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Abstract 

We use daily data for the period 25th November, 1985 to 10th March, 2020 to analyse the impact 
of newspapers-based measures of geopolitical risks (GPRs) on United States (US) Treasury 
securities by considering the level, slope and curvature factors derived from the term structure 
of interest rates of maturities covering 1 to 30 years. No evidence of predictability of overall 
GPRs (or for threats and acts) are detected using linear causality tests. However, evidence of 
structural breaks and nonlinearity are provided by statistical tests performed on the linear 
model, which indicate that the Granger causality cannot be relied upon, as they are based on a 
misspecified framework. As a result, we use a data-driven approach, specifically a 
nonparametric causality-in-quantiles test, which is robust to misspecification due to regime 
changes and nonlinearity, to reconsider the predictive ability of the overall and decomposed 
GPRs on the three latent factors. Moreover, the zero lower bound situation, visible in our 
sample period, is captured by the lower quantiles, as this framework allows us to capture the 
entire conditional distribution of the three factors. Using this robust model, we find 
overwhelming evidence of causality from the GPRs, with relatively stronger effects from 
threats than acts, for the entire conditional distribution of the three factors, with higher impacts 
on medium- and long-run maturities, i.e., curvature and level factors, suggesting the 
predictability of the entire US term structure based on information contained in GPRs. Our 
results have important implications for academics, investors and policymakers.   
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1. Introduction 

The traditional “safe haven” role of Treasury securities of the United States (US) is well-
established due to their strong ability to provide investors with valuable portfolio 
diversifications and hedging benefits during periods of global turmoil and heightened 
uncertainties that negatively impact conventional financial markets and the macroeconomy in 
general (Habib and Stracca, 2015; Kopyl and Lee, 2016). The lack of significant default risk 
fuelled by the vast revenue stream generated by the US government, which accounts for over 
20 percent of global output, has primarily led to the safe-haven nature of US Treasury securities 
(Bouri et al., 2021). In fact, US bond market capitalization represents nearly two-thirds of the 
value of the global bond market at $40.7 trillion (a third higher than the corresponding value 
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associated with the stock market of $30 trillion) (Securities Industry and Financial Markets 
Association (SIFMA)). Given this, a pertinent question to analyse would be the predictive 
content of uncertainty for the US government bond market, which is an important issue for 
bond investors. Policymakers can also benefit from these studies, as it helps fine tune monetary 
policies, when they understand the evolution of future interest rates. 

In this regard, in terms of global-level uncertainties, geopolitical risks (GPRs) are often cited 
by central bankers, the financial press, and business investors as a determinant of investment 
decisions, and hence, have been shown to adversely affect output and equity markets (Clance 
et al., 2019; Bouri et al., forthcoming). Notably, military and diplomatic conflicts taking place 
around the world, and their economic impact, were of concern by 75% of the 1000 investors 
surveyed by Gallup in 2017. Geopolitical risk was ranked ahead of political and economic 
uncertainty,1 while Carney (2016) includes these three in the “uncertainty trinity”, which could 
have significant adverse economic effects. More recently, geopolitical uncertainties were 
highlighted as a salient risk to the economic outlook, by both the European Central Bank (in 
their April 2017 Economic Bulletin), and the International Monetary Fund (in their October 
2017 World Economic Outlook).  

Against this backdrop, we aim to analyse the ability of leading global uncertainties, being 
driven by GPRs, to predict the daily path of zero coupon US Treasury bond yields, given its 
characteristic as a traditional safe haven, over the period of 25th November, 1985 to 10th March, 
2020. As per Litterman and Scheinkman (1991), the three latent factors (level, slope, and 
curvature) are the only relevant factors that characterize the yield curve, therefore, we use the 
well-established econometric framework of Nelson and Siegel (1987) from the finance 
literature to summarize the entire term structure into these factors. We then relate the movement 
of the level, slope and curvature factors to the news-based GPR indexes (which measure 
geopolitical risks that have been developed recently by Caldara and Iacoviello (2019). These 
indexes include not only terror attacks, but also other forms of geopolitical tensions such as 
war risks, military threats, and Middle East tensions. Hence, these indices allow us to capture 
GPRs of various forms in a continuous fashion, going beyond the effect of particular events at 
specific points in time, and in turn, provide a holistic view of risks related to geopolitical events 
in the world, which has over the years has become more interconnected, thus implying that the 
effects of GPRs in a particular country spillsover globally.  

In terms of the US Treasury securities, we study the entire term-structure of interest rates 
spanning maturities of 1 year to 30 years, rather than concentrating on certain specific 
maturities. In the process, we are able to obtain a better understanding of whether the 
predictability of the GPRs is contingent on the time-frame of maturity, which, understandably, 
has important investment and policy implications in terms of which horizon of yields to focus 
on relatively more following the occurrence of geopolitical events. Moreover, Hillebrand et al., 
(2018) points out that entire yield curve is considered a predictor of economic activity, which 
in turn, makes the issue of studying the impact of GPRs on all the maturities pertinent. 

As far as the predictive model is concerned, we relate the US yield curve to the GPRs using 
the nonparametric causality-in-quantiles framework of Jeong et al., (2012). This model, apart 
from allowing us to test for predictability emanating from the GPRs over the entire conditional 
distribution of the three aforementioned yield curve factors, it allows us to control for 
misspecification due to uncaptured nonlinearity and regime changes (existence of which we 
show in the results section). Given that our period of study includes the “Great Recession”, it 
also includes the resulting zero lower bound (ZLB) situation of the interest rates in the US. 
This reinforces the use of a quantiles-based framework, since different quantiles can capture 
                                                            
1See http://www.businesswire.com/news/home/20170613005348/en/. 



3 
 

the various phases of the three latent factors accurately, with the lower, median, and upper 
quantiles corresponding to low, normal, and high interest rates, respectively (unlike a Markov-
switching model, which requires an explicit number of regimes to be specified). 
Understandably, investors can use high-frequency prediction of the term structure of interest 
rates to design optimal portfolios involving US government bonds in a timely manner, and 
policymakers can use these high-frequency predictions (by feeding the information into mixed-
frequency models) to gauge where the low-frequency real and nominal variables in the 
economy are headed (Caldeira et al., forthcoming). 

To the best of our knowledge, this is the first paper to study the predictability of the entire US 
term structure due to uncertainty resulting from GPRs covering over 35 years of daily data. 
The only somewhat related study is the paper by Bouri et al., (2019). This work applied a k-th 
order non-parametric causality-in-quantiles test to examine the causal effect of GPRs on return 
and volatility dynamics of Islamic equity and bond markets. GPRs are generally found to 
impact Islamic equity market volatility measures, rather than returns. However, GPRs tend to 
predict both returns and volatility measures of Islamic bonds. The remainder of the paper is 
structured as follows: Section 2 discusses the data, along with the basics of the two 
methodologies associated with the Nelson and Siegel (1987) model, and the nonparametric 
causality-in-quantiles test of Jeong et al., (2012). Section 3 presents the results, with Section 4 
concluding the paper. 

2. Data and Econometric Methodologies 

In this section we present the data and the basics of the two methodologies used for our 
empirical analyses, which involves the extraction of the three latent yield curve factors and 
analysing its quantiles-based predictability due to the metric of global uncertainty emanating 
from GPRs. 

2.1. Data 

We collect daily zero-coupon yields (are based on the work of Gürkaynak et al., (2007)) of 
Treasury securities with maturities from 1 year to 30 years, from the Federal Reserve Board 
(FRB),2 which we use to estimate the yield curve factors for the US. Gürkaynak et al., (2007) 
use a simple, well-known smoothing technique, that fits the data well. They make available a 
long history of yield curve estimates of the FRB at a daily frequency to researchers and 
practitioners, with the resulting estimates employed to calculate bond yields for any horizons. 

The daily measure of GPRs, is based on the work of Caldara and Iacoviello (2019).3 Caldara 
and Iacoviello (2019) construct the GPRs index by counting the number of articles that mention 
words related to geopolitical tensions in 11 leading national and international newspapers (The 
Boston Globe, Chicago Tribune, The Daily Telegraph, Financial Times, The Globe and Mail, 
The Guardian, Los Angeles Times, The New York Times, The Times, The Wall Street Journal, 
and The Washington Post). There are six groups of words that are searched for: Group 1 are 
for words that are associated with explicit mentions of geopolitical risks, and mentions of 
military-related tensions involving large regions of the world (and a U.S. involvement); Group 
2 is reserved for words relating to nuclear tensions; Groups 3 and 4 are for words relating to 
threats, so threats of war and terrorism, respectively; Groups 5 and 6 are to capture coverage 
of actual adverse geopolitical events (in stead of risks), which can be expected to increase 
geopolitical uncertainty (acts of terror, or beginning of a war). Given this, Caldara and 
Iacoviello (2019) also decompose the overall GPRs index into GPRs due to threats 

                                                            
2 The data is downloadable from: https://www.federalreserve.gov/data/nominal-yield-curve.htm. 
3 The data can be downloaded from: https://www2.bc.edu/matteo-iacoviello/gpr.htm. 
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(GPRs_Threats) and GPRs due to acts (GPRs_Acts) based on search terms 1 to 4 and 5 to 6 
respectively. 
 
Based on the data availability of the, our analysis covers the sample period 25th November, 
1985 to 10th March, 2020 involving the overall GPR, while with GPRs_Threats and 
GPRs_Acts, the data ends in 6th January, 2020.  

2.2. Methodology 

2.2.1. Extraction of the Yield Curve Factors 

As mentioned above, we use the dynamic Nelson-Siegel three-factor model of Diebold and Li 
(2006) (DNS, hereafter) to fit the yield curve of zero coupon US Treasury securities. To achieve 
this, we decompose the yield curve into three latent factors using the Nelson and Siegel (1987) 
representation in a dynamic form. The DNS with time-varying parameters is represented as:  

𝑟௧ሺ𝜏ሻ ൌ  𝐿௧ ൅ 𝑆௧  ቀ
ଵି௘௫௣షഊഓ

ఒఛ
ቁ ൅ 𝐶௧ሺଵି௘௫௣షഊഓ

ఒఛ
െ 𝑒𝑥𝑝ିఒఛሻ      (1) 

where 𝑟௧ is the yield rate at time 𝑡 and 𝜏 is the time to maturity (effectively maturity minus 𝑡). 
The factor loading of 𝐿௧  is 1 and loads equally for all maturities. 𝐿௧ represents the movements 
of long-term yields and gives the level factor, as a change in 𝐿௧ can change all yields equally.  
The loading of 𝑆௧ starts at 1 and monotonically decays to zero. 𝑆௧ mimics the movements of 
short-term yield movements, since it changes the slope of the yield curve, and hence is the 
slope factor. The loading for 𝐶௧ starts at 1 and decays to zero, with a hump in the middle. 𝐶௧ 
mimics the medium-term yield movements, as an increase in 𝐶௧ leads to an increase in the yield 
curve curvature, and hence it is the curvature factor. The DNS model follows a VAR process 
and is modelled in state-space form using the Kalman filter. The measurement equation relating 
the yields and latent factors is: 
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The transition equation relating the dynamics of the latent factors is:    

  𝑓ሚ௧ ൌ 𝛤𝑓ሚ௧ିଵ ൅ 𝜂௧  𝜂௧ ∼ 𝑁ሺ0, 𝐺ሻ                          (3) 

where 𝑟௧ሺ𝜏ሻ and 𝑢௧ represent the yield rates with given maturities (in our case 1 year to 30 year) 
and the error terms, respectively, both are 𝑚 ൈ 1 dimensional vectors. The coefficient matrix 
in the measurement equation follows the structure introduced by Nelson and Siegel (1987), 
while 𝑓௧ gives the time-varying yield rate shape parameters, 𝑓௧ ൌ ሾ𝐿௧, 𝑆௧, 𝐶௧ሿ, and is a 3 ൈ 1 
dimensional vector. In the transition equation,  𝑓ሚ௧ is the demeaned time-varying shape 
parameter (i.e., 𝑓ሚ௧ ൌ 𝑓௧ െ 𝑓), 𝛤 gives the dynamic relationship across shape parameters, 𝜂௧ is 
the error term (assumed to be independent of 𝑢௧ and is a 3 ൈ 1 dimensional vector), 𝐺 is a 
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𝑚 ൈ 𝑚 dimensional diagonal matrix and 𝑅 is a 3 ൈ 3 dimensional variance-covariance matrix, 
allowing the latent factors to be correlated.4 

2.2.2. Nonparametric Causality-in-Quantiles Model 

We now describe the nonparametric causality-in-quantiles approach proposed by Jeong et al. 
(2012). Consider a bivariate set-up and let 𝑦௧ denote Lt, St or Ct and 𝑥௧ correspond to GPRs, 
GPRs_Threats or GPRs_Acts. Also, let 𝑌௧ିଵ ≡ ሺ𝑦௧ିଵ, … , 𝑦௧ି௣ሻ, 𝑋௧ିଵ ≡ ሺ𝑥௧ିଵ, … , 𝑥௧ି௣ሻ, 𝑍௧ ൌ
ሺ𝑋௧, 𝑌௧ሻ, and 𝐹௬೟|∙ሺ𝑦௧| •ሻ denote the conditional distribution of 𝑦௧ given •.  Defining 𝑄఑ሺ𝑍௧ିଵሻ ≡
𝑄఑ሺ𝑦௧|𝑍௧ିଵሻ and 𝑄఑ሺ𝑌௧ିଵሻ ≡ 𝑄఑ሺ𝑦௧|𝑌௧ିଵሻ, we have  𝐹௬೟|௓೟షభ

ሼ𝑄఑ሺ𝑍௧ିଵሻ|𝑍௧ିଵሽ ൌ 𝜅  with 
probability one. The (non)causality in the 𝜅-th quantile hypotheses to be tested are: 
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Jeong et al. (2012) show that feasible kernel-based test statistics have the following format: 
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where 𝐾ሺ•ሻ is the kernel function with bandwidth ℎ, 𝑇 is the sample size, 𝑝 is the lag order, 
and 𝜀௧̂ ൌ 𝟏ሼ𝑦௧ ൑ 𝑄෠఑ሺ𝑌௧ିଵሻሽ െ 𝜅 is the regression error, where 𝟏ሼ•ሽ is the indicator function 
and 𝑄෠఑ሺ𝑌௧ିଵሻ is an estimate of the 𝜅-th conditional quantile. The Nadarya-Watson kernel 
estimator of 𝑄෠఑ሺ𝑌௧ିଵሻ is given by: 
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with 𝐿ሺ•ሻ denoting the kernel function.  
Implementing quantile causality requires three key parameters to be set up: the lag order (p), 
the bandwidth (h), and the kernel types for 𝐾ሺ∙ሻ and 𝐿ሺ∙ሻ. We use Gaussian kernels for 𝐾ሺ∙ሻ 
and  𝐿ሺ∙ሻ, p is selected according to the Schwarz Information Criterion (SIC), and ℎ is 
determined by the leave-one-out least-squares cross-validation.  
 

3. Empirical Results 
 
We start our results by briefly discussing key summary statistics of the data for the three yield 
curve factors of level, slope and curvature, and the three GPRs, i.e., overall GPRs, 
GPRs_Threats and GPRs_Acts which is given in Table A1 in the Appendix, along with time-
plots in Figure A1. For the dependent variables, the slope factor has a negative average value, 
which indicates that, on average, yields increase along with maturity. The curvature (medium-
term maturities) has a higher average value than the level factor (long-term yields), which is in 
line with Kim and Park (2013) who also used daily bond yields of the US, and is indicative of 
liquidity issues for bonds with very long maturities. The level factor is also the least volatile 
among the three factors, followed by the slope and curvature factors. For the independent 
variables, GPRs_Acts is more volatile than GPRs_Threats, though the latter has a higher mean 
value. The Jarque-Bera (J-B) test indicate that the null hypothesis of normality is rejected at a 
1% significance level for all variables (that is, all variables are non-normal). These results, 
particularly for Lt, St, and Ct, provides preliminary motivation to look for non-linear causality, 
a quantiles-based approach, to analyse the influence of geopolitical events and threats on these 
three factors of US yield curve.  

                                                            
4 Complete details of the parameter estimates of the model are available upon request from the authors. 
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We performed a standard Granger causality test, for the purpose of completeness and 
comparability, where the 2(p) statistics involving the causality running from overall GPRs, 
GPRs_Acts and GPRs_Threats to Lt, St, and Ct are reported in Table A2 in the Appendix to the 
paper, with p =5 under GPRs and GPRs_Threats, and p=6 for GPRs_Acts (the lag lengths, 
were chosen to minimize the Schwarz Information Criterion). We cannot reject the null 
hypotheses (even at a 10% significance level), that any of the three GPR indexes do not Granger 
cause any of the three latent factors of the yield curve considered in a bivariate set-up. 
Therefore, based on the standard linear test, we conclude no significant geopolitical risks-
related effects on the level, slope or curvature of the US yield curve. 
 
Given the insignificant results above (the linear Granger causality tests and Jarque-Bera 
normality tests), we examined the statistical existence of structural breaks and nonlinearity in 
the relationship between the three latent factors of the US yield curve with the GPRs indexes. 
If there are regime changes and/or nonlinearity present, it would motivate the use of the 
nonparametric quantiles-in-causality test, as this quantiles-based test would address structural 
breaks and nonlinearity in the relationships between the investigated variables in a bivariate 
set-up, as it is robust against misspecification. We first investigate this, by using the Brock et 
al. (1996) (BDS) test on the residuals from the Lt, St, and Ct equations involving SIC-
determined lags of the three factors and overall GPRs, GPRs_Acts and GPRs_Threats (reported 
in Table A3 in the Appendix). The results suggests nonlinearity in the relationships between 
the facts and the GPR indexes, as there is strong evidence for the rejections of the null 
hypothesis of i.i.d. residuals at various dimensions (m). In order to further justify the use of the 
causality-in-quantiles method and to test for regime changes, we also employ the UDmax and 
WDmax tests of Bai and Perron (2003), which detects 1 to M structural breaks in the 
relationships between Lt, St, and Ct with overall GPRs, GPRs_Acts and GPRs_Threats. Table 
A4 gives the results (where we allow for the heterogeneous error distributions across breaks on 
the SIC-bsed lags of the three factors and three GPR indexes) where we are able to detect at 
least one break under all nine cases, especially during the global financial crisis.  
 
Due to the strong evidence of the presence of structural breaks and nonlinearity in the 
relationships between the latent factors and shocks (shown above), we now turn our 
investigations to the causality-in-quantiles testing. Figure 1 shows the results of this test (over 
the quantile range 0.05 to 0.95). From these results, we reject the null hypothesis that GPRs do 
not Granger cause Lt, St, and Ct at the 5% significance level over the entire conditional 
distributions of the dependent variables, barring the case of St at the 0.95 quantile, where the 
result holds at the 10% level. In fact, the null hypothesis is rejected at the 1% significance level 
over the quantile range 0.10 to 0.90 in all cases, and also at the lowest quantile of 0.05 for the 
level and curvature factors. The results suggest that there is strong evidence of predictability 
from GPRs to the three factors characterizing the US term structure of interest rates over their 
respective conditional distribution (when accounting for structural breaks and nonlinearity in a 
nonparametric approach), as opposed to linear method that showed a complete lack of causality 
reported. In general, at lower conditional quantiles (0.05-0.40), strongest predictive effects are 
observed for the level factor, and beyond the median the same holds for the curvature. In other 
words, GPRs have higher impact on medium to long-term bonds than on the shorter-terms, as 
the former groups are generally associated with higher risks.  

Furthermore, when we compare the predictability across GPRs_Acts and GPRs_Threats in 
Figure 2, the latter depicts stronger evidence of impact in terms of the higher statistics, as well 
as the coverage of the conditional distribution. The latter conclusion can be drawn because of 
the lack of prediction observed at the extreme quantiles of the three factors due to acts, unlike 
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the predictability of the entirety of the conditional distributions of level, slope and curvature 
due to threats. In sum, we can say that it is GPRs_Threats rather than GPRs_Acts that tend to 
drive the result for the overall GPRs. The finding that the threats of adverse events has larger 
predictability compared to their realization supports the findings of theoretical models where 
agents form expectations using a worst case probability (Ilut and Schneider, 2014), which leads 
to stronger negative impacts on the stock market and overall economy of the US (Caldara and 
Iacoviello, 2019). 

4. Conclusion 

Given the sparse literature on the impact of geopolitical risks (GPRs) on the US government 
bond market, we analyse the impact of overall geopolitical risks (as well as acts and threats), 
on the entire term structure of interest rates, by obtaining three latent factors, level, slope and 
curvature. We use daily data from 25th November, 1985 to 10th March, 2020 and show that, 
due to the presence of nonlinearity and structural breaks in the relationships (i.e. the models 
are misspecified), standard linear tests of causality fail to detect any evidence of predictability 
running from the GPRs to the three yield curve factors. We reconsider the impact of the GPR 
indexes on the three latent factors, by using a nonparametric causality-in-quantiles framework. 
This econometric model is robust against misspecification (as the linear model does not account 
for regime changes and nonlinearity), due to being a data-driven approach, and allows us to 
test for predictability over the entire conditional distribution of level, slope and curvature. Note 
that, as our sample period includes the global financial crisis (and the resulting zero lower 
bound situation) the lower quantiles of the level, slope and curvature allow us to capture this 
without the need to carry out a sub-sample analysis involving pre- and post- crisis data. Using 
the nonparametric causality-in-quantiles test, we find overwhelming evidence of predictability 
emanating from overall GPRs, and such risks due to acts and threats over the entire conditional 
distributions of the three factors of the US term structure, with the stronger impacts observed 
for the level and curvature factors associated with medium- and long-term maturities. 
Moreover, GPRs due to threats have higher predictive content than GPRs due to actual acts. 
Our results also highlight the importance of checking and controlling for model 
misspecification to obtain correct inferences, especially when analysing the impact of GPRs 
on the US term structure, as our findings provide evidence that such risks are important drivers 
of the entire yield curve, irrespective of its alternative phases, and despite the results we 
obtained from the linear causality tests.  

Understandably, our findings using high-frequency, i.e., daily data, have multi-dimensional 
implications. Policymakers can use the observation that GPRs contain predictive information 
over the evolution of future interest rates (in a nonparametric set-up) to fine-tune their monetary 
policy models, as these risks affect the slope factor of the yield curve (besides its curvature and 
level), which captures movements of short-term interest rates. On the other hand, investors and 
risk managers can use our finding that GPRs affect in the high-frequency movements of the 
term structure of interest rates, in particular, for medium- and long-term maturities, to improve 
their interest-rate prediction models, and investment and risk management strategies. Lastly, 
academic researchers may also use the findings of this paper to explain (and reduce) deviations 
from asset-pricing models by accounting for GPRs in their pricing kernels, which, however, 
need to be nonlinear. 

As part of future research, it would be interesting to extend the paper to out-of-sample 
forecasting, and analysis of the impact of such risks on the volatility of the US Treasury 
securities. One of the limitations of the current work is that the underlying nonparametric 
causality-in-quantiles framework does not allow beyond a bivariate model of testing causality. 
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While it is true that GPRs are known to lead several macroeconomic and financial variables 
which are known to affect the bond market (see Ludvigson and Ng (2009, 2011)), it remains 
to be seen if our results continue to hold when these factors are used as control variables in a 
quantiles-based nonparametric model that is able to handle simultaneously multiple predictors.  
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Figure 1. Causality-in-Quantiles Test Results for the US Term Structure Factors due to 
GPRs 

 
Note: The horizontal axis represents the quantiles, while the vertical axis presents the causality-in-quantiles test 
statistic indicating the rejection or non-rejection of the null hypothesis that GPRs does not Granger cause a specific 
term structure factor at a specific quantile, if the statistic is above or below the critical values. 
 

 

Figure 2. Causality-in-Quantiles Test Results for the US Term Structure Factors due to 
GPRs_Acts and GPRs_Threats 

(a) Level Factor: 

 

 

 

 

0

1

2

3

4

5

6

7

8

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

Level Slope Curvature 10% CV 5% CV 1% CV

0

1

2

3

4

5

6

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

GPRs_Acts GPRs_Threats 10% CV 5% CV 1% CV



11 
 

(b) Slope Factor: 

 

 

(c) Curvature Factor: 

 

Note: The horizontal axis represents the quantiles, while the vertical axis presents the causality-in-quantiles test 
statistic indicating the rejection or non-rejection of the null hypothesis that GPRs_Acts or GPRs_Threats does not 
Granger cause a specific term structure factor at a specific quantile, if the statistic is above or below the critical 
values. 
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APPENDIX: 

Table A1. Summary Statistics 

 Variable
Statistic Level Slope Curvature GPRs GPRs_Acts GPRs_Threats
Mean 4.2295 -0.9713 6.5238 88.9155 77.4488 90.1840 

Median 3.8424 -1.0093 6.0226 63.7362 47.6594 63.6429 

Maximum 11.5968 6.6251 29.6086 1168.8850 1908.2320 1243.8140 

Minimum -7.0564 -4.8584 -3.4930 0.0000 0.0000 0.0000 

Std. Dev. 2.6131 1.5544 5.2643 86.5878 117.0595 92.9396 

Skewness -0.1817 0.5377 0.6020 3.2557 4.2635 3.2264 

Kurtosis 3.7479 3.2337 3.3993 21.2441 37.6590 20.7477 

Jarque-Bera 246.4414*** 431.6839*** 573.5671*** 133759.8000*** 451778.0000*** 126465.8000***

Observations 8555 8555 8555 8555 8511 8511 
Note: *** indicates rejection of the null hypothesis of normality at 1% level of significance.  

 

Table A2. Linear Granger Causality Test Results 

 
Independent Variable

Dependent 
Variable GPRs GPRs_Acts GPRs_Threats

Level 4.0485 0.7960 5.2535 

Slope 8.4252 4.2551 8.0809 

Curvature 2.6313 1.8716 4.8274 
Note: Entries correspond to the 2(p) statistic that GPRs, GPRs_Acts or GPRs_Threats does not Granger cause 
a specific term structure factor, with p = 5, 6 and 5, respectively. 
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Table A3. Brock et al. (1996) (BDS) Test of Nonlinearity 
Level

Independent 
Variable m=2 m=3 m=4 m=5 m=6 

GPRs 36.0855*** 44.0605*** 50.4943*** 56.698*** 63.4723***

GPRs_Acts 35.9709*** 43.7875*** 50.1697*** 56.3169*** 63.0686***

GPRs_Threats 35.8718*** 43.7903*** 50.1755*** 56.3332*** 63.0533***

Slope
Independent 

Variable m=2 m=3 m=4 m=5 m=6 
GPRs 33.5831*** 40.5889*** 46.2994*** 52.1366*** 58.4256***

GPRs_Acts 33.4015*** 40.3044*** 45.9768*** 51.7755*** 58.0298***

GPRs_Threats 33.3734*** 40.3298*** 45.9859*** 51.7613*** 57.9759***

Curvature
Independent 

Variable m=2 m=3 m=4 m=5 m=6 
GPRs 34.1735*** 41.6177*** 47.3540*** 52.8172*** 58.9330***

GPRs_Acts 34.0006*** 41.3182*** 46.9831*** 52.4020*** 58.4961***

GPRs_Threats 33.9240*** 41.3210*** 47.0061*** 52.4181*** 58.4712***

Note: Entries correspond to the z-statistic of the BDS test with the null hypothesis of i.i.d. residuals, with the test 
applied to the residuals recovered from the three yield curve factor equations with SIC-based lags (see Note to 
Table A2) each of level, slope and curvature, and GPRs, GPRs_Acts or GPRs_Threats across dimensions m; *** 

indicates rejection of the null hypothesis at 1% level of significance. 
 

Table A4. Bai and Perron (2003) Test of Multiple Structural Breaks 
Independent 

Variable Level Slope Curvature
GPRs 4/07/1995, 9/13/2006 12/10/2008 8/13/2008

GPRs_Acts 

4/12/1991, 6/17/1996, 
5/08/2003, 8/20/2008, 

7/15/2014

12/11/1991, 5/06/1998, 
4/14/2004, 10/15/2009, 

11/19/2014

2/05/1993, 4/13/1998, 
5/29/2003, 8/14/2008, 

6/27/2014

GPRs_Threats 

2/05/1993, 3/27/1998, 
5/08/2003, 7/28/2008, 

8/29/2013 12/10/2008 8/20/2008
Note: Entries correspond to the break dates obtained from the three yield curve factor equations with SIC-based 
lags (see Note to Table A2) each of level, slope and curvature, and GPRs, GPRs_Acts or GPRs_Threats. 
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Figure A1. Data Plots 
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