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Abstract

In this article we consider a variant of the Simo-Reissner theory for
a rod but restrict the study to two-dimensional motion where the rod
undergoes flexure, shear and extension but not torsion. Linear elastic
behaviour is assumed to formulate constitutive equations; the consti-
tutive equations of the Timoshenko theory adapted for extension and
large rotation. We call the model the Local Linear Timoshenko rod
model. We show that this model serves as a framework for a class of
simpler mathematical models for slender solids in various applications.
The advantage is that the more general model can be used to evaluate
and compare the simpler models.

1 Introduction

The dynamical analysis of (possibly) large motion of elastic rods undergoing
flexure, shear, extension and torsion remains a significant challenge. To
appreciate the extent of this challenge one may read the introduction to
the article [1]. It is also instructive to read [2], [3] and [4]. The term rod,
above, refers to objects modelled as one-dimensional continua e.g. strings,
beams, cables, hoses etc. For a list of applications, see [4] and especially
[1]. According to [4], the most general model is referred to as a Cosserat rod
which is line with the the general model in [3]. The authors of [1] place the
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emphasis on theories and refer to Kirchoff-Love theory versus Simo-Reissner
theory.

In this article we consider the Simo-Reissner theory for a rod but restrict the
study to two-dimensional motion where the rod undergoes flexure, shear and
extension but not torsion. The theory is further simplified by the assumption
of linear elastic behaviour to formulate constitutive equations. Since the Tim-
oshenko theory provides an excellent approximation for three-dimensional
elastic behaviour with plane stress (explained in the next paragraph), we
adapt the constitutive equations for application to large rotations. We call
the model the Local Linear Timoshenko (rod) model or simply the LLT
model. We will show that this model serves as a framework for a class of
simpler mathematical models for slender solids in various applications. The
advantage is that the more general model can be used to evaluate and com-
pare the simpler models.

The analysis of a three-dimensional beam in [5] provides a solid theoretical
derivation (as far as a derivation is possible) for the linear Timoshenko beam
model. In [6], it is shown that the Timoshenko beam model compares very
well to a three-dimensional beam model using numerical experiments. In the
same article results of physical experiments are also used to demonstrate that
both models are strikingly realistic. The article [7] may also be considered.

Initially, the idea was to consider the possibly large motion of a rod, but with
small strains (a variation of the Simo-Reissner theory). Then, some justifica-
tion using three-dimensional theory as in [5] was considered. Comparison to
the model in [2] was first considered but not done because the approach in
[2] is fundamentally different. However, the same authors used the material
description of motion in Section 3 of [8]. This fact facilitated comparison.
To prepare the final version of this article, the articles [8], [9] and [10] were
studied. This leads to a significant improvement.

In the next section, equations of motion for a rod are derived from the con-
servation laws for momentum and angular momentum. The result is not new
but necessary to clarify the connection between the three-dimensional solid
and the rod model. The equations of motion for planar motion follow by
simply imposing the constraint.

As mentioned, the LLT model is obtained by using linear constitutive equa-
tions for large motion. The necessary preparation is done in Section 3 where
displacements, angles of rotation and tangent and normal vectors are defined.
No use is made of a moving reference system and sketches are not used to
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define displacements or angles. Instead, the use of elementary differential
geometry enables one to give unambiguous definitions and absolute clarity.
The model is in Section 4.

In Section 5 additional motivation for the LLT model is provided by applying
three-dimensional elasticity to a thin disc in the beam. In the same section
the articles [8] and [10] are compared to the LLT model.

In Section 6 approximations of the LLT model for small vibrations are in-
vestigated. Linear and nonlinear models are derived. The derivation of the
models in [11] and [12], from the LLT model, is new. Two adapted versions
of the linear Timoshenko model, with axial force, are also derived from the
LLT model instead of merely inserting the force in the linear model.

In Section 7 the variational form for the linear and nonlinear Timoshenko
models is derived and the Finite Element approximation of solutions of prob-
lems is briefly discussed. In Section 8 the weak variational forms are derived
and existence of solutions for the Adapted (linear) Timoshenko model is then
proved. Eigenvalues and eigenfunctions are used in Section 9 to compare the
different Adapted Timoshenko models. Finally, a conclusion is given in Sec-
tion 10.

A preliminary communication, Locally linear Timoshenko beam model (UPWT
2016/06) on this research was posted on the website of the Department of
Mathematics and Applied Mathematics, University of Pretoria, South Africa.

2 Dynamics of a rod

2.1 Conservation laws

As mentioned, the term rod in this article refers to a one-dimensional contin-
uum as in [3] where a rigorous (and general) description can be found. In a
simplified approach we also use the material description of motion where the
reference configuration is the undeformed state of the solid and is denoted by
B. It is assumed that the solid has the following property in the undeformed
state: there exists a straight line segment in B such that every cross-section
perpendicular to this line has its centroid on the line. (This straight line is
referred to as the axis.) We choose coordinates for the reference configuration
in such a way that the axis is the line y = z = 0.

3



It is assumed that every cross-section executes a rigid motion as is commonly
done (see e.g. [8], [2], [12], [9], [10] and [4]). To be specific, assume that the
position of a point X = (x, y, z) in B at time t is given by

R(X, t) = r̄0(x, t) + yēy(x, t) + zēz(x, t), (2.1)

where ēy and ēz are mutually orthogonal unit vectors. This implies that
ēy and ēz “move with the cross-section” and a cross-section remains plane
during the motion. Clearly r̄0(x, t) is the position of the centroid (x, 0, 0)
of a cross section at time t and the position of X relative to the centroid is
r̄(X, t) = yēy(x, t) + zēz(x, t). The normal vector ēy × ēz is denoted by ēx.

Let R be the part of B between x = a and x = b. The velocity of the point
X = (x, y, z) at time t is v̄ = ∂tr̄0 + ∂tr̄ = ∂tr̄0 + y∂tēy + z∂tēz. If the density
ρ is constant, then the momentum of R is∫

R
ρv̄(·, t) dV = ρ

∫ b

a

A(x)∂tr̄0(x, t) dx,

where A(x) is the area of the cross-section. The angular momentum of R
about 0̄ is ∫

R
R× ρv̄dV = ρ

∫ b

a

A(x)r̄0(x, t)× ∂tr̄0(x, t) dx

+ ρ

∫ b

a

∫
D
r̄(X, t)× ∂tr̄(X, t) dAdx,

where D = D(x) denotes the relevant cross-section.

2.2 The one-dimensional model

The boundary of R consists of three parts: the cross-sections D(a) and
D(b) and part of the outer surface of the solid between the cross-sections.
Assuming that cross-sections undergo rigid motion, the traction on an arbi-
trary cross-section D(c) is equivalent to a force F (c, t) acting at the centroid
r̄0(c, t) and a couple M(c, t). The following function convention is used:
F (c, t) and M(c, t) are the force and couple acting on the part of the solid
where x ≤ c. Consequently the forces exerted on R are F̄ (b, t) and −F (a, t)
and the couples are M(b, t) and −M(a, t).

From a mathematical point of view we now have a one-dimensional model for
the solid B which we call a rod (or Cosserat rod). The reference configuration
is [0, `] where ` is the length of the axis.
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Conservation of momentum

d

dt

∫ b

a

ρA∂tr̄0(x, t) dx = F (b, t)− F (a, t) +

∫ b

a

P̄ (x, t) dx,

where P is the load.

It is useful to introduce the following notation (recalling that ρ is constant)

H(x, t) = ρ

∫
D
r̄ × ∂tr̄dA. (2.2)

The quantity H(x, t) is referred to as the angular momentum density (about
the centroid).

Conservation of angular momentum

d

dt

∫ b

a

ρAr̄0(x, t)× ∂tr̄0(x, t)dx+
d

dt

∫ b

a

H(x, t) dx

= r̄0(b, t)× F (b, t)− r̄0(a, t)× F (a, t) +M(b, t)−M(a, t)

+

∫ b

a

r̄0(x, t)× P (x, t) dx.

From the conservation laws, following the usual approach, we derive the
equations of motion:

ρA∂2t r̄0 = ∂xF + P , (2.3)

∂tH = ∂xr̄0 × F + ∂xM. (2.4)

To derive the second equation of motion first prove that

ρAr̄0 × ∂2t r̄0 + ∂tH = ∂x(r̄0 × F ) + ∂xM + r̄0 × P .

The result follows by combining this result with Equation (2.3).

Equations (2.3) and (2.4) correspond to Equations (2.11) and (2.12) in [3]
where they are referred to as the classical forms of the equations of motion.
The system is given by Equations (8) in [4], where references are provided
regarding the derivation. More detail on the angular momentum density is
provided in [3] and [4] but it is not required for this paper.
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3 Planar motion

Recall (from Equation (2.1)) that the position of a point (x, y, z) at time t is
given by

R(x, y, z, t) = r̄0(x, t) + yēy(x, t) + zēz(x, t),

where ēx, ēy and ēz “move with the cross-section”. Let {ē1, ē2, ē3} denote an
orthonormal set “fixed” in space forming a right-handed triad. For planar
motion assume that

r̄0(x, t) = r1(x, t)ē1 + r2(x, t)ē2

and ēz(t) = ē3 for each t. Note that the motion of each point is in a plane
perpendicular to ē3.

Since the tangent vector is

∂xr̄0(x, t) = ∂xr1(x, t)ē1 + ∂xr2(x, t)ē2,

it follows that the angle θ(x, t) of the tangent vector with the direction of ē1
satisfies

cos θ = ‖∂xr̄0‖−1∂xr1, (3.1)

sin θ = ‖∂xr̄0‖−1∂xr2. (3.2)

Figure 1: Diagram of relevant angles and vectors

The unit tangent vector ēT and another useful vector ēθ are given by

ēT (x, t) = cos θ(x, t)ē1 + sin θ(x, t)ē2

ēθ(x, t) = − sin θ(x, t)ē1 + cos θ(x, t)ē2.
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It is clear that cross-sections rotate about the z−axis. The angle of rotation
φ is defined by cosφ = ēx · ē1 and sinφ = ēy · ē2. Consequently,

ēy(x, t) = − sinφ(x, t)ē1 + cosφ(x, t)ē2,

ēx(x, t) = cosφ(x, t)ē1 + sinφ(x, t)ē2.

Since ēy × ēx = −ē3 = −ēz, it follows that ēy × ēz = ēx, the unit normal to
the cross-section, as required. Also, φ is equal to the angle between a cross
section and ē2 and the angle between the normal vector and ē1. It follows
from elementary trigonometry that θ − φ is the angle between the normal
vector to the cross-section and tangent vector, see Figure 1.

Recall the angular density H defined in Equation (2.2). For planar motion
it is necessary that H = Hēz. If D is symmetric with respect to the y−axis,
then an elementary calculation shows that the angular momentum density is

H(x, t) = ρI ∂tφ(x, t)ē3, (3.3)

where I is the area moment of inertia about the z−axis.

To derive the equations of motion for planar motion, use Equations (2.3)
and (2.4) together with

∂2t r̄0 = ∂2t r1ē1 + ∂2t r2ē2 and ∂tH = ρI ∂2t φē3.

Equations of motion for planar motion

ρA∂2t r1 = ∂xF1 + P1, (3.4)

ρA∂2t r2 = ∂xF2 + P2, (3.5)

ρI∂2t φ = ∂xr1F2 − ∂xr2F1 + ∂xM3. (3.6)

Remark The equations of motion above also apply to the model in Section 3
of [8]. If ∂2t r1 = 0, ∂2t r2 = 0 and ∂2t φ = 0 then we have a static problem as
in [10]. (The function R above corresponds to the function r defined by
Equation (1) in [10].)

4 Local linear approximation

4.1 Constitutive equations

To obtain a mathematical model, the equations of motion (3.4), (3.5) and
(3.6), must be supplemented with constitutive equations. If it is assumed
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that the motion is locally linear, then a natural choice for shear and bending
are the constitutive equations of the Timoshenko theory (see e.g. [13], [14],
[5], [6], [7] and [15]). For the longitudinal strain Hooke’s law in its simplest
form is used. However, the axial force is not equal to F1 and the shear force
is not equal to F2 due to the rotation of the tangent vector. In fact

F1 = S cos θ − V sin θ, (4.1)

F2 = S sin θ + V cos θ, (4.2)

where S denotes the axial force and V the shear force.

In the Timoshenko theory the angle between the tangent vector and the
normal to the cross-section is considered to be the “average” shear strain.
Assuming that the strains are small, the following constitutive equations are
used.

M = M3 = EI∂xφ, (4.3)

V = κ2AG(θ − φ). (4.4)

In the equations above, E is Young’s modulus, I the area moment of inertia,
κ2 the shear coefficient, A the area of a cross section andG the shear modulus.
(In the linear case θ is approximated by ∂xw.)

To account for extension and compression, note that

(∂xs)
2 = ‖∂xr0‖2 = (∂xr1)

2 + (∂xr2)
2, (4.5)

where s is the arc length function. The axial rod strain is defined to be

εs = ∂xs− 1. (4.6)

(The actual strain is discussed in Section 5.) We assume the simplest form
of Hooke’s law:

S = AEεs, (4.7)

If the constitutive equations above as well as (4.1) and (4.2) are substituted
into the equations of motion, (3.4), (3.5) and (3.6), the model problem is in
general nonlinear.

Although the rod (or beam) strains εs, ∂xφ and ∂xs−1 is a natural adjustment
for large rotations of beams where linear elasticity is commonly used, it is
prudent to consider the theory in [16]. To avoid confusion we use a subscript
“R” for the beam strains used by Reissner. The strains are εR, κR and γR
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for stretching, bending and shear respectively. The result in [16] is (for an
initially straight rod)

εR = ∂xs cos(θ − φ)− 1, (4.8)

γR = ∂xs sin(θ − φ), (4.9)

κR = ∂xφ, (4.10)

using the notation of the present paper. Assuming that cos(θ−φ) ≈ 1 in (4.8)
and ∂xs ≈ 1 and sin(θ − φ) ≈ θ − φ in (4.9) the strains correspond to those
used in this paper, i.e. εR ≈ εs and γR ≈ θ−φ. Using the multi-dimensional
strains to motivate the strains in (4.3), (4.4) and (4.6) are considered in
Section 5.

Recall that small strains are required for linear elasticity. Therefore the
quantities ∂xs − 1 and θ − φ must be small but the rod “strain” ∂xφ is not
dimensionless and cannot be considered. However, y∂xφ is dimensionless
and one may require that h∂xφ be small where h denotes the diameter of the
cross-section in the direction of ēy.

Dimensionless form

For the different mathematical models and comparisons of them, it is conve-
nient to introduce notation for the displacement. Let u(x, t) = r1(x, t) − x
and w(x, t) = r2(x, t). (The displacement is relative to the line segment
through the points represented by 0̄ and `ē1.)

Set

τ =
t

T
, ξ =

x

`
, u∗(ξ, τ) =

u(x, t)

`
and w∗(ξ, τ) =

w(x, t)

`

where T needs to be specified. Since φ is dimensionless, it follows that

φ∗(ξ, τ) = φ(x, t).

Next, the forces, force densities and moments are scaled by AGκ2, AGκ2`−1

and AGκ2` respectively. For example

F ∗i (ξ, τ) =
Fi(x, t)

AGκ2
, P ∗i (ξ, τ) =

`Pi(x, t)

AGκ2
, and M∗(ξ, τ) =

M(x, t)

AGκ2`
.

The dimensionless form of equation (3.4) is

ρ`2

Gκ2T 2
∂2τu

∗ = ∂ξF
∗
1 + P ∗1 .
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Using the choice

T = `

√
ρ

Gκ2
,

this equation of motion in original notation, now reads

∂2t u = ∂xF1 + P1.

Similarly, the other two equations of motion in dimensionless form using the
original notation, are

∂2tw = ∂xF2 + P2,
1

α
∂2t φ = (1 + ∂xu)F2 − ∂xwF1 + ∂xM,

where α =
A`2

I
. Let β =

AGκ2`2

EI
and γ =

β

α
=
Gκ2

E
, then the constitutive

equations (4.3), (4.4) and (4.7) become

M =
1

β
∂xφ, V = θ − φ, S =

1

γ
(∂xs− 1).

Equations (3.1), (3.2), (4.1) and (4.2) convert trivially to dimensionless form
and the other equation (4.5), is effectively in dimensionless form. The com-
plete model problem is presented in Subsection 4.2, using the original nota-
tion.

The parameters α and β are subject to large variations but γ range between
1
6

and 1
2
, see e.g. [17], [7] and the references there in.

Recall that the strains θ−φ, ∂xs−1 and h∂xφ must be small. But now both
h and ∂xφ are dimensionless and ∂xφ may be an order larger than the above
mentioned strains if h < 1

10
. Consider for example a beam where I = 1

12
bh3,

then h2 = 12/α = 1/100 for α = 1200.

Remark Due to the scaling, dimensionless forces larger than 10−2 should be
considered large.

4.2 Local linear Timoshenko rod model

The complete mathematical model is presented here for convenience.
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Equations of motion

∂2t u = ∂xF1 + P1, (4.11)

∂2tw = ∂xF2 + P2, (4.12)
1

α
∂2t φ = (1 + ∂xu)F2 − ∂xwF1 + ∂xM, (4.13)

with

F1 = S cos θ − V sin θ, (4.14)

F2 = S sin θ + V cos θ (4.15)

and ∂xs and θ defined by

(∂xs)
2 = (1 + ∂xu)2 + (∂xw)2, (4.16)

cos θ = (∂xs)
−1(1 + ∂xu), (4.17)

sin θ = (∂xs)
−1∂xw. (4.18)

The constitutive equations are

M =
1

β
∂xφ, (4.19)

V = θ − φ, (4.20)

S =
1

γ
(∂xs− 1). (4.21)

The model above differs from the models in Sections 2 and 3 of [8]. The
equations of motion are effectively the same as in Section 3 but the strains
differ as we explain in Section 5.

Usually constitutive equations are substituted into the equations of motion to
yield partial differential equations. Following the usual approach, one would
attempt to substitute F1, F2 and M into Equations (4.11), (4.12) and (4.13).
This is not advisable and fortunately not necessary. Inspection of Equations
(4.14) to (4.21) leads to the conclusion that F1, F2 and M are well defined
in terms of u, w and φ. The model may be referred to as “well formulated”.

Although the LLT model has various applications to rods, our main concern
in the rest of this paper will be beams. (It is not possible to give a precise
criterion for a rod to be a beam but the parameters α and β should not be
too large.)

Boundary conditions The modelling assumptions are as follows. The
force F and the moment M are both zero at a free end. M = 0 at a pinned
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end where u and w are fixed, while at a clamped end, u, w and φ are fixed.
(Note that F = 0 implies that S = V = 0.)

Three configurations are considered for which the boundary conditions are
stated below.

Cantilever beam At the clamped end

u(0, t) = w(0, t) = φ(0, t) = 0. (4.22)

At the free end the boundary conditions are

F1(1, t) = F2(1, t) = M(1, t) = 0. (4.23)

Pinned-pinned beam At both endpoints u, w and M are zero, i.e.

u(0, t) = w(0, t) = u(1, t) = w(1, t) = 0, (4.24)

M(0, t) = M(1, t) = 0. (4.25)

Pivoted beam The boundary conditions are the same as for the Cantilever
beam except that φ(0, t) = 0 is replaced by M(0, t) = 0.

For each model problem the initial values for u, w, φ, ∂tu, ∂tw and ∂tφ must
be prescribed. Simulations were done using a finite element approximation
and acceptable results were obtained. See Section 7 for further discussion.

4.3 Simplified models

Pivoted beam with constant angular velocity

Consider a beam pivoted at 0. The boundary conditions are

u(0, t) = w(0, t) = 0,

M(0, t) = F1(1, t) = F2(1, t) = M(1, t) = 0.

Suppose the force P is equal to zero and the beam is rotating with constant
angular velocity ω. Let R̄(x, y, z, t) = g(x)(cos(ωt)ē1 + sin(ωt)ē2) with ω
constant. Consequently u(x, t) = g(x) cos(ωt), w(x, t) = g(x) sin(ωt) and
θ(t) = ωt.

Now, suppose the expressions for u, w and θ are substituted into (4.11) to
(4.15). From Equations (4.11) and (4.12) it follows that ∂xV = 0 and both
equations reduce to −ω2g(x) = S ′(x).
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The shear force V is equal to zero due to the boundary condition at the free
end. This implies that θ = φ and since ∂xφ = 0, it follows that M = 0.
Substituting the results into (4.13) shows that the equation is satisfied. The
left hand side of the equation is clearly zero as well as the last term. For the
other terms note that

∂x(g(x) cosωt)S sinωt− ∂x(g(x) sinωt)S cosωt = 0.

It follows from Equation (4.16) that ∂xs = g′. Note that Equations (4.17)
and (4.18) are satisfied. It follows from Equation (4.21) and the results for s
and S above that

g′′ = ∂2xs = γS ′ = −γω2g.

From the boundary condition for u(0, t) and since S(1) = 0, the boundary
conditions for g are g(0) = 0 and g′(1) = 1. A unique solution exists for g
and hence a solution for the original problem is obtained.

Nonlinear models without shear

Since (4.20) cannot be used, the shear force V is not known. The model is
not “well formulated” in the way the LLT model is. In the linear case V
can be eliminated before φ is replaced by ∂xw but this is not possible here.
The shear force is implicitly defined and there is no easy way to deal with
it. Since the LLT model is our concern, this model is not considered any
further.

5 Multi-dimensional considerations regarding

strains

Reissner [16] stated that physical experiments are necessary to establish con-
stitutive equations. Irschik and Gerstmayr did not fully agree with this
point of view. In the articles [9] and [10] the authors showed that the prob-
lem regarding experiments can be overcome (at least partially) using the
multi-dimensional theory of continuum mechanics.

In this section we present a justification for the constitutive equations of the
LLT model using those of the three-dimensional theory of linear elasticity.
We also compare our theory to the theories in [8], [9] and [10]. It is necessary
to bear in mind that assumptions must be made; a one-dimensional model
cannot be derived rigorously from a multi-dimensional model.
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Local linear Timoshenko model

Recall that the reference configuration for the one-dimensional model (the
axis of the rod) is the line segment between 0̄ and `ē1. By assumption, every
cross-section executes a rigid rotation where the normal vector ēx is rotated
through the angle φ(x, t). The displacement of the “disc” R (defined in
Subsection 2.1) consists of three displacements. First the centroid of D(a)
is moved to r̄0(a, t), then R is rigidly rotated through the angle θ(a, t) and
lastly it is allowed to undergo deformation. Recall from Section 3 that

R̄(x, y, z, t) = r̄0(x, t) + yēy(x, t) + zēz. (5.1)

If b− a is sufficiently small it is assumed that r̄0 can be written as

r̄0(x, t) = r̄0(a, t) + (x− a+ d(x, t))ēT (x, t). (5.2)

(In [8] a different possibility is considered). Also

yēy(x, t) = y(− sinψēT (x, t) + cosψēθ(x, t)),

where ψ(x, t) = φ(x, t)− θ(a, t). As a consequence

R̄(x, y, z, t) = r̄0(a, t) + u1(x, y, t)ēT (x, t) + u2(x, y, t)yēθ(x, t) + zēz, (5.3)

where

u1(x, y, z, t) = x− a+ d(x, t)− y sin(ψ(x, t)),

u2(x, y, z, t) = y cos(ψ(x, t)) and

u3(x, y, z, t) = z.

Next the (Fréchet) derivative of the vector ū is computed. The result, using
a prime for the derivative w.r.t. x, is

[∇ū] =

 1 + d′ − yψ′ cosψ − sinψ 0
−yψ′ sinψ cosψ 0

0 0 1

 . (5.4)

The derivative F of R̄(·, t) satisfies

F = RT
θ [∇ū],

where the matrix representation of Rθ is

[Rθ] =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (5.5)
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To proceed, we use the polar decomposition F = RU . The rotation R can
be factored as R = RT

θ R1. We assume that both R1− I and U − I are small.
Consequently,

R1U = I + Y

with Y small. The rotation Rθ, however, may be large and there is no
restriction on the magnitude of θ. Let E = 1

2
(Y + Y T ) and Ω = 1

2
(Y − Y T ),

then
(I + Ω)(I + E) = I + E + Ω + ΩE ≈ I + Y.

Therefore
F ≈ Rθ(I + Ω)(I + E),

where I + Ω and I + E are approximations for R1 and U .

Assuming that ψ′ and ψ are sufficiently small, the approximation for (5.4) is

[∇u] ≈

 1 + d′ − yψ′ −ψ 0
0 1 0
0 0 1

 = I + Y.

Using the definition E = 1
2
(Y + Y T ) for strain, it follows that the matrix

representation for the strain is given by

[E ] ≈ 1

2

 2(d′ − yψ′) −ψ 0
−ψ 0 0
0 0 0

 .
It is assumed that ψ, ψ′ and d′ are small. (The angle of the infinitesimal
rotation I + Ω is ψ/2.)

The infinitesimal theory of linear elasticity with strain given by E can now be
used. The rigidly rotated disc R now serves as reference configuration with
basis {ēT (a, t), ēθ(a, t), ē3}. The point xē1 +yē2 +zē3 is now at r̄0(a, t)+(x−
a)ēT + yēθ + zē3. It is convenient to refer to it as the point ξēξ + ηēη + zē3 or
(ξ, η, z) with ξ = x − a and η = y. We assume plane stress; more precisely,
σξξ and σξη are the only nonzero stress components. By Hooke’s law, the

only relevant strains are the axial strain and the shear strain: εξξ =
σξξ
E

and

εξη =
2(1 + ν)σξη

E
. (This is in agreement with the Timoshenko assumptions

and [10]). Combining the results above produces

σξξ = E(d′ − yψ′),
σξη = G(−ψ).
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Integrating over a cross-section (orthogonal to ēT ) yields the normal force N ,
shear force Q and the bending moment M :

N = E

∫
(d′ − yψ′) dA = EAd′, (5.6)

Q = G

∫
(−ψ) dA = GA(−ψ), (5.7)

M = −E
∫
y(d′ − yψ′) dA = Eψ′

∫
y2 dA = EIψ′. (5.8)

Note that d′ = ∂xs− 1 = εs and hence Equation (5.6) above corresponds to
(4.7). (It also follows that εs is equal to the mean of εξξ.) Since ψ = φ−θ, (5.7)
does correspond to (4.4) but without the factor κ2. To obtain the correction,
it is necessary to consider the warping of the cross-section (see e.g. [5]). The
simple form of Equation (5.8) is due to the symmetry assumption in Section 3.
Since ψ(x, t) = φ(x, t) − θ(a, t), ∂xψ = ∂xφ and (5.8) corresponds to (4.3).
The notation N and Q for the forces in the equations above corresponds to
the notation in [16], [9] and [10], but we use S for N and V for Q in the
rest of this paper. It follows that the internal force is F = SēT + V ēθ which
explains Equations (4.1) and (4.2).

Theory of Simo and Vu Quoc

The theory in [8] also starts with Equation (5.1), but the form for r̄0 differs
significantly from (5.2):

r̄0(x, t) = [x+ u1(x, t)]ē1 + u2(x, t)ē2.

Observe the additional term u2ē2. The relevant strains for purpose of com-
parison are discussed in Subsection 3.3: A vector strain γ̃ = Γ1ēx + Γ2ēy and
scalar κ = ∂xφ. Only γ̃ is motivated by multi-dimensional considerations.
For this purpose the two-dimensional rotation Rφ with matrix representation

[Rφ] =

[
cosφ sinφ
− sinφ cosφ

]
, is required. The authors present the following

“physically reasonable definition of the strains” Γi:[
Γ1

Γ2

]
= [Rφ]T

[
1 + u′1 − cosφ
u′2 − sinφ

]
. (5.9)

Consequently, F = [Rφ][C]

[
Γ1

Γ2

]
where [C] =

[
EA 0
0 GAs

]
. Note that

the strains Γi are constant over a cross-section. It is clear from the definition
of the strains that this model differs from the LLT model.
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The authors effectively assume Equation (4.3) (also Equation (5.8)), M =
EI∂xφ, as can be seen by inspection of the formulation of the elastic potential
energy.

Applications of the theory above are in [18]. The LLT model can also be
used for some of these applications.

Theory of Irschik and Gerstmayr

The Local linear model is a special case of the nonlinear model in [10]; hence,
the article is of special interest. The authors consider the equilibrium of a
beam that is “bent, sheared and stretched by external forces and moments”.
They restrict the situation to plane deformations and static conditions. It is
assumed that the deformed configuration is described by

r(x, y, z) = r0(x) + yey(x) + zez.

Note that it is a static version of Equation (5.1). To obtain constitutive
equations the authors combine the Green strain tensor G and second Piola-
Kirchhoff stress tensor. To define G, one start with the deformation gradient
F = ∇r and then define G = 1

2
(C − I), where C = FTF .

Comparing the “virtual work considerations” with the calculation of forces
and moments for the LLT model, it is clear that the factor ∂xs plays a
prominent role. (Note that e = ēT and Λx0 = ∂xs in [10].) Recall the
assumption that ∂xs− 1 should be small.

The theory in [10] is applied to a static beam problem consisting of a hyper-
elastic material. The LLT theory is not suitable for this application. Neither
is the theory in [8] suitable for this application, since it cannot account for
finite non-rigid rotations.

Superficially, there is a connection between the theory in [9] and the approach
followed by [8]. But the rotation Rφ is in general not the same as the rotation
R in the polar decomposition. The question arises whether there is in fact
some connection.

6 Small vibrations

For small vibrations it is usually assumed that ∂xu and ∂xw are small or θ
is small. It is necessary to be careful since such assumptions may lead to
contradictions.
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First, just assume that θ is sufficiently small to justify the assumptions
cos θ ≈ 1 and sin θ ≈ θ. Then (4.17) implies that ∂xs = 1 + ∂xu. Next,
assume that ∂xu and ∂xw are sufficiently small for (∂xu)2 and (∂xw)2 to be
neglected. Then,

∂xs =
√

1 + 2∂xu+ (∂xu)2 + (∂xw)2

≈ 1 + ∂xu+
1

2
(∂xu)2 +

1

2
(∂xw)2.

But the assumption is that ∂xu and ∂xw are small and hence (∂xu)2 and
(∂xw)2 may be neglected. This leads to the assumption

∂xs = 1 + ∂xu (6.1)

and the result is the same as when the assumption θ small was used. Instead
of (6.1), the assumption

∂xs = 1 + ∂xu+
1

2
(∂xw)2. (6.2)

is often used (see e.g. [11], [12] and [19]).

In the rest of this section more additional assumptions will be made which
may lead to unrealistic mathematical models. However, the solutions of the
simplified models can be compared to those of the LLT model.

6.1 A significant nonlinear model for small vibrations

If sin θ and cos θ are replaced by θ and 1 respectively, then Equations (4.14)
and (4.15) reduce to F1 = S − V θ and F2 = Sθ + V. Note that the com-
putations in (4.16) to (4.18) still need to be done. Further approximation
where θ = ∂xw avoids this complication without rendering the model less
applicable. For the simplified model assume that

F1 = S − V ∂xw, (6.3)

F2 = S∂xw + V. (6.4)

The constitutive equation (4.21) must be replaced by either (6.1) or (6.2)
but the other constitutive equations remain the same. Note that the system
is still nonlinear.
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Consider the substitution of (6.3) and (6.4) into the equation of motion
(4.13):

1

α
∂2t φ = (1 + ∂xu)(S∂xw + V )− ∂xw(S − V ∂xw) + ∂xM.

= V + ∂xu(S∂xw + V ) + V (∂xw)2 + ∂xM.

By assumption ∂xu and ∂xw are small and due to the scaling S and V are
substantially less than one for linear elasticity, hence S∂xu∂xw and V (∂xw)2

may be neglected. However, one should be more careful with the terms ∂xuV
and ∂xwS. It is notable that the term ∂xuV originating in (3.6), is absent in
the other articles we studied.

Model SLLT Small vibrations

Equations of motion

∂2t u = ∂x(S − V ∂xw) + P1, (6.5)

∂2tw = ∂x(S∂xw + V ) + P2, (6.6)
1

α
∂2t φ = (1 + ∂xu)V + ∂xM. (6.7)

with constitutive equations

M =
1

β
∂xφ, (6.8)

V = ∂xw − φ, (6.9)

S =
1

γ
∂xu (6.10)

or S =
1

γ
∂xu+

1

2γ
(∂xw)2. (6.11)

The boundary conditions are one of the following.

Cantilever beam:

u(0, t) = w(0, t) = φ(0, t) = 0. (6.12)

S(1, t) = V (1, t) = M(1, t) = 0. (6.13)

Pinned-pinned beam:

u(0, t) = w(0, t) = u(1, t) = w(1, t) = 0 (6.14)

M(0, t) = M(1, t) = 0. (6.15)
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Pivoted beam: The boundary conditions are the same as for the Cantilever
beam except that φ(0, t) = 0 is replaced by M(0, t) = 0.

For each model problem the initial values for u, w, φ, ∂tu, ∂tw and ∂tφ must
be prescribed.

Remark A solution for the pivoted beam model may develop large displace-
ments violating the assumptions made.

Despite the additional assumptions made, the system is still nonlinear. It is
notable that quite a number of simpler models can be derived from Model SLLT.
We consider transverse vibration in the next subsection and models without
shear in Subsection 6.5.

6.2 Transverse vibration

If the term −V ∂xw in (6.5) is neglected and Equation (6.10) used, then it is
possible to decouple longitudinal and transverse vibration.

Model LLT-T Transverse vibrations

Equations of motion

∂2t u = ∂xS + P1, (6.16)

∂2tw = ∂x(S∂xw) + ∂xV + P2, (6.17)
1

α
∂2t φ = (1 + ∂xu)V + ∂xM. (6.18)

The constitutive equations (excluding (6.11)) and boundary conditions re-
main unchanged.

It appears as if the system is still nonlinear but if the boundary conditions
for u and S do not involve the other variables, the system decouples. For
example, boundary conditions for u and S are u(0, t) = S(1, t) = 0 for the
cantilever and u(0, t) = u(1, t) = 0 for a hinged-hinged beam. Consequently,
since ∂xu = γS, (6.16) becomes the wave equation with homogeneous bound-
ary conditions. Once u and S are known, Equations (6.17) and (6.18) consti-
tute a nonhomogeneous linear system. Due to the time dependent coefficients
∂xu and S, we have forced vibrations (even when P2 = 0). A special case of
this linear system is considered in the next subsection.

If the Constitutive Equation (6.11) is used, then pure transverse oscillations
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are only possible when ∂xS = 0 as shown in Subsection 6.5.

6.3 Adapted linear Timoshenko model

Consider the linear model for transverse vibrations. In some realistic ap-
plications ∂tP1 = 0 and then ∂tS = 0 since there is no boundary forcing.
Equation (6.16) reduces to

0 = ∂xS + P1. (6.19)

Since ∂xu = γS, both u and the force S are uniquely determined and the
model for transverse vibrations is linear.

Model Tim-Ad1 Adapted linear Timoshenko model

The model is given by (6.19) and

∂2tw = ∂x(S∂xw) + ∂xV + P2, (6.20)
1

α
∂2t φ = γSV + V + ∂xM. (6.21)

The constitutive equations and boundary conditions remain unchanged.

The model above is a variation on the well-known linear Timoshenko beam
model. It can be used to model vertical structures like buildings or indus-
trial chimneys. An alternative adapted Timoshenko model is possible and
therefore the two models are numbered for easy reference.

As mentioned before, forces and force densities are small but to neglect the
term ∂xwS altogether may be a mistake. However, the approximation

(1 + γS)V = V (6.22)

may be considered. Indeed, the term γSV is absent in other articles we
studied. Justification for this assumption is investigated in Section 9. Model
Tim-Ad1 is symmetric if γSV is neglected as explained in Section 8.

Alternative linear model

Assuming that longitudinal oscillations may be ignored in the Local linear
Timoshenko model (in Section 4) and that the transverse vibrations are suf-
ficiently small, one obtains another linear approximation. Simply let F1 = S
and F2 = V in Equations (4.11) to (4.13) to obtain another linear model.
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The equations of motion are

∂2tw = ∂xV + P2, (6.23)
1

α
∂2t φ = (1 + γS)V − S∂xw + ∂xM. (6.24)

The constitutive equations and the boundary conditions are the same as for
the SLLT beam model in Subsection 6.1.

This model was considered in [20]. Due to the symmetry one may prefer
Model Tim-Ad1 but further investigation is called for. Another question is
whether the difference is serious. In this regard it should be noted that the
models become identical if the shear is eliminated to derive the Raleigh or
Euler-Bernoulli models (see Subsection 6.5).

The alternative model above is almost symmetric. Note that

(1 + γS)V − S∂xw + ∂xM = V + γSV − SV − Sφ+ ∂xM.

Model Tim-Ad2 Alternative formulation

∂2tw = ∂xV + P2, (6.25)
1

α
∂2t φ = V + (γ − 1)SV − Sφ+ ∂xM. (6.26)

This model is also symmetric if SV is neglected.

6.4 Nonlinear Timoshenko model of Sapir and Reiss

In [11] the authors derive a nonlinear Timoshenko beam model similar to
Model LLT-T. However, the nonlinearity arises due to the fact that they
use (6.11) as a constitutive equation. Their aim was to study the transient
motion of a buckled column using nonlinear Timoshenko beam theory. The
authors provide a derivation for their model in an appendix. They start
with nonlinear plane strain displacement relations and then make simplifying
assumptions eventually leading to a nonlinear Timoshenko model.

In terms of the notation of this section they assume that ∂2t u and ∂xuV may
be neglected in Model LLT-T and that P1 = P2 = ∂xS = 0. Consequently,

∂2tw = S∂2xw + ∂xV, (6.27)
1

α
∂2t φ = V + ∂xM. (6.28)
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These are Equations (A.15b) and (A.15c) in [11]. Note that this model is
linear if ∂xS = 0 and (6.10) is used. This is to be expected from the way that
the shear strain displacements are linearized in the derivation of the model
in [11]. However, in [11] it is assumed that

S =
1

γ
(∂xs− 1) =

1

γ

(
∂xu+

1

2
(∂xw)2

)
. (6.29)

Since ∂xS = 0, it follows that

S(t) =
1

γ
(u(1)− u(0)) +

1

2γ

∫ 1

0

(∂xw(·, t))2. (6.30)

The boundary conditions for the pinned-pinned case (or hinged ends) are

w(0, t) = ∂xφ(0, t) = w(1, t) = ∂xφ(1, t) = 0.

The problem above with w(·, 0), φ(·, 0), ∂tw(·, 0) and ∂tφ(·, 0) prescribed,
has a unique weak solution, see e.g. [21]. An algorithm based on FEM is
developed in [22] where the authors also derive error estimates.

Nonlinear fourth order Timoshenko beam equation

In [11] the authors preferred a single partial differential equation formulation
for the model, which they derived by eliminating V and φ. First, eliminating
the angular acceleration in (6.28) yields

∂4tw − ∂2t (S∂2xw)− ∂2t ∂2xw + α∂xV + α∂2xM = 0.

Now α∂xM = γ∂2xφ = γ∂3xw− γ∂2xV so that V and its partial derivatives can
be eliminated using (6.27)

∂4tw − ∂2t (S∂2xw)− ∂2t ∂2xw − γ∂2x∂2tw + α∂2tw

+γ(1 + S)∂4xw − αS∂2xw = 0. (6.31)

A nonlinear fourth order Timoshenko beam equation is also derived in [23].
The author claims that the partial differential equation above is a special
case of his model.

Remark The nonlinear Timoshenko system is not equivalent to Equation
(6.31). If the pair (w, φ) is a solution of the system (6.27)-(6.28) and suffi-
ciently smooth, then w is a solution of (6.31). But, having a solution of this
partial differential equation does not enable one to compute the shear force
V or angle φ.
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6.5 Beam models without shear

In this subsection it is shown how a number of published models for beams
can be obtained from Model SLLT by eliminating shear. Recall that dimen-
sionless forces are small. Using the approximation (6.22) in (6.7) yields

1

α
∂2t φ = V + ∂xM. (6.32)

Combining this equation with (6.6) to eliminate V produces the equation of
motion

∂2tw −
1

α
∂2t ∂xφ = ∂x(∂xwS)− ∂2xM + P2. (6.33)

Assuming that φ = ∂xw, then M = 1
β
∂2xw and substitution of both into

Equation (6.33) yields

∂2tw −
1

α
∂2t ∂

2
xw = ∂x(∂xwS)− 1

β
∂4xw + P2. (6.34)

If the constitutive equation for S is (6.29), then the partial differential equa-
tion is nonlinear. This equation together with (6.5) (in Model SLLT) is the
same as the system in [12] to model longitudinal and transverse vibrations.

If the constitutive equation in (6.10) is used or S is constant, then (6.34)
is linear and models a Rayleigh beam with axial force. It models an Euler-
Bernoulli beam if the term − 1

α
∂2t ∂

2
xw is neglected.

A special case of the model in [12] is when ∂tP1 = 0 (as in Subsection 6.3).
This is the case in [19] where the transverse vibration of a vertical structure
is modelled and P1 is due to gravity.

7 Variational forms

In this section the different model problems presented in Section 6 are written
in variational form. The variational form can be used for theory and for finite
element approximations.

The local linear Timoshenko model for small vibrations

The variational form for the SLLT model is derived starting with the equa-
tions of motion. There are three cases, formulated in Subsection 4.2.
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Cantilever beam: The forced boundary conditions for the test functions are
v(0) = z(0) = ψ(0) = 0 and the space of test functions is defined as

T1[0, 1] = {y ∈ C1 | y(0) = 0}.

The problem is to find the functions u, w and φ such that u(·, t), w(·, t) and
φ(·, t) are in T1[0, 1] for all t > 0 and the following hold∫ 1

0

∂2t u(·, t)v = −
∫ 1

0

(
S − V (·, t)∂xw(·, t)

)
v′ +

∫ 1

0

P1(·, t)v, (7.1)∫ 1

0

∂2tw(·, t)z = −
∫ 1

0

(
S∂xw(·, t) + V (·, t)

)
z′ +

∫ 1

0

P2(·, t)z, (7.2)∫ 1

0

1

α
∂2t φ(·, t)ψ =

∫ 1

0

(
1 + ∂xu(·, t)

)
V (·, t)ψ −

∫ 1

0

M(·, t)ψ′ (7.3)

for all 〈v, z, ψ〉 ∈ T1[0, 1]× T1[0, 1]× T1[0, 1].

Equations (7.1), (7.2) and (7.3) are the variational equations of motion.
This together with Equations (6.8) to (6.11), produces the system in varia-
tional form. For the model problem one must prescribe initial values for u, w,
φ, ∂tu, ∂tw and ∂tφ. Denote these by u0, w0, φ0, ud, wd and φd respectively.

Pinned-pinned beam: A space of test functions for a pinned-pinned beam is
defined as

T2[0, 1] = {y ∈ C1 | y(0) = y(1) = 0}.

The problem is to find the functions u, w and φ such that u(·, t), w(·, t) ∈
T2[0, 1] and φ(·, t) ∈ C1[0, 1] for all t > 0 and Equations (7.1), (7.2) and (7.3)
hold for all 〈v, z, ψ〉 ∈ T2[0, 1]× T2[0, 1]× C1[0, 1].

Pivoted beam: The problem is to find the functions u, w and φ such that
u(·, t), w(·, t) ∈ T1[0, 1] and φ(·, t) ∈ C1[0, 1] for all t > 0 and Equations
(7.1), (7.2) and (7.3) hold for all 〈v, z, ψ〉 ∈ T1[0, 1]× T1[0, 1]× C1[0, 1].

Recall that initial conditions need to be specified, see Section 6.1.

Simulations were done using a finite element approximation and acceptable
numerical results were obtained.

Using the variational form of the model problem, it is easy to formulate the
finite element approximation problem. Simulations were done to approximate
the motion of the rod. As was the case with the LLT model, numerical
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experiments indicated that the approximations converge. For small initial
data, the approximation for the nonlinear problem compared well with the
exact solution of the corresponding linear problem (relative differences were
less than 10−4). However, more numerical experiments are required as well
as an analysis of the algorithm.

Transverse vibration

For transverse vibrations, everything stays the same, except that the term
V (·, t)∂xw(·, t) in Equation (7.1) is neglected and therefore we have∫ 1

0

∂2t u(·, t)v = −
∫ 1

0

Sv′ +

∫ 1

0

P1(·, t)v. (7.4)

The boundary conditions do not change, and consequently, the test functions
do not change either.

Adapted Timoshenko models

Recall from Subsection 6.3 that u and S are uniquely determined. The
model problems can be considered as special cases of transverse vibration
where Equation (7.4) is omitted. The spaces of test functions are the same
as before. We present the cantilever beam here.

Model problem Tim-Ad1 in variational form

Find the functions w and φ such that w(·, t) and φ(·, t) are in T1[0, 1] for all
t > 0 and the following hold∫ 1

0

∂2tw(·, t)v = −
∫ 1

0

S∂xw(·, t)v′ −
∫ 1

0

V (·, t)v′ +
∫ 1

0

Q(·, t)v, (7.5)∫ 1

0

1

α
∂2t φ(·, t)ψ =

∫ 1

0

(
1 + γS

)
V (·, t)ψ −

∫ 1

0

M(·, t)ψ′ (7.6)

for all 〈v, ψ〉 ∈ T1[0, 1]× T1[0, 1].

Using the variational forms, existence of solutions for the adapted Timo-
shenko models is considered in the next section.
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8 Weak variational forms and existence for

the adapted Timoshenko models

8.1 Weak variational forms

To derive the weak variational form for Problem Tim-Ad1, add Equations
(7.5) and (7.6):∫ 1

0

∂2tw(·, t)v +
1

α

∫ 1

0

∂2t φ(·, t)ψ =

∫ 1

0

V (·, t)(ψ − v′)−
∫ 1

0

S∂xw(·, t)v′

+

∫ 1

0

γSV (·, t)ψ −
∫ 1

0

M(·, t)ψ′ +
∫ 1

0

Q(·, t)v.

(8.1)

Let u denote the pair 〈w, φ〉 and define the following bilinear forms.

For ui and vi in L2(0, 1),

c(u, v) =

∫ 1

0

u1v1 +

∫ 1

0

1

α
u2v2.

For ui and vi in T1[0, 1],

bT (u, v) =

∫ 1

0

1

β
u′2v

′
2 +

∫ 1

0

(u′1 − u2)(v′1 − v2), (8.2)

b1(u, v) = bT (u, v) +

∫ 1

0

Su′1v
′
1, (8.3)

b1,γ(u, v) = b1(u, v)−
∫ 1

0

γS(u′1 − u2)v2. (8.4)

Using the bilinear forms the variational Equation (8.1) can be written as

c(∂2t u(·, t), v) + b1,γ(u(·, t), v) = (Q(·, t), v1), (8.5)

where (f, g) denote
∫ 1

0
fg.

To write the model problem in weak variational form, suitable function spaces
are needed. The necessary product spaces are defined by X = L2(0, 1) ×
L2(0, 1) and H1 = H1(0, 1) × H1(0, 1). An element y ∈ X is written as
y = 〈y1, y2〉 and the inner product for L2(0, 1) is denoted by (·, ·). A natural
inner product for X is

(x, y)X = (x1, y1) + (x2, y2),
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and the corresponding norm is denoted by ‖ · ‖X . The natural inner product
for the product space H1 is

(x, y)H1 = (x1, y1)1 + (x2, y2)1

and the corresponding norm is denoted by ‖ · ‖H1 .

The bilinear form c is clearly an inner product for X, which induces a norm
‖u‖W =

√
c(u, u). The vector space X equipped with this inner product is

referred to as the Inertia space W . Obviously the norms ‖ · ‖W and ‖ · ‖X
are equivalent.

Let V1(0, 1) be the closure of T1[0, 1] in H1(0, 1) and V2(0, 1) be the closure
of T2[0, 1]. The product space V is defined as either V1 × V1 or V2 ×H1. To
proceed, it is necessary for b1 to be an inner product for the space V . The
different cases are treated in the next section. The space V equipped with
the inner product b1 is referred to as the Energy space with associated norm
‖u‖V =

√
b1(u, u).

Due to the fact that C∞0 (0, 1) is dense in L2(0, 1), the following result is
obvious.

Proposition 8.1 V is a dense subset of W .

Notation Let qX be the mapping t→ 〈Q(·, t), 0〉.

From the definition of the bilinear form b1,γ it is now possible to define the
weak variational form for the Timoshenko beam problem.

Problem Tim-Ad1 Weak variational form
Find u such that for each t > 0, u(t) ∈ V , u′(t) ∈ V , u′′(t) ∈ W and

c(u′′(t), v) + b1,γ(u(t), v) = (qX(t), v)X for each v ∈ V, (8.6)

with u(0) = u0 = 〈w0, φ0〉 and u′(0) = ud = 〈wd, φd〉.

All that is required for the alternative linear problem, is to define alternative
bilinear forms:

b2(u, v) = bT (u, v) +

∫ 1

0

Su2v2 and (8.7)

b2,γ(u, v) = b2(u, v)−
∫ 1

0

γS(u′1 − u2)v2. (8.8)
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Problem Tim-Ad2 Weak variational form
Find u such that for each t > 0, u(t) ∈ V , u′(t) ∈ V , u′′(t) ∈ W and

c(u′′(t), v) + b2,γ(u(t), v) = (qX(t), v)X for each v ∈ V, (8.9)

with u(0) = u0 = 〈w0, φ0〉 and u′(0) = ud = 〈wd, φd〉.

8.2 Existence theory

The weak variational form of the model problems in this paper is a special
case of the general linear second-order hyperbolic problem considered in [20]
(given here for convenience): Find u ∈ C1([0,∞), X) such that, for all t > 0,
u(t) ∈ V , u′(t) ∈ V and u′′(t) ∈ W , and

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (f(t), v)X for all v ∈ V,

with u(0) = u0, u
′(0) = u1.

For the model problems in this paper there is no damping and consequently
the bilinear form a in the equation above is equal to 0. This is a special case
of weak damping.

The following assumptions are made in [20] (also in [24]):
A1 V is dense in W and W is dense in X.
A2 There exists a positive constant CW such that ‖w‖X ≤ CW‖w‖W ∀ w ∈ W .
A3 There exists a positive constant CV such that ‖v‖W ≤ CV ‖v‖V ∀ v ∈ V .

For the existence result the following important subspace of V is needed.

Definition The space Eb

Eb = {x ∈ V | there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V }.

The following result is Theorem 2.3 in [20] (and also Theorem 2 in [24]),
slightly rephrased.

Theorem 8.1 Suppose b is the inner product for the space V and Assump-
tions A1 to A3 hold. Let J be an interval containing zero. If f ∈ C1(J,X),
then there exists a unique solution

u ∈ C1(J, V ) ∩ C2(J,W )

for the general linear second-order hyperbolic problem with no damping for
each u0 ∈ Eb and u1 ∈ V . If f = 0 then u ∈ C1((−∞,∞), V )∩((−∞,∞),W ).
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This result cannot be used in cases where the bilinear form b is not symmetric.
In the article [20] however, it is shown that the symmetry of b is not necessary
provided that b is the sum of (u, v)V (inner product for V ) and another
“suitably bounded” bilinear form b̂ (Assumption A5). To be more specific:
If b(u, v) = (u, v)V +b̂(u, v), then it is required that |b̂(u, v)| ≤ k‖u‖V ‖v‖W for
some constant k < C−1V . As an application the authors used a mathematical
model that is a version of Model Tim-Ad2.

Remark Other existence results are available in the literature, e.g. [25] and
[26]. The results from [24] and [20] are convenient for our problems, since it
is given in terms of bilinear forms.

8.3 Application to symmetric problems

In this subsection we consider a special case of the weak variational forms
for problems Tim-Ad1 and Tim-Ad2 where the terms γSV and (γ − 1)SV
are omitted.

Although it is well known that the bilinear form bT for the standard Timo-
shenko model is positive definite and an inner product for V , it is often not
explicitly mentioned. It can for example be inferred from the estimates in
[27]. It is stated and proved in [20]. In the articles mentioned above and
others, beams that are clamped on one or both sides are considered. We
were unable to find a direct proof for the pinned-pinned case in the literature
but an indirect proof is provided in the Appendix of [28]. The result can be
formulated as

Proposition 8.2 The bilinear form bT is an inner product for V and there
exists a constant cT such that

bT (u, u) ≥ cT‖u‖2W for each u ∈ V. (8.10)

Next, if (Su′1, u
′
1) > −cα‖u′1‖2 where cα <

cT
2α + 2cT

, then

b1(u, u)

bT (u, u)
>
cT − 2L(cT + α)

cT
> 0 for each u ∈ V. (8.11)

Combining (8.10) and (8.11) yields the next result.
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Proposition 8.3 If (Su′1, u
′
1) > −cα‖u′1‖2, then the bilinear form b1 is an

inner product for V .

The inequality above is a stability condition which is trivially satisfied when
S ≥ 0. The following result is immediate.

Corollary 8.1 The norms ‖ · ‖V and ‖ · ‖H1 are equivalent on V .

It is clear from Subsection 8.1 that Assumptions A1 to A3 are satisfied for
Problem Tim-Ad1 when b1,γ is replaced by b1. The existence of a unique so-
lution for the weak variational form follows, provided that qX is continuously
differentiable w.r.t. the norm of X, which requires q̃ to be continuously dif-
ferentiable with respect to the norm of L2(0, 1). If that condition is satisfied,
Theorem 8.1 applies.

8.4 Application to the nonsymmetric problem

In this subsection we consider Problem Tim-Ad1 as formulated in Subsec-
tions 6.3 and 8.1. Recall that b1,γ = b1 + bγ where

bγ(u, v) = −
∫ 1

0

γS(u′1 − u2)v2. (8.12)

Assume that the axial force S satisfies the stability condition in Proposi-
tion 8.3 effecting b1 to be an inner product for V . To apply Theorem 2.3
in [20] it is necessary to prove that |bγ(u, v)| ≤ C‖u‖V ‖v‖W for a suitable
constant C (see Section 8.2). It is not difficult to derive such an estimate but
C must be less than the minimum of the Rayleigh quotient associated with
b1.

Assuming that the stability condition is met, there exists a positive constant
c1 such that

b1(u, u) ≥ c1‖u‖2W for each u ∈ V. (8.13)

Now, |bγ(u, v)| ≤ µ
√
α‖u‖V ‖v‖W where µ = sup |S|. Consequently Assump-

tion A5 (in [20]) is satisfied if µ
√
α < c1 and the existence theorem can be

applied. From the above it is clear that the required assumption on b1,γ is
satisfied and that the existence theorem from [20] can be applied to Problem
Tim-Ad1. As before, the existence of a unique solution for the weak varia-
tional form follows, provided that qX is smooth enough (see end of previous
subsection).
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The result is not entirely satisfactory; the condition for the existence of a
solution should depend on the sign of the axial force S as for the symmetric
problems. The result in this subsection is due to Assumption A5 in [20]; it
may be that the condition is not necessary (although sufficient).

9 Comparison of the adapted linear

Timoshenko models

9.1 Using eigenvalues to compare models

It is widely accepted (if not always explicitly mentioned) that the essential
information about a vibration model is contained in its sequence of eigen-
functions and corresponding eigenvalues. See for example the books [14], [29]
and [30] and articles [6], [31] and [32]. It is a fact that many comparisons of
models rely on comparison of eigenvalues. A good example is the article [6].
In the article natural frequencies for a beam are determined by physical ex-
periments and compared to numerical values for a three-dimensional model
obtained via the Finite Element Method. The results are then compared to
those for the Timoshenko theory.

Justification of the method to use eigenvalues to compare vibration models is
based on the convergence of partial sums for a solution to the actual solution
(see e.g. [32]). As demonstrated in the article, the convergence results rely
on the existence of a complete orthonormal sequence of eigenfunctions. We
are not aware of a theory that provides these facts directly for a Timoshenko
beam (let alone the variations in Subsection 6.3). The theory in [32] indicates
how such results can be obtained. One can also use the theory for second
order elliptic operators in [33] as a guide.

Note that the discussion above concerns symmetric problems. In the pre-
vious section a distinction was made between symmetric and nonsymmetric
dynamic problems. The corresponding eigenvalue problems inherit the sym-
metry or lack thereof. Consider for example the variational form of Problem
Tim-Ad1 with b1,γ replaced by b1. The corresponding eigenvalue problem in
variational form is to find u ∈ V such that

b1(u, v) = λc(u, v) for each v ∈ V.

Eigenvalues and eigenfunctions can be calculated using FEM. The theory
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mentioned above applies to the weak variational form due to the fact that
both b1 and c are symmetric. However, it must be verified that Assumptions
A1 to A3 hold and also that a bounded sequence in V contains a convergent
subsequence in W .

If S is a constant then the results in [17] can be used despite the fact that
S = 0 in the article. The proofs remain valid provided that −1 < S < 1. All
the eigenvalues are simple for a cantilever beam and a pinned-pinned beam.
It is possible to calculate all eigenvalues and eigenfunctions and guarantee
the error. The eigenfunctions are pairs 〈w, φ〉 where both w and φ are linear
combinations of sinhµx, coshµx, sinωx and cosωx with µ and ω uniquely
determined by the relevant eigenvalue λ.

9.2 Application to the adapted Timoshenko models

In this subsection the method in [17] is applied to the eigenvalue problems for
the adapted Timoshenko models. First, consider the assumption in Equation
(6.22). This assumption amounts to neglecting the term γSV or ∂xuV . As
mentioned before, this “problematic term” is, as far a we could determine,
missing in the literature. Our first objective is to evaluate the contribution of
this term. To start, consider the eigenvalue problem associated with model
Tim-Ad1:

−Sw′′ − w′′ + φ′ = λw, (9.1)

− 1

β
φ′′ − γS(w′ − φ)− (w′ − φ) =

λ

α
φ. (9.2)

We compare the eigenvalues and eigenfunctions for the case above with those
for the problem where the term −γS(w′ − φ) is neglected. The boundary
conditions for both a cantilever and a pinned-pinned beam were considered.
The numerical experiments were carried out for various values of S in the
range −10−1 < S < 10−1. (Recall the condition −1 < S < 1 and also the
fact that S = ±10−1 should be considered as large.) In our experiments the
relative differences turned out to be less than 1%. However, only a limited
number of modes can be investigated and we calculated the first four in each
case.

Next, consider the eigenvalue problems for the two versions of model Tim-
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Ad2 which are determined by the equations

−w′′ + φ′ = λw, (9.3)

− 1

β
φ′′ − γS(w′ − φ)− (w′ − φ) + Sw′ =

λ

α
φ. (9.4)

− 1

β
φ′′ − (γ − 1)S(w′ − φ)− (w′ − φ) + Sφ =

λ

α
φ. (9.5)

The eigenvalue problem for the nonsymmetric case is determined by Equa-
tions (9.3) and (9.4) while (9.3) and (9.5) hold for the symmetric case. We
investigated the effect of neglecting the term −γS(w′ − φ) in Equation (9.4)
and (1 − γ)S(w′ − φ) in Equation (9.5). In a few samples these terms did
not affect the results significantly as was the case for model Tim-Ad1. Also,
due to their simplicity, the simplified models are more likely to be used in
applications.

In other experiments we compared models Tim-Ad1 and Tim-Ad2 (nonsym-
metric). Numerical experiments were carried out for various values of S,
again in the range −10−1 < S < 10−1. The boundary conditions for both a
cantilever and pinned-pinned beam were considered. In our experiments the
relative differences turned out to be less than 1% for the axial force in the
range −10−2 < S < 10−2. However, for S = ±10−1 the relative differences
jumped to approximately 5% or more. The same experiments were carried
out to compare the symmetric and nonsymmetric cases for model Tim-Ad2.
The results were similar to those for the preceding set of experiments.

Critical load For the pinned-pinned beam λ = α is an eigenvalue with cor-
responding eigenfunction 〈w(x), φ(x)〉 = 〈0, 1〉. All the other eigenfunctions
can be written as 〈wk(x), φk(x)〉 = 〈sin kπx,Ak cos kπx〉 where, for model
Tim-Ad1,

(1 + S)k2π2 − kπAk = λk,

1

β
k2π2Ak − (kπ − Ak)− γS(kπ − Ak) =

λk
α
Ak.

Setting λ1 = 0, one can solve for the load S. It is the lesser root of

γS2 +
π2 + β

β
S +

π2

β
= 0, i.e. Scrit ≈ −

π2

β
+

(
π2

β

)2

for γ = 1/4. For this

load one expects that an associated nonlinear problem will yield buckled
states. If the problematic term is left out (as described above), then

Scrit = − π2

β + π2
. For both cases of model Tim-Ad2, Scrit = −π

2

β
.
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10 Conclusion

In this article we derived a mathematical model for large planar motion
of elastic rods which undergo flexure, shear and extension but not torsion.
(We use the term rod for one-dimensional solids, i.e. beams, cables, ropes,
hoses. etc.) Since the Timoshenko theory provides an excellent approxima-
tion for three-dimensional elastic behaviour with plane stress, we adapted
the constitutive equations for application to large rotations to complete the
model, which we call the the Local Linear Timoshenko rod (LLT) model. We
demonstrated that this model serves as a framework for a class of simpler
mathematical models for slender solids in various applications with the ad-
vantage that the more general model can be used to evaluate and compare
the simpler models.

In Section 5 the infinitesimal theory of linear elasticity is applied to a thin disc
in the beam to motivate the constitutive equations. The polar decomposition
theorem is then used to motivate the co-existence of large rigid rotations
and small strains. In the same section, the LLT model was compared to
the models in [8] and [10]. The static case was considered in [10], but the
constitutive equations are fully nonlinear and a generalization of those in
the LLT model. The LLT model shares some properties of the model in [8]
but there are important differences, e.g. the strains in [8] do not reflect the
Timoshenko kinematical assumption (see [10]).

A mathematical model for small vibrations of an elastic rod is also developed
(from the LLT model) where flexure, shear and extension are still taken into
account. This model which is still nonlinear, also serves as a framework
for a class of simpler models for small vibrations. A number of linear and
nonlinear models are included of which some feature in articles published by
other authors.

Variational forms and the implementation of the Finite Element Method
are discussed briefly. Some numerical experiments were carried out with
encouraging results. Further work is in progress and results should be ready
for publication soon. Analysis of the algorithms is a challenge where it is
difficult to predict the outcome.

A section on weak variational forms and the existence of solutions for different
linear Timoshenko model problems with axial loads is new. In another section
these models are compared using eigenvalues and eigenfunctions.
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