	Coef.	Std. Err.	р
Structural Regression			
Support for biosecurity			
Sensitivity to economic risks	0.234	0.069	0.001
Perceived susceptibility to herpetological disease transmission	0.138	0.062	0.026
Biospheric values	0.258	0.059	< 0.001
Egoistic values	-0.075	0.045	0.097
Sensitivity to economic risks			
Perceived susceptibility to economic risks	0.915	0.023	< 0.001
Sensitivity to general health risks	0.126	0.030	< 0.001
Egoistic values	0.064	0.026	0.014
Perceived susceptibility to herpetological pathogen transmission			
Perceived percentage of captive amphibians and reptiles in the live animal trade	-0.291	0.042	< 0.001
that are healthy			
Prior knowledge of chytrid	0.076	0.045	0.091
Prior knowledge of ranavirus	-0.080	0.045	0.075
Prior knowledge of salmonella	0.079	0.044	0.071
Like freshwater fish	0.168	0.084	0.046
Like saltwater fish	0.132	0.084	0.118
Sensitivity to general health risks			
Female	0.161	0.040	< 0.001
Age (years)	0.017	0.041	0.686
Black	-0.019	0.040	0.638
Political views	-0.032	0.041	0.439
Biospheric values	0.605	0.036	< 0.001
Egoistic values	-0.051	0.042	0.218
Measurement Models			
Support for biosecurity			
x1: A law that requires the quarantine and veterinary observation of all	0.839	0.020	< 0.001
amphibians and reptiles imported into the United States			
x2: Mandatory tests of all shipments of amphibians and reptiles for selected	0.860	0.019	< 0.001
diseases of concern			

S29 Table. Structural equation model of respondents' support for improved biosecurity measures when presented with the economic risks associated with pathogen transmission through the live herpetological trade (model 2, n=507).

x3: Mandatory 'Best Practices Program' requiring live amphibian and reptile	0.713	0.026	< 0.001
importers and exporters to improve care and reduce stress of transported			
animals and decontaminate all shipping materials			
Sensitivity to economic risks			
x1: Agriculture	0.781	0.023	< 0.001
x2: Aquaculture	0.843	0.020	< 0.001
x3: Amphibian and reptile trade	0.736	0.025	< 0.001
x4: Frog leg market	0.652	0.028	< 0.001
Covariance: error.x3 with error.x4	0.538	0.034	< 0.001
Perceived susceptibility to economic risks			
x1: Agriculture	0.759	0.024	< 0.001
x2: Aquaculture	0.844	0.020	< 0.001
x3: Amphibian and reptile trade	0.742	0.025	< 0.001
x4: Frog leg market	0.707	0.027	< 0.001
Covariance: error.x1 with error.x2	0.194	0.050	< 0.001
Covariance: error.x3 with error.x4	0.601	0.033	< 0.001
Sensitivity to general health risks			
x1: Animals in the live animal trade	0.865	0.016	< 0.001
x2: Native wildlife	0.755	0.023	< 0.001
x3: The natural environment	0.760	0.026	< 0.001
x4: Pets	0.720	0.024	< 0.001
x5: Livestock	0.817	0.018	< 0.001
Covariance: error.x1 with error.x3	-0.285	0.061	< 0.001
Covariance: error.x2 with error.x3	0.537	0.041	< 0.001
Perceived susceptibility to herpetological pathogen transmission			
x1: Chytrid transmitted to other captive amphibians	0.704	0.025	< 0.001
x2: Chytrid transmitted to native amphibians	0.764	0.022	< 0.001
x3: Ranavirus transmitted to other captive amphibians and reptiles	0.784	0.021	< 0.001
x4: Ranavirus transmitted to native amphibians and reptiles	0.875	0.017	< 0.001
x5: Ranavirus transmitted to native fish	0.818	0.021	< 0.001
x6: Salmonella transmitted to other captive amphibians and reptiles	0.658	0.029	< 0.001
x7: Salmonella transmitted to native amphibians and reptiles	0.764	0.023	< 0.001
x8: Salmonella transmitted to pets	0.678	0.029	< 0.001
x9: Salmonella transmitted to livestock	0.662	0.030	< 0.001
x10: Salmonella transmitted to humans	0.674	0.028	< 0.001
Covariance: error.x1 with error.x2	0.497	0.032	< 0.001

Covariance: error.x1 with error.x3	0.441	0.030	< 0.001
Covariance: error.x1 with error.x6	0.264	0.028	< 0.001
Covariance: error.x3 with error.x4	0.380	0.049	< 0.001
Covariance: error.x3 with error.x5	0.253	0.050	< 0.001
Covariance: error.x3 with error.x6	0.287	0.029	< 0.001
Covariance: error.x3 with error.x9	-0.101	0.030	0.001
Covariance: error.x4 with error.x5	0.461	0.055	< 0.001
Covariance: error.x6 with error.x7	0.654	0.027	< 0.001
Covariance: error.x8 with error.x9	0.527	0.037	< 0.001
Covariance: error.x8 with error.x10	0.383	0.043	< 0.001
Covariance: error.x9 with error.x10	0.393	0.042	< 0.001
Biospheric values			
x1: It is important to him/her/them to prevent environmental pollution	0.731	0.026	< 0.001
x2: It is important to him/her/them to protect the environment	0.821	0.019	< 0.001
x3: It is important to him/her/them to respect nature	0.830	0.019	< 0.001
x4: It is important to him/her/them to be in unity with nature	0.794	0.021	< 0.001
Covariance: error.x1 with error.x2	0.338	0.051	< 0.001
Egoistic values			
x1: It is important to him/her/them to have control over others' actions	0.628	0.036	< 0.001
x2: It is important to him/her/them to have authority over others	0.863	0.041	< 0.001
x3: It is important to him/her/them to be influential	0.730	0.048	< 0.001
x4: It is important to him/her/them to have money and possessions	0.488	0.040	< 0.001
Covariance: error.x2 with error.x3	-0.954	0.300	0.001
Covariance: sensitivity to economic risks (agriculture) with perceived susceptibility	0.491	0.040	< 0.001
to economic risks (agriculture)			
Covariance: sensitivity to economic risks (aquaculture) with perceived susceptibility	0.356	0.057	< 0.001
to economic risks (aquaculture)			
Covariance: sensitivity to economic risks (frog leg market) with perceived	0.394	0.037	< 0.001
susceptibility to economic risks (frog leg market)			
Covariance: sensitivity to economic risks (frog leg market) with perceived	0.235	0.041	< 0.001
susceptibility to economic risks (amphibian and reptile trade)			
Covariance: like freshwater fish with like saltwater fish	0.858	0.012	< 0.001
Root mean squared error of approximation (RMSEA)	0.051		
Comparative fit index	0.921		
Akaike's information criterion (AIC)	51,906.519		
Bayesian information criterion (BIC)	52,942.504		