- mean(duinpos.OM$value) 

 

#denui vs MP 

denui.MP <- subset(jsd.sd, jsd.sd$Type1 == "Den/ui") 

denui.MP <- subset(duinpos.MP, denui.MP$Type2 == "Mountain Pos") 

denui.MP.avg <- mean(duinpos.MP$value) 

 

#denui vs OM 

denui.OM <- subset(jsd.sd, jsd.sd$Type1 == "Den/ui") 

denui.OM <- subset(denui.OM, denui.OM$Type2 == "!Om!o") 

denui.OM.avg <- mean(denui.OM$value) 

 

#MP vs OM  

MP.OM <- subset(jsd.sd, jsd.sd$Type1 == "Mountain Pos") 

MP.OM <- subset(MP.OM, MP.OM$Type2 == "!Om!o") 

MP.OM.avg <- mean(MP.OM$value) 

 

vals <- c(duinpos.denui.avg,duinpos.MP.avg,duinpos.OM.avg,denui.MP.avg,denui.OM.avg,MP.OM.avg) 

col <- c("Duinpos vs Den/ui", "Duinpos vs Mountain Pos", "Duinpos vs !Om!o", 

         "Den/ui vs Mountain Pos", "Den/ui vs !Om!o","Mountain Pos vs !Om!o") 

village.df.jsd <- data.frame(col,vals) 

village.df.jsd$FDRp <- jsd.p$pvalFDR 

village.df.jsd$FDRp <- sub("^","p =", village.df.jsd$FDRp) 

 

p.bar.jsd <-ggplot(village.df.jsd, aes(x=reorder(col,vals), y=vals,fill= col)) +  

  geom_bar(stat = "identity") + 

  theme_bw()+ 

  theme(axis.title = element_text(size = 30,face="bold"), 

        axis.text.x = element_blank(), 

        axis.text.y = element_text(size=25, face="bold"), 

        legend.title = element_blank(), 

        legend.text = element_text(face="bold",size=30), 

        legend.position = "right", 

        aspect.ratio = 3/3)+ 

  geom_text(aes(label=FDRp),vjust=0, fontface = "bold", size=8)+ 

  labs (y="Jensen-Shannon", x="")+ 

  scale_fill_discrete() 

p.bar.jsd 

p.final <-ggarrange(p.bar.bc, p.bar.jsd, nrow = 1, common.legend = T, labels = c("D","E"),  

                    font.label = list(size=35,face="bold")) 

p.final 

 

Figure 7F 

#Remove KIT-CTRL 

pseq.clean <- prune_samples(pseq.clean@sam_data$Sampleid!="CON-CTRL",pseq.clean) 

 

#2. Aggregate to genus level and remove uncultured and unknown genera 

pseq.genus <- aggregate_taxa(pseq.clean,"Genus") 

pseq.genus <- subset_taxa(pseq.genus, Genus != "g__uncultured") 

pseq.genus <- subset_taxa(pseq.genus, Genus != "Unknown") 

#Village ---- 

outVillage = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                     p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  
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                     group = "Village", struc_zero = F, neg_lb = F, tol = 1e-5,  

                     max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_village = outVillage$res_global 

#adj p values < 0.05  

tab_q_vil = res_global_village[, "q_val", drop = FALSE] 

tab_q_vil<-filter(tab_q_vil, q_val <= 0.05) 

tab_q_vil <- rownames_to_column(tab_q_vil,var="Genus") 

tab_q_vil$Genus <- gsub("g__","",tab_q_vil$Genus) 

#run round_df function first 

tab_q_vil <- round_df(tab_q_vil,5) 

tab_q_vil$q_val <- sub("^","q = ",tab_q_vil$q_val) 

write.csv(tab_q_vil,file="<file/path>/ancombc_village.csv") 

 

#run 1-create-phyloseq-decontam-ITS.R, then remove controls, convert to relative abundance and aggregate to 

genus 

pseq.clean<-prune_samples(pseq.clean@sam_data$Sampleid!="CON-CTRL",pseq.clean) 

pseq.ra <- microbiome :: transform (pseq.clean,'compositional') 

pseq.genus <- tax_glom(pseq.ra, "Genus", NArm=T) 

#DA_genera identified by ANCOM-BC 

DA_genera<- 

c("g__Stagonospora","g__Aspergillus","g__Saccharomyces","g__Candida","g__Porodisculus","g__Schizophyll

um","g__Panellus","g__Mycoacia") 

#turn pseq into df 

melt.pseq.genus <-psmelt(pseq.genus) 

#subset to only include selected genera 

melt.pseq.genus <- subset(melt.pseq.genus, Genus %in% DA_genera) 

#clean 

melt.pseq.genus$Genus <- gsub("g__","",melt.pseq.genus$Genus) 

melt.pseq.genus.final <- merge(melt.pseq.genus,tab_q_vil,by="Genus") 

melt.pseq.genus.final$plot_text = paste(melt.pseq.genus.final$Genus," ", melt.pseq.genus.final$q_val) 

#village 

vil.da <- ggplot(data = melt.pseq.genus.final, aes(x = Village, y = Abundance)) + 

  geom_boxplot(outlier.shape  = NA) + 

  geom_jitter(aes(color = Genus), height = 0, width = .2, size=5) + 

  labs(x = "", y = "Relative Abundance (%)\n") + 

  facet_wrap(~ plot_text, scales = "free",ncol = 2)+ 

  theme(axis.title = element_text(size = 20, face = "bold"), 

        axis.text = element_text(size = 20, face="bold"), 

        legend.title = element_blank(), 

        legend.position = "none", 

        strip.text = element_text(size=20, face= "bold.italic"), 

        plot.title = element_text(size=35, face="bold"))+ 

  scale_color_discrete(name="Differentially abundant genera")+ 

  ggtitle("F") 

 

#Age ---- 

outAge = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Age", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_age = outAge$res_global 

#adj p values < 0.05  

tab_q_age = res_global_age[, "q_val", drop = FALSE] 

tab_q_age<-filter(tab_q_age, q_val <= 0.05) 

tab_q_age <- rownames_to_column(tab_q_age,var="Genus") 
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tab_q_age$Genus <- gsub("g__","",tab_q_age$Genus) 

#run round_df function first 

tab_q_age <- round_df(tab_q_age,5) 

tab_q_age$q_val <- sub("^","q = ",tab_q_age$q_val) 

write.csv(tab_q_age,file="<file/path>/ancombc_age.csv") 

 

pseq.genus.age.2 = subset_samples(pseq.genus, Age != "Early-adult") 

outAge2 = ancombc(phyloseq = pseq.genus.age.2,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                  p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                  group = "Age", struc_zero = F, neg_lb = F, tol = 1e-5,  

                  max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_age2 = outAge2$res_global 

#adj p values < 0.05  

tab_q_age2 = res_global_age2[, "q_val", drop = FALSE] 

tab_q_age2<-filter(tab_q_age2, q_val <= 0.05) 

tab_q_age2 <- rownames_to_column(tab_q_age2,var="Genus") 

tab_q_age2$Genus <- gsub("g__","",tab_q_age2$Genus) 

#run round_df function first 

tab_q_age2 <- round_df(tab_q_age2,5) 

tab_q_age2$q_val <- sub("^","q = ",tab_q_age2$q_val) 

write.csv(tab_q_age2,file="<file/path>/ancombc_age_no_early-adults.csv") 

 

#Sex ---- 

outGen = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Sex", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resGen = outGen$res 

 

#adjusted p 

tab_q_gen = resGen$q_val 

tab_q_gen<- tab_q_gen["SexMale"] 

tab_q_gen<-filter(tab_q_gen, SexMale <= 0.05) 

tab_q_gen <- rownames_to_column(tab_q_gen,var="Genus") 

tab_q_gen$Genus <- gsub("g__","",tab_q_gen$Genus) 

#run round_df function first 

tab_q_gen <- round_df(tab_q_gen,5) 

tab_q_gen$q_val <- sub("^","q = ",tab_q_gen$SexMale) 

write.csv(tab_q_gen,file="<file/path>/ancombc_sex.csv") 

 

#Intestinal Infection ---- 

#remove TDE03, TDE08, TOM01 

pseq.genus.Int = subset_samples(pseq.genus, Intestinal.Infections != "Uncertain") 

outInt = ancombc(phyloseq = pseq.genus.Int,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Intestinal.Infections", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resInt = outInt$res 

 

#adjusted p 

tab_q_int = resInt$q_val 

tab_q_int<- tab_q_int["Intestinal.InfectionsYes"] 
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tab_q_int<-filter(tab_q_int, Intestinal.InfectionsYes <= 0.05) 

tab_q_int <- rownames_to_column(tab_q_int,var="Genus") 

tab_q_int$Genus <- gsub("g__","",tab_q_int$Genus) 

#run round_df function first 

tab_q_int <- round_df(tab_q_int,5) 

tab_q_int$q_val <- sub("^","q = ",tab_q_int$Intestinal.InfectionsYes) 

write.csv(tab_q_int,file="<file/path>/ancombc_intestinal_infections.csv") 

 

#Malaria.Medication ---- 

#remove Uncertain  

pseq.genus.Mal = subset_samples(pseq.genus, Malaria.Medication != "Uncertain") 

outMal = ancombc(phyloseq = pseq.genus.Mal,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Malaria.Medication", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resMal = outMal$res 

 

#adjusted p 

tab_q_mal = resMal$q_val 

tab_q_mal<- tab_q_mal["Malaria.MedicationYes"] 

tab_q_mal<-filter(tab_q_mal, Malaria.MedicationYes <= 0.05) 

tab_q_mal <- rownames_to_column(tab_q_mal,var="Genus") 

tab_q_mal$Genus <- gsub("g__","",tab_q_mal$Genus) 

#run round_df function first 

tab_q_mal <- round_df(tab_q_mal,5) 

tab_q_mal$q_val <- sub("^","q = ",tab_q_mal$Malaria.MedicationYes) 

write.csv(tab_q_mal,file="<file/path>/ancombc_malaria.csv") 

 

#Travel ---- 

outTrav = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                  p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                  group = "Travel", struc_zero = F, neg_lb = F, tol = 1e-5,  

                  max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_trav = outTrav$res_global 

 

#adj p values < 0.05  

tab_q_trav = res_global_trav[, "q_val", drop = FALSE] 

tab_q_trav<-filter(tab_q_trav, q_val <= 0.05) 

tab_q_trav <- rownames_to_column(tab_q_trav,var="Genus") 

tab_q_trav$Genus <- gsub("g__","",tab_q_trav$Genus) 

#run round_df function first 

tab_q_trav <- round_df(tab_q_trav,5) 

tab_q_trav$q_val <- sub("^","q = ",tab_q_trav$q_val) 

write.csv(tab_q_trav,file="<file/path>/ancombc_travel.csv") 

 

 

#Village ---- 

outVillage = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                     p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                     group = "Village", struc_zero = F, neg_lb = F, tol = 1e-5,  

                     max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

res_global_village = outVillage$res_global 



 

100 

 

 

#adj p values < 0.05  

tab_q_vil = res_global_village[, "q_val", drop = FALSE] 

tab_q_vil<-filter(tab_q_vil, q_val <= 0.05) 

tab_q_vil <- rownames_to_column(tab_q_vil,var="Genus") 

tab_q_vil$Genus <- gsub("g__","",tab_q_vil$Genus) 

#run round_df function first 

tab_q_vil <- round_df(tab_q_vil,5) 

tab_q_vil$q_val <- sub("^","q = ",tab_q_vil$q_val) 

write.csv(tab_q_vil,file="<file/path>/ancombc_village.csv") 

 

#Diarrhoea ---- 

outDiar = ancombc(phyloseq = pseq.genus,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                  p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                  group = "Diarrhoea", struc_zero = F, neg_lb = F, tol = 1e-5,  

                  max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resDiar = outDiar$res 

 

#adjusted p 

tab_q_diar = resDiar$q_val 

tab_q_diar<- tab_q_diar["DiarrhoeaYes"] 

tab_q_diar<-filter(tab_q_diar, "DiarrhoeaYes" <= 0.05) 

tab_q_diar <- rownames_to_column(tab_q_diar,var="Genus") 

tab_q_diar$Genus <- gsub("g__","",tab_q_diar$Genus) 

#run round_df function first 

tab_q_diar <- round_df(tab_q_diar,5) 

tab_q_diar$q_val <- sub("^","q = ",tab_q_diar$q_val) 

write.csv(tab_q_diar,file="<file/path>/ancombc_diar.csv") 

 

#Antibiotics ---- 

#remove TDP06 and TDP04 

pseq.genus.Ant = subset_samples(pseq.genus, Antibiotics != "Uncertain") 

outAnt = ancombc(phyloseq = pseq.genus.Ant,  formula = "Antibiotics+Sex+Travel+Age+Village+ 

              Intestinal.Infections+Diarrhoea+Malaria.Medication",  

                 p_adj_method = "BH", zero_cut = 1, lib_cut = 0,  

                 group = "Antibiotics", struc_zero = F, neg_lb = F, tol = 1e-5,  

                 max_iter = 100, conserve = TRUE, alpha = 0.05, global = TRUE) 

resAnt = outAnt$res 

 

#adjusted p 

tab_q_ant = resAnt$q_val 

tab_q_ant<- tab_q_ant["AntibioticsYes"] 

tab_q_ant<-filter(tab_q_ant, AntibioticsYes <= 0.05) 

tab_q_ant <- rownames_to_column(tab_q_ant,var="Genus") 

tab_q_ant$Genus <- gsub("g__","",tab_q_ant$Genus) 

#run round_df function first 

tab_q_ant <- round_df(tab_q_ant,5) 

tab_q_ant$q_val <- sub("^","q = ",tab_q_ant$AntibioticsYes) 

write.csv(tab_q_ant,file="<file/path>/ancombc_antibiotics.csv") 
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