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Abstract

The skew-normal distribution was popularised by Azzalini [4] to model skewed data. However, the

skew-normal distribution is always unimodal. Kundu [24] recently presented the geometric skew-normal

distribution by considering a geometric compounding sum of normal random variables. This distribution

is more �exible than the skew-normal distribution since it can be multimodal.

In this dissertation we present a new distribution namely the geometric skew-Cauchy distribution.

The idea follows a similar approach to that of Kundu's. The di�erence, however, is that we consider a

geometric compounding sum of Cauchy random variables.

The inclusion of a simulation and application chapter demonstrates the practical use of this new

distribution. It turns out that the geometric skew-Cauchy distribution is also more �exible than the

skew-normal distribution.

It is concluded that this new distribution can be used as an alternative to the geometric skew-normal

distribution since both distributions can be multimodal. The advantage over the geometric skew-normal

distribution, is the ability of the geometric skew-Cauchy distribution to model fatter-tailed data.
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1 Chapter 1

1.1 Introduction and rationale

Developing an alternative distribution to the skew-normal and geometric skew-normal distributions serve

as a clear motive for exploring this topic. The motive to delve into the theory is sustained by the fact

that there is no literature that explicitly propose a distribution that entails the compounding sum of

independent random variables that involve the geometric and Cauchy distributions. Establishing an

extensive understanding of the theoretical construction of the skew-normal and geometric skew-normal

distributions, form the basis for further investigation into an alternative consideration of a compounding

sum of independent random variables. The rationale includes the fact that conducting research to develop

an alternative distribution, will yield value in the �nancial and medical �elds (among others). These

include right-skewed income distributions of a population in a life assurance environment [13] as well as

the right-skewed survival times of guinea pigs infected with tubercle bacilli [24].

This dissertation will follow a descriptive research approach with elements of experimental research

present in the form of outcomes produced through simulation. Findings in the dissertation will be

supported through implementation on real data.

1.2 Aims and objectives

The main goals of this dissertation that are expected to sustain the rationale are as follows:

� Discussing the skew-normal distribution.

� Discussing the geometric skew-normal distribution.

� Developing a new alternative distribution to the skew-normal and geometric skew-normal distribu-

tions.

� Investigating and developing the estimation of the alternative distribution.

� Providing an overview of the multivariate skew-normal distribution.

� Providing an overview of the multivariate geometric skew-normal distribution.

� Demonstrating a simulation study involving the new alternative distribution.

� Illustrating �ndings on real data.

� Providing consideration for future work that includes the multivariate extension of the new alter-

native distribution.
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1.3 Literature review

The skew-normal distribution is presented by Azzalini [4]. The fundamental characteristics and other

mathematical properties of Azzalini's skew-normal distribution received signi�cant attention due to its

�exibility [4]. This distribution includes the standard normal distribution as a special case. Moreover,

the skew-normal distribution has a unimodal density function having both positive and negative skewness

in attendance. A method to simulate random numbers from the skew-normal distribution is discussed by

Henze [20]. Existing symmetric probability density functions (PDFs) can be skewed using the skewing

methodology that is presented by Azzalini and Capitanio [6].

In contrast to the several attractive properties that the skew-normal distribution has, it presents a

problem in expanding statistical inference procedures. The inferential issues regarding Azzalini's skew-

normal distribution is highlighted by Pewsey [32], Gupta and Gupta [18], Yalcinkaya et al. [41] and

Kundu [24]. In addition to the latter, Pewsey [32] also provided reasons to consider a more appropriate

parameterization of the skew-normal distribution. Azzalini and Capitanio [6] noted that the skew-normal

distribution cannot be used to model fat or moderate-tailed data and that the skew-normal distribution

is well-known to have thin tails. Gupta and Gupta [18] noted that the maximum likelihood estimates

(MLEs) for the unknown parameters may not exist for the skew-normal distribution in several cases.

A skew �exible-normal distribution is derived by Gomez et al. [15] as an extension to the skew-normal

distribution which provides support for both unimodal and bimodal distributions.

To address the problem of modelling fat-tailed data, literature suggests the use of other skewed dis-

tributions frequently called skew-symmetric distributions. However, these skew-symmetric distributions

do not accommodate for multimodality [18] [32]. Azzalini and Capitanio [6] provided and excellent piece

of work with detailed discussions on di�erent skew-symmetric distributions.

Kundu [24] proposed a new three-parameter skewed normal distribution to address the inferential

issues regarding Azzalini's skew-normal distribution and the lack of accommodation for multimodality.

The new distribution is called the geometric skew-normal distribution and is based on a construction

of variables involving the geometric and normal distributions [24]. The distribution yields the MLEs of

the unknown parameters quite conveniently using the expectation-maximization (EM) algorithm [24]. It

is noted that the geometric skew-normal distribution is very �exible and the PDF can be unimodal or

multimodal. Moreover, the geometric skew-normal distribution can be written as an in�nite mixture of

normal distributions [24].

No literature has been found up till now that explicitly propose a distribution that entails the con-

struction of random variables involving the geometric and Cauchy distributions that accommodate for

both multimodality as well as fatter tails in the data. It is of interest to utilize the Cauchy distribution

13



since the Cauchy distribution is well-known to accommodate fatter tails than the normal distribution

[40]. In fact, the Cauchy distribution accommodates fatter tails than the double-exponential distribution

[40] and thus fatter tails in the data could be modelled more conveniently.

Extensions of the univariate distributions to multivariate distributions have been investigated. The

multivariate extension of the univariate skew-normal distribution is presented by Azzalini and Valle [7].

Another extension of the univariate skew-normal distribution to the multivariate case is presented by

Gupta and Chen [17]. The latter extension includes the multivariate extension of Azzalini and Valle [7]

as a special case. Furthermore, Harrar and Gupta [19] derived a matrix variate skew-normal distribution.

Kundu [25] introduced a multivariate extension of the univariate geometric skew-normal distribution.

The multivariate case addresses the inferential issues encountered in the multivariate skew-normal dis-

tribution by Azzalini and Valle [7]. Furthermore, the multivariate geometric skew-normal distribution

compensates for the lack of skewed distributions available in higher dimensions [25]. The multivariate

geometric skew-normal distribution yields a PDF that can be unimodal or multimodal and the MLEs of

the unknown parameters can be obtained in a convenient manner in high dimensions [25].

It is of interest to consider future work on other multivariate extensions to address multimodality and

fatter tails in the data. No literature has been found up till now that propose a multivariate extension

to a distribution that entails the construction of random variables involving the geometric and Cauchy

distributions. Providing consideration of the multivariate extension creates a basis for development of an

additional skewed distribution in higher dimensions.

1.4 Dissertation outline

� In Chapter 2 the skew-normal distribution is revisited. The chapter is split into two parts, with the

�rst part discussing the univariate case and the second part providing an overview of the multivariate

case. The chapter proceeds to give theorems, a collection of some characteristics, algorithms on

how to generate random numbers and outlines estimation theory.

� In Chapter 3 we revisit the univariate geometric skew-normal distribution that was presented by

Kundu [24]. In addition, an overview of Kundu's [25] multivariate extension thereof is also provided.

The chapter revisits theorems and derivations, discusses some characteristics, gives some conditional

properties, outlines generation of random numbers and discusses estimation theory.

� An alternative distribution to the skew-normal and geometric skew-normal distributions is presented

in Chapter 4. The chapter is devoted to developing a new distribution called the geometric skew-

Cauchy distribution. The chapter proceeds to derive theorems, give a generation of random numbers

algorithm, derives conditional properties and investigates the estimation of the new distribution.

14



Comparisons among the alternative distribution and the skew-normal and geometric skew-normal

distributions are also given.

� Chapter 5 is devoted to evaluating the performance of the new alternative distribution. This is

done by presenting a simulation study and also �tting the model to two real data sets. The models

in Chapters 2 and 3 are also �tted for comparison. It is noted that the new alternative distribution

is a competitive model against the skew-normal and geometric skew-normal models.

� The dissertation is concluded in Chapter 6, where a summary on what has been done is given as

well as some conclusive remarks on the new distribution. Furthermore, consideration for future

work is also outlined in this chapter.

� Two appendices (A and B respectively) are found at the end of this dissertation. Appendix A gives

some fundamental de�nitions, lemmas and results for use throughout the dissertation. Appendix

B gives some code that was used in the dissertation.
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2 Chapter 2

Chapter 2 will discuss the skew-normal distribution. In Section 2.1, the univariate skew-normal distri-

bution is revisited. An overview of the multivariate skew-normal distribution is presented in Section

2.2.

2.1 Univariate skew-normal distribution

This subsection will proceed to revisit the univariate skew-normal distribution. Figure 1 gives a summary

of how Section 2.1 will proceed and what is expected from this subsection.

Figure 1: Summary of Section 2.1.

2.1.1 Preamble

The skew-normal distribution can be obtained by utilizing the skewing methodology that is presented by

Azzalini and Capitanio [6]. A brief overview of the skewing methodology is stated in Proposition 1. This

methodology is used to skew existing symmetric PDFs.

Proposition 1. Denote by g0(·) a PDF on Rd, by F0(·) a continuous cumulative distribution function

(CDF) on R, and by k(·) a real-valued function on Rd, such that g0(−x) = g0(x), k(−x) = −k(x) and

F0(−y) = 1− F0(y) for all x ∈ Rd, y ∈ R. Then

gX(x) = 2g0(x)F0{k(x)} (1)

16



is a PDF on Rd [6].

It should be noted that the symmetric base PDF is termed by g0(·) and that the skewing mechanism is

termed by 2F0{k(x)}. Consequently, the skewed version of the symmetric base PDF is termed by gX(·).

In this subsection, using the notation that is stated in Proposition 1, the case where g0(·) = φ(·),

F0(·) = Φ(·) (with φ(·) and Φ(·) representing the standard normal PDF and CDF) and k(x) = λx for

λ ∈ R, is used to obtain the corollaries below.

Theorem 1. A random variable X has the skew-normal distribution if its PDF is given by the following:

fX (x) = 2φ(x)Φ(λx) (2)

where λ ∈ R. This is denoted by X ∼ SN (λ) [4].

For use in applied work, location and scale parameters are introduced. The introduction is done via the

transformation:

Y = µ+ σX

where µ ∈ R and σ > 0. The following corollary follows then immediately from (2).

Corollary 1. If X ∼ SN(λ) and Y = µ+σX then the random variable Y is said to have the skew-normal

distribution with location parameter µ and scale parameter σ. Its PDF is given by the following:

fY (y) =
2

σ
φ

(
y − µ
σ

)
Φ

(
λ

(
y − µ
σ

))
(3)

where −∞ < y <∞, µ ∈ R, σ > 0 and λ ∈ R. This is denoted by Y ∼ SN
(
µ, σ2, λ

)
.

Proof. Let X ∼ SN (λ) with the PDF as given in (2). Consider the random variable Y = µ+ σX, where

the location and scale parameters are denoted by µ ∈ R and σ > 0 respectively. If y = µ + σx, then

u−1(y) = y−µ
σ = x with d

dyu
−1 (y) = 1

σ . From Bain and Engelhardt [8] and using (2), it follows that

fY (y) = fX
(
u−1(y)

) ∣∣∣∣ ddyu−1(y)

∣∣∣∣
= 2φ

(
u−1(y)

)
Φ
(
λ(u−1(y))

) ∣∣∣∣ ddy (u−1(y)
)∣∣∣∣

= 2φ

(
y − µ
σ

)
Φ

(
λ

(
y − µ
σ

)) ∣∣∣∣ 1σ
∣∣∣∣

=
2

σ
φ

(
y − µ
σ

)
Φ

(
λ

(
y − µ
σ

))
.

Thus, Y ∼ SN
(
µ, σ2, λ

)
.
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Theorem 2. A random variable X that follows the skew-normal distribution, that is X ∼ SN (λ) with

PDF given in (2), has a CDF of the following form:

FX(x) =

∫ x

−∞
2φ(t)Φ(λt)dt

=

∫ x

−∞
2φ(t)

∫ λt

−∞
φ(u)dudt

= 2

∫ x

−∞

∫ λt

−∞
φ(t)φ(u)dudt

= Φ(x)− T (x, λ) (4)

for x, λ ∈ R, where T (x, λ) is Owen's T-function [30] which is de�ned as

T (x, λ) =
1√
2π

∫ λ

0

e−
1
2x

2(1+t2)

1 + t2
dt

for x, λ ∈ R.

Proof. The full proof is provided in Azzalini [4].

2.1.2 Characteristics of the skew-normal distribution

The computation of the characteristics of Y ∼ SN(µ, σ2, λ) is done via the moment generating function

(MGF) or, equivalently but somewhat more practical, via the cumulant generating function (CGF) (see

(109) in Appendix A.1).

Moment generating function

Before presenting the MGF of a random variable with PDF given in (3), consider �rst the derivation of

Lemma 1 given in (113) (see Appendix A.2).

Theorem 3. If X ∼ SN(λ) then the MGF of the random variable Y = µ+ σX with PDF given in (3)

is given by

MY (t) = 2etµ+ 1
2 t

2σ2

Φ(δσt) (5)

with t ∈ R, δ = λ√
1+λ2

and Φ(·) denoting the standard normal CDF [6].
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Proof. Using (108) in Appendix A.1 and the PDF in (2), it follows that

MY (t) = E
[
etY
]

= E
[
et(µ+σX)

]
=

∫
R
etµ+tσx2φ(x)Φ(λx)dx

= 2etµ
∫
R
etσx

1√
2π
e−

1
2x

2

Φ(λx)dx

= 2etµ
∫
R

1√
2π
e−

1
2 (x2−2tσx)Φ(λx)dx.

It can be observed that

(x− tσ)2 = x2 − 2tσx+ t2σ2

=⇒ x2 − 2tσx = (x− tσ)2 − t2σ2.

Therefore,

MY (t) = 2etµ
∫
R

1√
2π
e−

1
2 ((x−tσ)2−t2σ2)Φ(λx)dx

= 2etµ+ 1
2 t

2σ2

∫
R

1√
2π
e−

1
2 (x−tσ)2Φ(λx)dx.

Now, let r = x− tσ, then x = r + tσ with dx
dr = 1. Let φ(·) denote the standard normal PDF as before,

then it is true that

MY (t) = 2etµ+ 1
2 t

2σ2

∫
R

1√
2π
e−

1
2 r

2

Φ(λ(r + tσ))dr

= 2etµ+ 1
2 t

2σ2

∫
R
φ(r)Φ(λ(r + tσ))dr

= 2etµ+ 1
2 t

2σ2

ER[Φ(λR+ λtσ)] (6)

where R ∼ N (0, 1). Now, applying the result from Lemma 1 (see (113) in Appendix A.2), it follows from

(6) that

MY (t) = 2etµ+ 1
2 t

2σ2

ER[Φ(λR+ λtσ)]

= 2etµ+ 1
2 t

2σ2

Φ

(
λtσ√
1 + λ2

)
= 2etµ+ 1

2 t
2σ2

Φ (δσt)
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where δ = λ√
1+λ2

.

Expected value, variance, skewness and kurtosis

The method used in this section follows in a similar fashion to that of what is described by Azzalini

and Captanio [6]. The method computes the expected value, variance, third central moment and fourth

central moment by using the cumulant generating function, GY (t), as stated in (109) in Appendix A.1.

The inverse Mills ratio, b(·), will be utilized in order to simplify the derivations of the central moments.

The de�nition of the inverse Mills ratio is given by (111) in Appendix A.1.

Before proceeding with the derivations of the remaining characteristics, it is worthwhile to �rst con-

sider some of the properties of the inverse Mills ratio. These properties, as well as their respective

derivations are given in (118), (119) and (120) in Appendix A.3.

Expected value

Theorem 4. Consider Y ∼ SN
(
µ, σ2, λ

)
with MGF given in (5), then the expected value is given by

E[Y ] = µ+ δσ

√
2

π

where δ = λ√
1+λ2

.

Proof. Using (109), (110), (111) in Appendix A.1, (116), (118) in Appendix A.3 and the fact that the

�rst cumulant is the expected value [26], it follows from (5) that

E[Y ] =
d

dt
GY (t)

∣∣∣∣
t=0

=
d

dt
(logMY (t))

∣∣∣∣
t=0

=
d

dt

(
log
(

2etµ+ 1
2 t

2σ2

Φ(δσt)
))∣∣∣∣

t=0

=
d

dt

(
tµ+

1

2
t2σ2 + log(2Φ(δσt))

)∣∣∣∣
t=0

=

[
µ+ σ2t+

2δσφ(δσt)

2Φ(δσt)

]∣∣∣∣
t=0

[1]

=
[
µ+ σ2t+ δσb(δσt)]

∣∣
t=0

= µ+ δσb(0)

= µ+ δσ

√
2

π

where δ = λ√
1+λ2

.
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The following is worth noting on the above proof:

[1] this step is labelled as (A∗∗) for later use.

Variance

Theorem 5. Consider Y ∼ SN
(
µ, σ2, λ

)
with MGF given in (5), then the variance is given by

var[Y ] = σ2

(
1− 2

π
δ2

)

where δ = λ√
1+λ2

.

Proof. Using (109), (110), (111) in Appendix A.1, (118), (119) in Appendix A.3 and the fact that the

second cumulant is the expected value [26], it follows from (5) that

var[Y ] =
d2

dt2
GY (t)

∣∣∣∣
t=0

=
d

dt

(
d

dt
logMY (t)

)∣∣∣∣
t=0

=
d

dt

(
µ+ σ2t+

δσφ(δσt)

Φ(δσt)

)∣∣∣∣
t=0

[1]

= σ2 + δσ
d

dt
b(δσt)

∣∣∣∣
t=0

[2]

= σ2 + δσ

(
−b(δσt)[δσt+ b(δσt)]

d

dt
(δσt)

)∣∣∣∣
t=0

= σ2 + (δσ)2(−b(δσt)[δσt+ b(δσt)])
∣∣
t=0

= σ2 + (δσ)2
(
−(b(0))2

)
= σ2 + (δσ)2

(
− 2

π

)
= σ2

(
1− 2

π
δ2

)

where δ = λ√
1+λ2

.

The following is worth noting on the above proof:

[1] using (A∗∗),

[2] this step is labelled as (B∗∗) for later use.
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Skewness

Standardisation of the third cumulant leads to the well-known measure of Fisher-Pearson moments skew-

ness [31]. The Fisher-Pearson moment skewness, γ1, is given by

γ1 =
E
[
(Y − E[Y ])3

]
(var[Y ])

3
2

.

Theorem 6. Consider Y ∼ SN
(
µ, σ2, λ

)
with MGF given in (5), then the third central moment is given

by

E
[
(Y − E[Y ])

3
]

=
1

2
(4− π)

(
δσ

√
2

π

)3

where δ = λ√
1+λ2

.

Proof. Using (110) in Appendix A.1, (118), (120) in Appendix A.3 and the fact that the third cumulant

is the third central moment [26], it follows from (5) that

E
[
(Y − E[Y ])3

]
=

d3

dt3
GY (t)

∣∣∣∣
t=0

=
d

dt

(
σ2 + δσ

d

dt
b(δσt)

)∣∣∣∣
t=0

[1]

= (δσ)3b′′(δσt)
∣∣
t=0

= (δσ)3
(
−b(δσt) + (δσt)2b(δσt) + 3(δσt)(b(δσt))2 + 2(b(δσt))3

)∣∣
t=0

= (δσ)3
(
−b(0) + 2(b(0))3

)
= (δσ)3

−√ 2

π
+ 2

(√
2

π

)3


= (δσ)3

(
2

π

)3/2 (
2− π

2

)
=

(
δσ

√
2

π

)3
1

2
(4− π)

=
1

2
(4− π)

(
δσ

√
2

π

)3

where δ = λ√
1+λ2

.

The following is worth noting on the above proof:

[1] using (B∗∗).
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Utilizing the third central moment (i.e. the third cumulant), the Fisher-Pearson moment skewness is

then yielded as

γ1 =

1
2 (4− π)

(
δσ
√

2
π

)3

(
σ2
(
1− 2

π δ
2
)) 3

2

.

Kurtosis

The fourth central moment of the skew-normal distribution can be obtained by utilizing the following

relationship

E
[
(Y − E[Y ])

4
]

= k4 + 3
(
E
[
(Y − E[Y ])

2
])2

(7)

where k4 = d4

dt4GY (t)
∣∣∣
t=0

is derived in a similar fashion to that of Theorem 6 (presented below) and

E
[
(Y − E[Y ])

2
]
is the variance of the distribution [26] [6].

Theorem 7. Consider Y ∼ SN
(
µ, σ2, λ

)
with MGF given in (5), then the fourth central moment is

given by

E
[
(Y − E[Y ])

4
]

= 2(δσ)4 4

π2
(π − 3) + 3σ4

(
1− 2

π
δ2

)2

where δ = λ√
1+λ2

.

Proof. Using (110) given in Appendix A.1 as well as (119) and (120) given in Appendix A.3, it follows

that

k4 =
d

dt

[
d3

dt3
GY (t)

]∣∣∣∣
t=0

=
[
−(δσ)4b′(σδt)− (δσ)5tb′′(δσt)− (δσ)4b′(σδt)− (δσ)42b′(σδt)b′(σδt)− (δσ)42b′′(σδt)b(σδt)

]∣∣
t=0

= −(δσ)4b′(0)− (δσ)4b′(0)− (δσ)42[b′(0)]2 − 2(δσ)4b′′(0)b(0)

= (δσ)4
[
−2b′(0)− 2[b′(0)]2 − 2b(0)b′′(0)

]
= 2(δσ)4

[
2

π
− 4

π2
−
√

2

π

[
2

(
2

π

) 3
2

−
√

2

π

]]

= 2(δσ)4

[
2

π
− 4

π2
− 2

4

π2
+

2

π

]
= 2(δσ)4 4

π

(
1− 3

π

)
= 2(δσ)4 4

π2
(π − 3).
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Now, using the relationship in (7) and the variance derived prior, it follows that

E
[
(Y − E[Y ])

4
]

= k4 + 3
(
E
[
(Y − E[Y ])

2
])2

= 2(δσ)4 4

π2
(π − 3) + 3σ4

(
1− 2

π
δ2

)2

Utilizing the fourth central moment produces the well-known measure of kurtosis, γ2 [36], given by

γ2 =
E
[
(Y − E[Y ])4

]
(var[Y ])2

=
2(π − 3)

(
δσ
√

2
π

)4

(
σ2
(
1− 2

π δ
2
))2 .

2.1.3 Generation of random numbers and illustration of PDF

In order to generate random numbers from the SN
(
µ, σ2, λ

)
distribution with PDF given in (3), it is

necessary to provide a stochastic representation of the distribution. This approach follows the suggestion

by Henze [20].

Theorem 8. If W1 ∼ N (0, 1) and W2 ∼ N (0, 1) are two independent normally distributed random

variables, then

X =
λ|W1|+W2√

1 + λ2
∼ SN (λ) .

Proof. Let W1 ∼ N (0, 1) and W2 ∼ N (0, 1) be independent and let m = λ√
1+λ2

, n = 1√
1+λ2

and

X = λ|W1|+W2√
1+λ2

= m|W1|+ nW2. Then

P [X ≤ x] = EW1 [P [X ≤ x |W1 = w1]]

=

∫
R
P [m |w1|+ nW2 ≤ x]φ (w1) dw1

=

∫ 0

−∞
P [m |w1|+ nW2 ≤ x]φ (w1) dw1 +

∫ ∞
0

P [m |w1|+ nW2 ≤ x]φ (w1) dw1 (8)

noting that W1 is symmetric about w1 = 0, therefore

∫ 0

−∞
P [m |w1|+ nW2 ≤ x]φ (w1) dw1 =

∫ ∞
0

P [m |w1|+ nW2 ≤ x]φ (w1) dw1

=

∫ ∞
0

P [mw1 + nW2 ≤ x]φ (w1) dw1. (9)
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It can be observed from (8) and (9) that

P [X ≤ x] = 2

∫ ∞
0

P [mw1 + nW2 ≤ x]φ (w1) dw1

= 2

∫ ∞
0

P

[
W2 ≤

x−mw1

n

]
φ (w1) dw1

= 2

∫ ∞
0

Φ

(
x−mw1

n

)
φ (w1) dw1. (10)

Using a well-known result from Bain and Engelhardt [8] (see (116) in Appendix A.3), it follows from (10)

that

fX(x) =
d

dx
P [X ≤ x]

= 2

∫ ∞
0

d

dx
Φ

(
x−mw1

n

)
φ (w1) dw1

= 2

∫ ∞
0

φ

(
x−mw1

n

)
1

n
φ (w1) dw1

= 2

∫ ∞
0

1√
2π
e−

(x2−2xmw1+m2w2
1)

2n2
1

n

1√
2π
e−

1
2w

2
1dw1

= 2
1√
2π
e−

x2

2n2

∫ ∞
0

1√
2πn2

e−
w2

1
2 −

(−2xmw1+m2w2
1)

2n2 dw1

= 2
1√
2π
e−

x2

2n2

∫ ∞
0

1√
2πn2

e−
(w2

1n
2−2xmw1+m2w2

1)
2n2 dw1

= 2
1√
2π
e−

x2

2n2

∫ ∞
0

1√
2πn2

e−
(w2

1(m2+n2)−2xmw1)
2n2 dw1

= 2
1√
2π
e−

x2

2n2

∫ ∞
0

1√
2πn2

e−
(w2

1−2xmw1+x2m2)
2n2 e

x2m2

2n2 dw1

(
since m2 + n2 = 1 and induced ± x2m2

2n2

)
= 2

1√
2π
e−

x2

2n2 + x2m2

2n2

∫ ∞
0

1√
2πn2

e−
(w1−mx)

2

2n2 dw1

= 2
1√
2π
e−

x2

2

∫ ∞
0

1√
2πn2

e−
(w1−mx)

2

2n2 dw1

(
since − x2

2n2
+
x2m2

2n2
= −x

2

2

)
= 2φ(x)

∫ ∞
0

1√
2πn2

e−
(w1−mx)

2

2n2 dw1. (11)

Let k = w1−mx
n then it is true that u−1(k) = kn+mx = w1 and d

dku
−1(k) = n. It is important to note

that there is a change in the bounds of the integral in (11). If w1 = 0 then it implies that the lower bound

becomes k = −mx
n . The upper bound does not change. Applying the transformation it follows from (11)

that
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fX(x) = 2φ(x)

∫ ∞
−mx
n

1√
2π
e−

k2

2 dk

= 2φ(x)

∫ ∞
−mx
n

φ(k)dk

= 2φ(x)

(
lim
p→∞

Φ(p)− lim
p→∞

Φ

(
−mx
n

))
= 2φ(x)

(
1− Φ

(
−mx
n

))
= 2φ(x)Φ

(mx
n

)
. (12)

Since m
n =

λ√
1+λ2

1√
1+λ2

= λ it yields from (12) that

fX(x;λ) = 2φ(x)Φ(λx).

Hence, it is true that X ∼ SN (λ) with PDF as given in (2).

Corollary 2. If W1 ∼ N (0, 1) and W2 ∼ N (0, 1) are two independent normally distributed random

variables, then

Y = µ+ σX

= µ+ σ
λ|W1|+W2√

1 + λ2
∼ SN

(
µ, σ2, λ

)
(13)

with PDF as given in (3).

Theorem 8 and Corollary 2 provide a representation that can be used to conveniently generate val-

ues randomly from the skew-normal distribution. A short algorithm is provided that summarises the

generation from the SN
(
µ, σ2, λ

)
distribution.

Algorithm 1 Generating a random sample of size n from the SN
(
µ, σ2, λ

)
distribution

1: Required:

� De�ne the value of µ for µ ∈ R.
� De�ne the value of σ for σ > 0.

� De�ne the value of λ for λ ∈ R.
2: Generate the independent values W1 and W2 from the N(0, 1) distribution.
3: Recall the stochastic representation that is given in (13). De�ne the variable Y accordingly, using

steps 1 and 2.
4: Repeat steps 2 and 3, n times to obtain the n values from the distribution of Y .
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Using the PDF representation that is given in (3), Figure 2 gives a visual representation of the PDFs for

the SN
(
µ, σ2, λ

)
distribution. These PDFs are plotted with µ = 0 and σ2 = 1 kept constant throughout,

varying the values of λ.

Figure 2: PDFs of the distribution with PDF in (3) for di�erent values of λ.

It can be observed from Figure 2 that the skew-normal distribution exhibits a positive skewness for

λ > 0 and that the shape of the distribution becomes more skewed as the value of λ increases. It can

also be seen from Figure 2 that the skew-normal distribution exhibits a negative skewness for λ < 0. In

addition to the aforementioned, it can be observed that the skew-normal distribution exhibits a strictly

unimodal PDF [6].

The characteristics that include the expected value, variance, skewness and kurtosis are given in Table

1 for di�erent values of λ with µ = 0 and σ = 1 kept constant throughout.

Table 1: Values of some characteristics of the skew-normal distribution for di�erent values of λ

λ E[Y ] var[Y ] γ1 γ2

-4 -0.774 0.400 -0.784 0.632
-2 -0.714 0.491 -0.454 0.305
2 0.714 0.491 0.454 0.305
4 0.744 0.400 0.784 0.632

It can be observed from Table 1 that the expected value increases as the value of λ increases. The same

observation holds for the skewness. However, as |λ| decreases, the kurtosis decreases. It is observed that

the variance increases as |λ| decreases.

The characteristics that include the expected value, variance, skewness and kurtosis are given in Table
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2 for di�erent values of µ with λ = 2 and σ = 1 kept constant throughout.

Table 2: Values of some characteristics of the skew-normal distribution for di�erent values of µ

µ E[Y ] var[Y ] γ1 γ2

-4 -3.286 0.491 0.454 0.305
-2 -1.286 0.491 0.454 0.305
2 2.714 0.491 0.454 0.305
4 4.714 0.491 0.454 0.305

It can be observed from Table 2 that the expected value increases as the value of µ increases. The

remaining characteristics remain unchanged as the value of µ changes. This is due to the fact that the

expected value, skewness and kurtosis are not functions of µ.

The characteristics that include the expected value, variance, skewness and kurtosis are given in Table

3 for di�erent values of σ with µ = 2 and λ = 2 kept constant throughout.

Table 3: Values of some characteristics of the skew-normal distribution for di�erent values of σ

σ E[Y ] var[Y ] γ1 γ2

0.1 2.071 0.005 0.454 0.305
0.5 2.357 0.123 0.454 0.305
0.9 2.642 0.397 0.454 0.305
1.3 2.928 0.829 0.454 0.305

It can be observed from Table 3 that the expected value increases as the value of σ increases. Furthermore,

the variance increases as the value of σ increases. The remaining characteristics remain unchanged as

the value of σ changes.

2.1.4 Estimation

The points which maximize the log-likelihood function in the parameter space of the distribution is known

as the maximum likelihood estimators [41]. Various literature note the di�culty that is encountered

with maximum likelihood estimates (MLEs) of the skew-normal distribution; see Gupta and Gupta [18],

Yalcinkaya et al. [41], Pewsey [32] and Kundu [24]. This section will proceed to give the log-likelihood

function as well as the normal equations of the skew-normal distribution.

Maximum likelihood estimators

Theorem 9. Let {y1, y2, ..., yn} be a random sample of size n from Y ∼ SN
(
µ, σ2, λ

)
with pdf as given

in (3). The log-likelihood function is then given by

l (µ, σ, λ) = n ln 2− n lnσ − n

2
ln(2πσ2)− 1

2

n∑
i=1

(
yi − µ
σ

)2

+

n∑
i=1

ln

[
Φ

(
λ

(
yi − µ
σ

))]
. (14)
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Proof. From Bain and Engelhardt [8] and using (3), it follows that

l (µ, σ, λ) = ln

[
n∏
i=1

fYi(yi)

]

=

n∑
i=1

ln [fYi(yi)]

=

n∑
i=1

ln

[
2

σ
φ

(
yi − µ
σ

)
Φ

(
λ

(
yi − µ
σ

))]

= n ln 2− n lnσ +

n∑
i=1

ln

[
φ

(
yi − µ
σ

)]
+

n∑
i=1

ln

[
Φ

(
λ

(
yi − µ
σ

))]

= n ln 2− n lnσ +

n∑
i=1

[
ln

[
1√

2πσ2
e−

1
2 ( yi−µσ )

2
]]

+

n∑
i=1

ln

[
Φ

(
λ

(
yi − µ
σ

))]

= n ln 2− n lnσ +

n∑
i=1

[
−1

2
ln(2πσ2)− 1

2

(
yi − µ
σ

)2
]

+

n∑
i=1

ln

[
Φ

(
λ

(
yi − µ
σ

))]

= n ln 2− n lnσ − n

2
ln(2πσ2)− 1

2

n∑
i=1

(
yi − µ
σ

)2

+

n∑
i=1

ln

[
Φ

(
λ

(
yi − µ
σ

))]
.

It is proceeded to obtain the normal equations by taking the partial derivatives of the log-likelihood

function in (14) with respect to the unknown parameters and equating them to 0. The normal equations

are subsequently given in (15), (16) and (17).

∂l (µ, σ, λ)

∂µ
=

1

σ

n∑
i=1

(
yi − µ
σ

)
− λ

σ

n∑
i=1

φ
(
λ
(
yi−µ
σ

))
Φ
(
λ
(
yi−µ
σ

)) = 0, (15)

∂l (µ, σ, λ)

∂σ
= −2n

σ
− 1

σ

n∑
i=1

(yi − µ)
2

+ λ

n∑
i=1

φ
(
λ
(
yi−µ
σ

))
Φ
(
λ
(
yi−µ
σ

)) (yi − µ) = 0, (16)

∂l (µ, σ, λ)

∂λ
=

n∑
i=1

φ
(
λ
(
yi−µ
σ

))
Φ
(
λ
(
yi−µ
σ

)) (yi − µ
σ

)
= 0. (17)

The solutions to the normal equations are called the maximum likelihood estimators of the unknown

parameters. Since the normal equations contain non-linear functions de�ned by ω(zi) = φ(λzi)
Φ(λzi)

where

zi = yi−µ
σ , the exact solutions of the normal equations cannot be obtained [41]. This brie�y outlines

the inferential problem that is evident with the skew-normal distribution. Furthermore, Azzalini and

Capitanio [5] noted that at λ = 0 of the pro�le log-likelihood, there is always an in�ection point. In

addition to the latter, the expected Fisher information matrix becomes singular at λ = 0 [5]. Yalcinkaya

et al. [41] suggest the use of iterative methods to try and solve the normal equations. In addition to the

work from Yalcinkaya et al. [41], other iterative methods to deal with the non-linearity of the normal

equations can be viewed in the excellent monograph by Kantar and Senoglu [22]. An example, is to resort

to the use of the quasi-Newton method by Dennis and More [12] in order to solve the normal equations.
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However, Kundu [24] developed the more �exible geometric skew-normal distributions to circumvent the

inferential issues encountered. Moreover, Kundu [24] developed the geometric skew-normal distribution

to address the fact that the PDF of the skew-normal distribution is strictly unimodal.

2.2 Multivariate skew-normal distribution

This subsection will proceed to provide an overview of the multivariate skew-normal distribution. A brief

summary of proceedings in Section 2.2 is provided in Figure 3.

Figure 3: Summary of Section 2.2.

2.2.1 Preamble

The multivariate extension of (2) was momentarily discussed by Azzalini [4]. The formal extensions

of (2) and (3) was discussed by Azzalini and Capitanio [6]. The formal extension of the univariate

skew-normal distribution to the multivariate skew-normal distribution constitutes the most convenient

option that involves a modulation factor of Gaussian type. This modulation factor utilizes a multivariate

normal base density [6]. The multivariate extensions presented in the theorems below are still of the type

presented in Proposition 1.

Theorem 10. Consider the d-dimensional random variable Z = (Z1, Z2, ..., Zd)
T . Then Z has the

multivariate skew-normal distribution if its PDF is given by the following:

fd(z) = 2φd (z; Ω) Φ
(
αT z

)
(18)
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where

αT =
λTΨ−1∆−1

(1 + λTΨ−1λ)
1
2

∆ = diag
((

1− δ2
1

) 1
2 , . . . ,

(
1− δ2

d

) 1
2

)
λ = (λ (δ1) , . . . , λ (δd))

T

Ω = ∆
(
Ψ + λλT

)
∆

δi =
λi√

1 + λ2
i

for i = 1, 2, ..., d and λi ∈ R

Ψ: d× d correlation matrix

and noting that φd (z; Ω) represents the PDF of the d-variate normal distribution with standardised

marginals and the positive de�nite d × d covariance matrix Ω. This is denoted by Z ∼ SNd (Ω, α)

[6].

It is proceeded to introduce location and scale parameters for the use in applied work. The introduction

is done via the transformation:

Y = µ+ ωZ

where µ ∈ Rd and ω =diag(ω1, ω2, ..., ωd) with ωi positive, leading to the general form of SNd(·) variables.

The next corollary is immediate from the transformation [7].

Corollary 3. The d-dimensional random variable Y has the multivariate skew-normal distribution with

location parameter µ and scale parameter ω if its PDF is given by the following:

fd(y) = 2φd (y− µ; Ω∗) Φ

(
αT
(
y− µ
ω

))
(19)

where µ ∈ Rd, ω =diag(ω1, ω2, ..., ωd) and Ω∗ = ωΩω. The latter implying that the covariance structure

is not a�ected by the introduction of skewness since ω is assumed to be diagonal. This is denoted by

Y ∼ SNd(µ,Ω∗, α).

Proof. Let Z ∼ SNd(Ω, α) with PDF as given in (18). Consider the d-dimensional random variable

Y = µ+ωZ, where the location and scale parameters are denoted by µ ∈ Rd and ω =diag(ω1, ω2, ..., ωd)

respectively. If y = µ+ωz, then u−1(y) = y−µ
ω

= z with d
dyu
−1(y) = 1

ω
. Also, if ωu−1(y) = y−µ =

ωz with d
dyu
−1(y) = 1, then it is true that ωz ∼ SNd(Ω∗, α) where Ω∗ = ωΩω. Thus, from Bain and
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Engelhardt [8] and using (18), it follows that

fd(y;µ,Ω∗, α) = fd(z; Ω, α)

∣∣∣∣ ddyu−1(y)

∣∣∣∣
= fd(u

−1(y); Ω, α)

∣∣∣∣ ddyu−1(y)

∣∣∣∣
= 2φd

(
u−1(y); Ω

)
Φ
(
αTu−1(y)

) ∣∣∣∣ 1

ω

∣∣∣∣
= 2|ω|−1φd

(
y− µ
ω

; Ω

)
Φ

(
αT
(
y− µ
ω

))
= 2φd (y− µ; Ω∗) Φ

(
αT
(
y− µ
ω

))

where the last step follows since ωz ∼ SNd(Ω∗, α) with Ω∗ = ωΩω. Thus, Y ∼ SNd(µ,Ω∗, α).

2.2.2 Characteristics of the multivariate skew-normal distribution

This section will proceed by revisiting select characteristics of the multivariate skew-normal distribution.

These characteristics include the likes of the expected value and variance (among others). Before revisiting

some of the characteristics, �rstly the MGF of the random variable with PDF given in (19) will be derived.

Moment generating function

Before deriving the MGF, it is worthwhile to consider the theory presented in Lemmas 2 and 3 that are

given in (114) and (115) respectively (see Appendix A.2). These Lemmas present convenient theory that

ease the derivations of some of the remaining characteristics of the multivariate skew-normal distribution

that will be discussed. Lemma 2 is an instantaneous extension of Lemma 1.

Theorem 11. The MGF of a d-dimensional random variable Y = µ+ ωZ with PDF as given in (19)

is given by

MY (t) = 2e{t
Tµ+ 1

2 t
TΩ∗t}Φ

(
δTωt

)
(20)

with t ∈ Rd,Z ∼ SNd(Ω, α), δ = Ωα√
1+αT Ωα

and Φ(·) denoting the standard normal CDF.

Proof. Consider the d-dimensional random variable Y = µ+ ωZ where Y ∼ SNd(µ,Ω
∗, α) and Z ∼

SNd(Ω, α). Then from Johnson and Wichern [21], using (19) and (115) in Appendix A.2 and the fact
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that ωz = y− µ, it follows that

MY (t) = E
[
et
TY
]

= E
[
et
T (µ+ωZ)

]
=

∫
Rd
et
Tµ+tTωz2φd(z; Ω)Φ(αTz)dz

= et
Tµ

∫
Rd

2et
Tωz2φd(z; Ω)Φ(αTz)dz

= et
Tµ

∫
Rd

2et
T (y−µ)2φd(y− µ; Ω∗)Φ(αTω−1(y− µ))d(y− µ)

= 2et
Tµ × e 1

2 t
TΩ∗t × Φ

(
δTωt

)
= 2e{t

Tµ+ 1
2 t
TΩ∗t}Φ

(
δTωt

)
where δ = Ωα√

1+αT Ωα
and Ω∗ = ωΩω.

Expected value, variance, skewness and kurtosis

The method that will be used to derive the characteristics follows in a similar fashion to that of what

is described by Azzalini and Capitanio [6]. As before, the inverse Mills ratio will be utilized in order to

simplify the derivations. The de�nition can be viewed in (111) (see Appendix A.1).

Expected value

Theorem 12. Consider the d-dimensional random variable Y ∼ SNd(µ,Ω
∗, α) with MGF given in

(20), then the expected value is given by

E[Y ] = µT + δTω

√
2

π

where δ = Ωα√
1+αT Ωα

.
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Proof. Using (109), (111) in Appendix A.1, (116), (118) in Appendix A.3, it follows from (20) that

E[Y ] =
d

dt
GY (t)

∣∣∣∣
t=0

=
d

dt
logMY (t)

∣∣∣∣
t=0

=
d

dt
tTµ+

1

2
tTΩ∗t+ log

(
2Φ
(
δTωt

))∣∣∣∣
t=0

= µT
d

dt

[(
1

2
tTΩ∗t

)]
+

d

dt

[
log
(
2Φ
(
δTωt

))]∣∣∣∣
t=0

= µT +
d

dt

[(
1

2
Ω∗t

)T
t

]
+

d

dt

[(
1

2
tTΩ∗

)
t

]
+

d

dt

[
log
(
2Φ
(
δTωt

))]∣∣∣∣∣
t=0

= µT +
1

2
tTΩ∗T +

1

2
tTΩ∗ +

d
dt2Φ

(
δTωt

)
2Φ (δTωt)

∣∣∣∣∣
t=0

= µT +
1

2
tT
(
Ω∗T + Ω∗

)
+

2δTωφ
(
δTωt

)
2Φ (δTωt)

∣∣∣∣∣
t=0

= µT +
1

2
tT
(
Ω∗T + Ω∗

)
+ δTωb

(
δTωt

)∣∣∣∣
t=0

= µT +
1

2
tT (2Ω∗) + δTωb

(
δTωt

)∣∣∣∣
t=0

[1]

= µT + 0 + δTωb(0)

= µT + δTω

√
2

π

where δ = Ωα√
1+αT Ωα

.

The following is worth noting on the above proof:

[1] Ω∗ is a positive de�nite matrix.

Theorem 13. Consider the d-dimensional random variable Y ∼ SNd(µ,Ω
∗, α) with MGF given in

(20), then the variance is given by

var[Y ] = Ω∗ − ωδδTω
(

2

π

)

where δ = Ωα√
1+αT Ωα

.
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Proof. Using (109) in Appendix A.1, (118), (119) in Appendix A.3, it follows from (20) that

var[Y ] =
d

dtdtT
GY (t)

∣∣∣∣
t=0

=
d

dtT

(
µT +

1

2

(
Ω∗T + Ω∗

)T
t+ δTωb

(
δTωt

))∣∣∣∣
t=0

=
d

dtT

(
tT

1

2

(
Ω∗T + Ω∗

))
+ δTω

d

dtT
b
(
δTωt

)∣∣∣∣
t=0

=
1

2

(
Ω∗T + Ω∗

)
+ ωT δ

d

dtT
b
(
tT
(
ωT δ

)T)∣∣∣∣
t=0

=
1

2
(2Ω∗) + ωT δ

[
−b
(
tT
(
ωT δ

)T){
tT
(
ωT δ

)T
+ b

(
tT
(
ωT δ

)T)}]
× d

dtT

(
tT
(
ωT δ

)T)∣∣∣∣
t=0

= Ω∗ + ωT δδTω [−b(0) {0 + b(0)}]

= Ω∗ + ωT δδTω
[
(−b(0))2

]
= Ω∗ + ωT δδTω

(
2

π

)
= Ω∗ + ωδδTω

(
2

π

)
[1]

where δ = Ωα√
1+αT Ωα

.

The following is worth noting on the above proof:

[1] ω is a diagonal matrix and so ω = ωT .

The variance can also be written in another form:

var[Y ] = Ω∗ − ωδδTω
(

2

π

)
= Ω∗ − ωδb(0)b(0)δTω

= ωΩω − ωδ[b(0)]2δTω

= ωΣzω

where Σz = Ω− δ [b(0)]
2
δT = var[Z] with Z ∼ SNd(Ω, α) [6].

Skewness and kurtosis

The higher order derivatives of GY (t) that are used to obtain the remaining cumulants (third and fourth)

are given by Azzalini and Capitanio [6]. The kth order derivative of GY (t) for k > 2 takes the form [6]:

dk

dti dtj ...dth
GY (t) = bk

(
δTωt

)
ωiωj ...ωhδiδj ...δh for h = 3, 4, ... (21)
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where the expressions of bk(·) for k ≤ 4 is given by the inverse Mills ratio Properties 1 till 4 respectively.

The multivariate skewness and kurtosis measures that were introduced by Mardia [27] are obtained by

the evaluation at t = 0 of the derivatives obtained using (21). Particularly, the evaluation of (21) at

t = 0 for k = 3 yields the third cumulant and therefore the third central moment. Using the third central

moment, Mardia's [27] multivariate skewness measure is given by

γM1,d =

(
4− π

2

)2 (
µTz Σ−1

z µz
)3

where µz =
√

2
πδ. In addition to the latter, the evaluation of (21) at t = 0 for k = 4 yields the fourth

cumulant. Using the relationship in (7), the fourth central moment is obtained. Mardia's [28] multivariate

kurtosis measure is then given by

γM2,d = 2 (π − 3)
(
µTz Σ−1

z µz
)2

where µz =
√

2
πδ.

2.2.3 Generation of random numbers and illustration of PDF

It is proceeded to provide an algorithm that describes how to generate from the multivariate skew-normal

distribution. In this case, the algorithm is speci�cally set to be implemented in R, although the idea can

be extended to be used in general. The steps that are given consider the particular case of the bivariate

skew-normal distribution, that is, the SN2(µ,Ω∗, α) distribution.

Algorithm 2 Generation from the SNd(µ,Ω
∗, α) distribution in R. In this case speci�cally where d = 2

1: Required: De�ne the sample size to generate say N.
2: Required: De�ne two sequences. That is, de�ne a sequence, say x, of length N that starts at −3 and

ends at 3 (start and end values are arbitrary values). Then de�ne the second sequence, say y, in a
similar manner.

3: Required: Combine the de�ned sequences into a grid. In R, this translates to a 2D grid.
4: Required: De�ne the parameters of the distribution. That is

� de�ne µ,

� de�ne Ω∗ and

� de�ne α.

5: Generate associated PDF values from the bivariate skew-normal distribution by using the rmsn-
function, specifying the aforementioned parameter values.

6: Compress the numbers into a list object. This will yield the PDF values associated with the required
sample (grid coordinates).
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Using the PDF representation that is given in (19), PDFs of the bivariate SN2(µ,Ω∗, α) distribution

are provided in Figures 4 and 5 for di�erent parameter values. These PDFs are plotted with µ = (0, 0)T

and α = (5,−3)T kept constant throughout, varying the values of Ωii for i = 1, 2. It can be observed

from Figures 4 and 5 that the multivariate skew-normal distribution exhibits a strictly unimodal PDF

[7] [25].

(a) 3D plot (b) Contour plot

Figure 4: Bivariate skew-normal PDF with Ω∗11 = Ω∗22 = 1 with Ω∗12 = Ω∗21 = 0.7.

(a) 3D plot (b) Contour plot

Figure 5: Bivariate skew-normal PDF with Ω∗11 = Ω∗22 = 1 with Ω∗12 = Ω∗21 = −0.7.
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2.2.4 Estimation

The estimation section considers the approach where the location parameters have been assumed to be

di�erent. The approach considers a direct regression environment where the location parameter µi is

related to a set of p explanatory variables xi [5] [6]. That is, a regression environment where the ith

component yi ∈ Rd of y = (y1, y2, ..., yn)
T
is sampled from Yi ∼ SNd(µ,Ω∗, α). There is independence

among the Yi's; assuming µi has the following relation to xi:

µi = xTi β, i = 1, 2, ..., n (22)

for some p×d matrix β of unknown parameters, where the covariates vector xi has 1 in the �rst position

[6]. The covariate vectors x1, x2, ..., xn are then arranged in a n×p matrix X (with n > p) having rank

p [6].

Theorem 14. Let y = (y1, y2, ..., yn)
T
be a random sample from the SNd(µi,Ω

∗, α) distribution for

i = 1, 2, ..., n with PDF in (19). Assuming the relationship in (22), the log-likelihood function is then

given by

l (Xβ,Ω∗, α) = −1

2
n ln |Ω∗| − 1

2
n tr

(
Ω∗−1V

)
+

n∑
i=1

b
(
αTω−1 (y−Xβ)

)
(23)

where b(·) = ln(2Φ(·)) and V =
∑n
i=1(y−Xβ)(y−Xβ)T .

Proof. From Bain and Engelhardt [8], using (19) and the fact that scalar(A) = tr(A) [21], the likelihood

is derived as

L (Xβ,Ω∗, α) =

n∏
i=1

fd(y)

=

n∏
i=1

2|ω|−1 (2π)
− d2 |Ω∗|− 1

2 e−
1
2 (y−Xβ)T Ω∗−1(y−Xβ)Φ

(
αTω−1 (y−Xβ)

)
= 2|ω|−n (2π)

−nd2 |Ω∗|−n2 e− 1
2

∑n
i=1(y−Xβ)T Ω∗−1(y−Xβ)

n∑
i=1

Φ
(
αTω−1 (y−Xβ)

)
= 2|ω|−n (2π)

−nd2 |Ω∗|−n2 e−
1
2

∑n
i=1 tr[(y−Xβ)T Ω∗−1(y−Xβ)]

n∑
i=1

Φ
(
αTω−1 (y−Xβ)

)
= 2|ω|−n (2π)

−nd2 |Ω∗|−n2 e−
1
2 tr[Ω

∗−1∑n
i=1(y−Xβ)(y−Xβ)T ]

n∑
i=1

Φ
(
αTω−1 (y−Xβ)

)
= 2|ω|−n (2π)

−nd2 |Ω∗|−n2 e−
1
2ntr[Ω

∗−1 1
n

∑n
i=1(y−Xβ)(y−Xβ)T ]

n∑
i=1

Φ
(
αTω−1 (y−Xβ)

)
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and hence the log-likelihood is then obtained as

l (Xβ,Ω∗, α) = ln [L (Xβ,Ω∗, α)]

= −nln|ω| − 1

2
ndln(2π)− 1

2
ln|Ω∗| − 1

2
ntr

[
Ω∗−1 1

n

n∑
i=1

(y−Xβ) (y−Xβ)
T

]

+

n∑
i=1

ln
(
2Φ
(
αTω−1 (y−Xβ)

))
∝ −1

2
ln|Ω∗| − 1

2
ntr
(
Ω∗−1V

)
+

n∑
i=1

b
(
αTω−1 (y−Xβ)

)

where b(·) = ln(2Φ(·)) and V =
∑n
i=1(y−Xβ)(y−Xβ)T .

Maximization of (23) should be conducted numerically over a parameter space with dimension size of

pd+ d(d+3)
2 . It is proceeded to follow a provisional reparametrization that will ease the maximization of

the log-likelihood [5].

Let η = ω−1α as a parameter replacing α in the �nal term of (23). Now (23) without the �nal

summation is the same as the Gaussian log-likelihood [6] [21] . Therefore, the maximization of (23) with

respect to Ω∗ is equivalent to maximizing the Gaussian log-likelihood for �xed β [5]. The well-known

solution is given as

Ω̂∗ (β) = V (β)

= n−1uTu (24)

where u = y−Xβ [5]. Substituting (24) into (23) yields the pro�le log-likelihood as

l∗ (β, η) = −1

2
ln|V (β)| − 1

2
nd+ 1Tnb(uη) (25)

which will also be maximized numerically, however with lower dimensions. The parameter space has

been reduced to d(p + 1) parameter components [6]. Numerical maximization of (25) is accelerated by

supplying partial derivatives to the quasi-Newton algorithm [5]. The quasi-Newton algorithm is fully

explained by Dennis and More [12]. The partial derivatives of (25) are given as [5]

∂l∗ (β, η)

∂β
= XTuV (β)−1 −XT b′(uη)ηT

∂l∗ (β, η)

∂η
= uT b′(uη).

Once the value for β̂ and η̂ are obtained using the quasi-Newton algorithm, the MLE of Ω∗ is obtained as
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Ω̂∗ = n−1
(
y−Xβ̂

)T (
y−Xβ̂

)
. From here, it is proceeded to obtain ω̂ following convenient notation,

with the MLE of α then obtained as α̂ = ω̂η̂ using the equivariance property of MLEs [5].
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3 Chapter 3

Chapter 3 will discuss the geometric skew-normal distribution. In Section 3.1, the univariate geometric

skew-normal distribution is revisited. An overview of the multivariate geometric skew-normal distribution

is presented in Section 3.2.

3.1 Univariate geometric skew-normal distribution

This subsection will proceed to revisit the univariate geometric skew-normal distribution. The geometric

skew-normal distribution was presented by Kundu [24]. This distribution is conveniently more �exible

than the skew-normal distribution as its PDF can be multimodal and the MLEs can be obtained in

explicit forms [24]. Figure 6 gives a summary of how Section 3.1 will proceed.

Figure 6: Summary of Section 3.1.

3.1.1 Preamble

Throughout this section a normal random variable with mean µ and variance σ2 will be denoted by

N
(
µ, σ2

)
. A geometric random variable with parameter p will be denoted by GE (p). The functions φ(·)

and Φ(·) represent the standard normal distribution PDF and CDF respectively.

Theorem 15. A random variable Y that follows the geometric distribution with parameter p, that is

Y ∼ GE (p), has a probability mass function (PMF) of the following form [8]:

fY (y) = p (1− p)y−1
(26)
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for y = 1, 2, ... and 0 < p ≤ 1.

Theorem 16. Let {Xi : i = 1, 2, ...} be independent and identically distributed (i.i.d.) N
(
µ, σ2

)
random

variables and suppose that N ∼ GE(p), with N and X ′is independently distributed. Then de�ne

X
d
=

N∑
i=1

Xi (27)

where
d
= indicates equal in distribution. It is then observed that X is a geometric skew-normal random

variable with parameters µ, σ and p [24]. This will be denoted by GSN (µ, σ, p).

Theorem 17. Let X ∼ GSN (µ, σ, p) given in (27) where N ∼ GE(p). The joint PDF of the variable

(X,N) is given by

fX,N (x, n) =


1

σ
√

2πn
e−

1
2nσ2

(x−nµ)2p(1− p)n−1 if 0 < p < 1

1
σ
√

2π
e−

1
2σ2

(x−µ)2 if p = 1
(28)

using the convention that 00 = 1 when p = 1 and noting that −∞ < x <∞, µ ∈ R, σ > 0 and n is any

positive integer [24].

Proof. LetN ∼ GE(p). The proof will be given for the case where 0 < p < 1. If p = 1, then P (N = n) = 1

since it is assumed that 00 = 1. The result for p = 1 is then immediate using the N(µ, σ2) distribution

PDF that is stated and proved in Bain and Engelhardt [8].

Recall that if X ∼ N(µ, σ2), then X|(N = n) =
∑n
i=1Xi ∼ N(nµ, nσ2) [8]. Hence, from the latter,

Bain and Engelhardt [8] and (26), it follows that

fX,N (x, n) = fX|N (x|n)× fN (n)

=
1

σ
√

2πn
e−

1
2nσ2

(x−nµ)2p(1− p)n−1

noting that −∞ < x <∞, µ ∈ R, σ > 0 and n is any positive integer.

Theorem 18. Let X ∼ GSN (µ, σ, p) given in (27) where N ∼ GE(p). The joint CDF of the variable

(X,N) is given by

FX,N (x, n) = p

n∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

(29)

for −∞ < x <∞, µ ∈ R, σ > 0, 0 < p < 1 and n is any positive integer [24].

Proof. Making use of conditional probability (112) in Appendix A.1 and the fact that X|(N = k) ∼
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N(kµ, kσ2) [8], it follows that

FX,N (x, n) = P (X ≤ x,N ≤ n)

= P (X ≤ x,N = 1) + P (X ≤ x,N = 2) +

· · ·+ P (X ≤ x,N = n)

=

n∑
k=1

P (X ≤ x,N = k)

=

n∑
k=1

P (X ≤ x|N = k)P (N = k)

= p

n∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

.

Naturally, the question arises of what would happen to the CDF if p = 1? If p = 1, then P (N = 1) = 1

and FX,N (x, n) = Φ
(
x−µ
σ

)
.

Theorem 19. Let X ∼ GSN (µ, σ, p) given in (27) where N ∼ GE(p). The CDF of the random variable

X is given by

FX(x) = p

∞∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

(30)

for −∞ < x <∞, µ ∈ R, σ > 0 and 0 < p < 1 [24].

Proof. From Stewart [37], it follows that

FX(x) = lim
n→∞

FX,N (x, n)

= lim
n→∞

p

n∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

= p

∞∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

.

As, before the question arises of what would happen to the CDF if p = 1? If p = 1, then P (N = 1) = 1

and FX(x) = Φ
(
x−µ
σ

)
.

Theorem 20. Let X ∼ GSN (µ, σ, p) given in (27) where N ∼ GE(p). The PDF of the random variable

43



X is given by

fX(x) =

∞∑
k=1

p

σ
√
k
φ

(
x− kµ
σ
√
k

)
(1− p)k−1

(31)

for −∞ < x <∞, µ ∈ R, σ > 0 and 0 < p < 1 [24].

Proof. Using (116) in Appendix A.3, it follows that

fX(x) =
d

dx
FX(x)

=
d

dx
p

∞∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

=

∞∑
k=1

p

σ
√
k
φ

(
x− kµ
σ
√
k

)
(1− p)k−1

.

If p = 1, then X ∼ N(µ, σ2) [24]. When µ = 0 and σ = 1, then the distribution of X is known as the

standard geometric skew-normal distribution denoted by GSN (0, 1, p), with the pdf in (31) becoming

fX(x) = p

∞∑
k=1

1√
k
φ

(
x√
k

)
(1− p)k−1

. (32)

The GSN (0, 1, p) distribution is a symmetric distribution around 0 for all values of p [24].

3.1.2 Characteristics of the geometric skew-normal distribution

The computation of the characteristics of X ∼ GSN(µ, σ, p) is done via the MGF or, equivalently but

somewhat more practical, via the CGF (see (109) in Appendix A.1).

Moment generating function

The MGF of a random variable with PDF as given in (31) will be derived. Before deriving the MGF of

the geometric skew-normal distribution it is worthwhile deriving the MGF of the geometric distribution

�rst.

Theorem 21. The MGF of the random variable Y ∼ GE(p) with PMF given in (26) is given by

MY (t) =
pet

1− qet
(33)

with t ∈ R and q = 1− p.
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Proof. Using (108) in Appendix A.1 and the sum of geometric series, it follows that

MY (t) = E
[
etY
]

=

∞∑
y=1

etypqy−1

=
p

q

∞∑
y=1

(
qet
)y

= pet
∞∑
y=0

(
qet
)y

=
pet

1− qet
.

Theorem 22. The MGF of a random variable X ∼ GSN (µ, σ, p) with PDF given in (31) is given by

MX(t) =
peµt+

1
2σ

2t2

1− (1− p)eµt+ 1
2σ

2t2
(34)

where t ∈ R [24].

Proof. From Bain and Engelhardt [8]

MX(t) = E
[
etX
]

= EN
[
E
(
etX |N

)]
(35)

where N ∼ GE(p). Since the X ′is are i.i.d. N(µ, σ2) random variables, it follows that

E
(
etX |N = n

)
= E

[
et
∑n
i=1Xi

]
=

n∏
i=1

E
[
etXi

]
=

n∏
i=1

MXi(t)

= [MY (t)]
n

=
[
eµt+

1
2σ

2t2
]n
. (36)

Substituting (36) into (35), using the fact that if Y ∼ N(µ, σ2), then ln(MY (t)) = µt+ 1
2σ

2t2 and using
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(33), it follows that

MX(t) = EN

[
eNµt+

1
2Nσ

2t2
]

= EN

[
eN ln(MY (t))

]
= MN (ln(MY (t)))

=
peµt+

1
2σ

2t2

1− (1− p)eµt+ 1
2σ

2t2

where t ∈ R.

Expected value, variance, skewness and kurtosis

This section will proceed by discussing the expected value and variance of the geometric skew-normal

distribution. The third- and fourth central moments are stated without proof, however a result is provided

that can be utilized to obtain them in a convenient matter. Consequently, the skewness and kurtosis are

also provided. The method that will be used for derivations in this section follows in a similar fashion

to that of what is described by Azzalini and Captanio [6]. The method derives the expected value and

variance by using the cumulant generating function, GY (t), as stated in (109) (see Appendix A.1).

Expected value

Theorem 23. Consider X ∼ GSN (µ, σ, p) with MGF as given in (34), then the expected value is given

in Kundu [24] by

E [X] =
µ

p
.
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Proof. Using (109) and (110) in Appendix A.1, it follows that

E[X] =
d

dt
GX(t)

∣∣∣∣
t=0

=
d

dt
lnMX(t)

∣∣∣∣
t=0

=
d

dt
ln

[
peµt+

1
2σ

2t2

1− qeµt+ 1
2σ

2t2

]∣∣∣∣∣
t=0

=
d

dt

[
ln(peµt+

1
2σ

2t2)− ln
(

1− qeµt+ 1
2σ

2t2
)]∣∣∣∣

t=0

=
d

dt
ln
(
peµt+

1
2σ

2t2
)
− d

dt
ln
(

1− qeµt+ 1
2σ

2t2
)∣∣∣∣
t=0

=
peµt+

1
2σ

2t2
(
µ+ σ2t

)
peµt+

1
2σ

2t2
−
−qeµt+ 1

2σ
2t2
(
µ+ σ2t

)
1− qeµt+ 1

2σ
2t2

∣∣∣∣∣
t=0

= µ+
q(µ)

1− q

=
µ

p
.

Variance

Theorem 24. Consider X ∼ GSN (µ, σ, p) with MGF as given in (34), then the variance is given in

Kundu [24] by

var [X] =
σ2p+ µ2(1− p)

p2
.
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Proof. Using (109) and (110) in Appendix A.1, it follows that

var[X] =
d2

dt2
GX(t)

∣∣∣∣
t=0

=
d

dt

(
d

dt
lnMX(t)

)∣∣∣∣
t=0

=
d

dt

(
µ+ σ2t+

qeµt+
1
2σ

2t2(µ+ σ2t)

1− qeµt+ 1
2σ

2t2

)∣∣∣∣∣
t=0

=
d

dt

([
µ+ σ2t

] [
1 +

qeµt+
1
2σ

2t2

1− qeµt+ 1
2σ

2t2

])∣∣∣∣∣
t=0

= σ2

[
1 +

qeµt+
1
2σ

2t2

1− qeµt+ 1
2σ

2t2

]
+
[
µ+ σ2t

] [
qeµt+

1
2σ

2t2(µ+ σ2t)
(

1− qeµt+ 1
2σ

2t2
)]

×

−qeµt+ 1
2σ

2t2
(
−qeµt+ 1

2σ
2t2
) (
µ+ σ2t

)
[
1− qeµt+ 1

2σ
2t2
]2


∣∣∣∣∣∣∣
t=0

[1]

= σ2

[
1 +

q

1− q

]
+ [µ]

[
q(µ)(1− q)− q(−q)(µ)

[1− q]2

]
= σ2

[
p+ q

p

]
+ µ

[
qpµ+ q2µ

p2

]
=
σ2p2 + σ2pq + µ2pq + µ2q2

p2

=
σ2p (p+ q) + µ2q (p+ q)

p2

=
[p+ (1− p)]

[
σ2p+ µ2(1− p)

]
p2

=
σ2p+ µ2(1− p)

p2
.

The following is worth noting on the above proof:

[1] labelled as (A∗∗) for later use.

Skewness

Standardisation of the third cumulant produces the well-known measure of Fisher-Pearson moment skew-

ness [31]. The Fisher-Pearson moment skewness, γ1, is given by

γ1 =
E
[
(X − E[X])3

]
(var[X])

3
2

.

Theorem 25. Consider X ∼ GSN (µ, σ, p) with MGF as given in (34), then the third central moment
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is given in Kundu [24] by

E
[
(X − E(X))

3
]

=
1− p
p3

(
µ3(2p2 − p+ 2) + 2µ2p2 + µσ2(3− p)p

)
. (37)

The third central moment (which in turn is the third cumulant) can be obtained in a similar fashion

to that of the variance (second cumulant) by obtaining the derivative of (A∗∗). The third central moment

as given in (37) can otherwise be directly obtained using (28) in terms of an in�nite series as described

in Kundu [24]. The in�nite series is used to obtain higher order moments and it is given as

E (Xm) = p

∞∑
n=1

(1− p)n−1um
(
nµ, nσ2

)
(38)

where um(nµ, nσ2) = E(Y m) with Y ∼ N(nµ, nσ2) [24]. Utilizing the third central moment, the Fisher-

Pearson moment skewness is then given in Kundu [24] as

γ1 =
(1− p)

[
µ3
(
2p2 − p+ 2

)
+ 2µ2p2 + µσ2(3− p)p

]
(σ2p+ µ2(1− p))3/2

.

Kurtosis

Corollary 4. Consider X ∼ GSN (µ, σ, p) with MGF as given in (34), then the fourth central moment

is given in Kundu [24] by

E
[
(X − E(X))

4
]

= µ4(1− p)
(
p2 − 6p+ 6

)
− 2µ2σ2p(1− p)

(
p2 + 3p− 6

)
+ 3σ4p2. (39)

As before, the fourth central moment given in (39) can be directly obtained using the in�nite series

given in (38). Utilization of the fourth central moment produces the well-known measure of kurtosis, γ2

[36]. The kurtosis is given in Kundu [24] by

γ2 =
E
[
(X − E[X])4

]
(var[X])2

=
µ4(1− p)

(
p2 − 6p+ 6

)
− 2µ2σ2p(1− p)

(
p2 + 3p− 6

)
+ 3σ4p2

(σ2p+ µ2(1− p))2 .

3.1.3 Generation of random numbers and illustration of PDF

In order to generate from the GSN (µ, σ, p) distribution with PDF given in (31) a short algorithm is

provided by Kundu [24]. In the algorithm the distributions as given in (27) are used as well as the fact

that X|(N = k) ∼ N(kµ, kσ2).
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Algorithm 3 Generation from the GSN (µ, σ, p) distribution

1: Required:

� De�ne the value of µ for µ ∈ R.
� De�ne the value of σ for σ > 0.

� De�ne the value of p for 0 < p ≤ 1.

2: Generate the value k from the GE(p) distribution.
3: Generate the value x from N(kµ, kσ2), where k is from step 2.
4: To obtain a required sample of size n repeat step 3, n times using the same k from step 2.

Using the PDF given in (31), graphs of the PDFs of the GSN (µ, σ, p) distribution are provided in

Figure 7. These PDFs are plotted with p = 0.5 and σ = 1 kept constant throughout, varying the values

of µ.

Figure 7: PDFs of the GSN (µ, σ, p) distribution for di�erent values of µ.

It can be seen from Figure 7 that the PDFs of the GSN (µ, σ, p) distribution can take on various

shapes depending on the parameter values for µ. The PDFs are positively skewed when µ > 0 and

negatively skewed when µ < 0. It is also observed that the PDFs can be unimodal or multimodal

[24]. The green PDF (µ = −3.5) and the purple PDF (µ = 3.5) in Figure 7 depict multimodal PDFs,

whereas the remaining densities depict unimodal PDFs. The former observation of a multimodal PDF is

di�erent from the skew-normal distribution which is always unimodal. It appears as if the GSN (µ, σ, p)

distribution is more �exible than the skew-normal distribution [24].

The characteristics that include the expected value, variance, skewness and kurtosis are given in Table

4 for di�erent values of µ, with p = 0.5 and σ = 1 kept constant throughout.
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Table 4: Values of some characteristics of the geometric skew-normal distribution for di�erent values of
µ

µ E[X] var[X] γ1 γ2

-4 -7 26.5 -2.463 6.166
-2 -2 4 -1.375 4.5
2 2 4 1.875 4.5
4 7 26.5 2.822 6.166

It can be observed from Table 4 that the expected value increases as the value of µ increases. The

same observation is noted for the skewness. It is also observed that as the |µ| decreases, the variance and

the kurtosis decreases.

The characteristics that include the expected value, variance, skewness and kurtosis are given in Table

5 for di�erent values of p, with µ = 2 and σ = 1 kept constant throughout.

Table 5: Values of some characteristics of the geometric skew-normal distribution for di�erent values of p

p E[X] var[X] γ1 γ2

0.1 20 370 2.026 5.992
0.3 6.667 34.444 2.229 5.904
0.7 2.857 3.878 2.907 5.039
0.9 2.222 1.605 2.160 3.834

It can be observed from Table 5 that the expected value decreases as the value of p increases. The same

observation is noted for the variance and the kurtosis. It is also observed that as the p increases, the

skewness increases.

The characteristics that include the expected value, variance, skewness and kurtosis are given in Table

6 for di�erent values of σ, with µ = 2 and p = 0.5 kept constant throughout.

Table 6: Values of some characteristics of the geometric skew-normal distribution for di�erent values of
σ

σ E[X] var[X] γ1 γ2

0.1 4 8.02 3.174 6.489
0.5 4 8.50 3.006 6.239
0.9 4 9.62 2.685 5.771
1.1 4 10.42 2.500 5.509

It can be observed from Table 6 that the expected value remains unchanged as the value of σ changes.

The latter is as a result of the fact that the expected value is not a function of σ. It is observed that the

variance increases as the value of σ increases. In contrast, both the skewness and the kurtosis decreases

as the value of σ increases.
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3.1.4 Estimation

Conditional properties

Before continuing with the estimation section, it is worthwhile to �rst furnish di�erent conditional prop-

erties as given in Kundu [24]. These conditional properties provide further detail into the distribution

and contribute knowledge on speci�c conditions enclosed on the distribution. Some, but not all of the

properties will be utilized in the derivation of the estimation theory.

Theorem 26. Consider (X,N) which has the joint PDF as given by (28), and let m ≤ n be positive

integers. The conditional CDF of (X,N) given N ≤ n is given by

P (X ≤ x,N ≤ m|N ≤ n) =
p

1− (1− p)n
m∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

(40)

for −∞ < x <∞ and 0 < p < 1 [24].

Proof. From (112), (29) and the CDF of a GE(p) distribution, it follows that

P (X ≤ x,N ≤ m|N ≤ n) =
P (X ≤ x,N ≤ m)

P (N ≤ n)

=
p
∑m
k=1 Φ

(
x−kµ
σ
√
k

)
(1− p)k−1

P (N ≤ n)

=
p
∑m
k=1 Φ

(
x−kµ
σ
√
k

)
(1− p)k−1

1− (1− p)n

=
p

1− (1− p)n
m∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

.

It follows directly from (40), that for m = n and using (29), it is true that

P (X ≤ x,N ≤ n|N ≤ n) = P (X ≤ x|N ≤ n)

=
P (X ≤ x,N ≤ n)

P (N ≤ n)

=
p

1− (1− p)n
n∑
k=1

Φ

(
x− kµ
σ
√
k

)
(1− p)k−1

. (41)

Theorem 27. Consider (X,N) which has the joint PDF as given by (28). Suppose that 0 ≤ x ≤ y and
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n is a positive integer. The conditional CDF of (X,N) given X ≤ y is given in Kundu [24] by

P (X ≤ x,N ≤ n|X ≤ y) =

∑n
k=1(1− p)kΦ

(
x−kµ
σ
√
k

)
∑∞
k=1(1− p)kΦ

(
y−kµ
σ
√
k

) . (42)

Proof. Using (112) in Appendix A.1, (29) and since x ≤ y, it follows that

P (X ≤ x,N ≤ n|X ≤ y) =
P (X ≤ x,N ≤ n)

P (X ≤ y)

=
p
∑n
k=1 Φ

(
x−kµ
σ
√
k

)
(1− p)k−1

p
∑∞
k=1 Φ

(
y−kµ
σ
√
k

)
(1− p)k−1

=

∑n
k=1(1− p)kΦ

(
x−kµ
σ
√
k

)
∑∞
k=1(1− p)kΦ

(
y−kµ
σ
√
k

) .

It follows directly from (42) that

P (N ≤ n,X ≤ y|X ≤ y) = P (N ≤ n|X ≤ y)

=
P (N ≤ n,X ≤ y)

P (X ≤ y)

=

∑n
k=1(1− p)kΦ

(
y−kµ
σ
√
k

)
∑∞
k=1(1− p)kΦ

(
y−kµ
σ
√
k

) (43)

for n as any positive integer [24]. From Kundu [24], using (28) and (31), the conditional PMF of N given

X = x is

fN |X(n|x) =
fN,X(n, x)

fX(x)

=

1
σ
√
n
φ
(
x−nµ
σ
√
n

)
p(1− p)n−1∑∞

k=1
1

σ
√
k
φ
(
x−kµ
σ
√
k

)
p(1− p)k−1

=
(1− p)n−1e−

1
2σ2n

(x−nµ)2/
√
n∑∞

k=1(1− p)k−1e−
1

2σ2k
(x−kµ)2/

√
k

(44)

and in turn then the conditional expectation of N given X = x becomes

E(N | X = x) =

∞∑
n=1

nfN |X(n|x)

=

∑∞
n=1(1− p)n−1e−

1
2σ2n

(x−nµ)2√n∑∞
k=1(1− p)k−1e−

1
2σ2k

(x−kµ)2/
√
k

(45)
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with

E
(
N−1 | X = x

)
=

∞∑
n=1

n−1fN |X(n|x)

=

∑∞
n=1(1− p)n−1e−

1
2σ2n

(x−nµ)2/n3/2∑∞
k=1(1− p)k−1e−

1
2σ2k

(x−kµ)2/
√
k
. (46)

Maximum likelihood estimators

Theorem 28. Suppose that {x1, x2, ..., xn} is a sample of size n from the GSN(µ, σ, p) distribution with

PDF as given in (31). The log-likelihood function is then given in Kundu [24] by

l (µ, σ, p) =

n∑
i=1

ln

[ ∞∑
k=1

p

σ
√
k
φ

(
xi − kµ
σ
√
k

)
(1− p)k−1

]
. (47)

Proof. From Bain and Engelhardt [8] and using (31), it follows that

l (µ, σ, p) = ln

(
n∏
i=1

fXi(xi)

)

=

n∑
i=1

ln [fXi(xi)]

=

n∑
i=1

ln

[ ∞∑
k=1

p

σ
√
k
φ

(
xi − kµ
σ
√
k

)
(1− p)k−1

]

It is proceeded to obtain the normal equations by taking the partial derivatives of the log-likelihood

function given in (47) and equating them to 0. The partial derivatives are with respect to µ, σ, p. However,

clearly the MLEs cannot be obtained in explicit form as it is required to solve three non-linear equations

simultaneously [24] [25]. In order to circumvent this problem, Kundu [24] proposes the use of the EM-

algorithm to compute the MLEs.

Theorem 29. Let {(x1,m1), (x2,m2), ..., (xn,mn)} be a random sample of size n from the joint dis-

tribution of (X,N). The log-likelihood function based on the complete sample is given in Kundu [24]

by

lc(µ, σ, p) ∝ −n lnσ − 1

2σ2

n∑
i=1

(xi −miµ)
2

mi
+ n ln p+ ln(1− p)

n∑
i=1

(mi − 1) (48)
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without the additive constant and the MLEs of the unknown parameters are obtained by Kundu [24] as

µ̂ =

∑n
i=1 xi∑n
k=1mk

, σ̂2 =
1

n

n∑
i=1

(xi −miµ̂)
2

mi
, p̂ =

n∑n
i=1mi

. (49)

Proof. Using (28), it follows that

lc(µ, σ, p) = ln

(
n∏
i=1

fX,N (xi,mi)

)

=

n∑
i=1

ln [fX,N (xi,mi)]

=

n∑
i=1

ln

[
p

σ
√

2πmi
e
−1
2

(
xi−miµ
σ
√
mi

)2

(1− p)mi−1

]

∝
n∑
i=1

[
−1

2miσ2
(xi −miµ)2 + (mi − 1) ln(1− p) + ln

(
p

σ
√

2π

)]

=
−1

2σ2

n∑
i=1

(xi −miµ)
2

mi
+ ln(1− p)

n∑
i=1

(mi − 1) + n ln(p)− n ln
(
σ
√

2π
)

∝ −n lnσ − 1

2σ2

n∑
i=1

(xi −miµ)
2

mi
+ n ln p+ ln(1− p)

n∑
i=1

(mi − 1) .

It is then proceeded to obtain the normal equations based on the complete sample. This is done by taking

the partial derivatives of the complete log-likelihood and setting them equal to 0, followed by solving for

the unknown parameters. Thus, the MLE for µ is obtained as

∂lc(µ, σ, p)

∂µ
= 0

−1

σ2

(
n∑
i=1

(xi −miµ̂)

mi

)
(−mi) = 0

−1

σ2

n∑
i=1

(xi −miµ̂) = 0

n∑
i=1

(xi −miµ̂) = 0

µ̂ =

∑n
i=1 xi∑n
i=1mi

55



with the MLE for σ2 obtained as

∂lc(µ, σ, p)

∂σ
= 0

−n
σ̂

+
2

2σ̂3

n∑
i=1

(xi −miµ)
2

mi
= 0

n

σ̂
=

1

σ̂3

n∑
i=1

(xi −miµ)
2

mi

σ̂2 =
1

n

n∑
i=1

(xi −miµ̂)
2

mi

and lastly the MLE for p being obtained as

∂lc(µ, σ, p)

∂p
= 0

−
∑n
i=1(mi − 1)

1− p̂
+
n

p̂
= 0

−p̂
n∑
i=1

mi + np̂+ n− np̂ = 0

−p̂
n∑
i=1

mi = −n

p̂ =
n∑n

i=1mi
.

The complete log-likelihood in (48) directly results that the MLEs of the unknown parameters can be

obtained in explicit forms based on the complete samples [24]. The EM-algorithm by Kundu [24] can

subsequently be implemented and the algorithm is summarised in Algorithm 4.

56



Algorithm 4 EM-algorithm to obtain the MLEs of the GSN(µ, σ, p) distribution [24].

1: Required: Denote µ(k), σ(k) and p(k) as the estimates of µ, σ and p at the kth stage of the algorithm.
Initial guesses for µ(k) and σ(k) can be taken as the sample mean and sample covariance, with p(k)

as random adhering to the parameter constraint.
2: 'E'-step: Obtain the pseudo log-likelihood function at the kth stage by replacing the missing values

of the complete log-likelihood function in (48) with their expectations.
3: The pseudo log-likelihood is given as follows:

l(k)
s (µ, σ, p) =− n lnσ − 1

2σ2

(
n∑
i=1

x2
i c

(k)
i − 2µ

n∑
i=1

xi + µ2
n∑
i=1

d
(k)
i

)

+ n ln p+ ln(1− p)
n∑
i=1

(
d

(k)
i − 1

)
(50)

where c
(k)
i = 1

mi
and d

(k)
i = mi and can be obtained using (46) and (45) respectively, by replacing

x, µ, σ, p with their kth stage estimates [24].
4: 'M'-step: Maximise the pseudo log-likelihood as given in (50) with respect to the unknown parame-

ters.
5: The 'M'-step yields the following:

µ(k+1) =

∑n
i=1 xi∑n
i=1 d

(k)
i

,

σ(k+1) =
1√
n
×

√√√√ n∑
i=1

x2
i c

(k)
i − 2µ(k+1)

n∑
i=1

xi +
(
µ(k+1)

)2 n∑
i=1

d
(k)
i ,

p(k+1) =
n∑n

i=1 d
(k)
i

noting speci�cally where (k) and (k + 1) is used [24].
6: Repeat steps 2 - 5 until convergence.

3.2 Multivariate geometric skew-normal distribution

This subsection will proceed to provide an overview of the multivariate extension of the geometric skew-

normal distribution. This extension is presented by Kundu [25]. Figure 8 gives a summary of how Section

3.2 will proceed.
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Figure 8: Summary of Section 3.2.

3.2.1 Preamble

Throughout this subsection a geometric random variable with parameter p will be denoted by GE (p).

A d-variate normal random variable with covariance matrix Σ and mean vector µ will be denoted by

Nd(µ,Σ). The corresponding CDF and PDF will be denoted by Φd(µ,Σ) and φd(µ,Σ) respectively.

Furthermore, the convention that 00 = 1 will also be used [25].

Theorem 30. Let {Xi : i = 1, 2, ...} be i.i.d Nd(µ,Σ) random variables and suppose that N ∼ GE(p),

with N and X ′is independently distributed. Then de�ne

X
dist.
=

N∑
i=1

Xi (51)

where
dist.
= indicates equal in distribution. It is then observed that X is a multivariate geometric skew-

normal random variable with parameters µ,Σ and p [25]. This will be denoted by MVGSNd (µ,Σ, p),

where d = 1, 2, ... indicates the number of variables.

Theorem 31. Let X ∼ MVGSNd (µ,Σ, p) and N ∼ GE(p) with composition given by (51), then the

joint PDF of the variable (X, N) is given by

fX,N (x, n) =


p(1−p)n−1

(2π)
d
2 |Σ|

1
2 n

d
2
e
−1
2n (x−nµ)TΣ−1(x−nµ) if 0 < p < 1

1

(2π)
d
2 |Σ|

1
2
e
−1
2 (x−µ)TΣ−1(x−µ) if p = 1

(52)

using the convention that 00 = 1 when p = 1 and noting that x ∈ Rd, µ ∈ Rd, Σ: d× d positive de�nite
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covariance matrix and n is any positive integer [25].

Theorem 32. Let X ∼ MVGSNd (µ,Σ, p) and N ∼ GE(p) with composition given by (51), then the

joint CDF of the variable (X, N) is given by

FX,N (x, n) =

n∑
k=1

p (1− p)k−1
Φd (kµ, kΣ) (53)

for x ∈ Rd, µ ∈ Rd, Σ: d× d positive de�nite covariance matrix and 0 < p < 1 [25].

Proof. Using (112) in Appendix A.1 and the fact that X|(N = k) ∼ Nd(kµ, kΣ), it follows that

FX,N (x, n) = P (X ≤ x, N ≤ n)

= P (X ≤ x, N = 1) + P (X ≤ x, N = 2) + · · ·

+ P (X ≤ x, N = n)

=

n∑
k=1

P (X ≤ x, N = k)

=

n∑
k=1

P (X ≤ x|N = k)P (N = k)

=

n∑
k=1

p (1− p)k−1
Φd (kµ, kΣ)

Naturally, the question arises of what would happen to the CDF if p = 1? If p = 1, then P (N = 1) = 1

and FX,N (x, n) = Φd (µ,Σ).

Theorem 33. Let X ∼ MVGSNd (µ,Σ, p) and N ∼ GE(p) with composition given by (51), then the

CDF of the random variable X is given by

FX(x) =

∞∑
k=1

p (1− p)k−1
Φd (kµ, kΣ) (54)

for x ∈ Rd, µ ∈ Rd, Σ: d× d positive de�nite covariance matrix and 0 < p < 1 [25].

Proof. From Stewart [37], it follows that

FX(x) = lim
n→∞

FX,N (x, n)

= lim
n→∞

n∑
k=1

p (1− p)k−1
Φd (kµ, kΣ)

=

∞∑
k=1

p (1− p)k−1
Φd (kµ, kΣ) .
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As, before the question arises of what would happen to the CDF if p = 1? If p = 1, then P (N = 1) = 1

and FX,N (x, n) = Φd (µ,Σ).

Theorem 34. Let X ∼ MVGSNd (µ,Σ, p) and N ∼ GE(p) with composition given by (51), then the

PDF of the random variable X is given by

fX(x) =

∞∑
k=1

p(1− p)k−1

(2π)
d
2 |Σ| 12 k d2

e
−1
2k (x−kµ)TΣ−1(x−kµ) (55)

for x ∈ Rd, µ ∈ Rd, Σ: d× d positive de�nite covariance matrix and 0 < p < 1 [25].

Proof. Using (116) in Appendix A.3, it follows that

fX(x) =
d

dx
FX(x)

=
d

dx

∞∑
k=1

p (1− p)k−1
Φd (kµ, kΣ)

=

∞∑
k=1

p (1− p)k−1
φd (kµ, kΣ)

=

∞∑
k=1

p(1− p)k−1

(2π)
d
2 |Σ| 12 k d2

e
−1
2k (x−kµ)TΣ−1(x−kµ)

If p = 1, thenX ∼ Nd(µ,Σ). When µ = 0 and Σ = I, then the distribution ofX becomesMVGSNd(p)

and it is known as the standard multivariate geometric skew-normal distribution [25]. The MVGSNd(p)

distribution is a symmetric and unimodal distribution for all values of p and d [25].

3.2.2 Characteristics of the multivariate geometric skew-normal distribution

The characteristics that will be provided in this section include the moments and cumulants as well as

the skewness. The MGF will also be given in this section.

Moment generating function

Theorem 35. The MGF of a random variable X ∼MVGSNd (µ,Σ, p) with PDF given in (55) is given

in Kundu [25] by

MX(t) =
peµ

Tt+(1/2)tTΣt

1− (1− p)eµTt+(1/2)tTΣt
(56)
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where t ∈ Ad(µ,Σ, p) and

Ad(µ,Σ, p) =
{
t; t ∈ Rd, (1− p)eµ

Tt+(1/2)tTΣt < 1
}

=

{
t; t ∈ Rd,µTt+

1

2
tTΣt+ ln(1− p) < 0

}
.

Proof. From Bain and Engelhardt [8]

MX(t) = E
[
eX

T t
]

= EN

[
E
(
eX

T t|N
)]

(57)

where N ∼ GE(p). Since the Xi's are i.i.d. Nd(µ,Σ) random variables, it follows that

E
(
eX

T t|N = n
)

= E
[
e(
∑n
i=1Xi)

T
t
]

=

n∏
i=1

E
[
eX

T
i t
]

=

n∏
i=1

MXi
(t)

= [MY (t)]
n

=
[
eµ

Tt+(1/2)tTΣt
]n
. (58)

Substituting (58) into (57), using the fact that if Y ∼ Nd(µ,Σ) then ln(MY (t)) = eµ
Tt+(1/2)tTΣt and

using (33), it follows that

MX(t) = EN

[
eNµ

Tt+(1/2)NtTΣt
]

= EN

[
eN ln(MY (t))

]
= MN (ln(MY (t)))

=
peµ

Tt+(1/2)tTΣt

1− (1− p)eµTt+(1/2)tTΣt
.

Moments, cumulants and skewness

The cumulants and moments of X can be obtained from the MGF in (56) for i, j = 1, 2, ..., d. Suppose

X = (X1, X2, ..., Xd)
T ∼ MVGSNd(µ,Σ, p) and denote µT = (µ1, µ2, ..., µd) and Σ = (σij) for i, j =
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1, 2, ..., d. Then the moments and cumulants are given in Kundu [25] by

E (Xi) =
∂

∂ti
MX(t)

∣∣∣∣
t=0

=
µi
p

(59)

E (XiXj) =
∂2

∂ti∂tj
MX(t)

∣∣∣∣
t=0

=
pσij + µiµj(2− p)

p2
. (60)

Hence, Kundu [25] presented

Var (Xi) =
pσii + µ2

i (1− p)
p2

(61)

Cov (Xi, Xj) =
pσij + µiµj(1− p)

p2
(62)

and

Corr (Xi, Xj) =
pσij + µiµj(1− p)√

pσii + µ2
i (1− p)

√
pσjj + µ2

j (1− p)
. (63)

When considering the correlation between Xi and Xj for i 6= j, it is observed from (63) that there is

dependence on µi and µj and not only on σij [25]. If µj , µi →∞ for �xed p and σij , then Corr (Xi, Xj)→

1. If µj , µi →∞, then Corr (Xi, Xj)→ −1 [25]. It can therefore be concluded that there is dependence

betweenXi andXj in this case, although they may be uncorrelated (in the case of a standardMVGSNd(·)

distribution) [25].

It is also of interest to provide the multivariate skewness indices of theMVGSNd (µ,Σ, p) distribution.

Various multivariate skewness measures have been introduced in literature on multivariate distributions.

The most common one is the skewness index of Mardia [27] [28]. In order to proceed, it is necessary to

present the following notations of a random vector X = (X1, . . . , Xd):

µ
(r1,...,rs)
i1,...,is

= E

[
s∏

k=1

(Xrk − µrk)
ik

]
(64)

where µrk = E (Xrk) , k = 1, . . . , s. It then follows that Mardia [27] de�ned the multivariate skewness

index as

γ1 =

d∑
r,s,t=1

d∑
r′,s′,t′=1

σrr
′
σss

′
σtt
′
µrst111µ

r′s′t′

111 . (65)
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Here σjk for j, k = 1, . . . , d denotes the (j, k)th element of the inverse of the covariance matrix of the

random vector X [25]. In the case of the MVGSNd (µ,Σ, p) distribution [25],

µ
(qwv)
111 =

1

p4

{
p(1− p)(2− p)µqµwµv + p2(1− p) (µvσ

wq + µqσ
wv + µwσ

qv)
}
. (66)

It is observed from (66) that if p = 1 then γ1 = 0. In addition to the latter, if µj = 0 for all j = 1, . . . , d,

then γ1 = 0. Furthermore, Kundu [25] also notes that the skewness index γ1 may diverge to either ∞ or

−∞ as p→ 0, when µj 6= 0 for some j = 1, . . . , d.

3.2.3 Generation of random numbers and illustration of PDF

In order to generate from the MVGSNd (µ,Σ, p) distribution with PDF given in (55) a short algorithm

is provided by Kundu [25].

Algorithm 5 Generation from the MVGSNd (µ,Σ, p) distribution

1: Required:

� De�ne the values of µ for µ ∈ Rd.
� De�ne the values of Σ for Σ : d× d positive de�nite covariance matrix.

� De�ne the value of p for 0 < p ≤ 1.

2: Generate the value k from the GE(p) distribution with p de�ned as before.
3: Recall thatX|(N = k) ∼ Nd(kµ, kΣ) with N ∼ GE(p). Generate the sampleX from the Nd (kµ, kΣ)

distribution, where k is from step 2. This X is then the required sample.

Using the PDF given in (55), graphs of the PDFs of the MVGSNd (µ,Σ, p) distribution (for d = 2)

are provided in Figures 9, 10 and 11. That is, the latter �gures plot the PDFs of the bivariate geometric

skew-normal distribution, given speci�c parameter values.

Figure 9 is plotted for µ = (0, 0)
T
, σ11 = σ22 = 2 , σ12 = σ21 = 0 and p = 0.75. The PDFs in Figures

10 and 11 are plotted with σ11 = σ22 = 1, σ12 = σ21 = −0.5 and p = 0.5 kept constant throughout,

varying the values of µ. It is observed from Figures 9, 10 and 11 that the PDF of theMVGSNd (µ,Σ, p)

distribution can be unimodal or multimodal depending on the parameter values. The latter observation

of multimodality as seen in Figure 11, is di�erent from the multivariate skew-normal distribution that is

always unimodal [25].
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(a) 3D plot (b) Contour plot

Figure 9: Bivariate geometric skew-normal PDF.

(a) 3D plot (b) Contour plot

Figure 10: Bivariate geometric skew-normal PDF with µ = (1, 1)
T
.

3.2.4 Estimation

Before continuing with the estimation section, it is worthwhile to �rst furnish a couple of conditional

properties presented by Kundu [25] that will be utilized in the derivation of the estimation theory.
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(a) 3D plot (b) Contour plot

Figure 11: Bivariate geometric skew-normal PDF with µ = (1, 3)
T
.

Kundu [25] noted that using (52) and (55), the conditional PMF of N given X = x is given by

P (N = n |X = x) =
P (N = n,X = x)

P (X = x)

=

p(1−p)n−1

(2π)
d
2 |Σ|

1
2 n

d
2
e
−1
2n (x−nµ)TΣ−1(x−nµ)∑∞

k=1
p(1−p)k−1

(2π)
d
2 |Σ|

1
2 k

d
2
e
−1
2k (x−kµ)TΣ−1(x−kµ)

=
(1− p)n−1e−(1/2n)(x−nµ)TΣ−1(x−nµ)n−d/2∑∞
k=1(1− p)k−1e−(1/2k)(x−kµ)TΣ−1(x−kµ)k−d/2

and in turn the conditional expectation of N given X = x becomes

E(N |X = x) =

∑∞
n=1(1− p)n−1e−(1/2n)(x−nµ)TΣ−1(x−nµ)n−d/2+1∑∞
k=1(1− p)k−1e−(1/2k)(x−kµ)TΣ−1(x−kµ)k−d/2

(67)

with

E
(
N−1 |X = x

)
=

∑∞
n=1(1− p)n−1e−(1/2n)(x−nµ)TΣ−1(x−nµ)n−d/2−1∑∞
k=1(1− p)k−1e−(1/2k)(x−kµ)TΣ−1(x−kµ)k−d/2

. (68)

Maximum likelihood estimators

In order to obtain the MLEs of the unknown parameters it is necessary to maximize the log-likelihood

function with respect to the unknown parameters.
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Theorem 36. Suppose D = {x1, x2, ..., xn} is a random sample of size n from the MVGSNd(µ,Σ, p),

distribution with PDF as given in (55). In Kundu [25], the log-likelihood function is then given by

l(µ,Σ, p) =

n∑
i=1

ln

[ ∞∑
k=1

p(1− p)k−1

(2π)d/2|Σ|1/2kd/2
e−(1/2k)(xi−kµ)TΣ−1(xi−kµ)

]
. (69)

Proof. From Bain and Engelhardt [8] and using (55), it follows that

l(µ,Σ, p) = ln

[
n∏
i=1

fXi
(xi)

]

=

n∑
i=1

ln fXi
(xi)

=

n∑
i=1

ln

[ ∞∑
k=1

p(1− p)k−1

(2π)d/2|Σ|1/2kd/2
e−(1/2k)(xi−kµ)TΣ−1(xi−kµ)

]

It is proceeded to obtain the MLEs by maximizing (69) with respect to the unknown parameters. That is,

obtaining the normal equations by taking partial derivatives of (69) and equating them to 0. These partial

derivatives are with respect to µ,Σ and p. The latter translates to solving an optimization problem of[
d+ 1 + d(d+1)

2

]
dimensions yielding a complicated issue for large d [25]. To circumvent this problem, it

is assumed that p is known and the MLEs will be estimated using the EM-algorithm [25]. In essence it

will be proceeded to maximize l
(
µ̂(p), Σ̂(p), p

)
to compute the MLE of p, that is p̂. Then the MLEs of µ

and Σ will be obtained as µ̂ = µ̂(p) and Σ̂ = Σ̂(p) respectively. The EM-algorithm will be implemented

for a known p, where the sample mean and sample covariance will be used as initial guesses of µ and Σ

for all values of p [25].

Theorem 37. Let {(x1,m1), (x2,m2), ..., (xn,mn)} be a random sample of size n from the random

variable (X, N). In Kundu [25], the log-likelihood function based on the complete sample is given by

lc(µ,Σ) = −n
2

ln |Σ| − 1

2

n∑
i=1

1

mi
(xi −miµ)

T
Σ−1 (xi −miµ) (70)

without the additive constant and the MLEs of the unknown parameters are obtained as

µ̂ =

∑n
i=1 xi∑n
i=1mi

(71)
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and

Σ̂ =
1

n

n∑
i=1

1

mi
(xi −miµ̂) (xi −miµ̂)

T

=
1

n

[
n∑
i=1

1

mi
xix

T
i −

n∑
i=1

(
µ̂xTi + xiµ̂

T
)

+ µ̂µ̂T
n∑
i=1

mi

]
. (72)

Proof.

lc(µ,Σ) =

[
n∏
i=1

fX,N (x, n)

]

=

n∑
i=1

ln [fX,N (x, n)]

=

n∑
i=1

ln

[
p(1− p)mi−1

(2π)d/2|Σ|1/2md/2
i

e
−( 1

2mi
)(xi−miµ)TΣ−1(xi−miµ)

]

=

n∑
i=1

[
−
(

1

2mi

)
(xi −miµ)

T
Σ−1 (xi −miµ) + (mi − 1) ln(1− p)

]

+

n∑
i=1

[
ln

(
p

(2π)d/2|Σ|1/2md/2
i

)]

= −1

2

n∑
i=1

1

mi
(xi −miµ)

T
Σ−1 (xi −miµ) + ln(1− p)

n∑
i=1

(mi − 1) + n ln(p)− n

2
ln |Σ|

− nd

2
ln(2π)− 1

2

n∑
i=1

ln(mi)

∝ −n
2

ln |Σ| − 1

2

n∑
i=1

1

mi
(xi −miµ)

T
Σ−1 (xi −miµ) .

In order to obtain the MLE for µ it is necessary to obtain the partial derivative of (70) and set it equal

to 0, followed by solving for the unknown µ. Thus, the MLE for µ is given by

∂lc(µ,Σ)

∂µ
= 0

−
n∑
i=1

1

mi
(xi −miµ̂) (mi) = 0

n∑
i=1

(xi −miµ̂) = 0

n∑
i=1

xi =

n∑
i=1

miµ̂

µ̂ =

∑n
i=1 xi∑n
i=1mi

.

Obtaining the MLE for Σ involves using the matrix property where trace(CB) = trace(BC) and the

fact that the trace of a scalar is a scalar [33]. In addition to the latter, another property will be used
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that was developed by Anderson [2] (see (121) in Appendix A.3). Now recall from (70) that

lc(µ,Σ) = −n
2

ln |Σ| − 1

2

n∑
i=1

1

mi
(xi −miµ)

T
Σ−1 (xi −miµ)

= −n
2

ln |Σ| − 1

2
tr

[
Σ−1

n∑
i=1

1

mi
(xi −miµ) (xi −miµ)

T

]
(73)

and since

n∑
i=1

1

mi
(xi −miµ) (xi −miµ)

T

=

n∑
i=1

1

mi
(xi − nx̄+ nx̄−miµ) (xi − nx̄+ nx̄−miµ)

T

=

n∑
i=1

1

mi
(xi − nx̄) (xi − nx̄)

T
+

n∑
i=1

1

mi
(nx̄−miµ) (nx̄−miµ)

T

= A+

n∑
i=1

1

mi
(nx̄−miµ) (nx̄−miµ)

T

it follows that (73) becomes

lc(µ,Σ) = −n
2

ln |Σ| − 1

2
trΣ−1A− 1

2

n∑
i=1

1

mi
(xi −miµ)

T
Σ−1 (xi −miµ) . (74)

Since Σ is a positive de�nite matrix, Σ−1 is also positive de�nite. It is also noted that∑n
i=1

1
mi

(xi −miµ)
T

Σ−1 (xi −miµ) ≥ 0 and is 0 if
∑n
i=1miµ =

∑n
i=1 xi = nx̄. In order to maximize

the �rst term and the second term of (74), the result given in (121) is used and the MLE of Σ is found

to be

Σ̂ =
1

n
A

=
1

n

n∑
i=1

1

mi
(xi − nx̄) (xi − nx̄)

T

=
1

n

n∑
i=1

1

mi
(xi −miµ̂)

T
Σ−1 (xi −miµ̂)

=
1

n

[
n∑
i=1

1

mi
xix

T
i −

n∑
i=1

(
µ̂xTi + xiµ̂

T
)

+ µ̂µ̂T
n∑
i=1

mi

]
.

The log-likelihood function in (70) directly results that the MLEs of the unknown parameters can be

obtained in explicit forms based on the complete samples. The EM-algorithm presented by Kundu [25]

can subsequently be implemented for a given p. The main idea of the EM-algorithm follows along the
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line of utilizing the complete log-likelihood by maximizing the conditional expectation thereof, all based

on the observed data at hand and the current value of δ = (µ,Σ), say δ̃. The following notation will be

used in the proceeding parts:

hi = E
(
N |X = xi, δ̃

)
gi = E

(
N−1|X = xi, δ̃

)

where hi and gi can be obtained from (67) and (68) respectively. The EM-algorithm is summarised in

Algorithm 6.

Algorithm 6 EM-algorithm to obtain the MLEs of the MVGSN(µ,Σ, p) distribution [25].

1: Required: Denote δ̃ as the current value of δ = (µ,Σ). De�ne an initial guess for δ̃, say δ̃(0). The
sample mean vector and sample covariance matrix as initial guesses will su�ce.

2: 'E'-step: Obtain the conditional expectation denoted by Q
(
δ|δ̃
)
with δ̃ being the current value.

3: The conditional expectation is given as follows:

Q
(
δ|δ̃
)

= E
[
lc

(
δ|D

(
δ̃
))]

= −n
2

ln |Σ| − 1

2
tr

{
Σ−1

(
n∑
i=1

gixix
T
i −

n∑
i=1

(
xiµ

T + µxT
i

)
+ µµT

n∑
i=1

hi

)}
(75)

where hi and gi and can be obtained using (67) and (68) respectively [25].
4: 'M'-step: Maximise Q(δ|δ̃) with respect to δ to obtain δ(1). That is, obtain δ(1) = arg max

δ
Q(δ | δ̃),

where arg max
δ

Q(δ | δ̃) indicates the value for which Q(δ|δ̃) is a maximum.

5: The 'M'-step yields the following:

µ(k) =

∑n
i=1 xi∑n
j=1 hj

,

Σ(k) =
1

n

[
n∑
i=1

gixix
T
i −

n∑
i=1

(
xiµ

(k)T + µ(k)xT
i

)
+ µ(k)µ(k)T

n∑
i=1

hi

]

where µ(k) and Σ(k) are the estimates of µ and Σ at the kth stage of the algorithm [25].
6: Repeat steps 2 - 5 until convergence.
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4 Chapter 4

Chapter 4 will develop the geometric skew-Cauchy distribution. In Section 4.1, the new alternative

distribution called the geometric skew-Cauchy distribution is presented.

4.1 Univariate geometric skew-Cauchy distribution

This section will proceed to introduce a new approach to model skewed data. The new distribution will

be presented in a similar fashion to the univariate geometric skew-normal distribution. In this section,

the geometric skew-Cauchy distribution is introduced. The geometric skew-Cauchy distribution can be

used as an alternative to the skew-normal and the geometric skew-normal distributions. Figure 12 gives

a summary of how Section 4.1 will proceed.

Figure 12: Summary of Section 4.1.

4.1.1 Preamble

Throughout this section a Cauchy random variable with location parameter µ ∈ R and scale parameter

σ > 0 will be denoted by C(µ, σ). Let Z ∼ C(0, 1) be a standard Cauchy random variable, then

Y = µ+ σZ ∼ C(µ, σ) [40].

Theorem 38. A random variable Y that follows the Cauchy distribution with parameters µ ∈ R and

σ > 0, that is Y ∼ C(µ, σ), has a PDF of the following form:

fY (y) =
1

πσ

[
σ2

(y − µ)
2

+ σ2

]
(76)

70



for −∞ < y <∞ [40].

Proof. The full proof is provided in Walck [40]

Theorem 39. A random variable Y that follows the Cauchy distribution with parameters µ ∈ R and

σ > 0, that is Y ∼ C(µ, σ), has a CDF of the following form:

FY (y) =
1

π
arctan

[
y − µ
σ

]
+

1

2
(77)

for −∞ < y <∞ [40].

Proof. From Stewart [37] and using (76), it follows that

FY (y) =

∫ y

−∞
fG(g)dg

=

∫ y

−∞

σ
π

(g − µ)2 + σ2
dg

=
σ

π

[
1

σ
arctan

(
g − µ
σ

)]∣∣∣∣y
−∞

=
1

π

[
arctan

(
y − µ
σ

)
− arctan (−∞)

]
=

1

π

[
π

2
+ arctan

(
y − µ
σ

)]
=

1

π
arctan

(
y − µ
σ

)
+

1

2
.

Theorem 40. Let Yi ∼ C(µ, σ) with µ ∈ R, σ > 0 and n ∈ {1, 2, ...}. Then for the Y ′i s independent, it

is true that:

n∑
i=1

Yi ∼ C(nµ, nσ). (78)

Proof. The full proof is provided in Walck [40].

Theorem 41. Let {Yi : i = 1, 2, ...} be i.i.d. C(µ, σ) random variables and suppose that N ∼ GE(p),

with N and Y ′i s independently distributed. Then de�ne

X
d
=

N∑
i=1

Yi (79)

where
d
= indicates equal in distribution. It is then said that X is a geometric skew-Cauchy random variable

with parameters µ ∈ R, σ > 0 and 0 < p ≤ 1. This will be denoted by GSC (µ, σ, p).
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Theorem 42. Let X ∼ GSC (µ, σ, p) and N ∼ GE(p) with composition given by (79), then the joint

PDF of the variable (X,N) is given by

fX,N (x, n) =


1

πσn

[
1

1+( x−nµnσ )
2

]
p(1− p)n−1 if 0 < p < 1

1
πσ

[
1

1+( x−µσ )
2

]
if p = 1

(80)

using the convention that 00 = 1 when p = 1 and noting that −∞ < x <∞, µ ∈ R, σ > 0 and n is any

positive integer.

Proof. Let N ∼ GE(p). The proof will be given for the case where 0 < p < 1. When p = 1, then

P (N = n) = 1. The result for p = 1 is then immediate using the Cauchy distribution PDF in (76).

Recall that if Y ∼ C(µ, σ), then
∑n
i=1 Yi ∼ C(nµ, nσ) as given in (78). Then it follows that X|(N =

n) =
∑n
i=1 Yi ∼ C(nµ, nσ) [8]. Hence, from the latter, Bain and Engelhardt [8], (76) and (26) it follows

that

fX,N (x, n) = fX|N (x|n)× fN (n)

=
1

πnσ

[
n2σ2

(x− nµ)
2

+ n2σ2

]
p(1− p)n−1

=
1

πσn

[
1

1 +
(
x−nµ
nσ

)2
]
p(1− p)n−1

noting that −∞ < x <∞, µ ∈ R, σ > 0 and n is any positive integer.

Theorem 43. Let X ∼ GSC (µ, σ, p) and N ∼ GE(p) with composition given by (79), then the joint

CDF of the variable (X,N) is given by

FX,N (x, n) = p

n∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

(81)

for −∞ < x <∞, µ ∈ R, σ > 0 and 0 < p < 1.

Proof. Making use of (112) in Appendix A.1, (77), (78) and the fact that X|(N = k) ∼ C(kµ, kσ), it

follows that
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FX,N (x, n) = P (X ≤ x,N ≤ n)

= P (X ≤ x,N = 1) + P (X ≤ x,N = 2) +

· · ·+ P (X ≤ x,N = n)

=

n∑
k=1

P (X ≤ x,N = k)

=

n∑
k=1

P (X ≤ x|N = k)P (N = k)

= p

n∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

.

Naturally, the question arises of what would happen to the CDF if p = 1? If p = 1, then P (N = 1) = 1

and FX,N (x, n) = 1
π arctan

(
x−µ
σ

)
+ 1

2 , hence only the Cauchy distribution CDF.

Theorem 44. Let X ∼ GSC (µ, σ, p) and N ∼ GE(p) with composition given by (79), then the CDF of

the random variable X is given by

FX(x) = p

∞∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

(82)

for −∞ < x <∞, µ ∈ R, σ > 0 and 0 < p < 1.

Proof. From Stewart [37], it follows that

FX(x) = lim
n→∞

FX,N (x, n)

= lim
n→∞

p

n∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

= p

∞∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

.

As before, the question arises of what would happen to the CDF if p = 1? If p = 1, then P (N = 1) = 1

and FX(x) = 1
π arctan

(
x−µ
σ

)
+ 1

2 .
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Theorem 45. Let X ∼ GSC (µ, σ, p) and N ∼ GE(p) with composition given by (79), then the PDF of

the random variable X is given by

fX(x) =
p

πσ

∞∑
k=1

1

k

 1

1 +
(
x−kµ
kσ

)2

 (1− p)k−1
(83)

for −∞ < x <∞, µ ∈ R, σ > 0 and 0 < p < 1.

Proof. Using (116) in Appendix A.3, it follows that

fX(x) =
d

dx
FX(x)

=
d

dx
p

∞∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

= p

∞∑
k=1

[
d

dx

{
1

π
arctan

(
x− kµ
kσ

)
(1− p)k−1

}]

=
p

πσ

∞∑
k=1

1

k

 1

1 +
(
x−kµ
kσ

)2

 (1− p)k−1
.

If p = 1, then X ∼ C(µ, σ). When µ = 0 and σ = 1, then the distribution of X is known as the standard

geometric skew-Cauchy distribution denoted by GSC(0, 1, p), with the pdf in (83) becoming

fX(x) =
p

π

∞∑
k=1

1

k

[
1

1 +
(
x
k

)2
]

(1− p)k−1
. (84)

The GSC(0, 1, p) distribution is a symmetric distribution around 0 for all values of p. The symmetry

follows from the fact that fX(x) = fX(−x) for all x in (84). The latter can be observed in Figure 13 that

illustrate symmetric PDFs around 0 for di�erent values of p (with µ = 0 and σ = 1).

It should be noted that no characteristics (expected value and variance) for the GSC (µ, σ, p) distribu-

tion will be presented in this dissertation. Since the MGF does not exist for the Cauchy distribution [40],

proceeding to derive the MGF for a random variable Y with PDF given in (83) is not feasible. The latter

results that some characteristics such as the expected value and variance do not exist since computation

thereof require the MGF.
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Figure 13: PDFs of the GSC(0, 1, p) distribution with PDF in (84) for di�erent values of p.

4.1.2 Generation of random numbers and illustration of PDF

In order to generate from the GSC (µ, σ, p) distribution with PDF given in (83) a short algorithm is

provided.

Algorithm 7 Generation from the GSC (µ, σ, p) distribution

1: Required:

� De�ne the value of µ for µ ∈ R.
� De�ne the value of σ for σ > 0.

� De�ne the value of p for 0 < p ≤ 1.

2: Generate the value n from the GE(p) distribution.
3: Generate the value x from C(nµ, nσ), where n is from step 2.
4: To obtain a required sample of size j repeat step 3, j times using the same n from step 2.

Using the PDF given in (83), graphs of the PDFs of the GSC(µ, σ, p) distribution are provided in

Figures 14, 15 and 16. These PDFs are plotted with p = 0.5 and σ = 1 kept constant throughout, varying

the values of µ.

It can be seen from Figures 14, 15 and 16 that the PDFs of the GSC(µ, σ, p) distribution can take on

various shapes depending on the parameter values for µ. The PDFs are positively skewed when µ > 0

and negatively skewed when µ < 0. It is also observed that the PDFs can be unimodal or multimodal,

as the PDF in Figure 15 depicts a bimodal PDF when the value of µ = 4.5 and the PDF in Figure 16

depicts a multimodal PDF when the value of µ = 8. The unimodal PDFs are observed for the values

of µ = −1 and µ = 1 in Figure 14. It is therefore determined that as |µ| increases, a multimodal PDF

seems evident (keeping p and σ constant in this case).
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Figure 14: PDFs of the distribution with PDF in (83) for di�erent values of µ.

Figure 15: PDF of the distribution with PDF in (83) for the value of µ = 4.5.

The observation of multimodality is di�erent from the skew-normal distribution which is always unimodal.

Therefore, the GSC(µ, σ, p) distribution is more �exible than the SN
(
µ, σ2, λ

)
distribution and it can

be used as an alternative to model skewed data.
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Figure 16: PDF of the distribution with PDF in (83) for the value of µ = 8.

The comparison of the PDFs of the GSC(µ, σ, p) distribution against the the GSN(µ, σ, p) distribution

is given in Figure 17. These PDFs are plotted with p = 0.5, σ = 1 and µ = 3.5. The multimodality

property coincides with the same property as observed in the GSN(µ, σ, p) distribution. However, as can

be seen in Figure 18, it is evident that the GSC(µ, σ, p) distribution has fatter tails in both the upper-

and lower-tails of the distribution when compared to the GSN(µ, σ, p) distribution.

Figure 17: PDFs of (83) against (31) for the value of µ = 3.5.

The latter can be also be observed in Tables 7 and 8, where the GSC(µ, σ, p) distribution has greater

lower-tail probabilities and smaller upper-tail probabilities than the GSN(µ, σ, p) distribution. This is

77



Figure 18: CDFs of (83) against (31) for the value of µ = 3.5.

indicative of the ability of the GSC(µ, σ, p) distribution to model fatter tails. The probabilities in Tables

7 and 8 were calculated with the parameters set to p = 0.5, σ = 1 and µ = 3.5.

Table 7: Lower tail probabilities of the GSN(µ, σ, p) vs. GSC(µ, σ, p) distribution

GSN(µ, σ, p) GSC(µ, σ, p)
x = −3 < 0.001 0.058
x = −2.5 < 0.001 0.062
x = −2 < 0.001 0.065
x = −1.5 < 0.001 0.070
x = −1 < 0.001 0.075
x = −0.5 < 0.001 0.081
x = 0 < 0.001 0.089
x = 0.5 < 0.001 0.098
x = 1 0.003 0.110
x = 1.5 0.011 0.126

Table 8: Upper tail probabilities of the GSN(µ, σ, p) vs. GSC(µ, σ, p) distribution

GSN(µ, σ, p) GSC(µ, σ, p)
x = 20 0.970 0.923
x = 21 0.975 0.930
x = 22 0.980 0.936
x = 23 0.983 0.941
x = 24 0.986 0.945
x = 25 0.989 0.950
x = 26 0.991 0.952
x = 27 0.992 0.956
x = 28 0.994 0.958
x = 29 0.995 0.961
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It is also observed that as the value of p increases the distribution exhibits less fatter tails (keeping the

values of µ and σ constant). The latter can be observed in Figure 19.

Figure 19: PDF of the distribution with PDF in (83) for di�erent values of p.

It is therefore concluded that theGSC(µ, σ, p) distribution can be used as an alternative to theGSN(µ, σ, p)

distribution to model skewed data. It seems that the GSC(µ, σ, p) distribution is a reasonably more �ex-

ible distribution than the GSN(µ, σ, p) distribution when it comes to modelling fat tails. Hence, the

GSC(µ, σ, p) distribution can model data that is skewed, multimodal and exhibits fatter tails.

4.1.3 Estimation

Conditional properties

Before continuing with the estimation section, it is worthwhile to �rst furnish di�erent conditional prop-

erties that will be utilized in the estimation theory. These conditional properties provide further detail

into the distribution and contribute knowledge on speci�c conditions enclosed on the distribution.

Theorem 46. Consider (X,N) which has the joint PDF as given by (80), and let m ≤ n be positive

integers. The conditional CDF of (X,N) given N ≤ n is given by

P (X ≤ x,N ≤ m|N ≤ n) =
p

1− (1− p)n−1

m∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

(85)

for −∞ < x <∞ and 0 < p < 1.
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Proof. From (112), (81), the CDF of a GE(p) distribution and the fact that m ≤ n, it follows that

P (X ≤ x,N ≤ m|N ≤ n) =
P (X ≤ x,N ≤ m)

P (N ≤ n)

=
p
∑m
k=1

[
1
π arctan

(
x−kµ
kσ

)
+ 1

2

]
(1− p)k−1

P (N ≤ n)

=
p
∑m
k=1

[
1
π arctan

(
x−kµ
kσ

)
+ 1

2

]
(1− p)k−1

1− (1− p)n

=
p

1− (1− p)n
m∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

.

It follows directly from (85), that for m = n and using (81), it is true that

P (X ≤ x,N ≤ n|N ≤ n) =
P (X ≤ x,N ≤ n)

P (N ≤ n)

=
p

1− (1− p)n
n∑
k=1

[
1

π
arctan

(
x− kµ
kσ

)
+

1

2

]
(1− p)k−1

. (86)

Theorem 47. Consider (X,N) which has the joint PDF as given by (80). Suppose that 0 ≤ x ≤ y and

n is any positive integer. The conditional CDF of (X,N) given X ≤ y is given by

P (X ≤ x,N ≤ n|X ≤ y) =

∑n
k=1

[
1
π arctan

(
x−kµ
kσ

)
+ 1

2

]
(1− p)k−1∑∞

k=1

[
1
π arctan

(
y−kµ
kσ

)
+ 1

2

]
(1− p)k−1

. (87)

Proof. Using (85), (112) in Appendix A.1 and since x ≤ y, it follows that

P (X ≤ x,N ≤ n|X ≤ y) =
P (X ≤ x,N ≤ n)

P (X ≤ y)

=
p
∑n
k=1

[
1
π arctan

(
x−kµ
kσ

)
+ 1

2

]
(1− p)k−1

p
∑∞
k=1

[
1
π arctan

(
y−kµ
kσ

)
+ 1

2

]
(1− p)k−1

=

∑n
k=1

[
1
π arctan

(
x−kµ
kσ

)
+ 1

2

]
(1− p)k−1∑∞

k=1

[
1
π arctan

(
y−kµ
kσ

)
+ 1

2

]
(1− p)k−1

.
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It follows directly from (87) that

P (N ≤ n,X ≤ y|X ≤ y) = P (N ≤ n|X ≤ y)

=
P (N ≤ n,X ≤ y)

P (X ≤ y)

=

∑n
k=1

[
1
π arctan

(
y−kµ
kσ

)
+ 1

2

]
(1− p)k−1∑∞

k=1

[
1
π arctan

(
y−kµ
kσ

)
+ 1

2

]
(1− p)k−1

(88)

for n as any positive integer. Using (80) and (83), the conditional PMF of N given X = x is

fN |X(n|x) =
fN,X(n, x)

fX(x)

=

1
πnσ

[
1

1+( x−nµnσ )
2

]
(1− p)n−1

1
πσ

∑∞
k=1

1
k

[
1

1+( x−kµkσ )
2

]
(1− p)k−1

=

(1− p)n−1

[
1

1+( x−nµnσ )
2

]
/n

∑∞
k=1(1− p)k−1

[
1

1+( x−kµkσ )
2

]
/k

(89)

and in turn the conditional expectation of N given X = x becomes

E (N |X = x) =

∞∑
n=1

nP (N = n|X = x)

=

∑∞
n=1(1− p)n−1

[
1

1+( x−nµnσ )
2

]
∑∞
k=1(1− p)k−1

[
1

1+( x−kµkσ )
2

]
/k

(90)

with

E
(
N−1|X = x

)
=

∞∑
n=1

n−1P (N = n|X = x)

=

∑∞
n=1(1− p)n−1

[
1

1+( x−nµnσ )
2

]
/n2

∑∞
k=1(1− p)k−1

[
1

1+( x−kµkσ )
2

]
/k

. (91)

Maximum likelihood estimators

In order to obtain the MLEs of the unknown parameters it is necessary to maximize the log-likelihood

function with respect to the unknown parameters.
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Theorem 48. Suppose that {x1, x2, ..., xn} is a sample of size n from the GSC(µ, σ, p) distribution with

PDF as given in (83). The log-likelihood function is given by

l(µ, σ, p) =

n∑
i=1

ln

 ∞∑
k=1

p

πσk

 1

1 +
(
x−kµ
kσ

)2

 (1− p)k−1

 . (92)

Proof. From Bain and Engelhardt [8] and using (83), it follows that

l (µ, σ, p) = ln

(
n∏
i=1

fXi(xi)

)

=

n∑
i=1

ln [fXi(xi)]

=

n∑
i=1

ln

 ∞∑
k=1

p

πσk

 1

1 +
(
x−kµ
kσ

)2

 (1− p)k−1

 .

It is proceeded to obtain the normal equations by taking the partial derivatives of the log-likelihood

function given in (92) and equating them to 0. The partial derivatives are with respect to µ, σ and p.

In order to circumvent the problem of having to solve three non-linear equations, an iterative method

will be used to �nd the MLEs. For this purpose, the log-likelihood based on the complete sample will

be used, as an explicit expression for the MLE of p can be obtained. For the remaining parameters, the

non-linear equations need to be solved by using the Newton-Raphson (NR) method.

Theorem 49. Let {(x1,m1), (x2,m2), ..., (xn,mn)} be a random sample of size n from the joint distri-

bution of (X,N) in (80). The log-likelihood based on the complete sample is given by

lc(µ, σ, p) ∝ n ln p− n lnσ + ln(1− p)
n∑
i=1

(mi − 1)−
n∑
i=1

ln

(
1 +

(
xi −miµ

miσ

)2
)

(93)

without the additive constant and the MLE of p is obtained as

p̂ =
n∑n

i=1mi
. (94)
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Proof. Using (80), it follows that

lc(µ, σ, p) = ln

(
n∏
i=1

fX,N (xi,mi)

)

=

n∑
i=1

ln [fX,N (xi,mi)]

=

n∑
i=1

ln

 p

πσmi

 1

1 +
(
xi−miµ
miσ

)2

 (1− p)mi−1


=

n∑
i=1

{
ln

(
p

πσmi

)
+ (mi − 1) ln(1− p) + ln(1)− ln

[
1 +

(
xi −miµ

miσ

)2
]}

∝ n ln p− n lnσ + ln(1− p)
n∑
i=1

(mi − 1)−
n∑
i=1

ln

[
1 +

(
xi −miµ

miσ

)2
]
.

It is then proceeded to obtain the normal equation for p based on the complete sample. This is done by

taking the partial derivative of the complete log-likelihood with respect to p and setting it equal to 0,

followed by solving for the unknown parameter. Thus, the MLE for p is obtained as

∂lc(µ, σ, p)

∂p
= 0

−
∑n
i=1(mi − 1)

1− p̂
+
n

p̂
= 0

−p̂
n∑
i=1

mi + np̂+ n− np̂ = 0

−p̂
n∑
i=1

mi = −n

p̂ =
n∑n

i=1mi
.

The log-likelihood in (93) directly results that the MLE of p can be obtained in an explicit form. Using

(93), the normal equations of the remaining unknown parameters can be written as

∂lc(µ, σ, p)

∂µ
= 0

n∑
i=1


 −1

1 +
(
xi−miµ̂
miσ

)2

[2(xi −miµ̂

miσ

)][
−1

σ

] = 0

n∑
i=1


2
σ

(
xi−miµ̂
miσ

)
1 +

(
xi−miµ̂
miσ

)2

 = 0 (95)
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and

∂lc(µ, σ, p)

∂σ
= 0

−n
σ̂
−

n∑
i=1

 1

1 +
(
xi−miµ̂
miσ̂

)2

[
2

(
xi −miµ̂

miσ̂

)][
−xi −miµ̂

miσ̂2

] = 0

−n
σ̂
−

n∑
i=1


−2
(
xi−miµ̂
miσ̂

)2

σ̂

[
1 +

(
xi−miµ̂
miσ̂

)2
]
 = 0 (96)

respectively. From (95) and (96) is it observed that explicit expressions for µ̂ and σ̂ are not possible,

hence the necessity to solve these using the NR method. Furthermore, from (95) and (96) it is observed

that these expressions contain the term mi. Since the explicit expression of p̂ contains the term mi as

well, it yields that the estimate for p will update with each iterative step that is run within the estimation

algorithm to obtain the MLEs for µ and σ. Before providing the algorithm to estimate the unknown

parameters, it is proceeded to �rst discuss the NR algorithm speci�cally for use in the estimation of

parameters of the geometric skew-Cauchy distribution. A more general discussion on the NR method

and its use to solve a non-linear system of equations can be viewed in the excellent monograph by Press

and Vetterling [34].

Newton-Raphson (NR) algorithm

Derivatives of the complete log-likelihood sample given in (93) will be used to obtain the MLEs for µ and

σ. These derivatives can be constituted in a vector of length two, F(µ, σ), with the components of the

vector being functions of µ and σ:

F (µ, σ) =

 ∂lc(µ,σ,p)
∂µ

∂lc(µ,σ,p)
∂σ



=


∑n
i=1

 2
(
xi−miµ
miσ

)
σ

[
1+
(
xi−miµ
miσ

)2
]


−n
σ −

∑n
i=1

{
−2
σ

(
xi−miµ
miσ

)2

1+
(
xi−miµ
miσ

)2

}
 . (97)
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It is then necessary to solve the system of equations F(µ, σ) = 0. Consider the Jacobian matrix J(µ, σ)

of the vector equation F:

J (µ, σ) =

 ∂2lc(µ,σ,p)
∂µ2

∂2lc(µ,σ,p)
∂µ∂σ

∂2lc(µ,σ,p)
∂σ∂µ

∂2lc(µ,σ,p)
∂σ2

 . (98)

After conducting some algebraic calculations, the elements of the Jacobian matrix are obtained as:

∂2lc(µ, σ, p)

∂µ2
=

n∑
i=1


− 2
σ2 + 2

σ2

(
xi−miµ
miσ

)2

[
1 +

(
xi−miσ
miσ

)2
]2

 , (99)

∂2lc(µ, σ, p)

∂µ∂σ
=

n∑
i=1


− 4
σ2

(
xi−miµ
miσ

)
[
1 +

(
xi−miσ
miσ

)2
]2

 , (100)

∂2lc(µ, σ, p)

∂σ∂µ
= −

n∑
i=1


4
σ2

(
xi−miµ
miσ

)
[
1 +

(
xi−miσ
miσ

)2
]2

 , (101)

∂2lc(µ, σ, p)

∂σ2
=

n

σ2
−

n∑
i=1


6
σ2

(
xi−miµ
miσ

)2

+ 2
σ2

(
xi−miµ
miσ

)4

[
1 +

(
xi−miσ
miσ

)2
]2

 . (102)

The following iterative procedure represents the NR method for non-linear systems [9]:

 µ(n)

σ(n)

 =

 µ(n−1)

σ(n−1)

− J−1

 µ(n−1)

σ(n−1)

F

 µ(n−1)

σ(n−1)

 (103)

for n ≥ 1, where the initial values for the parameters µ0 and σ0 will be given from the values obtained

via a grid search for parameter optimization, and J−1 is the inverse of the Jacobian matrix in (98). The

iterative method will continue until a given tolerance error, say ε, is reached between the nth and (n+1)th

iterative values.

The grid search for parameter optimization is summarised in Algorithm 8.
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Algorithm 8 Simple grid search for parameter optimization

1: Required:

� De�ne the step size.

� De�ne the lower and upper bound for µ. The minimum and maximum value of the sample at
hand will su�ce.

� De�ne a sequence of values for µ using the step size and the prede�ned minimum and maximum
values.

� De�ne a sequence of values for σ using the step size and a minimum value of greater than 0,
with a maximum value taken as the sample standard deviation.

� De�ne a sequence of values for p using the step size and a minimum value of greater than 0,
with a maximum less than or equal to 1.

2: For a given p, calculate a matrix than contains the log-likelihood values using all possible combinations
of µ and σ.

3: Find the maximum log-likelihood value in the matrix in step 2 and save it into a new matrix. This
will yield the µ and σ combination that gives the maximum log-likelihood for a given p.

4: Repeat steps 2 and 3, for all possible values of p.
5: Find the maximum of the matrix in step 4. This will yield the optimimum combination of parameters.

The grid search is constructed in such a manner that it conducts an exhaustive search across the entire

grid, rather than searching until it �nds a local maximum. The values obtained from the grid search are

then used as the starting values for the NR method and in turn the estimation algorithm.

The algorithm that yields the estimates for µ, σ and p can subsequently be implemented and is

summarised in Algorithm 9.

Algorithm 9 Algorithm to obtain the MLEs of the GSC(µ, σ, p) distribution.

1: Required: Run the grid search in algorithm (8) to obtain initial values for µ, σ and p.
2: Obtain the conditional expectations ci = 1

mi
and di = mi by using (91) and (90) respectively as well

as the parameter estimates at the current stage of the algorithm.
3: Estimate the value of p by using (94) as well as di from step 2.
4: Obtain the elements of the vector F in (97) and the Jacobian matrix J in (98) by replacing the missing

values with their expectations.
5: Step 4 yields the following:

F(µ, σ) =


∑n
i=1

{
2
σ (xici−µ)

1+ 1
σ2

(x2
i c

2
i−2xiciµ+µ2)

}
−n
σ −

∑n
i=1

{
−2

σ3
(x2
i c

2
i−2xiciµ+µ2)

1+ 1
σ2

(x2
i c

2
i−2xiciµ+µ2)

}


and

J (µ, σ) =


∑n
i=1

{
− 2
σ2

+ 2
σ4

(x2
i c

2
i−2xiciµ+µ2)

[1+ 1
σ2

(x2
i c

2
i−2xiciµ+µ2)]

2

} ∑n
i=1

{
− 4
σ3

(xici−µ)

[1+ 1
σ2

(x2
i c

2
i−2xiciµ+µ2)]

2

}
−
∑n
i=1

{
4
σ3

(xici−µ)

[1+ 1
σ2

(x2
i c

2
i−2xiciµ+µ2)]

2

}
n
σ2 −

∑n
i=1

{
6
σ4

(x2
i c

2
i−2xiciµ+µ2)+ 2

σ2
[ 1
σ2

(x2
i c

2
i−2xiciµ+µ2)]

2

[1+ 1
σ2

(x2
i c

2
i−2xiciµ+µ2)]

2

}


where ci = 1
mi

from step 2.
6: Run the iterative procedure in (103) to obtain the estimates for µ and σ.
7: Repeat steps 2 - 6 until a tolerance error ε is obtained.
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5 Chapter 5

This chapter will proceed to present a simulation study and conduct analysis on two real data sets.

This will be done to assess the e�cacy of the newly proposed geometric skew-Cauchy distribution as an

alternative to the skew-normal and geometric skew-normal distributions.

The �rst data set will be analysed using the di�erent estimation algorithms presented in previous

chapters for the GSN(µ, σ, p) model and the GSC(µ, σ, p) model. The sn package in R will be used to

estimate the SN(µ, σ2, λ) model. The second data set will be analysed using the DEoptim package in R

for all three models considered in previous chapters 1. It is noted that the estimation algorithms as well

as the use of the DEoptim package yield the same results for parameter estimates.

Throughout this chapter, in order to asses which model is a better �t, the log-likelihood (higher

is better), the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the

Kolmogorov-Smirnov (KS) test statistic values will be calculated.

The KS test statistic is the distance between the empirical and �tted CDFs, for which a lower value

is better [16]. The KS test statistic, T1, is suggested by Kolmogorov as:

T1 = max
−∞<x<+∞

| S(x)− F (x) |

where S(x) is the empirical CDF and F (x) is the �tted CDF [11]. The KS test statistic is used in the

Kolmogorov-Smirnov test to determine whether the sample that yields the CDF, S(x), emanates from

the population that yields the CDF, F (x). In essence, a smaller T1 indicates that S(x) and F (x) are

closer to each other, which in turn indicates that the sample values are more likely to emanate from

the population values. Further details on the Kolmogorov-Smirnov test can be viewed in the excellent

chapter on non-parametric modelling by Guidici [16].

The AIC approximates the quantity of information lost by a given model that was �tted to the data.

Hence, a lower AIC value is preferred [1]. The AIC value can be used as a method for model selection

and it is calculated as follows:

AIC = 2k − 2 ln(L)

where k is the number of estimated parameters in the model and L is the maximum value of the likelihood

function of the model [1]. In essence, the AIC approximates the quality of each model in relation to the

quality of other models, given a multitude of models for the data at hand [1]. The AIC handles the trade-

o� between the simplicity of the model and the goodness-of-�t of the model by introducing a penalty

1Full explanation on the DEoptim package can be viewed on https://cran.r-
project.org/web/packages/DEoptim/DEoptim.pdf.
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term for the number of parameters in the model [1]. On the other hand, the BIC also yields a method

for model selection, where a model is preferred with a lower BIC value [35]. The BIC value is closely

connected to the AIC value since it also handles the trade-o� between simplicity and goodness-of-�t of

the model. The di�erence, however, is the fact that the BIC introduces a larger penalty term for the

number of parameters in the model [38]. In essence, the BIC penalizes an increase in parameters more

severely than the AIC. The BIC value is calculated as follows:

BIC = k ln(n)− 2 ln(L)

where k is the number of estimated parameters in the model, n is the sample size and L is the maximum

value of the likelihood function of the model [35].

5.1 Simulation

This subsection will proceed to simulate a data set from the GSC(µ, σ, p) distribution with PDF in (83).

It has been decided to simulate the data set with a sample size of j = 5000 using Algorithm 7 as suggested

in Section 4.1.2. The simulation was conducted with the following speci�cation:

µ = 2, σ = 1, p = 0.7.

After running the grid search in Algorithm 8, the starting values for the estimation algorithm were

obtained as:

µ = 2.15, σ = 0.84, p = 0.8

and proceeding to run the estimation algorithm given in Algorithm 9, the MLEs of the unknown param-

eters were obtained as:

µ̂ = 2.012, σ̂ = 1.021, p̂ = 0.980

with the associated log-likelihood value becoming −12930.05. The �tted PDF is plotted against the

histogram of the simulated data in Figure 20.
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Figure 20: Histogram of simulated data with �tted GSC(µ, σ, p) PDF.

The estimates are given against the true parameters in Table 9 for comparison.

Table 9: Simulated data estimates comparison

Parameter True parameters GSC(µ, σ, p) estimates
µ 2 2.012
σ 1 1.021
p 0.7 0.980

It is observed from Table 9 that the estimated parameters for µ and σ are close to the true parameters used

in the simulation. Using all the estimated parameters to plot the �tted PDF, it is observed from Figure

20 that the �tted PDF �ts the data well indicating that the estimation algorithm performs satisfactory

on a sample size of 5000 observations. It is noted, that other sample sizes were also considered. These

include sample sizes of j = 100, 200, 500, 1000, 10000 respectively. The estimation algorithm also yielded

satisfactory performance on the other sample sizes.

However, it is noted from Table 9 that the estimate for p is not close to the true parameter. The fact

that the parameter estimate of p does not converge to the true parameter prompts further investigation

into why this estimated result was obtained for simulated data. The following was done to investigate

the behaviour of p:

� The impact of p on the log-likelihood was determined. This can be seen in Figure 21. It is clear

that the log-likelihood value increases as the value of p increases. This was conducted for µ = 2

and σ = 1 kept constant, using a sample size of j = 5000 as in the above simulation.
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Figure 21: Change in the log-likelihood in (92) for di�erent p for j = 5000.

� The process was repeated for other sample sizes as well, keeping µ = 2 and σ = 1 constant. The

sample sizes of j = 100, 200, 500, 1000 were used respectively. The impact on the log-likelihood can

be seen in Figures 22 and 23. It is noted that a smaller sample size yields a higher log-likelihood

value, given a higher p. Furthermore, the process was also repeated for other values of µ and σ

kept constant, whilst varying the value of p. The same results depicted in Figures 22 and 23 are

observed.

(a) Sample size j = 100. (b) Sample size j = 200.

Figure 22: Change in the log-likelihood in (92) for di�erent p for j = 100, 200.

� The observation of an increasing log-likelihood for di�erent p is also noted from investigation of the

simulation of the GSN(µ, σ, p) distribution. Thus, the log-likelihood also increases for an increasing

p (keeping µ and σ constant).
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(a) Sample size j = 500. (b) Sample size j = 1000.

Figure 23: Change in the log-likelihood in (92) for di�erent p for j = 500, 1000.

� Recall that if N ∼ GE(p) and X ∼ GSC(µ, σ, p) with composition in (79), then X|(N = n) =∑n
i=1 Yi ∼ C(nµ, nσ) using (78). Naturally, then X

d
= nµ + nσZ, where Z ∼ C(0, 1). The

latter stochastic representation was also used to simulate random numbers from the GSC(µ, σ, p)

distribution, with µ = 2, σ = 1 and p = 0.7. Proceeding with estimation, the estimate obtained for

p again di�ers signi�cantly from the true parameter, with p converging to a value close to 1. The

impact on the log-likelihood was investigated and it increases for an increasing p.

� Following the approach suggested in Walck [40] to simulate random numbers from the Cauchy

distribution, the stochastic representation of X
d
= nµ+ nσ(uv ), where u ∼ N(0, 1), v ∼ N(0, 1) and

(N = n) ∼ GE(p), was also used to simulate random numbers for the GSC(µ, σ, p) distribution.

The parameters were kept at µ = 2, σ = 1 and p = 0.7. Proceeding with estimation, the estimate

obtained for p again di�ers signi�cantly from the true parameter, with p converging to a value close

to 1. The impact on the log-likelihood was investigated and it increases for an increasing p.

� It is noted that the same observation with regards to the estimate of p is also evident when the

DEoptim package was used to conduct the aforementioned investigation.

It is worthwhile to conduct further research on the behaviour of p and reasons why this peculiarity is

evident for simulated data.
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5.2 Guinea pig data

The �rst data set considers the survival times of guinea pigs that were obtained freely from Bjerkedal

[10]. The guinea pigs were injected with di�erent doses of tubercle bacilli due to their particular high

vulnerability to tuberculosis [24] [10].

The total number of observations in the data is 72. A histogram of the data is plotted in Figure 24.

The coe�cient of skewness of the sample is calculated as 1.759. It can be observed from the histogram

as well as the value of the sample skewness that the data is right skewed and hence su�ces the need to

�t distributions that can model skewed data.

Before analysing the data, it has been decided to divide all the observations in the data by 50 for

computational purposes as this will not a�ect the inference that will be conducted.

Figure 24: Histogram of guinea pig data.

The �rst model to be �tted will be the skew-normal model. That is, the SN(µ, σ2, λ) distribution with

PDF in (3). The MLEs of the unknown parameters are given in Table 10. The associated log-likelihood

value becomes −115.252. The KS test statistic is 0.185. In addition to the latter, the AIC and BIC values

are given by 236.504 and 243.334 respectively. The �tted PDF along with the histogram of the data is

given in Figure 29.

The second model to be �tted will be the geometric skew-normal model. That is, the GSN(µ, σ, p)

distribution with PDF in (31). The MLEs of the unknown parameters are given in Table 10. The �t

statistics of the model is given in Table 11. The �tted PDF along with the histogram of the data is

given in Figure 29. The empirical survival function and the �tted survival function is given in Figure 25.

Furthermore, the empirical CDF and the �tted CDF is given in Figure 26.
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Figure 25: Survival functions of �tted GSN(µ, σ, p) model.

Figure 26: Distribution functions of �tted GSN(µ, σ, p) model.

The third model to be �tted will be the geometric skew-Cauchy model. That is, the GSC(µ, σ, p)

distribution with PDF in (83). The MLEs of the unknown parameters are given in Table 10. The �t

statistics of the model is given in Table 11. The �tted PDF along with the histogram of the data is

given in Figure 29. The empirical survival function and the �tted survival function is given in Figure 27.

Furthermore, the empirical CDF and the �tted CDF is given in Figure 28.
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Figure 27: Survival functions of �tted GSC(µ, σ, p) model.

Figure 28: Distribution functions of �tted GSC(µ, σ, p) model.

Figure 29: All three �tted models for the guinea pig data.
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Table 10: Parameter estimates of three models for the guinea pig data

SN(µ, σ2, λ) GSN(µ, σ, p) GSC(µ, σ, p)
µ̂ = 0.227 µ̂ = 1.202 µ̂ = 1.351
σ̂ = 2.388 σ̂ = 0.457 σ̂ = 0.369

λ̂ = 183.446 p̂ = 0.602 p̂ = 0.773

Table 11: Three models for the guinea pig data

SN(µ, σ2, λ) GSN(µ, σ, p) GSC(µ, σ, p)
Log-likelihood -115.252 -107.431 -108.213
KS test statistic 0.185 0.107 0.086

AIC 236.504 220.862 222.426
BIC 243.334 227.692 229.256

It can be observed from Table 11 that the new GSC(µ, σ, p) model provides a better �t than the

SN(µ, σ2, λ) model to this data, considering the log-likelihood, the KS test statistic, AIC and the BIC

values.

It is observed that the GSC(µ, σ, p) model provides a better �t to the data than the GSN(µ, σ, p)

model based on the KS test statistic. This can also be observed from Figures 26 and 28 where the

empirical CDF of the GSC(µ, σ, p) model is closer to the �tted CDF, as opposed to the GSN(µ, σ, p)

model.

However, the GSN(µ, σ, p) model provides a better �t than both the GSC(µ, σ, p) model and the

SN(µ, σ2, λ) model when considering the log-likelihood, AIC and the BIC.

The fact that the GSN(µ, σ, p) model performs better than the GSC(µ, σ, p) model could be due to

the fact that the data does not exhibit fat tails (for which the GSC(µ, σ, p) model is appropriate). Figure

30 depicts the �tted CDFs of the GSC(µ, σ, p) and GSN(µ, σ, p) models. It can be observed from Figure

30 that the GSC(µ, σ, p) model accommodates fatter lower- and upper-tails than the GSN(µ, σ, p) model.

The latter can also be observed in Tables 12 and 13, where the GSC(µ, σ, p) model has greater lower-tail

probabilities and smaller upper-tail probabilities, indicative of the ability to model fatter tails than the

GSN(µ, σ, p) model.

Table 12: Lower tail probabilities of GSN(µ, σ, p) vs. GSC(µ, σ, p) model

GSN(µ, σ, p) GSC(µ, σ, p)
x = 0.4 0.004 0.113
x = 0.5 0.008 0.124
x = 0.6 0.016 0.136
x = 0.7 0.030 0.152
x = 0.8 0.052 0.171
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Figure 30: Distribution functions of �tted GSC(µ, σ, p) and GSN(µ, σ, p) models.

Table 13: Upper tail probabilities of GSN(µ, σ, p) vs. GSC(µ, σ, p) model

GSN(µ, σ, p) GSC(µ, σ, p)
x = 4 0.966 0.908
x = 4.5 0.980 0.926
x = 5 0.988 0.940
x = 5.5 0.993 0.949
x = 6 0.996 0.957

Considering Figures 26 and 28, it can also be observed that the GSC(µ, σ, p) model is a better �t in the

middle part of the data, whereas the GSN(µ, σ, p) model is a better �t at the tails. The latter supports

the fact that the data does not exhibit fat tails and hence the GSC(µ, σ, p) model not being a better �t

than the GSN(µ, σ, p) model for the tail data.

5.3 Danish �re loss data

The second data set that will be analysed considers data that comprises Danish �re losses. The data

contains individual losses above 1 million Danish Krones. The data were analysed by McNeil [29] and

were collected by a reinsurance company in Denmark [14]. The data set spans over the period from 3

January 1980 till 31 December 1990 [14].

The total number of observations in the data is 2167. A histogram of the data is plotted in Figure 31.

The coe�cient of skewness is calculated as 18.737. It can be observed from the histogram as well as the

value of the sample skewness that the data is right skewed and hence su�ces the need to �t distributions

that can model skewed data.
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Figure 31: Histogram of Danish �re loss data.

The �rst model to be �tted will be the skew-normal model. That is, the SN(µ, σ2, λ) distribution with

PDF in (3). The MLEs of the unknown parameters are given in Table 14. The associated log-likelihood

value becomes −6301.178. The KS test statistic is 0.988. In addition to the latter, the AIC and BIC

values are given by 12608.36 and 12625.4 respectively.

The second model to be �tted will be the geometric skew-normal model. That is, the GSN(µ, σ, p)

distribution with PDF in (31). The MLEs of the unknown parameters are given in Table 14. The �t

statistics of the model is given in Table 15. The �tted PDF along with the histogram of the data is

given in Figure 36. The empirical survival function and the �tted survival function is given in Figure 32.

Furthermore, the empirical CDF and the �tted CDF is given in Figure 33.

Figure 32: Survival functions of �tted GSN(µ, σ, p) model.
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Figure 33: Distribution functions of �tted GSN(µ, σ, p) model.

The third model to be �tted will be the geometric skew-Cauchy model. That is, the GSC(µ, σ, p)

distribution with PDF in (83). The MLEs of the unknown parameters are given in Table 14. The �t

statistics of the model is given in Table 15. The �tted PDF along with the histogram of the data is

given in Figure 36. The empirical survival function and the �tted survival function is given in Figure 34.

Furthermore, the empirical CDF and the �tted CDF is given in Figure 35.

Figure 34: Survival functions of �tted GSC(µ, σ, p) model.
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Figure 35: Distribution functions of �tted GSC(µ, σ, p) model.

Figure 36: All three �tted models for the Danish �re loss data.

Table 14: Parameter estimates of three models for the Danish �re loss data

SN(µ, σ2, λ) GSN(µ, σ, p) GSC(µ, σ, p)
µ̂ = 0.909 µ̂ = 1.414 µ̂ = 1.383
σ̂ = 8.844 σ̂ = 0.333 σ̂ = 0.254

λ̂ = 183.446 p̂ = 0.418 p̂ = 0.625

Table 15: Three models for the Danish �re loss data

SN(µ, λ, σ2) GSN(µ, σ, p) GSC(µ, σ, p)
Log-likelihood -6301.178 -4111.879 -3852.932
KS test statistic 0.988 0.992 0.987

AIC 12608.36 8229.757 7711.863
BIC 12625.4 8246.801 7728.907
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It can be observed from Table 15 that the new GSC(µ, σ, p) model provides a better �t than both the

SN(µ, σ2, λ) model as well as the GSN(µ, σ, p) model to this data, considering the log-likelihood, the KS

test statistic, AIC and the BIC values. The latter can also be observed from Figures 33 and 35 where

the empirical CDF of the GSC(µ, σ, p) model is closer to the �tted CDF, as opposed to the GSN(µ, σ, p)

model. It seems that the GSC(µ, σ, p) model is a better �t to both the middle part and the tails of the

data. Furthermore, it is observed from Figure 36 that the GSC(µ, σ, p) model provides a closer �t to the

data as compared to the GSN(µ, σ, p) model. In fact, the GSC(µ, σ, p) model is �tted close to the tail

data of the histogram, whereas the GSN(µ, σ, p) model is relatively far o� from the tail data.

The above results from the analysis of the Danish �re loss data show that the GSC(µ, σ, p) model is a

competitive model. Thus, it can be used as an alternative to the skew-normal and geometric skew-normal

distributions.
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6 Chapter 6

The dissertation is concluded by providing a summary of what has been done and outlining considerations

for future work.

6.1 Summary

In this dissertation the geometric skew-Cauchy distribution was introduced. The latter distribution

utilized the geometric and Cauchy distributions in a compounding sum of i.i.d. random variables. This

was in addition to the existing utilization of the geometric and normal distributions in a compounding

sum of i.i.d. random variables.

The new model has the same number of parameters as the skew-normal distribution, and is more

�exible since it can be unimodal or multimodal. In addition, although the geometric skew-normal distri-

bution can also be unimodal or multimodal, the new model is shown to be reasonably more �exible since

it can accommodate for fatter tails in the data.

The new alternative distribution is presented through theoretical development, descriptive research

and experimental research in the form of simulation. An algorithm is presented to �nd the MLEs of

the unknown parameters of the new model. The �ndings are supported through implementation on two

real data sets. The aims and objectives have been met to sustain the rationale of conducting research

on an alternative distribution. It is concluded that the newly proposed three-parameter distribution can

be used as an alternative to the skew-normal and geometric skew-normal distributions. Furthermore, it

appears overall as if the geometric skew-Cauchy distribution is a competitive model to consider as an

alternative to the other models revisited in the dissertation.

Consideration is presented in the following subsection on generalizing the new model to the multivari-

ate case. It will be worthwhile to continue developing the multivariate case as an alternative consideration

to other multivariate distributions such as the multivariate skew-normal and geometric skew-normal dis-

tributions.

6.2 Future work

Subbotin introduced the generalised normal distribution that is more �exible than the normal distribution

to allow for fatter tails [39]. Arellano-Valle et. al. [3] introduced a skew-generalised normal distribution

which contains the skew-normal distribution as a special case. It would be possible to consider utilizing

the geometric distribution and either the generalised normal or the skew-generalised normal distributions

in a compounding sum of independent random variables.

Another possible idea for future work is to extend the univariate geometric skew-Cauchy distribution
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to the multivariate case. The motivation to explore the multivariate case is supported by the fact that

there is a lack of skewed distributions in dimensions greater than one [25]. For this reason, the proceeding

generalization of the univariate geometric skew-Cauchy is outlined.

The multivariate Cauchy distribution is a special case of the multivariate student's t-distribution with

ν = 1 degree of freedom [23].

Theorem 50. A d-dimensional random vector X = (X1, . . . , Xd)
T
is said to have the d-variate t distri-

bution if its joint PDF is given by

fX(x) =
Γ
(
ν+d

2

)
(πν)

d
2 Γ
(
ν
2

)
|Σ| 12

[
1 +

1

ν
(x− µ)TΣ−1(x− µ)

]− (ν+d)
2

(104)

with degrees of freedom ν > 0, d× d mean vector µ, and d× d positive de�nite covariance matrix Σ (and

with R denoting the corresponding d× d correlation matrix) [23].

If d = 1, µ = 1 and Σ = 1, then (104) becomes the PDF of the univariate student's t-distribution

[23]. Since the multivariate Cauchy distribution is a special case of (104), the following corollary follows

immediately.

Corollary 5. A d-dimensional random vector X = (X1, . . . , Xd)
T
is said to have the d-variate Cauchy

distribution if its joint PDF is given by

fX(x) =
Γ
(

1+d
2

)
(π)

d
2 Γ
(

1
2

)
|Σ| 12

[
1 + (x− µ)TΣ−1(x− µ)

]− (1+d)
2 (105)

with d×d mean vector µ and d×d positive de�nite covariance matrix Σ (with R denoting the corresponding

d× d correlation matrix).

Theorem 51. If X has the d-variate t distribution with degrees of freedom ν > 0, d× d mean vector µ,

and d × d positive de�nite covariance matrix Σ, then for any nonsingular scalar matrix C and for any

a,CX+a has the d-variate t distribution with degrees of freedom ν, mean vector Cµ+a, and covariance

matrix CΣCT [23].

Naturally, the latter result can be applied to the multivariate Cauchy distribution. This yields that the

distribution of a linear combination of d-variate Cauchy random variables, will also follow the multivariate

Cauchy distribution [23]. A d-variate Cauchy random variable with location parameter µ and scale

parameter Σ, will be denoted by Cd(µ,Σ).

Theorem 52. Let {Yi : i = 1, 2, ...} be i.i.d Cd(µ,Σ) random variables and suppose that N ∼ GE(p),
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with N and Y ′i s independently distributed. Then de�ne

X
dist.
=

N∑
i=1

Yi (106)

where
dist.
= indicates equal in distribution. It is then observed that X is a multivariate geometric skew-

Cauchy random variable with parameters µ,Σ and p. This will be denoted by MVGSCd (µ,Σ, p), where

d = 1, 2, ... indicates the number of variables.

Future work can include the derivations of the joint PDF as well as the joint CDF of the variable

(X, N). In turn, this can be used to derive the CDF of the random variable X in (106). A possible

representation of the PDF of the random variable X in (106) is given by the proceeding theorem for

0 < p < 1. If p = 1, then X ∼ Cd(µ,Σ).

Theorem 53. Let X ∼ MVGSCd (µ,Σ, p) and N ∼ GE(p) with composition given by (106), then the

PDF of the random variable X is given by

fX(x) =

∞∑
k=1

p(1− p)k−1Ψd(kµ, kΣ) (107)

where

Ψd(kµ, kΣ) =
Γ
(

1+d
2

)
(kπ)

d
2 |Σ| 12 Γ

(
1
2

) [1 + (x− kµ)
T

Σ−1 (x− kµ)
]

for x ∈ Rd, µ ∈ Rd, Σ: d× d positive de�nite covariance matrix and 0 < p < 1.
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Appendix A: de�nitions, lemmas and results

A.1 De�nitions

De�nition 1. If X is a random variable then the MGF of X is given by the following expected value

formulation [8]:

MX(t) = E
(
etX
)
. (108)

This is called the MGF of X if the expected value exists for all values of t in some interval of the form

−k < t < k for some k > 0.

De�nition 2. The cumulant generating function (CGF) of a random variable Y , that is the function

GY (t), is de�ned as the logarithm of the moment generating function of the random variable Y [6]. Thus,

GY (t) = log(MY (t)). (109)

De�nition 3. The nth cumulant, kn, of a random variable Y can be obtained via the nth derivative of

the CGF of the random variable for n = 1, 2, 3, 4. Thus,

kn =
dn

dtn
GY (t) (110)

for n = 1, 2, 3, 4 [6].

De�nition 4. The inverse Mills ratio is de�ned as the ratio between the PDF and the CDF of the

standard normal distribution [6]. That is, the inverse Mills ratio is de�ned as:

b(y) =
φ(y)

Φ(y)
(111)

for y ∈ R, where φ(·) and Φ(·) denote the PDF and CDF of the standard normal distribution respectively.

De�nition 5. The conditional probability of event A, given event B, is de�ned as [8]:

P (A|B) =
P (A ∩B)

P (B)
(112)

if P (B) 6= 0.
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A.2 Lemmas

Lemma 1. If V ∼ N(0, 1) then

EV [Φ(hV +m)] = Φ

(
m√

1 + h2

)
(113)

for h,m ∈ R [6], with Φ(·) denoting the standard normal CDF.

Proof. If V ∼ N(0, 1) then it is true that Y = hV +m ∼ N(m,h2) [8]. If Z ∼ N(0, 1) then it is true that

Z − Y ∼ N(−m, 1 + h2) [8]. Now let X = Φ(Y ). Then it follows that

E(X) = EY [Φ(Y )]

=

∫ ∞
−∞

∫ y

0

e−
z2

2 dzf(y)dy

= EY [Pz (Z ≤ y|y)]

= PY,Z (Z ≤ Y )

= PY,Z (Z − Y ≤ 0) .

Thus,

EV [Φ(hV +m)] = Φ

(
m√

1 + h2

)
.

Lemma 2. If V ∼ Nd(0,Σ) then

E
[
Φ(hTV +m)

]
= Φ

(
m√

1 + hTΣh

)
(114)

for h ∈ Rd and m ∈ R [6], with Φ(·) denoting the standard normal CDF.

Proof. The proof follows in a similar fashion to that of the proof of (113), by noting that hTV ∼

N(0, hTΣh) when V ∼ Nd(0,Σ).

Lemma 3. If B is a symmetric positive de�nite d× d matrix, a and k are d-vectors and k0 is a scalar,

then

I =

∫
Rd

1

(2π)d/2|B|1/2
e{−

1
2 (x>B−1x−2a>x)}Φ

(
k0 + k>x

)
dx

= e(
1
2a
>Ba)Φ

(
k0 + k>Ba√

1 + k>Ak

)
. (115)
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Proof. Using (114), and the fact that y = x− µ and µ = Ba, it follows that

I =

∫
Rd

1

(2π)d/2|B|1/2
e{−

1
2 (x>B−1x−2a>x)}Φ

(
k0 + k>x

)
dx

=

∫
Rd

1

(2π)d/2|B|1/2
e{−

1
2 ((x−µ)>B−1(x−µ)−µTB−1µ)}Φ

(
k0 + k>x

)
dx

= e{
1
2a

TBa}
∫
Rd
φ (y;B) Φ

(
k0 + kT (y+ µ)

)
dy

= e(
1
2a
>Ba)Φ

(
k0 + k>Ba√

1 + k>Ak

)
.

A.3 Results

Theorem 54. Consider the random variable Y . Let f(y) and F (y) denote the PDF and CDF of Y

respectively. Then,

f(y) =
d

dy
F (y) (116)

where the derivative exists [8].

Theorem 55. The CDF of a standard normal random variable Y can be represented as:

Φ(y) =
1

2
+

1√
2π

∞∑
k=0

(
− 1

2

)k
y2k+1

k!(2k + 1)
. (117)

Proof. From Bain and Engelhardt [8] and Stewart [37], it follows that

Φ(y) =
1

2
+

1

2
erf

(
y√
2

)

=
1

2
+

1

2

2√
π

∞∑
k=0

(−1)k
(
y√
2

)2k+1

k!(2k + 1)

=
1

2
+

1√
2π

∞∑
k=0

(
− 1

2

)k
y2k+1

k!(2k + 1)
.

Theorem 56. Let b(·) represent the inverse Mills ratio as given in (111). Let b′(·) and b′′(·) denote the

�rst and second derivatives of b(·) respectively. The following properties of the inverse Mills hold:
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1. Property 1.

b(0) =

√
2

π
(118)

2. Property 2.

b′(y) =
d

dy
b(y) = −b(y)[y + b(y)] (119)

3. Property 3.

b′′(y) =
d2

dy2
b(y) = −b(y) + y2b(y) + 3y(b(y))2 + 2(b(y))3 (120)

Proof. The derivations are done freely utilizing the product, quotient and chain rules as given in Stewart

[37]. For Property 1, from Bain and Engelhard [8] by de�nition

b(0) =
φ(0)

Φ(0)

=

1√
2π
1
2

=

√
2

π
.

For Property 2, we make use of the fact that

φ′(y) =
d

dy
φ(y)

=
d

dy

(
1√
2π
e−

1
2y

2

)
=

1√
2π
e−

1
2y

2

(−y)

= −yφ(y).
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Then, using (116) and (111), it follows that

b′(y) =
d

dy
b(y)

=
d

dy

(
φ(y)

Φ(y)

)

=

(
d
dyφ(y)

)
Φ(y)− φ(y)

(
d
dyΦ(y)

)
(Φ(y))2

=
−yφ(y)Φ(y)− φ(y)φ(y)

(Φ(y))2

= −

(
yφ(y)

Φ(y)
+

(
φ(y)

Φ(y)

)2
)

= − φ(y)

Φ(y)

[
y +

φ(y)

Φ(y)

]
= −b(y)[y + b(y)].

For Property 3, using Property 2, it follows that

b′′(y) =
d2

dy2
b(y)

=
d

dy

(
d

dy
b(y)

)
=

d

dy
(−b(y)[y + b(y)])

= − d

dy

(
yb(y) + (b(y))2

)
= −

(
d

dy
(yb(y)) +

d

dy
(b(y))2

)
= −

((
d

dy
y

)
b(y) + y

(
d

dy
b(y)

)
+ 2b(y)

(
d

dy
b(y)

))
= −(b(y) + y(−b(y)[y + b(y)]) + 2b(y)(−b(y)[y + b(y)]))

= −
(
b(y)− y2b(y)− y(b(y))2 − 2y(b(y))2 − 2(b(y))3

)
= −

(
b(y)− y2b(y)− 3y(b(y))2 − 2(b(y))3

)
= −b(y) + y2b(y) + 3y(b(y))2 + 2(b(y))3.

Corollary 6. Property 3 yields that all br(y) for r > 1 can be written as functions of b(y) and powers of

y [6]. That is,

br(y) =
dr

dyr
b0(y) for r = 1, 2, ...
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where

b0(y) = log [2Φ(y)] .

Theorem 57. If D is positive de�nite matrix of order p, the maximum of

f(G) = −N log |G| − trG−1D

with respect to positive de�nite matrices G exists, occurs at

G = (1/N)D (121)

and has the value

f [(1/N)D] = pN logN −N log |D| − pN [2].

Proof. The full proof is provided in Anderson [2].
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Appendix B: code

Data analysis

#####################################################################

#Data analysis of the guinea pig data set

gp_nodiv <- c(12,15,22,24,24,32,32,33,34,

38,38,43,44,48,52,53,54,54,

55,56,57,58,58,59,60,60,60,

60,61,62,63,65,65,67,68,70,

70,72,73,75,76,76,81,83,84,

85,87,91,95,96,98,99,109,110,

121,127,129,131,143,146,146,175,175,

211,233,258,258,263,297,341,341,376)

gp <- gp_nodiv/50

#Plot of the data

library(ggplot2)

ggplot(data.frame(gp), aes(x=gp)) +

geom_histogram(aes(y=..density..),color='darkblue', fill='magenta', bins=17) +

scale_x_continuous(breaks = seq(0, 8, by = 1))

#####################################################################

#Skew-normal work

#Trying to obtain the skew-normal parameter

library(sn)

cp_space_est <- sn.mple(y=gp)$cp

dp_space_est <- cp2dp(cp_space_est,family="SN") #Conversion of CP parameters to DP

↪→ parameters

dp_space_est

mean <- dp_space_est[1]

sd <- dp_space_est[2]

gamma1 <- dp_space_est[3]

#For the likelihood value
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testdata <- data.frame(gp)

X <- gp

mod <- selm(X ~ 1, data=testdata)

summary(mod)

#Fitting to obtain the theoretical PDF of the skew-normal

sn_dens <- dsn(x=gp, xi=mean, omega=sd, alpha=gamma1)

#Trying to obtain the KS TS using a function

ks.test(gp, 'psn', xi=mean, omega=sd, alpha=gamma1)

#Obtaining the KS using first principles

#Empirical quantiles

sorted_dat <- sort(gp, decreasing = FALSE)

EQ <- cbind(seq(1,length(gp),1)/length(gp),sorted_dat)

EQ[length(gp),1] <- 0.99 #Assigning 0.99 as the 99th quantile

#Theoretical quantiles

quants <- EQ[,1]

theoSNq <- psn(x=gp, xi=mean, omega=sd, alpha=gamma1)

t_quant <- cbind(theoSNq, sorted_dat)

#Statistic Guidici page 110.

T1 = max(abs(EQ[,1]-t_quant[,1]))

T1

#AIC for the SN model

aic_sn <- 2*3 - 2*(-115.252)

aic_sn

#BIC for the SN model

bic_sn <- 3*log(length(gp)) - 2*(-115.252)

bic_sn
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#####################################################################

#Plotting the theoretical PDF

ggplot(data.frame(gp)) +

geom_histogram(aes(x = gp, y = ..density..), color='black', fill='lightgrey', bins=17)

↪→ +

scale_x_continuous(breaks = seq(0, 8, by = 1)) +

#geom_line(aes(gp, gsn_pdf, color = 'GSN PDF'), size = 1.2) +

geom_line(aes(gp, dsn(gp, xi=mean, omega=sd, alpha=19.7001), color = 'SN PDF'), size

↪→ =1.2) +

labs(x="x",y=parse(text="f[x](x)"),

title="Guinea pig data: density function") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#GSN work

#Parameters given in the document that were obtained by the EM

p <- 0.6022818

mu <- 1.202389

sigma <- 0.4565002

lower <- 1

upper <- 100

#####################################################################

#Plotting the theoretical PDF

ggplot(data.frame(gp,gsn_pdf)) +

geom_histogram(aes(x = gp, y = ..density..), color='black', fill='lightgrey', bins=17)

↪→ +

scale_x_continuous(breaks = seq(0, 8, by = 1)) +

geom_line(aes(gp, gsn_pdf, color = 'GSN PDF'), size = 1.2) +

#geom_line(aes(gp, dsn(gp, xi=mean, omega=sd, alpha=19.7001), color = 'SN PDF'), size

↪→ =0.8) +
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labs(x="x",y=parse(text="f[x](x)"),

title="Guinea pig data: density function") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#Plotting the theoretical CDF

ggplot(data.frame(gp,gsn_cdf)) +

geom_line(aes(gp, gsn_cdf, color = 'GSN CDF'), size = 1.2) +

labs(x="x",y=parse(text="F[x](x)"),

title="Guinea pig data: distribution function") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#Obtaining the log-likelihood based on the estimates

pdf_mat <- as.matrix(gsn_pdf)

log_pdf <- log(pdf_mat)

ll_gsn <- sum(log_pdf)

ll_gsn

#Obtaining the empirical CDF

cdf_emp_gsnf <- ecdf(x = gp) # is a function

cdf_emp_gsn <- cdf_emp_gsnf(gp) # values

#Plotting the EMP vs THEO CDF:

plot(cdf_emp_gsnf, main = "Empirical and Theoretical CDF", xlab = "y", ylab = "F(y)")

↪→ # empirical cdf

lines(x = gp, y = gsn_cdf, col = "red", type = "l") # theoretical cdf

ggplot(data.frame(gp,gsn_cdf)) +

geom_line(aes(gp, gsn_cdf, color = 'theoretical'), size = 1.2) +

geom_line(aes(gp, cdf_emp_gsn, color = 'empirical'), size = 1.2) +
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labs(x="x",y=parse(text="F[x](x)"),

title="Guinea pig data: distribution functions") +

scale_color_discrete(name=expression("Type of density:")) +

theme(plot.title = element_text(hjust = 0.5))

#Obtaining the theoretical survival function

gsn_surv <- 1 - gsn_cdf

#Obtaining the empirical survival function

gsn_surv_emp <- 1 - cdf_emp_gsn

#Implementation check, S(x) = 1 - F(x) where F(.) is the cdf:

#Checking if the theoretical survival function is close to the empirical survival

↪→ function

all.equal(gsn_surv, 1 - cdf_emp_gsn)

#Plotting the EMP vs THEO survival function:

plot(stepfun(x = gp, y = c(1, gsn_surv_emp)), main = "Empirical and Theoretical

↪→ Survival Function", xlab = "y", ylab = "S(y)") # empirical S

lines(x = gp, y = gsn_surv, col = "red", type = "l") # theoretical S

ggplot(data.frame(gp,gsn_surv)) +

geom_line(aes(gp, gsn_surv, color = 'theoretical'), size = 1.2) +

geom_line(aes(gp, gsn_surv_emp, color = 'empirical'), size = 1.2) +

labs(x="x",y=parse(text="F[x](x)"),

title="Guinea pig data: survival functions") +

scale_color_discrete(name=expression("Type of density:")) +

theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#Obtaining the KS using first principles

#Empirical quantiles

sorted_dat <- sort(gp, decreasing = FALSE)
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EQ <- cbind(seq(1,length(gp),1)/length(gp),sorted_dat)

EQ[length(gp),1] <- 0.99 #Assigning 0.99 as the 99th quantile

#Theoretical quantiles

quants <- EQ[,1]

theoGSNq <- gsn_cdf

t_quant <- cbind(theoGSNq, sorted_dat)

#Statistic Guidici page 110.

T1 = max(abs(EQ[,1]-t_quant[,1]))

T1

#####################################################################

#Trying to obtain the AIC and the BIC

aic_gsn <- 2*3 - 2*(ll_gsn)

aic_gsn

bic_gsn <- 3*log(length(gp)) - 2*(ll_gsn)

bic_gsn

#####################################################################

#GSC work

#Parameters as obtained via the NR algorithm

p <- p

mu <- est_old[1]

sigma <- est_old[2]

lower <- 1

upper <- 100

#####################################################################

#Plotting the theoretical PDF

ggplot(data.frame(gp,gsc_pdf)) +
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geom_histogram(aes(x = gp, y = ..density..), color='black', fill='lightgrey', bins=17)

↪→ +

scale_x_continuous(breaks = seq(0, 8, by = 1)) +

geom_line(aes(gp, gsc_pdf, color = 'GSC PDF'), size = 1.2) +

labs(x="x",y=parse(text="f[x](x)"),

title="Guinea pig data: density function") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#Plotting the theoretical CDF

ggplot(data.frame(gp,gsc_cdf)) +

geom_line(aes(gp, gsc_cdf, color = 'GSC CDF'), size = 1.2) +

labs(x="x",y=parse(text="F[x](x)"),

title="Guinea pig data: distribution function") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#Obtaining the log-likelihood based on the estimates

pdf_mat <- as.matrix(gsc_pdf)

log_pdf <- log(pdf_mat)

ll_gsc <- sum(log_pdf)

ll_gsc

#Obtaining the empirical CDF

cdf_emp_gscf <- ecdf(x = gp) # is a function

cdf_emp_gsc <- cdf_emp_gscf(gp) # values

#Plotting the EMP vs THEO CDF:

plot(cdf_emp_gscf, main = "Empirical and Theoretical CDF", xlab = "y", ylab = "F(y)")

↪→ # empirical cdf

lines(x = gp, y = gsc_cdf, col = "red", type = "l") # theoretical cdf
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#lines(x = gp, y = gsn_cdf, col = "blue", type = "l")

ggplot(data.frame(gp,gsc_cdf)) +

geom_line(aes(gp, gsc_cdf, color = 'theoretical'), size = 1.2) +

geom_line(aes(gp, cdf_emp_gsc, color = 'empirical'), size = 1.2) +

labs(x="x",y=parse(text="F[x](x)"),

title="Guinea pig data: distribution functions") +

scale_color_discrete(name=expression("Type of density:")) +

theme(plot.title = element_text(hjust = 0.5))

#Obtaining the theoretical survival function

gsc_surv <- 1 - gsc_cdf

#Obtaining the empirical survival function

gsc_surv_emp <- 1 - cdf_emp_gsc

#Implementation check, S(x) = 1 - F(x) where F(.) is the cdf:

#Checking if the theoretical survival function is close to the empirical survival

↪→ function

all.equal(gsc_surv, 1 - cdf_emp_gsc)

#Plotting the EMP vs THEO survival function:

plot(stepfun(x = gp, y = c(1, gsc_surv_emp)), main = "Empirical and Theoretical

↪→ Survival Function", xlab = "y", ylab = "S(y)") # empirical S

lines(x = gp, y = gsc_surv, col = "red", type = "l") # theoretical S

#lines(x = gp, y = gsn_surv, col = "blue", type = "l")

ggplot(data.frame(gp,gsc_surv)) +

geom_line(aes(gp, gsc_surv, color = 'theoretical'), size = 1.2) +

geom_line(aes(gp, gsc_surv_emp, color = 'empirical'), size = 1.2) +

labs(x="x",y=parse(text="F[x](x)"),

title="Guinea pig data: survival functions") +

scale_color_discrete(name=expression("Type of density:")) +
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theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#Obtaining the KS using first principles

#Empirical quantiles

sorted_dat <- sort(gp, decreasing = FALSE)

EQ <- cbind(seq(1,length(gp),1)/length(gp),sorted_dat)

EQ[length(gp),1] <- 0.99 #Assigning 0.99 as the 99th quantile

#Theoretical quantiles

quants <- EQ[,1]

theoGSCq <- gsc_cdf

t_quant <- cbind(theoGSCq, sorted_dat)

#Statistic Guidici page 110.

T1 = max(abs(EQ[,1]-t_quant[,1]))

T1

#####################################################################

#Trying to obtain the AIC and the BIC

ll_gsc <- -108.213

aic_gsc <- 2*3 - 2*(ll_gsc)

aic_gsc

bic_gsc <- 3*log(x_iter) - 2*(ll_gsc)

bic_gsc

#tail probability checks

#Checking an upper range of values say from x=20 till x=30

xrange_upper<-seq(4,7,0.5)

gsn2<-sapply(xrange_upper, function(i) sum(gsn_cdf_nosum(seq(lower, upper, 1), i=i)))

gsc2<-sapply(xrange_upper, function(i) sum(gsc_cdf_nosum(seq(lower, upper, 1), i=i)))
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#Checking a lower range of values say from x=-3 till x=2

xrange_lower<-seq(0.4,0.8,0.1)

gsn3<-sapply(xrange_lower, function(i) sum(gsn_cdf_nosum(seq(lower, upper, 1), i=i)))

gsc3<-sapply(xrange_lower, function(i) sum(gsc_cdf_nosum(seq(lower, upper, 1), i=i)))

#####################################################################

#Parms for SN

mean <- 0.2270935

sd <- 2.388109

lams <- 19.7001

#Parms for GSN

p <- 0.6022818

mu <- 1.202389

sigma <- 0.4565002

lower <- 1

upper <- 100

#Parms for GSC

p <- 0.773

mu <- 1.351

sigma <- 0.369

lower <- 1

upper <- 100

#####################################################################

#Plotting the theoretical PDF

ggplot(data.frame(gp,gsn_pdf)) +

geom_histogram(aes(x = gp, y = ..density..), color='black', fill='lightgrey', bins=17)

↪→ +

scale_x_continuous(breaks = seq(0, 8, by = 1)) +

geom_line(aes(gp, gsn_pdf, color = 'GSN PDF'), size = 1.3) +
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geom_line(aes(gp, gsc_pdf, color = 'GSC PDF'), size = 1.6) +

geom_line(aes(gp, dsn(gp, xi=mean, omega=sd, alpha=19.7001), color = 'SN PDF'), size

↪→ =1) +

labs(x="x",y=parse(text="f[x](x)"),

title="Guinea pig data: density functions") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#Data analysis for the Dansih fire loss data

library(fExtremes)

danishClaims

Danish<- danishClaims[,2]

#Histogram only

library(ggplot2)

ggplot(data.frame(Danish), aes(x=Danish)) +

geom_histogram(color='purple', fill='magenta', bins=80) +

scale_x_continuous(name="x", limits = c(0, 20))

#######################################################

#Skew-normal work

gp <- Danish

#Trying to obtain the skew-normal parameters

library(sn)

cp_space_est <- sn.mple(y=gp)$cp

dp_space_est <- cp2dp(cp_space_est,family="SN") #Conversion of CP parameters to DP

↪→ parameters

dp_space_est

mean <- dp_space_est[1]
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sd <- dp_space_est[2]

gamma1 <- dp_space_est[3]

#For the likelihood value

testdata <- data.frame(gp)

X <- gp

mod <- selm(X ~ 1, data=testdata)

summary(mod)

#Fitting to obtain the theoretical PDF of the skew-normal

sn_dens <- dsn(x=gp, xi=mean, omega=sd, alpha=gamma1)

#Trying to obtain the KS TS using a function

ks.test(gp, 'psn', xi=mean, omega=sd, alpha=gamma1)

#Obtaining the KS using first principles

#Empirical quantiles

sorted_dat <- sort(gp, decreasing = FALSE)

EQ <- cbind(seq(1,length(gp),1)/length(gp),sorted_dat)

EQ[length(gp),1] <- 0.99 #Assigning 0.99 as the 99th quantile

#Theoretical quantiles

quants <- EQ[,1]

theoSNq <- psn(x=gp, xi=mean, omega=sd, alpha=gamma1)

t_quant <- cbind(theoSNq, sorted_dat)

#Statistic Guidici page 110.

T1 = max(abs(EQ[,1]-t_quant[,1]))

T1

#AIC for the SN model

aic_sn <- 2*3 - 2*(-6301.178)

aic_sn

124



#BIC for the SN model

bic_sn <- 3*log(length(gp)) - 2*(-6301.178)

bic_sn

#######################################################

#The geometric skew-Cauchy model

x <- Danish

library(DEoptim)

LGSC=function(theta){

p=theta[1]

mu=theta[2]

sigma=theta[3]

t=0

for(k in 1:1000){

t1=(1/k)*((1-p)^(k-1))*(1+((x-k*mu)/(k*sigma))^2)^(-1)

t=t+t1}

l=sum(log((p/(pi*sigma))*t))

return(-l)

}

h=DEoptim(LGSC,lower=c(0,-10,0),

upper=c(1,10,10),control = DEoptim.control(trace = TRUE))

par.hat=h$optim$bestmem

names(par.hat)=NULL

phat=par.hat[1]

muhat=par.hat[2]

sigmahat=par.hat[3]

value=-h$optim$bestval
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AIC=6-2*value

gsc_parms <- par.hat

gsc_ll <- value

gsc_aic <- AIC

gsc_parms

gsc_ll

gsc_aic

p <- 0.6246752

mu <- 1.3827333

sigma <- 0.2535249

lower <- 1

upper <- 1000

#Plotting the theoretical PDF

ggplot(data.frame(Danish,gsc_pdf)) +

geom_histogram(aes(x = Danish, y = ..density..), color='purple', fill='magenta', bins

↪→ =80) +

scale_x_continuous(name="x", limits = c(0, 20)) +

geom_line(aes(Danish, gsc_pdf, color = 'GSC PDF'), size = 1.2, color='black') +

labs(x="x",y=parse(text="f[x](x)"),

title="Danish fire loss data: density function") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))

#Obtaining the KS using first principles

#Empirical quantiles

sorted_dat <- sort(Danish, decreasing = FALSE)

EQ <- cbind(seq(1,length(Danish),1)/length(Danish),sorted_dat)

EQ[length(Danish),1] <- 0.99 #Assigning 0.99 as the 99th quantile
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#Theoretical quantiles

quants <- EQ[,1]

theoGSCq <- gsc_cdf

t_quant <- cbind(theoGSCq, sorted_dat)

#Statistic Guidici page 110.

T1 = max(abs(EQ[,1]-t_quant[,1]))

T1

#Trying to obtain the AIC and the BIC

ll_gsc <- gsc_ll

aic_gsc <- 2*3 - 2*(ll_gsc)

aic_gsc

bic_gsc <- 3*log(length(Danish)) - 2*(ll_gsc)

bic_gsc

#Obtaining the empirical CDF

cdf_emp_gscf <- ecdf(x = Danish) # is a function

cdf_emp_gsc <- cdf_emp_gscf(Danish) # values

#Plotting the EMP vs THEO CDF:

plot(cdf_emp_gscf, main = "Empirical and Theoretical CDF", xlab = "y", ylab = "F(y)")

↪→ # empirical cdf

lines(x = Danish, y = gsc_cdf, col = "red", type = "l") # theoretical cdf

#lines(x = Danish, y = gsn_cdf, col = "blue", type = "l")

ggplot(data.frame(Danish,gsc_cdf)) +

geom_line(aes(Danish, gsc_cdf, color = 'theoretical'), size = 1.2) +

geom_line(aes(Danish, cdf_emp_gsc, color = 'empirical'), size = 1.2) +

scale_x_continuous(name="x", limits = c(0, 40)) +

labs(x="x",y=parse(text="F[x](x)"),

title="Danish fire loss data: distribution functions") +
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scale_color_discrete(name=expression("Type of density:")) +

theme(plot.title = element_text(hjust = 0.5))

#Obtaining the theoretical survival function

gsc_surv <- 1 - gsc_cdf

#Obtaining the empirical survival function

gsc_surv_emp <- 1 - cdf_emp_gsc

#Implementation check, S(x) = 1 - F(x) where F(.) is the cdf:

#Checking if the theoretical survival function is close to the empirical survival

↪→ function

all.equal(gsc_surv, 1 - cdf_emp_gsc)

#Plotting the EMP vs THEO survival function:

plot(stepfun(x = Danish, y = c(1, gsc_surv_emp)), main = "Empirical and Theoretical

↪→ Survival Function", xlab = "y", ylab = "S(y)") # empirical S

lines(x = Danish, y = gsc_surv, col = "red", type = "l") # theoretical S

#lines(x = Danish, y = gsn_surv, col = "blue", type = "l")

ggplot(data.frame(Danish,gsc_surv)) +

geom_line(aes(Danish, gsc_surv, color = 'theoretical'), size = 1.2) +

geom_line(aes(Danish, gsc_surv_emp, color = 'empirical'), size = 1.2) +

scale_x_continuous(name="x", limits = c(0, 40)) +

labs(x="x",y=parse(text="F[x](x)"),

title="Danish fire loss data: survival functions") +

scale_color_discrete(name=expression("Type of density:")) +

theme(plot.title = element_text(hjust = 0.5))

#######################################################

#The geometric skew-normal model
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x <- Danish

library(DEoptim)

LGSN=function(theta){

p=theta[1]

mu=theta[2]

sigma=theta[3]

t=0

for(k in 1:1000){

t1=(1/sqrt(k))*((1-p)^(k-1))*(dnorm(((x-k*mu)/(sigma*sqrt(k))), mean=0, sd=1))

t=t+t1}

l=sum(log((p/(sigma))*t))

return(-l)

}

h=DEoptim(LGSN,lower=c(0,-10,0),

upper=c(1,10,10),control = DEoptim.control(trace = TRUE))

par.hat=h$optim$bestmem

names(par.hat)=NULL

phat=par.hat[1]

muhat=par.hat[2]

sigmahat=par.hat[3]

value=-h$optim$bestval

AIC=6-2*value

gsn_parms <- par.hat

gsn_ll <- value

gsn_aic <- AIC

gsn_parms

gsn_ll
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gsn_aic

p <- 0.417621

mu <- 1.413684

sigma <- 0.333302

lower <- 1

upper <- 1000

#Plotting the theoretical PDF

ggplot(data.frame(Danish,gsn_pdf)) +

geom_histogram(aes(x = Danish, y = ..density..), color='purple', fill='magenta', bins

↪→ =80) +

scale_x_continuous(name="x", limits = c(0, 20)) +

geom_line(aes(Danish, gsn_pdf, color = 'GSC PDF'), size = 1.2, color='black') +

labs(x="x",y=parse(text="f[x](x)"),

title="Guinea pig data: density function") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))

#Obtaining the KS using first principles

#Empirical quantiles

sorted_dat <- sort(Danish, decreasing = FALSE)

EQ <- cbind(seq(1,length(Danish),1)/length(Danish),sorted_dat)

EQ[length(Danish),1] <- 0.99 #Assigning 0.99 as the 99th quantile

#Theoretical quantiles

quants <- EQ[,1]

theoGSNq <- gsn_cdf

t_quant <- cbind(theoGSNq, sorted_dat)

#Statistic Guidici page 110.

T1 = max(abs(EQ[,1]-t_quant[,1]))

T1
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#Trying to obtain the AIC and the BIC

ll_gsn <- gsn_ll

aic_gsn <- 2*3 - 2*(ll_gsn)

aic_gsn

bic_gsn <- 3*log(length(Danish)) - 2*(ll_gsn)

bic_gsn

#Obtaining the empirical CDF

cdf_emp_gsnf <- ecdf(x = Danish) # is a function

cdf_emp_gsn <- cdf_emp_gsnf(Danish) # values

#Plotting the EMP vs THEO CDF:

plot(cdf_emp_gsnf, main = "Empirical and Theoretical CDF", xlab = "y", ylab = "F(y)")

↪→ # empirical cdf

lines(x = Danish, y = gsn_cdf, col = "red", type = "l") # theoretical cdf

ggplot(data.frame(Danish,gsn_cdf)) +

geom_line(aes(Danish, gsn_cdf, color = 'theoretical'), size = 1.2) +

geom_line(aes(Danish, cdf_emp_gsn, color = 'empirical'), size = 1.2) +

scale_x_continuous(name="x", limits = c(0, 40)) +

labs(x="x",y=parse(text="F[x](x)"),

title="Danish fire loss data: distribution functions") +

scale_color_discrete(name=expression("Type of density:")) +

theme(plot.title = element_text(hjust = 0.5))

#Obtaining the theoretical survival function

gsn_surv <- 1 - gsn_cdf

#Obtaining the empirical survival function

gsn_surv_emp <- 1 - cdf_emp_gsn
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#Implementation check, S(x) = 1 - F(x) where F(.) is the cdf:

#Checking if the theoretical survival function is close to the empirical survival

↪→ function

all.equal(gsn_surv, 1 - cdf_emp_gsn)

#Plotting the EMP vs THEO survival function:

plot(stepfun(x = Danish, y = c(1, gsn_surv_emp)), main = "Empirical and Theoretical

↪→ Survival Function", xlab = "y", ylab = "S(y)") # empirical S

lines(x = Danish, y = gsn_surv, col = "red", type = "l") # theoretical S

ggplot(data.frame(Danish,gsn_surv)) +

geom_line(aes(Danish, gsn_surv, color = 'theoretical'), size = 1.2) +

geom_line(aes(Danish, gsn_surv_emp, color = 'empirical'), size = 1.2) +

scale_x_continuous(name="x", limits = c(0, 40)) +

labs(x="x",y=parse(text="F[x](x)"),

title="Danish fire loss data: survival functions") +

scale_color_discrete(name=expression("Type of density:")) +

theme(plot.title = element_text(hjust = 0.5))

#####################################################################

#Plotting the theoretical PDF

ggplot(data.frame(Danish,gsn_pdf)) +

geom_histogram(aes(x = Danish, y = ..density..), color='black', fill='lightgrey', bins

↪→ =80) +

scale_x_continuous(name="x", limits = c(0, 20)) +

geom_line(aes(Danish, gsn_pdf, color = 'GSN PDF'), size = 1.6) +

geom_line(aes(Danish, gsc_pdf, color = 'GSC PDF'), size = 1.6) +

#geom_line(aes(gp, dsn(gp, xi=mean, omega=sd, alpha=gamma1), color = 'SN PDF'), size

↪→ =1) +

labs(x="x",y=parse(text="f[x](x)"),

title="Danish fire losses: density functions") +

scale_color_discrete(name=expression("Type of distribution:")) +

theme(plot.title = element_text(hjust = 0.5))
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