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ABSTRACT

A HYBRID GEARBOX CONDITION MONITORING METHODOLOGY USING TRANSFER
LEARNING FOR CALIBRATION

by

Luke van Eyk

Supervisor(s): Prof. PS Heyns, Dr. S Schmidt
Department: Mechanical and Aeronautical Engineering
University: University of Pretoria
Degree: Master of Engineering (Mechanical Engineering)
Keywords: CNN, Condition Based Maintenance, Domain Adaptation, Dynamic Gearbox

Modelling, Maximum Mean Discrepancy, Spur Gear Modelling, Time Varying
Mesh Stiffness, Transfer Learning

Gearboxes are widely utilized as critical components in a large number of engineering applications. Gearboxes
are prone to failures and therefore it is advantageous to utilise a condition-based maintenance (CBM) framework
to infer the condition of its components. Various data-driven and physics-driven approaches have been developed
for the CBM task. In this work, a hybrid approach is proposed where a data-driven and physics-driven approach
are combined to infer the condition of the gearbox. The hybrid approach combines the advantages of both
approaches and aims to overcome their respective limitations. For the physics-driven approach, a numerical
gearbox model is developed. The modelling procedure for the numerical gearbox model introduced a novel
approach to gear fault modelling which aims to generalize the introduction of gear faults to a simpler, unified
framework. For the data-driven approach, a supervised convolutional neural network (CNN) is utilised to
extract features from vibration signals and classify them simultaneously. By generating synthetic data from the
physical model and feeding this to the CNN, a hybrid model is developed which may yield the potential for fault
identification of the real asset. There is, however, no guarantee that the learned features from the synthetic data
(source domain) are transferable to a new domain of signals (target domain), such as those from the real asset.
Two transfer learning methods are utilised to calibrate the hybrid model for a change in input data. To investigate
the efficacy of transfer learning calibration, two numerical experiments are constructed where the hybrid model is
trained on perfect synthetic data (the source domain) and applied to noisy synthetic data with different vibration
signatures (the target domain). The results show that an uncalibrated hybrid model fails to transfer to the target
domain, but that the calibrated methods perform well on this transfer task. This work highlights the potential of
transfer learning-calibrated hybrid methods for condition monitoring of gearboxes.
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Chapter 1 Introduction

1.1 Background
Gearboxes are commonly found across many industries, including the mining and power generation industries.
The gearboxes play a critical role in the process and are usually expected to run continuously. It is therefore of
paramount importance that these gearboxes do not incur unplanned downtime, as this will lead to total production
shutdown. Traditionally such problems may be solved by preventative maintenance, but this runs the risk of
premature failure or premature replacement, e.g. replacing a healthy gearbox. A more sensible approach to the
maintenance problem is through Condition-Based Maintenance (CBM).

CBM is a strategy that aims to make maintenance decisions based on an asset’s condition (Lei et al. 2018a). This
can in turn reduce unplanned downtime or replacement of perfectly healthy components. It follows that CBM is
an important strategy for critical machines and components, where downtime must be kept to a minimum, or
where components are expensive to replace. CBM is therefore a suitable approach to apply to gearboxes.

CBM consists of two main tasks, namely diagnostics and prognostics. Diagnostics mainly focus on the tasks
of anomaly detection, fault isolation and fault classification. Prognostics rather focus on the estimation of
Remaining Useful Life (RUL) of an asset (Cubillo et al. 2016). Kundu et al. (2020) state that a diagnostic
approach can be followed without a prognostic approach being utilised, but not vice versa. This implies that
diagnostics are a fundamental part of any CBM implementation and may therefore be the starting point for any
larger CBM approach, should it be diagnostic or prognostic in nature.

Broadly speaking, diagnostic CBM approaches can be thought of as consisting of three main approaches:
Physics-driven, data-driven and hybrid approaches.

A physics-driven approach is concerned with modelling the underlying physics of some system. These models
may then be used to try and analyse the real system in a numerical environment. One can easily manipulate
the geometry of faults and fault sizes in the numerical environment. This allows the creation of a database of
synthetic signals which may be analysed to predict how a machine will react under different fault conditions.
The generation of a fault database for an asset is extremely valuable, as obtaining such a database experimentally
is hard and expensive (Kundu et al. 2020). A further value of developing a physical model lies within its ability
to be extended to prognostic approaches, as the physical model allows for faults to be modelled and propagated.
Regardless of how the physics-driven approach is implemented, it has one key drawback: The conclusions drawn
from the physics-driven approach is generally limited to how well the actual system and faults are modelled.
Physical models are simplified versions of the true, complex real asset and therefore do not guarantee that the
knowledge obtained from the physical model is transferable to the real asset Kundu et al. (2020).

Data-driven approaches utilise large amounts of data to predict the condition of an asset, with no direct need to
understand any underlying physics of the system at hand. The data may be pre-processed by utilising advanced
signal processing techniques such as time-synchronous averaging, order tracking or many other signal processing
techniques. The processed data is then manipulated to form more meaningful representations, known as features.
These features may include hand-crafted statistical features or may involve more modern machine learning-based

1



Chapter 1 Introduction

approaches, which aim to automatically extract meaningful features (Lei et al. 2020). The features are then
combined using either expert knowledge or machine learning techniques to make predictions on the machine
condition. The type of predictions that are made depend on whether the data has labels. Where no labels
are present, unsupervised approaches are required and where labels exist supervised methods are followed.
Supervised methods are much more common in literature, and allow for different system states to be predicted
(Lei et al. 2018a). Although supervised methods are more common, they suffer two major drawbacks: Firstly,
faults rarely occur in industry, making data for such events scarce. Secondly, where data exists, it is often
unlabelled and cannot be used for supervised approaches (Lei et al. 2020).

A hybrid approach attempts to merge the two aforementioned approaches to utilise both methods’ strengths
whilst eliminating their weaknesses (Kundu et al. 2020, Lei et al. 2020). Hybrid approaches are generally applied
as a method to expand diagnostic data-driven models into prognostic models (Lei et al. 2020). Hybrid approaches,
however, need not be limited as vessels for expansion to prognostics, but are successfully utilised in a full
diagnostic capacity. Works such as Gryllias & Antoniadis (2012), Sobie et al. (2018) and Liu & Gryllias (2021)
utilise physical models to generate labelled data which is then used as training data for a data-driven approach.
This is a sensible alternative to running experiments, which are expensive and time-consuming. Therefore, it
may be stated that these diagnostic hybrid approaches work well to resolve the data scarcity challenge.

Although the diagnostic hybrid approach outlined above proves to be a sensible approach, it has one underlying
challenge: The approach makes the strong assumption that the hybrid model which is trained on one domain of
data (the synthetic data from the physical model) will transfer well to a different but related domain of data (the
measured real data, such as accelerometer signals on industrial gearboxes). That is to say, it assumes that once
the data-driven model has been trained on synthetic data from the physical model, it is completely transferable
to real data. This will most likely not be true, as a discrepancy will exist between the two domains of data.
This domain discrepancy can be traced to the difference between the physical model and the real system. The
physical model is a simplification of the much more complex real system where noise, complex lubrication,
mounting errors, etc. may be present (Liu & Gryllias 2021).

Therefore, it may be stated that there exists a need to calibrate the hybrid model to work well on a different, but
related domain of data. Transfer learning is an attractive choice for calibration, as this field is mainly concerned
with transferring knowledge from one domain to another (Pan & Yang 2010). There are many transfer learning
approaches that may be followed, but this work will focus specifically on a sub-field known as domain adaptation.
Domain adaptation is a transfer learning method that specifically focuses on aligning the feature distributions
between two different datasets (Pan & Yang 2010).

In summary, this work will focus on developing a diagnostic hybrid model for detection and classification of
faults within a gearbox. Firstly, a physical gearbox model will be created which can generate large amounts of
labelled synthetic data. Secondly, a data-driven model will be implemented and trained on the synthetic data.
This alone does not yet solve the challenge of utilising such a model on a different, but related dataset, such as
the asset on which the physical model is based. Therefore, transfer learning will be investigated as a technique
to minimise any variations between domains, acting as a tool to calibrate the diagnostic hybrid model.

1.2 Literature review
Since the focus of this work is on the development of a hybrid model which may be calibrated for data
discrepancies, four major areas will be researched. Firstly, the literature regarding physical gearbox models will
be researched, as the first portion of the work will focus on generating synthetic data. Secondly, research will be
conducted into existing supervised data-driven techniques which may work well in a gearbox CBM context.
This is important, as the second portion of the work is concerned with training a data-driven method to classify
the synthetic signals. Thirdly, research will be conducted into existing hybrid CBM approaches for rotating
machinery. This research is necessary to gather insight into any potential areas that require attention within the
hybrid modelling approaches. Finally, research will be conducted into transfer learning approaches for rotating
machinery. More specifically, the sub-field of domain adaptation will receive attention, as it is the proposed
method in this work to calibrate the hybrid model.
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1.2.1 Physics-based modelling of gears

Physics-based models (PBM) have an important role in condition monitoring research and serve as useful tools
to generate synthetic data. Synthetic data has the following advantages over experimental data for condition
monitoring research:

• Experimental data are expensive and time-consuming to acquire.
• Experimental test-rigs do not provide enough flexibility to model complex failure shapes. Experimental

test-rigs allow for faults to be induced and progress naturally, but at the cost of little to no control over the
exact fault geometry and intensity to be investigated.

• Experiments are much more difficult to control: Temperature and pressure fluctuations, other machinery
nearby, poor experimental setup and many other factors can degrade the level of control in an experiment.
These factors make it more difficult to draw conclusions from measured experimental data when developing
new condition monitoring methods.

PBMs have evolved over time and have presented quite useful insights into the operation of gearboxes under
healthy and faulty conditions. Various gearboxes such as single-stage spur and helical gearboxes; multi-stage
spur and helical gearboxes; and planetary gearboxes have been extensively researched. However, the main focus
for this work will be on single-stage spur gearboxes due to the scope of this work extending beyond the PBM.
Furthermore, single-stage spur gearbox models share a large portion of the modelling process with planetary
(which consist of spur gears) and helical gearboxes (Mohammed & Rantatalo 2020). They are therefore the
ideal starting point, regardless of which gearbox model is desired.

The modelling of a spur gearbox can generally be split into three separate sub-modelling processes,
namely:

• Gear mesh stiffness modelling
• Gear fault modelling
• Gearbox dynamic modelling

The following sub-sections are therefore divided into these three processes.

1.2.1.1 Gear mesh stiffness modelling

The gear mesh interactions between two gears result in excitations that manifest as dominant components in
the gearbox vibration measurements (Mohammed & Rantatalo 2020). Therefore, it is important to accurately
capture the dynamics between two meshing gears. Hence, much work has been focused on gear mesh modelling
(Ma et al. 2015).

The meshing stiffness between two gears vary over time and is further referred to as the time-varying meshing
stiffness (TVMS). The TVMS has two main contributing factors. The first factor relates to the fact that the
number of teeth in contact during a gear’s rotational cycle is not constant. That is to say, that at some stages
only a single gear tooth pair are in contact, but at other times two (or more) gear teeth pairs could be in contact.
This variation in the number of gear tooth pairs in contact causes a sudden change in the TVMS. The square
waveform method (SWM) is generally a simple and phenomenological method of accounting for this effect and
is generally utilised to study the phenomenon of gear meshing.

The second effect arises because as a gear rotates, the contact line between a gear tooth pair moves across the
tooth faces. This in turn causes not only the location of the force on a given tooth to change but also the angle of
the acting force. This effect is much less pronounced but is not negligible. This variation is more complicated
to capture and is generally accounted for utilising the finite element method (FEM) or the potential energy
method (PEM). Although FEM is considered to be the most accurate approach, it is also very computationally
expensive and therefore not ideal in an environment where one would like to digitally experiment with different
gear geometries and fault shapes.
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The PEM is an attractive alternative to FEM as it aims to deliver the same accuracy as FEM but the speed of an
analytical approach. As one objective of this work is to utilise a hybrid approach, many functional evaluations
are anticipated and therefore the PEM is sensible to investigate further.

Yang & Lin (1987) showed the first instance of utilising the PEM. The authors considered two main factors
which contribute to the TVMS. The first of these factors was the Hertzian contact stiffness, which refers to
the local stiffness related to the interaction of two deformable bodies. This deformation can be equated to an
equivalent Hertzian stiffness, which is a function of the geometries of the interacting gears. The assumption is
made that the two gear teeth in contact are locally parabolic in shape (Yang & Lin 1987).

The second factor considered relates to the axial and bending forces experienced by the gear tooth. At the point
of contact between the two gear teeth, a component of the force acts inwards (axially) toward the gear centre
and another component towards perpendicular to the gear centre, which adds a bending force to the tooth. To
account for these two forces, the cantilever beam theory is introduced. The assumption is made that gear teeth
may be modelled as non-uniform cantilever beams. One may then calculate the potential energy stored within
these beams (hence why this method is named the potential energy method), and relate this to the stiffness in
the beam. This in turn results in a beam stiffness term for each gear tooth pair in contact. Note that the beam
stiffness term is comprised of an axial stiffness term and a bending stiffness term.

After this theory was introduced, Tian (2004) introduced an additional stiffness term to the beam stiffness,
namely the shear stiffness. This term was also based on beam theory, and once again relied on the potential
energy stored within a beam, but now due to the shear force introduced by the force between two contacting
teeth.

In the same year, Sainsot et al. (2004) introduced a novel stiffness term to the PEM, which aimed to account for
the deflection of the gear body - the portion between the gear hub (through which the shaft passes) and the base
of the tooth (where the tooth begins). To model this deflection, circular elastic ring theory from Muskhelishvili
(1977) was utilised, and an analytical formula for the fillet foundation stiffness was generated via a polynomial
curve fitting method.

As a quick reminder, at this point in the literature, five main stiffness effects are considered, namely three beam
stiffness terms (axial, bending and shear), a Hertzian contact stiffness term and finally a fillet foundation stiffness
term. These five terms remain relatively unchanged and are used throughout literature.

The next major change in the PEM came about in the work of Liang et al. (2014), where the authors noted that
to this point, all gear models were defined relative to the base radius. This assumption is an oversimplification of
real gears, where the machining process generates fillets or undercuts at the root of a gear tooth (Hyatt et al.
2014). A more applicable parameter to define where a gear starts, would be the root radius. The base radius may
be larger or smaller than the root radius depending on how many gear teeth are present on a given gear. This
over or underestimation of base radius causes the calculated volume of material to deviate from the true value,
causing inaccuracies during the stiffness modelling process. Liang et al. (2014) introduced corrections to the
beam stiffness equations to account for these two cases (root radius larger or smaller than base).

The first set of equations were related to the case when 41 or fewer gear teeth are present (machining leaves a
fillet), which refers to the case when the base radius is larger than the root radius. This implied that all prior beam
stiffness terms were only accounting for the portion of the gear tooth that started from the base radius onwards,
whilst in reality, there was a filleted portion of material between the root radius and base radius that needed to be
accounted for. Therefore, Liang et al. (2014) introduced a correction term that added the missing tooth material
for this case, increasing the overall meshing stiffness. In the second case, i.e. when more than 41 teeth are
present on a gear, one finds that the root radius exceeds the base radius (leading to an undercut). In this case, the
amount of gear material is overestimated and the beam stiffness equations need to be reformulated to different
bounds entirely. Note that the use of 41 gear teeth specifically arises from standard spur gear theory, where the
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assumption is made that the contact angle between gear teeth are 20◦. Contact ratios of 20◦ are common in
practice.

Saxena et al. (2015) presented an additional beam stiffness term, namely a torsional stiffness term, which arises
due to shaft misalignments that cause one side of a gear tooth contact line to experience higher forces than
the other side of the gear tooth contact line. Furthermore, the authors developed theory for the case where
the two shafts holding the gears are not parallel (which is a different form of misalignment in comparison to
what is described above), by adding misalignment terms to the already existing beam stiffness terms. From
the literature, however, it seems that these misalignment terms were not adopted in any other authors’ work,
except in a follow-up paper (Saxena et al. 2015), where the torsional stiffness effect was accounted for using
spall faults.

Ma et al. (2016) addressed a shortcoming of the fillet foundation stiffness term: It was developed with the
assumption of single tooth pair contact. In theory and practice, however, it commonly occurs that for periods
within the rotation of a gear, two or more pairs of teeth are in contact. This leads to a situation where the fillet
foundation term is added to the final stiffness twice (once for each gear tooth pair in contact). This is invalid, as
the two pairs of teeth in contact share the same bodies, therefore the combined stiffness effect should be less
than what is being accounted for. To fix this problem, Ma et al. (2016) described a FEM-aided method with
which one calibrates the relative contribution of each gear tooth pair. In essence, although one has two fillet
foundation stiffness terms in the case of two gear tooth pairs meshing, one simply multiplies the second fillet
stiffness term with a reduction factor which is determined by FEM.

Regarding the classical PEM, these were the most significant changes to the initial framework presented by
Yang & Lin (1987). However, El Yousfi et al. (2020) presented a novel approach to gear stiffness modelling, by
discretising the gear tooth in the tooth width and length directions. This method served as a hybrid between the
full discretisation of FEM, and the full continuity assumption of the PEM as it involves integral formulations,
which are by definition continuous. Thus, although this work offered no benefit in terms of meshing stiffness
accuracy over the traditional PEM developed up to this stage, it allowed for a much more robust fault modelling
framework, which is the focus of the following sub-section.

1.2.1.2 Fault modelling

The fault modelling process plays an important role in any gearbox model used for condition-based maintenance
applications: To observe how different faults affect the dynamics of a system, which in turn allows one to predict
behaviours for the real-life asset. Due to its importance, fault modelling of gears receives a healthy amount of
attention, with various fault types and gear phenomena being modelled.

Mohammed & Rantatalo (2020) give a review of various fault models from the literature. These models try to
capture (but are not limited to) tooth root cracks, tooth profile errors, tooth modifications, broken teeth, chips,
tooth surface wear, pitting and spalling. To limit the scope of this research, the more popular fault models (based
on initial search engine results) will be researched, with the assumption that they are currently the most relevant
to the field of gear fault modelling. These include root crack, broken teeth, chip, spall and pit models. Before
showing the fault models, one should note that currently the literature is quite disparate in terms of how faults
are modelled and there is a strong need for a unified framework, especially for neophytes in the field of gear
tooth modelling (van Eyk et al. 2022). Regardless, the fault models which have been developed will each be
discussed in their own sections to follow.

Crack Models
Gear crack models receive a large amount of attention in the literature (Mohammed et al. 2013a). These models
refer specifically to the case of gear root cracks, where the crack is initiated near the root of the gear tooth and
propagates through the full width of the tooth. It is important to understand that cracks can simultaneously vary
in their depth and width along a tooth root, complicating the modelling procedure.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

5



Chapter 1 Introduction

Tian (2004) was according to the author’s knowledge the first work to propose a gear crack model. This model
assumed a full-width crack of constant depth. This constant width and depth model assumed a constant crack
angle, which describes the propagation path into the tooth body. This assumption implied that cracks propagate
along a linear path into the depth of a gear, as opposed to some non-linear path. Experimental work by Lewicki
(2002) showed that cracks generally follow a near-straight path when propagating into a gear’s body, and
therefore the straight path assumption is deemed accurate enough for modelling purposes.

The work of Tian (2004) was limited to cracks above the centreline of the tooth. Therefore, Wu et al. (2008)
extended this model for cracks beyond the midpoint. Both these works neglected the fillet foundation stiffness
term previously discussed. Chaari et al. (2009) did however consider this effect and managed to verify their
crack model against the FEM, which verified the proposed crack fault modelling method.

The next major improvement to the crack model came from Chen & Shao (2011). Their work overcomes the
constant depth or width assumption for cracks, made by Tian (2004). Instead, the authors designed a parabolic
distribution to describe the crack shape within the gear tooth. This work was key to more realistic physical
models, as gears do not always experience uniform load across their width, in which case one would thus expect
cracks to start propagating from one edge of a tooth and move to the other side. As an added benefit of the work
by Chen & Shao (2011), the authors were able to verify their model against the FEM results given by Chaari
et al. (2009).

Further improvement to the crack model of Chen & Shao (2011) was made by Mohammed et al. (2013a). Up to
this point, the volume of the tooth that does not contribute to the stiffness due to the presence of a crack was
assumed to be a straight limiting line drawn from the deepest point of the crack, parallel to the tooth centre-line.
One effectively calculates the meshing stiffness as if that portion of the tooth does not exist. What this model
fails to consider, is that due to the cracked tooth, the ’unusable’ portion of the tooth will bend slightly, adding
or subtracting some ’useful’ material from the stiffness determination. To account for this, Mohammed et al.
(2013a) ran a FEM simulation to determine how stresses are distributed due to a tooth root crack. Based on
the stress results, the authors could develop a parabolic limiting line that roughly followed the constant stress
gradient from FEM. This method proved to be more accurate compared to previously published methods,
specifically for cracks deeper than 30% of the tooth’s depth.

Ma et al. (2014) did an in-depth study comparing three combinations of crack fault modelling methodologies.
Method 1 consisted of the straight propagation path assumption which started in Tian (2004), with a straight
material reduction line. Method 2 consisted of the straight propagation path (like before) but utilising a parabolic
material reduction line (as in Mohammed et al. (2013a)). Method 3 consisted of a parabolic crack propagation
path, joined with a parabolic material reduction line. All three methods were compared against FEM for various
crack depths and angles. It was shown that the model by Mohammed et al. (2013a) was sufficiently accurate and
that the straight-line propagation assumption was accurate. This result once again correlated well to experiments
conducted in the works of Lewicki (2002), where crack propagation paths were shown to be mostly linear.

Yang et al. (2021) recognise a key issue in the field of crack modelling: Some published work assumes that
cracks occur in closed states rather than open states. This implies that the axial compressive stiffness term is left
unaltered as it is assumed the crack does still allow for material to ’compress’ in this region, transferring the
axial load as if no crack existed. Other works assume the crack to be in an open state, which implies the bending
of the cracked portion of the tooth is sufficient to bend the tooth tip away from the base, making it impossible
to transfer axial forces in the crack region, therefore affecting the axial stiffness term. This is the first work
the author has found addressing this problem. Yang et al. (2021) proposed the open state model and verified it
against FEM, proving that the open state assumption is the correct one. Furthermore, the results were compared
against a closed state assumption and proved to match FEM results better.

Broken Teeth Models
There is not much literature on broken tooth modelling as it is a fairly simple fault type to implement. This
fault type can generally be considered a ’full depth crack’, if the crack model being utilised is flexible enough.
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Therefore, a broken tooth can simply be modelled as a special crack case. Another method, however, is to
set the overall meshing stiffness to zero for the tooth being considered, which leads to the same effect (Tian
2004).

Chip Models
Chip models, although relevant to industry, are not as widely studied as other fault types. The first of the three
main keystones to this fault type starts with the work of Tian (2004). In this work, only the effective contact
surface reduction was considered, i.e. the chip was assumed to have negligible depth. This assumption implies
that the beam stiffness terms were left unaffected, with only the Hertzian stiffness term being affected. Following
this work, Chaari et al. (2008) proposed a methodology that considered the depth of chips, therefore affecting
the beam stiffness terms as well. However, this modelling method assumed that the connecting fracture curves
between the vertices are linear. This essentially assumes that the chip’s break away from the tooth along straight
lines, instead of the natural curve they should follow if the tooth geometry was to be considered. This may
lead to large deviations from the actual fracture shape when chips are fairly deep. Therefore, Liu et al. (2021)
developed an analytical geometry method that determines the shapes of the fracture curves more accurately.
Furthermore, these results were verified against FEM results.

Spall Models
When referring to the literature, there is no clear distinction between spalls and pits (Mohammed & Rantatalo
2020). Sometimes the models are interchangeable and therefore the literature for these two fault types overlap.
Generally speaking, pits refer to small, shallow, localised pieces of material that are pitted away from a gear
tooth. A spall, however, refers to a collection zone of pits that cause a larger piece of material to be removed.
Thus, pits refer to smaller, local phenomena, whereas spalls refer to the larger-scale phenomena.

Initially, the first analytical model for a spall was developed by Chaari et al. (2008), where the spall was very
simply modelled as a rectangular shape with a given depth that is removed from the gear tooth. This model
was left relatively unchanged until Saxena et al. (2016) unified some of the disjunct works in this field and
transformed them into a PEM implementation. In this work, three main spall models were considered, namely
rectangular, circular or V-shaped spalls. Luo et al. (2018a) recognised that the previous methods of spall
modelling all assumed constant depth spalls, where the case, in reality, would be closer to a varying depth spall.
Therefore, Luo et al. (2018a) developed a model which modelled the spall as a spherical cut-out from the tooth
face, thus leading to a varying depth on the tooth. In the same year, Luo et al. (2018b) extended this model to
be ellipsoidal, which allowed for more elongated, tooth-wide spall shapes of varying depths. This model was
further verified against FEM results and was shown to correlate well.

Luo et al. (2019a) extended spall modelling by rethinking the entire stiffness modelling process. This new
method allowed for a larger array of spall shapes to be modelled. This work verified this fact by comparing
their more general model against existing works. The only drawback of this work was the fact that all spall
geometries assumed a constant depth. This model was also shown to be capable of modelling pits, making it
extremely versatile.

To overcome the constant depth limitation of Luo et al. (2019a), the work from El Yousfi et al. (2020) finally
presented the field with a method that could model virtually any shape of any geometry and any depth. The only
potential limitation of this work was that it utilised a discretisation approach of the gear tooth, which makes the
framework of simulation close to that of FEM (although PEM is being used by this approach). To address such a
situation, the user has full control over the coarseness of the discretisation and therefore the user has the option
between modelling accuracy and simulation speed.

Surface Pit Modelling
Although surface pits are more common than cracks (Liang et al. 2016, Liu et al. 2020b), surface pit modelling
receives less attention in the literature. Pitting is generally observed to occur below the pitch line of a tooth
because this is the region of the tooth where single tooth meshing occurs. A tooth consists of multiple zones of
meshing, corresponding to when neighbouring teeth pairs come in to or out of contact to share the load transfer
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between two gears. For certain portions of gear rotation, only a single tooth pair are in contact, which from the
perspective of a tooth, is referred to as a single tooth meshing region. The single tooth pair meshing region
is therefore associated with higher stresses and thus offers a more conducive environment for pits (Lei et al.
2018b).

Liang et al. (2016) modelled pits as individual cylindrical cut-outs from the tooth face. The authors extended
the model to allow for multiple cylindrical pits, allowing for these pits to be distributed across the tooth face as
necessary. Their method was verified against FEM and for the given cylindrical spall geometry, coincided well.
A limitation of this work was that the pits were fixed in certain locations across the tooth face. In reality, pits do
not distribute in an organised manner but follow a more progressive, probabilistic distribution. Therefore, Lei
et al. (2018b) improved the pitting field by distributing the pitting faults using a probabilistic approach, setting
the mean location for pits within the single tooth meshing region of the tooth.

Another shortcoming from Liang et al. (2016) was that the pits were all assumed to be of constant size. Therefore,
Lei et al. (2018b) presented an analytic approach that would not only increase the number of pits for a given
fault severity case but also increase their size. This was aimed at simulating reality, where over time, smaller pits
grow larger whilst new pits are simultaneously created. This approach was also verified against FEM and the
obtained meshing stiffness values never differed by more than 0.65%.

Chen et al. (2019) also used cylindrical pit shapes but implemented a different fault distribution modelling
methodology compared to Lei et al. (2018b). The authors modelled pits in local two-dimensional Gaussian
clusters, each with its own mean and variance. With this model, it is possible to propagate multiple pitting zones
on a single tooth, depending on the severity required for modelling.

Up to this point, no attention had been given to the cylindrical pit shape assumption. In reality, pits do
not have constant depths (such as cylinders) and therefore the field needed a newer pit geometry. Liu et al.
(2020b) presented a spherical pit, whilst employing the same fault progression methodology as in Lei et al.
(2018b).

Meng et al. (2021) also proposed a spherical pitting model, this time with a very detailed write-up. The authors
also followed the fault propagation methodology of Lei et al. (2018b). Meng et al. (2021) were further able to
prove their model correlated well with FEM.

1.2.1.3 Dynamics modelling

The act of dynamic modelling is the final step within the gearbox modelling framework. Whether the time-
varying mesh stiffness (TVMS) was obtained through a FEM model, or a PEM model, both result in a gear mesh
stiffness that is a function of gear rotational angle. If a full FEM approach is followed, not only would the gear
and faults be modelled in a FEM environment, but the dynamics would be solved in a FEM environment as well.
This method, although accurate, may be very time consuming and computationally expensive. An alternative
method is to approximate the gearbox as a non-linear lumped parameter model (LPM). The equations of motion
are obtained by using a Newtonian or Lagrangian approach, whereafter the equations of motion are solved with
numerical integration methods. Although the LPM is not as accurate, it is much quicker to solve and captures
the main vibrations of the system.

Within the literature, a vast number of LPMs have been employed. This section does not aim to capture them all,
but rather try and show general modelling techniques, assumptions and key findings in the dynamic modelling
literature.

Degrees of Freedom Considerations
It is important to select the appropriate degrees-of-freedom (DOF) of the system. If this is not done, it is possible
to neglect important dynamic behaviour (Ma et al. 2015, Mohammed & Rantatalo 2020).
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In the early literature on LPMs for single-stage gearboxes (i.e. two shafts and two gears), it was generally
common to find a two DOF LPM. The first DOF aimed to capture the rotational dynamics of the pinion and the
second DOF the gear. Upon further investigation these two degrees could be converted into a single DOF by
noticing the rotational displacement of each gear is a multiple of the other (the operating principle of gears).
Works such as Yang & Sun (1985), Yang & Lin (1987), Parker et al. (2000) and Richards & Pines (2000) all
incorporate this two DOF setup to study gear dynamics.

More recently, a more common eight DOF model is used, with some works simplifying this to a six DOF model.
In this model, authors try to account for the dynamics of bearings, shafts, the motor and load on the gearbox.
Therefore, starting from the motor, one DOF is assigned to the motor. This motor is then coupled through a
flexible shaft (with stiffness and damping terms) to a mass block, which is the combined mass of the pinion gear,
pinion side shaft mass and pinion side bearings. This block has three DOFs, namely one for rotation (relating
to the gear), one in the x and one in the y directions, relating to the movements of the bearings. This mass
block is coupled to another three DOF mass block which simulates the output side gear, shaft and bearing mass.
These two blocks are connected through the TVMS term and a damping term which will be discussed in its own
section. Finally, the gear block is connected to a load through flexible shafts again, which makes for the eighth
and final DOF. Authors such as Tian (2004), Chaari et al. (2008), Khabou et al. (2011), Chaari et al. (2012),
Mohammed & Rantatalo (2015), Mohammed et al. (2015), Schmidt (2017) and Luo et al. (2019b) all employ
this exact model, proving that it is quite a popular choice among researchers.

Some other researchers, however, try and simplify the eight DOF model by neglecting the motor and load DOFs,
therefore only considering bearing and gear dynamics. This six DOF model has been used in works such as
Chen & Shao (2011), Mohammed et al. (2013b,a), Mohammed & Rantatalo (2015), Mohammed et al. (2015),
Liu et al. (2020c), Meng et al. (2020) and Yang et al. (2021).

Mohammed & Rantatalo (2015) questioned the accuracy of employing the six DOF model over an eight DOF
for single-stage modelling and argued that if the motor and load inertias were small they may be neglected. In
another study, Mohammed et al. (2015) compared four different DOF models over various statistical indicators
such as RMS, kurtosis and crest factors to identify how much the different DOF models differ in these features.
The four models were the standard eight DOF and six DOF models discussed above, as well as a 12 DOF model
which allowed the gears of the eight DOF model to have rotational capability about the x and y axes, adding
two more DOF for each mass block. The final model was another six DOF model, but instead of neglecting the
motor and load to get to six DOF, rather the tooth contact friction was removed, thereby removing vibrations in
the x-direction. Therefore, the reduced six DOF model represented the normal eight DOF model except it did
not account for x-direction vibrations.

Mohammed et al. (2015) found that there was no mentionable difference between the 12, 8 and reduced 6
DOF model in terms of statistical indicators, and therefore it is acceptable to go with the reduced six DOF
model which neglects inter-tooth friction. The authors further found that the six DOF model with motor and
load removed showed statistical indicators that deviated from the three other DOF models. Therefore, it was
suggested that removing the motor and load DOFs could cause less accurate dynamics, leading to the deviation
in statistical indicators. Mohammed et al. (2015) did however state that if the gearbox has known eccentricities,
causing gyroscopic effects, the 12 DOF model needs to be used, as the other models cannot capture these
dynamics.

Luo et al. (2019b) added two additional DOFs to the normal 8. The additional DOFs accounted for the gearbox
casing stiffness and damping. The model further accounted for additional factors such as tooth surface roughness
and inter-tooth friction, both of which were given an analytical calculation method. The 10 DOF model was
based on an experimental rig. The parameters of the 10 DOF model was calibrated from tests done on the
experimental rig. It was shown that the 10 DOF model generated data that matched measured data from the rig
quite well.
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Feng et al. (2019) presented a 21 DOF model for a single-stage spur gearbox by splitting up the bearings
and couplings to have their own masses and DOFs. Their model’s data correlated well with the modelled
experimental test rig’s data. However, it was only possible to match the model’s response with experimental data
after the model was calibrated. A first round of calibration aimed to match the natural frequencies of the two
systems by adjusting joint and bearing stiffnesses. Then, to match the RMS of the simulated and true signal,
the meshing stiffness and damping were fine-tuned. The authors utilised a wear model to predict RMS of the
system for a given amount of wear and were able to show a great correlation with the actual experimental test
rig. This work shows how difficult it can be to fully utilise physical models, as one needs to have experimental
information to calibrate the physical model.

A summary of multi-stage gearboxes that do not directly fit into the aforementioned paragraphs, is presented
here:

Jia et al. (2003) and Jia & Howard (2006) developed a 26 DOF model with three shafts all accounting for gear,
bearing and shaft interactions. Additionally, this model accounted for geometric errors present in the gears,
which was directly introduced into the dynamic formulation. Bartelmus et al. (2010) utilised a similar model
but only accounted for rotational DOFs, leading to a simplified six DOF model. Ruiz-Botero et al. (2015) also
developed a similar model, but this time accounting for the bearing x and y movements, but different from Jia
et al. (2003), leading to a 10 DOF model.

Yi et al. (2020) developed an advanced multiple degree of freedom (MDOF) model which coupled an electric
motor model with an in-depth gearbox model. The proposed multi-stage gearbox model incorporated a fixed
shaft gear set and planetary gear sets, making for a very interesting model.

Damping Considerations
In the literature on dynamic gearbox models, the models are usually calibrated by altering the stiffness and
damping parameters to obtain useful physical models and may have as few as 10 to as many as 21 DOFs to
model a single-stage gearbox. It is not always possible to obtain the necessary experimental values to calibrate
the physical model directly. It may be said that the TVMS (which has dedicated models as discussed in Section
1.2.1.1) is quite close to FEM in most cases (Mohammed & Rantatalo 2020), adding to one’s confidence that
the stiffness parameter related to gear meshing need not be tuned. Other parameters, however, such as bearing
stiffnesses are usually given as constants in the literature. It is possible to construct a separate experimental rig
to determine the stiffness and damping coefficients for such elements (such as bearings and shafts). However,
one element which may prove difficult to quantify is the damping between gear teeth. The following survey
aims to determine the methods with which authors deal with the mesh damping problem.

Philippe (2012) states that damping is a challenging problem to solve and mentions that one of the biggest
shortcomings in the gear modelling field is the lack of damping models. The author further states that damping
values are generally adjusted to fit experimental results. Before this adjustment stage, however, one of two
common models are employed. The first is a Rayleigh damping model, which models the system’s damping as
being directly proportional to two factors, namely the system mass and the system stiffness. The coefficients in
front of the mass and stiffness matrices are then adjusted to fit with experimental results. The second method
utilizes modal damping factors, where the damping is once again a function of system masses and stiffness, but
now under one term which is scaled by the damping ratio.

Works such as Parker et al. (2000), Khabou et al. (2011), Chaari et al. (2012), Yu (2017) and Wang et al. (2020) all
utilise Rayleigh damping. Parker et al. (2000) describe in detail how one may go about determining the Rayleigh
factors and is based on experimentation. Yu (2017) however outlines an analytical method based on natural
frequencies and modal damping factors to determine the Rayleigh coefficients. As for the second approach,
works such as Richards & Pines (2000), Tian (2004), Chaari et al. (2006), Wu et al. (2008), Ruiz-Botero et al.
(2015), Wei et al. (2017), Xu et al. (2017), Yi et al. (2020) and Xu et al. (2021) all include modal damping
approaches. Parker et al. (2000) indicate that if modal damping is used in the dynamic system, a damping ratio
of 7% is a commonly used value. Tian (2004) also used this value in their work, further confirming that this is
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a commonly used value and therefore one less parameter to determine experimentally. The above-mentioned
works corroborate the statement that models generally utilise one of two damping approaches.

Works such as Jia et al. (2003), Jia & Howard (2006), Bartelmus et al. (2010), Chen & Shao (2011), Mohammed
et al. (2013a,b), Mohammed & Rantatalo (2015), Liu et al. (2020c), Meng et al. (2020) and Yang et al. (2021)
all utilised some form of damping, but the procedure that was used to obtain the values is unclear.

In earlier works, Yang & Sun (1985) and Yang & Lin (1987) utilised a Hertzian damping formulation, which
effectively accounts for energy loss during the interaction between teeth by looking at the area inside the
hysteresis loop formed when comparing tooth penetration as a function of compression force. This damping
is assumed to be simultaneously proportional to the tooth displacement (interpenetration) and tooth relative
velocity (viscous damping).

In recent works, attention has been focused on more accurately modelling the damping effects between teeth.
Guilbault et al. (2012) focused mainly on the mechanisms involved in damping of gear transmission systems and
the resulting dynamics. Three sources of damping were considered, namely surrounding elements, hysteresis of
the gear teeth and oil squeeze film damping. The first two factors were load-dependent, whereas the last factor
was load-independent, and a value based strongly on fluid dynamics theory. This model was by no means simple
but was a respectable attempt at eliminating uncertainty within gear damping models. The results from this work
showed that there is a difference between damping in the case of a loaded vs. unloaded tooth. This implies that
damping terms should not be constant, as is a common assumption in literature.

Liu et al. (2015) used the hysteresis model that describes the hydrodynamic contact force on the teeth as a
function of gear transmission error, similar to what was seen by Yang & Sun (1985). This loop could be used to
estimate the energy dissipation (as one obtains a force vs distance graph) of contacting teeth in hydrodynamic
circumstances. The main aim of this work once again was to minimize the number of unknowns during
modelling.

Luo et al. (2019b) model the meshing damping as a sum between two terms. The first term accounts for oil film
damping and the second term for damping between teeth (structural damping). Both terms are given their own
analytical formulas with which they may be found. Luo et al. (2019b) affirms the fact that the correct values for
stiffnesses and damping values are essential to get as close a representation to reality as possible. The authors
state that lower values of stiffness generally decrease the system natural frequencies, whilst high damping tends
to suppress non-linear behaviour. Furthermore, the authors performed experiments to calibrate the coefficients
used in their model. The calibration was successful, as the final RMS and harmonic frequencies matched well
with the experimental rig’s data.

All of these works highlight that progress has been made in the field of meshing damping. It was seen that
although most common approaches in the literature either apply Rayleigh damping or modal damping, some
other works started specifically developing damping models.

1.2.2 Data-driven approaches

Data-driven approaches can be split into diagnostic or prognostic approaches. The focus of this work is diagnostic
in nature, as already stated in the background. Within the diagnostic field, one may focus on supervised, semi-
supervised and unsupervised approaches. The overarching goal of this work is to develop a hybrid model which
will receive labelled synthetic from a physics-driven approach. The search within the literature is therefore
confined to supervised approaches, as labels from the numerical model are available during training.

Kundu et al. (2020) give an extensive overview of diagnostic and prognostic approaches to gears. For diagnostic
data-driven approaches, the authors state that many options exist. For one such approach, a more statistical-based
method may be applied where health indicators (HI) can be determined from the raw signal. These HIs can
be determined from various domains, such as the time, frequency or time-frequency domains. These HIs are
optimal if they are shown to have monotonicity, robustness and a good correlation to faults. For example, if an
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HI is not monotonous, the same HI value may refer to multiple degradation states, making for a poor diagnostic
tool.

Kundu et al. (2020) highlight a potential drawback of relying on HIs: Some HIs are more suitable at different
fault degradation levels. Bishop (2006) also outlines this problem by stating that hand-crafted rules break down
in corner cases (such as a change in load, non-stationary conditions, random impulsive signals from other
machines nearby, etc.).

Therefore, it may prove advantageous to merge/fuse multiple HIs to do the fault diagnosis task. Also, considering
the rise in available measurement data for systems (Lei et al. 2020), a large rise has been seen in recent times
in machine learning (ML) based methods (Jia et al. 2016). Lei et al. (2020) recognise four main categories of
health state recognition (a framework utilising hand-crafted input features to predict the state of a machine as
output), namely: Expert system-based approaches, artificial neural network (ANN) based approaches, support
vector machines (SVM) based approaches and other approaches. Among the ‘other approaches’ categories, one
finds machine learning models based on k-nearest neighbour (KNN), decision tree and probabilistic graphical
models (PGM). Jia et al. (2016) state that among these approaches, ANN seems to be the most popular.

Both Jia et al. (2016) and Lei et al. (2020) identify the same two common issues across all shallow deep learning
models: Firstly, it would prove very advantageous to have a system where faults could be identified automatically
from the raw signal. However, due to manual, hand-crafted features being extracted, the role of the diagnostician
is still required. Furthermore, the features which might be representative of a fault within a certain asset may not
at all be representative of faults in another type of asset, limiting the generalisation ability of shallow approaches.
Therefore, to truly remove the diagnostician, one requires an automatic feature recognition system that can mine
the most useful features from the data. The second issue plaguing shallow machine learning approaches is that
of feature complexity. Shallow models struggle to extract highly complex, non-linear relationships from the
training data, limiting their diagnostic accuracy.

Lei et al. (2020) indicate that in modern times, with the advent of the internet of things (IoT), the amount of
available data on machine states has massively increased. This implies that more data is available for determining
the condition of machines than ever before. Furthermore, due to high sampling frequencies of data and due to
faults sometimes manifesting at high vibrational frequencies, the size of datasets quickly become large. Shallow
learning methods cannot fully utilise this enormous amount of data, commonly referred to as "big data". Recent
interest in deep learning (DL) models have proven to be useful in dealing with the large amount of data.

Zhao et al. (2019) define deep learning quite well as a technique that "attempts to model high-level representations
behind data and classify (predict) patterns via stacking multiple layers of information processing modules in
hierarchical architectures". A deep learning model aims to deepen architectures of machine learning models, to
such an extent, that the machine learning model can automatically extract features, select the relevant features
and simultaneously classify the machine condition. It is said that the deeper the architectures become, the more
complex and non-linear the features that may be extracted from the data (Jia et al. 2016).

With this, the justification for a large amount of new literature on DL based methods is clear: A deep learning
approach not only attempts to be monotonous, robust and well correlated (as for the HI only case), but also
attempts to be invariant to different operating conditions (as for the shallow ML cases). Furthermore, a DL
approach tries to remove the importance of experts needing to extract manual features, which could impair the
overall classification process. Thus, all of the aforementioned shortcomings seem to be solved using a DL model.
Thus, a deep learning model is said to be a full package that can convert raw data to a machine condition (Lei
et al. 2020).

Common deep learning structures that are applied, are all based on neural networks, leading to the field of
deep neural networks (DNN). Common DNN models which have been utilised in the field of machine health
monitoring include stacked autoencoders (SAE), deep belief networks (DBN), deep Boltzmann machines
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(DBM), convolutional neural networks (CNNs) and recurrent neural networks (RNN) (Zhao et al. 2019, Lei et al.
2020).

From the previous paragraphs, it has become evident that deep learning, or more specifically, the use of deep
neural networks seems to be much more successful compared to traditional methods. This is a strong statement,
and to justify this, a few examples from the literature are given. Note that most of the works utilise CNNs, as
these are generally considered to be the top model choice for fault identification of rotating machinery (Zhao
et al. 2020).

Jia et al. (2016) used a stacked auto-encoder (SAE) approach using fast Fourier transform (FFT) information on
two separate datasets, namely a bearing and gearbox dataset. The authors based their model on that of Hinton
& Salakhutdinov (2006) and found that the novel deep learning approach outperformed the previous ANN
methods from their own and other investigations in both accuracy as well as robustness, having the smallest
variance across multiple training runs. The authors did however note the main drawback to the novel DNN
approach was that of slower training, due to the inherent size increase for deeper architectures. Jing et al. (2017)
applied a one-dimensional frequency-CNN approach to classifying a planetary gearbox dataset. This approach
outperformed all networks where manual expert features were extracted and fed to a shallow NN. Verstraete
et al. (2017) applied a time-frequency based approach to two bearing datasets. The authors constructed a novel
CNN architecture, which contained two convolutional layers before a pooling layer instead of the more common
single convolutional layer. This new architecture was seen to improve the CNN’s robustness against noise, whilst
simultaneously reducing the network size. When hand-crafted features were passed to the CNN structure, the
performance dropped compared to giving the raw time-frequency domain signal to the CNN. This showed that
CNNs are useful for spatial/temporal data, but do not perform well when given hand-crafted features as input, as
there is no temporal/spatial component to such inputs.

Han et al. (2019c) applied three different CNNs, one for data from a Fourier transform, one for data from a
wavelet transform and one for data from the Hilbert Huang Transform (HHT). It was seen that the wavelet
transform was capable of extracting the most information from the gearbox dataset, as this method had the
highest classification accuracy. A final finding of the paper was that upon combining the three methods into
an ensemble of DNNs, the classification accuracy further increased over the CNN which utilised the wavelet
transform data. This showed that the CNN was capable of extracting a large portion of available data, but that
different approaches could yield different forms of information, which could increase classification accuracy if
combined. This ensemble model could be seen as a shallow network, only receiving highly complex features as
input (the outputs of the three models) and simply classifying these features into machine states. This ensemble
was capable of outperforming any of the single DNNs. This work showed that feature extraction is the most
important part of the machine learning process, as a shallow network outperformed a deep network, purely based
on the fact that the features it received were rich with information.

Although DNNs have shown great promise to the field of data-driven diagnostics, a large concern persists: A
data-driven approach is only as useful as the quality and quantity of data it has to train off. In many cases neither
of these factors are present and therefore, a physics-based approach might yield better results. Obtaining a
sufficient amount of failure data is generally not possible with existing assets, as they are seldom allowed to
run to failure. Furthermore, setting up experimental setups are limited by cost, time and even fault geometry
reproducibility (Kundu et al. 2020). In cases such as these, it might prove useful to combine both a physics-driven
and data-driven approach to solving the data shortage problem.

1.2.3 Hybrid approaches

Conventional diagnostic CBM methods are either data-driven or physics-driven, each of which has shortcomings
for practical applications. Kundu et al. (2020) recognise that a hybrid model aims to exploit the benefits of both
physics-driven and data-driven methods.

A promising approach to diagnostic hybrid models seems to be the generation of synthetic data from a physical
model and then training the data-driven model on this synthetic data. This conceptually allows one to reap
the benefits of both approaches: For little to no industrial data, one can obtain a network that is trained to
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have diagnostic accuracies at least as good as the physical model in isolation. However, as more data becomes
available, the hybrid model may be updated with the new data and further improve its accuracy. In works such
as Gryllias & Antoniadis (2012), Sobie et al. (2018), Liu & Gryllias (2021), synthetic bearing data is generated
by the use of a physical/phenomenological model. This data is then used to train a ML model, which is then
applied to real datasets. These hybrid methods showed improved accuracies when compared to their data-driven
counterparts which were only trained on the few available data samples from the real asset.

Bobylev et al. (2021) constructed a model to estimate the support stiffness for rotating machinery. The authors
constructed a physical model of an experimental setup and were able to show the benefit of a hybrid model in
the context where no experimental data is present. More specifically, the model was trained on synthetic data
from the physical model and the model was able to predict, with reasonable accuracy, the true support stiffness
when applied to experiments. It was further shown that a CNN proved to be the best model for generating robust
features across data domains, i.e. synthetic vs. experimental.

From what the author could find, the literature on diagnostic hybrid models was quite limited. To the author’s
knowledge, no hybrid approaches have been applied to gearboxes. In a recent review from Lei et al. (2018a), the
authors show that only 8% of publications related to RUL predictions involved hybrid approaches. Although this
figure is related to prognostics, it does give some insight into the shortage of literature on hybrid models.

At this point, diagnostic hybrid models seem to solve the data shortage problem. However, few works - not only
limited to hybrid models - focus on the important step of applying the developed models to real, unseen data.
That is to say, the models are not tested against a different dataset, to see how robust they are to changes in
data. When looking at reviews within the diagnostic condition monitoring field, such as those from Zhao et al.
(2019), Kumar et al. (2020) and Lei et al. (2020), the consensus seems to be that although diagnostic models
work on one set of data, their performance is not guaranteed on another set of data. Therefore, the developed
diagnostic models need some form of calibration to ensure they are robust to changes in data and can more easily
be transferred to real engineering scenarios. These reviews all agree that transfer learning serves as a promising
approach to calibrate diagnostic models. Therefore, the following section of the literature review is focused on
transfer learning.

1.2.4 A tool for calibration: Transfer learning

As mentioned in the previous section, diagnostic models suffer from a lack of data when being applied to
industrial environments. Even when data may be present, it will most likely not be balanced, i.e. the healthy class
will be overrepresented to a large extent. Furthermore, data will likely be unlabelled and therefore only apply to
unsupervised training techniques. One may actively try to prevent these issues by continuously inspecting and
labelling data from the real asset, but this defeats the "online" monitoring purpose (Stander & Heyns 2005) and
may prove to be costly (Lei et al. 2020).

Lei et al. (2020) propose that the potential solution to this problem is the concept of transfer learning (TL).
Transfer learning tries to take a model which was trained on one domain of data and apply it to another domain
of data. A domain may be seen as a dataset. In the literature one commonly refers to the source domain (the
domain from which a model is trained) and the target domain (the domain to which the source-trained model
is to be transferred). For example, the source domain could refer to an experimental dataset (source domain)
that trains a DNN and is then expected to function in an industrial environment on industrial data, the target
domain.

Although there is more than one way to approach TL, this literature review will show a strong bias towards a
specific implementation of TL known as domain adaptation (DA). TL can be thought of as the description for
the process and DA as an implementation mechanism. The concept of domain adaptation is not new and seems
to arise from image recognition literature (as does much of modern machine learning literature). Another type of
TL implementation is also available and is known as inductive methods (Han et al. 2019b). One example of the
latter method will be given shortly.
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Ganin et al. (2017) define domain adaptation as the process of learning a discriminative predictor (such as a
classifier) for the case that a shift between source and target distributions occur. The ultimate goal of DA is to
learn a domain mapping from the source domain to the target domain. With such a mapping, classes across
domains may be distributed similarly in latent space. In turn, it is hoped that high accuracies for the source
domain would lead to similar accuracies for the target domain, given the two domains have similar distributions,
and therefore similar classification boundaries. This has the implication that the target domain may be fully
unlabelled, and still well classified in practice, as the main focus is aligning domains, not directly optimising
target domain classification accuracy.

DA has many forms and may be implemented through various architectural constructs. Recall the goal of
DA is to align domains (or features) between two differing domains. Therefore, the main focus of many DA
techniques is to find an effective technique to achieve domain alignment or domain invariance as it is sometimes
referred to. To simplify the following explanations from literature, a simplification of a general DNN structure is
required. DNNs may be seen as being split into two main sections, a feature extraction section and a feature
classifier section. At some point, the feature extractor stops, and an array of features are generated from the
feature extractor. This will be referred to as the final feature vector. The final feature vector is passed to a
normal MLP model, which acts as a feature classifier. The classifier may have multiple layers and tries to learn
a mapping between the self-generated features and the desired output. Thus, the DNN is said to consist of a
feature extractor and a feature classifier component, with a feature vector as a separating layer in-between the
two components.

Many DA approaches are generally formulated by focussing specifically on the feature extractor. The goal is
to develop a feature extractor that can simultaneously generate feature vectors that are domain invariant and
meaningful. Meaningful features aid the classifier, whereas domain invariant features aid the robustness of the
model to domain changes.

One can generally define the transfer learning approach according to two major categories, namely transfer
in the identical domain (TIM) and transfer across different machines (TDM). If a TL approach is applied on
the same machine type, one obtains what is known as TIM. If, however, one tries to transfer knowledge to a
different machine, one obtains what is known as TDM. Both methodologies have the common assumption that
the source domain data is fully labelled, but that the target domain is sparsely labelled or even not labelled at
all. Regardless of the applied methodology, Lei et al. (2020) show that four common approaches are followed
to transfer knowledge, namely feature-based, GAN-based (General Adversarial Network), instance-based and
parameter-based approaches. Lei et al. (2020) state that transfer learning seems to be a promising method for
utilising experimentally learned knowledge in practice. Therefore, the following sub-sections give examples of
successful applications in each of the two TL groups.

1.2.4.1 Transfer in the identical domain (TIM) approaches

TIM is generally focused on transferring knowledge across the same machine, but for differing operating
conditions, load conditions or different environments of operation (Lei et al. 2020).

Within the transfer learning literature for diagnostic condition monitoring, three major DA network styles are
common. The first is based on the work from Tzeng et al. (2014), which relies on a metric to measure the
similarity between domains. Tzeng et al. (2014) utilised the maximum mean discrepancy (MMD) metric to
measure similarity between domains, and jointly minimised this metric with classification loss. It was shown
that this DA method outperformed other state-of-the-art methods in transferring learned features from image
datasets from a source domain to a target domain. It must further be noted that this architecture allowed for
completely unsupervised data in the target domain. Do however note that this work was based on an image
recognition task, but that the same architecture is easily transferable to the diagnostic CBM task.

The second network style is based on the work from Ganin et al. (2017). The authors replace the MMD metric
with a sub-NN, which adversarially tries to determine the domain from which a given sample originated. This
prediction is then used to adversarially update the feature extractor, whilst labels are passed to the feature
classifier. This, once again jointly leads to domain invariant features that are also meaningful. The work from
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Ganin et al. (2017) showed further improved results when compared to that of (Tzeng et al. 2014) on the
image classification task. This method is very similar to a GAN, but instead of separately training a generator
and discriminator, the process acts as an all-in-one approach. Furthermore, this approach merely attaches
another smaller NN, namely the domain classifier to a standard CNN structure and therefore many existing CNN
structures can be ’upgraded’ for domain invariance by adding this simple extra component to the network. Once
again, this approach could be utilised for a target domain that has no labels.

Han et al. (2019a) implemented a TIM DA approach based on the architecture from Ganin et al. (2017). Data
was taken from wind turbine, spur and bevel gear datasets at various operating conditions. A CNN was trained
on specified load cases and the test cases were set as completely unseen load cases. When applying DA to this
approach, an improvement in fault classification accuracy was seen for all datasets. The authors thus showed
that the implementation of DA to their existing data-driven model increased the accuracy of the model on unseen
conditions.

The third network style involves the utilisation of GANs. GAN-based approaches generally utilise some form of
generator and discriminator to adversarially reach an optimum. Examples of such an approach will be given
shortly. Chen et al. (2020) applied a GAN based DA method to the rotating machinery fault diagnosis problem.
In this work, the DA process was constructed as follows: Firstly, a standard CNN was trained on a source domain
until no accuracy increase was seen. A second model was constructed from the first, by duplicating the feature
extractor weights. This second model was developed for the target domain feature extraction. After setting up
the second model, the weights from the source domain feature extractor were frozen, however, the weights of
the target domain feature extractor were not. Then, iteratively, source and target samples were sent through
both of their respective networks, resulting in source and target domain feature vectors. These vectors were
then passed to a discriminator. Therefore, in a GAN sense, the target domain data features could be seen as the
generator network and the domain classifier as the discriminator. Instead of generating samples, however, the
generator was aimed at generating feature representations from target samples that match those from the source
domain. Therefore, the discriminator and generator were pitted against one another until mutual optimality was
reached. At this point, the discriminator could be discarded and the target domain feature extractor could be
connected to the source domain’s classifier, which had already learnt to map features to accurate outputs. Since
the adversarial approach resulted in domain invariant features, one would expect that the classification of the
target domain would therefore be similar to the source domain. As a further benefit, once again the process could
be conducted in a completely unsupervised manner for the target domain. Chen et al. (2020) showed that this
method outperformed other state-of-the-art DA models on a bearing dataset. These models include the model
types proposed by Tzeng et al. (2014) and Ganin et al. (2017). However, it must also be stated that these other
DA methods still well outperformed the non-DA approaches, once again proving the strong case for DA.

Breaking away from DA approaches, Han et al. (2019b) implemented an inductive approach to the TL task. An
inductive approach is geared towards fine-tuning a pre-trained model. The general idea behind this work is as
follows: The early layers within a CNN are responsible for extracting general features from a dataset. Therefore,
upon training, the front layers of a CNN may already be extracting meaningful and domain invariant features.
It is only near the latter part of the network, perhaps even only the classifier part, that features become more
domain-specific, and cause a drop in accuracy when transferring data domains. Therefore, Han et al. (2019b)
proposed three methods to utilise already trained networks. In the first approach, the pre-trained CNN’s feature
extractor weights were all frozen and only the classifier weights were fine-tuned on the limited labelled target
domain data. This approach assumed that the feature extractor was already general enough, and the overfitting
to a domain occurred in the classifier layers. In the second approach, the entire network was allowed to be
fine-tuned. This was coupled with the assumption that the whole network could be overfitted to the source
dataset and a small amount of fine-tuning was necessary to calibrate the model on the target domain. In the
third and final approach, the method was much more similar to DA, where the assumption was that overfitting
occurred in the feature extractor. Therefore, in this approach, the classification portion of the network was
left frozen and the feature extractor was fine-tuned. All three approaches were tested across two experimental
datasets. These approaches were then compared against source domain training only and all three methods
showed appreciable improvements in classification accuracy of the target domain. Furthermore, it was seen that
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the third approach outperformed the other two approaches. Therefore, this work once again seems to show that
the problem of domain invariance may be solved by looking at the feature extractor, not the classifier.

1.2.4.2 Transfer across different machine (TDM) approaches

From the author’s experience, the literature on TDM approaches to condition monitoring is quite limited. TDM
approaches are considerably harder than TIM approaches. TDM attempts a more difficult task of trying to
transfer knowledge to a completely different, but related machine, such as from a motor to a generator Lei et al.
(2020). These approaches are truly difficult, as they try and transfer information across two completely different
domains. The previous section focused mainly on simple changes in load or changes in speed classification cases.
These approaches may be seen as data-driven approaches, as they are not interested in transferring knowledge
from one machine (physical model) to another (the real asset). They are only interested in calibrating data within
the same machine. The works which will be presented shortly, focus on a much more difficult task: Transferring
knowledge from a hybrid model with synthetic data as the source domain to real signals from assets, the target
domain. This case is quite difficult as many variables other than speed and load may now vary between domains.
Such variables include the DOFs of the hybrid model vs. the real case, temperature effects, effects of other
machines in the measurement environment and simulated vs. measured vibration location.

In the work of Liu et al. (2020a), a prognostic hybrid model is built for bearing RUL prediction. Firstly, the
authors verified a useful prognostic model against other state-of-the-art models. Then, the authors compared this
model against its domain adaptation counterpart. The DA approach utilised the same structure as Ganin et al.
(2017). In this work, the source domain was synthetic data produced by a phenomenological bearing model.
The target domain was real experimental data. It was shown that the DA approach yielded far better RUL results
when applied to the real data compared to the non-DA hybrid model. This showed that with a strong prognostic
hybrid model, with a large body of synthetic data of training, one cannot guarantee success for the same model
on a different domain. However, if the hybrid model is calibrated with DA, it performs much better, as the
domain invariance has been minimised between the synthetic data and real data.

In further works, Liu & Gryllias (2021) focused on the bearing diagnostic task. The authors utilised a CNN
hybrid model with data being generated from a phenomenological bearing model. The authors implemented
the same architecture as in Ganin et al. (2017), with a slight change to account for differences in class between
source and target domain. In this work, the authors assume that small amounts of labelled target domain data
were available. Thus, their novel framework would not work in unsupervised target domain cases. Regardless,
the authors showed that with small amounts of labelled target domain data, the DA approach outperformed a
deep MLP, time-frequency CNN, and their own CNN without DA. This showed that utilising DA is effective at
maximising the information contained in limited data. As a further comparison, their method was pitted against
other DA approaches and was shown to be most effective. Models which performed close in accuracy to their
model, and which could be trained in an unsupervised manner (and is therefore more useful) was shown to be
the models already described from Tzeng et al. (2014) and Ganin et al. (2017).

The literature shows evidence that transfer learning, or more specifically, domain adaptation, shows great promise
for calibrating a hybrid model when it is expected to be applied to a different dataset.

1.3 Scope of research
The motivation for this work stems from an industrial problem: Inferring the condition of an industrial gearbox
from condition monitoring data. The inferred condition of the gearbox may then be used to inform mainten-
ance decisions under a condition-based maintenance framework. The condition monitoring task for complex
machinery such as gearboxes, however, is not trivial. Gearboxes run under complex operating conditions
such as varying loads, speeds, temperatures, levels of wear on components, etc. This makes physics-driven
approaches difficult to calibrate and limit their usefulness for such environments. To further complicate the
condition monitoring task, these complex assets generally do not have run-to-failure data which may be used for
a data-driven approach. Lastly, if historical data is available, it is often times unlabelled and may be contaminated
by noise from sensor measurement or vibrations from other nearby assets. Therefore, data-driven approaches are
also limited in scope for industrial gearboxes.
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This work proposes a hybrid model that consists of a numerical gearbox model for labelled data generation and a
supervised data-driven model to classify gearbox data into different health states. The data-driven portion of the
hybrid model is further calibrated through transfer learning to aid in the condition monitoring task. To ensure that
the performance and behaviour of the hybrid method and accompanying calibration approach are understood, this
work will focus only on the virtual condition monitoring problem. In this virtual problem, synthetic experiments
are specially designed to understand the behaviour of the models in different environments.

Hybrid methods are invaluable for the condition monitoring problem as they can realise the benefits from both
physics-driven and data-driven approaches simultaneously. The first portion of developing a hybrid gearbox
model is the construction of a physical gearbox model. The gearbox model in this work aims to develop a
platform where large amounts of labelled synthetic data may be generated. This labelled synthetic data is
generated in a controlled, noise-free environment and serves as a good source of data for the data-driven portion
of the hybrid approach. Furthermore, the fact that the data is labelled allows for a supervised data-driven method
to be employed. This is advantageous, as the labels allow the hybrid model to predict different types of faults,
as opposed to only the presence of faults. However, before such a hybrid model may be realised, the literature
highlights the following three shortcomings that need to be addressed to achieve the hybrid methodology:

To construct a gearbox model, one needs to accurately model the meshing stiffness between gears, as well as the
effect accompanying faults have on this meshing stiffness. The potential energy method has much potential for
determining gear meshing stiffnesses, as it is as accurate as finite element methods, but much faster to solve.
However, gear fault modelling literature using the potential energy method is disjunct, as different mathematical
notations and formulations are used for different fault types. Furthermore, the focus of the published papers
is usually for a single fault type, as is evident from the various models described in Mohammed & Rantatalo
(2020). There is a need in the gear fault modelling field for a unified approach, so that more robust synthetic
datasets may be built. Currently, it appears as if researchers build an entire model around a single fault type,
whereas it could be very beneficial to build faults around a single gearbox model (van Eyk et al. 2022).

Secondly, although the literature is focused on building optimal deep learning approaches for gear condition
monitoring, it is usually unclear how these data-driven models should be utilised when insufficient amounts of
data are present. Hybrid approaches are proposed in the literature, but the literature that was obtained mostly
focus on bearing condition monitoring, such as the hybrid works in Gryllias & Antoniadis (2012) and Sobie
et al. (2018). Therefore, there is a need for more literature on gearbox condition monitoring applications with
limited historical fault data.

Lastly, although the aim of the physical modelling portion of the hybrid modelling framework is to replicate the
real asset as well as possible, calibration may be difficult and time-consuming. In addition to this, the physical
model is only a simplified version of a much more complicated system and will therefore struggle to capture
the full range of complex interactions of the real asset. Therefore, one may expect at least some difference
between synthetic data and real data (i.e. epistemic errors). Due to this difference in data, the hybrid model is
not guaranteed to perform equally well across different datasets (Lei et al. 2020). That is to say, that a hybrid
model trained on synthetic data may not generalise to the real industrial data.

Hence, in this work the following contributions will be made to address these shortcomings:

The first part of this work aims to develop a generalised gearbox model that can address the three important
sections of gearbox modelling, namely, gear mesh stiffness modelling, fault modelling and dynamic modelling.
To address the generalisation problem, both the gear mesh stiffness modelling and fault modelling portions need
to be redefined in a generalised mathematical framework. To verify the correctness of the model, the proposed
generalised framework will be compared against published models. The new generalised gear mesh stiffness
framework and accompanying fault models will be incorporated in a lumped mass model from the literature and
integrated using numerical integration methods.
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To address the second issue, which is that of limited data for real gearboxes, a hybrid model will be developed for
gearbox fault detection. This model will consist of the aforementioned gearbox model (physics-driven model)
and a deep neural network (data-driven model). The gearbox model will generate labelled synthetic vibration
data, which may be used to train a supervised data-driven approach. For the supervised deep neural network,
no experimental or industrial data is available, and therefore this deep neural network cannot be evaluated in
isolation. Therefore, a proven deep neural network that has been applied to a real gearbox dataset will be chosen
from the literature to verify its effectiveness.

With the physics-driven model developed and a data-driven architecture selected, the novel hybrid model will be
constructed and implemented. Hybrid models of this sort have been constructed before, but are mainly focused
on bearings and have not yet, to the author’s knowledge, been implemented on gearboxes. Therefore, the second
novelty in this work lies in its application to gearbox condition monitoring specifically.

The hybrid model requires validation, and will therefore be tested against a synthetic dataset to validate its
effectiveness in identifying faults for different noise profiles. With a strong hybrid model having been developed,
the final shortcoming of current works will be addressed, namely the issue of how to calibrate the well-trained
hybrid model to classify datasets from industrial gearboxes.

Therefore, to address the third and final shortcoming, a portion of this work will be dedicated to studying and
understanding the effectiveness of implementing different transfer learning techniques. Specific focus will be
given to a technique known as domain adaptation, as this seems to populate the majority of literature, as it shows
great promise (Han et al. 2019a).

The calibrated models may then be compared to their uncalibrated hybrid model counterparts to gain insight into
the usefulness of transfer learning techniques for calibrating a hybrid model with limited data in the industrial
case. The application of transfer learning as a calibration tool for a hybrid gearbox model is to the author’s
knowledge novel and has not been utilised before. A portion of other works have applied transfer learning to
gearbox datasets, but these works all focused on simpler in-domain tasks, where vast amounts of experimental
data were already available, and transfer learning was only applied to learn different load cases within this
dataset. This work proposes a method to transfer knowledge from one dataset to a different dataset. In practice,
and in alignment with the motivation for this work, this knowledge transfer may occur from a synthetic dataset
to a real asset.

In summary, the following novelties result from the work:

• A novel generalised fault modelling framework is proposed that places the focus of fault modelling around
the stiffness framework, and not the entire framework around faults. This framework must be modular in
the sense that various fault types can be simulated from the same base mathematics, without having to
change the stiffness model at all.

• A novel hybrid gearbox model will be developed, which is trained in a supervised manner by utilising a
deep neural network combined with labelled synthetic data from the physical gearbox model.

• A novel calibrated hybrid gearbox model which will be robust against a change in input data. This change
in input data may represent the motivation for this work: A transfer of knowledge from a synthetic data to
industrial data.

The following section briefly outlines how the scope of research will be broken up across the document.

1.4 Document overview
Chapter 2 is aimed at developing the physical gearbox model for the overall hybrid model framework. This
chapter starts by constructing a generalised stiffness modelling framework that can easily facilitate various
gear tooth faults. The chapter introduces four different fault types which are all directly compatible with the
generalised stiffness model. The induced faults are compared to the literature to verify the generalised stiffness
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modelling framework. The chapter continues by implementing a dynamic gearbox model, from which two
synthetic datasets are created for later experimentation. As a verification step, the vibrations from these datasets
are compared against the literature on which they are based.

Chapter 3 develops a supervised data-driven model which can take input vibration data and classify the given
signal into a gearbox condition. Furthermore, with the synthetic data from chapter 2 and the data-driven model
from chapter 3, the full hybrid model is shown and steps for its implementation are described. Up to this point
the full hybrid model is developed and ready for experimentation.

Chapter 4 experimentally proves that the developed hybrid model is robust against noise and that it is capable of
identifying different fault types within a gearbox. With the hybrid model trained, a robust baseline has been
created against which the transfer learning calibration techniques may be investigated.

Chapter 5 addresses the problem of model robustness against a change in input data. This chapter develops
the transfer learning calibration tools for the hybrid models, which aims to calibrate the hybrid model. The
calibration tools are aimed at minimising the difference in performance between the hybrid model trained on
synthetic data and the hybrid model to be implemented on real data. With the hybrid model calibrated with
transfer learning, it is compared against the non-calibrated model from Chapter 4. Comparisons are made by
running two synthetic experiments. These experiments show the effectiveness of hybrid model calibration for
the fault classification task in a data-scarce domain.

Chapter 6 discusses the overall impact of the work and concludes with suggestions for future research.
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framework

Within a condition-based maintenance (CBM) framework, one finds three main approaches to monitoring the
condition of assets. These are physics-driven, data-driven and hybrid approaches. From the introduction, it
is argued that a hybrid model may be advantageous for the gearbox condition monitoring task, as such an
approach aims to maximise the advantages of both data-driven and physics-driven approaches. For this work, a
physics-driven model is used to generate data for the data-driven portion of the hybrid framework. A physical
model (PM) is chosen over alternative data-acquisition techniques, such as real industrial data or experimental
setups for a multitude of reasons.

The main drawback of utilising industrial data directly, is a lack of labelled data and a lack of fault samples. It is
unrealistic to expect real assets to have a well-maintained database of labelled signals. Assuming that the data
was, however, well labelled, it is furthermore not guaranteed that the signals will contain all the different modes
of failure of the asset, if any at all. Assets are generally not run to failure, as this leads to unplanned maintenance,
which causes long downtimes and full stoppages of production lines. To overcome the data scarcity and lack of
labelling problem, experimental setups similar to the real asset may be proposed. Such experiments, however,
also have downsides when compared to PM approaches:

1. A PM provides us with a cost-effective manner to generate data similar to what we would obtain from
an actual gearbox. Gearboxes are generally expensive and hard to access for sensory measurements in
practice and therefore a PM results in a much less costly experimental setup.

2. A PM allows us to more flexibly induce faults of different shapes and sizes and apply torques of varying
amounts quite easily. Thus, data acquisition is much faster when using a PM.

3. A PM allows us to understand at a fundamental level how different faults should affect the gearbox.
4. A PM allows for a controlled, noise-free environment in which clean data can be generated, such that only

the underlying physics of the gearbox is captured within the synthetic data.

The modelling behind a PM requires a deep understanding of the physics that drive the dynamics of the asset
and implementing these dynamics in a numerical framework. A PM is a powerful tool for both diagnostic
and prognostic approaches. The focus of this work, however, is on gearbox fault diagnosis. Therefore the
scope of the physical gearbox model is limited to fault modelling and data generation, but not fault propagation
models.

The literature identifies two main approaches to gearbox modelling, namely modulation-based techniques and
dynamics-based techniques (Mohammed & Rantatalo 2020). This work focuses on the latter. When employing
a dynamics-based gearbox model, it is generally seen that works split up the modelling process into three
sub-parts:

1. Gear mesh stiffness modelling
2. Gear fault modelling
3. Gear dynamics modelling
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Gear mesh stiffness modelling focusses on modelling the effects which generate meshing stiffness variations
between gear pairs. Fault modelling focuses on the methodologies with which we induce faults into the gear
model. Finally, dynamics modelling focuses on solving the dynamics of the system, which in turn leads to the
main output of the PM, namely synthetic vibration data.

For this work, the Potential Energy (PE) method is used, because it offers a promising compromise between
accuracy (continually showing results similar to FEM) and speed (being much faster to solve as opposed to
FEM). The PE method allows us to incorporate both mesh stiffness and fault models in one unified framework,
which will be developed throughout sections 2.1 (gear mesh stiffness modelling) and 2.2 (fault modelling). The
dynamic model which incorporates the fault-altered mesh stiffness will be shown in section 2.3, from which we
may finally generate labelled synthetic data, shown in section 2.4.

2.1 Gear mesh stiffness modelling
Gear mesh stiffness modelling receives much attention in literature since the meshing behaviour of gears is the
main source of excitation in a gearbox and damage manifests as changes in the gear mesh stiffness. If this is
modelled accurately, one should have a good representation of the actual gearbox vibrations.

To show what is meant by "gear meshing stiffness", refer to Figure 2.1. To model the interaction between two
gears, we simplify this to two elements that interact by subjecting one another to opposing forces. These forces
cause the non-rigid gear teeth to deflect and cause vibrations during rotation. This force-deflection phenomenon
may be restated by modelling the stiffness between two gears. The force between two gears ideally acts along
the line of action (LOA) (See Figure 2.1). The LOA is important as it ensures that the speed ratio between the
two gears stays constant.

(a) Single Tooth Meshing (b) Double Tooth Meshing

Figure 2.1. Illustration of single and double tooth meshing. Note that for single tooth meshing only a single
tooth pair is in contact. During double tooth meshing, however, we see that two pairs of teeth are in contact at a
single time. This effect occurs because the gear teeth are confined (and designed) to interact along the line of
action.

Two main effects which affect the gear meshing stiffness need to be modelled. Firstly, notice that as the gear
rotates (See Figure 2.1), the point of contact between two gear teeth changes its location and angle relative to a
given gear tooth. For example, on the left, looking from only the first coloured tooth’s perspective, one has a
meshing force near the interface between D1 and S1. Then, some while later, on the right, one sees the meshing
force has moved to a point near the interface between S1 and D2. Further notice that between the two contact
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cases, the angle of the tooth has changed, but the angle of the LOA has not. Therefore, the relative angle between
the meshing force and the tooth face has changed. This simultaneous variation of force location and angle on the
tooth affects the stiffness of the tooth.

Secondly, notice that on the left, only a single tooth pair is in contact. On the right, two pairs of teeth are in
contact. This implies that at the point at which the meshing changes from a single tooth pair to two tooth pairs,
the force is suddenly shared between a larger number of tooth pairs. This leads to a sudden relief in force on the
initial single tooth pair. This in turn gives rise to a smaller deflection between the gears overall, hence to a larger
equivalent stiffness. This effect is very important to model, as it causes discontinuities in the meshing stiffness,
which show up as impulses in the dynamic system.

Each of the above-mentioned effects is extensively addressed in the following sections.

2.1.1 Force variation effect

The force variation effect has received much attention through the PE method. Before detailing the PE method,
it is helpful to define a reference coordinate system and parameter names. To simplify modelling, the tooth is
assumed to be stationary with only the force (F) varying in its location and angle (α1) on the tooth (see Figure
2.2). This is a convenient way of setting up the coordinate system, with the only complexity arising when one
defines how the force dynamically changes location and angle. This complexity is dealt with later.

Due to the way that gear teeth are manufactured, they are defined by two key radii. These are known as the base
radius (Rb) and the root radius (Rr). For gears with fewer than 41 teeth (see Figure 2.2), the cutting tool creates a
base radius that is larger than the root radius. However, when we exceed the 41-teeth threshold, we see that the
root circle becomes larger than the base circle (see Figure 2.3) (Liang et al. 2014, Wan et al. 2014). This is only
valid for standard spur gears and most authors follow this assumption.

The root radius refers to the radius where the gear tooth contacts the gear body and should be used as the
reference for all coordinates. In the early years after the potential energy method was proposed, authors did
not consider the tooling effect, and hence defined all parameters with reference to the base radius (essentially
assuming Rb = Rr). The base radius is the location (for a gear with less than 41 teeth) where the fillet of the gear
tooth begins, and has no real meaning for a gear with more than 41 teeth, but can still be calculated.

At this point, it is useful to explain the potential energy method. This method assumes a gear tooth to be a
non-uniform cantilevered beam and applies beam theory to calculate the potential energy due to strain within
this tooth. The potential energy (strain energy) for a beam is defined by Hibbeler (2004) as:

U =
Fδ

2
=

F2

2k
(2.1)

where F , δ and k relate to the force applied to the beam, the deflection of the beam in the direction of the force
and the stiffness of the beam respectively. Note that this equation serves as the general basis from which all
stiffness terms will be derived.

Researchers mainly consider five types of potential energy to derive the stiffness terms. The first three stem
directly from beam theory, namely a bending (Ub), axial compressive (Ua) and shear (Us) energy. In addition to
these terms, the Hertzian (Uh) line contact and fillet foundation (U f ) energy are also considered. These strain
energies are discussed in the subsequent sections.
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Figure 2.2. Tooth model when the number of gear teeth (Z) is less than or equal to 41 (Z ≤ 41). This has the
effect that the base radius (Rb) is larger than the root radius (Rr). Due to this factor, an extra piece of tooth
material needs to be accounted for between the root and base, which was neglected in older methods. This extra
portion of material is denoted by d1.

2.1.1.1 Beam energy terms: Ua,Ub,Us

The potential energies associated with beam theory, namely axial compressive, bending and shear energies are
defined as follows (Tian 2004):

Ua =
F2

2ka
=
∫ d

0

F2
a

2EAx
dx (2.2)

Ub =
F2

2kb
=
∫ d

0

[Fb(d− x)−Fah]2

2EIx
dx (2.3)

Us =
F2

2ks
=
∫ d

0

1.2F2
b

2GAx
dx =

∫ d

0

1.2(1+ν)F2
b

2EAx
dx (2.4)

where ν , E and G refer to Poisson’s ratio, modulus of elasticity and shear modulus of the gear. The quantities of
h,d and x are shown in Figure 2.2 and refer to the height and distance along the tooth at the force contact point,
and the instantaneous length along the tooth one is currently at. The instantaneous cross-sectional area and area
moment of inertia is given by Ax and Ix respectively. The force terms may be defined as follows (by looking at
Figure 2.2 once more):

Fb = F cosα1 (2.5)

Fa = F sinα1 (2.6)

where F refers to the contacting force and α1 refers to the angle between the tooth centreline and the line which
connects the tooth origin to the point of tangent contact of the contact force, were it to be extended. This quantity
will be defined shortly.
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Figure 2.3. Tooth model when the number of gear teeth (Z) is greater than 41 (Z > 41). This has the effect that
the root radius (Rr) is larger than the base radius (Rb). Due to this factor, an extra piece of tooth material is
being accounted for utilising older methods and thus the limits of the tooth need to be redefined, seen by the α4
parameter.

The tooth figures in Figure 2.2 and Figure 2.3 may be given the coordinate designation of an x− y plane.
However, integration along the length of the beam in any designation of an x− y coordinate system is difficult,
as we need an expression for the change in area cross-section (Ax) and area moment of inertia (Ix) in terms of a
change in the x-direction. Furthermore, we need a definition for the change in tooth height (h) as we progress
along x. It is advantageous if one could rather integrate in an angular coordinate system, where all terms are a
function of an angular quantity related to x, namely α .

If this is done, we may more easily define our profile of the gear. When converting the x− y coordinate system
quantities (x,hx,d,h,d1), we will require a new set of angular parameters to relate them to. We define these
quantities as follows (Tian 2004):
For the pinion:

α1(θ1) = θ1−
π

2Z1
− (tanα0−α0)

+ tan

arccos

 Z1 cosα0√
(Z2 +2)2 +(Z1 +Z2)2−2(Z2 +2)(Z1 +Z2)cos

(
arccos

(
Z2 cosα0

Z2+2

)
−α0

)


(2.7)
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For the driven gear:

α1(θ1) = tan
(

arccos
(

Z2 cosα0

Z2 +2

))
− π

2Z2
− (tanα0−α0)−

Z1

Z2
θ1 (2.8)

where Z1, Z2, α0 and θ1 refer to the number of teeth on the pinion gear, number of teeth on the driven gear,
angle of the LOA (this is from the external observation frame and thus a constant value) and the pinion gear’s
rotational angle. We now have a formulation that defines our force angle (α1) as a function of gear rotational
angle, which was the main complexity when choosing a stationary x− y coordinate system.

Although we have shown that α1 is a function of gear rotation angle, the explicit dependency on θ1 is ignored
in subsequent discussions, i.e. α1(θ1) is written as α1. Finally, the following sub-section deals with the
complexities of combining different terms depending on how many pairs of teeth are in contact. Thus, there
is no need to formulate α1 definitions for the case where two pairs of gear teeth are simultaneously in contact
here.

Continuing, we find the quantity a2, which is defined as the half tooth angle of the base circle (Meng et al.
2021):

α2 =
π

2Z
+ tanα0−α0 (2.9)

where Z is Z1 for the pinion and Z2 for the driven gear.

At this point, a distinction arises. The terms used to define the gear geometry differ depending on the number of
gear teeth present. These are presented as:

• Case 1: Z < 41, which implies Rr ≤ Rb
• Case 2: Z > 41, which implies Rb < Rr

It is useful to note that Rb and Rr are not always necessarily known, but rather a different set of parameters that
are used to define the base and root radius. Thus, if the base and root radius is unknown, but the module of the
gear is known, the following equations may be used to calculate Rb and Rr (Ma et al. 2014):

Rb = 0.5mZ cosα0 (2.10)

Rr = 0.5mZ− (ha + c)m (2.11)

where m refers to the module of the gear and the quantities ha and c are known as the addendum coefficient and
tip clearance coefficient respectively. These are tooling parameters used when cutting gears, and are taken as
ha = 1 and c = 0.25 in this work, as this is what works such as Ma et al. (2014) and Wan et al. (2014) use and
are stated to be the standard values for a spur gear.

Case 1 (Z≤41):
For this case, we need to define

α3 = arcsin
(

Rb sinα2

Rr

)
(2.12)

which aims to locate the angle at which the profile of the tooth reaches the root circle (Meng et al. 2021).

We may now define the transformation equations. Note that for many works the assumption is made that the
tooth profile between the tooth base and tooth root is a straight line - Thus hx will be constant along this region,
i.e. the curved region indicated by d1 in Figure 2.2 is replaced with a horizontal estimate. This assumption holds
in this work, as the true fillet profile is difficult to define analytically. Furthermore, the assumption is made that
the remainder of the tooth follows an involute profile. The involute profile is a common gear tooth profile that
ensures that the line of contact stays constant, making this a valid assumption.
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For these assumptions, the following transformation equations are valid (Meng et al. 2021):

h = Rb[(α1 +α2)cosα1− sinα1] (2.13)

d = Rb[(α1 +α2)sinα1 + cosα1]−Rr cosα3 (2.14)

d1 = Rb cosα2−Rr cosα3 (2.15)

x =

{
x, if 0≤ x≤ d1

Rb[(α−α2)sinα + cosα]−Rr cosα3, if d1 < x≤ d
(2.16)

hx =

{
hx1 = Rb sinα2, if 0≤ x≤ d1

hx2 = Rb[(α2−α)cosα + sinα], if d1 < x≤ d
(2.17)

Ax = 2hxL (2.18)

Ix =
1
12

(2hx)
3L =

2
3

h3
xL (2.19)

where h and d indicate the height and distance along the tooth at the force contact point. The transition distance
between the base and root circle is defined as d1. The distance and height along the tooth profile are given by x
and hx respectively. The instantaneous cross-sectional area and area moment of inertia is given by Ax and Ix
respectively. Finally, L defines the tooth face width. Notice that for x we employ different coordinate systems
depending on the tooth region.

This is because the definition of x as a function of α breaks down for any coordinate smaller than the base radius
(or in other words for α > α2). If we assume a constant height for any point before d1, we may formulate an
integral in the x−y coordinate system for the region 0≤ x≤ d1, as we are expecting a constant tooth profile due
to the straight-line tooth profile assumption. This makes the integral easy to solve.

We are now equipped to substitute equations (2.13) - (2.17) back into equations (2.2) - (2.4). After substitution
we have changed the coordinate system to the angular domain, removed constant terms from the integrals and
found the following formulations for the beam related stiffnesses by rearranging terms:

1
ka

=
2Ua

F2 =
∫ d1

0

sin2
α1

2ELhx1

dx+
∫

α2

−α1

Rb(α2−α)cosα sin2
α1

EAx
dα (2.20)

=
d1 sin2

α1

2ELhx1

+
Rb sin2

α1

E

∫
α2

−α1

(α2−α)cosα

Ax
dα (2.21)

1
kb

=
2Ub

F2 =
∫ d1

0

3 [cosα1(d− x)− sinα1h]2

2ELh3
x1

dx

+
∫

α2

−α1

R3
b {1+ cosα1[(α2−α)sinα− cosα]}2 (α2−α)cosα

EIx
dα

(2.22)

= R3
b

[
1− Rr

Rb
cosα1 cosα3

]3
− [1− cosα1 cosα2]

3

2ELcosα1h3
x1

+
R3

b
E

∫
α2

−α1

{1+ cosα1[(α2−α)sinα− cosα]}2 (α2−α)cosα

Ix
dα

(2.23)

1
ks

=
2Us

F2 =
∫ d1

0

2.4(1+ν)cos2 α1

EAx
dx+

∫
α2

−α1

2.4(1+ν)Rb(α2−α)cosα cos2 α1

EAx
dα (2.24)

=
1.2(1+ν)d1 cos2 α1

ELhx1

+
2.4(1+ν)Rb cos2 α1

E

∫
α2

−α1

(α2−α)cosα

Ax
dα (2.25)

Contrary to what is found in literature, equations (2.21), (2.23) and (2.25) are written here with the Ax and Ix
terms explicitly visible. This makes the formulas less convenient to work with at this point, but introduces
significant advantages for future fault modelling. Although not obvious now, this formulation of the stiffness
terms allows for a very simple way to induce faults into the gear mesh stiffness, with no modification necessary
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to the stiffness terms. This is an improvement with respect to current practice in the literature, where each
different fault type currently requires a different set of stiffness equations.

Case 2 (Z>41):
For this case, we are expecting that the root radius is larger than our base radius (see Figure 2.3). This implies that
we should no longer integrate down to the base of the gear, but only to the root. Thus, we have to define a new
boundary of integration. We know at which angle this boundary occurs in terms of the root circle, namely α4,
however, this is of little use, as we define our coordinate system relative to the base circle. Therefore, we need
an additional angular quantity, α5, which defines the equivalent angular point relative to the base circle.

To calculate α5 is challenging, as we need to solve the following set of equations simultaneously (Liang et al.
2014):

Rr sinα4 = Rb [(α2−α5)cosα5− sinα5] (2.26)

Rr cosα4 = Rb [(α5−α2)sinα5 + cosα5] (2.27)

However, with some manipulation, we may add the two equations after rearranging and squaring to remove α4
from the formulation, which leads to the following expression which needs to be solved (via Newton’s method
or any other solver):(

Rb

Rr

)2 [
((α2−α5)cosα5− sinα5)

2 +((α5−α2)sinα5 + cosα5)
2]= 1 (2.28)

This equation has multiple stable roots, of which the root closest to 0 is required. Visually, one expects α5 < α2,
thus a good first guess is α5 = 0. Then, after solving, ensure α5 < α2 but also that there are no roots closer to
α2. It seems as if any initial guess between -0.9 and 1 still iterated to the correct α5 value, thus the required root
is not too sensitive to incorrect initial conditions, considering that -1 to +1 radians span a large angle. To be safe,
however, and as mentioned before, α5 = 0 is recommended as a starting value.

For some formulas, the value of α4 will be required, and thus also needs calculation. This may be found from
rearranging equation (2.26):

α4 = arcsin
(

Rb

Rr
((α2−α5)cosα5− sinα5)

)
(2.29)

We may now define our transformation equations once more. We find that equations (2.13), (2.18) and (2.19)
stay precisely the same, and will not be repeated:

d = Rb[(α1 +α2)sinα1 + cosα1]−Rr cosα4 (2.30)

x = Rb[(α−α2)sinα + cosα]−Rr cosα4 (2.31)

hx = Rb[(α2−α)cosα + sinα] (2.32)

Once again, we may set up the stiffness integrals:

1
ka

=
2Ua

F2 =
∫

α5

−α1

Rb(α2−α)cosα sin2
α1

EAx
dα (2.33)

=
Rb sin2

α1

E

∫
α5

−α1

(α2−α)cosα

Ax
dα (2.34)

1
kb

=
2Ub

F2 =
∫

α5

−α1

R3
b {1+ cosα1[(α2−α)sinα− cosα]}2 (α2−α)cosα

EIx
dα (2.35)

=
R3

b
E

∫
α5

−α1

{1+ cosα1[(α2−α)sinα− cosα]}2 (α2−α)cosα

Ix
dα (2.36)

1
ks

=
2Us

F2 =
∫

α5

−α1

2.4(1+ν)Rb(α2−α)cosα cos2 α1

EAx
dα (2.37)

=
2.4(1+ν)Rb cos2 α1

E

∫
α5

−α1

(α2−α)cosα

Ax
dα (2.38)
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This concludes the required beam related stiffness calculations. The following section deals with the Hertzian
contact line stiffness effect.

2.1.1.2 Hertzian line contact term: Uh

The Hertzian energy (Uh) is stored in the contact regions surrounding the line of contact between the two meshing
teeth. This occurs due to the local deformation which occurs when two surfaces interact. See Figure 2.4 for a
visual representation. The stiffness associated with the contact line between the two gears is modelled with the
contacting gear faces assumed to be cylindrical (El Yousfi et al. 2020).

Figure 2.4. Representation of what is meant by the Hertzian line contact stiffness. The portion of the two gears
which are in contact deflect locally along the contact line. The deflection model is based upon the assumption
that two infinitely long parallel-axis cylinders are in contact.

The Hertzian energy term, with the cylindrical contact assumption, is therefore defined as follows:

Uh =
F2

2kh
=

F2

2
× 4(1−ν2)

πEL
(2.39)

which leads to the equivalent stiffness term (Yang & Lin 1987):

1
kh

=
2Uh

F2 =
4(1−ν2)

πEL
(2.40)

2.1.1.3 Fillet foundation term: U f

Finally, the fillet foundation stiffness term needs to be determined. This term tries to account for the effect of the
gear’s body deflecting under a load on the tooth. This term has received special modelling attention and has
been approximated by a parametric formula (Sainsot et al. 2004). The modelling procedure uses the notation
defined in Figure 2.5.

We may show the energy stored in tooth base deflection as a parametric equation from Sainsot et al.
(2004):

U f =
F2

2k f
=

F2

2
× cos2 α1

EL

[
L∗
(

µ f

S f

)2

+M∗
(

µ f

S f

)
+P∗(1+Q∗ tan2

α1)

]
(2.41)
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Figure 2.5. Representation of the important parameters required to calculate the fillet effect.

with the equivalent stiffness term given as:

1
k f

=
2U f

F2 =
cos2 α1

EL

[
L∗
(

µ f

S f

)2

+M∗
(

µ f

S f

)
+P∗(1+Q∗ tan2

α1)

]
(2.42)

We may define µ f and S f (according to Figure 2.5) as follows:

µ f = d−h tanα1 (2.43)

S f = 2Rrθ f (2.44)

θ f =
1
Z
×
[

π

2
+2tanα0× (ha− r̄c)+

2r̄c

cosα0

]
(2.45)

where ha = 1 (as from the definitions in equations (2.10) and (2.11) and r̄c = 0.2 as taken from Sainsot et al.
(2004) and is defined as the dimensionless tool tip radius.

Finally, we define L∗, M∗, P∗ and Q∗ by substituting their coefficient values into the following equation, defined
by Sainsot et al. (2004):

X∗(hi,θ f ) =
Ai

θ 2
f
+Bih2

i +
Cihi

θ f
+

Di

θ f
+Eihi +Fi (2.46)

where hi = Rr/Rh, with Rh being defined as the hub radius of the gear. Ai, Bi, Ci, Di, Ei and Fi may be found in
Table 2.1.

Table 2.1. Coefficients required for the polynomial curve fit for fillet foundation stiffness (Sainsot et al. 2004).

Ai Bi Ci Di Ei Fi
L*(h,θ f ) -5.574E-5 -1.9986E-3 -2.3015E-4 4.7702E-3 0.0271 6.8045
M*(h,θ f ) 60.111E-5 28.100E-3 -83.431E-4 -9.9256E-3 0.1624 0.9086
P*(h,θ f ) -50.952E-5 185.50E-3 0.0538E-4 53.3000E-4 0.2895 0.9236
Q*(h,θ f ) -6.204E-5 9.0889E-3 -4.0964E-4 7.8297E-3 -0.1472 0.6904

This fillet foundation stiffness term assumes only a single tooth pair in contact. If one were to fully account for
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this effect for the double tooth region, one must employ a FEM simulation. The FEM simulation is required to
find a calibration term that is multiplied with the fillet stiffness during the double tooth meshing region. This
procedure is outlined in Ma et al. (2016). This approach, however, is time-consuming and would draw away
from the focus of this work, as it requires a FEM model to be developed. The motivation for using the PEM was
that the FEM may be avoided.

It is difficult to gauge the effect that FEM calibration alone has on a model, as Ma et al. (2016) simultaneously
considered multiple additional improvements to the gear mesh stiffness modelling framework. It was however
argued that neglecting the FEM calibration would result in an overestimation of the mesh stiffness. Therefore, the
current work acknowledges that the resulting mesh stiffness may be overestimated. The overall trajectory of this
work is not towards a fully representative physical model, as a data-driven approach will accompany and poten-
tially "calibrate" any major differences incurred between a developed model and a true model. Therefore, to save
time and maintain focus on the key aspects of this work, the FEM calibration will not be implemented.

Lastly, it seems from the literature that the effective face width term (L) for the fillet foundation stiffness is never
reduced by faults, and therefore the same approach is used here. That is to say that for the fillet foundation
stiffness, the L parameter will never be affected by faults.

This completes the process of modelling the gear meshing stiffness. The following section provides the process
of accounting for the number of teeth in mesh at any given time and is the final modelling step before we may
generate mesh stiffness results.

2.1.2 Tooth pair variation effect

At this point, a set of equations have been developed which can give the stiffness at a given rotational position
θ1, for both the pinion or driven gear. For a given rotation angle, we may write the equivalent stiffness between
two gear teeth as follows (Tian 2004):

kt(θ1) =
1

1
kh
+ 1

kbm1
+ 1

k f 1
+ 1

kbm2
+ 1

k f 2

(2.47)

where θ1 refers to the pinion gear rotational angle. The kh term is shared between a tooth pair, but k f is not,
and therefore the pinion and driven gear fillet foundation stiffnesses are added independently as k f 1 and k f 2
respectively. The kbm parameter refers to the equivalent ’beam stiffness’ of a gear (pinion or driven) and is given
by:

kbmi =
1

1
kai

+ 1
kbi

+ 1
ksi

(2.48)

where i = 1 refers to the pinion and i = 2 refers to the driven gear. Thus, we calculate kbm1 and k f 1 by using the
definition of α1 from equation (2.7) (the pinion gear), and calculate kbm2 and k f 2 by using the definition of α1
from equation (2.8) (the driven gear). Very importantly, when calculating the stiffness terms utilising either i = 1
or i = 2, the relevant quantities must change throughout the stiffness terms as well. For example, in the stiffness
equations, Rb refers to the base radius, therefore, when calculating for the pinion, utilise Rb = Rb1 and for the
driven gear Rb = Rb2, where Rb1 is not necessarily equal to Rb2, as the pinion and driven gear have different
properties. Lastly, regardless of which gear is being calculated for, the gear rotation angle always refers to the
pinion gear. That is to say that θ1 is always used, as was made clear in both equations (2.7) and (2.8).

Recall once again that for any given angle θ1 of the pinion gear, we get a new kt value, as a change in θ1 affects
the value of α1, in turn affecting the length of the tooth over which we integrate. Thus, it becomes key to define
the limits of θ1, which will be limited to the gear tooth shape. To do this, it is important to understand what
stages a tooth experiences during meshing. Referring back to Figure 2.1 one sees three meshing zones, namely
D1, S1 and D2.

The following explanation follows only the middle tooth pair from Figure 2.1. During the period of rotation
where the contact force falls within D1, the middle coloured tooth, as well as the left uncoloured tooth will be in
simultaneous contact with the opposite pair of teeth on the driven gear, leading to the first double meshing region,
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D1. Then, after some rotation, the contact force enters region S1. For this stage, only the middle tooth pair is in
contact, leading to the first (and only) single tooth meshing region, S1. Finally, after some more rotation, two
tooth pairs are again in contact, but this time the middle and right tooth. This is shown as double tooth meshing
region D2. Note that if one looks from the perspective of the right-most tooth, this is double tooth meshing
region 1. Therefore, for all tooth pairs, the second double tooth meshing region will be the first double tooth
meshing region for the following tooth pair. This implies that for each gear on a tooth, we may simply calculate
the stiffness terms over the full region from the start of D1 to the end of D2 independently and then superimpose
the results for all gear tooth pairs. The superposition will occur with offsets depending on where teeth begin and
end in the angular domain. This description might be unclear at present, but it will be clarified shortly. For now,
it will be useful to show the angular duration of a double pair meshing region (D1 and D2), known as θd and a
single pair meshing region (S1), known as θs. The formulation is given by Tian (2004):

θd = tan
(

arccos
Z1 cosα0

Z1 +2

)
− 2π

Z1

− tan

arccos
Z1 cosα0√

(Z2 +2)2 +(Z1 +Z2)2−2(Z2 +2)(Z1 +Z2)cos
(

arccos(Z2 cosα1
Z2+2 )−α0

)
 (2.49)

θs =
2π

Z1
−θd (2.50)

Recalling that we have two double pair meshing regions and one single pair meshing region, we can define our
superposition limits for each gear as a function of θ1 as follows:

(n−1)× 2π

Z1
≤ θ1,n ≤ (n−1)× 2π

Z1
+θt (2.51)

where θt = 2θd +θs and where θ1,n is used to refer to the rotation limits for gear n. Thus, for a given tooth n
(where n ∈ [1,Z1] and n ∈ Z), the stiffness terms should be 0 for any angle outside the given bounds, as the
gear will not be in mesh and not contribute to the system’s stiffness. Now, to set up the stiffness evaluation
over a full gear rotation, we simply calculate the stiffness array for each tooth and superimpose the results as
follows:

kt =
Z1

∑
n=1

kt,n(θ̄) (2.52)

where θ̄ refers to an array of θ1 values within [0,2π].

A slight issue occurs at the first gear tooth and the last gear tooth, as they overlap in physical space, but in a
computational array do not. Therefore, the last double meshing region from the final tooth must be removed
and added to the first double meshing region for the first tooth. That is to say the values in the final meshing
region

(Z1−1)× 2π

Z1
+θs +θd ≤ θ1,Z1 ≤ (Z1−1)× 2π

Z1
+θt (2.53)

must be removed and simply added to the first double meshing region of the first tooth,

0≤ θ1,1 ≤ θd (2.54)

If one employs the stiffness modelling in this way, it makes fault modelling much easier, as we can induce faults
on single teeth, and have the results show up during the tooth superposition phase. For now, the procedure
mentioned above is seen in Figure 2.6.

We see that individual tooth stiffnesses only have stiffness values over a given period of pinion rotation angle,
and are zero otherwise. If we add all Z1 tooth stiffness arrays together, we obtain the solid line figure, which is
the total equivalent stiffness between the pinion and driven gears during any given rotation angle of the pinion.
This is precisely what is required when employing a lumped parameter model, where we are constantly updating
the shaft rotation angle and would like to know what the equivalent stiffness term should be.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

32



Chapter 2 Physics-driven portion of the hybrid framework

Construction of the equivalent mesh stiffness for two spur gears

Rotation Angle of Pinion [°]

M
es

h 
St

iff
ne

ss
 o

f G
ea

r 
Pa

ir 
[N

/m
]

Figure 2.6. Graphic representing how individual stiffnesses of teeth are superimposed to obtain the overall
meshing stiffness between two gears for any given rotation angle of the pinion gear

Note that Figure 2.6 contains both meshing behaviours discussed at the start of this chapter. Firstly, the effect of
force location variation is captured by the dotted figures (the individual teeth). This shows up as appreciable
stiffness variations over a given tooth. Secondly, the effect of different meshing pair numbers is considered
based on the location of individual teeth stiffness locations, where overlapping teeth regions (blue coloured
region) represent the double pair meshing region and the orange region represents a single pair of teeth in mesh.
This effect is larger in mesh stiffness amplitude variation and shows up as discontinuities in the mesh stiffness,
which is the main cause of vibrations within a gearbox.

This completes the stiffness modelling portion for the spur gears. The following section explains how various
fault types can be induced such as to influence the overall mesh stiffness.

2.2 Gear fault modelling
The true value of the physical model within the hybrid modelling context is realised within fault modelling. The
modelling of faults allows the creation of fault data that is otherwise not available from industrial gearboxes.
The more accurate the formulations in this section, the better correspondence the generated signals will have
with actual gearbox signals. This section presents four fault types:

1. Root Cracks
2. Chips
3. Spalling
4. Surface Pits

After the fault types are given, a generalised stiffness formulation is presented, which can incorporate any of
these faults, purely based on the analytical PEM method. To the author’s knowledge, this is the first work that
attempts to reconcile different fault mechanisms into a single formulation.

2.2.1 Cracks

Crack fault modelling is quite mature in the literature. This is the only fault mechanism considered in this work
which does not act on the surface of a gear tooth, but rather into the body of the gear tooth. The model utilised in
this work is based on the work of Chen & Shao (2011). In this work, firstly, the crack path is assumed to be
constrained to an inclined plane into the gear tooth, i.e. the crack depth propagation into the tooth is linear. This
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assumption has been shown to be adequate based on experimental evidence (Lewicki 2002). The crack model
utilises an angular value (see Figure 2.7(b)), ν , which defines the angle of the crack plane.

Secondly, the model assumes that the crack depth varies as a function of the tooth width (see Figure 2.7(a) and
Figure 2.7(c)). The crack depth shape is modelled using a parabola. The parabolic modelling is split into two
cases, with case 1 being shown as a solid line (partial crack width progression case) and a dashed line (full crack
width progression case) in Figure 2.7(c).

The first case occurs when the crack has not propagated across the full tooth’s width. For this case, one specifies
q0, which is the initial crack depth at one of the tooth edges, and Wc, which describes the position on the tooth
width at which the crack ends. This crack scenario is thus defined as (Chen & Shao 2011):

q1(z) =

{
q0

√
Lc−z

Lc
, z ∈ [0,Lc]

0, z ∈ [Lc,L]
(2.55)

where q1(z) describes the crack depth as a function of tooth width for the first scenario.

The second case occurs when a full-width crack is present on a tooth. One still specifies the initial crack depth
q0, but now since Lc = L, we specify how deep the crack is on the opposite side of the gear side surface, q2. The
corresponding crack model will thus be (Chen & Shao 2011):

q2(z) =

√
q2

2−q2
0

L
z+q2

0 (2.56)

where q2(z) describes the crack depth as a function of tooth width for the second scenario.

After these parameters are chosen, a double integral needs to be performed. More specifically, it is necessary
to integrate across the tooth length, as for all stiffness terms, and the tooth width (since the crack depth varies
across tooth width. This adds complexity to the proposed generalised approach, and ideally one would want to
only take an integral across the tooth length (to fit the proposed generalised model), as in equations (2.2) - (2.4).
In their current form, the stiffness terms would require solving by the following integral:

ki =
∫ L

0

∫ x

0
fi(x,z)dxdz (2.57)

where i refers to the relevant stiffness term (axial, bending, shear, Hertzian or fillet). The quantity fi(x,z)
indicates the terms required to calculate stiffness term ki. Finally, dx and dz indicate a small step in the length of
the tooth and a small width slice of the tooth. As an illustration, consider equation (2.2), which would now have
to be rewritten as:

U∗a =
∫ L

0

∫ d

0

F2
a

2EA∗x(x,z)
dxdz (2.58)

where U∗a and A∗x(x,z) indicate a fault-modified axial potential energy and some modified cross-sectional area
based on the crack parameters. Note that A∗x is both a function of the x and z-directions, and may be defined
as:

A∗x(x,z) = L ·h∗q(x,z) (2.59)

where h∗q(x,z) indicates the height bound (see Figure 2.7(b)) of the material at a depth x and width z along the
tooth.

This formulation shows that a double integral is required to obtain a single stiffness term. It would prove
advantageous if the integral along the z-direction could be solved beforehand, leaving only an integral along a
single dimension. Before a solution to this problem is proposed, it is useful to understand how one models a
varying width tooth crack.

Firstly, one divides the tooth width into n equally small slices. Then, choosing a particular slice j, we obtain an
average crack depth at slice j of q j. Such a slice is seen in Figure 2.7(a). Depending on the specified depth of
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(a) Illustration of the three-dimensional nature of the root crack. Note that the crack is induced with varying width from
one edge (q0) to the other edge (q2). On the right-hand side of the figure is a single slice j, which results in a uniform crack
depth of q j.

(b) Illustration of how the effective height of the tooth
is assumed to be reduced within the crack depth region
seen in red. We define a crack depth (q0) and angle (ν)
which determine how much material is virtually removed
from the tooth stiffness. Figure adapted from Chen &
Shao (2011).

(c) Illustration of how the varying crack width is
modelled. Here z describes the position on the tooth
width, and q(z) defines the variable crack depth (which
was previously assumed as a constant q0) as a function
of the tooth width. Figure adapted from Chen & Shao
(2011).

Figure 2.7. Illustration of (a) a three-dimensional view of the methodology proposed by Chen & Shao (2011) to
improve upon the traditional crack modelling method, (b) the traditional model used to define constant width
cracks and (c) the formal notation of the methodology from Chen & Shao (2011).
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crack, one normalises the depth to be perpendicular to the tooth length (x-direction), using the crack plane angle,
ν (See Figure 2.7(b)):

q j,norm = q j · sin(ν) (2.60)

where q j,norm indicates the normalised slice depth. Subsequently, the difference in height between the half tooth
height (hc in Figure 2.7(b)) and the normalised slice depth (q j,norm) is determined. This gives a quantity called
hq(q j) (Similar to hq in Figure 2.7(b)). We may define hc and hq(q j) as:

hc = Rb sin(α2) (2.61)

hq(q j) = hc−q j,norm (2.62)

When one integrates across the tooth length (the x-direction integral), one removes all volume associated with
tooth heights above hq(q j) from the integral. It is assumed that the crack disconnects that entire portion of the
tooth, making the effective tooth cross-sectional area much smaller. This effect can be visualised by considering
Figure 2.7(b). When integrating, the only area on the tooth which contributes to the stiffness is the area not in
red. The integral (more accurately Riemann sum) can then be taken for all n tooth width slices, each with a
unique effective tooth height value, hq(q j).

The proposed method to remove the extra integral is to pre-solve one of the integrals. More specifically, it will
be useful if the integral along the z-direction (further denoted as the z-integral) could be pre-solved. This is
possible if the z-integral has an analytical solution. The only parameter which varies as a function of z is the
crack depth, q(z) (See Figure 2.7(c)). The true quantity of interest, however, is hq(q j), which may be used to
quantify the depth of the crack in the meshing stiffness coordinate system.

If we replace the width-varying quantity hq(q j) with an equivalent non-varying quantity, the z-integral is removed.
The proposed non-varying quantity is the average crack height (hq,ave), which may be calculated by using the
mean value theorem:

hq,ave,k =
1
L

∫ L

0
hq(q j)dz (2.63)

where k refers to the crack scenario, as described by equations (2.55) and (2.56). After applying the mean value
theorem, the average effective crack depth parameters may be found from:

hq,ave,1 = hc−
(

2q0,normLc

3L

)
sin(ν) (2.64)

hq,ave,2 = hc−

(
2
3
×

q3
2,norm−q3

0,norm

(q2
2,norm−q2

0,norm)+ ε

)
sin(ν) (2.65)

where q0,norm and q2,norm are the normalised crack depth limits, calculated from equation (2.60) and ε is a very
small number introduced in code (the author uses 1e-9) to mitigate division by zero errors for the case where
q0 = q2.

Figure 2.8 demonstrates the result of applying this formulation. This compares the true crack depth variation
(q(z)) across a tooth’s width in orange to the equivalent average crack depth (hq,ave,k) which results from applying
the mean value formulation. For both of these graphs, the effective area under the curves is equal, making the
formulations equivalent. Essentially, we have transformed the A∗x(x,z) quantity into A∗x(x), by removing the
dependency of z through taking an average, equivalent heigh parameter. That is to say, the formulation has now
become:

A∗x = L ·h∗q(x,z) = L ·hq,ave,k(x) (2.66)

To the author’s knowledge, this is the first time such a formulation has been derived. This formulation is not only
equivalent to the integral along the width dimension (z), but also an analytical counterpart to a tedious Riemann
sum required for the slicing method utilised by Liang et al. (2014) and Mohammed & Rantatalo (2015). This
yields an exact and much faster result. Therefore, not only is this formulation useful for the generalised model
mentioned earlier, but also for any crack model which employs a varying crack depth as a function of tooth
width. Note, however, that this averaging formulation differs from the z-integral method in the sense that it will

Department of Mechanical and Aeronautical Engineering
University of Pretoria

36



Chapter 2 Physics-driven portion of the hybrid framework

0 2 4 6 8 10
Width Across Tooth

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

C
ra

ck
 D

is
ta

nc
e 

fr
om

 T
oo

th
 C

en
tr

el
in

e

Partial Crack Width Case

hq, ave, 1 - Effective Crack Height
hq(z) - True Crack Height

0 2 4 6 8 10
Width Across Tooth

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Full Crack Width Case

hq, ave, 2 - Effective Crack Height
hq(z) - True Crack Height

Figure 2.8. Demonstration of the new crack formulation method where a varying crack height profile is converted
into its average counterpart.

not result in the same x vs. Ax or x vs. Ix curve, which give the change in cross-sectional area and change in
area moment of inertia as a function of tooth depth (x). However, since we are only interested in the net integral
beneath these curves, the results on the stiffness formulation should be equivalent.

We are now equipped to define the effect a crack fault has on the integrals in equations (2.21), (2.23), (2.25),
(2.34), (2.36), (2.38). We redefine the terms for hx1, Ax and Ix. A new variable notation is used to indicate
this.

hx,crack− f ault,k =

{
hx, hx ≤ hq,ave,k

max(0, hx+hq,ave,k
2 ), hx > hq,ave,k

(2.67)

Ax,crack− f ault,k = 2L(hx,crack− f ault,k) (2.68)

Ix,crack− f ault,k =
2L
3
(hx,crack− f ault,k)

3 (2.69)

where k once again refers to the crack scenario. Although it seems inconvenient to define the height parameter
bounds in terms of the average effective crack depth parameter (hq,ave,k), it turns out to be very simple to
implement in code.

The definition of hx only depends on the angular variable α (see equations (2.17)) and (2.32), therefore, if
required, these bounds can be rewritten as angular bounds. However, this is tedious and results in four unique
crack cases to be considered, which unnecessarily overcomplicates the modelling process. The given formulation
is equivalent to the four unique angular cases commonly found in the literature.

Note that with this formulation we are also able to accommodate crack faults that cross past the centreline of the
tooth. This has the further implication that when hq,ave, j is set to −hc, the resulting equivalent height will be 0
(from the max function), and so too will the area and area moment of inertia. This leads to the same mathematical
conclusion as a broken tooth. Thus, this model is further able to model broken tooth faults accurately, which was
previously dealt with as a completely separate model in Tian (2004).

An example from this model is given in Figure 2.9(a), where a full-width, non-uniform crack is introduced on a
gear tooth. The resulting stiffness from such a crack is seen in Figure 2.9(b).
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Tooth Frontal View – Crack Visualisation
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(a) A visualisation of a crack induced on a gear tooth
(Frontal view of tooth).
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(b) Resulting gear mesh stiffness from a cracked gear
tooth.

Figure 2.9. Illustration of how an induced crack on a gear tooth affects the gear meshing stiffness.

2.2.2 Chips

Chips have not been investigated nearly as much as cracks. Three main models exist in the literature as discussed
in Section 1.2.1.2. Preliminary investigations in this work showed that the depth of a chip has very little effect
on the overall stiffness change. Hence, the model proposed by Tian (2004), which neglected the influence of the
chip depth, is used in this work. The model proposed by Tian (2004) is hyperbolic in nature, and as mentioned
above, only accounts for the change in tooth width at the surface of the tooth. That is to say that the effective
width of the tooth is assumed to have a much larger effect on the overall stiffness reduction compared to the
shallow depth of the chip. The chipping fault therefore only acts on the L term, as the depth effect which would
have affected the Ax and Ix terms are being assumed negligible. Therefore, only the Hertzian stiffness term is
affected by the chip.

The hyperbolic modelling of the chip profile allows for chips to be induced at the corner of the tooth. Then
we may specify with a parameter the depth of the chip down the tooth face (b) as well as the width of the chip
across the tooth tip (c). An illustration of this model is given in Figure 2.10.

Figure 2.10. Chip model utilised in this work. Adapted from Tian (2004)

Before the formulation for the chip effect may be given, the dh parameter needs to be defined. The dh parameter
defines the maximum tooth length from the tooth root and may be found from:

dh =

{
Rb[(αmax−α2)sinαmax + cosαmax]−Rr cosα3, Rr ≤ Rb

Rb[(αmax−α2)sinαmax + cosαmax]−Rr cosα4, Rb < Rr
(2.70)

where αmax defines the angular position α at which the maximum distance x is reached (See Figure 2.2 and
Figure 2.3). The αmax parameter may be described by substituting the angle θtot into equation (2.7). We define
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θtot as follows:

θtot = 2θd +θs (2.71)

Therefore, αmax = α1(θtot). With this parameter fully defined, we may finally show the chip formulation. Note,
once again, that the formulation only acts on the tooth width (L) as a function of distance along the tooth (x).
We therefore leave the Ax and Ix parameters unchanged for chip models. We may describe the effective width
function as follows (Tian 2004):

Lchip− f ault =

L, 0≤ x≤ dh−b

L−
(

dhc
b −

1
x

[
d2

h c
b −dhc

])
, dh−b≤ x≤ dh

(2.72)

At this stage, we have a chip formulation that only requires two parameters, b and c to fully define the chip’s
size. Note that the induced chip fault (Figure 2.11(a)) acts only on the tooth face and not into the gear body, as
for the crack case. The meshing stiffness in Figure 2.11(b) reflects the fact that the fault was induced to affect
the second double tooth meshing region, as well as a small portion of the single tooth meshing region.
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1e8 Mesh Stiffness for a Chipped Gear

Healthy
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(b) Resulting gear mesh stiffness from a chipped gear
tooth.

Figure 2.11. Illustration of how an induced chip on a gear tooth affects the gear meshing stiffness.

2.2.3 Spalls

The modelling of spalls and pits are relatively interchangeable, as was seen in the literature review. Although the
state-of-the-art spall models have advanced quite a bit from the first models, the choice was made to utilise the
older modelling technique proposed by Chaari et al. (2008), as this model has a larger amount of literature to
compare results against.

The spall model from Chaari et al. (2008) is rectangular, having constant depth. This model can account for
changes in spall width and length on the tooth face, as well as depth changes. Therefore, this fault type affects
the effective width of the tooth due to the rectangular surface shape (Lx) but also affects the effective tooth
cross-sectional area (Ax) and effective area moment of inertia (Ix) due to the spall depth effect. This implies that
this fault type affects the beam stiffness terms as well as the Hertzian term.

The rectangular spall model allows for spalls to be introduced anywhere across the length of the tooth, having
any width (ws), length (ls) or depth (hs) and starting at location x1. An illustration of this model is given in
Figure 2.12.
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Figure 2.12. Spall model utilised in this work. Adapted from Chaari et al. (2008)

The formulation for the spall model is relatively simple, and may be given as follows (Chaari et al. 2008):

Lspall− f ault =

{
L, x ∈ [0,x1] or [x1 + ls,dh]

L−ws, x ∈ [x1,x1 + ls]
(2.73)

Aspall− f ault =

{
Ax, x ∈ [0,x1] or [x1 + ls,dh]

Ax−hsws, x ∈ [x1,x1 + ls]
(2.74)

Ispall− f ault =

{
Ix, x ∈ [0,x1] or [x1 + ls,dh]

Ix− ws
12 h3

s , x ∈ [x1,x1 + ls]
(2.75)

where 0≤ x1 ≤ dh and dh is defined in equation (2.70).

At this stage, we have a spall formulation that requires four parameters, namely ls,ws,hs and x1 to fully define
the spall’s size and location. Notice again, that as was the case with the chip formulation, the induced fault
(Figure 2.13(a)) acts on the tooth face plane. Further note that the meshing stiffness (Figure 2.13(b)) reflects the
fact that the fault was induced to affect the second double tooth meshing region, as well as a small portion of the
single tooth meshing region.
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(b) Resulting gear mesh stiffness from a spalled gear tooth.

Figure 2.13. Illustration of how an induced spall on a gear tooth affects the gear meshing stiffness.
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A subtle, but very important phenomenon is present in Figure 2.13(b). Notice that at 68◦ the spall fault instantly
results in a reduction in mesh stiffness. This continues to around 76◦. Past 76 ◦, the spall fault has been passed,
however, the stiffness is still reduced. The main reduction in gear meshing stiffness between 68◦ and 76◦ comes
from the Hertzian stiffness term. However, after the spall width effect is felt (past 76◦), we still see a reduction
in stiffness where no Hertzian effect should be present, as the tooth width is not affected anymore. What is
occurring, is that the depth of material that was removed during the spall portion remains removed for all
meshing angles after the spall is induced. Thus, beyond 76◦ we are observing reductions in the bending and
axial stiffness terms, due to the reduction in the effective cross-sectional area and area moment of inertia. This
showcases the importance of modelling multiple stiffness effects on the gear tooth.

2.2.4 Pits

The pitting model employed in this work is based on the work in Meng et al. (2021). This model is close to the
state-of-the-art in terms of parametric modelling of pits, given its recent development. It was however found that
the paper based on this model had minor editorial mistakes, which are corrected in this work.

The pits for this model are all modelled as spheres of "negative volume" or spheres that merely subtract from the
volume of whatever object they come in contact with - in this case, a gear tooth. This model may be observed in
Figure 2.14(a). A sphere has a centre location relative to the tooth base of u. The sphere has radius r, which
corresponds to the size of the pit. Finally, what converts this sphere into a more realistic pit shape, is the contact
angle, θ . The contact angle defines the angle between the intersection curve of the sphere and the tooth surface
(assumed to be parallel to the tooth centreline) and the sphere centre. Thus, the larger the intersection angle, the
deeper the sphere is sunk into the gear tooth, removing more material. Therefore, we can range pit geometries
from shallow, wide pits (small θ , large r), to deep thin pits (large θ , small r). This gives the model great
flexibility for modelling pits. Due to the nature of pits, it is not enough to have a single model to describe a

(a) Pit model utilised in this work. Size exaggerated
for clarity.

(b) Pit distribution model followed in this work.

Figure 2.14. Individual and distributed pit models. Both models were adapted from Meng et al. (2021).

single pit. Pits occur in clusters and are generally distributed across a gear tooth, more likely to be concentrated
in the single tooth contact region. In the single tooth region, the forces realised by each gear tooth is higher, as
only that single tooth pair is carrying the full torsional load, therefore fault development is exacerbated in this
region. When modelling these pits, two main factors have to be accounted for:

1. The location of pits needs to be modelled to concentrate around a certain region (single tooth meshing
region).

2. The size of pits needs to be flexible to describe older pits (larger/wider/deeper) and newer pits (smal-
ler/narrower/shallower).
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To account for the two factors above, a secondary model for pit modelling is generally required, which can
account for multiple pits, each with varying size, and distribute them flexibly across a tooth face.

To solve the first challenge, we simply generate multiple pits (in an array), where the centres of these pits (ui)
are sampled from a normal distribution with mean up and standard deviation σu. Thus:

ui ∼N(up,σu) (2.76)

where i indicates sampled pit number i. The mean of the distribution may thus be placed at the required area
in the single tooth meshing region, with the standard deviation being used to constrain how wide the pits are
distributed. With the fault location challenge solved, the challenge of varying fault age/size is still open. Meng
et al. (2021) solve this by simply defining 3 sphere radii and 3 contact angle values, which result in 9 unique pit
shapes. They then continue to generate differing amounts of each type depending on how severe the pitting case
being described is. In this work, however, a more generalised approach is followed. Instead of hard-coding pit
shapes, they are once again sampled from normal distributions as follows:

ri ∼N(rp,σr) (2.77)

θi ∼N(θp,σθ ) (2.78)

Therefore, any given pit is drawn based on three normal distributions, one for its location, and two for its shape.
The logic behind this approach is simple: By drawing the pit shape from a normal distribution, we are assuming
that there will be a small number of very large pits (older pits), and a small number of very small pits (more
recent), but with the majority of the pits having roughly the same size (the mean pit shape parameters). With
these pit shapes defined, we distribute most of them near the single tooth meshing region, and fan them out to
become fewer and fewer as we move away from the single tooth region, hence the location distribution.

The effect of this technique may be seen in the visualisation given in Figure 2.14(b). The variation in location
is shown visually by the normally distributed faults, whilst the shape variation is shown as different sized and
coloured pits across the tooth width.

At this point, it becomes meaningful to formulate these pits in such a way that they once again fit into the
generalised stiffness model being proposed. First, we notice that the pit model not only reduces the effective
contact length of the tooth by ∆L (see Figure 2.14(a)), but also reduces the effective cross-sectional area (∆Ax)
and area moment of inertia (∆Ix) across the tooth length and width simultaneously.

Again we encounter a fault shape that needs to be integrated into both the x and z-directions, which is not ideal
for the generalised stiffness model. We therefore need to pre-integrate across the z-dimension once again. This
has however been done by Meng et al. (2021) and results in the following formulation:

xi =

{
x, x ∈ [ui− ri sinθi,ui + ri sinθi]

0, x /∈ [ui− ri sinθi,ui + ri sinθi]
(2.79)

∆Lpit,i = 2
√
(ri sinθi)2− (ui− xi)2 (2.80)

∆Ri =
√

r2
i − (ui− x)2 (2.81)

∆Ax,pit,i =
∆R2(2θ − sin2θ)

2
(2.82)

∆Ix,pit,i =
∆R4

72

(
18θ −9sin2θ cos2θ − 64sin6

θ

2θ − sin2θ

)
+

Ax∆Ax

(
hx−

(
4∆Rsin3 θ

3(2θ−sin2θ) −∆Rcosθ

))2

(Ax−∆Ax)
(2.83)

where i refers to the ith pit sampled from the N total pits. Note that a small correction was made to the bounds
of this formulation (equation (2.79)) when compared to Meng et al. (2021). The bounds used in this formulation
make geometrical sense, where the bounds set by Meng et al. (2021) seem to be erroneous. Referring to Figure
2.14(a), one observes that the intersection between the sphere and the tooth surface results in a circle with radius
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rs f c. This quantity may be described by:

rs f c = r sinθ (2.84)

Therefore, to find the bounds of influence for a pit, rs f c should be used. Meng et al. (2021), however, utilises r
and therefore the correction was made in this work.

After sampling N pits, the equivalent terms to be used for the generalised model may be found from (Meng et al.
2021):

Lpit− f ault = L−
N

∑
i=1

∆Lpit,i (2.85)

Ax,pit− f ault = Ax−
N

∑
i=1

∆Ax,pit,i (2.86)

Ix,pit− f ault = Ix−
N

∑
i=1

∆Ix,pit,i (2.87)

Throughout this formulation, no attention was given to the width location of the pit. This is because the width
information is lost when pre-integrating across the width of the tooth. It is therefore meaningless to specify a
width dimension for a given pit fault. Finally, an illustration of induced pits with their equivalent effect on the
effective tooth width is given in Figure 2.15(a). The resulting gear meshing stiffness for these pits is seen in
Figure 2.15(b).
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(b) Resulting gear mesh stiffness from a spalled gear
tooth.

Figure 2.15. Illustration of how an induced spall on a gear tooth affects the gear meshing stiffness.

Note the stochastic nature of the pitting faults on the stiffness graphs. This makes the pitting model unique, as
this is the only model with irregular stiffness changes. This roughness may be attributed to the fact that fault
locations and shapes are randomly sampled.

2.2.5 General formulation

To summarise the progress and modelling flow of the gearbox model, refer to Figure 2.16. This figure outlines
the procedures necessary to develop the generalised stiffness model. At this point, attention will be directed to
the portion of work that makes the stiffness model truly general: The incorporation of faults into the stiffness
model. This is shown in Figure 2.16. To aid in clarity, for each fault type, a summary of the modelling terms,
which parameters they affect, and where in the work the formulas may be found, are given in Table 2.2.

Recall momentarily that there are two main sets of stiffness equations, depending on which case is present. Case
1 refers to when the base radius is larger than the root radius ( Z ≤ 41). Case 2 refers to when the root radius is
larger than the base radius (Z > 41).
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Figure 2.16. Diagram indicating the flow of Chapter 2.

Table 2.2. Summary of fault types and their applicable formulas.

Fault type Fault Modelling Terms Affected Parameter(s) Equation Numbers
Crack q0,q2,Lc,ν hx,Ax, Ix (2.67), (2.68), (2.69)
Chip b,c L (2.72)
Spall ls,ws,hs,x1 L,Ax, Ix (2.73) (2.74) (2.75)
Pit r,θ ,u L,Ax, Ix (2.85) (2.86) (2.87)
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The new general formulation may now be re-stated for each case as follows:
Case 1 (Z≤41):

1
ka

=
d1 sin2

α1

2EL f aulthx, f ault
+

Rb sin2
α1

E

∫
α2

−α1

(α2−α)cosα

Ax, f ault
dα (2.88)

1
kb

= R3
b

[
1− Rr

Rb
cosα1 cosα3

]3
− [1− cosα1 cosα2]

3

2EL f ault cosα1h3
x, f ault

+
R3

b
E

∫
α2

−α1

{1+ cosα1[(α2−α)sinα− cosα]}2 (α2−α)cosα

Ix, f ault
dα

(2.89)

1
ks

=
1.2(1+ν)d1 cos2 α1

EL f aulthx, f ault
+

2.4(1+ν)Rb cos2 α1

E

∫
α2

−α1

(α2−α)cosα

Ax, f ault
dα (2.90)

Case 2 (Z>41):

1
ka

=
Rb sin2

α1

E

∫
α5

−α1

(α2−α)cosα

Ax, f ault
dα (2.91)

1
kb

=
R3

b
E

∫
α5

−α1

{1+ cosα1[(α2−α)sinα− cosα]}2 (α2−α)cosα

Ix, f ault
dα (2.92)

1
ks

=
2.4(1+ν)Rb cos2 α1

E

∫
α5

−α1

(α2−α)cosα

Ax, f ault
dα (2.93)

And for all cases:

1
kh

=
4(1−ν2)

πEL f ault
(2.94)

Recall that the fillet foundation stiffness is not affected by faults, and need not be restated. For the equations (2.88)
- (2.94), hx, f ault , L f ault , Ax, f ault and Ix, f ault indicate the new effective tooth height, length, cross-sectional area
and area moment of inertia. The subscript f ault indicates the fault type one wishes to use. For example:

In the case of a crack, we will substitute the hx, f ault , Ax, f ault and Ix, f ault terms from equations (2.88) - (2.94)
with hx,crack− f ault, j, Ax,crack− f ault, j and Ix,crack− f ault, j (equations (2.67) - (2.69)), but set the L f ault term back to
L.

For a chip case, only the L f ault term will be modified to Lchip− f ault (equation (2.72)), with the hx, f ault , Ax, f ault
and Ix, f ault terms being reverted to hx, Ax and Ix.

Therefore, the proposed generalised model simply requires the use of the relevant equations in Table 2.2 to be
substituted into equations (2.88) - (2.94), resulting in the equivalent stiffnesses found in the literature. This is a
great simplification in the implementation of faults, as it utilises a generalised stiffness formulation, which only
requires analytical definitions of hx, f ault , L f ault , Ax, f ault and Ix, f ault to be defined for any new fault type which
might be modelled. This is a novel idea, as the current literature gives a set of equations for each specific fault
type investigated. Note, however, that although the equations may be novel in the way they are written, they
produce the same results found in various published works.

To illustrate the general nature of this method, five fault types are introduced on the same gear, two teeth apart,
all utilising the new generalised model. This is found in Figure 2.17. Note that the broken tooth fault type is
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only an extreme case of the crack model, and therefore not necessarily a new case. It does however serve as an
illustration that the newly proposed crack model also correctly models a broken tooth, as other modern methods
do too.
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Figure 2.17. Different fault models implemented onto the same gear. This showcases the flexibility of the
proposed generalised model to model virtually any analytical fault type in literature.

All of the modelling methodology to this point, as general as it may be, has still not proven to be equivalent to
existing works. Therefore, a short section will be given to serve as verification against works in literature.

2.2.6 Verification of the generalised model

The verification procedure is simple. The modelling parameters have been taken from the literature and inserted
into the proposed generalised model. The stiffness is then calculated and compared for shape and amplitude
against existing works. To aid in the comparison, the generated graphs are also visually matched to those in the
literature for optimal readability and comparability.

2.2.6.1 Crack verification

To verify the crack model, Mohammed et al. (2013b) is used as a baseline. Mohammed et al. (2013b) not only
have a FEM verified model, but also consider all five stiffness effects modelled in this work, making the results
of the generalised model directly comparable. Mohammed et al. (2013b) introduced 20 different combinations of
fault parameters to generate 20 stiffness graphs (see Figure 2.18(a)). Copying these exact stiffness experiments
(Table 6 in Mohammed et al. (2013b)), and applying them to the generalised stiffness model resulted in Figure
2.18(b).

Not only do the shapes of the stiffness graphs correspond very well, but so too do the amplitudes. The generalised
stiffness model tends to result in slightly lower stiffnesses for deeper cracks. It is not immediately clear why
the slight difference is present, but many modelling factors could lead to small deviations. To name a few: The
method in which the contact ratio is calculated differs from Mohammed et al. (2013a). The hub radius is not
defined in the works of Mohammed et al. (2013a) and an estimated value had to be taken. Finally, Mohammed
et al. (2013a) do not show the angular domain formulation for the stiffness terms, therefore it is hard to gauge
which assumptions were made regarding angular parameters. Therefore, given this large set of unknowns from
literature, the correspondence is still very good and deemed sufficient.

2.2.6.2 Chip verification

To verify the chip model, Tian (2004) is used as a baseline. Tian (2004) did not include the fillet foundation
stiffness effect. Furthermore, Tian (2004) did not account for the stiffness from the tooth area between the tooth
root and base. These terms were therefore suppressed in the generalised model to make results comparable. The
meshing stiffness resulting from the chip introduced by Tian (2004) is seen in Figure 2.19(a). The stiffness
results after copying and running the exact chip parameters from Tian (2004) through the generalised stiffness
model may are seen in Figure 2.19(b).
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(a) Stiffness experiment results from Mohammed et al.
(2013b).
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(b) Stiffness results for a crack generated by the
generalised stiffness model utilising identical parameters
as in Mohammed et al. (2013b).

Figure 2.18. Comparison between literature and generated results for a crack from the generalised stiffness
model.

(a) Stiffness experiment results from Tian (2004).

M
es

h 
St

iff
ne

ss
 [N

/m
]

Reproduced Results for Chip

Rotational Angle [°]

(b) Stiffness results for a chip generated by the gener-
alised stiffness model utilising identical parameters as
in Tian (2004).

Figure 2.19. Comparison between literature and generated results for a chip from the generalised stiffness
model.

Once again perfect correlation in shape is observed, but even more, the amplitudes are exact. This once again
shows that the same generalised model which has been verified against cracks is furthermore verified against
chips too.

2.2.6.3 Spall verification

To demonstrate the validity of the spall model, Saxena et al. (2016) are used as a baseline. The authors included
all relevant stiffness terms, making this model highly comparable to the generalised stiffness model. The spall
introduced by Saxena et al. (2016) may be seen in Figure 2.20(a). The stiffness results after copying and running
modified spall parameters from Saxena et al. (2016) through the generalised stiffness model are seen in Figure
2.20(b).

Note that for this case, the values from Saxena et al. (2016) are not used, but are slightly modified. The only
deviation from Saxena et al. (2016) is the spall width, which according to Saxena et al. (2016) was noted as
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(a) Stiffness experiment results from Saxena et al.
(2016).
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(b) Stiffness results for a spall generated by the gener-
alised stiffness model utilising modified parameters as
in Saxena et al. (2016).

Figure 2.20. Comparison between literature and generated results for a spall from the generalised stiffness
model.

4mm. This width did not make physical sense given the gear parameters. After trying different values, a spall
width of 1mm was found to match up the results.

This correction does not affect the amplitude of the stiffness reduction, but only the location where the spall starts
and ends as a function of the rotation angle. A 4mm spall width covers more than one tooth rotation, which is not
physically possible. To ensure that the mistake was not in the proposed generalised model, a separate comparison
was done against Chaari et al. (2008), and indeed the width parameter, when compared to Chaari et al. (2008),
matched perfectly. Thus, this serves as a second confirmation that the generalised stiffness model does interpret
the spall parameters correctly. The reason why Chaari et al. (2008) is not used for the verification here, is that it
is earlier work and also does not account for all stiffnesses in the same manner as modern techniques.

The comparison with the literature shows the excellent amplitude correlation and also excellent shape correlation
of all faults. The slight upward trend of stiffnesses during the single tooth meshing region is perfectly captured
by the developed model.

2.2.6.4 Pit verification

To finalise the verification process, the work by Meng et al. (2021) is used as reference. Not only is the pit model
built around this work, but also, this work is very recent and should represent close to state-of-the-art modelling
results.

Note that Meng et al. (2021) models one additional effect that this work does not contain: A fillet foundation
stiffness correction term. The fillet foundation stiffness term assumes only a single gear tooth pair in contact.
Therefore, it is incorrect to extend the formula utilised for this case to the region where two gear tooth pairs are
in contact. For the double gear tooth contact, a correction factor is introduced to decrease the fillet foundation
stiffness, which is now shared between two load-bearing teeth.

There is no analytical method to determine this factor and therefore it is generally neglected in the literature, as it
requires a simulation from a FEM model of the gear to determine the correction factor. This level of accuracy is
beyond the scope of this work. Therefore, it should be noted although all the parameters are set to be identical to
Meng et al. (2021), there is a slight deviation in meshing stiffness due to this factor not being considered.

Furthermore, Meng et al. (2021) present a combination of predefined pit shapes, which is tedious to reproduce.
Instead, the work presented here rather shows the Gaussian pit geometry sampling technique discussed in the pit
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section. Thus, the shapes of the faults do not match exactly either, but the general tendency of the pits to cause
stochastic reductions is demonstrated.

The different pit intensities introduced by Meng et al. (2021) and their effect on meshing stiffness may be seen
in Figure 2.21(a). The stiffness results from the proposed generalised stiffness model are seen in Figure 2.21(b).

(a) Stiffness experiment results from Meng et al.
(2021).
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(b) Stiffness results for different pit combinations
generated by the generalised stiffness model utilising
the parameters as in Meng et al. (2021).

Figure 2.21. Comparison between literature and generated results for a pitting fault from the generalised stiffness
model.

The figures showcase the capability of the generalised stiffness model to reproduce pits according to Meng et al.
(2021). One may note that Meng et al. (2021) has slightly more rounded deviations, whereas the general stiffness
model has slightly smoother reductions. This is because instead of predefining the pit shapes exactly, they are
randomly sampled and distributed, leading to a smoother distribution of pit shapes and locations.

2.3 Gear dynamics modelling
The final step of generating the gearbox model is solving the dynamics of a well-defined system. A common
method of solving the underlying dynamics of the system is to utilise a lumped parameter model (LPM). Such a
model simplifies the physical system into groupings of masses, each with their own degrees of freedom. This
gives rise to a multiple degrees of freedom (MDOF) system. These degrees of freedom are connected via springs
and dampers, allowing for dynamic interactions in the MDOF system. Each DOF, therefore, has its own equation
of motion (EOM) describing the movement of a given mass in a particular direction (the DOF).

Generally, these interactions between DOFs are coupled, which imply that the dynamics of each DOF cannot be
solved independently, but rather a simultaneous solving approach is required. To solve the system of equations
simultaneously, the EOMs are written in matrix form:

Mü(t)+Cu̇(t)+K(t)u(t) = F(t) (2.95)

where M, C and K refer to the mass, damping and stiffness matrices of the system respectively. The acceleration,
velocity and displacement vectors of the system are given as ü(t), u̇(t) and u(t) respectively. These vectors
describe the response of the system. Finally, F(t) is the force vector, which describes any external forces or
torques that add energy to the system.
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This set of equations is solved using a solving algorithm such as the Runge-Kutta method or a Newmark
algorithm. The latter is chosen in all work to follow. From Section 1.2.1.3 in the literature review, it was found
that the most common single-stage gearbox models employed either a six DOF or eight DOF model. However,
we identified the following challenges from the literature:

• Generally, the presented models do not have all the accompanying values to reproduce their results.
• A majority of works do not consider the effects of practical measurement of gearbox signals, i.e. not having

direct access to the modelled DOFs. For example, a large body of work reports on the y accelerations of
the pinion gear, but in practice, one will not be able to put an accelerometer on the gear directly. Instead, a
more feasible approach would be to place the accelerometer on the gearbox casing. This casing acts as a
new mass with its own damping and stiffness (through the bolts which connect the base of the gearbox to
the gearbox casing) which needs to be accounted for.

The work of Luo et al. (2019b) presented sufficient values and considered the gearbox casing for vibration
measurement. Therefore, the basis of the dynamic model for this work is directly based on the model from Luo
et al. (2019b). The gear meshing stiffness and damping modelling approach used by these authors is different
to the methods used in this work, and therefore deviations are expected in the shape and the amplitude of the
system responses.

The parameters from the model of Luo et al. (2019b) were derived from experiments directly and therefore
instils confidence in their use in this work. The model from Luo et al. (2019b) utilises 10 DOFs. Eight of these
DOFs are the DOFs commonly used in literature and two are added to account for the casing x and y movement.
Their model is presented in Figure 2.22.

A benefit of building a model with more DOFs than is commonly found in the literature (such as the model from
Luo et al. (2019b)), is that it then becomes trivial to retain the DOFs required by simply removing selected DOFs
such as the gearbox casing DOFs. This implies that other lower DOF literary works can be used for comparison
if needed, by simply removing the required DOFs. In a sense, the spirit of this dynamic modelling section is to
over-design the DOFs and remove DOFs for comparisons later. Before showing the complete model, it must be
mentioned that although the model setup by Luo et al. (2019b) is used, their method of solving/grouping terms
is different from what will be used in this work. The method utilised in this work is more similar to works from
Chaari et al. (2012), with a few improvements. The LPM for this work may be seen in Figure 2.23.

The 10 DOF model may be lumped into five major mass/inertia groups. Firstly, the gearbox casing is given a
mass, m f . For the other four mass/inertia groups, a system of labelling similar to that of Chaari et al. (2012) is
followed. Elements in this labelling system receive two subscripts. The first set of subscripts split the model into
two main mass groups, namely group 1 (subscript 1), associated with input side elements and group 2 (subscript
2), associated with output side elements. The second set of subscripts indicate the relationship between each set
of elements within a group. The motor is the first element in group 1, and therefore receives the second subscript
as 1 (I1,1). The pinion gear is the second element of group 1, and therefore receives the second subscript 2 (I1,2).
Similarly, the output gear and load are labelled as I2,1 and I2,2 respectively. The pinion gear and driven gear
receive two mass/inertial values, as they represent two simultaneous groupings of mass. The mass values (m1
and m2) indicate a grouping of masses for the bearings, shafts and gears into a single mass for the given group.
The inertia values (I1,2 and I2,1) indicate the rotational inertia of the gear for a given group. This group-based
labelling system is further followed for the stiffnesses, damping values and degrees of freedom (x, y and θ ).
Finally, the two gears are coupled through a time-varying mesh stiffness (kt(t)), which was modelled in section
2.1 and 2.2, and a time-varying damping (ct(t)), which will be modelled shortly.

To model the time varying damping, however, it is first necessary to define matrices found in equation (2.95).
Recalling that 10 DOFs need to be modelled, the displacement matrix of equation (2.95) is defined as:

u(t) = {x1,y1,θ1,1,θ1,2,x2,y2,θ2,1,θ2,2,x f ,y f } (2.96)
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Figure 2.22. 10 DOF model used by Luo et al. (2019b).

where x1, x2, y1 and y2 refer to the pinion and gear x-direction movement and the pinion and gear y-direction
movement respectively. θ1,1, θ2,2, θ1,2 and θ2,1 refer to the motor, load, pinion gear and driven gear rotational
movements respectively. Finally, x f and y f refer to the gearbox casing x and y-direction movement. These
quantities are clearly labelled in Figure 2.23.
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Figure 2.23. 10 DOF model used in this work. Adapted from Luo et al. (2019b).

The mass matrix in equation (2.95) may be constructed as:

M =



m1 0 0 0 0 0 0 0 0 0
0 m1 0 0 0 0 0 0 0 0
0 0 I1,1 0 0 0 0 0 0 0
0 0 0 I1,2 0 0 0 0 0 0
0 0 0 0 m2 0 0 0 0 0
0 0 0 0 0 m2 0 0 0 0
0 0 0 0 0 0 I2,1 0 0 0
0 0 0 0 0 0 0 I2,2 0 0
0 0 0 0 0 0 0 0 m f 0
0 0 0 0 0 0 0 0 0 m f


(2.97)

The stiffness and damping matrices consist of constant and time-varying values. To account for this fact, it is
useful to split these matrices into a steady and time-varying portion. That is to say:

K = Kc +Kv(t) (2.98)

C = Cc +Cv(t) (2.99)

where Kc, Cc, Kv(t), Cv(t) refer to the constant stiffness and damping matrix and the time-varying stiffness and
damping matrices respectively.
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The constant matrices may be set up as follows:

Kc =



kx1 0 0 0 0 0 0 0 −kx1 0
0 ky1 0 0 0 0 0 0 0 −ky1
0 0 kθ1 −kθ1 0 0 0 0 0 0
0 0 −kθ1 kθ1 0 0 0 0 0 0
0 0 0 0 kx2 0 0 0 −kx2 0
0 0 0 0 0 ky2 0 0 0 −ky2
0 0 0 0 0 0 kθ2 −kθ2 0 0
0 0 0 0 0 0 −kθ2 kθ2 0 0
−kx1 0 0 0 −kx2 0 0 0 kx f + kx1 + kx2 0

0 −ky1 0 0 0 −ky2 0 0 0 ky f + ky1 + ky2


(2.100)

Cc =



cx1 0 0 0 0 0 0 0 −cx1 0
0 cy1 0 0 0 0 0 0 0 −cy1
0 0 cθ1 −cθ1 0 0 0 0 0 0
0 0 −cθ1 cθ1 0 0 0 0 0 0
0 0 0 0 cx2 0 0 0 −cx2 0
0 0 0 0 0 cy2 0 0 0 −cy2
0 0 0 0 0 0 cθ2 −cθ2 0 0
0 0 0 0 0 0 −cθ2 cθ2 0 0
−cx1 0 0 0 −cx2 0 0 0 cx f + cx1 + cx2 0

0 −cy1 0 0 0 −cy2 0 0 0 cy f + cy1 + cy2


(2.101)

The time variant parts of the stiffness and damping arrays are solely dependent on the time-varying mesh stiffness
(TVMS). Although it is said to be time-varying, in actual fact the meshing stiffness is inherently a function of
the gear rotation angle, as seen in equation (2.47). The angle θ1 is however a function of time as the gear rotates,
and one may thus simply convert the meshing stiffness to a time-varying quantity by employing:

θ1(t) =
∫ t

0
ωs(t)dt (2.102)

where ω1(t) indicates the angular speed of the pinion shaft and t denotes the time.

The TVMS acts between two main clusters of mass, each with three DOFs and therefore acts upon six DOFs. To
further complicate the matter, the TVMS acts as an inclined spring, due to the contact line between the gears
being at an angle. Thus the coordinate system of the TVMS needs to be rotated to the global coordinate system
so that it can be related to each DOF. It needs to be noted that various DOFs are coupled to the TVMS along the
line of action and therefore the net displacement along the line of action is a function of multiple DOFs.

It is useful to describe this displacement along the line of action (δ (t)) using a projection array:

δ (t) = u(t) ·PT (2.103)

where P defines the projection array needed to convert a DOF to its equivalent along the line of action. For the
10 DOF model, this is defined as:

P = {sinα0,cosα0,0,Rb1,−sinα0,−cosα0,−Rb2,0,0,0} (2.104)

Note that P ∈ R1×10. A useful property of this formulation is that the time-varying stiffness matrix may be set
up by multiplying the displacement along the line of action with the correct projection term to convert it back to
the relevant DOF. The projection term is found directly in the projection matrix. The time-varying stiffness
matrix is therefore defined as:

Kv(t) = kt ·δ (t) ·P (2.105)

Kv(t) = kt ·u(t) ·PTP (2.106)
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where kt is the TVMS found in equation (2.52). The formulation in equation (2.105) showcases what is
happening mathematically. The displacement δ (t) is projected to the relevant DOF through multiplication with
P, giving a displacement quantity. The displacement is then multiplied by the TVMS to give a force, as is
required in a LPM modelling environment. It is however easier to use the second form, where the projection
matrices multiply to form a matrix quantity which may be added to the constant stiffness matrix.

To model the time-varying mesh damping (TVMD) is a more complicated task, as there are multiple damping
factors to consider. This is beyond the scope of this work. Rather, a commonly used approach from the literature
will be employed. This approach models the TVMD as being proportional to the TVMS. Some approaches
in literature simply model the damping ratio as a constant value which is derived as a function of the average
gear mesh stiffness. Other authors, such as Tian (2004) do not make such a limiting assumption and develop a
time-varying damping term that is directly proportional to the meshing stiffness. This latter method is employed
in this work and is implemented as follows:

Firstly, the mean damping value between gear teeth is determined. This is found by rearranging the damping
ratio formulation and by substituting the effective mass of the formulation with that of the pinion and bearing
blocks such as in Tian (2004). This yields:

cm = 2ζ

√
km

m1m2

m1 +m2
(2.107)

where km and cm denote the mean mesh stiffness and damping. ζ defines the damping ratio of the system, and
m1 and m2 define pinion and driven side mass blocks.

A common value for ζ in the literature is 0.07 and is therefore used in this work. For a practical setup, this value
may be experimentally determined. Having obtained a constant damping value, most authors stop here. Tian
(2004), however, continued by using this average mesh damping value in relation to the average mesh stiffness
value to find a scaling constant, leading to the following formulation:

ct(t) = µkt(t) (2.108)

where kt(t) and ct(t) refer to the time-varying mesh and damping stiffness and µ is found from:

µ =
cm

km
(2.109)

where cm is defined above and km is found by taking the average stiffness value over a meshing cycle.

With the complexity of stiffness and damping being shown, the final term from equation (2.95) to be determined
is the force array. Only two forces are acting on the model, namely the input torque from the motor and the load
resistance torque. Therefore, one simply needs to add these torques to the model as follows:

F(t) =
[
0 0 Tm 0 0 0 0 Tl 0 0

]
(2.110)

where Tm and Tl refer to the motor input torque and the load resistance torque, respectively. Note that it is only
necessary to know the one to model the other, due to the geared relationship resulting in:

Tl =−
Z2

Z1
Tm (2.111)

A negative sign is added behind the load resistance torque to be consistent with the direction of the rotational
DOF of the driven side. The load resistance torque acts opposite this direction and therefore must receive a
negative value.

The relationship given in equation (2.111) is only valid at steady-state, where the motor speed has reached a
steady value. Before this time (run-up), the motor will supply a higher torque (at low speed) than the load is
consuming, leading to a net force on the system, which in turn makes the motor spin faster, reducing its torque
output until this value reaches the load resistance torque value. This effect may be modelled into the system
by creating a speed-dependent motor torque, as is seen in Khabou et al. (2011). However, for this work, it is
not necessary to model these dynamics, and we are simply interested in the steady-state regime. Therefore,
upon solving the dynamics of the system with the Newmark algorithm (β1 = 0.5 and β2 = 2.25 for the form in
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Zienkiewicz (2013)), the shaft speed and motor torque are simultaneously fixed in the iteration loop. This leads
to unrealistic dynamic responses for the first few iterations, but then quickly converges to the desired steady-state
space.

At this point, the physical gearbox model is complete and synthetic data may now be generated by solving the
dynamics as outlined above..

2.4 Synthetic signal generation
The hybrid approach proposed in this work relies on labelled synthetic data from the gearbox model. Therefore,
this section is purely aimed at describing and generating synthetic datasets for the hybrid model. Furthermore,
this section simultaneously sets out to verify the synthetic data being generated, to ensure the dynamic models
being used are trustworthy.

Before data is generated, it is important to outline the current shortcomings from the literature, as these will be
the main points of investigation for this work. Therefore, we have identified two main investigations for which
we need to generate data:

1. Many works in literature that utilise physical models do not consider practical measurement complexities.
These works focus on generating fault diagnosis techniques for the pinion gear vibration. However,
in practice one is not able to directly mount an accelerometer on the pinion gear. It is more likely
that accelerometers are mounted to the gearbox casing. Therefore, a dataset will be generated that can
compare the vibrations directly on the pinion gear to the vibrations from the gearbox casing. The dynamic
model from Luo et al. (2019b) includes both of these vibration locations as DOFs and will therefore be
utilised. Therefore, this dataset will allow for the effect of measurement location on condition monitoring
predictions to be investigated.

2. When designing a physical model, one will generally find deviations between the modelled signal and the
true asset. This is expected, as the physical model is a low DOF estimate of a much higher DOF reality.
Techniques that are developed on the synthetic data may not work for the real data. Therefore, a dataset
will be generated that allows one to compare the results from two identical physical models, with the only
difference being the number of DOFs used to model the system dynamics. For this dataset, the six DOF
model from Meng et al. (2020) will be used as the lower DOF model. The same model will be increased
to eight DOFs, with motor and load DOFs being introduced. Therefore, this dataset will allow for the
effect of model fidelity on condition monitoring predictions to be investigated.

In Chapter 2.3, the 10 DOF dynamic model of Luo et al. (2019b) was given. It was stated that starting with a
10 DOF dynamic model allows the author to easily step down to a lower DOF model if necessary. For the first
dataset, relating to measurement locations, the developed 10 DOF model will be used and the parameters from
Luo et al. (2019b) are directly implemented.

For the second dataset, the same 10 DOF dynamic model is used, with the necessary DOFs removed to reach an
eight or six DOF model. However, for these two models, the values from Meng et al. (2020) will be used as
opposed to those from Luo et al. (2019b). A different model’s values is utilised in this case because it allows for
a second independent source from literature against which the current dynamic model may be verified. Note
that the model from Meng et al. (2020) is a six DOF model, and therefore the eight DOF model will utilise the
values from Meng et al. (2020) for six of the DOFs and utilise values from Luo et al. (2019b) for the missing
two DOFs.

The following sections are divided according to the dataset being created. The first dataset is called Dataset A
and is split into two sub-datasets. These sub-datasets are split according to the measurement location, namely
Dataset A-pinion for horizontal pinion gear vibrations (x1) and Dataset A-casing for horizontal gearbox casing
vibrations (x f ). The second dataset is called Dataset B and is also split into two sub-datasets. These sub-datasets
are split according to the number of DOFs utilised for dynamic modelling, namely Dataset B-6 for the six DOF
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model and Dataset B-8 for the eight DOF model. For both DOF models, the pinion vertical vibrations will be
captured (y1).

For each dataset, four fault types, namely cracks, chips, spalls and pits will be modelled and simulated at 20
different intensities each. The details to these faults will be given shortly. A summary of the datasets that are
generated is given in Figure 2.24.

10 DOF Dynamic model

Dataset A

Solve dynamics

4 Fault classes
20 Fault intensities per class

Pinion horizontal 
vibrations (𝑥!)

Casing horizontal 
vibrations (𝑥")

Dataset A-pinion Dataset A-casing

Luo et al. (2019)

Six DOF model

Dataset B

Solve dynamics

4 Fault classes
20 Fault intensities per class

Pinion vertical vibrations 
(𝑦!)

Dataset B-6

Eight DOF model

Solve dynamics

4 Fault classes
20 Fault intensities per class

Pinion vertical vibrations 
(𝑦!)

Dataset B-8

Meng et al. (2020)

Add 2 DOFs

Luo et al. (2019)

Figure 2.24. Illustration of the models and works used for the dataset creation.

At this stage it becomes useful to define how data is generated and compiled into a dataset. By utilising the
developed generalised stiffness model, one may choose a fault type, intensity and location on the pinion gear and
run a dynamic simulation. Depending on how long the simulation is run, varying lengths of signals will result.
For Dataset A and B, a 0.4s simulation is run with a simulation frequency of fs = 200kHz. A single simulation
result may be seen in Figure 2.25.

A gear crack fault of 50% intensity is chosen on the fifth pinion tooth for illustrative purposes. The initial part of
the simulation is transient (due to estimated initial conditions) and therefore only the steady-state portion of
the signal must be used. This steady signal is called a simulation si. Further, note the rotational position of the
input shaft (not the pinion gear) being shown. This information is a simple by-product of the simulated dataset
and is shown as an aid to visualise the rotation of the input shaft. In practice, this quantity may be measured
by a tachometer, or by utilising tacholess methods. The input shaft rotation is given as opposed to the pinion
gear rotation, as in practice, the tachometer will more likely be placed nearer to the input shaft, rather than
near the gear itself. The reason for this is that access to the pinion gear may be limited or impossible. It is
therefore expected that a tachometer will more likely be placed outside of the gearbox itself, near the motor,
where tachometers may more easily be mounted.

The steady-state signal is split into sub-signals, each representing a single pinion gear rotation. This is done
by observing when the rotational value of the input shaft passes 0, indicating that a new rotation has begun.
The rotational position of the shaft follows a steady trend, because of the fixed motor speed. Sample si is now
split into j portions, each indicating a single rotation from the pinion gear by the method described above. This
results in a set of signals, each labelled by si, j. Note that each sub-signal may not be of the same length and
therefore a resampling of the sub-signal is enforced. In this work, a resampling per full gear rotation is enforced
such that the length of any rotation si, j is 4096 points.

Finally, the resampled signals may be standardised. We may standardise a signal si, j as follows:

sn|i, j =
si, j− s̄r

σsr

(2.112)
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Figure 2.25. Illustration of a single generated synthetic signal. The top portion of the figure shows one full 0.4s
simulation. Note the transients for roughly the first 100ms. Due to this, only the steady portion is extracted, seen
in the middle figure. The bottom figure indicates the rotation % of the pinion shaft. This signal may be used
between zero-crossings to split the full vibration signal into synchronised sub-signals.

where sn|i, j refers to the standardised signal for the jth rotation of the ith simulation sample. s̄r and σsr refer to
the mean and standard deviation of the reference signal, respectively. The reference signal should be chosen as
the signal from a healthy case, where no faults are present. This allows all samples to be standardised relative to
the same reference signal. The healthy signal is chosen, as it is expected that during the operation of a gearbox,
the first data which is captured from a gearbox is from a healthy state. All future vibrations should then be
normalised relative to that initial healthy state. Should the initial data captured from the gearbox contain a fault,
this may still be used as the reference signal, as long as all future samples up to maintenance are standardised
relative to the same reference signal. To complete the process, each standardised rotation sample, sn|i, j is labelled
and stored in a dataset.

With the necessary steps outlined, we may define our dynamic models’ parameters in their respective sub-sections.
After the parameters are given, the faults for each dynamic model are given and Dataset A and B are created.
Finally, the resulting datasets are analysed and preliminary observations from the above-mentioned datasets are
given.

2.4.1 10 DOF dynamic model

This chapter utilises the 10 DOF model from Luo et al. (2019b) and specifically focuses on extracting the
horizontal vibrations from the pinion gear (x1) and gearbox casing (x f ). As stated in the previous chapter, the
parameters for the 10 DOF model from Luo et al. (2019b) were mostly determined experimentally and are
therefore at least representative of a real gearbox. The goal of this section is to show the reproduced results and
give the parameters required to produce such results. The results may then be compared to the direct results
from Luo et al. (2019b). It is however reasonable to expect that these results will not yield the same vibration
shape or amplitudes. The reasons behind this statement are as follows:

The method employed to model the meshing stiffness and damping between gear teeth is different from this work
and the work in Luo et al. (2019b). In their work, a large amount of attention is given to damping mechanisms
whereas this work simply employs a proportional damping mechanism. Therefore, due to the difference in
implementation for the meshing stiffness and damping, a vibration shape and amplitude difference is expected.
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Furthermore, the dynamic formulation of Luo et al. (2019b) accounts for inter-tooth friction, which this work
does not. Again, this will likely affect the shape and amplitude of simulated vibrations. Table 2.3 shows the
parameters employed in this work.

Table 2.3. Necessary Parameters to Create Dynamic Simulation for 10 DOF model from Luo et al. (2019b).

Symbol Description Value Units
Z1 Number of pinion gear teeth 16 -
Z2 Number of driven gear teeth 48 -
m1,m2 Tooth module 3.175 mm
L1, L2 Tooth width 16 mm
α0 Pressure angle 20 ◦

E Young’s modulus 200 GPa
ν Poisson’s ratio 0.3 -
Rh Hub radius1 9.76 mm
m1 Mass of pinion block 1.272 kg
m2 Mass of gear block 3.5367 kg
m f Mass of gearbox casing 18.509 kg
I1,1 Mass moment of inertia of motor 0.016107 kgm2

I1,2 Mass moment of inertia of pinion block 0.0001751 kgm2

I2,1 Mass moment of inertia of gear block 0.006828 kgm2

I2,2 Mass moment of inertia of load 0.005153 kgm2

Tm Motor torque 7× 16
48 Nm

Tl Load torque 7 Nm
kx1,kx2,ky1,ky2 Bearing stiffnesses 8.5364×107 N/m
kc Coupling stiffness 330 Nm/rad
kx f Gearbox casing screw x stiffness 1.9912×108 N/m
ky f Gearbox casing screw y stiffness 2.036×108 N/m
cx1,cx2,cy1,cy2 Bearing damping 2.134×104 Ns/m
cc Coupling damping 23.1 Nm rad/s
cx f Gearbox casing screw x damping 1995.56 Ns/m
cy f Gearbox casing screw y damping 2005.80 Ns/m

With the parameters all defined, the TVMS is generated with the aid of the generalised stiffness model. Then,
with the appropriate fault type, shape and location decided, they too are incorporated into the stiffness model.
Finally, the dynamics of the system are solved using the Newmark algorithm (at a solution frequency of 200
kHz), which samples the correct stiffness value from the pre-generated TVMS (with faults already factored in)
as a function of pinion gear rotation angle. As mentioned in Chapter 2.3, both the pinion motor speed as well as
input and output torques are fixed during solving to represent steady-state conditions. Two such conditions are
analysed, namely a fp1 = 8.1Hz and fp2 = 25.2Hz case2, to correspond with the work from Luo et al. (2019b).
Figure 2.26 shows the comparison of horizontal gearbox casing vibrations (x f ) for fp1 and Figure 2.27 for
fp2.

It may be seen that as expected, the signals differ in shape. This is expected as the damping model in this
work is much simpler than that of Luo et al. (2019b). However, the amplitudes of vibration are mostly correct,
showcasing that the decision to neglect friction and use a simplified damping model, did not significantly affect
the amplitude of vibrations. Furthermore, key sharp vibration peaks and troughs are also seen to be similar
between the developed model and Luo et al. (2019b). This is important as these sharp vibrations are caused

1This quantity is not reported in the literature. Instead, it was adjusted (within realistic bounds) to such an extent that the resulting
stiffness graph has the same maximum amplitude as that from the literature.

2Recall that a sampling frequency of 200kHz was used to simulate the graphs. This implies that any resampled frequencies above
the Nyquist frequency of 100kHz could alias without a filter. Therefore, a quick sanity check is appropriate to ensure the resampled
results are not aliased. Given a frequency of rotation of the pinion gear ( fp) of 25.2 Hz, one may infer that the resampled frequency is
frs = 4096× fp = 103 kHz, which is slightly over the Nyquist limit. This implies that frequencies between 100kHz and 103kHz will alias
into the 0 to 3 kHz bands without a filter. However, the amplitude of the frequencies near 100kHz was seen to be negligibly small, and
therefore a filter was not implemented.
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(a) Simulated acceleration signal from the works of
Luo et al. (2019b) for fp1 = 8.1Hz.
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(b) Recreated acceleration signal from the works of
Luo et al. (2019b) for fp1 = 8.1Hz.

Figure 2.26. Comparison between literature and generated results for the simulated acceleration signal from the
works of Luo et al. (2019b) for fp1 = 8.1Hz.

(a) Simulated acceleration signal from the works of
Luo et al. (2019b) for fp2 = 25.2Hz.
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(b) Recreated acceleration signal from the works of
Luo et al. (2019b) for fp2 = 25.2Hz.

Figure 2.27. Comparison between literature and generated results for the simulated acceleration signal from the
works of Luo et al. (2019b) for fp2 = 25.2Hz.

by the sudden discontinuity in gear meshing stiffness during single to double tooth transition (or vice versa),
showing that the TVMS is likely modelled correctly.

With the dynamic model developed, we may do a preliminary comparison between the two DOFs which are
extracted (x1 and x f ). The case for fp1 is run and may be seen in Figure 2.28. The vibration amplitude on the
gearbox casing horizontal direction is much smaller than its pinion gear counterpart. This important factor
showcases that although a vibration model may be developed for gear fault detection, it may be crucially
important to model the vibration path all the way to the measurement location, as it is seen that not only are
amplitudes different, but also vibration shape. Thus, it may not be sufficient to infer the gearbox condition purely
based on gear vibrations.

This concludes the dynamic modelling of the 10 DOF model from the works of Luo et al. (2019b). It was shown
that although the vibration shapes may not perfectly match, other important qualities such as amplitude and
impulsive behaviour were successfully captured.
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Simulated Signal in Horizontal Direction (Gear x) –
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(a) Simulated acceleration signal for fp1 = 8.1Hz.
Vibrations extracted are for the x-direction on the pinion
gear.
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(b) Simulated acceleration signal for fp1 = 8.1Hz.
Vibrations extracted are for the x-direction on the pinion
gear.

Figure 2.28. Comparison between simulated gear and casing vibrations for the model based on the works in
Luo et al. (2019b). Notice the differences in shape and amplitude.

2.4.2 Six and eight DOF dynamic models

As stated earlier, a six and eight DOF model will also be developed. The six and eight DOF models are based on
the 10 DOF model developed in Chapter 2.3, with the only difference being that the eight DOF system does
not incorporate the gearbox body (2 DOFs) and the six DOF model further does not incorporate the motor and
load.

Meng et al. (2020) proposed a six DOF model that is directly used to set up the parameters for the reduced six
DOF model here. This work presents another independent opportunity to verify all work done thus far, should
the resulting dynamics match the results from Meng et al. (2020).

There is much more similarity between the factors which are considered between the work of Meng et al. (2020)
and the work here. The only missing factor from this work is the consideration of inter-tooth friction. Otherwise,
all other modelling aspects seem similar. It is therefore expected that the reproduction of the results from Meng
et al. (2020) must be closely matched if the proposed generalised model is correct.

Although the six DOF model has no motor and load component, one may still apply the motor and load torques
in the dynamic analysis. This is done by adding these forces directly on the pinion and driven gear directly (i.e.
removing the coupling stiffness and damping from the eight DOF model). As stated before, for all models, both
the motor and load torque will be fixed as well as the motor rotational speed. For the six DOF model, the pinion
gear speed will thus be fixed.

For the eight DOF model, two additional DOFs are required. The additional DOFs come from the motor and
load. The two DOFs are implemented from the 10 DOF model from Luo et al. (2019b). However, the values
for the motor and load inertias are taken from Chaari et al. (2012) and the coupling values between motor and
pinion and the driven gear and load from Mohammed et al. (2015). For both the six and eight DOF dynamic
models, only a single rotational frequency is considered, namely fp = 40Hz. However, three different load cases
are considered, namely a 10, 20 and 30 Nm load case. The necessary parameters to recreate the dynamics of
either the six DOF or eight DOF model are given in Table 2.4.

3This quantity is not reported in the literature. Instead, it was adjusted (within realistic bounds) to such an extent that the resulting
stiffness graph has the same maximum amplitude as that from the literature.

4The motor inertia was taken from Chaari et al. (2012).
5The load inertia was taken from Chaari et al. (2012).
6The coupling stiffness value was taken from Mohammed et al. (2015).
7The coupling damping value was taken from Mohammed et al. (2015).
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Table 2.4. Necessary Parameters to Create Dynamic Simulation for eight DOF model (and six DOF model)
from Meng et al. (2020). Note that three different load and motor torque values are used, indicated by the values
separated between the vertical bars.

Symbol Description Value Units
Z1 Number of pinion gear teeth 25 -
Z2 Number of driven gear teeth 30 -
m1,m2 Tooth module 2 mm
L1, L2 Tooth width 20 mm
α0 Pressure angle 20 ◦

E Young’s modulus 200 GPa
ν Poisson’s ratio 0.3 -
Rh Hub radius3 9.76 mm
m1 Mass of pinion block 0.3083 kg
m2 Mass of gear block 0.4439 kg
I1,1 Mass moment of inertia of motor4 0.0043 kgm2

I1,2 Mass moment of inertia of pinion block 0.96×10−4 kgm2

I2,1 Mass moment of inertia of gear block 2×10−4 kgm2

I2,2 Mass moment of inertia of load5 0.0045 kgm2

Tm Motor torque (10|20|30)× 25
30 Nm

Tl Load torque 10| 20| 30 Nm
kx1,kx2,ky1,ky2 Bearing stiffnesses 6.56×108 N/m
kc Coupling stiffness6 1×104 Nm/rad
cx1,cx2,cy1,cy2 Bearing damping 1.8×103 Ns/m
cc Coupling damping7 10 Nm rad/s

With all the parameters defined, the TVMS is generated. Then, with the necessary fault type, shape and location
decided, they too are incorporated into the stiffness model. Finally, the dynamics of the system are solved using
the Newmark algorithm (at a solution frequency of 200 kHz), which samples the correct stiffness value from the
pre-generated TVMS (with faults already factored in) as a function of pinion gear rotation angle. The resulting
signal may be found in Figure 2.29(b) with the equivalent signal from the works of Meng et al. (2020) in Figure
2.29(a).

As expected, the two vibration signals correspond well in shape and amplitude. It is also clear that the generated
signal differs in vibration mean, but this may be attributed to a potential difference in the choice of positive
DOF directions between the generated signals and the works of Meng et al. (2020). To further test the model,
a spalling defect was introduced to match the signals in the red boxes. It was found that the dynamic model
managed to capture these dynamics well, as the slight drop and then gain in amplitude in the fault region is
reproduced in this work.

This reproduction should further corroborate the validity of the developed model and at this point, the verification
is deemed sufficient to trust the model at hand. The advantage of having two dynamic models based on the same
parameters is that we may now compare the effects of different numbers of DOFs. Therefore, in Figure 2.30(a)
the acceleration signal of the pinion vertical direction (y1) for the six DOF model is given and compared to its
eight DOF counterpart in Figure 2.30(b).

It is quite clear that with the increase in DOF, the signal tends to be more damped. This makes sense as two
additional DOFs extract energy from the system through damping. This is important, as it shows that indicators
that might traditionally be used on a developed model with a certain number of DOFs cannot always account
for the amount of damping expected in practice and may become invalid. From a frequency perspective, the
two DOF models seem to match each other in vibration shape, therefore one may expect that frequency-based
features may perform better at extracting universal features.
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(a) Displacement signal from Meng et al. (2020). Vibrations shown are for the y-direction on the pinion gear.
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(b) Simulated displacement signal for Tl = 20Nm. Vibrations shown are for the y-direction on the pinion gear.

Figure 2.29. Comparison between the work of Meng et al. (2020) and the developed dynamic model.
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(a) Simulated acceleration signal for Tl = 20Nm. Vibrations extracted are for the y-direction on the pinion gear on the six
DOF model.

Simulated Signal for Pinion Vertical Vibration (8 DOF) – 10 Nm Load (Zoomed)
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(b) Simulated acceleration signal for Tl = 20Nm. Vibrations extracted are for the y-direction on the pinion gear on the
eight DOF model.

Figure 2.30. Visual comparison between the same acceleration measurements for the same load torque based on
the work of Meng et al. (2020). The only difference between the two is the number of DOFs.
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These questions need not be addressed here and will be given attention in a later chapter. This concludes the
description of the two dynamic models that were created from the same base code. The results seem to indicate
that the developed models are performing correctly from a numerical standpoint and may be trusted to do
numerical analyses. We may now utilise the generalised stiffness model to create various faults, and in turn
solve the dynamics to create Dataset A and Dataset B.

2.4.3 Introduction of faults

Before training a data-driven model, one needs to create a meaningful dataset. Therefore, this section sets out to
describe the different faults that were simulated for the 10 DOF model from Luo et al. (2019b) and the eight and
six DOF model from Meng et al. (2020).

Firstly, one needs to decide on the physical quantities to be used when designing the faults. These mainly
depend on the size of the gear tooth. Most of the fault parameters are defined relative to some tooth property
and therefore fine-tuning these values is not too difficult. The following sub-sections outline the exact fault
parameters used to generate Dataset A and B.

2.4.3.1 Dataset A - Fault parameters and analysis for dynamic model A-pinion and A-casing

For Dataset A, four fault types are considered, namely a crack, chip, spall and pit. Each fault type has its own
parameters and is given in Table 2.5.

Table 2.5. Parameters used to generate 20 fault cases for each fault type for Dataset A. The minimum value
indicates a healthy gear tooth state and a maximum value the worst fault intensity for a given choice of parameters.

Crack Parameters
Quantity Name Symbol in Report Min. Value Max. Value Unit

Left Side Crack Depth q0 0 5 mm
Right Side Crack Depth q2 0 5 mm
Crack Angle ν 90 90 ◦

Crack Width Wc 16 16 mm
Chip Parameters

Quantity Name Symbol in Report Min. Value Max. Value Unit
Chip Depth b 1 1 mm
Chip Width c 0 16 mm

Spall Parameters
Quantity Name Symbol in Report Min. Value Max. Value Unit

Spall Length ls 1 1 mm
Spall Width ws 0 15 mm
Spall Depth hs 1 1 mm
Spall Start Location x1 4 4 mm

Pit Parameters
Quantity Name Symbol in Report Min. Value Max. Value Unit

Mean Pitting Line u 4.387 4.387 mm
Standard Pitting Deviation σu 296 296 µm
Sampled Pit Location ui N(u,σu) mm
Sampled Pit Angular Size θi U(30,30) ◦

Sampled Pit Radius ri U(80,80) µm
Number of Samples N.A. 0 2000 -

Note that when a value in Table 2.5 changes from a minimum to a maximum, this is implemented in 20 steps, all
linearly interpolated. The minimum value refers to the fully healthy tooth (and thus minimum fault intensity)
and the maximum value to the highest damaged tooth case (and thus the maximum considered fault intensity).
Therefore, the resulting dataset contains 20 fault intensities for each fault type.
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To minimise external variability during data analysis, the faults are made as simple as possible with only a single
variable ever being changed. Thus, it may be seen that for cracks, a constant width crack is assumed (q0 = q2),
with a constant crack angle and width. Therefore, the depth of crack is the only variable being considered. In
this case, the maximum crack depth is the same as the thickness of the tooth and therefore indicates a fully
broken tooth. The visualisations of the crack case are found in Figure 2.31 (Top Left). For the chip case, the
chip is assumed to have a constant depth and thus the only varying quantity is its width across the tooth. This
may be seen in Figure 2.31 (Top Right). Spalls are assumed to have constant depth, length and starting location,
with only the spall width across the tooth being varied. This is seen in Figure 2.31 (Bottom Left).

Finally, the pits are also simplified by fixing the pit radius, angle and possible mean location. Thus, the only
variation is the number of pits on the tooth. Due to the variability when drawing pit samples, a special approach
is followed to build up the pit dataset: Firstly, 2000 samples are drawn at random. Then, to build up different
fault intensities, the first n pit samples are always taken in the same order from the list of 2000 pits. For example,
for fault intensity 5, the first 500 pits are taken from the 2000 pit samples. For fault intensity 15, the first 1500
pit samples are taken from the 2000 pit samples. This method of sampling ensures that larger pit intensities
always contain the previous intensity’s pits and some new pits. This approach aims to make the pit evolution as
realistic as possible. The case where all 2000 pits are present is seen in Figure 2.31 (Bottom Right).

Crack Progression Chip Progression
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Figure 2.31. Visualisation of fault progressions in Dataset A for the four considered fault types, namely cracks,
chips, spalls and pits.

It is useful to gain a measure for the relative fault intensity of each of these faults. For example, a full-width chip
does not reduce the stiffness of a tooth nearly as much as a very deep crack. Therefore, a relative fault intensity
measure is proposed. To calculate this measure, it is important to decide in which plane a fault predominantly
acts. For example, a crack acts in the plane going through the girth of the tooth, whereas chips, pits and spalls
mainly act on the face plane of the tooth. With this considered, the relative fault area (RFA) may be defined
as:

RFA =
A f ault

Aplane
(2.113)
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where A f ault indicates the area in the relevant plane the fault is taking up and Aplane indicates the full area of the
chosen plane. For example, a full-width crack that goes halfway through the tooth will have half the area of the
full plane and thus yield an RFA value of 0.5. A broken tooth is thus an RFA of 1 and a perfectly healthy tooth a
value of 0. This metric is purely used as a quick and easy measure of relative fault contribution when looking at
the vibration signals.

When doing these calculations for each fault type and intensity, Figure 2.32 results. One sees that a simple
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Figure 2.32. Relative fault areas for the four fault types in Dataset A.

progression of crack faults is much more impactful in terms of RFA. One therefore expects larger stiffness
effects to arise due to cracks than any of the other simulated faults. This further implies that it is much easier to
pick up for example a 50% propagated crack than a 50% propagated spall (within this numerical context). This
is to say that the dataset will be slightly imbalanced in terms of relative fault intensities, in that the crack faults
are more significant than their counterparts. This is not a disadvantage, however, as it adds a meaningful point of
diversity in the dataset which may be investigated in future experiments.

One may finally take the given fault values, substitute them into the generalised stiffness formulation and
determine the resulting TVMS. It is arbitrarily decided to induce the faults on the 5th gear tooth. Figure 2.33
shows the effects for all 20 fault intensities for all four fault types.

One can see that cracks have a much larger effect on the TVMS compared to other fault types. This is due to a
crack’s mechanism which renders any material above the crack as ’missing’, making that portion of the tooth
contribute nothing to the overall meshing stiffness. One can also see for a maximum crack case, the TVMS
drops to 0 during the single tooth meshing region, which is exactly what would be expected from a broken tooth
- no stiffness contribution. Spalls present quite a discontinuous drop in TVMS amplitude and are a direct result
of the modelling choice made to use rectangular cut-outs. If a more modern approach were utilised, the spalls
would reduce the TVMS in a much smoother manner. The pits seem to present irregular stiffness deviations,
which are due to the random sampling nature of this fault mechanism. In reality, this would be the case too, so it
is not unrealistic. Finally, chips present smooth reductions in TVMS but are very small reductions, bringing into
question how easily this fault type may be identified.

Finally, with the faults modelled and incorporated into the TVMS, one may solve the dynamic system using the
Newmark algorithm. The solving frequency is set at 200 kHz and the solver is set to run up to 0.4s. The initial
conditions are set to zero displacement, velocity and acceleration for all DOFs, except for the input shaft, which
is set to a fixed rotational speed according to the speed case being simulated. Furthermore, the system torques
are fixed according to the appropriate load for the speed case. Due to the zeroing of initial conditions, the system
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Figure 2.33. Effective TVMS for the four considered fault types in Dataset A.

takes a few iterations to reach steady-state. The steady-state portion is visually determined and extracted, which
is then used to investigate the resulting time and frequency domain signals. For the time domain signals, 20 fault
intensities prove difficult to plot. Therefore, Figure 2.34(a) shows the first 10 fault intensities for each fault case
and Figure 2.34(b) the last 10 for the pinion gear x-direction. Similarly, Figure 2.35(a) shows the first 10 fault
intensities for each fault case and Figure 2.35(b) the last 10 for the gearbox casing x-direction.

Moving on to the frequency domain, we note that with 16 teeth rotating at fp1 = 8.1 Hz, we expect the gear
mesh frequency and its harmonics to show up at n×129.6 Hz intervals. Furthermore, given the fact that the
simulations are run for steady-state, a successful dynamic model should still render amplitude and frequency
modulations around these harmonics to showcase gear faults, similar to what is seen in Chaari et al. (2008). The
results from taking the frequency spectra for the pinion gear and gearbox casing x-directions are shown in Figure
2.36(a) and Figure 2.36(b) respectively. Note that a zoomed-in version is given, as for a solving frequency of
200 kHz, frequency bands are available up to 100 kHz, which is unnecessary.

Although the case for fp1 was given in the figures, the case for fp2 was also simulated and was used as the basis
for Dataset A. Therefore, Dataset A-pinion and Dataset A-casing are comprised of the fp2 case. The higher
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(a) Resulting Vibration signals on the pinion gear x-direction for the first 10 fault intensities.
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(b) Resulting Vibration signals on the pinion gear x-direction for the last 10 fault intensities.

Figure 2.34. Vibration signals generated for various fault intensities over various fault types for the pinion gear
x vibrations in Dataset A.
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Cracks for fp = 8.1Hz on Casing (xf)
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(a) Resulting Vibration signals on the gearbox casing x-direction for the first 10 fault intensities.

Cracks for fp = 8.1Hz on Casing (xf)
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(b) Resulting Vibration signals on the gearbox casing x-direction for the last 10 fault intensities.

Figure 2.35. Vibration signals generated for various fault intensities over various fault types for the gearbox
casing x-direction in Dataset A.
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(a) Resulting FFT on the pinion gear x-direction for all fault intensities
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(b) Resulting FFT on the gearbox casing x-direction for all fault intensities

Figure 2.36. Frequency domain spectra for various fault intensities over various fault types for Dataset A.
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speed case ( fp2) is arbitrarily chosen for Dataset A. However it may prove advantageous to use fp2 over fp1 for
future investigations where time-synchronous averaging is used, as the fp2 simulation contains more revolutions
for the given simulation time.

2.4.3.2 Dataset B - Fault parameters and analysis for dynamic model B-6 and B-8

For Dataset B, an identical process to the previous section is followed. Therefore, only the key information and
resulting graphs is shown here. The fault parameters for the six and eight DOF models differ from the 10 DOF
model, as the values for the six and eight DOF models are based on Meng et al. (2020). Therefore, a new set of
parameters are required. Furthermore, only the 20 Nm load case is shown here, although all three load cases are
simulated. The parameters for creating the faults may be found in Table 2.6.

Table 2.6. Parameters used to generate 20 fault cases for each fault type for Dataset B. The minimum value
indicates a healthy gear tooth state and a maximum value the worst fault intensity for a given choice of parameters.

Crack Parameters
Quantity Name Symbol in Report Min. Value Max. Value Unit

Left Side Crack Depth q0 0 3.644 mm
Right Side Crack Depth q2 0 3.644 mm
Crack Angle ν 90 90 ◦

Crack Width Wc 20 20 mm
Chip Parameters

Quantity Name Symbol in Report Min. Value Max. Value Unit
Chip Depth b 1.07 1.07 mm
Chip Width c 0 20 mm

Spall Parameters
Quantity Name Symbol in Report Min. Value Max. Value Unit

Spall Length ls 526 526 µm
Spall Width ws 0 19 mm
Spall Depth hs 1 1 mm
Spall Start Location x1 2.374 2.374 mm

Pit Parameters
Quantity Name Symbol in Report Min. Value Max. Value Unit

Mean Pitting Line ū 2.5 2.5 mm
Standard Pitting Deviation σu 210.4 210.4 µm
Sampled Pit Location ui N(ū,σu) mm
Sampled Pit Angular Size θi U(30,30) ◦

Sampled Pit Radius ri U(80,80) µm
Number of Samples N.A. 0 2000 -

These parameters are substituted into the generalised stiffness model and the resulting TVMS is determined. An
arbitrary choice is made to induce the fault on the fifth gear tooth. The stiffness reductions look similar to those
in Figure 2.33 and are thus not shown here. The final task is to once again show the resulting time and frequency
responses of the dynamic model.

Once again, 20 fault intensities prove difficult to plot. Therefore, Figure 2.37(a) shows the first 10 fault intensities
for each fault case and Figure 2.37(b) the last 10 for the six DOF system pinion y-direction. Similarly, Figure
2.38(a) shows the first 10 fault intensities for each fault case and Figure 2.38(b) the last 10 for the eight DOF
pinion gear y-direction.

Moving on to the frequency domain, we note that with 25 teeth rotating at fp = 40 Hz, we would expect the gear
mesh frequency and its harmonics to show up at 1000 Hz intervals. As mentioned before, since the simulations
were run at steady-state, a successful dynamic model should render amplitude and frequency modulations around
these harmonics to showcase gear faults. The results from taking the frequency spectra for the pinion gear
y-directions for the six and eight DOF models are shown in Figure 2.39(a) and Figure 2.39(b) respectively. A
zoomed version is given as the frequency bins continue to 100 kHz.
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(a) Resulting Vibration signals on the pinion gear y-direction for the first 10 fault intensities of the six DOF model.
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(b) Resulting Vibration signals on the pinion gear y-direction for the last 10 fault intensities of the six DOF model.

Figure 2.37. Vibration signals generated for various fault intensities over various fault types for the pinion gear
y vibrations of the six DOF model.
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Cracks for 8 DOF Model on Pinion Gear (y1)
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(a) Resulting Vibration signals on the pinion gear y-direction for the first 10 fault intensities of the eight DOF model.
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(b) Resulting Vibration signals on the pinion gear y-direction for the last 10 fault intensities of the eight DOF model.

Figure 2.38. Vibration signals generated for various fault intensities over various fault types for the pinion gear
y vibrations of the eight DOF model.
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Cracks for 6 DOF Model on Pinion Gear (y1) - Zoomed

Frequency [Hz] Frequency [Hz]

Frequency [Hz] Frequency [Hz]

V
ib

ra
tio

n 
A

m
pl

itu
de

 [m
/s
2 ]

V
ib

ra
tio

n 
A

m
pl

itu
de

 [m
/s
2 ]

V
ib

ra
tio

n 
A

m
pl

itu
de

 [m
/s
2 ]

V
ib

ra
tio

n 
A

m
pl

itu
de

 [m
/s
2 ]

Chips for 6 DOF Model on Pinion Gear (y1) - Zoomed
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(a) Resulting FFT for the six DOF model y1 vibrations for all fault intensities.
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(b) Resulting FFT for the eight DOF model y1 vibrations for all fault intensities.

Figure 2.39. Frequency domain spectra for various fault intensities over various fault types for the six and eight
DOF models.

Department of Mechanical and Aeronautical Engineering
University of Pretoria

73



Chapter 2 Physics-driven portion of the hybrid framework

This concludes the showcasing of Dataset B’s results. Although three load cases are simulated, only the 20 Nm
load case will be used to create Dataset B. Therefore, Dataset B-6 and Dataset B-8 are both simulated at a load
of 20 Nm. The decision to use the 20 Nm load is completely arbitrary but may serve as a good median between
the 10 Nm and 30 Nm datasets.

2.4.4 Analysis of results for both datasets

When observing Figures 2.34(a), 2.35(a), 2.37(a) and 2.38(a), one observes that quite early on in the fault
intensities, crack faults may visually be picked up. One also finds that for very severe crack intensities in Figures
2.34(b), 2.35(b), 2.37(b) and 2.38(b) the vibrations reach massive amplitudes (too high to meaningfully show
on the plots) which are expected from a large stiffness reduction in the affected tooth. Finally, although a bit
harder to see for Dataset B, all four datasets showed visible frequency modulations for the severe crack cases in
the time domain (Figures 2.36(a), 2.36(b), 2.39(a) and 2.39(b)).

When observing Figures 2.34(b), 2.35(b), 2.37(b) and 2.38(b), it is seen that chips, spalls and pits are only
really visually detectable near the larger end of their fault intensities. Furthermore, for chips, larger faults
resulted in a decrease in vibration amplitude. This result was unexpected and therefore a small experiment was
undertaken to determine whether chips always result in a vibration amplitude reduction. The results were mixed,
with different loads and speeds resulting in increases or decreases in vibration amplitude, with no clear pattern.
Therefore, the results here will be taken as is, but warrants further investigation in the future. For spalls and pits,
however, the vibration signals were seen to increase with an increase in fault intensity. Chips, spalls and pits
only really showed noticeable vibration changes near the last few vibration intensities, which represent relatively
large fault sizes. This implies that these fault types may be extremely difficult to detect in an industrial setup
where noise may easily hide the small amplitude deviations from the healthy signal.

In conclusion, it was seen that the amplitude of vibration near cracks, pits and spalls in Figures 2.34, 2.35,
2.37 and 2.38 tends to increase, whereas chips tend to decrease the vibration amplitude. These results show
the importance of numerical models in a diagnostic framework, as three of the four fault types tend to increase
vibrations in their acting region as they increase in intensity, but chips on the other hand tend to decrease
vibrations. The differing shapes/signatures of different fault types across these figures also show the importance
of a numerical model, as it shows that a specific fault may be coupled to a specific vibration signature, which is
not only unique on a fault to fault basis, but to a dataset to dataset basis. Therefore, for both of the aforementioned
reasons, simple features which work on one fault type and one dataset may not at all apply to other fault types or
datasets. This justifies the need for a stronger fault classification framework that can account for such different
signals. The next chapter deals with this task, but it is informative to visually illustrate this.

When analysing the frequency signals in Figures 2.36(a), 2.36(b), 2.39(a) and 2.39(b), it is seen that the gear
mesh frequency and its harmonics show up in all four fault types at the predicted frequencies for each dataset.
Furthermore, it is observed (very strongly for cracks) that all fault types produce the predicted amplitude and
frequency modulations around the meshing frequency harmonics. This behaviour is a good indication that the
dynamic models may be trusted. It is also seen for the crack, pit and spall case that with increasing fault intensity
one may expect to find increasing peak frequencies at the gear meshing harmonics. The chip case, however,
tends to show the opposite behaviour. This correlates to what was observed in the time domain. It was also seen
that the most intense crack cases produced extremely strong frequency modulations, which may be attributed to
the harsh stiffness drop for large crack sizes. This stiffness drop acts as a large impulsive force on the system
and excites the system harmonics.

As a concluding remark, it is once again evident that features that might work well on one fault type cannot
necessarily work well on another fault type or on another dataset, as not only does the location of the strongest
amplitude and frequency modulations change between fault types, so too does the effect a fault has on the peaks
of the gear mesh harmonics. Therefore, it is once again emphasized that a strong fault classification framework
is necessary.
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2.5 Concluding remarks
To conclude this chapter, the first novelty of the work has been presented: A generalised stiffness model that
can be used to model multiple gear fault types with relative ease. This model was not only presented but also
verified against existing works for correctness. Furthermore, crack faults were reformulated to fit within the
generalised framework. Not only did this reformulation ease the use of cracks within the generalised framework
but also is fully compatible with existing methods. Therefore, if a generalised framework is not applied, the crack
reformulation developed in this work may be used to eliminate one of the integrals for crack formulation.

Furthermore, three dynamic models were developed and verified against the works on which they were based,
namely Luo et al. (2019b) for the 10 DOF dynamic model and Meng et al. (2020) for the eight and six DOF
models. From these dynamic models, two datasets were generated, namely Dataset A and Dataset B. These
datasets were further evaluated for correct behaviour, and showed that the developed dynamic models produce
vibrations that seem realistic.
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hybrid framework

After generating labelled datasets from the physical gearbox model, we require a data-driven model to convert
this data into useful diagnostic information. Data-driven models may be defined as being unsupervised or
supervised depending on the availability of labels. For the task of gearbox condition monitoring, supervised
methods have strong appeal, as they are not only capable of detecting faults, but may further classify the faults
into a certain class, such as cracks, chips, spalls or pits. Therefore, the focus of this work is on supervised
data-driven approaches, as we have labels available to us through the physical model.

The focus of this chapter is to develop a supervised data-driven model which can utilise the synthetic data from
the physical model. In turn, the combination of the synthetic data with the supervised data-driven model will be
known as the hybrid model. The hope is that the hybrid model will be able to differentiate between different
fault states on gears by utilising vibration data. Although the vibration data in the hybrid model is synthetic,
it is hoped that the hybrid model will be able to generalise to the real asset on which the gearbox model was
based.

The use of a hybrid condition monitoring model is not a novel idea and has been applied to other works before.
This is however seen as novel work in the gearbox space and sets out to prove the untapped usefulness of hybrid
models for gearbox fault classification. Section 3.1 sets out to define the data-driven portion of the hybrid model.
Section 3.2 continues by showcasing the complete hybrid framework which will be used in subsequent chapters
for numerical experimentation.

3.1 Supervised data-driven model
A supervised data-driven model requires labelled data and tries to classify input data into the different labels
used for training. This section is used to argue which supervised data-driven model is most suitable for this work
and justify the parameters which will be used for the chosen data-driven model.

3.1.1 Approach type selection

Data-driven techniques have advanced over time, with various challenges being solved by new approaches.
Traditional approaches aim to extract expert features from data, and then manually utilise expert knowledge
to classify the set of features into certain classes. Two potential drawbacks are present with such an approach.
Firstly, an expert is needed to extract relevant hand-crafted features from the data. Secondly, the hand-crafted
features have to be selected by an expert and analysed to predict the condition of the asset. Therefore, manual
approaches suffer from an over-reliance on experts, making the condition monitoring task time consuming and
costly (Khan & Yairi 2018, Lei et al. 2020).

To solve the issue of the generalisability of features, shallow machine learning techniques such as artificial neural
networks (ANNs) have been proposed. These techniques aim to utilise the expert features as input and output the
predicted condition of the machine. These methods lower the need for expert knowledge, as one no longer needs
an expert to select the features and classify them into a machine health state. These techniques automatically
learn the relationship between the expert features and the asset health state. However, these techniques still rely
on an expert to set up the features (Lei et al. 2020).
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Therefore, in more modern approaches, deep learning techniques have seen great success. Deep learning
techniques completely remove the need for experts, as features are automatically extracted within the deeper
architectures. The automatically extracted features are then fed to a feature extractor, which automatically
classifies the features into a given machine health state. Therefore, deep learning techniques fully remove the
need for an expert, as raw data is used as input and the machine health state is generated as output (Lei et al.
2020). There is also evidence to suggest that the features which are extracted by the deep learning approaches
are more meaningful than the hand-crafted expert features. In works from Jia et al. (2016) and Verstraete et al.
(2017), it was shown that deep learning methods (automatic features) outperformed shallow methods (which
utilise expert features).

Therefore, this work will employ a deep learning model. More specifically, a deep neural network (DNN) will be
utilised. DNNs are commonly utilised in the literature for condition monitoring tasks and will therefore provide
the author with a large reference framework when developing the DNN for this work. A popular form of a
DNN is called the multi-layer perceptron (MLP). This model stacks multiple densely connected layers with the
idea that layers near the start extract general features and layers near the end start to extract more case-specific
features. Although MLPs are more useful than their shallow counterparts, they may suffer from the fact that
some forms of data have temporal or spatial features.

MLPs are invariant to the order in which inputs are fed. This is a direct result of the architecture in which inputs
are connected to all nodes in the following layer. Therefore, MLPs cannot take advantage of temporal or spatial
information when it exists. Therefore, although MLPs have shown their use in many applications, there are other
DNNs better suited to the task. Some newer deep architectures have been developed to extract useful temporal
or spatial features. Two popular choices include convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). Among RNNs, a popular choice is the long short term memory (LSTM) network. Some
works combine the two network types to gain the benefits of each approach.

Recall that the overarching goal of this work is to develop a hybrid model that can be calibrated through transfer
learning. Therefore, it does not matter which DNN is chosen, because any DNN can be utilised and calibrated
within the hybrid model. However, it will be advantageous to choose a DNN which is suited to temporal data,
such as a CNN or RNN. Although both methods have been shown to work well on temporal data (which is the
type of data one will deal with for vibration signals), the CNN will be the method of choice going forward.

The CNN is commonly used in literature (Han et al. 2019b), has strong temporal capabilities and allows for faster
training than an LSTM. It is reiterated, however, that the focus of this work is not on optimising the data-driven
model, but rather investigating a hybrid model in a larger context. Therefore, although a CNN is used, the
conclusions from this work may be extended to other DNN architectures. With the decision made to employ
a CNN, one needs to take a group of new factors into account, such as architectural choices, hyperparameter
choices, loss functions, input data format etc. The following sections aim to address these concerns. Firstly,
however, to ease future explanations, a short overview of the CNN framework will prove useful.

3.1.2 Convolutional neural networks for supervised learning

Recall that a supervised data-driven approach is being utilised, as labels are available during training. Therefore,
the following descriptions pertain to supervised CNN approaches, which will only be referred to as CNN
approaches going forward. CNNs receive significant attention in the literature and have proven to be valuable
where data is spatial or temporal. As with any DNN, the parameters necessary to extract meaningful features
and make strong classifications are generally not clear and some degree of fine-tuning is necessary.

The general architecture behind a CNN is, however, quite standard and follows the following pattern: The front
layers of the CNN are composed of convolutional layers and pooling layers (Zhao et al. 2019, Lei et al. 2020).
Furthermore, it is common to see some form of regularisation applied between pooling and convolution layers.
Works that include such normalisation include Ganin et al. (2017), Han et al. (2019a,b), Chen et al. (2020), Liu
& Gryllias (2021). These blocks of convolution-pooling-regularisation (CPR) can be stacked to deepen the NN
and increase the feature extraction capabilities. After sufficiently many CPR blocks have been stacked, one
generally flattens out all features into a single vector (Lei et al. 2020), which is commonly referred to as the latent
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feature space. This latent space contains (hopefully) the most meaningful and separable feature descriptions
possible.

This latent space may then be fed into a normal MLP framework near the end of the CNN. This tail-end MLP
acts as a classifier (Lei et al. 2020). Recall the choice to not use an MLP from start to finish was to extract
temporal information from the input data, which has been achieved by the time values reach the latent space.
At this point, one is only interested in finding some set of separable non-linear combinations of these features
to classify the signal. Therefore, an MLP will suffice, as the latent space does not necessarily have a temporal
component to it.

Therefore, whenever future portions of work refer to the feature extractor, reference is being made to the full set
of stacked CPR blocks, which take a raw signal as input and output the latent features space. When portions of
work refer to the classifier, reference is being made to the posterior MLP structure of the network, which takes
the latent feature space as input and outputs a classification from the given features. When these two components
are combined, one is essentially converting raw signals into classifications, and this combination is what will be
referred to as the data-driven approach.

3.1.3 Architectural considerations

When a CNN is implemented, one needs to consider how wide and deep the CNN must be made. Generally, the
deeper the CNN, the richer the features which may be extracted. This has been shown empirically on rotating
machinery data in works such as Han et al. (2019a,b), with the structure they call CNN3 - This name will
consistently be used from this point forward. This however comes at the cost of a larger network, which is more
expensive to train. Since the novelty of this work is not focused on building a new CNN structure, as this has
been done many times in literature, it will be wasteful to start from scratch and optimise a new CNN structure. It
is more useful to draw from a proven architecture. Therefore, the architecture from CNN3 will be replicated, as
this has shown a good balance between the minimum number of layers required and high classification accuracy
on rotating machinery diagnostics.

Furthermore, it is a common trend that with deepening CNN layers, one also increases the number of convolution
kernels whilst decreasing the kernel size. The logic behind this is as follows:

• Regarding kernel size: As one convolves and pools across each layer, the number of features shrinks as
well, therefore one needs to shrink the corresponding kernel size.

• Regarding the number of kernels: The first layers of a CNN only extract very general features from the
data. As one goes deeper, the number of ways in which the previous layers’ features can be combined
to extract meaningful features increases exponentially. Therefore, the number of kernels is increased to
capture as many meaningful features as possible.

Therefore, this structure is beneficial to maximise feature richness and will be applied. This same trend is seen
in CNN3, further confirming this as a good choice of architecture. Another consideration is the type of pooling
layer to use. Generally, most works use max-pooling and therefore this pooling technique will be used in this
work.

It is further seen that after a convolution and pooling layer, one adds some type of regularisation layer. This is
generally preferred as NNs have a large number of parameters (magnitudes more than the amount of available
input data) and may therefore be prone to overfitting. One therefore needs a regularisation technique to prevent
or at least minimise overfitting to the training data.

Two types of regularisation are common among CNNs, namely batch normalisation (BN) and dropout. These
layers may be used in isolation or combination. BN tries to address a common issue with DNNs: Weight updates
during backpropagation are made with the assumption that the feature distribution in already updated layers
is still the same as before the backpropagation. This is not the case and one can think of the shallower layers
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chasing a moving target, as backpropagation works from the deep end to the shallow end. This is referred to as
internal covariate shift of the network (Ioffe & Szegedy 2015).

To combat this issue, BN is generally accepted to aid in reducing the internal covariate shift. For BN to be
implemented, as is evident in the name, one needs to train the network using mini-batches or full batches. This
is however common practice within networks and can almost be assumed as a default. Therefore, BN applies to
almost all networks. BN takes the batch of activation outputs from the previous layer and standardises them
to zero mean and variance of one. This has the effect that during backpropagation, the assumption of feature
distributions (which are now standardised) are more accurate - therefore one minimises the internal covariate
shift. This speeds up training and simultaneously acts as a form of regularisation, as weights are continually
standardised (Ioffe & Szegedy 2015).

Dropout is another (quite popular) technique to regularise a network. The concept is simple: A dropout layer
may be inserted after any normal NN layer (convolution, max-pooling, densely connected etc.). This layer then
acts as a type of randomised filter in which one specifies some dropout percentage. Then, during training, a
certain percentage of nodes are not allowed to propagate their signals forward, essentially passing a zero value
to the activation function. It acts as if the node from which the signal came ’dropped out’ of the network. A
larger dropout percentage refers to a larger fraction of nodes being turned off during training. The key concept
behind dropout is that it randomly turns off nodes during each training epoch (Zhang et al. 2018).

Since the dropouts are random, the network is "forced" into learning general features (Zhang et al. 2018)
instead of overfitting to specific nodes, generating highly specific features. If dropout is not applied, it is easily
conceivable that a network may learn to overfit on specific data points in the training dataset and oversaturate
a set of weights along different input to output paths. If, however, these oversaturated paths are randomly
interrupted during training, the network is forced to utilise a combination of all weights and nodes as a whole to
learn useful features instead of over-relying on one specific set of weights and nodes. This therefore acts as a
regularisation method, as it attempts to prevent any overfitting attempts by the network.

For this work, some preliminary tests were conducted with both BN and dropout being applied. Although BN
resulted in faster convergence, the overall accuracy suffered slightly when compared to dropout. Furthermore,
tests with BN showed diverging classification accuracies, whereas dropout showed more consistent accuracy
results, usually converging to a maximum value. Therefore, from the preliminary results, dropout was chosen as
the regularisation technique for the CNN. This concludes architectural considerations. The following section
deals with some smaller nuances of building and training a NN.

3.1.4 Hyperparameter and loss considerations

As with any data-driven method, NNs have important hyperparameters which need to be determined. One of the
most important hyperparameters to deep learning is that of the activation function. Deep networks are prone to
what is known as the ’vanishing gradient’ problem. The deeper the network gets, the smaller the backpropagation
signals become, essentially stagnating the weight updates for the deeper layers. Common activation functions
such as the sigmoid or hyperbolic tan all suffer from the vanishing gradient problem. It has however been shown
that the rectified linear unit (ReLU) overcomes the vanishing gradient problem (Zhu et al. 2016). Therefore,
ReLU activations are quite commonly found in DNNs, and will therefore also be used in this work.

Another important consideration is the loss function. Loss functions need to be determined based on the
task at hand. For this work fault classification is attempted. Therefore, categorical cross-entropy is a good
loss function, as it is mathematically well suited to the backpropagation process, where large deviations from
optimal values result in large weight updates. For this reason, categorical cross-entropy is a common choice for
classification.

One must also decide which optimisation algorithm to use. The optimisation algorithm defines the methodology
with which the loss function is used to update the network weights. A good default choice is Adam (adaptive
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moment estimation), as it has been shown to work well in comparison to other adaptive gradient techniques
(Ruder 2016).

A final consideration for the network is the batch size. The batch size does not necessarily have a large impact on
training accuracy, but more on training speed. There is however a trade-off between the two. A very small batch
size takes up little RAM, but also is a noisy representation of the entire dataset and will thus have quite stochastic
training behaviour. Smaller batches also lead to longer training times. A very large batch size takes up a large
amount of RAM, but is faster to train and will converge to a more favourable minimum and be much steadier
during training. Therefore, for each problem it is different, but generally, there is some good balance between a
small enough batch to not fill up all RAM but also large enough to be representative of the entire dataset, leading
to more steady training. For this work, a default batch size of 60 was chosen as a good trade-off.

3.1.5 Data considerations

A supervised data-driven approach is not solely dependent on the model, but rather also on the input data itself.
As Andrew Ng says: Data is food for a NN. Therefore, one needs to take care in selecting the format of data to
be fed to the NN.

The first consideration when dealing with vibrational signals is the domain in which the data will be presented:
time, frequency or time-frequency domain. For this work, the raw time domain data is fed to the CNN structure.
The reason behind this is twofold. Firstly, the use of the time or frequency domain leads to a 1D CNN structure,
which is much faster to train. As the overarching goal of this work deals with transfer learning research and not
necessarily architecture or data optimisation, this choice seems justified, as 1D CNNs train faster than 2D CNNs.
Even if the 1D techniques have lower accuracies, they will prove or disprove the use of transfer learning much
faster than training a 2D CNN.

Secondly, the time domain is chosen over the frequency domain purely due to its popular appeal. From the
literature review, it was seen that the transfer learning approaches all utilised the raw vibration (time domain)
signals for the experiments. Therefore, to minimise variables during investigations in this work, a proven data
domain is chosen, namely the time domain.

With the time domain being the established domain of choice, one still needs to consider the most useful format
of the data. Some preliminary investigations (not reported on here) experimented with utilising individual
meshing vibration signals. Thus, the method splits one full rotation into n equal segments, where n corresponded
to the number of teeth on the pinion gear. A healthy tooth would thus receive a healthy label and a faulty tooth a
fault type label. This is format may be advantageous, as it allows the user to not only detect a fault, and fault
type, but further classify the location of the fault. This data format however proved to be quite troublesome.
These unfavourable results are therefore not included in the current work, but a brief hypothesis is proposed as
to why the poor results were seen:

The tooth-by-tooth vibration signals are seen to vary in shape between different fault types. That is to say,
different fault types are visually unique, and should therefore be capable of being classified. However, since the
data is fed into the CNN as temporal data, it is one-dimensional and therefore difficult to truly capture the spatial
variations in the different vibration shapes, which would be a two-dimensional input. Furthermore, the signals
are too short to carry any meaningful temporal information and therefore the CNN is not suited to this task, at
least in the one-dimensional case. Perhaps if the data is fed as an image, a 2D CNN would perform better. This
is however expensive, as a vibration signal is only a line in two-dimensional space, implying there is a large area
of useless data around the signal. As stated earlier, the goal of this work is not data optimisation and this route
was not explored further.

Instead, a full rotation’s worth of data was fed to the CNN. Therefore, if a pinion gear had 16 teeth, the input
signal would consist of a fixed-length input of 16 gear mesh signals. If the signal contained a faulty tooth, the
entire signal is labelled as a fault, otherwise, it is labelled as healthy. This representation loses the benefit of
identifying the exact fault location, but it is not unrealistic to expect one to build a tooth by tooth NN after the
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fact to predict which tooth is faulty - This is however once again not the focus of the present work. The longer
vibration data format also holds truer to the types of formats found in the literature, and should result in easier
convergence of models, as it is a proven data input format. It should also be said that due to the nature of the
longer data format, it inherently contains a strong temporal component and therefore should be well suited to the
strengths of a 1D CNN.

This concludes the necessary justifications for the CNN model which will be used. The final subsection is aimed
at showing the structure and exact parameter values for the data-driven model.

3.1.6 Full data-driven model

The CNN structure to be employed for this work is shown in Figure 3.1.

CONV POOL DROPCONV POOL DROP CONV POOL DROPCONV POOL CONV POOL LATENT DENSE DROP OUTDENSEINPUT 

60x4096 16x128 16x2 32x64 32x2 64x16 64x2 128x3 128x2 256x2 256x2 29952 120 64 2

Feature Extractor Classifier

Figure 3.1. The data-driven model to be used in this work, namely a CNN. Within the first portion of the CNN,
namely the feature extractor, green, red and yellow layers represent convolution, max-pooling and dropout
layers respectively. The blue layer between the feature extractor and classifier is a one-dimensional feature
vector, which is referred to as the latent feature space. In the final portion of the CNN, the classifier may be seen
with purple, yellow and orange vectors representing densely connected, dropout and output layers respectively.
Numbers beneath the feature extractor layers are given as a×b, where a refers to the number of kernels and b
the kernel size. In the classifier layers, numbers represent the number of nodes, all densely connected. For the
input, full rotation signals are used and are represented by 4096 values. Input signals are passed in batch sizes of
60. These parameters may be changed, but for illustrative purposes, these values are used here.

With the CNN structure given, it is clear that from raw time domain data, one obtains a binary prediction at the
other end of the network relating to the health state of the machine, i.e. healthy or faulty. This could also be
adapted to a fault type identifier network by simply having five output nodes instead of two. The green portion of
the network refers to the feature extractor, as previously described. After the feature extractor, the feature latent
space is obtained. This latent space may be seen as an array of meaningful features to describe the raw data. The
red portion of the network refers to the classifier portion of the CNN. The classifier takes latent features as input
and tries to find meaningful combinations of these features to classify the signal as healthy or faulty.

Furthermore, note the naming and numbering beneath the relevant layers. As described earlier, the trend of
increasing kernel numbers with decreasing kernel size is seen in this network. Additionally, note that all
max-pooling layers are of size 2, the minimum required amount for information compression.

This architecture removes the regularisation layer once every second CPR block. The choice was made to copy
the architecture directly from Han et al. (2019a), without deviation, therefore the omission of the dropout layers
every 2 blocks are copied.

As a final note, note that from the large latent space representation of features, the information gets compressed
to 120 nodes, and then further to 64. Finally, these 64 nodes are combined to make the final prediction on the
health state of the input signal.
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With the architecture described, the necessary parameters to implement this model may be found in Table 3.1.

Table 3.1. Necessary parameters to set up the data-driven model in Tensorflow 2.

CNN Parameter Description Parameter Choice
Training Environment Google Colab
Batch Size 60
Input Data Size 4096
Convolutional Stride Length 1
Max-Pooling Stride Length 1
Dropout Rate Case Dependent
Hidden Layers Activation Function ReLU
Output Layer Activation Function Softmax
Optimiser Adam (Default Tensorflow Settings)
Loss Function Categorical Cross-Entropy
Weight Initialiser He-Uniform (Tensorflow)
Deep Learning Framework Tensorflow 2 (Google Colab)
Training GPU Tesla K80 (Google Colab)

By combining the illustration of the CNN with the tabulated values, the data-driven model may be constructed
within Tensorflow 2. Note that a fixed value for the dropout percentage is not given. This is because dropout is
case dependent and therefore will be varied to suit the desired dataset. Han et al. (2019a) recommend a dropout
rate of 0.5%, and this will be used by default.

3.2 Showcasing the hybrid approach for gearbox condition
monitoring

At this stage, we have two synthetic datasets from section 2.4 and the data-driven model defined in section 3.1.
Therefore, the hybrid approach may finally be described. An illustration of the proposed hybrid approach may
be seen in Figure 3.2.
The framework for developing the hybrid model may be split into multiple steps:

1. A single synthetic vibration signal is generated from the physical gearbox model. The gearbox model
requires fault parameter, speed, load and geometry information to generate a synthetic signal.

2. The steady-state portion of the signal is identified and cropped.
3. Within the steady-state portion, the signal is windowed to a single rotation of the input shaft. Single

shaft rotation points may be identified through the use of a tachometer. The benefit of a physical model
is that when the dynamics are solved, one automatically has full knowledge of the input shaft angular
displacement. Therefore, identifying single rotation windows is simple.

4. The windowed signal is resampled to 4096 points. This is necessary, as slight variations in shaft speed
may cause some windows to be longer than others. Furthermore, the CNN requires a fixed input data size.

5. The resampled, windowed signals are then standardised and compiled, along with their labels, into a
database.

6. Steps 1-5 are repeated for every possible fault type and intensity to be included in the database.
7. The database of different fault types and intensities may be fed to the CNN in batches of 60 for training or

testing.
8. If training:

(a) Dropout is turned on, as the model may potentially overfit on the data if regularisation is not
implemented.

(b) Labels are passed through the CNN, allowing the model to update the weights to best fit the given
training data.
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Figure 3.2. Illustration of the hybrid modelling framework. The top portion of the figure shows the result from
the physical model, namely synthetic, labelled signals. The bottom portion of the figure shows the data-driven
model, which utilises the output of the physical model to train a CNN.

(c) The weights may be updated by comparing the CNN’s predicted class label to the true class label.
9. If testing:

(a) Dropout is turned off, as the model is no longer adapting its weights, therefore no regularisation is
necessary.

(b) Labels are not passed the CNN, as the model is not adapting weights, only testing its performance
on an unseen dataset.

(c) The performance of the model may be evaluated against the true test set labels, to determine how
well the model generalises to unseen data.

The framework outlined above describes the method of operation for all future training and testing in this work.
If the hybrid model had to be applied to industry, the only difference to the framework above is that step 1 is
removed, and replaced with actual labelled accelerometer data. However, in practice labels may not be available.
In this case, the hybrid model is pre-trained with synthetic data as outlined above. After pre-training, the weights
are frozen. Finally, the real, unlabelled accelerometer data can then replace step 1, and only the testing portion
of Figure 3.2 will be utilised, where real gearbox conditions are predicted.

3.3 Concluding remarks
A proven data-driven architecture has been selected and fully defined. The necessary arguments have been
presented to justify the type of data-driven approach, namely a CNN. Furthermore, the architectural shape,
hyperparameters, loss functions and data considerations were all discussed and motivated.
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Finally, the full hybrid model framework has been proposed, and the method of combining the physical model
with the data-driven model has been shown. The hybrid model training procedure was described and serves as
the basis for how training will be implemented going forward. At this point in the work, it is sensible to test the
hybrid model from the generated datasets. Therefore, the following chapter focuses on identifying whether the
hybrid model approach is feasible.
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It has been stated that a hybrid model may solve the major drawbacks faced when employing a data-driven or
physics-driven approach in isolation (Kundu et al. 2020). However, the developed hybrid model from Chapter
3 has not yet been proven to work. Therefore, this chapter aims to set up a numerical experiment to test the
hybrid model. The main goal of this work is to understand how well the developed hybrid model works, but
furthermore, investigate how it may be adapted to apply to real industrial systems. Adaptation steps such as
modifications to the synthetic data, data pre-processing, and model calibrations may be necessary to apply the
hybrid model to industrial data.

The hybrid model is trained on synthetic data, which is generated in a controlled numerical environment.
However, if the hybrid model is ultimately implemented on an industrial gearbox, industrial data will be used,
which is not captured in a controlled environment. Industrial data may therefore differ from synthetic data
in multiple ways. For example, data captured on an industrial gearbox may be affected by factors such as
temperature, vibrational excitation from nearby machines, motor dynamic effects, dynamic loads, measurement
noise etc.

It is infeasible within the scope of this work to investigate all of these effects on the hybrid model’s capability
to classify faults. Therefore, this chapter will only focus on investigating the classification robustness of the
hybrid model in noisy environments. Noise is the simplest of the aforementioned effects to incorporate into the
existing datasets and is therefore chosen. As this work does not utilise industrial data, the generated datasets
from the previous chapter are used for the noise investigation. This implies that for the numerical investigation
to be completed, the synthetic datasets must be infused with noise.

An important part of training a data-driven model, and therefore the second half of the hybrid model, is good
quality data. It may prove useful to pre-process the noisy data by utilising signal processing techniques, making
the fault classification task simpler. Therefore, a second, but parallel investigation may be done to determine
the usefulness of signal pre-processing techniques for the hybrid approach. For this work, time-synchronous
averaging (TSA) will be used, as it is a well-known signal processing method to combat noise.

Therefore, the aim of this chapter is twofold:

• Firstly, the aim is to investigate the hybrid model’s classification accuracy in identifying multiple fault
types at varying intensities within a noisy environment.

• Secondly, the aim is to investigate whether the hybrid model classification accuracy can benefit from the
use of TSA.

The outline of the chapter is given in Figure 4.1. The first portion of the work focuses on pre-processing the
synthetic datasets and the second portion on investigating the classification accuracy of the hybrid model on the
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pre-processed datasets. A more detailed description of the process is given in the respective chapters denoted in
Figure 4.1.

Chapter 4.1 Data Pre-processing
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Figure 4.1. Outline of Chapter 4. The first portion of Chapter 4 focuses on pre-processing Dataset A-casing.
The latter portion of the chapter investigates the effect of different noise profiles as well as the application of
TSA on the hybrid model’s predictive accuracy.

For both investigations, Dataset A (based on the works from Luo et al. (2019b)) is used. Recall that Dataset
A is further split into Dataset A-pinion and Dataset A-casing, relating to the horizontal vibration of the pinion
gear (x1) and gearbox casing (x f ) respectively. In the investigations, Dataset A-casing is utilised. This choice
is not arbitrary: The faults are modelled directly on the pinion gear, therefore the x vibrations directly on the
pinion gear could potentially be much easier to classify. Therefore, to make the classification problem more
challenging, and closer to the industrial case, the choice is rather made to utilise the gearbox casing vibrations.
These vibrations comprise of multiple elements in the 10 DOF model, and may "hide" the faults more effectively.
Furthermore, it may be argued that in the industrial setup, accelerometers will likely be mounted on the gearbox
casing and this dataset will therefore be a better training dataset for a model which needs to be employed directly
in industry.

The first portion of this chapter sets out to pre-process the casing dataset. The pre-processing involves the
extraction of single rotation samples from Dataset A-casing, which are then infused with different noise profiles.
Next, the signals are re-standardised to ensure that all forms of data are internally consistent within the dataset.
This dataset is then recompiled as Dataset A-casing_noise. Finally, TSA is applied to the standardised, noisy
data to create a second dataset, namely Dataset A-casing_TSA.

The latter portion of the chapter contains the numerical investigations that aim to not only test the robustness
of the hybrid model in noisy environments, but also the efficacy of using signal processing techniques to aid
the hybrid model. This is followed by the showcasing of the investigation results and conclusions from the
investigations.

4.1 Synthetic dataset pre-processing
The simulation data containing the casing x-vibrations from Dataset A are used for this chapter. The vibrations of
interest are measured on a different location than where the fault is induced (on the pinion gear) and therefore this
dataset represents an adequate challenge for the hybrid model. Furthermore, three types of noise are introduced,
namely Gaussian noise, Laplacian noise and student-T noise with 2 degrees of freedom.
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The motivation for adding noise, as stated earlier, is to investigate how accurately the hybrid model can classify
faults within a noisy environment. To further test how different noise profiles may affect the hybrid model
accuracy, three different noise profiles are used. Gaussian noise is a common assumption and may serve as a
baseline. Laplacian and student-T noise distributions have larger tails, and therefore more impulsive noise is
expected. Therefore, these noise profiles may serve as references to see whether impulsive noise affects the
hybrid model’s predictive performance over the shorter-tailed Gaussian noise.

Pre-processing of Dataset A-casing is necessary to include the noise profiles outlined above. Furthermore,
before TSA can be applied, the noise has to be infused into Dataset A-casing. Therefore, the necessary steps to
transform Dataset A-casing to the noise-infused Dataset A-casing_noise and finally Dataset A-casing_TSA is
outlined below:

1. Extract the single rotation portions from Dataset A-casing.
2. Add unique noise at a certain noise level to each rotation sample and restandardise the signal relative to a

noise-infused healthy sample. Append the sample to Dataset A-casing_noise.
3. Apply time-synchronous averaging (TSA) to Dataset A-casing_noise to obtain Dataset A-casing_TSA.

The following sub-sections aim to detail the steps above.

4.1.1 Noise modelling and standardisation

As outlined in Figure 4.1, we start by extracting a single rotation sample from Dataset A-casing, si, j. This sample
signifies the jth full rotation window within the ith full-length steady-state portion of the simulation. This single
rotation is infused with noise, according to a certain noise level (defined shortly).

To make the three noise profiles comparable, we simulate the distributions to be as standard as possible, and then
scale the distributions to match a certain noise level. For the standard distributions, the Gaussian is assumed as
zero mean with unit variance. The Laplacian distribution utilises a location of zero and a scale of one. Finally,
the student-T utilises 2 degrees of freedom.

A Gaussian noise profile is a general assumption from literature, whereas a Laplacian or student-T noise profile
will simulate thicker tails, corresponding to more impulsive noise, which may be closer to industrial noise
profiles. Zak et al. (2017) conducted work related to a heavy-duty gearbox operating in a harsh environment.
They state that the signals of interest within such an environment are expected to be impulsive. They continue
to state that models of industrial data are moving away from Gaussian noise profiles to more impulsive noise
profiles. Therefore, the investigation is well suited to determine how less impulsive (Gaussian) and more
impulsive (Laplacian and student-T) noise profiles affect the hybrid model’s classification performance.

To determine the exact amount of noise to be added, a signal to noise ratio (SNR) value is defined. For this work,
a SNR of 1 is chosen. This implies that the power of the noise is equal to the power of the signal. One may also
define the SNR in terms of a decibel scale, which is used for this work as follows:

SNR =

(
RMSsignal

RMSnoise

)2

(4.1)

SNRdb = 10log10(SNR) (4.2)

where RMS refers to the root mean square of the signal. It is initially unclear how one must manipulate the noise
parameters to correspond to the relevant RMS. Therefore, a more general approach is taken. Firstly, the RMS of
the signal is determined. This is a known value and is simple to calculate. Then, knowing the predefined SNRdB
value, we rewrite equation (4.1) and substitute it into equation (4.2) as follows:

RMSnoise = RMSsignal×10−
SNRdB

20 (4.3)

This is adequate information to calculate the required RMS for the noise to result in the necessary SNRdB.
However, it is still unclear how one should adjust the parameters of the noise profiles to correspond to the
required SNRdB. Therefore, instead of developing mathematical relations between noise RMS and noise
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parameters, a simpler approach is followed. A standard noise distribution is created (zero mean, variance of one,
scaling parameters of 1 etc.) and the RMS of this standard noise distribution is determined. Depending on what
the required noise RMS is, a scaling factor is calculated with which all values in the noise profile are multiplied
to obtain the necessary SNRdB. Thus:

SF =
RMSnoise,required

RMSnoise,de f ault
(4.4)

where RMSnoise,required refers to the value from equation (4.3) and RMSnoise,de f ault refers to the noise generated
by the default noise parameters described earlier. Therefore, one multiplies the default noise profiles with SF
to correct the noise amplitude to the correct RMS value. This results in noise signals labelled ni, j, which have
corresponding indices directly related to the synthetic signals si, j. At this point the final noisy signal (xi, j) is
found by applying:

xi, j = si, j +ni, j (4.5)

As a final step, the noise-infused signals are standardised. The process is identical to Chapter 3.2. Therefore, the
standardised noise-infused signal is generated from:

xn|i, j =
xi, j− x̄r

σxr

(4.6)

where xn|i, j refers to the standardised signal for the jth rotation of the ith normalised, noise-infused sample. x̄r
and σxr refer to the mean and standard deviation of the reference signal, respectively. The reference signal, as
described in Chapter 3.2 is set as the healthy case, where no faults are present.

At this point a discussion is necessary to explain the construction of Dataset A-casing_noise: Dataset A_casing
contains four fault types, with 20 different fault intensities, and J full rotations, all arbitrarily simulated on the
fifth gear tooth. Therefore, Dataset A_casing contains a matrix of 80 (4×20) by J unique signals. However, this
dataset fails to account for faults on different pinion teeth. Since signals are aligned according to single shaft
rotations, this implies that this dataset always contains faults in the same phase of rotation. This will lead to a
strong bias when training the hybrid model, as it will only have examples of faults on the fifth gear tooth. It is
therefore important to expand the dataset to include examples from each possible pinion tooth.

Dataset A_casing is constructed from a 10 DOF model which has 16 pinion gear teeth. Therefore, to construct
Dataset A-casing_noise, the data from Dataset A-casing is generated 16 times over (once for each tooth location),
each time with the 80 unique signals of J rotations for each tooth. Therefore, Dataset A-casing_noise contains
1280 unique signals of J rotations. These unique signals, however, only represent a single example for each
possible fault type, intensity and location. Therefore, to include multiple unique samples for any given fault
type and intensity on a tooth, the dataset is generated five times over. That is to say, for a given tooth, with a
given fault and given intensity, five examples with J rotations are generated, infused with noise as outlined above
and appended to Dataset A-casing_noise. This results in a dataset with 6400 (4 fault types ×20 intensities ×16
pinion teeth ×5 duplications) unique samples, with J rotations each.

Finally, since only the first fault intensity is representative of a healthy gearbox state, and nineteen other
intensities represent a fault state, the number of healthy samples are expanded. The dataset may be roughly
balanced to contain equal parts healthy and fault samples, by generating a healthy signal for every other signal
generated. That is to say, 6400 unique healthy signals, with J rotations each is generated. Therefore, the final
noise dataset, Dataset A-casing_noise, consists of 12800 unique signals, each with J rotations. This process is
repeated for each noise case.

A single set (i) of J standardised noise signals for all three noise cases are seen in Figure 4.2. These signals
represent a crack fault on the fifth gear tooth. It is clear that the Laplacian noise is more impulsive and is a
direct function of the larger tails of the Laplacian distribution. We do however only observe a slight difference
from the Gaussian noise, with no major outlier values being seen. When looking at the student-T distribution,
however, one sees much larger impulsive behaviour. This is once again attributed to larger tails associated
with this distribution. This distribution leads to some large outliers, which imitates random impulses found in
industry-type signals (Schmidt et al. 2020).
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Figure 4.2. Illustration of J rotations’ worth of noise-infused signals. Signal amplitudes are shown as a function
of the pinion gear rotation angle. Note that these are the resampled signals and therefore contain 4096 data
points.

The Gaussian noise does not fully hide the crack fault but does seriously impede its detection, at least in the time
domain. The more impulsive Laplacian and student-T noise fully hide the crack faults, making the diagnostic
task extremely difficult.

4.1.2 Noise dataset adaptation: Signal processing through time-synchronous averaging (TSA)

As a measure of eliminating some of the noise, a simple time-synchronous averaging (TSA) technique is applied
to the noise-infused signals. In this work, TSA may be applied to align with pinion gear or driven gear rotations.
Since the faults are induced on the pinion gear, the decision is made to take averages over full pinion shaft
rotations. This is necessary, as this aligns the samples, such that the fault signal always occurs in the same phase
within the rotation. If the driven shaft rotations were used, the fault signals would be averaged out of phase and
would not be detected. The TSA is defined, using the existing notation as:

T SA = yi =
J

∑
j=1

xn|i, j
J

(4.7)

where J refers to the number of full rotations initially extracted from si. The result will be i signals, each having
been averaged over their respective J noise infused signals. For this work, six full rotations are extracted per 0.4s
simulation. Ideally one would utilise more rotations, as TSA averages out the noise. The average of the noise
becomes closer to the expected value, with increasing numbers of signals to average over. Therefore, a longer
simulation of 4s was used, resulting in J = 60 rotations. The resulting TSA signals (for the same crack fault) are
seen in Figure 4.3. The process is repeated for each set of samples from Dataset A-casing_noise to generate a
second dataset, Dataset A-casing_TSA. This dataset has the same shape as Dataset A-casing_noise, except all J
rotations are averaged away. Therefore, Dataset A-casing_TSA consists of 12800 unique TSA signals, with a
single time-synchronised rotation sample. Once again, this process is repeated for each noise case.

The benefits of using TSA in the hybrid modelling process is clear. TSA attenuates the noise components and
makes it possible to see the crack damage. One can observe that the cracks are more easily discerned in the TSA
case (Figure 4.3), compared to the normal noisy case (Figure 4.2). When looking at the different noise cases, it
becomes clear that the TSA removes most of the noise from the Gaussian and Laplacian cases, but that there
are still some slight remnants of impulsivity in the student-T case. This statement is not be taken at face value
however, as the numerical investigations to follow investigate the hybrid model’s fault classification accuracy for
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TSA: Gaussian Noise

TSA: Laplacian Noise
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Figure 4.3. Illustration of the resulting signals after 60 rotations’ worth of data used for the TSA.

each noise case. This allows one to draw comparisons between the effect of different levels of noise impulsivity
on fault classification accuracy of the hybrid model.

4.2 Numerical investigations
With the two datasets constructed, the numerical investigations may be detailed. Firstly, note that two datasets
are utilised for the investigations, namely Dataset A-casing_noise (See Figure 4.2) and Dataset A-casing_TSA
(See Figure 4.3). Recall there is a strong bias towards healthy data in both datasets, as there are five classes,
but half of the data is taken up by this single healthy class. This decision was made intentionally: The hybrid
model is rewarded more for classifying a signal as healthy, due to there being more healthy examples relative to
any one fault class. This data imbalance serves as a method to bias the network to minimize if not completely
remove false positives. False positives in a fault detection scenario could cause unnecessary maintenance and
should be avoided.

Dataset A-casing_noise contains 12800 samples, but with J = 60 rotations for each sample. This implies that the
two datasets are not currently directly comparable, as Dataset A-casing_TSA only has a single rotation (the TSA
signal) for every sample. Therefore, to make the datasets comparable, the first rotation from Dataset-A_casing is
taken, and the other 59 rotations are discarded. The breakdown of the datasets for the noisy or TSA case may
be found in Table 4.1. Note that six datasets are essentially created, three from each noise type being studied

Table 4.1. Breakdown of the data for the three different noise cases, for either the noisy or TSA case.

Class Gaussian Dataset:
No. Samples

Laplacian Dataset:
No. Samples

Student-T Dataset:
No. Samples

Healthy 6400 6400 6400
Crack 1600 1600 1600
Chip 1600 1600 1600
Spall 1600 1600 1600
Pit 1600 1600 1600

(Gaussian, Laplacian and student-T) and two for the two processing cases (noise only and TSA). Further note
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that within each class (except for the healthy class), the samples are further sub-divided into 20 fault intensities,
with 1 being healthy and 20 being the maximum fault to be induced. These faults are clearly outlined in Chapter
2.4.3.1.

With the datasets fully defined, the setup of the numerical investigation may receive attention. Six main
investigations are conducted (one for each of the six datasets outlined in the previous paragraph), where the
hybrid model is fed the synthetic datasets and tasked with minimising the cross-entropy loss. The hybrid model
is tasked with identifying the exact class from which a signal is drawn, i.e. fault type classification. Therefore, a
multi-class classification problem is being undertaken. The goal of these six experiments is to draw two main
conclusions:

• How do different levels of impulsive noise affect the fault classification task of the hybrid model?
• How useful are signal processing techniques as pre-processors for hybrid (or data-driven) models?

Therefore, the following structure is set up: The datasets (outline in Table 4.1) are all randomly split such that
66.7% of the data is utilised for training and the remaining 33.3% for testing. Within the training dataset, 20%
of the data is reserved as a validation dataset. The validation dataset serves as a test for when the network starts
overfitting the training samples. When this happens, the accuracy between the training set and the validation set
diverge. At this point, the training is stopped and the weights from that epoch are taken as the final model.

After some preliminary testing, a dropout rate of 10% seemed to be more than sufficient to regularise the model.
Batch sizes of 256 samples are used. Both these values are different from the default parameters given in Chapter
3.1.4 and 3.1.6. As mentioned in Chapter 3.1.6, these values are only default values and can change depending
on the experiment and available GPU memory. With some experimentation, these values were shown to work
well, and are thus changed from the default recommendations.

Finally, each classification experiment is run 5 times to generate a more meaningful interpretation of the model’s
classification capabilities and to try and quantify the uncertainty between experimental runs. This concludes the
setup of the experiment, and all that is left is to train the hybrid model to classify different fault types.

4.3 Experimental results
The results of all six experiments are compiled into Figure 4.4. The left half of the figures represent the case
where no signal processing was done beforehand (called the noisy case) and the right half of the figures indicate
the case where TSA has been applied. Looking down the rows, the top row indicates the results for Gaussian
noise, with the middle row indicating the results for Laplacian noise and the bottom row results for student-T
noise.

For each figure, six results are being plotted simultaneously. The red, blue, yellow and purple results respectively
refer to the model accuracies for the crack, chip, spall and pit type faults at varying intensities. The black result
plots the overall model classification accuracy for a given fault intensity. Finally, the green result represents the
percentage of faults that are labelled as healthy samples. This result aims to showcase the value of the model as
a raw fault detector. Therefore, the lower this result (except for the lowest intensity case, which represents a true
healthy case, and thus 100% success is wanted), the better the model will do if it was to be implemented as a
simple anomaly detector. That is to say, if the model were only trained to detect the presence of faults, but not
label the fault type, this is the curve that results.

The bands around the parameters refer to one standard deviation over the 5 experimental runs. These figures
alone do not tell the full story, however, and calibration is needed. Recall that in Chapter 2.4.3.1 a relative
fault area (RFA) metric was created (equation (2.113)), which aimed to make results between different fault
intensities more comparable. Therefore, the compilation of results in Figure 4.5 shows the corrected results
according to relative fault area. As a reminder, the RFA represents the relative area between the fault and the full
area of the plane the fault acts upon. As an additional insight into the success of the hybrid model, confusion
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(a) No pre-processing applied (Noisy).
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(b) TSA pre-processing applied.

Figure 4.4. Comparison between each fault class’ classification accuracy for different fault intensities. The top
row shows the results for Gaussian Noise, the middle for Laplacian and the bottom for student-T. One standard
deviation of results is given by the transparent bands.
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(a) No pre-processing applied (Noisy).
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(b) TSA pre-processing applied.

Figure 4.5. Compilation of each fault class’ classification accuracy for different relative fault areas. The top row
shows the results for Gaussian Noise, the middle for Laplacian and the bottom for student-T. Standard deviations
of results are given by the transparent bands. All results above 50% RFA are removed for clarity.
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matrices for each experiment are given in Figure 4.6. The shown results are the compiled result over all five
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Figure 4.6. Compilation of confusion matrices over the five classes. Each figure shows the confusion matrix
over all 5 runs of an experiment compiled into a single matrix. The title of the graphs indicates the noise type,
pre-processing method and the overall model classification accuracy, followed by one standard deviation of
results.

runs. Therefore, it may be seen that for the healthy class, over all six experiments, not a single sample was
misclassified. The following section will discuss the given results.

4.4 Discussion of results
When comparing the results of Figure 4.4 and Figure 4.5, it immediately becomes clear that the experiments
without any TSA all suffer severely in classification accuracy. This is most likely because the noise hides most of
the faults making classification of faults at low intensities impossible. When looking at the confusion matrices in
Figure 4.6, it also becomes clear that having data that has gone through signal processing, results in an immediate
classification accuracy increase of about 13-16%. Therefore, it is without a doubt a good idea to apply useful
signal processing techniques as pre-processors for hybrid (or data-driven) models.

With the usefulness of TSA being proven, the focus now turns to the set of results that are concerned with TSA
approaches. That is to say, no further conclusions will be drawn from the noisy results (Figure 4.4(a), 4.5(a) and
4.6(a)), as they are quite poor. Therefore, the discussion to follow is only relevant to the TSA cases.
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Firstly, it will prove valuable to look at the fault classification capabilities of the hybrid model for the three noise
cases. It is quite clear that there is a strong imbalance between the crack fault case compared to the other fault
types when looking at Figure 4.5(b). However, this is a good test for the model to see how it handles data of
vastly varying fault intensities. For comparison, a fully broken tooth is present at the 20th crack fault intensity,
leading to a 100% RFA value. However, the maximum fault value from any other fault was around 16%. This
strong discrepancy should showcase the robustness of the model to not overfit to the crack class, which has really
strong fault signals compared to the other three types.

When looking across all three results from Figure 4.5(b), a trend becomes clear: For a given RFA, spalls are the
easiest fault type to identify (although they seem more difficult to detect for very small sizes), followed by pits
then chips then cracks. These results only hold for the RFA metric, as it is the only metric proposed to somewhat
standardise results across faults.

Furthermore, one sees that at about 7% RFA, all spalls were mostly identified correctly, with pits reaching near-
perfect results at around 15% RFA. Chips seemed to struggle even more, never really reaching full classification
success, but seem to be close to 100% classification success at an RFA of around 18%. Finally, cracks only seem
to converge to fully identifiable faults at an RFA of around 27%.

The conclusion to be drawn from this limited experiment suggests that cracks could be the most difficult fault
type to recognise at low intensities. This statement is supported by the literature: Wu et al. (2008) applied
multiple statistical indicators to simulated crack faults of varying depths. All statistical indicators were shown to
be incapable of identifying cracks up to around 40% propagation into the tooth. Therefore, it seems as if cracks
at low intensities are difficult to detect.

Spalls are seen to be the easiest fault type to identify. When referring to the stiffness graphs of the fault types
(Figure 2.31), one can gather some insight into why this is. The fault types which result in a more sudden
stiffness reduction, such as spalls and pits, are the easiest to identify early on. However, the fault types which
result in smooth and continuous stiffness reductions, such as chips and cracks, are much harder to identify. This
makes physical sense, as the sharper stiffness drops can be associated with larger impulses on the gearbox,
leading to stronger identifiability.

When moving along to a noise comparison, the results from Figure 4.4(b) become more useful, as they contain
two extra metrics. When looking at the variance bars around the results, it is clearly shown that Gaussian
noise results in more consistent model accuracies, whereas the more impulsive Laplacian and student-T results
showcase a greater variance in model performance. It was found that the total model accuracy for the Gaussian
set was 83% over all classes, with a standard deviation of 1%. The Laplacian and student-T results were tied at a
slightly lower 82% accuracy with a larger 3% variance.

This is an important finding, as it suggests the model’s accuracy in practice may vary slightly based on the
impulsivity of surrounding noise. Overall, however, the current hybrid model seems to be quite robust against
noise, when combined with a powerful pre-processor such as TSA.

Besides the slight variability in model accuracy between noise types, it proves informative to look at the green
metric, which indicates the percentage of healthy results labelled as healthy (for fault intensity 1) and the
percentage of fault cases labelled as healthy (fault intensities 2 through 20). The lower this value, the better,
since the rejection of a fault sample (even if it is misclassified) as a healthy case, makes for a strong anomaly
detector. It is seen that only around very high fault intensities (18) does the model become a really strong
anomaly detector. However, respectable results are already seen around the 10th fault intensity, where around
80% of fault samples are correctly identified as a fault. These results hold over all three noise cases.

A final trend may be seen, which serves as a sanity check: As the fault intensity increases, so too does the
identifiability of the fault type and a decrease in the variance of model performance. Therefore, as the faults
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become larger, the model simultaneously becomes more aware and certain of their presence. This makes physical
sense, as larger faults should inherently be more identifiable, and in turn, should lead to less variance during
prediction.

As a final piece of experimental information, the confusion matrices from Figure 4.6(b) prove useful. Firstly,
when looking at the number of healthy samples identified as healthy, we see that for all noise types the model is
100% accurate. This is a good result, as it showcases the model’s ability to restrict false fault classifications,
which as mentioned earlier are undesirable in industry. This naturally comes with the trade-off that fault samples
will be misclassified as healthy, but the author believes that this scenario is more acceptable (at lower fault
intensities) compared to continually misclassifying healthy samples. When referring back to figure 4.4(b), we
see that after fault intensities of size 17, all faults are correctly classified as faults. Therefore, although the model
misclassified faults as being healthy, the model fully identified faults when their intensity grew large enough.
This is highly desirable behaviour, and shows that the model is capable of identifying a true health state, but also
a true fault state, given a large enough fault intensity.

When looking at the number of times a fault was misclassified as healthy, it is seen that chips are the most likely
class to be mistaken for a healthy case over all three noise types. This is important from an anomaly detection
perspective. If a simple anomaly detector is set up, a chip signal will more likely register as a healthy signal
rather than a fault signal. This may therefore suggest that although cracks were seen to be the hardest fault type
to identify, from a pure anomaly detection perspective, chips might be the more difficult task.

4.5 Concluding remarks
In conclusion, two new datasets were developed for the numerical investigations of this chapter, namely Dataset
A-casing_noise and Dataset A-casing_TSA. These datasets were used to compare the usefulness of signal
pre-processing techniques in improving the hybrid model classification accuracy. Furthermore, the datasets were
used to identify the effect of impulsive noise types on the classification accuracy of the hybrid model. A few key
points were identified from the numerical investigations.

Firstly, TSA was proven to be a valuable pre-processing technique and dramatically improved the performance
of the hybrid model. This was because TSA aims to reduce noise within a signal, which in turn increases the
identifiability of smaller faults.

Secondly, the hybrid model proved to be quite robust against the more impulsive noise types but did show a
slight drop in accuracy, as well as a higher variance for more impulsive noise types. This was not large, however,
and therefore the model seems to perform quite well in an environment with impulsive noise, assuming it is
paired with TSA.

When comparing the identifiability of faults, cracks and chips proved to be hard to identify at low fault intensities.
This is predicted to be a function of their smooth reduction on the gear mesh stiffness. Faults that produce more
sudden stiffness reductions were seen to be capable of being identified earlier.

Although the experiments were posed as a multi-class problem, the performance of the model as a simple
anomaly detector was also proven to be quite strong. The model seemed to perform well not only as a fault
classifier, with accuracies around 83% over all fault intensities but also as an anomaly detector, with 80% of
faults being detected at half of their maximum fault intensities.

With all these conclusions, the case has been made that the developed hybrid model, paired with TSA, seems
fairly robust against impulsive noise types and has shown to be capable of good fault classification capabilities.
Furthermore, the model has proved to be equally capable as an anomaly detector.
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This concludes the second novelty of the work, i.e. a hybrid gearbox model, which has been trained on multiple
fault types. To the author’s knowledge, this type of hybrid model has not yet been developed for a gearbox.

At this stage, a final key question remains: Has the hybrid model truly learnt the underlying fault mechanisms
to a strong enough degree that it will fare well in practice? It seems as if much of the literature focuses on
developing physical and data-driven models, but do not comment on how exactly they are to be applied to a
completely unlabelled industrial dataset. Although the developed hybrid model has been constantly verified
against existing works and has now been shown to be robust against a synthetic dataset, no comments can yet be
made as to how this model will fare against a completely different domain of data, similar to what is seen in
industry. This is the focus of the following chapter.
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Up to this point, a hybrid model for gearbox condition monitoring has been developed and shown to be capable
of distinguishing different fault types from one another. However, the performance of the hybrid model is only
known for the synthetic dataset it was trained on. It is still unknown whether the trained hybrid model will
classify faults equally well on a different dataset, ideally an industrial dataset. It is expected that the other
factors not taken into account up to this point (temperature, vibrational excitation from nearby machines, motor
dynamic effects, dynamic loads etc.) will lead to mentionable differences between the synthetic datasets and a
true, industrial dataset. Therefore, a form of calibration between the existing, pre-trained hybrid model and a
different dataset (ideally the industrial data) is required. This chapter is dedicated to developing a calibration
framework, to finally try and deliver a truly useful and proven model which may be ready to face industrial type
datasets.

Transfer learning (TL) is proposed as a strong method of calibration for the hybrid model. Transfer learning
tries to utilise knowledge from one domain and transfer it to a different domain. In this case, the "knowledge"
refers to the underlying structure between the input data and exit class prediction of the hybrid model. We
would therefore like to transfer this knowledge over to a different domain, or dataset, essentially calibrating the
pre-trained hybrid model to work on a different domain of data.

A TL framework is generally suited to problems that have two different domains of data: First, one requires a
large body of labelled data. This is known as the source domain. The source domain may have originated from
experiments or in this case a physical model. The key aspect of the source domain is that it contains labelled
data. Secondly, one has a second set of very limited and potentially unlabelled data, known as the target domain.
This target domain may be a different dataset, ideally the industrial dataset. Transfer learning tries to find some
mapping between the data in the source domain and the data in the target domain, to ensure model performance
stays consistent across different datasets.

TL is a relatively new field within machine learning and even newer in the field of condition monitoring. Within
transfer learning, various types of transfer learning approaches exist. The approach used in this work is known
as domain adaptation (DA) and has been popular in recent works. The problem currently addressed by DA
techniques is that within the same NN, one finds two distinct sets of feature mappings in the latent space: one
for the source and one for the target domain. This discrepancy between feature distributions arises due to the
input data to the network between source and target domains being different.

DA attempts to find a mapping between the latent features within the source and target domains and align
them. If one can simultaneously extract features that are meaningful (high classification success in source
domain) and also domain invariant (source and target domain latent distributions look similar), one can most
likely also achieve a similar classification accuracy within the unlabelled target domain. This is a powerful
idea, but one needs to find a viable method to align the domains. The following subsections discuss two
existing solutions to the domain alignment problem. These are maximum mean discrepancy convolutional neural
networks (MMD-CNN) and deep adversarial neural networks (DANN).
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The remaining portion of the chapter is structured as follows: Firstly, a thorough description of the mathematical
definitions behind training a standard CNN will be given. This is important, as it eases the explanation for
the content to follow. After the training process is outlined, the two DA techniques’ architectures and training
structures will be given. Finally, numerical experiments will be set up to test the efficacy of these techniques
as a calibration mechanism. The results will be discussed and concluding remarks will be made on these
techniques.

5.1 Preliminary theory: A formal outline for training a
CNN

The task of training the CNN may be described as a loss minimisation problem. Before showing the mathematical
constructs to achieve this, refer to Figure 5.1. This figure visually explains which portions of the network are
being referenced when speaking of a "feature extractor", "label classifier" and the "latent features".
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Figure 5.1. CNN structure used to optimise a classification task. Take note of the various portions of the CNN
and their respective symbols. A batch of samples xs is passed through the feature extractor, at which point it is
mapped to the latent space. This latent space representation is then passed through the classifier, which predicts
the classes of the original batch of samples. This prediction is compared to the true set of batch labels, ys to
generate a loss. This loss is then backpropagated back through the classifier (orange arrow) and extractor (green
arrow) to update the network weight parameters (θf,θy).

The classification loss for this work employs cross-entropy loss, as this is suited to a classification problem. The
classification loss (Ly) for a batch of samples may therefore be defined as:

Ly,C(G f (Gy(x)),y) =−
1

C ·N

C

∑
c=1

N

∑
i=1

yi,c · log(G f (Gy(xi))) (5.1)

where G f and Gy refer to the feature extractor and label classifier portions of the CNN. Furthermore, G f 7→ Rp

and Gy 7→RC. N, C and p define the number of samples (in a batch), number of classes and number of features in
the latent space, respectively. The values of x and y represent the full batch of input data and the corresponding
one-hot encoded labels. The value of yi,c represents the true label for the ith sample in the batch.

As a special case for this formulation, a binary class cross-entropy is defined. The classification loss (Ly) for a
batch of samples from 2 classes only, is defined as:

Ly,2(G f (Gy(x)),y) =−
1

2N

N

∑
i=1

[
yi× log(G f (Gy(xi)))+(1− yi)× log(1− (G f (Gy(xi))))

]
(5.2)

where y has now changed from a matrix to a vector that contains the labels but is now coded with a binary value,
0 or 1, instead of being one-hot encoded as [0,1] or [1,0]. This vector is therefore of length N and yi now simply
refers to the ith label.

Therefore, for fault type detection, equation (5.1) may be minimised, and for simple fault detection, equation
(5.2) may rather be minimised. To minimise the classification loss, one may note that G f and Gy are comprised

Department of Mechanical and Aeronautical Engineering
University of Pretoria

98



Chapter 5 Transfer learning: A tool for hybrid model calibration

of parameters θ f and θy respectively. Therefore, the error function to be optimised may be defined as:

E(θ f ,θy) = Ly(θ f ,θy) (5.3)

where we try to optimise θ f and θy such that optimal parameters (θ̂ f , θ̂y) can be found:

(θ̂ f , θ̂y) = argmin
θ f ,θy

E(θ f ,θy) (5.4)

The optimisation algorithm to be used will be chosen on a case to case basis, but will either be steepest gradient
descent (SGD) or Adam. For the SGD case, the weight optimisation may be defined as:

θ f ,i+1 = θ f ,i−µ

(
∂Ei(θ f ,θy)

∂θ f ,i

)
(5.5)

θy,i+1 = θ f ,i−µ

(
∂Ei(θ f ,θy)

∂θy,i

)
(5.6)

where µ refers to the learning rate of the network and i refers to the training step.

5.2 Domain adaptation technique 1: Maximum mean dis-
crepancy

The first method of DA to be discussed is that of MMD. As stated earlier, the goal behind DA is to align the
source and target domains. This is also known as achieving minimal domain invariance. To minimise the
domain invariance, a good approach is to minimise the difference in latent feature distributions for each domain.
Therefore, if one has a loss function that can measure the difference between distributions in latent space, one
can directly optimise this distance to be a minimum. MMD aims to be such a measure of dissimilarity between
distributions.

MMD can be defined as a measure of the distance between feature means. MMD has rigorously been described
in other works, and will therefore not be given here, as it interrupts the flow of the work to follow. Instead, the
reader is referred to Borgwardt et al. (2006) for any leaps in mathematics made here. In short, for a source
domain with data XS and a mini-batch of samples xs and a target domain with data XT with mini-batch of
samples xt , the squared MMD (the squared variant has a property which will be discussed shortly) for a batch
of samples is defined as follows:

MMD2(xs,xt) = ||Exs∼XS φ(xs)−Ext∼XT φ(xt)||2H (5.7)

= Exx,xs ′∼XS k(xs,xs
′)+Ext,xt ′∼XTk(xt,xt

′)−2Exs∼XS,xt∼XTk(xs,xt) (5.8)

where k(x,y) = 〈φ(x),φ(y)〉. Here, k(·) refers to a kernel function and φ(·) refers to a specific representation
of the data input into the function. It has been shown for this squared formulation, that if a Gaussian kernel is
employed, a property exists that guarantees that if and only if two distributions are identical, the MMD will be 0
(Borgwardt et al. 2006). Therefore, this metric serves as a strong measurement of the distance between feature
distributions, and minimising this function during training may lead to domain invariant features. Note that the
form in equation (5.8) is inconvenient from a coding perspective. An empirical biased estimate of this value is
given in Gretton et al. (2012). Note that the biased version of the estimate is used for coding convenience:

MMD2(xs,xt) =
1

M2

M

∑
i, j=1

k(xs,i,xs, j)+
1

N2

N

∑
i, j=1

k(xt,i,xt, j)−
2

MN

M,N

∑
i, j=1

k(xs,i,xt, j) (5.9)

where M and N refer to the number of samples per batch for the source and target domains respectively.
Furthermore, note that the kernel function returns a matrix with rows representing the batch size and columns
too representing the batch size. Thus, the i and j indices correspond to the row and column value in the resulting
kernel matrix to be selected. In essence, we are simply adding together all the kernel matrix values and dividing
by the number of elements in the matrix, or more simply put: We are simply finding the mean kernel value.
This ties into the statement made earlier, stating that MMD is essentially a measure of distance between feature
means.

Note that the kernel matrix dimensions are comprised of the selected batch sizes. At this point, it is explicitly
stated that the source and target domain batch sizes will be made equal. Therefore, the final form of the squared
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MMD metric may be written as:

MMD2(xs,xt) =
1

N2

N

∑
i, j=1

k(xs,i,xs, j)+
1

N2

N

∑
i, j=1

k(xt,i,xt, j)−
2

N2

N

∑
i, j=1

k(xs,i,xt, j) (5.10)

where N is the fixed batch size across both domains.

At this point, a useful loss function has been derived, which is capable of meaningfully measuring domain
misalignment. Noting that the goal of DA is to minimise domain invariance, one may therefore manipulate the
structure from Figure 5.1, by placing the MMD loss as a secondary loss function directly after the latent feature
space. This modification is seen in Figure 5.2
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Target Samples: {xt; yt}

Label Classifier: Gy (ϴy)
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Figure 5.2. Modified CNN structure to incorporate MMD as a domain adaptation technique. Notice that the
modified network now has a second loss function Ld , which measures the difference between the latent feature
distributions of the two domains of input data. A batch of samples xs and xt are simultaneously passed through
the feature extractor, essentially forming one large batch. This batch of samples is then mapped to the latent
space. This latent space representation is then simultaneously passed to two network elements. Firstly, the latent
representations are passed through the classifier, which predicts the classes of the original batch of samples.
This prediction is compared to the true set of batch labels, ys and yt (if it exists) to generate a loss. This loss is
then backpropagated back through the classifier (orange arrow) and extractor (top green arrow) to update the
network weights (θf,θy). Secondly, the latent representations are directly utilised by the MMD loss function, to
generate a similarity loss between the source and target batches. This loss is then backpropagated through only
the feature extractor (bottom green arrow) to update the extractor weights (θf).

To align the domains, one would like to minimise the variance between the latent feature space for the two
domains at hand. Therefore, an MMD loss function is connected to the output of the feature extractor. The
domain loss may be defined as:

Ld(θ f ) = MMD2(Gf (xs,xt)) (5.11)

With this definition, the overall training loss function for the MMD-CNN may be modified as follows:

E(θ f ,θy) = Ly,s(θ f ,θy)+Ly,t(θ f ,θy)+λLd(θ f ) (5.12)

where s and t refer to the samples from the source and target domain respectively. Note that in a fully
unsupervised target domain, no target domain classification loss (Ly,t(θ f ,θy)) component will exist. The λ

parameter represents the relative loss contribution between the domain loss and the classification loss. This
parameter is simply inserted as a potential aid during training. To minimise the given training loss, we try to
optimise θ f and θy such that optimal parameters (θ̂ f , θ̂y) can be found:

(θ̂ f , θ̂y) = argmin
θ f ,θy

E(θ f ,θy) (5.13)
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Once again the SGD weight optimisation may be defined:

θ f ,i+1 = θ f ,i−µ

(
∂Ei(θ f ,θy)

∂θ f ,i

)
(5.14)

θy,i+1 = θy,i−µ

(
∂Ei(θ f ,θy)

∂θy,i

)
(5.15)

Note that if the form of equation (5.12) is observed, the feature extractor parameters (θ f ) are jointly optimised
from the classification loss and the domain loss, whereas the label classifier parameters (θy) are only optimised
from the classification loss. This fully covers the mathematical process behind the MMD-CNN. At this point, it
will prove useful to give a more process-based description of how this new network is trained. Before describing
the process, however, take note of the forward arrows in Figure 5.2. The solid and dashed outline arrows indicate
the flow of samples and features through the MMD-CNN for the source and target domains respectively.

The arrows after the label classifier indicate the flow of prediction labels from the source and target domain.
Further note that where arrows are hatched, it indicates that data need not necessarily be passed. This occurs
when labels are not present, such as an unsupervised target domain approach. Finally, the longer, backwards-
pointing arrows at the top and bottom of the MMD-CNN show the backpropagation route of the different loss
functions through the network and represent the optimisation algorithm at work. Now to describe the training
procedure:

Firstly, a simultaneous batch of source and target samples are fed to the feature extractor. Due to assumptions
mentioned earlier, these batches must be of equal size. Therefore, the input batch consists of N source samples
and N target samples to form a full batch of 2N samples. The source and target samples are then converted
through many convolutional layers until finally, they are output as vectors in a latent feature space. The feature
vectors are passed, without labels, to the domain loss function. No labels are required as MMD simply measures
the similarity between a set of distributions. The domain loss is calculated and backpropagated back through the
feature extractor to optimise for domain invariance.

Simultaneously, only the labelled latent features are passed as input to the label classifier. This will always
include source domain samples, but may also include target domain samples where labels exist. Therefore, this
framework is fully compatible with an unsupervised, semi-supervised or fully supervised target domain, making
for a robust training structure. The classification loss prediction is then derived from the input features and the
classification loss is calculated. The loss is then backpropagated through both the label classifier and the feature
extractor, to optimise for feature uniqueness.

The aim of this process is that the simultaneous backpropagation through the feature extractor will result in
unique, domain invariant features which reach high classification accuracies in both the target and source
domains. Note that target labels need not be present for this process. This works because the domain loss
function has the sole task of developing domain invariant features, implying that faults that produce one set
of feature distributions in the source domain, may also be the same fault in the target domain which produces
a similar feature distribution. If this is true, then the label classifier, which was solely trained on source data,
will still do a good job at identifying different fault types within the target domain. The optimism behind this
statement will be tested in the numerical experiments.

5.3 Domain adaptation technique 2: Adversarial domain
adaptation

The second method of DA investigated in this work involves a more adversarial approach. In this approach,
instead of directly measuring the distance between two distributions with some loss function, we hand the
problem down to a sub-NN which is tasked with finding its own internal representation for measuring domain
discrepancy. This sub-NN will be known as the domain classifier Gd , which is the adversary in the title of this
method. An illustration of the new architecture may be seen in Figure 5.3.
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Source Samples: {xs; ys; ysdom}
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Figure 5.3. Modified CNN structure to incorporate the deep adversarial approach as a domain adaptation
technique. Notice that the modified network now has a second classifier, namely Gd , which is the domain
classifier and a corresponding loss function Ld , which adversarially tries to determine the domain from which
the latent features came. A batch of samples xs and xt are simultaneously passed through the feature extractor,
essentially forming one large batch. This batch of samples is then mapped to the latent space. This latent space
representation is then simultaneously passed to two network elements. Firstly, the latent representations are
passed through the label classifier, which predicts the classes of the original batch of samples. This prediction is
compared to the true set of batch labels, ys and yt (if it exists) to generate a loss. This loss is then backpropagated
back through the label classifier (orange arrow) and extractor (top green arrow) to update the network weights
(θf,θy). Secondly, the latent representations are passed to the domain classifier, which predicts which domain
the batch of latent features come from. This prediction is compared to the true domain from which the batch
of samples came from, ysdom and ytdom, to generate a domain loss. This loss is then backpropagated through
the domain classifier (purple arrow) to optimise the domain classifier’s weights (θd) towards better domain
prediction accuracy. At the gradient reversal layer (GRL), the backpropagation signal is inverted and passed
through the feature extractor (bottom green arrow) to update the extractor weights (θf).

The approach outlined in Figure 5.3 is known as a deep adaptation neural network (DANN). The main
distinguishing factor between the baseline CNN and DANN, is the domain classifier. The domain classifier
receives the latent feature vectors paired with labels indicating the domain from which the features came. The
domain classifier is then optimised to discern the domain of origin for a given feature distribution. Simultaneously,
we use this optimisation to adversarially train the feature extractor to produce domain invariant features to
confuse the domain classifier. This adversarial approach therefore aims to simultaneously train a feature extractor
that delivers domain invariant and meaningful features.

The current uncertainty with this approach is defining how the feature extractor should be updated such as to
minimise the success of the domain classifier. A brilliant suggestion made by Ganin et al. (2017) (the first work
to utilise this adversarial structure), is to employ a gradient reversal layer (GRL). The GRL acts as a normal
pass-through layer during forward propagation. However, during backpropagation, the gradients determined by
the optimisation process are reversed. At first, this seems counter-intuitive, but upon further investigation, this is
a good suggestion:

The backpropagation process of NNs utilises error gradients to update parameters in such a manner as to
minimise a certain loss function. However, one can argue that if this gradient update was reversed, the opposite
will be achieved, i.e. maximisation of loss. This is where the gradient reversal layer plays a role. Although
the gradients within the domain classifier represent the optimal step to minimise the domain classification
error, a reversal of this gradient before being backpropagated to the feature extractor would therefore serve to
maximise the domain classification error. This gradient reversal layer therefore acts to make the training process
an adversarial one, where the first half of gradient backpropagations (in the domain classifier) aim to minimise
domain classification error and the second half (in the feature extractor) aim to maximise domain classification
error. Paired with the label classifier gradients, the feature extractor is simultaneously optimised for meaningful
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and domain invariant features. Notice that this process requires no complicated loss function, rather just domain
labels and a simple binary cross-entropy loss function for the domain predictions.

The formal definition of the process outlined above requires two losses that need to be optimised, namely:

Ly(θ f ,θy) = Ly,C(θ f ,θy) (5.16)

Ld(θ f ,θd) = Ly,2(θ f ,θd) (5.17)

where θd refers to the parameters within the domain classifier. With the loss functions defined, the joint loss
function of the network may therefore be defined as:

E(θ f ,θy,θd) = Ly,s(θ f ,θy)+Ly,t(θ f ,θy)−λ
[
Ld,s(θ f ,θd)+Ld,t(θ f ,θd)

]
(5.18)

where λ once again serves as a parameter that may be used to define the relative contribution between the
domain classifier and the label classifier, and need not be a constant value throughout the optimisation process.
Ganin et al. (2017) dynamically increase this value throughout optimisation. Note that the loss function is
reduced by the domain loss terms (Ld(θ f ,θd), which is a direct result of the GRL. Also note that for the case of
an unsupervised target domain, the target domain classification loss (Ly,t(θ f ,θy)) will not exist. The domain
classification loss (Ld,t(θ f ,θd)) must however still exist, as the labels from the domains are known. Finally, the
optimisation goal of the adversarial setup may be defined as follows:

We try to optimise θ f , θd and θy such that optimal parameters (θ̂ f , θ̂y, θ̂d) can be found through a min-max
problem:

(θ̂ f , θ̂y) = argmin
θ f ,θy

E(θ f ,θy, θ̂d) (5.19)

θ̂d = argmax
θd

E(θ̂ f , θ̂y,θd) (5.20)

Note that this formulation requires a saddle point to be reached, as it is an adversarially posed min-max problem.
The domain classifier tries to maximise the loss function due to the way it is set up in equation (5.18), with
a reversed sign. Maximisation of the loss function will therefore result in a stronger domain classifier, which
will serve as a stronger adversary. However, we simultaneously try to minimise the loss function using the
feature extractor and label classifier, which tries to overcome the adversary. Therefore, in error space, the
optimisation is trying to reach a saddle point which results in the strongest adversarial component possible for
the minimum classification error possible. Therefore, once a saddle point is reached, the network may be said to
be optimised.

Note the elegance of this method: Usually generative adversarial networks (GANs) are employed to reach such a
min-max optimisation problem, whereas this adversarial approach is somewhat simpler and easier to implement.
Finally, for the SGD case, the gradient updates may be given as:

θ f ,i+1 = θ f ,i−µ

(
∂Ei(θ f ,θy,θd)

∂θ f ,i

)
(5.21)

θy,i+1 = θ f ,i−µ

(
∂Ei(θ f ,θy,θd)

∂θy,i

)
(5.22)

θd,i+1 = θ f ,i−µ

(
∂Ei(θ f ,θy,θd)

∂θd,i

)
(5.23)

At this point, the mathematical description of the optimisation problem is fully described, and it will prove
useful to give a general overview of the training process involved in the adversarial approach.

Referring to Figure 5.3, note once again that solid and dashed arrows are present, representing the source and
target domain data flow for forward propagation, respectively. The arrows exiting the label classifier represent
the predicted class label for the source and target domain samples. The arrows exiting the domain classifier
represent the predicted domain label for the source and target domain samples. After the feature extractor, the
target domain’s arrows are hatched. This indicates that in the case of an unsupervised target domain, this data
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flow does not occur and can be neglected. With this information, the process required to implement DANN may
be described in full:

Firstly, a simultaneous batch of source and target samples are fed to the feature extractor. Due to assumptions
mentioned earlier, these batches must be of equal size. Therefore, the input batch consists of N source samples
and N target samples to form a full batch of 2N samples. The source and target signals are then converted
through many convolutional layers until finally, they are output as a latent feature space. The feature vectors are
passed, with their domain labels, to the domain classifier. The domain classifier then further tries to predict with
a single output the domain from which the latent feature sample has come. The domain loss is then calculated
and firstly backpropagated through the domain classifier to optimise domain classification. However, just before
reaching the latent feature layer, the gradients are reversed and backpropagated through the feature extractor to
optimise for domain invariance. Note that the domain classifier must be optimised to more easily predict the
domain of origin for features, as any adversarial approach relies on a strong adversary to generate equally strong
features to fool the adversary.

Simultaneously, only the labelled latent features are passed as input to the label classifier. This will always
include source domain samples, but may also include target domain samples where labels exist. Therefore, this
framework is fully compatible with an unsupervised, semi-supervised or fully supervised target domain, making
for another robust training structure. The classification loss prediction is then derived from the input features and
the classification loss is calculated. The loss is backpropagated through both the label classifier and the feature
extractor, to optimise for feature uniqueness.

The expectation for DANN, is that the simultaneous backpropagation through the feature extractor will result in
unique, domain invariant features which will reach high classification accuracies in both the target and source
domains. In the unsupervised target domain case, no classification labels are required. It is expected that
the adversarial domain classifier will optimise for domain invariant features, such that if the label classifier
reaches high accuracies on the labelled source domain, the same should be true for the target domain, as the
latent features spaces are as close to identical as possible. The validity of this claim will be tested in the next
section.

5.4 Numerical experiment: Transfer learning as a calibra-
tion tool

The overarching goal throughout this work has been the development of a hybrid model for gearbox condition
monitoring. Chapter 4 showed that the hybrid model is perfectly capable of detecting different fault types at
various intensities on different teeth of a pinion gear. However, this success is constrained to the synthetic
dataset on which the hybrid model was trained. Currently, we have no indication as to how a pre-trained
hybrid model will perform on a different dataset, such as for a real industrial gearbox. It is expected that a
discrepancy will exist between the synthetic data and real data, as discussed in the introduction to this chapter.
Therefore, transfer learning is proposed as a tool to calibrate the hybrid model, minimising the differences
between a synthetic dataset and a real dataset. Before real data is used, however, it may be advantageous to test
the calibration methods in a pure numerical environment, where external variables may be controlled. If the
numerical experiments show promise, we may move along to industrial data 1.

Therefore, this chapter sets out to set up numerical experiments with two main goals:

1. To determine whether a pre-trained hybrid model can be applied directly to a different (but related) dataset,
and maintain high accuracy.

2. To determine whether transfer learning may be used to calibrate the differences between two different (but
related) datasets, resulting in a higher fault detection accuracy when compared to an uncalibrated hybrid
model.

1For this work, no industrial data was available and therefore experiments with real data is left as future work

Department of Mechanical and Aeronautical Engineering
University of Pretoria

104



Chapter 5 Transfer learning: A tool for hybrid model calibration

To truly understand the efficacy of using transfer learning for calibration, it is decided to develop numerical
experiments, as these provide a controlled environment with which one can gain a deeper understanding of
the advantages and shortcomings of the proposed calibration technique. Therefore, the entirety of this chapter
utilises synthetic data which is generated in a controlled numerical environment, with known labels.

A summary of the structure of the numerical investigations is given in Figure 5.4. The remainder of this section
aims to explain in greater depth the contents of this figure.

Transfer Learning Calibration Investigation
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Figure 5.4. Basic outline of the numerical investigations for this section. Take note that the full set of experiments
are repeated for each model type. That is to say, for any given model (MMD-CNN, DANN, Baseline CNN) with
or without labels (supervised and unsupervised), this framework will be run.

At this point, three main hybrid models have been developed. The first hybrid model is the strong baseline CNN,
which is outlined in great detail in Chapter 4. Although the justification for using a CNN in this work is given
in sub-section 3.1.1, this work is not constrained by a CNN model and may be extended to any DNN model.
The baseline CNN does not employ transfer learning in its architecture, and can therefore be used as a good
control against which findings can be compared. This is a strong baseline, as Chapter 4 showed the strong fault
classification and fault detection capabilities of the baseline CNN. This model may further be used to address
the first goal of the experiments.

The second model utilises the same fundamental structure as the baseline CNN, but incorporates an MMD loss
function to create a transfer learning approach called MMD-CNN. Finally, the baseline CNN was once again
adapted with an adversarial component to deliver a deep adaptation neural network (DANN). These models may
be compared against the baseline CNN to address the second goal of the experiments.
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Note that these experiments are exceptionally difficult: Much of the works in literature simply try TIM (transfer
in the identical machine), where simple transfers on the same asset with similar vibration patterns are done, with
only differing load cases. These approaches assume that labelled data already exists for the asset of interest.
From the outset of this work, it has been reiterated that the assumption for this work is that labelled data is
scarce for gearboxes. Therefore, although these methods have been shown to work well in theory, they rely on
an assumption that is misaligned with this work.

This work is investigating the much harder case of TDM (transfer across different machines), which has the task
of transferring knowledge between two completely different (but similar in nature) machines. It can be stated
that TDM is being applied, as the goal of this work is to develop a hybrid model which may be pre-trained on
synthetic data (machine 1), and has to be applied to a real gearbox (machine 2). The complexity of the TDM
approach for this work lies within the assumption that the real gearbox data will have very few or no labels at
all.

The first subsection of this chapter outlines the synthetic datasets which will be used to test the three models.
Then, the experimental setups for each dataset are explained in detail, followed by the results. Finally, the
results are discussed and the validity of domain adaptation techniques for transfer to industry are commented
upon.

5.4.1 Datasets: An overview

The two datasets which will be used, originate from Chapter 3, namely Dataset A and B. Both of these datasets
are identical in format and have been extensively explained in their respective sections. A quick overview of the
properties for both datasets is however given:

• The datasets consist of four fault types, namely cracks, chips, spalls and pits.
• The datasets consist of twenty fault intensities for each fault type.
• The datasets contain each fault and intensity for each possible tooth on the pinion gear.
• Dataset A is split into two sub-datasets, both generated from a 10 DOF dynamic gearbox model based on

Luo et al. (2019b):

– Dataset A-pinion is generated from the horizontal vibrations on the pinion gear of the gearbox.
– Dataset A-casing is generated from the horizontal vibrations of the gearbox casing.

• Dataset B is also split into two sub-datasets. Both datasets utilise the vertical pinion acceleration:

– Dataset B-6 is generated from the six DOF dynamic gearbox model based on Meng et al. (2020).
– Dataset B-8 is generated from the eight DOF dynamic gearbox model based on Meng et al. (2020).

Starting from the aforementioned properties, the datasets are further manipulated to have the following properties
for this investigation:

• The datasets are minimised to only have a single unique vibration signal per fault type, intensity and
location. That is to say for a given tooth on the pinion gear, there exists only one sample for a given
fault type and intensity. This is a major reduction in data, as the default datasets have five duplications.
The decision to remove all duplications are twofold. Firstly, this drastically speeds up the rate of
experimentation, as the dataset is instantly cut into a fifth of its original size. Secondly, and more
importantly, this limited data environment is used to simulate the limited labelled data seen in industry. It
therefore tests the robustness of the models, with very limited data being available to learn from.

• For each fault type, with a given intensity, for a given tooth, a healthy sample is generated. On top of this,
an additional set of healthy samples are added to the dataset, to bias the dataset slightly towards healthy
data. Therefore, slightly more than 50% of the dataset consists of healthy examples. The task of not
misclassifying a healthy sample is set as a high priority. Misclassifying a healthy sample is undesirable
for a real gearbox, as this may lead to the gearbox prematurely being maintained.
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Between Dataset A and Dataset B, only two main differences are observed: Firstly, the number of samples.
Dataset A has fewer samples, as the model from which it is generated has fewer pinion gear teeth, implying
fewer variations in possible fault locations. Secondly, another difference is the exact load and speed conditions
under which each dataset is generated. For this chapter, the following load and speed cases from Dataset A and
Dataset B are selected:

• Dataset A: 7 Nm load at a 25.2Hz rotation speed.
• Dataset B: 20 Nm load at a 40Hz rotation speed.

As a final note, recall that Dataset A and B are further split up into two separate sub-datasets. The main reason
for creating the sub-datasets from Chapter 3 will become clear shortly.

When drawing from the results from the baseline CNN in Chapter 4, one notices that very low fault intensities are
difficult to classify. Since the goal behind this chapter’s investigations is to validate the use of transfer learning
as a calibration tool, this variable needs to be removed. If not, poor results may not necessarily be attributed to a
single methodology (calibration vs. no calibration), but rather to the simple fact that "unclassifiable" samples are
present in the datasets. Therefore, the following simplifications to Dataset A and B are proposed:

In Chapter 4, it was seen that the highest fault intensity cases for all fault types were accurately classified.
Therefore, the experiments to follow will only use the three top fault intensities within Dataset A and B. That is
to say for all fault types, the 18th, 19th and 20th fault intensity cases may be used for training, and any lower
intensity discarded for the sake of the experiment. As a slight change to this, it was also seen from Chapter
4, that the crack fault types were vastly larger in their relative fault areas, whereas the other three fault types
were fairly similar. Therefore, to make the dataset more standardised, for only the crack fault type, instead
of selecting the 18th-20th fault intensities, the 10th to 13th fault intensities were rather selected. With these
nuances explained, a finer explanation of each dataset is given.

5.4.1.1 Dataset A: 10 DOF model with a change in measurement location

The breakdown of Dataset A-pinion and A-casing after applying the reductions as mentioned in the introduction
to this section may be seen in Table 5.1. Note the very limited data being presented for each fault case. Only 48
samples for each fault are available; that is three intensities over 16 possible tooth locations.

Table 5.1. Breakdown of Dataset A

Class Dataset A - Pinion:
No. Samples

Dataset A - Casing:
No. Samples

Healthy 240 240
Crack 48 48
Chip 48 48
Spall 48 48
Pit 48 48

Total 432 432

5.4.1.2 Dataset B: Six and eight DOF models

The breakdown of Dataset B-6 and B-8 after applying the reductions as mentioned in the introduction to this
section may be seen in Table 5.2. Note once more the very limited data. The number of samples is slightly
higher than before, as this dataset involves 25 possible tooth locations over three intensities.

5.4.2 Experimental setup

The purpose of the experiments is to try and mimic industrial problems as closely as possible with only the
available synthetic data. Furthermore, the experiments try to determine the usefulness of transfer learning
techniques for calibrating discrepancies in data. The first experiment deals with the issues of sensor placement,
and the second experiment with the issue of model complexity. The first experiment may be seen as a data-
oriented problem and the second experiment a physics-focused problem.
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Table 5.2. Breakdown of Dataset B

Class Dataset B - 6 DOF:
No. Samples

Dataset B - 8 DOF:
No. Samples

Healthy 375 375
Crack 75 75
Chip 75 75
Spall 75 75
Pit 75 75

Total 675 675

For both experiments, the transfer learning methods are compared to the baseline CNN. Therefore, to make
results truly comparable and consistent across both experiments, a general framework of experimentation is set
up. The following framework holds for both experiments:

The source domain data contains the full range of fault types, intensities and locations for the training and
testing dataset. The target domain, however, by default contains only healthy samples for the training set. The
testing set, however, has the full range of fault types, intensities and locations available. This strict limitation
on target domain training data is done to ensure the assumption of limited to no labelled data in the target
domain is realised. Recall that ideally, the target domain can be set as real industrial gearbox signals. When
historical data for an asset is available, this might only include healthy vibration measurements, as machines
are generally maintained before they reach a deteriorated state. It is however possible that a few fault examples
may be contained within the captured dataset. For this reason, the target domain training dataset is allowed to
contain varying amounts of fault examples to simulate this fact. This is however the fundamental parameter
to be varied in the experiments and will be explained shortly. For now, a quick focus on training set sizes is
informative.

Due to the expected limited (target) data for the target domain, we limit the target domain training dataset to 120
samples only. As stated before, these training examples are by default 120 healthy examples only, unless the
specific experiment includes fault examples into the training dataset. Where these fault samples are included,
healthy samples are replaced, such that the size of the dataset always stays fixed at 120 samples.

For all investigations, the decision is made to test the anomaly detection capabilities of uncalibrated and calibrated
hybrid approaches. That is to say, the hybrid model is tasked with identifying whether a fault exists, rather than
being tasked with specifying the exact fault type. The motivation for this is as follows: Identifying an anomaly is
a binary classification problem. However, identifying a specific fault type is a multi-class classification problem.
These experiments aim to investigate the effect of calibrating the hybrid model, not necessarily predicting a fault
type and therefore the simpler binary classification problem is chosen. It is sensible to start with the simpler
binary classification problem and build up to a multi-class classification problem, were it deemed necessary.
Therefore, although different fault types and intensities are generated, they are all labelled under the same fault
label.

At this point, the two types of approaches need to be evaluated, namely uncalibrated and calibrated approaches.
Firstly, among the uncalibrated approaches, two types of training are undertaken:

1. One baseline CNN is trained only on the labelled source domain training dataset, which represents the
current state-of-the-art for hybrid models: An assumption that a model trained on synthetic data can
perform well on a different dataset. This may be seen as evaluating the value of the physical modelling
portion of a hybrid model, as only synthetic data is being used for training the model, with no information
from the target domain being incorporated. This method may be thought of as an unsupervised approach, as
no information from the target domain is utilised, making the predictions for the target domain completely
unsupervised.
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2. Another baseline CNN is trained on the very limited target domain training dataset (120 examples), and
not shown source data at all. This case aims to represent a purely data-driven approach to fault detection
with a deep NN. Note that even though some fault examples may be present in the target domain training
dataset, this network relies on labelled examples, making this approach quite optimistic. That is to say,
that even if this approach works well, it still has the strong assumption that the target domain was already
labelled in the first place.

Both these cases are trained using an Adam optimiser (with Tensorflow defaults). This is chosen over SGD, as
pre-experimentation showed quicker convergence times for Adam. The author tested multiple optimisers and no
real accuracy difference was observed. Therefore the only meaningful difference is training speed.

Batch sizes are fixed to 40 samples per batch, per domain (i.e. 80 samples in total), as this shows a good balance
between RAM management and training speed. The source-only method receives the full source domain training
set, whereas the target-only method receives 120 labelled target domain examples, with different numbers of
faults present in the dataset depending on experiment type. The training is stopped once a small validation
dataset (10% of the training dataset) stops climbing in classification accuracy. Furthermore, from preliminary
testing, a dropout rate of 0.5% was shown to work well for all experiments, and therefore this rate is used.

For the calibrated approaches (transfer learning approaches), the following training scenarios are under-
taken:

1. The MMD-CNN and DANN training datasets are set up with 120 random samples from the fully labelled
source training dataset, and 120 samples from a completely unlabelled and limited target training dataset.
This is called the unsupervised training scenario and is the most important one: This scenario does
not require labels for the target domain. This method may directly be compared to scenario 1 in the
uncalibrated approaches above. Note that the source domain is also limited to 120 samples to ensure both
the source and target domains have the same number of samples.

2. The MMD-CNN and DANN training datasets are set up with 120 random samples from the fully labelled
source training dataset, and 120 fully labelled (although limited) samples from the target training dataset.
This is called the supervised training scenario. This scenario represents a stronger assumption: Labels are
available for the target domain. As already stated, this is a strong, potentially unrealistic assumption. This
method may directly be compared to scenario 2 in the non-transfer learning scenario. Note once again the
source domain is limited to 120 samples, to match the number of target domain samples.

Following preliminary experiments, for both supervised and unsupervised cases, SGD will be used, as it proved
to be the most stable and reliable option across many other tested optimisers. The learning rate is fixed at 0.003.
Once again, batch sizes of 40 samples from each domain are used. Thus, the network simultaneously receives
40 source and 40 target samples to create a total batch size of 80. Also, as mentioned before, 120 source and 120
target samples will be made available for training. Notice that this is quite a small number of the total available
dataset, and tries to mimic the issue of limited industry data.

For both supervised and unsupervised approaches, the networks are pre-trained with data from the full source
domain dataset (more than 120 samples) as if they were standard hybrid models. From preliminary experimenta-
tion, this pre-training proved to play a key preparatory role before the transfer learning took place. If this step
was neglected, the networks would more easily diverge and reach either one extreme of high source domain
classification accuracy, but with no domain invariance, or another extreme of complete domain invariance, but
with no source or target domain classification accuracy. Thus, this pre-training may be seen as a priming step to
get the model into a local minimum in error space.

The priming step for all calibrated approaches is fixed at 100 epochs. After priming, the networks are trained
simultaneously on the new joint batch of 40 samples from each domain, which are now sampled from the
limited 120 samples in each domain. The transfer learning techniques need to be eased into the training process,
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otherwise, their domain alignment effects may be too strong early in training, leading to low classification
accuracy. Therefore, a growing λ value is employed to increase the relative loss contribution of the transfer
learning techniques. This value starts at 0 (thus no domain alignment) and ends at 1 (equal contribution to
label classification loss). The pattern used to increment the domain alignment contribution is to increase the λ

value by 0.05 every 25 epochs of training. Therefore, a minimum of 500 (25/0.05 = 500) epochs is run before
stoppage conditions may be implemented.

The training is stopped when two criteria are met. Firstly, the source validation accuracy must be high and stable.
Then, if this has been ensured, the training is only stopped once the domain discrepancy measure has stabilised.
If the domain discrepancy measure is still moving towards an optimum, whilst the source validation accuracy is
high, the network is allowed to continue. If at some point the source validation accuracy starts dropping, the
training is stopped. This will indicate the point that the domain discrepancy measure is moving the weights into
a general but not meaningful representation, as the label classification accuracy is starting to suffer. For DANN,
ideally one would like a domain classification accuracy of 50% (random guessing) and for MMD one would like
a domain similarity score of 0. Therefore, these are the optimum goals to try and achieve, whilst keeping source
validation high.

Finally, for both experiments, a dependent and independent variable is chosen to experiment upon. The dependent
variable is set as the classification accuracy of each training case. The independent variable is set as the number
of fault samples in the target domain, starting from 0 and ending at 16, with increments in powers of two.
Thus, the effect of increasing the number of labelled target domain fault samples is investigated against the
classification accuracies of uncalibrated and calibrated frameworks. Note that the set of 0 to 16 fault samples
that are made available are completely random. Therefore, for example, in the case where a single fault is
introduced, this single fault may be a crack for one experimental run, but then a chip in the next and so forth.
Therefore, multiple runs are required to truly gauge the usefulness of the calibration techniques. Therefore, these
experiments are re-run five times each to gain confidence in the models’ true performance.

This concludes the general framework that both datasets’ experiments must follow. The finer nuances for each
dataset are explained in the following sections. A summary of the key experimental framework is given in Table
5.3.

Table 5.3. Summarised training setups for uncalibrated and calibrated approaches.

Uncalibrated Cases:
Experimental Parameter Experimental Setting

Batch Size 40
Dropout Rate 0.5%
Optimiser (Learning Rate) Adam (Default)
End of Training Criterion Validation Loss Maximum
Target Domain Fault Samples Available [0,1,2,4,8,16]
Number of Experimental Repetitions 5

Calibrated Cases:
Experimental Parameter Experimental Setting

Batch Size 40/40 (Source/Target)
Dropout Rate 0.5%
Optimiser (Learning Rate) SGD (0.003)

λ Parameter
Growing from 0 to 1 with

0.05 increase each 25 epochs

End of Training Criterion
Source Validation Loss Maximum

Domain Discrepancy Measure Minimum
Target Domain Fault Samples Available [0,1,2,4,8,16]
Number of Experimental Repetitions 5
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5.4.2.1 Experiment A: Difference in vibration location - Dataset A

The first numerical experiment is formulated around the placement of sensors. It is common practice in the
literature to utilise the pinion gear vibrations for analyses. This assumption, however, may not be realised in
practice. Often access to the pinion gear is difficult. Therefore, it is more likely that an accelerometer will be
placed on the gearbox casing. However, the difference in measurement location may have mentionable effects
on the measured vibration signal. Therefore, this experiment aims to utilise Dataset A to investigate how well
the baseline CNN performs if the sensor location is changed. Furthermore, the effect of calibrating the CNN
is analysed by employing MMD-CNN and DANN. Recall that the transfer learning approaches (calibrated
approaches) discussed in this work require a source and a target domain. Therefore the following setup is
proposed:

The source domain is set as the horizontal vibrations directly synthesized on the pinion gear (Dataset A-Pinion).
Dataset A-Pinion represents the many works that try to develop models based on pinion gear vibrations. The
target domain is set as the horizontal vibrations synthesized on the gearbox casing of the 10 DOF model (Dataset
A-Casing). Dataset A-Casing represents the types of measurement a true sensor would take in practice. This
difference in data due to sensor placement can be seen as a data-focused problem, i.e. where the input data may
be vastly different due to the sensor placement in practice compared to an experimental setup.

As a further measure to try and align the experiments with a more realistic industrial transfer task, the source
domain is generated free of noise, with only the vibrations based on the raw physical model being used. The idea
behind this is that all the necessary underlying physics behind a fault may be built into the raw, but noise-free
vibration signal. Therefore, the aim is that the network trained on the source domain will be capable of inferring
the true fault mechanisms to make correct classifications. The target domain, however, will be infused with
Laplacian noise to the extent that the SNR value becomes 1, i.e. the power of the underlying signal and the noise
is equal. This aims to simulate one of many factors present in industrial signals, where the underlying physics
may be hidden by noise. Therefore, the task at hand is not only to create a general model which classifies well
on both the source and target domains but can further generalise to more noisy cases.

5.4.2.2 Experiment B: Difference in model complexity- Dataset B

The second numerical experiment is formulated around the design complexity of physical models, which in turn
relates directly to the hybrid model. When creating a physical model, we create a low fidelity estimate of the
true asset. This implies that the data generated from a physical model may be different from the real asset, as
the physical model cannot always capture all the necessary complex interactions of a real asset. Therefore, a
discrepancy between the data generated from a physical model and the real asset may be expected. At this point,
it is unknown whether the hybrid model can overcome such discrepancies in the data and needs to be investigated.
Therefore, this experiment aims to utilise Dataset B to investigate how well the baseline CNN performs if the
number of DOFs is changed between a source and target domain. Furthermore, the effect of calibrating the
CNN is analysed by employing MMD-CNN and DANN. Recall that the transfer learning approaches (calibrated
approaches) discussed in this work require a source and a target domain. Therefore the following setup is
proposed:

The source domain is set as the vertical vibrations on a pinion gear of a lower-dimensional gearbox model
(Dataset B-6). Dataset B-6 represents the lower dimensional physical model that the hybrid model may be
trained on before being employed to a larger DOF reality (industry). The target domain is also set as the vertical
vibrations of the pinion gear, but this time on a higher-dimensional model (Dataset B-8). Dataset B-8 represents
the higher dimensional "true asset" on which the model will need to be employed. This difference in DOF
between modelling and implementation can be seen as a more physics-focused problem, i.e. the discrepancy
between source domain and target domain results are purely due to the physical modelling process.

For the same reasons as given before, the source domain is left noise-free and the target domain is infused with
Laplacian noise to result in an SNR of 1.
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Admittedly it is far-fetched to expect an eight DOF model to represent a real industrial asset over a six DOF
model. However, the purpose of the experiment is not to accurately model a true asset with even higher DOFs.
The main purpose is to investigate whether even a small change in DOFs is enough to reduce the classification
accuracy of a hybrid model pre-trained on a dataset that is generated with only six DOFs. The aim is that
calibration will eliminate any discrepancies in results if any exist in the first place. The following section shows
the results for each of the experiments outlined here.

5.4.3 Experimental results

This section showcases the experimental results. The accuracies given in these results refer to the target domain
test set accuracies. To further gain insight into the training of the calibrated approaches (MMD-CNN and
DANN), a second set of results are given. These results only utilise the training runs from experiment A to draw
some interesting conclusions. For these results, a single run with four faults in the target domain is investigated.
Finally, a third and final set of results are given which showcase the latent feature space. The goal behind this is
to visualise whether the calibrated models are creating domain invariant features.

With regards to the results which are shown shortly, it must be noted that the target domain test set comprises of
all the samples outlined in Table 5.1 and Table 5.2 minus the sampled 120 values used for training. Therefore,
there is no data leakage in any of the results.

5.4.3.1 Summarised experimental results

The results from Experiment A may be found in Table 5.4, which provides insight into the pure performance
of each network. As a visual aid in determining trends more easily, the same results are plotted in Figure 5.5.
Similarly, the results from Experiment B may be found in Table 5.5, with the visual equivalent found in Figure
5.6.

Table 5.4. Results for Experiment A: Investigation into the classification accuracy of calibrated and uncalibrated
models when attempting to change the data from one sensor location to another. Maximum unsupervised
accuracy for each fault case is indicated with blue font and maximum supervised accuracy for each fault case
is indicated in purple font. The maximum classification accuracy regardless of unsupervised or supervised is
further expressed in bold.

Number of
Fault Samples
in Training Set

Classification Accuracy on Target Domain Test Set [%]
Source Training

Only (Unsupervised)
DANN

(Unsupervised)
MMD-CNN

(Unsupervised)
Target Training

Only (Supervised)
DANN

(Supervised)
MMD-CNN
(Supervised)

0 51.73±0.0 74.02±12 80.92±5.0 48.28±0.0 84.14±2.7 88.51±1.6
1 51.73±0.0 87.13±5.7 92.73±3.8 48.74±0.6 87.13±4.7 89.20±2.1
2 51.73±0.0 84.37±7.9 85.84±7.1 48.51±0.5 84.37±4.1 89.20±2.7
4 51.73±0.0 84.83±5.2 82.30±9.5 49.43±0.0 86.90±3.7 88.74±2.6
8 51.73±0.0 91.26±3.3 89.43±5.5 56.78±3.0 94.94±3.7 90.57±4.9
16 51.73±0.0 88.05±4.3 93.33±3.2 76.09±0.9 93.79±3.3 94.25±1.9

Table 5.5. Results for Experiment B: Investigation into the classification accuracy of calibrated and uncalibrated
models when attempting to change the fidelity of data from a six DOF model to an eight DOF model. Maximum
unsupervised accuracy for each fault case is indicated with blue font and maximum supervised accuracy for
each fault case is indicated in purple font. The maximum classification accuracy regardless of unsupervised or
supervised is further expressed in bold.

Number of
Fault Samples
in Training Set

Classification Accuracy on Target Domain Test Set [%]
Source Training

Only (Unsupervised)
DANN

(Unsupervised)
MMD-CNN

(Unsupervised)
Target Training

Only (Supervised)
DANN

(Supervised)
MMD-CNN
(Supervised)

0 46.67±0.0 82.07±7.4 91.26±2.2 53.33±0.0 83.56±5.8 76.73±6.1
1 46.67±0.0 85.48±8.4 92.44±2.0 53.33±0.0 84.59±8.1 83.61±3.5
2 46.67±0.0 88.30±4.2 90.07±6.1 53.33±0.0 90.37±3.8 93.63±2.7
4 46.67±0.0 87.85±4.2 93.19±3.4 56.44±2.3 90.22±9.1 86.96±5.2
8 46.67±0.0 88.30±5.5 94.37±1.5 63.11±2.1 93.63±4.1 90.81±4.8
16 46.67±0.0 88.74±3.5 93.78±3.5 66.97±2.0 93.33±5.8 93.93±2.7
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Experiment A: Comparison of Different Approaches to Classifying Faults in the Target Domain
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Figure 5.5. Resulting classification accuracies for Experiment A on the target domain for various approaches.
This experiment involves the investigation of the classification accuracy of calibrated and uncalibrated models
when attempting to change the data from one sensor location to another. Supervised techniques are shown with
solid lines and unsupervised techniques with dashes. All experiments were run 5 times and therefore a standard
deviation band is given.

Experiment B: Comparison of Different Approaches to Classifying Faults in the Target Domain
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Figure 5.6. Resulting classification accuracies for Experiment B on the target domain for various approaches.
This experiment involves the investigation of a change in model fidelity from a six DOF model to an eight
DOF model on target domain classification accuracy. Supervised techniques are shown with solid lines and
unsupervised techniques with dashes. All experiments were run 5 times and therefore a standard deviation band
is given.

5.4.3.2 Training-specific results: Experiment A

To gain some understanding of the training process of the transfer learning models, two main figure sets are
given. Firstly, a batch of training curves for the unsupervised and supervised versions of both MMD and DANN
is given. This is only be done for Experiment A, as Experiment B shows similar results, and therefore adds
nothing extra to the discussion. This is shown in Figure 5.7.

Secondly, the confusion matrices for the final training epoch are given. Note that the final epoch is not necessarily
the best epoch or the epoch which was selected for the final accuracy, but it does give a good insight into how
the network is classifying samples near convergence. This is shown in Figure 5.8.

All results are for a single training run, on four fault samples available in the target domain. It is also seen that
during the experimental runs, the patterns which are shown for four available faults also hold for other numbers
of available faults. Therefore, only the case for four target domain faults is shown.
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Measured Metrics for Unsupervised MMD-CNN
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(a) Unsupervised training graphs for MMD approach.

Measured Metrics for Unsupervised DANN
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(b) Unsupervised training graphs for DANN approach.

Measured Metrics for Supervised MMD-CNN
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(c) Supervised training graphs for MMD approach.

Measured Metrics for Supervised DANN
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(d) Supervised training graphs for DANN approach.

Figure 5.7. Compilation of training runs for the unsupervised and supervised versions of MMD and DANN.
These showcase the dynamics of training each type of model.
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Unsupervised MMD: Confusion Matrix on Target Domain Test Set 
(4 Fault Samples)
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(a) Unsupervised confusion matrix for MMD approach.

Unsupervised DANN: Confusion Matrix on Target Domain Test Set 
(4 Fault Samples)
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(b) Unsupervised confusion matrix for DANN approach.
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Supervised MMD: Confusion Matrix on Target Domain Test Set 
(4 Fault Samples)
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(c) Supervised confusion matrix for MMD approach.

Supervised DANN: Confusion Matrix on Target Domain Test Set 
(4 Fault Samples)
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(d) Supervised confusion matrix for DANN approach.

Figure 5.8. Compilation of confusion matrices for the unsupervised and supervised versions of MMD and
DANN. These showcase how each model tends to classify (or misclassify) samples.
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5.4.3.3 Domain adaptation evaluation: Experiment A

As a final attempt to understand the usefulness of domain adaptation, and to ensure it is working correctly, a
zoomed feature space is given for the unsupervised and supervised versions of both MMD and DANN. The first
and last epoch results for the source and target domains are given to serve as a ’before calibration’ and ’after
calibration’ comparison. These figures compare the similarity between domains visually. A zoomed version is
given simply due to the size of the feature space, which contains roughly 30000 features, which is impossible to
display on a screen or paper. Furthermore, a single sample of the final epoch is extracted and shown for both the
source and target domains. The compilation of these graphs is found in Figure 5.9

Take note that for all of the figures in Figure 5.9, the following applies: For the source and target domain plots,
each row represents a single sample from the 120 samples available. The columns represent the features. For
the lower figure, a single sample is plotted simultaneously from the source and target domain to compare the
similarity of samples between domains.

5.5 Discussion of results
When looking at the classification accuracy results of all the different methods for Experiment A, a few key points
are observed. In the unsupervised cases, that is to say, no labelled target domain data is utilised, the baseline
CNN performs very poorly, only classifying 51.73% of samples correctly. In fact, upon deeper investigation, it
is seen that all of the baseline CNN’s predictions are to the fault class. This result is not shown in any results
given in this chapter but was observed from the confusion matrices during training. Thus, when changing the
domain of data, the baseline CNN simply classifies all signals as anomalous, which is essentially a pointless
model. This shows that by simply changing the position of the sensor, the developed hybrid model completely
fails at the fault detection task, as all samples are identified as faults.

Moving on to the calibrated techniques, much more promising results are seen. The MMD-CNN seems to
perform slightly better than DANN and can classify faults in an entirely unseen domain with a minimum of 81%
and a maximum of 93% accuracy. This is an improvement of at least 30% over the uncalibrated baseline CNN,
clearly proving the worth of transfer learning for calibration.

In the supervised cases, it is seen that the baseline CNN performed worse than the unsupervised baseline CNN
initially, but then starts to improve. The baseline CNN trained on target domain data is seen to classify all
samples as healthy (initially), and improved to classify some fault examples correctly. Once again, these results
were seen during training and not shown here directly. The highest classification accuracy for the uncalibrated
hybrid model is for 16 available fault examples, at only 76% accuracy.

Once again, MMD seems to slightly outperform the DANN approach. It is also clear that the calibrated
techniques are capable of classification accuracies 20-30% higher than the baseline CNN. This once again
proves the major benefit of applying a transfer learning calibration when a data shift is present.

Special attention should be paid to the case where zero fault samples are made available in the target domain:
Recognise that the calibrated techniques can classify faults in the target domain even though they have not been
shown any prior faults. The MMD approach can classify with 81% accuracy with no labels, and with 89%
accuracy with labels. This is an extremely promising result, as it shows that even if no historical fault data is
available for an asset (which may be the case more often than not), the calibrated models may be capable of
identifying faults on these assets.

When comparing the supervised methods to the unsupervised methods, it is seen that for Experiment A, the
supervised approaches generally outperform the unsupervised approaches by a few percent. As a sanity check, it
is also seen that with an increasing amount of available target training data, all techniques which utilise this data,
increase in classification accuracy.
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(a) Feature space comparisons for unsupervised MMD.
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(b) Feature space comparisons for unsupervised DANN.
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(c) Feature space comparisons for supervised MMD.
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(d) Feature space comparisons for supervised DANN.

Figure 5.9. Compilation of feature space comparisons for the unsupervised and supervised versions of MMD
and DANN. These figures give insight into the validity of claims about calibration made earlier in this chapter,
i.e. whether transfer learning as a calibration tool can generate general but meaningful features.
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Moving on to Experiment B, another set of useful observations may be made. Similar to Experiment A, all
calibrated techniques prove vastly superior to the baseline CNNs. It is also observed that the source domain
trained CNN defaults to classifying all signals as faulty, which is a pointless model. Also, the target domain
trained CNN defaults to classifying all signals as healthy, and with enough fault samples, learns to classify up to
67% accuracy.

In this experiment, MMD-CNN is shown to be superior in the unsupervised case but is about equal in performance
in the supervised case. Interestingly, the unsupervised approaches seem to fare better than the supervised methods,
which is perhaps a bit counter-intuitive. However, this seemingly better result will be explained shortly when
referring to the confusion matrices. As a final observation, note again the high accuracies obtained by the
calibrated techniques for no fault samples present. The worst result from the calibrated approaches, where no
target domain fault samples are given, still outperforms the baseline CNN which is trained on 16 available fault
samples. This experiment further showcases that calibrated techniques adapt well to a change in data input, in
this case, a change in model fidelity, whereas a baseline CNN may not be good enough for most cases.

These are important findings, as the general indication up until this point is that the developed hybrid model
seems quite robust. These results, however, challenge this conclusion, and without any doubt showcase that the
gap between works from literature, such as the developed hybrid model, and industry-like signals is too large
and requires more robust methods. The transfer learning-calibrated models have shown to be very robust, and
their potential impact on industrial condition monitoring seems promising. No concrete comments may be made
with regards to industrial data directly, as experiments with such data is beyond the scope of this work. However,
we may comment on the efficacy of this method to deal with shifts in data domains.

Moving on to the training-specific results, some further observations can be made. Firstly, when looking at the
training runs, one can see that the unsupervised cases are much more stochastic, and have no clear convergence
point. Admittedly, these graphs do not show the full training run, but when compared to their supervised
counterparts, it becomes clear that the supervised approaches reach convergence much sooner and are much
more stable. Furthermore, the supervised cases show good convergence of the domain discrepancy measure,
where this is not always the case for the unsupervised cases, or more so DANN.

A promising observation from the training graphs is that the classification accuracy of the target domain test
dataset (which is unknown in practice) seems to be predicted quite well by the validation dataset in the source
domain. Therefore, upon implementation of a transfer learning calibration technique, if done correctly, the
source domain validation dataset, which one does have access to, may be a very good indicator of which epochs
also have good target domain classification accuracy. This is most clearly observed in Figure 5.7(d), where
sudden drops in validation accuracy also correspond to sudden drops in target domain accuracy.

When looking at the confusion matrices for the calibrated techniques, an interesting observation is made:
Although the supervised cases may have accuracies similar to their unsupervised counterparts (see Table 5.4
and Table 5.5), a clear shortcoming is observed. The unsupervised cases do not classify 100% of healthy
cases correctly. This is a potential issue, as it may result in false alarms. This issue may be fixed with another
pre-processing/filtering model which simply tries to identify definite healthy examples and only passes the
possible fault examples to the unsupervised models. It is however preferred that these models can inherently
identify all healthy signals automatically. However, it is promising to see that the supervised methods classify
100% of healthy samples correctly, making for a very useful fault detector. As mentioned in section 5.4.1, the
datasets were biased towards healthy data, therefore this bias towards correctly classifying health samples is
seen. This naturally comes with the trade-off that fault samples will be misclassified as healthy, but the author
believes that this scenario is more acceptable (at lower fault intensities) compared to continually misclassifying
healthy samples.

As a final point of discussion, the evaluation of the effectiveness of domain adaptation as a method to calibrate
the models is given. When referring to Figure 5.9, a clear trend is seen. In all cases, the first epoch results in
features that look visually dissimilar between the two domains. This is not surprising as the model is pre-trained
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on only source domain data, leading to a clear discrepancy when a target domain data sample is fed into the
network. Further note that the first epoch feature space has a large number of active features, indicating that the
features are not necessarily very meaningful, but perhaps overfitted to the source domain.

When the results for the final epoch are observed, a much better picture emerges. Visually, source and target
domain feature space look similar, implying that the domain adaptation process works correctly to create domain
invariant features. Further notice that the features are much more sparse, indicating that the learnt features are
much more specific and perhaps therefore meaningful. These features are simultaneously domain invariant and
meaningful, which is why the classification success of the calibrated techniques are so high. These figures further
support the idea that creating a domain invariant feature space is possible and may result in good classification
accuracies in a domain with limited to no labelled data.

5.6 Concluding remarks
To conclude this chapter, the following conclusions are drawn from both Experiment A and B as well as the
further investigations into the training process of the calibration methods, and the feature space that results from
these calibration techniques.

Firstly, it is clear that the minor task of changing the location of vibration measurement or simply increasing the
model fidelity greatly impacted the success of the already successful hybrid model. This is important, as this
shows that a hybrid model itself is not sufficient to directly solve problems in industry. It is however clear that
regardless of labels in the target domain, the calibrated methods vastly outperform their uncalibrated counterparts,
making these techniques strong candidates to bridge the gap between literature and industry.

It is further shown that even if no fault samples exist in the target domain, the calibrated methods can learn useful
mappings such that faults can be detected in the target domain. This is an important finding, as this implies that
with a hybrid model and some target domain healthy data, useful conclusions may already be drawn on the state
of a target domain without ever seeing a fault example. Generally, it is also concluded that MMD-CNN seems
to show slightly more promise than DANN, but this may simply be a function of the transfer problem at hand.
Regardless, it is abundantly clear that whether MMD-CNN or DANN is chosen, either should vastly outperform
the uncalibrated approaches.

It is also seen that unsupervised methods are more difficult to train. They struggle to converge due to their
stochastic training curves. However, it is found that if the validation accuracy in the source domain is followed,
a good estimate may be made to ascertain a good epoch to stop the training. It is also seen that the unsupervised
methods are not able to identify healthy samples with 100% accuracy, whereas supervised methods are. This is
not a great problem but complicates the fault classification task.

Finally, it may be concluded that domain adaptation as a transfer learning calibration technique, creates a feature
space that is much more meaningful and invariant between domains, leading to the promising results obtained
from these experiments.

Therefore, the main takeaway from this chapter and the entirety of this work should be this: Transfer learning
calibration techniques show great promise in aligning the source and target domains for hybrid models. Calibrated
methods are seen to vastly outperform uncalibrated methods and therefore show great promise to the condition
monitoring task of gearboxes.

With this, the third and final novelty of the work has been delivered: A hybrid model which, if coupled with one
of the shown calibration techniques (MMD-CNN or DANN), is very robust to a change in the data domain, so
much so that it may potentially bridge the gap between synthetically generated data and industrial data.
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6.1 Key conclusions from this research
The main task of this research was to develop a hybrid model which could be used for gearbox condition
monitoring. The hybrid model would not only act as a strong fault classifier but would be capable of transferring
its hybrid knowledge from one domain of data to another. Ideally, these domains would be the synthetic data
domain and real industrial measurements. To develop the necessary hybrid model, a decision was made to fuse a
supervised data-driven model with synthetic data generated from a physics-driven gearbox model.

The first part of this work therefore set out to develop a physical gearbox model which may be used to generate
synthetic data. During this modelling process, a shortcoming in literature was addressed, namely a disjunct set of
literature that include different modelling equations for different fault types. This work successfully developed a
generalised stiffness model, paired with four fault models, namely cracks, chips, pits and spalls. The generalised
stiffness model aimed to generalise the gear stiffness modelling process, making future works more comparable
and reproducible. Furthermore, such a framework made it simple to generate large amounts of synthetic data.
This is the first instance of such a generalised model and represents the first novel contribution of this work. The
generalised model was further verified against existing works. During the modelling process, an advancement
to crack models was also made, by reducing the necessary dimensions of integration by one, increasing the
efficiency of simulating crack models. This too was verified against existing works. Finally, two independent
dynamic models were built and verified against existing works. The dynamic models were shown to have correct
amplitudes, shapes and frequency behaviour.

The second part of the work focused on the data-driven portion of the hybrid model, with special attention being
given to the verification of the developed hybrid model. The synthetic data from the physics-driven model was
infused with noise and fed to a CNN. This experiment showed two key findings. Firstly, it was shown that signal
processing techniques such as TSA significantly improve model performance in noisy environments. Therefore,
it is advised that when possible, TSA be applied as a pre-processor for a data-driven model. Secondly, it was
shown that when paired with TSA pre-processing, the hybrid model performed well at identifying different fault
types under three different noise profiles. Therefore, with the hybrid model successfully identifying faults of
different intensities and locations, it was shown that the hybrid model showed promise in detecting gearbox
faults. This verified hybrid model represents the second novel contribution of the work, as to the author’s
knowledge, no other hybrid gearbox model (in this format) exists.

As well as the hybrid model seemed to perform on sufficient labelled data, it was unknown how it would
generalise to a different set of related data. Upon investigation, it was shown that the model accuracy suffered
severely when trying to apply the hybrid model to different datasets. This brought the usefulness of the hybrid
model into question. Two transfer learning calibration techniques were presented as solutions to minimise the
discrepancy between different datasets and showed outstanding results. It was shown that when calibration
approaches were applied to the hybrid model, the model was able to identify faults within a domain of data it
had never seen before. This is an important property for such a hybrid model, as it raises the confidence that
this model may be capable of generalising to industrial assets, finally bridging the gap between literature and
practice. This serves as the third and final novel contribution of the work, namely a transfer learning calibrated
hybrid gearbox model trying to bridge the gap between data from two completely different datasets.
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6.2 Recommendations for future work
The following items present a list in order of importance that may be pursued to build upon this work. It
may be useful to split the research into the two main components which define the hybrid model, namely the
physics-driven side and the data-driven side.

Future research for the physics-driven model:

1. Literature containing dynamic gearbox models commonly assume damping conditions that are not
necessarily proven. They are convenient but do not represent the true dynamics of the system. Some
works do however build quite advanced damping models. Therefore, if the current physical modelling
portion of the hybrid model is to be improved, this is the first area of research that should receive attention.

2. It was found from the initial hybrid model experiments that the identifiability of faults seemed to correlate
directly to the fault’s effect on the gear meshing frequency. Therefore, it is logical to research this point
further. Is there a direct correlation between the "sharpness" of stiffness reductions and identifiability of
faults, or was this just chance?

3. The gearbox model developed in this work only focused on spur gears. However, many critical industrial
assets utilise helical gears, and therefore future work could be focused on building the same generalised
structure for helical gears.

4. Some of the fault models developed in this work are quite simple and are not state-of-the-art. Therefore,
in future research, these models should be updated to try and match the state-of-the-art models.

5. Although the literature on the potential energy method has shown good correlation with FEM, one main
issue is still present: When the fillet foundation stiffness term is calculated for two simultaneous gear tooth
pairs in mesh, an overestimation of stiffness occurs. This is because the theory for the fillet foundation
stiffness term is based on a single tooth pair meshing assumption. To calibrate this overestimation, a FEM
gear model is required. This, however, defeats the purpose of the potential energy method in the first
place, as one would like to avoid expensive FEM models and rather utilise equally accurate analytical
methods. Therefore, this is an open issue that needs to be addressed, such that the fillet foundation term
can be accurately calculated without the need for FEM.

Future research for the data-driven model:

1. First and foremost, the developed calibrated hybrid models must be tested on a real dataset. Therefore,
the most logical continuation of this work is to first and foremost redo the experiments from Chapter 5.
Instead of the developed synthetic dataset in the target domain, it may be replaced by a real dataset. This
will truly test the efficacy of actually applying the developed transfer learning-calibrated hybrid model to
industrial problems.

2. Most of the transfer learning works in literature seem to focus on time domain signals. A useful experiment
would be to investigate the effectiveness of perhaps changing over to the frequency or time-frequency
domain.

3. The current transfer learning techniques aim to manipulate the feature space. An interesting and meaningful
investigation would be to look into the effectiveness of applying the transfer learning calibration techniques
at different layer depths. Taking this idea to its extreme, perhaps a domain adaptation layer straight at the
input of the network would suffice, directly modifying input signals instead of the latent space.

4. Another large area of concern during the present research was finding stoppage conditions during training
of the transfer learning calibrated models. It was not always clear whether a network had converged and
it is believed that there is substantial untapped performance potential. Some training runs might have
been stopped too late (overfitting) or too early (too little learning), and finding the balance is still an open
question. Finding a balance is difficult, as the transfer learning techniques generally have competing
training goals, leading to a tug of war between loss function optimisation. This tug of war makes it difficult
to determine when an optimum has been reached and must receive further attention.
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