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Highlights 

•First peatland map in the Angolan Highlands using Google Earth Engine. 
•The peatland extent in Angola is much larger than previously estimated. 
•The peatlands have formed in lake environments, river floodplains and terraces. 
•The African Humid Period could be linked is as a driver of peatland initiation. 
•These previously unrecognised peatlands are under anthropogenic pressure. 

 

\Abstract 

The Angolan highlands are hydrologically and ecologically important, supporting peatland 
deposits. Peatlands are carbon rich ecosystems and are the largest terrestrial carbon store. We 
present a first estimate of the extent of peatlands in the Angolan Highlands, using Google 
Earth Engine. Our conservative estimate of peatland coverage is 1634 km2, 2.65% of a 
mapped area spanning approximately 61,590 km2. This is a crucial first step in providing the 
peatland carbon inventory for the region and to facilitate conservation and management 
strategies. We include the peatland characteristics with respect to topographic data and 
common remote sensing indices of Normalised Difference Vegetation Index and Normalised 
Difference Water Index. The results suggest that Angolan Highlands peatland is highly 
variable in terms of elevation, slope, vegetation cover and standing water occurrence. 
Radiocarbon dating of riparian peatlands suggest two stages of peatland initiation: one about 
7100 cal. yr BP, during the African humid period, and another from about 1100 cal. yr BP to 
present after the African humid period ended. The temporal control of riparian peat formation 
is river dynamics and the formation of terraces. Source lake peatland is slightly younger and 
has average maximum age of 890 cal. yr BP. The Angolan Highlands ecosystem and 
peatlands are possibly under strain from anthropogenic influence and climate change, making 
this peatland deposit a potential carbon emission source. 

 

 

 



2 
 

Graphical abstract 

 

The first map of the Angolan Highlands peatlands. An estimated peatland area of 1632 km2 is 
derived from the overlap of the Landsat 8 and Sentinel 2 random forest classifications  

Keywords: Carbon storage; Radiocarbon; Remote sensing; Okavango; Normalised 
Difference Vegetation Index; Google Earth Engine 
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1. Introduction 

Peatlands are of critical importance, having great economic, ecological, and cultural value 
(Ramsar, 2002; Limpens et al., 2008; Xu et al., 2018). Peatlands are terrestrial wetland 
ecosystems, providing a range of ecosystem services as they regulate and filter water flows 
(Frolking et al., 2011; Evers et al., 2017; DeLancey et al., 2019), aid in agricultural 
production (Page et al., 2011), are an energy source (Montanarella et al., 2006), and they 
support biodiversity (Minayeva et al., 2017; Xu et al., 2018). The most important peatland 
function, that is poorly quantified globally, is ecosystem carbon storage (Rieley and Page, 
2016; Xu et al., 2018). Covering 3% of the earth's surface, peatlands are the largest natural 
terrestrial carbon store (Page et al., 2011), containing more carbon than all the world's forests 
(Joosten, 2011). Over the last decade, unprecedented growth of fossil fuel emissions and 
rising global temperatures have placed greater importance on carbon sinks (Friedlingstein et 
al., 2019; GCP, 2020; Loisel et al., 2021). Accurate mapping of peatlands is essential to 
determine the extent and carbon pool of peatlands in relation to global carbon stock, and to 
facilitate peatland preservation (Rieley and Page, 2016; Xu et al., 2018; Minasny et al., 
2019). 

Global estimates are often based on coarse country inventories and outdated global soil maps 
(Tanneberger et al., 2017; Xu et al., 2018; Minasny et al., 2019). Estimates of global peatland 
extent range from 1 to 4.6 million km2, and carbon stock estimates range between 113 and 
612 Pg carbon (Minasny et al., 2019). The large data ranges have been attributed to the 
compilation of different estimations from various sources (Joosten, 2010; Page et al., 2011), 
and the recycling of data without careful consideration to the level of accuracy and the 
inventory techniques used (Joosten, 2010; Rieley and Page, 2016). To confound matters, 
there is no globally accepted definition for peat or peatland (Xu et al., 2018; Minasny et al., 
2019). Peat is classified as a soil with high organic matter content, which ranges from 30% to 
100% depending on the definition used (Joosten and Clarke, 2002; Montanarella et al., 2006; 
Lindsay, 2010). Peatlands have been defined as having a minimum peat thickness ranging 
from 10 to 100 cm, subject to local classification schemes or scientific discipline (Bord na 
Móna, 1984; Joosten and Clarke, 2002; Montanarella et al., 2006; Xu et al., 2018). The high 
organic matter content results from a combination of peat forming vegetation and incomplete 
decomposition of organic matter due to waterlogged and anoxic conditions (Montanarella et 
al., 2006; Lawson et al., 2015). 

Most known peatlands in the northern hemisphere have been mapped, covering parts of 
Europe and North America (Rieley and Page, 2016; Tanneberger et al., 2017). Deposits also 
occur in the tropics, mostly in Southeast Asia, the Caribbean and Central America, South 
America, and Africa (Rieley and Page, 2016). Tropical peatlands have been defined as peats 
that lie between the Tropics of Cancer and Capricorn, including both lowland and upland peat 
(Page et al., 2007, Page et al., 2011). Africa reflects a diversity of peatland depositional 
environments that vary between sites and are mostly groundwater fed, reflecting the dry 
climate of the continent (Grundling and Grootjans, 2016). Large ombotrophic bogs do exist 
in wet equatorial regions such as Congo Basin (Davenport et al., 2020). Page et al. (2011) 
provide an estimate of peatland extent for Angola at 2640 km2, a value that was later 
rereported in Rieley and Page (2016). The estimate was derived from the maximum area of 
10,261 km2 for histosol estimation in the Global Peatland Database (GPD, 2004), as histosols 
are regarded as peats in some global peat inventories (Montanarella et al., 2006; Xu et al., 
2018). Joosten (2010) provides two estimates for Angolan peatland extent, one for 1990 and 
one for 2008, at 10,000 km2 and 9910 km2, respectively. Such estimates are not always 
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strictly comparable due to different definitions of peat and sampling methods used (Rieley 
and Page, 2016). 

Angola hosts unique habitats and species and is possibly one of the least documented 
biodiversity hotspot areas in the world (Myers et al., 2000). Exploratory surveys conducted 
by the National Geographic Okavango Wilderness Project (NGOWP) have identified 
extensive peat deposits in the eastern Angolan Highlands (Conradie et al., 2016; Goyder et 
al., 2018). The difficulty in accessibility and the large-scale mapping requirement of the 
Angolan Highlands means that the carbon inventory of this peatland deposit remains 
unknown. This study uses Google Earth Engine (GEE), a remote sensing (RS) approach, to 
map these peatlands. Through background knowledge of the Angolan Highlands, a land cover 
classification is provided, including a first map of the potential peatland extent. Peatland 
characteristics with respect to common RS indices such as Normalised Difference Vegetation 
Index (NDVI), Normalised Difference Water Index (NDWI) and topographic data – elevation 
and slope are included. Radiocarbon (14C) dates of several peat cores collected from the study 
site also inform the possible control of peatland formation for the Angolan Highlands. 

2. Methods 

2.1. Study area 

The Angolan Highlands is a central water source region for three major river basins of sub-
Saharan Africa, contributing to the Congo basin to the north, the Zambezi basin to the east, 
and the Okavango basin to the south (Milzow et al., 2009; Abiodun et al., 2019). The 
highlands are the only source region of the Okavango Delta, an area rich in species diversity 
(Marazzi et al., 2017; Yurco et al., 2017). Civil war between 1975 and 2002, and widespread 
minefields have hindered access to the highlands (Conradie et al., 2016; Midgley and 
Engelbrecht, 2019) for nearly 50 years, and despite its hydrological and ecological 
significance, it remains little studied. The NGOWP has undertaken the most widespread 
scientific research in the highlands over the last decade. Since 2012, surveys have highlighted 
previously undocumented indigenous fauna (Conradie et al., 2016; Taylor et al., 2018) and 
flora (Goyder et al., 2018). 

The Angolan Highlands mapped area for this study is in the southeast of Angola (Fig. 1). The 
mapped area spanning a latitudinal range of 11°54′–13°54′ S and longitudinal range of 
18°05′–20°34′ E covers approximately 61,590 km2, and has an elevation range from 
1119 m.asl in the southeast of Moxico province to 1676 m.asl near the Cuito Source Lake. It 
is part of an extensive interior plateau that covers 65% of the country (Huntley et al., 2019). It 
is characterised by a vast peneplain draining Kalahari sands, with slow flowing rivers that 
meander across a gently sloping plateau towards the southeast (Goyder et al., 2018; Huntley 
et al., 2019). The region has cool annual temperatures of 15 °C and annual rainfall between 
900 and 1320 mm, with less rainfall in the south (Abiodun et al., 2019; Huntley et al., 2019). 
The climate is strongly seasonal, with hot, wet summers from October to May and mild to 
cool, dry winters from June to September (Abiodun et al., 2019; Huntley et al., 2019). 
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Fig. 1. Study site map, (a) Map extent within Angola, (b) Hillshade view of the four riparian Lungui Bungu 
River cores; samples 1, 2 and 3 lie within the current river floodplain, terrace 1, and sample 4 lies on the relict 
floodplain, terrace 2, and (c) Map extent for this study, showing the three remaining peat core locations and the 
hillshade view extent. 

The highlands lie within the Angolan miombo woodland ecoregion and contain tropical and 
subtropical grasslands, tree, and shrub savannas (Goyder et al., 2018; Huntley et al., 2019). 
The wide river valleys are characterised by extensive wet grasslands, peatlands, and ox-box 
lakes (Conradie et al., 2016). The impeded drainage and high precipitation in the rainy season 
cause temporarily waterlogged soils in the valleys that support humid grassland borders with 
humic topsoil and dwarf shrubs and prevent the development of miombo woodland (Conradie 
et al., 2016). The surrounding hills are dominated by miombo woodland (Conradie et al., 
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2016; Goyder et al., 2018). Miombo is the Swahili word for oak-like Brachystegia, a genus of 
tree comprising many species (Huntley et al., 2019; WWF, 2021). The miombo woodlands 
contain over 8500 plant species, they provide habitat for wildlife including the largest 
populations of elephants in Africa, and support millions of people who are dependent on the 
woodlands for their livelihoods (WWF, 2021). The NGOWP has extracted seven peat cores 
from four areas in the Angolan Highlands. Four samples were collected along the Lungui 
Bungu River, and the remaining three samples were collected from the Cuito, Cuanavale and 
Cuando source lakes (Fig. 1). 

2.2. Peatland mapping 

GEE has an extensive catalogue of RS datasets with various spectral and spatial resolutions 
that have been used for multiple applications, including land cover classifications and 
wetland mapping (Mahdianpari et al., 2019; Mutanga and Kumar, 2019; Amani et al., 2020). 
Due to the unique characteristics of peatlands, multisensory mapping approaches are often 
implemented, using optical, radar and LiDAR satellite imagery to identify and discriminate 
peatland from other wetland features (Mahdianpari et al., 2019; DeLancey et al., 2019). 
Satellite image selection is dependent on the characteristics of the peatland for each site 
(DeLancey et al., 2019; Amani et al., 2020). Although not exclusively, tropical peatlands 
have been mapped according to distinct features, including vegetation cover, standing water 
occurrence, and topography (Jaenicke et al., 2008; Draper et al., 2014; Dargie et al., 2017). 
GEE applications can operate independently, but due to the high geographic variability of 
peatlands, a level of ground truthing is required to support the GEE application (DeLancey et 
al., 2019; Mahdianpari et al., 2019). 

2.2.1. GEE data exploration 

All RS data was acquired, processed, and obtained directly from GEE (Supplementary 
Material: Table 1). There are no site-specific land cover maps of the area (Fig. 1c). Through 
exploratory analysis using GEE, the Copernicus Global Land Cover Layers: CGLS_LC100 
collection 3 product was used to generate an unsupervised land cover classification (Fig. 2). 
The product classification has a 100 m resolution and a global accuracy of 80% (Buchhorn et 
al., 2020). It is used here to provide an overview of the land cover of the highlands. The 
product maps were produced over the period 2015–2019, spanning the dates of NGOWP field 
visits. 

There are distinct land cover classes in the mapped area; most of the cover is closed forest, 
deciduous broad leaf which is classified in the hills surrounding the river valleys (Fig. 2). 
The river valleys are classified as shrubs, herbaceous vegetation, herbaceous wetland or 
cultivated land. According to the CGLS_LC100 product, the Highlands comprise 176 km2 of 
herbaceous wetland, covering 0.29% of the mapped area. 72.70% coverage is closed forest, 
deciduous broad leaf, and 17.12% makes up the combined two open forest classes. This 
default land cover product has limited resolution and land cover classes do not relate 
specifically to peatlands; hence a supervised classification of the area was generated using 
GEE. 
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Fig. 2. Copernicus Land cover class area and coverage of the Angolan Highlands. 

 

2.2.2. GEE classification data 

USGS Landsat 8 (L8) and Copernicus Sentinel-2 (S2) satellite data were used to generate two 
separate land cover classifications of the mapped area. Although at different resolutions, 
these sensors have similar spectral bands and archives (USGS, 2021; ESA, 2021), that span 
the NGOWP expedition dates. The GEE catalogue stores the USGS L8 Surface Reflectance 
(SF) Tier 1 dataset and the Copernicus S2 MSI: Multispectral Instrument, Level-2A Surface 
Reflectance dataset, which are both atmospherically corrected products (USGS, 2021; ESA, 
2021). Clouds from both datasets were removed from the image composites by filtering out 
images with greater than 5% cloud cover. 
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A random forest (RF) classification was performed on a cloud-free median composite of both 
the L8 and S2 datasets over the date range 2017-03-28 to 2021-02-14. The starting date 
corresponds to the S2 product availability on GEE. The L8 RF classification was based on six 
spectral bands at 30 m resolution, and the S2 RF classification was based on ten spectral 
bands at 20 m resolution (Supplementary Material: Table 1). RF is a non-parametric classifier 
and has been shown to outperform other advanced machine learning tools such as Decision 
Tree (Thanh Noi and Kappas, 2018), is simpler to complete than Support Vector Machine 
(SVM), as SVM requires modification of many parameters (Rodriguez-Galiano et al., 2012), 
and is not sensitive to noise and overtraining (Gislason et al., 2006). RF can manipulate high-
dimensional RS data and has shown high classification accuracies in various wetland studies 
(Mahdianpari et al., 2017, Mahdianpari et al., 2019; Whyte et al., 2018). 

Six land cover classes were chosen for the classification. These include peatland, miombo 
woodland, valley grassland, upland grassland, water, and cleared/cultivated land. Identical 
training and testing polygons were used for both classifications, these object-based polygons 
were derived from the lower resolution RGB – 30 m optical L8 cloud-free median composite. 
A total of 75 polygons covering 5.69 km2 were drawn on the GEE interface (Supplementary 
Material: Table 2 and Fig. 1). Polygons were drawn in the centre of distinct features that 
represented the land cover sites directly observed in the field, this was to reduce edge effect 
inaccuracies due to the difference in resolution between the two satellites. An object-based 
classification approach has been shown to be superior to a pixel-based classification for 
wetland mapping (Mahdianpari et al., 2019). The polygon data were randomly split, 70% 
used for training and 30% used for testing the classification, the error matrices for each 
classification were generated on the GEE console. 

2.2.3. Validation and accuracy assessment of classifications 

For validation purposes overall accuracy, kappa coefficient, producer accuracy, and user 
accuracy were calculated for each classification using the error matrices (Onojeghuo et al., 
2018; Mahdianpari et al., 2019). The McNemar test (McNemar, 1947) was used to determine 
whether the accuracies of the individual classifications are statistically significant from one 
another. This non-parametric test is based on the classification confusion matrix which is 
based on a chi-squared (χ2) distribution with one degree of freedom and assumes the number 
of correctly and incorrectly pixels identified pixels are equal for both classification scenarios 
(Onojeghuo et al., 2018; Mahdianpari et al., 2019). The equation for McNemar's test is: 

           (1) 

where f12 and f21 represent the number of pixels that were correctly identified by one 
classifier as compared to the number of pixels that the other method incorrectly identified, 
respectively. All statistical analyses were performed using Python 3.8. 

2.2.4. Overlap calculation of the two RF classifications 

The two independent RF classifications were exported from GEE to ArcMap 10.2 for 
visualization and layer calculations. The classifications were overlapped on top of one 
another using the Raster Calculator tool from the spatial analyst toolbox in ArcMap 10.2. An 
overlap and non-overlap map was generated, including an error matrix of overlap and 
nonoverlap area between the two RF classifications. 
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2.2.5. GEE vegetation and water occurrence data 

Selected bands from the median L8 and S2 composites that were used in the RF classification 
were used to generate a NDVI a NDWI composite for each satellite. NDVI is one of the most 
widely used vegetation indices, describing the greenness, relative density, and health of 
vegetation (USGS, 2020). NDVI values range from +1.0 to −1.0. Negative values indicate 
water bodies, while low NDVI values (0.1 or less) indicate barren rock or sand. Sparse 
vegetation such as shrubs and grasslands may result in moderate NDVI values between 0.2 
and 0.5 and high NDVI values between 0.6 and 0.9 correspond to dense vegetation such as 
forests (USGS, 2020). The equation for NDVI that was used is (Rouse et al., 1974): 

       (2) 

NDWI refers to at least two separate RS derived indices related to liquid water: one defined 
by McFeeters (1996), is used to monitor changes to water content in water bodies, using the 
green and Near Infrared (NIR) bands. Another is defined by Gao (1996), which uses the NIR 
and Shortwave Infrared (SWIR) bands to monitor changes in water content of leaves. This 
study uses the index as defined by McFeeters (1996), as tropical peatland features have been 
mapped according to standing water occurrence (Draper et al., 2014; Dargie et al., 2017). 
NDWI values range from +1.0 to −1.0, the NDWI of Mcfeeters (1996) was used to maximise 
the typical reflectance of water features, which have positive values, while soil and terrestrial 
vegetation have zero or negative values (Mcfeeters, 1996). The equation for NDWI that was 
used is (Mcfeeters, 1996): 

        (3) 

2.2.6. GEE topographic data 

The 30 m resolution Shuttle Radar Topography Mission (SRTM) digital elevation model 
(DEM) provided by NASA was used to provide three topographic map layers: elevation, 
slope and hillshade. Slope represents the angle of the terrain in degrees and hillshade is a 3D 
representation of the surface, with the sun's relative position used for shading the image 
(ESRI, 2016). Hillshade is used for illustrative purposes. 

2.2.7. Peatland characteristics with reference to NDVI, NDWI and topographical data 

The individual L8 and S2 peatland classes from each RF classification were joined to the 
respective vegetation (NDVI) and standing water occurrence (NDWI) datasets from each 
respective satellite. The L8 peatland class was joined to the two topographical raster datasets 
(elevation and slope) as it has the same resolution of 30 m. When joined, distribution plots 
from the joined data were produced to demonstrate the peatland characteristics with reference 
to NDVI, NDWI and topographical data. 

2.3. Peat core dating methods 

2.3.1. Peat core collection and subsampling 

Two peat cores were extracted from each sampling site. The cores were collected in two 
separate NGOWP expeditions, the first made use of a Russian corer to collect the source lake 
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cores. A Russian corer cuts the core in a horizontal plane, which reduces any mixing of 
material which occurs during vertical cutting of the core (De Vleeschouwer et al., 2010). The 
second expedition collected cores in the riparian zone of the Lungui Bungu River by pressing 
c.120 mm diameter stainless steel tubes vertically into the deposit, thereafter the peat 
surrounding the core was excavated. In all cases, the peat cores terminated when the 
equipment entered white sand. For this study, the lowermost section of the peat core is 
deemed the basal age of the individual core. The source lake cores were refrigerated <4 °C 
and were subsequently subsampled at 2 cm resolution in the laboratory; in-field subsampling 
could not be performed in the remote source lake areas. The LB cores were subsampled at 
2 cm (LB core 1) and 1 cm (LB cores 2–4) resolution in the field. Cores were removed from 
the stainless-steel sampling tube and split in half. The outer surfaces were cleaned to 
minimize any impact of the coring technique. Thereafter each aliquot was carefully sliced 
from the cleaned core and subsampled for dating analysis. 

2.3.2. AMS dating strategy and dating technique 

The AMS sampling strategy focused on core top, core base, and one intermediate sample for 
the CU and each LB core. A high-resolution strategy was implemented for the CS and CNV 
cores to better resolve additional core data, not reported here. Radiocarbon dating followed 
standard pre-treatment using acid (HCl), alkali (NaOH), and acid (HCl) followed by 
extensive washing with deionized water (Brock et al., 2010). Plant rootlets were removed 
using tweezers. Samples were oven dried and aliquots of the ultra-fine organic component 
were combusted in evacuated glass tubes with CuO and Ag (Brock et al., 2010). The resulting 
CO2 was graphitized before measuring the 14C content. Radiocarbon dates were calibrated 
using the Southern Hemisphere SHCal20 model (Hogg et al., 2020). Radiocarbon dating was 
performed at iThemba Labs, Wits, South Africa. Age-depth models were calculated using the 
Bayesian BACON approach to age-depth modelling (Blaauw and Christen, 2011). 

3. Results 

3.1. Random Forest classifications 

The individual RF classification maps show distinct separation of all land cover types at the 
respective resolutions (Fig. 3). Peatlands are generally classified in the river valleys alongside 
valley grassland and water. The miombo woodland dominates the landscape, upland 
grasslands are classified as distinct features within the miombo woodland and 
cleared/cultivated land are classified in areas surrounding the river tributaries and main water 
courses. 
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Fig. 3. (a) Landsat 8 and (b) Sentinel 2 RF classifications including coverage and area of each class. 
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Fig. 4. (a) Overlap and non-overlap map showing the extent of panel b and c, (b) and (c) are zoomed in sections 
of the mapped area. 
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3.2. Accuracy assessment 

The accuracy assessment reveals a high overall accuracy of 98.67% and 97.71% for the L8 
and S2 RF classifications, respectively (Supplementary Material: Tables 3 and 4). The kappa 
coefficient values of 0.9836 (L8) and 0.9842 (S2) demonstrate a high level of agreement for 
each classification. Peatland had a user and producer accuracy >97% for both classifications. 
The McNemar test revealed that the difference between the accuracies of the L8 and S2 
classifications was not statistically significant (p = 0.9791, McNemar's test chi-square 
value = 0.000687). While the accuracies of each classification are not statistically significant 
from one another, there are spatial and area discrepancies between land cover classes from 
each classification. 

3.3. Spatial and area coverage overlap between the two classifications 

An overlap and nonoverlap map of the two classifications was generated (Fig. 4). Overlap 
classes lie in distinct areas, with 48,363 km2 (78.53%) of overlap and 13,266 km2 (21.47%) 
of non-overlap between the two classifications. The majority of nonoverlap occurs in the 
river tributaries and in the North-east and South-eastern sections of the mapped area. The 
individual classifications have different resolutions; the edge effect caused by the different 
resolutions where most of the non-overlapping is shown on the edges of distinct land cover 
features (Fig. 4b). The overlap of the peatland class along the Lingui Bungu River is 
demonstrated (Fig. 4c). Peatland occurs on the modern river floodplain, terrace 1 – adjacent 
to the modern river, and on the relict floodplain, terrace 2 – adjacent to miombo woodland, 
both grassland classes and cleared/cultivated land (Fig. 4c). 

An area calculation matrix of overlap and nonoverlap between each class was calculated 
(Table 1), the bold values are areas of overlap between the two RF classifications. 

Table 1. Land area coverage of overlap and nonoverlap between the two RF classifications. 

 

3.4. Peatland extent in the context of Angolan peatland 

Three separate peatland estimates – one for each RF classification, and one for the overlap 
from both RF classifications are provided (Table 1). The overlap map area is reported here as 
the most conservative estimate of peatland coverage (1634 km2). The mapped area covers just 
4.94%, 61,590 km2 of the total land area of Angola – 1,246,700 km2. Providing the context of 
this deposit within the country is difficult, as the Angolan peatland estimates originate from 
studies that considered multiple countries from global and tropical peatland perspectives 
(Supplementary Material: Table 3). 
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3.5. Peatland characteristics with reference to NDVI, NDWI and topographic data 

From visual inspection, the Optical (RGB), NDVI and NDWI depict the same landscape 
features. The NASA SRTM topographic data illustrates that river valleys are characterised by 
low slope angles and low elevation in comparison to the surrounding hills, hillshade is used 
here for illustrative purposes (Fig. 5). 

 

 

Fig. 5. Optical, vegetation, standing water occurrence and topographic data of the mapped area from Landsat 8 
(a–c), NASA SRTM (d–f) and Sentinel-2 (g–i) sensors. 

Distribution plots were generated to provide additional peatland characteristics (Fig. 6). 
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Fig. 6. Distribution plots for L8 and S2 peatland with respect to NDVI, NDWI and SRTM data (elevation and 
slope). The peaks of each distribution plot show the mode of values for individual peatland pixels. The NDVI 
and NDWI plots relate to each respective peatland class from each RF classification, the SRTM topographical 
data relates only to L8 peatland. See Supplementary Material Figs. 2–7 for distribution plots of all landcover 
classes. 

For L8 NDVI, the peatland class has a range of values from −0.04 to 0.68, an average of 0.47 
and mode of 0.48. For S2 NDVI, the peatland class has a similarly shaped distribution plot to 
that of L8 peatland class, the range is from −0.63 to 0.80, an average of 0.51 and mode of 0.5. 
For L8 NDWI, the peatland class has a minimum value of −0.62, average of −0.43 and mode 
of −0.45 and a positive maximum value of 0.02. For S2 NDWI, the peatland class is similarly 
shaped to that of L8 peatland class and L8 NDWI. The S2 peatland class has a large NDWI 
range from −0.71 to 0.65 and has an average NDWI of −0.53 and peak of −0.5. For SRTM 
elevation, the L8 peatland class distribution reveals multiple, wide ranging peaks in 
comparison to the NDVI and NDWI data that had either one or two peaks, that are much 
thinner. The average elevation for the L8 peatland class is 1316 m.asl, and has three peaks at 
1350 m.asl, 1275 m.asl and 1190 m.asl. For SRTM slope, L8 peatland class has multiple 
peaks between 0° and 5°, a maximum slope of 40°, and an average of 3.36°. 

3.6. Radiocarbon chronology 

Each of the Lungui Bungu River peat chronologies shows reasonable age-depth profiles, 
except for LB core 2 where there is no possible age depth profile due to inversions (Fig. 7e). 
The LB core 2 sample was collected near an abandoned intensive peat agriculture field, and 
turbation of this site is evident in Google Earth imagery spanning several years. It is possible 
that the age inversion is the result of past agricultural working of the peat, although this 
should be expected for the upper layers, not at depth where the inversion occurs. The age 
models for cores 1, 3 and 4 suggest that these peat deposits started to grow about 1200 years 
ago, 1600 years ago, and 7100 years ago respectively. They also indicate that all the cores 
(including core 2) are still actively growing. 
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Fig. 7. Bacon Age-depth profiles for Angolan Highlands peat cores, panels a–c represent the age models for 
CNV: Cuanavale source lake peat, CS: Cuito source lake peat and CU: Cuando source lake cores, respectively. 
Panels d–g represent the age models for Lungui Bungu River cores 1 to 4, respectively. 
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The age depth profile of the source lake cores suggests that the CNV core accumulated over 
the last 800 years, and the CU core accumulated over the last 1000 years. The pattern in the 
calibrated dates for the CS core indicate very rapid accumulation of approximately half the 
core, with all material dated below 25 cm having the same age. Between 25 and 19 cm depth 
there is a substantial jump in the age. This may be a single contaminated date (reject the date 
for 19 cm) in which case the upper half of the peat may have accumulated at a more gradual 
pace after the initial rapid growth. Alternatively, the date at 19 cm may be correct (there is no 
reason to reject it) suggesting slow growth of the peat for 200 years after the initial rapid 
growth, followed by intermediate growth in the last 200 years. All lake deposits are still 
actively growing. See Supplementary Material Table 6 for extended AMS dating results. 

4. Discussion 

4.1. Peatland extent 

This study is the first to estimate and map the extent of the peatlands in the Angolan 
Highlands. The extent of peatlands in Angola is much larger than previously quoted from 
global studies, which has implications for national carbon budgets. Rieley and Page (2016) is 
the only study that mentions significant peatland deposits in Angola (Goyder et al., 2018). 
Rieley and Page (2016) mention that according to Bord na Móna (1984) and Shier (1985), 
there are extensive deposits in the valley of the River Cuanza, South-east of Catate, about 
50 km from Luanda. Luanda is a coastal city that is over 600 km from the Angolan 
Highlands, meaning that the deposits mapped here have been overlooked (Goyder et al., 
2018). 

The estimate of 2640 km2 from Page et al. (2011) was derived from the maximum estimate of 
histosols (10,261 km2) minus the shallow histosols and organic soils (7621 km2) from the 
GPD (2004). The maximum for histosols from GPD (2004) is similar to the estimates of 
Joosten (2010) for 1990–10,000km2 and 2008–9910km2 where the 2008 estimate had a 
0.90% reduction in area following expected peatland degradation over time (Joosten, 2010). 
These country estimates do not contain specific reference maps or location details that may 
be used to link them to the Angolan Highlands. Similarly, this estimate is specifically for the 
Angolan Highlands and cannot be extrapolated over the entire country. With no clear mention 
of the Angolan Highlands, it is likely that the estimate from this study is an addition to the 
best estimate (2640 km2) reported by Page et al. (2011), meaning that the country estimate 
may be larger (>4274 km2). The Highlands deposit would account for over half (61.90%) of 
the total peatland of Angola. 

PEATMAP is one of the most recent estimates of global peatland extent: cataloguing 
4,232,369 km2 globally of which the African continent contributes 187,061 km2 (Xu et al., 
2018). This estimate is an addition to the African and tropical peatland extent. The 
headwaters of the Angolan Highlands contribute to the largest tropical peatland deposit to the 
north (Dargie et al., 2017); peatlands have also been identified to the south in the Okavango 
Delta (Grundling and Grootjans, 2016; Goyder et al., 2018); and there may be potential for 
further peatland mapping of the Zambezi basin to the east. Considering that the mapped area 
comprises only 4.94% of the country and approximately 16% of the Angolan highlands, it is 
likely that there may be more tropical peatland deposits to discover (Lawson et al., 2015), in 
the Angolan Highlands and surrounding basins. 
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This study provides a land cover classification of approximately 61,590 km2 of the Angolan 
Highlands. The supervised L8 and S2 RF classifications demonstrate the benefit of field-
based knowledge in comparison to a Copernicus global classification product, which returned 
176 km2 of herbaceous wetland. The critical landcover class ‘peat’ or ‘peatland’ is not 
available in this or any other product on GEE (GEE Data Catalogue, 2021). This is because 
peatland cannot be detected directly by RS on a global scale as the variety of peatland 
vegetation and depositional environments is too broad to assess peatland presence based only 
on surface landscape characteristics (Joosten, 2010; Xu et al., 2018; Minasny et al., 2019). As 
shown, regional mapping is achievable (Joosten, 2010), the kappa coefficient of each 
classification is >0.98, interpreted as having perfect agreement (Landis and Koch, 1977). 

The overlap map area is reported as the most conservative estimate of peatland coverage 
(1634 km2). This estimate is where peatland has been classified in both approaches. In each, 
the peatland class had over 97% producer and user accuracy. Reporting either S2 or L8 
peatland coverage would likely overestimate the peatland coverage as only 30.22% of L8 
peatland overlaps S2 peatland, and 44.27% of S2 peatland overlaps L8 peatland. The object-
based training and testing polygons were identical for both RF classifications, and the 
differences between the accuracy of the classifications was not statistically significant 
(p < 0.05). It should be noted that these RF classifications are specific to the study site and 
are user driven. 

The differences between each RF classification can be explained by bootstrap aggregation – 
decision trees are sensitive to the data they are trained on, and small changes in the training 
set can result in significantly different tree structures (Gislason et al., 2006; Lee et al., 2020). 
RF takes advantage of this by allowing each individual tree to randomly sample from the 
dataset with replacement, resulting in different trees, known as bagging (Lee et al., 2020). 
With respect to feature randomness, RF only picks from a random subset of features, which 
forces more variation among the trees in the model and ultimately results in lower correlation 
across trees and more diversification (Gislason et al., 2006; Lee et al., 2020). The result is 
that with RF, trees are not only trained on different sets of data, but also use different features 
to make decisions (Gislason et al., 2006; Lee et al., 2020). Furthermore, the difference 
between the classifications can be explained by the number of bands – L8 used six spectral 
bands and S2 used ten spectral bands. The additional four Red Edge bands of S2 have been 
shown to produce better and comparable results to L8 and other S2 bands, respectively 
(Forkuor et al., 2018). The edge effect inaccuracies brought on by the difference in resolution 
between each classification is also responsible for some of the non-overlap between the two 
classifications. 

The L8 and S2 classifications predict that peatland exists within the source lake and river 
valley environments, as was observed in field expeditions. With respect to the peatland class, 
most of the disagreement between the classifications occurs with the land cover classes of 
miombo woodland, upland grassland, and cleared/cultivated land. The disagreement between 
peatland and cleared/cultivated land can be expected as local communities target peatlands 
and riparian zones for cultivation, as observed at the LB core 2 location. Between the two 
classifications, peatland is often predicted in small, localised deposits within both the 
miombo woodland and upland grassland environments. These localised deposits of predicted 
peatland, away from the source lake and river environments, require further investigation in 
future field expeditions. In contrast, there is little disagreement with peatland and the valley 
grassland and water classes, these two classes both exist within the source lake and river 
valley environments. 
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4.2. Peatland in relation to NDVI, NDWI and topography 

RS classification studies can be used either to identify peatland as a distinct land use (this 
study) or be used to identify vegetation communities and topographic features within a 
peatland environment (Lees et al., 2018; Oon et al., 2019). The NDVI, NDWI and 
topographical data were included to provide further details regarding this peatland deposit. 

The NDVI for the peatland class had average of 0.47 and 0.51 for L8 and S2 classes 
respectively, with distinct peaks (modes) at 0.5, values typical of grassland and shrub 
vegetation (USGS, 2020). Comparable NDVI values for tropical peatlands are seldom 
reported. The NDVI of actively growing peatlands is specific to the region and season, 
reflecting the typical vegetation type growing on the deposit (Šimanauskienė et al., 2019). A 
total of 115 plant species were identified in the wetland habitat of the Cuito catchment alone 
(Goyder et al., 2018), 94 of which are associated with peat soils. This high variation of 
vegetation cover is reflected in the large range in NDVI associated with these peatland 
deposits. The NDVI values reported here are obtained from a cloud-free median RGB 
composite of both the L8 and S2 datasets over the date range 2017-03-28 to 2021-02-14, and 
therefore do not reflect the peatland growing season or growth under a changing climate. To 
ensure preservation of the Angolan Highlands peatland deposit, future investigation may 
focus on producing NDVI time-series, including seasonal variation in peatland vegetation 
coverage. NDVI is a good measure of photosynthetic activity and could be used to estimate 
peatland productivity (Wang et al., 2004; Boelman et al., 2003, Boelman et al., 2005). 

The NDWI for peatland had an average of −0.43 and −0.53, with distinct modes at −0.45 and 
−0.5 for L8 and S2 classes respectively, values indicative of terrestrial vegetation growth and 
not standing water (Mcfeeters, 1996). The NDWI for L8 peat has a maximum value of 0.02, 
whereas the S2 peat has a maximum value of 0.65 – which is typical of standing water 
(Mcfeeters, 1996). Although used as a predictor (Delancey et al., 2019), NDWI values for 
peatlands are rarely reported. The S2 RF classification is demonstrably more sensitive for 
both the vegetation (NDVI) and water (NDWI) indices over the L8 RF classification, shown 
by the larger range in each distribution plot. As with the NDVI data, similarly the NDWI 
plots do not reflect the peatland growing season through time. NDWI is a strong predictor of 
water table position (Kalacska et al., 2018), making it sensitive to peatland surface water 
depth (Zhang et al., 2014). Future investigation may focus on producing NDWI time-series, 
with particular emphasis on water table depth, hydrology, and precipitation. 

The Angolan highlands peatland had a maximum elevation of 1676 m.asl, on average the 
peats are 1316 m.asl and the distribution plots had distinct peaks (modes) at 1350 m.asl, 
1275 m.asl and 1190 m.asl. The shape of the density distribution curve of the L8 peatland 
class is most similar to the L8 valley grassland and cleared/cultivated land classes 
(Supplementary material: Fig. 6). These classes lie adjacent to one another within the river 
valleys, which suggest that the control on peat formation is strongly linked to 
geomorphology. Most of the peatland lies between elevations of 1150 m.asl and 1450 m.asl, 
and peat formation in upland valleys such as those in the Angolan Highlands also occur in 
Rwanda (2100 m.asl: Hategekimana and Twarabamenya, 2007), Lesotho (2400 m.asl: Trettin 
et al., 2008), and Burundi (1500 m.asl: Pajunen, 1996). In these high-altitude regions, the 
conditions for peat formation are similar to temperate regions (Andriesse, 1988; Page et al., 
2011). 
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The slope distribution plots reveal that most of the peatland landscape is flat as most peaks 
occur between slope angles of 0–5°, with an average slope of 3.36°. Slope angles of up to 40° 
suggest that these peatlands are not limited to flat topographies, although this requires direct 
field measurement. Along the Lungui Bungu river, field observations of peat on steep slopes 
are associated with the incision of terrace 1 from terrace 2. Denoted by 14C dates, before 
terrace 1 existed, the river was dominated by terrace 2, and the incision increased the local 
gradient (Fig. 8). In some cases, the incision is a cliff face which suggests that maximum 
slope values are most likely as a response to the local relief driven by the geomorphology of 
the area. 

 

Fig. 8. Cross-section of the peat core sampling site at the Lingui Bungu River. 

4.3. Onset of peat formation, potential carbon storage and peatland threats 

The highland peatlands are diverse in that they are forming in lacustrine environments, on the 
current river floodplain and on relict river terraces. These peatlands are minerotrophic; with 
evidence from field observations and optical imagery, a distinct seep-line exists parallel to 
higher ground immediately adjacent to the peatlands. This seep-line is the inflow area of 
ground water, peatland only persists on terrace 2 where there are physical features that pond 
this water. These are low lying areas of terrace 2 and is why terrace 2 peatland is often patchy 
and associated with valley grassland and cleared/cultivated land. The valleys are a gentle V-
shape, the peatlands all contour downwards towards the river. Effectively the peatlands are 
the upstream/downstream gradient of the river as they limit river flow. The headwater lakes 
are areas where steep hillside collapses block the river flow, and they form a lake with the 
same water supply as the river itself. 

The maximum ages of the riparian Lungui Bungu River cores should not be seen as 
coincidental. The three cores from the current river floodplain, terrace 1, all have basal ages 
over 1100 years cal. BP while core 4 on terrace 2, has a distinctly different basal date of over 
7100 years cal. BP. The age of 7100 years cal. BP may be linked with peat initiation and 
carbon accumulation related to the African humid period between ~11,000 and 
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~8000 years cal. BP (Schefuß et al., 2005; Shanahan et al., 2015). The dates are also 
comparable to those collected in the Central Congo Basin where the Cuvette Central swamp 
peats returned ages ranging from 10,554 to 7137 years cal. BP (Dargie et al., 2017). Ages of 
around 1100 years on terrace 1 indicate that the peat has continued to grow since the end of 
the African humid period at ~3000 years cal. BP (Schefuß et al., 2005; Shanahan et al., 2015) 
in the Lungui Bungu River. 

Along the Lungui Bungu River sampling site, the peat formation on the modern riverbank 
(terrace 1) is almost ubiquitous, having a greater coverage than terrace 2, where only relict 
peat patches remain. Local farming practices target terrace 2 peat because it is easily drained. 
However, drainage also occurs on terrace 1, leading to oxidation and changes to the 
hydrological buffering that these peats offer. The terrace 1 peats are a control valve between 
ground water flow and the river, a highly important ecosystem service. Continued peat 
drainage also potentially destabilises the riverbank. The reduction in peat area on both 
terraces 1 and 2 may imply that the dynamics of peat in the Lungui Bungu River is a net 
source of atmospheric carbon rather than a sink on geological time. The age and dynamics of 
these terrace peats is therefore of considerable interest and warrant future investigation. 

The 14C dates reveal that the source lake cores are slightly younger (average basal age of 
890 years cal. BP) than the riparian LB cores. The results from the CNV and CU cores 
suggest slow onset of peat growth that accelerates through time – acknowledging that the 
evidence for this in CU is based on only two dates. In contrast, the CS core shows extremely 
rapid peat growth initially, followed by a possible hiatus in growth. The rate of peat 
formation in the upper part of the CS core is consistent with the rapid rates seen in the CNV 
and CU cores. The mechanism that underlies the age profile for the CS core is not clear. It 
could be explained by a catastrophic erosion event, two pulses of growth, changes to climate 
or possible peat loss due to anthropogenic disturbance. 

The average depth of the cores collected for this study is 63.6 cm, Goyder et al. (2018) – part 
of the NGOWP mention that they directly measured peat to a depth of at least 5 m at the 
Cuito Source Lake. AMS 14C dating reveals that these peatlands continue to grow but have 
formed over the last few thousand years. The implications are that the deposit may store 
significant amounts of carbon (Goyder et al., 2018), and that these deposits have the potential 
to be an important part of the global carbon economy. This map is the first step in providing 
the carbon store and serves to promote preservation of the deposit. Future research specific to 
this study would require a complete ground field survey to verify the land cover 
classifications, with particular emphasis on peatland extent. In addition, to provide estimates 
of the carbon inventory, peat depth and bulk density are required. 

The threats to the Angolan Highland peatlands and landscape can be linked to anthropogenic 
practices such as extensive fires, wood and peat fuel extraction, tree clearing, wetland 
drainage and overgrazing (Conradie et al., 2016; Taylor et al., 2018). Continued population 
growth, lack of financial means, subsistence agriculture and human pressure on the land are 
increasing in unprotected, rural areas of Angola (Catarino et al., 2020). These peatlands are 
highly susceptible to fire and slash and burn agriculture (Conradie et al., 2016; Taylor et al., 
2018). The largest burnt areas in rural parts of Angola were recorded between 2003 and 2005, 
which is linked to the end of the civil war in 2002 (Catarino et al., 2020). During the war, 
there was emigration from rural communities to urban areas and agricultural fields were 
abandoned, and when the war ended some displaced people returned and started clearing land 
for agriculture (Catarino et al., 2020). In contrast, some protected areas of Angola exhibited 
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decreasing trends in burning during that same period (Catarino et al., 2020). The role of fires 
and peatland degradation is well documented in the extensive tropical peatlands of South-east 
Asia (Rieley and Page, 2016; Page et al., 2007, Page et al., 2011), highlighting the need to 
protect this deposit from the same process. 

Angola is particularly vulnerable to climate change, with Regional Climate Models (RCMs) 
predicting consistent results of an increase of up to 4.9 °C by 2100 and increasing frequency 
and intensity of droughts for the twenty-first century (Carvalho et al., 2017). The semiarid 
and subhumid areas will be affected by a shift towards a drier regime (Carvalho et al., 2017), 
affecting peatland functioning and putting increased strain on rural communities that rely on 
peatlands for agriculture, water, and fuel (Grundling and Grootjans, 2016). Estimates in 2010 
indicated that 10–15% of African peatlands are degraded, releasing 4.3% of global peat CO2 
(Joosten, 2010). These have likely increased. Future conditions associated with a combination 
of anthropogenic influence and climate change are expected to further increase carbon 
emissions owing to peatland degradation (Xu et al., 2018; Minasny et al., 2019). 

5. Conclusion 

The first land cover classification of the Angolan Highlands study area was produced using 
GEE. This classification includes a conservative area extent of peatland coverage, 1634 km2. 
This is a crucial first step in providing the peatland carbon inventory and to facilitate 
conservation priorities and management strategies for the area and its surrounding basins, 
basins that are likely to contain additional unmapped peatland deposits. The relationship 
between peatland and vegetation cover, standing water occurrence and topographic data was 
included to further describe these peatlands. Radiocarbon dating of peatland cores informs 
the possible onset of peatland accumulation for the highlands and has uncovered additional 
questions about how they have formed and continue to grow. We emphasise that future 
research in this region is required to focus not only on peatland extent, but also investigate 
the peatland growth, vegetation, water, and carbon dynamics of this unique environment. 
Peatlands are extremely important ecosystems that globally, are under threat from 
anthropogenic influence and climate change, these peatlands are no different and have the 
potential to have net carbon emissions in future if they remain unprotected. 
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