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Abstract

Maximum likelihood estimation is a powerful estimation tool that is widely used to fit models to

data. In this study, the behaviour of the log-likelihood function, and the ensuing impact on the

maximum likelihood estimation process is explored. This exploration is conducted using the uni-

variate generalized hyperbolic distribution, a highly flexible distribution with tail properties mak-

ing it desirable as a model for financial returns data. The study aims to explore potential issues that

may present when estimating the parameters of such flexible distributions, especially those stem-

ming from the behaviour of the log-likelihood function. Different numerical methods are applied

to showcase the effect of not only the shape and behaviour of the log-likelihood function, but the

structure of the parameters themselves on the outcome of the estimation process. Application to

real-world financial data shows that the behaviour of the log-likelihood function has a significant

impact on the estimation outcome, and that an understanding of these components is fundamental

to the success of the process of estimation.

Keywords: Generalized hyperbolic distribution; maximum likelihood estimation; log-likelihood;

EM algorithm; profile likelihood.
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Chapter 1

Introduction

1.1 Motivation and background

Maximum likelihood estimation is one of the most predominantly used methods of parameter

estimation. It involves finding estimates such that the observed data are most likely to occur under

the predefined statistical model, and this is achieved by maximizing the likelihood function. The

likelihood function measures the support provided by the data for each possible combination of

the underlying parameters. The likelihood function is maximized as this maximum represents the

parameter values that are most likely given the underlying dataset.

Although the method of maximum likelihood is a strong means of parameter estimation, it is

not without its shortfalls. The susceptibility of the standard minimization algorithms to restricted

parameter spaces and the flatness of the likelihood function are an example of this (see Prause,

1997). This problem is amplified when dealing with flexible distribution classes (see Ley, 2015), as

near non-identifiability, especially that stemming from a flat log-likelihood function is a common

issue in this case. This creates a situation where two vastly different parameter estimates can

result in the same fitted distribution of the data. In a broad sense, exploration of these problems is

a necessity, especially when the underlying distribution possesses properties that may hinder the

overall quality of the estimation process, such as the the lack of a closed form derivative or a badly

behaved likelihood function.

The generalized hyperbolic distribution was first developed by Barndorff-Nielsen (1977) to

1
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Chapter 1. 1.1. Motivation and background

model the mass-size distribution of sand particles. This model emanated from a geostatistical

study, and results from a normal mean-variance mixture, where the mixture variable emanates

from a generalized inverse Gaussian distribution.

The generalized hyperbolic distribution is considered a flexible distribution. By convention,

this refers to distributions that allow substantial variation of their behaviour when the underlying

parameters span their admissible range. The formal construction of these distributions are rep-

resented by the Pearson system of curves, whereby the pdf is regulated by four parameters, thus

allowing for greater variation in terms of measures of skewness and of kurtosis. This naturally

provides a greater flexibility, than for example the normal distribution, where only location and

scale can be varied.

The generalized hyperbolic distribution is desirable for its semi-heavy tails, which are gen-

erally heavier than those of the normal distribution, allowing it to better accommodate extreme

values. It is because of this property that the generalized hyperbolic distribution has become

rather popular in the field of econometrics, particularly in the prediction of financial markets and

in risk analysis (see Eberlein et al. 1995 and Puig and Stephens 2001).

What sets the generalized hyperbolic distribution apart from the hyperbolic distribution, and

the flexible distribution framework as a whole, is the introduction of the index parameter λ, giv-

ing us five parameters in total. This results in this distribution being a superclass of numerous

flexible distributions, often referred to as subfamilies, which include but are not limited to: the

variance-gamma distribution, the Laplace distribution, the Student’s t distribution, and naturally,

the hyperbolic distribution (see Paolella, 2007, pp. 317-326). This adds an extra layer of flexibil-

ity, and it is of interest whether this flexibility has an impact on the behaviour of the log-likelihood

function, and possibly on the quality of the maximum likelihood estimation process as a whole.

There is clear evidence in literature of potential issues when estimating the parameters of the

generalized hyperbolic distribution by means of the method of maximum likelihood. Challenges

resulting from a flat likelihood function, which is believe is in large part caused by the index

parameter λ are discussed in Snoussi and Idier (2006), Prause (1999), and Barndorff-Nielsen and

Blaesild (1981). As previously stated, the λ parameter is largely responsible for the existence

of the various subclasses, begging the question if there is possible over-parametrization, or if

2
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Chapter 1. 1.2. Contributions

the nature of flexible distributions has an inherent, negative impact on the maximum likelihood

estimation method. They also report a possible identifiability issue, with reference to a specific

case where the normal inverse Gaussian subfamily (λ = -0.5) and the Hyperbolic subfamily (λ =

1) are nearly identical. This is potentially alarming as it could greatly decrease the validity, as well

as the inferential power of the resulting estimates.

1.2 Contributions

What is apparent from the literature, is that although there is some discussion, albeit brief, on the

impacts of the above issues, there does not seem to be a sufficient, in-depth analysis on where

or not the steps taken in any way ensure that the quality of the estimates are of an acceptable

standard. This opens up the opportunity for further study into these behaviours and potential

issues and forms the basis of the motivation for this study as a whole.

The primary aim of this study is thus, to explore the behaviour of the log-likelihood function of

the generalized hyperbolic distribution, as well as investigate potential solutions to problems stem-

ming from this particular log-likelihood function. The goal is to undertake a detailed exploratory

analysis on the potential problems that may be present when using the maximum likelihood as

a means of estimating parameters, especially with flexible distributions. The idea is to create a

platform that highlights these issues, such that potential solutions and/or recommendations can be

proposed, keeping in mind that the primary aim is to explore the potential behaviours of the log-

likelihood function in the context of maximum likelihood estimation. That being said, it is still of

interest to identify the existence as well as extent with which these issues may pervade the method

and whether this warrants greater care, or even certain steps when performing the estimation. Al-

though there are mentions of potential issues stemming from the flatness of the log-likelihood

function, as of writing there is an apparent lack of active methods to deal with these issues.

1.3 Dissertation outline

• Chapter 2: provides an in depth overview of the generalized hyperbolic distribution. A

derivation of the distribution is provided for the major parameterizations, as well as a com-

3
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Chapter 1. 1.3. Dissertation outline

parison of the subclasses of the generalized hyperbolic distribution. Finally, the role of the

parameters, some alternative parameterizations, and some useful properties of the general-

ized hyperbolic distribution are provided.

• Chapter 3: provides an overview of the method of maximum likelihood, with specific

departure to the profile likelihood that will be used in the model fitting process.

• Chapter 4: gives a breakdown and description of the Numerical methods that will be used

to fit the Generalized Hyperbolic distribution to the data.

• Chapter 5: contains a full discussion and commentary on the exploratory process of fit-

ting the generalized hyperbolic distribution to data. Any and all findings pertaining to the

behaviour of the log-likelihood function as investigated in the study, as well the estimation

methods are also discussed. The estimation results are both discussed and analysed with

some commonly used goodness-of-fit methods. A simulation study is included to allow for

better discussion, as well as comparison of the findings.

• Chapter 6: includes a summary of the findings, as well as an outline of the significance

of performing such a study and the challenges/limitations thereof. Also included are some

concluding remarks and potential departures or expansion.

• Appendix A: gives a brief overview of some continuous normal mixture mechanics that

form the basis of the derivation of the generalized hyperbolic distribution.

• Appendix B: defines the modified Bessel function of the third kind, and provides some

crucial results needed for the derivation of the generalized hyperbolic distribution and its

subclasses.

4
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Chapter 2

The Generalized Hyperbolic

Distribution

The generalized hyperbolic distribution was first introduced by Barndorff-Nielsen (1977), and

was initially used to model the mass-size distributions of particles of wind blown sands from

beaches and dunes (see Bagnold 1941). It has since gained traction as an alternative to the normal

distribution when modelling financial data due to its desirable tail properties and flexibility (see

Prause 1999; Bibby and Sørensen 2003; Eberlein et al. 1995; Küchler et al. 1999; Behr and Pötter

2009). Many of these papers deal with the multivariate case of the GH distribution, but for the work

that follows we only consider the univariate case. The various subclasses of the GH distribution

include: the hyperbolic distribution, the Student’s t distribution, the variance gamma distribution,

and the Laplace distribution.

One of the primary appeals of the generalized hyperbolic distribution lies in its semi-heavy

tails. This makes it rather useful when extreme values require a greater representation, and is

one of the reasons for the generalized hyperbolic distributions popularity in modelling financial

markets (see Eberlein et al. 1995 and Puig and Stephens 2001). Figure 2.1 depicts the pdfs as well

as log-pdfs for the hyperbolic, normal inverse Gaussian, and variance-gamma subclasses.

5
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Chapter 2. 2.1. Definition, parameters and general formulae
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Figure 2.1: Examples of GH distributions. (a) Hyperbolic subclass. (b) Normal inverse Gaussian
subclass. (c)Variance-gamma subclass. In each instance the pdf is on the top row and the log-pdf
on the bottom row. The dashed line corresponds with the normal distribution with the same mean
and variance.

2.1 Definition, parameters and general formulae

Definition 2.1.1. (Jørgensen 1982, p. 1) The random variable W is said to follow a generalized

inverse Gaussian distribution (GIG), denoted W ∼ GIG(λ, χ, ψ), if the pdf of W is given by

fW (w;λ, χ, ψ) =

(
ψ
χ

)λ
2

2Kλ(χ, ψ)
wλ−1e−

1
2(χw−1+ψw) (w > 0) (2.1.1)

where Kλ(.) is the modified Bessel function of the third kind with index λ (see B.1), and λ, χ, ψ

are the parameters with parameter space:

χ ≥ 0, ψ > 0, if λ > 0,

χ > 0, ψ > 0, if λ = 0,

χ > 0, ψ ≥ 0, if λ < 0.

6
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Chapter 2. 2.1. Definition, parameters and general formulae

Definition 2.1.2. Let X be a random variable such that either of the equivalent representations

(A.3) and (A.4) hold, i.e. X has a normal variance-mean mixture distribution. If the mixing

variable W belongs to the generalized inverse Gaussian distribution, i.e. W ∼ GIG(λ, χ, ψ), then

X is said to follow a generalized hyperbolic distribution.

Theorem 2.1.1. LetX follow a generalized hyperbolic distribution as in Definition 2.1.2, then the

pdf of X is given by

fX(x;λ, ψ, β, χ, µ) = a(λ, ψ, β, χ) eβ(x−µ)

×Kλ− 1
2

(√
(χ+ (x− µ)2)(ψ + β2)

)
×
(
(χ+ (x− µ)2)(ψ + β2)

) 1
2

(λ− 1
2

)
(x ∈ R) (2.1.2)

where λ, ψ, β, χ and µ are the parameters, the expression K(.) denotes the modified Bessel func-

tion of the third kind as defined in (B.1), and a(λ, ψ, β, χ) is a norming constant given by

a(λ, ψ, β, χ) =

(
χ
ψ

)−λ
2

(ψ + β2)
1
2
−λ

√
2π Kλ(

√
χψ)

. (2.1.3)

The domain of variation of the parameter space is given by

χ ≥ 0, ψ > 0, if λ > 0,

χ > 0, ψ > 0, if λ = 0,

χ > 0, ψ ≥ 0, if λ < 0

where β, µ ∈ R.

Proof. Let X ∈ R be a random variable such that (A.3) and (A.4) hold and assume W ∼

7
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Chapter 2. 2.1. Definition, parameters and general formulae

GIG(λ, χ, ψ). Then the pdf of X is given by

fX(x;λ, ψ, β, χ, µ)

=

∫ ∞
0

fX|W (x|w) fW (w;λ, χ, ψ)dw

=

∫ ∞
0

1√
2πw

e
− 1

2

(
(x−(µ+βw))2

w

) (
ψ
χ

)λ
2

2Kλ(χ, ψ)
wλ−1e−

1
2(χw−1+ψw) dw (from (2.1.1))

=

∫ ∞
0

1√
2πw

e
− 1

2

(
(x−(µ+βw))2

w

)
1

kλ(χ, ψ)
wλ−1 e−

1
2

(χw−1+ψw) dw (from (B.10))

=
1√

2π kλ(χ, ψ)

∫ ∞
0

w(λ− 1
2

)−1 e−
1
2(w−1((x−µ)−βw))2) e−

1
2

(χw−1+ψw) dw

=
1√

2π kλ(χ, ψ)

∫ ∞
0

w(λ− 1
2

)−1 e−
1
2(w−1((x−µ)2−2βw(x−µ)+β2w2))) e−

1
2

(χw−1+ψw) dw

=
1√

2π kλ(χ, ψ)

∫ ∞
0

w(λ− 1
2

)−1 e−
1
2(w−1((x−µ)2+χ)+w(β2+ψ)−2β(x−µ)) dw

=
1√

2π kλ(χ, ψ)
eβ(x−µ)

∫ ∞
0

w(λ− 1
2

)−1 e−
1
2(w−1(χ+(x−µ)2)+w(ψ+β2)) dw

=
1√

2π kλ(χ, ψ)
eβ(x−µ) kλ− 1

2
(χ+ (x− µ)2, ψ + β2) (from (B.8)). (2.1.4)

Using result (B.10), (2.1.4) can be rewritten as

fX(x;λ, ψ, β, χ, µ) =
eβ(x−µ)

√
2π
(
χ
ψ

)λ
2
Kλ(
√
χψ)

(
χ+ (x− µ)2

ψ + β2

) 1
2

(λ− 1
2

)

×Kλ− 1
2

(√
(χ+ (x− µ)2)(ψ + β2)

)
= a(λ, ψ, β, χ) eβ(x−µ)

× Kλ− 1
2

(√
(χ+ (x− µ)2)(ψ + β2)

)
×
(
(χ+ (x− µ)2)(ψ + β2)

) 1
2

(λ− 1
2

)

where a(λ, ψ, β, χ) is the norming constant as given in (2.1.3)

The above parameterization is the natural parameterization that arises from the mixture repre-

sentation of the GH distribution. The parameterization that follows was first proposed in Barndorff-

Nielsen (1978), and has since become the dominant parameterization used when working with the

GH distribution. This formulation is a simple transformation of (2.1.2), obtained by setting χ = δ2

8
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Chapter 2. 2.1. Definition, parameters and general formulae

and ψ = α2 − β2.

Theorem 2.1.2. Let χ = δ2 and ψ = α2 − β2, then X is said to follow a generalized hyperbolic

distribution with pdf given by

f̃X(x;λ, α, β, δ, µ) = a(λ, α, β, δ) eβ(x−µ)

×Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
×
(
δ2 + (x− µ)2

) 1
2

(λ− 1
2

)
(x ∈ R) (2.1.5)

where λ, α, β, δ and µ are the parameters, the expression K(.) denotes the modified Bessel func-

tion of the third kind as defined in (B.1), and aλ(α, β, δ) is a norming constant given by

a(λ, α, β, δ) =
(α2 − β2)

λ
2

√
2π αλ−

1
2 δλ Kλ

(
δ
√
α2 − β2

) . (2.1.6)

The domain of variation of the parameter space is given by

α > 0, |β| < α, δ ≥ 0, if λ > 0,

α > 0, |β| < α, δ > 0, if λ = 0,

α ≥ 0, |β| ≤ α, δ > 0, if λ < 0

where µ ∈ R.

Proof. Let X ∈ R be a random variable such that (A.3) and (A.4) hold and assume W ∼

9
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Chapter 2. 2.1. Definition, parameters and general formulae

GIG(λ, δ2, α2 − β2). Then in a similar fashion as Theorem 2.1.1 the pdf of X is given by

fX(x;λ, α, β, δ, µ)

=

∫ ∞
0

fX|W (x|w) fW (w;λ, δ2, α2 − β2)dw

=

∫ ∞
0

1√
2πw

e
− 1

2

(
(x−(µ+βw))2

w

) (
α2−β2

δ2

)λ
2

2Kλ(δ2, α2 − β2)
wλ−1e−

1
2(δ2w−1+α2−β2w) dw (from (2.1.1))

=

∫ ∞
0

1√
2πw

e
− 1

2

(
(x−(µ+βw))2

w

)
1

kλ(δ2, α2 − β2)
wλ−1 e−

1
2

(δ2w−1+(α2−β2)w) dw (from (B.10))

=
1√

2π kλ(δ2, α2 − β2)

∫ ∞
0

w(λ− 1
2

)−1 e−
1
2(w−1((x−µ)−βw))2) e−

1
2

(δ2w−1+(α2−β2)w) dw

=
1√

2π kλ(δ2, α2 − β2)

∫ ∞
0

w(λ− 1
2

)−1 e−
1
2(w−1((x−µ)2−2βw(x−µ)+β2w2))) e−

1
2

(δ2w−1+(α2−β2)w) dw

=
1√

2π kλ(δ2, α2 − β2)

∫ ∞
0

w(λ− 1
2

)−1 e−
1
2(w−1((x−µ)2+δ2)+w(β2+α2−β2)−2β(x−µ)) dw

=
1√

2π kλ(δ2, α2 − β2)
eβ(x−µ)

∫ ∞
0

w(λ− 1
2

)−1 e−
1
2(w−1(δ2+(x−µ)2)+w(α2)) dw

=
1√

2π kλ(δ2, α2 − β2)
eβ(x−µ) kλ− 1

2
(δ2 + (x− µ)2, α2) (from (B.8))

(2.1.7)

Using result (B.10), (2.1.7) can be rewritten as

fX(x;λ, α, β, δ, µ) =
eβ(x−µ)

√
2π 2

(
δ2

α2−β2

)λ
2
Kλ(δ

√
α2 − β2)

2

(
δ2 + (x− µ)2

α2

) 1
2

(λ− 1
2

)

×Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
= a(λ, α, β, δ) eβ(x−µ)

×Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
×
(
δ2 + (x− µ)2

) 1
2

(λ− 1
2

) (2.1.8)

where a(λ, α, β, δ) is a norming constant as given in (2.1.6).

10
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Chapter 2. 2.1. Definition, parameters and general formulae

2.1.1 Parameters

A more in depth description of the parameters is now given (see Paolella, 2007, pp.329-330).

λ: Commonly seen as the index parameter as it gives rise to many distinctions amongst the

subfamilies of the generalized hyperbolic distribution. It also influences the shape of the

pdf.

α: The tail parameter that regulates the “fatness” of the tails. The larger the value of α, the

lighter the tails of the distribution.

β: The skewness parameter, with |β| < α. An in increase in β compared to α will result in an

increase in the skewness. For β = 0 the distribution is symmetric.

δ: Influences the shape of the pdf near its mode, and as such is often referred to as the “peaked-

ness” parameter. Larger values of δ will result in an overall flatter peak of the pdf.

µ: The location parameter. In the instance that β = 0, the distribution is symmetric and µ

coincides with the mean (if the first moment exists).

In Figure 2.2 we can observe the behaviour of the pdf as individual parameters are varied, as

well as the influence that each individual parameter has on the overall shape of the pdf. If we look

at Figure 2.2(c), we can see the influence of the skewness parameter β on the overall shape of the

pdf, especially when β = 0, which corresponds to a symmetric case of the GH distribution. One

can also observe the impact of the tail parameter α in Figure 2.2(b), in particular how the tails are

lighter for increasing values of α, which is to be expected.

11
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Figure 2.2: Model representation of GH (see 2.1.5) for different values of λ, α, β,and δ.

2.2 Subfamilies

One of the major appeals of the GH distribution lies in its flexibility. This does, however, come

at the cost of complexity. The various important subfamilies of the GH distribution will now be

discussed. For an overview of each subfamily as well as the relationship between the mixing

weight W and the resulting distribution, please see Tables 2.1 and 2.2.

2.2.1 The variance-gamma distribution

If the mixing weight W (see Definition A.1) follows the gamma distribution, the resulting pdf

is that of the variance-gamma distribution (VG). This is equivalent to setting λ > 0, α > 0,

12
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Chapter 2. 2.2. Subfamilies

β ∈ (−α, α), and δ = 0 in (2.1.5). The GH distribution and the VG distribution are related as

follows

VG(λ, α, β, µ) = GH(λ, α, β, 0, µ).

Due to the constraint δ = 0, result (B.15) needs to be used when deriving the pdf by means of

(2.1.5). The resulting pdf is given by

fX(x;λ, α, β, µ) =
2
(
α2−β2

2

)λ
√

2πΓ(λ)

(
|x− µ|
α

)λ− 1
2

Kλ− 1
2
(α|x− µ|) eβ(x−µ) (x ∈ R).

(2.2.1)

In Figures 2.3 and 2.4, we observe how the shape of the variance-gamma pdf changes for different

values of the tail parameter (α) and the skewness parameter (β) respectively. The VG distribution

was popularized by Madan & Seneta (1990) in a study of share market returns. This distribution is

desirable as a model for financial data due to its longer tails, decreasing at a slower rate compared

to the normal distribution.
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x
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α
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4
8

α

Figure 2.3: The plots of the variance-gamma pdf (2.2.1) for α = 2, 4, and 8.
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Figure 2.4: The plots of the variance-gamma pdf (2.2.1) for β = 0.2, 1, and 1.8.

2.2.2 The asymmetric Laplace distribution

If the mixing weight W (see Definition A.1) follows an exponential distribution, the resulting pdf

is that of the asymmetric Laplace distribution (ALap). This is equivalent to setting λ = 1, α > 0,

β ∈ (−α, α), and δ = 0 in (2.1.5). The GH distribution and the ALap distribution are related as

follows:

ALap(α, β, µ) = GH(1, α, β, 0, µ).

The asymmetric Laplace distribution is a special case of the variance-gamma distribution with

λ = 1. This can also be deduced from the fact that we are using an exponential mixing weight, and

the exponential distribution is a special case of the gamma distribution. The pdf of the Asymmetric

Laplace distribution is now given:

fX(x;α, β, µ) =

(
α2 − β2

2α

)
e−α|x−µ|+β(x−µ) (x ∈ R). (2.2.2)
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Chapter 2. 2.2. Subfamilies

For β = 0, the distribution reduces to that of the Laplace distribution (Lap) with the following

pdf:

fX(x;α, µ) =
(α

2

)
e−α|x−µ|. (2.2.3)

In other words we have the relation GH(1, α, 0, 0, µ) = Lap(µ, α−1). In Figures 2.5 and 2.6 we

observe the behaviours of the asymmetric Laplace pdf for varying values of the tail parameter (α)

and the skewness parameter (β) respectively.
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Figure 2.5: The plots of the asymmetric Laplace pdf (2.2.2) for α = 2, 4, and 8.
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Figure 2.6: The plots of the asymmetric Laplace pdf (2.2.2) for β = 0.2, 1, and 1.8.

2.2.3 The hyperbolic distribution

The hyperbolic distribution (Hyp) is a special case of the generalized hyperbolic distribution with

λ = 1. The GH distribution and the Hyp distribution are related as follows

Hyp(α, β, δ, µ) = GH(1, α, β, δ, µ).

The pdf of the hyperbolic distribution is now given

fX(x;α, β, δ, µ) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)

exp
(
−α
√
δ2 + (x− µ)2 + β(x− µ)

)
(x ∈ R).

(2.2.4)

If we set δ = 0 then the distribution reduces to that of the asymmetric Laplace distribution as in

section 2.2.2. In Figures 2.7 and 2.8 we observe the shape of the pdf as we vary the tail parameter

(α) and the skewness parameter (β) respectively.

16

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. 2.2. Subfamilies

0.0

0.3

0.6

0.9

−2.5 0.0 2.5 5.0 7.5 10.0
x

f(
x)

α
2
4
8

α

Figure 2.7: The plots of the hyperbolic pdf (2.2.4) for α = 2, 4, and 8.
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Figure 2.8: The plots of the hyperbolic pdf (2.2.4) for β = 0.2, 1, and 1.8.

2.2.4 The hyperbolic asymmetric Student’s t distribution

If the mixing weight W (see Definition A.1) follows an inverse-gamma distribution, the resulting

pdf is that of the hyperbolic asymmetric t distribution (HAt). This is equivalent to setting the

following constraints: λ < 0, α = |β|, β ∈ R, and δ > 0 in (2.1.5). The GH distribution and the
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Chapter 2. 2.2. Subfamilies

HAt distribution are related as follows:

HAt (λ, β, δ, µ) = GH(λ, |β|, β, δ, µ).

From the above constraints on the parameters, there arise two instances worthy of further explo-

ration, namely α = |β| > 0, and α = |β| = 0. For α = |β| > 0 the pdf is as follows

fX(x;λ, |β|, β, δ, µ) =
2( δ

2

2 )−λ
√

2πΓ(−λ)

(√
δ2 + (x− µ)2

|β|

)λ− 1
2

×Kλ− 1
2

(
|β|
√
δ2 + (x− µ)2

)
eβ(x−µ) (x ∈ R) (2.2.5)

For α = |β| = 0 the pdf is derived using result (B.16)

fX(x;λ, 0, 0, δ, µ) =

∫ ∞
0

fX|W (x|w) fW (w;λ, δ2, α2 − β2) dw

=

∫ ∞
0

N(x;µ,w) fW (w;λ, χ, 0) dw

=
kλ− 1

2
((x− µ)2 + δ2, 0)
√

2πkλ(δ2, 0)
e0·(x−µ) (from 2.1.5)

=
((x− µ)2 + δ2)λ−

1
2 Γ(−λ+ 1

2)
√

2π(δ2)λΓ(−λ)
(from B.16)

=
Γ(−2λ+1

2 )

Γ(−2λ
2 )

1√
δ2π

(
1 +

(x− µ)2

δ2

)−−2λ+1
2

(2.2.6)

where N(.;µ,w) denotes a normal pdf with mean µ and variance w. For the case β = 0, the

distribution is symmetric about µ, and if δ2 = −2λ, (2.2.6) sumplifies to

fX(x;µ, δ) =
Γ(n+1

2 )

Γ(n2 )

1√
δ2π

(
1 +

x− µ
δ

))−n+1
2

, (2.2.7)

which is the Student’s t distribution with n degrees of freedom.
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Figure 2.9: The plots of the hyperbolic asymmetric t pdf (2.2.5) for λ = −4,−2, and −1.
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Figure 2.10: The plots of the hyperbolic asymmetric t pdf (2.2.5) for β = 0.2, 1, and 1.8.

2.2.5 The asymmetric Cauchy distribution

If the mixing weight W (see Definition A.1) follows a Lévy distribution, the resulting pdf is that

of the asymmetric Cauchy distribution (AC). This is equivalent to setting λ = −0.5, α = |β|,
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β ∈ R, and δ > 0 in (2.1.5). The GH distribution and the AC distribution are related as follows

AC(β, δ, µ) = GH(λ, |β|, β, δ, µ).

The pdf of the asymmetric Cauchy subclass is given by

fX(x;β, δ, µ) =
2( δ

2

2 )
1
2

√
2πΓ(1

2)
(

√
δ2 + (x− µ)2

|β|
)−1 K−1(|β|

√
δ2 + (x− µ)2) eβ(x−µ). (2.2.8)

Setting β = 0 will yield the symmetric case, i.e. the Cauchy distribution with pdf:

fX(x; δ, µ) =
δ

π(δ2 + (x− µ)2)
. (2.2.9)

In Figures 2.11 and 2.12, we observe how the behaviour of the asymmetric Cauchy pdf for

different values of the skewness parameter (β) and the peakedness parameter (δ) respectively.
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Figure 2.11: The plots of the asymmetric Cauchy pdf (2.2.8) for β = 0.2, 1, and 1.8.
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Figure 2.12: The plots of the asymmetric Cauchy pdf (2.2.8) for δ = 0.25, 0.5, and 1.

2.2.6 The normal inverse Gaussian distribution

The normal inverse Gaussian (NIG) distribution results when the mixing weightW (see Definition

A.1) follows an inverse Gaussian distribution. This is equivalent to the constraints λ = −1
2 , α > 0,

β ∈ (−α, α), and δ > 0 in (2.1.5). The GH distribution and the NIG distribution are related as

follows

NIG(α, β, δ, µ) = GH(−0.5, α, β, δ, µ).

The pdf of the normal inverse Gaussian (NIG) subclass is now given

fX(x;−1

2
, α, β, δ, µ) = eδ

√
α2−β2 αδ

π
√
δ2 + (x− µ)2

K1

(
α
√
δ2 + (x− µ)2

)
eβ(x−µ).

(2.2.10)

One can see that for α = |β|, this pdf reduces to that of the asymmetric Cauchy distribution in

section 2.2.5. The AC distribution is thus a limiting case of the NIG distribution. A useful property

of the NIG distribution lies in the simplified forms for the mean, variance and skewness compared

to that of the generalized hyperbolic distribution. The mean, variance and skewness are given by:

• E(X) = µ+ βν,
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Chapter 2. 2.2. Subfamilies

• V (X) = ν + β2 ν2

ω ,

• µ3(X) = 3β ν
2

ω + 3β3 ν3

ω2

where ν = δ√
α2−β2

and ω = δ
√
α2 − β2. The moment generating function is given by:

MX(t) = eµte
δ
(√

α2−β2−
√
α2−(β+t)2

)
. (2.2.11)

In Figures 2.13 and 2.14, we observe how the shape of the normal inverse Gaussian pdf

changes for different values of the tail parameter (α) and the skewness parameter (β) respectively.
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Figure 2.13: The plots of the normal inverse Gaussian pdf (2.2.10) for α = 2, 4, and 8.
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Figure 2.14: The plots of the normal inverse Gaussian pdf (2.2.10) for β = 0.2, 1, and 1.8.

Table 2.1: Subfamilies of the GH distribution and corresponding parameter spaces, with location
parameter µ ∈ R in each case.

Distribution Abbrev. Parameter Space

variance-gamma VG λ > 0 α > 0 |β| < α δ = 0

asymmetric Laplace ALap λ = 1 α > 0 |β| < α δ = 0

Laplace Lap λ = 1 α > 0 β = 0 δ = 0

hyperbolic Hyp λ = 1 α > 0 |β| < α δ > 0

hyperbolic asymmetric t HAt λ < 0 α = |β| β ≥ 0 δ > 0

Student’s t t λ < 0 α = 0 β = 0 δ > 0

asymmetric Cauchy AC λ = −1
2 α = |β| β ∈ R δ > 0

Cauchy Ca λ = −1
2 α = 0 β = 0 δ > 0

normal inverse Gaussian NIG λ = −1
2 α > 0 |β| < α δ > 0
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Chapter 2. 2.3. Alternative parametrizations

Table 2.2: The mixing weights as well as the corresponding distribution outcome for each of the
GH distribution subfamilies

Mixing weight Resulting Distribution

gamma variance-gamma

exponential asymmetric Laplace

exponential (with β = 0) Laplace

inverse gamma hyperbolic asymmetric t

inverse gamma (with β = 0) Student’s t

Lévy asymmetric Cauchy

Lévy (with β = 0) Cauchy

inverse Gaussian normal inverse Gaussian

2.3 Alternative parametrizations

The following four parameterizations are only defined for the generalized hyperbolic distribution,

but with the added restriction that χ, ψ > 0. The parameterizations were taken from Paolella

(2007).

1. The (λ, ω, β, η, µ) parameterization with ω =
√
χψ = δ

√
α2 − β2 and η =

√
χ
ψ =

δ√
α2−β2

2. The (λ, ᾱ, β̄, δ, µ) parameterization with ᾱ = αδ and β̄ = βδ. In this parameterization µ

and δ are location and scale parameters and λ, ᾱ, β̄ are both location- and scale- invariant.

3. The (λ, ζ, ρ, δ, µ) parameterization with ζ = δ
√
α2 − β2 = ω and ρ = α

β . In this parame-

terization µ and δ are location and scale parameters and λ, ζ, ρ are both location- and scale-

invariant as both ζ and ρ can be expressed in terms of ᾱ and β̄.

24

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. 2.4. Properties

4. The (λ, ξ, q, δ, µ) parameterization with ξ = 1√
1+ζ

and q = ρξ = ρ√
1+ζ

. Since both ξ and q

are defined in terms of ζ and ρ, and since ζ and ρ are both location- and scale- invariant, it

follows that ξ and q are also location- and scale- invariant

2.4 Properties

2.4.1 Moment generating function

The moment generating function of the generalized hyperbolic distribution is computed in Prause

(1999) as follows

M(u) = euµ
(

α2 − β2

α2 − (β + u)2

)λ
2 Kλ

(
δ
√

(α2 − (β + u)2)
)

Kλ

(
δ
√
α2 − β2

) . (2.4.1)

Proof. First, without loss of generality, assume µ = 0. Then from (2.1.5), for |β + u| < α we

have

M(u) =

∫
euxGH(x;λ, α, β, δ, 0) dx

=

∫
euxa(λ, α, β, δ)

(
δ2 + x2

) 1
2

(λ− 1
2

)
Kλ− 1

2

(
α
√
δ2 + x2

)
eβx dx

= a(λ, α, β, δ)

∫
eux
(
δ2 + x2

) 1
2

(λ− 1
2

)
Kλ− 1

2

(
α
√
δ2 + x2

)
eβx dx

=
a(λ, α, β, δ)

a(λ, α, β + u, δ)

=
(α2 − β2)

1
2

√
2πδλαλ−

1
2Kλ

(
δ
√
α2 − β2

)√2πδλαλ−
1
2Kλ

(
δ
√
α2 − (β + u)2

)
(α2 − (β + U)2)

1
2

=

(
α2 − β2

α2 − (β + u)2

)λ
2 Kλ

(
δ
√
α2 − (β + u)2

)
Kλ

(
δ
√
α2 − β2

) . (2.4.2)

25

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 2. 2.4. Properties

Finally, for location parameter µ the moment generating function is given by

M(u) = euµ
(

α2 − β2

α2 − (β + u)2

)λ
2 Kλ

(
δ
√
α2 − (β + u)2

)
Kλ

(
δ
√
α2 − β2

) . (2.4.3)

Note that the restriction |β + u| < α in (2.4.1) follows from the domain of variation of the

parameters of the GH distribution defined in Theorem 2.1.2. We are now able to calculate the

mean and variance of the GH distribution:

E(X) = µ+
βδ√
α2 − β2

Kλ+1(ξ)

Kλ(ξ)
, (2.4.4)

Var(X) = δ2

(
Kλ+1(ξ)

ξKλ(ξ)
+

β2

α2 − β2

[
Kλ+2(ξ)

Kλ(ξ)
−
(
Kλ+1(ξ)

Kλ(ξ)

)2
])

. (2.4.5)

2.4.2 Moments of the generalized hyperbolic distribution

The moments of the generalized hyperbolic distribution are given by (see Scott et al., 2011)

M1 = (
δ2

ζ
)β
Kλ+1(ζ)

Kλ(ζ)
,

M2 =
( δ

2

ζ )Kλ+1(ζ) + ( δ
2

ζ )2β2Kλ+2(ζ)

Kλ(ζ)
,

M3 =
(3 δ

2

ζ

2
)βKλ+2(ζ) + ( δ

2

ζ )3β3Kλ+3(ζ)

Kλ(ζ)
,

M4 =
(3 δ

2

ζ

2
)Kλ+2(ζ) + 6( δ

2

ζ )3β2Kλ+3(ζ) + ( δ
2

ζ )4β4Kλ+4(ζ)

Kλ(ζ)
,

(2.4.6)

where ζ = δ
√
α2 − β2 as in (2.3).
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Chapter 3

Estimation and other inferential aspects

This section will contain a brief outline of maximum likelihood estimation, as this will be the

primary method of estimating the parameters of the GH distribution and its subclasses. An outline

on the concept of profile likelihood is also given, as it will be of relevance in the sections that

follow. The information that follows was extracted from Bain and Engelhardt (1987), and Silvey

(1970).

3.1 Maximum likelihood estimation

The use of least squares regression is justified by the fact that we require no knowledge of the

distribution of the error vector, only its mean and variance matrices, and the method can be applied

without access to said knowledge. The method of maximum likelihood, on the other hand, is used

mainly in situations where we have information about the distribution of the sample space.

Maximum likelihood estimation is usually applied when the possible distributions on the sam-

ple space can be labelled/represented by a finite parameter vector θ1. The application of maximum

likelihood is also restricted to the case where the distributions possess a pdf that can be represented

as some measure on the sample space such a a counting measure (discrete), or a Lebesgue measure

(continuous).

Definition 3.1.1. The joint pdf of n random variables X1, X2, . . . , Xn evaluated at x1, x2, . . . , xn

1While the process can also be in terms of a scalar parameter θ, we use the vector representation as it is consistent
with the nature of the parameters of the generalized hyperbolic distribution
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Chapter 3. 3.1. Maximum likelihood estimation

is referred to as the likelihood function. For fixed x1, x2, . . . , xn the likelihood function is a

function of θ and is often denoted L(θ).

Definition 3.1.2. Let L(θ) = f(x;θ), with x = (x1, x2, . . . , xn) and θ ∈ Ω. For a given set of

observations x1, x2, . . . , xn, the value of θ̂ ∈ Ω at which L(θ) is a maximum is referred to as the

maximum likelihood estimate (MLE) of θ. In other words, θ̂ is the value of θ that satisfies

f(x; θ̂) = max
θ∈Ω

f(x;θ). (3.1.1)

3.1.1 The profile likelihood

When using the method of maximum likelihood for low-dimensional parameter vectors, we can

easily visualize this with a graph. Provided the likelihood is smooth, it will resemble the shape

of an upside down parabola (at least locally), with the peak representing the ML estimate. When

working with higher-dimensional parameter vectors we can no longer use the likelihood function

in this way, as it is no longer possible to graphically visualize the problem.

One way of overcoming this problem is by using the profile likelihood rather than the full

likelihood (see Barndorff-Nielsen and Cox 2017 and Murphy and Van der Vaart 2000). We begin

by partitioning the set of parameters θ as follows:

• A set of low-dimensional parameters of interest ξ.

• A set of high- or low-dimensional nuisance parameters η.

If the full likelihood is defined as L(ξ,η), then the profile likelihood is defined as follows

Lp(ξ) = sup
η

L(ξ,η). (3.1.2)

It is customary to use the curvature of the profile likelihood function as an estimate of the

variability of ξ̂. For a Euclidean parameter this was justified by Patefield (1977), who showed

that in parametric models, the inverse of the observed profile information is equal to the ξ aspect

of the full observed inverse information. Further discussion in the parametric context is given by

Barndorff-Nielsen and Cox 2017, p. 1.
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Chapter 3. 3.1. Maximum likelihood estimation

Thus it seems the profile likelihood can be used and visualised in the same way as a full

parametric likelihood. This should be an obvious enough reason to recommend the use of the

profile likelihood. A definition and derivation of the profile likelihood will now be given.

Let X1, X2, . . . , Xn be i.i.d. random variables with pdf f(x;θ), where the objective is to

estimate θ = (ξ,η). The log-likelihood function is then defined as

`(ξ,η) =

n∑
i=1

log f(Xi; ξ,η), (3.1.3)

where ξ and η represent the parameter/s of interest and nuisance parameter/s respectively. The

profile log-likelihood function is thus defined similarly to (3.1.2) as

`p(ξ) = sup
η

`(ξ,η). (3.1.4)

Instead of simultaneously solving for the entire parameter vector θ, we partition the set of param-

eters into θ = (ξ,η) and estimate the parameter/s of interest ξ while eliminating the nuisance

parameter η from the profile likelihood by the maximization operation in (3.1.4). We are thus

only estimating the MLE’s of ξ for some fixed choice of η. The question that should arise now is

how does one select an appropriate choice of nuisance parameter/s η to get an accurate estimate

for our parameters of interest.

The solution is to repeat the process of estimating ξ̂ for an array of choices of the nuisance

parameters. It is important that this array adequately represents a range of values that the nuisance

parameters can take on as to ensure that the true maximum is not overlooked and we do not get

caught up in a local maximum. The final estimate ξ̂ is then the one corresponding to the choice of

η that has the highest profile log-likelihood value.

It is already clear that the use of the profile likelihood allows us to both visualize and intuitively

interpret the log-likelihood function as well as analyse its behaviour. It will be shown later that the

method of profiling also has a positive impact on the likelihood of the procedure converging to the

global maximum, as the number of parameters that are simultaneously estimated seem to have an

impact on the MLE estimation process.
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Chapter 4

Numerical algorithms

This section contains an overview of the estimation methods that will be used to estimate the GH

distribution parameters. The following numerical methods are considered:

• Nelder-Mead simplex method.

• EM algorithm.

• Profile likelihood based alternating algorithm.

4.1 The Nelder-Mead simplex method

The Nelder-Mead simplex method is one of the most widely used and popular methods of multi-

dimensional, unconstrained optimization (Nelder and Mead, 1965). An advantage of this method

is that it minimizes the objective function using only function values. In other words, it does not

make use of derivatives (explicit or implicit). As one would expect this is quite useful as many

situations arise when the derivative of the function to be maximized is not available, especially if

the function is defined from a complex or convoluted computational structure (Han, 2006).

For a given function of n variables, the method minimises this function by comparing the

function values at (n+ 1) vertices of a general simplex1, after which the vertex corresponding to

the highest value is replaced by another point. What is useful about this method, is the fact that
1A simplex is the generalization of the notion of a triangle to an arbitrary number of dimensions. For example, a

simplex in two dimensions is a triangle, in three dimensions a tetrahedron etc.
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Chapter 4. 4.1. The Nelder-Mead simplex method

the simplex is adaptive, as it changes depending on the landscape of the function being evaluated,

and eventually contracts to the local or global minimum.

At each iteration of the process, there is a working simplex defined by n+1 vertices x1, x2, . . . ,

xn+1, each a point in Rn with corresponding function values f(x1), f(x2), . . . , f(xn+1). Each

iteration begins with the ordering and labelling of the current set of vertices x[k]
1 , x

[k]
2 , . . . , x

[k]
n+1

such that

f(x
[k]
1 ) ≤ f(x

[k]
2 ) ≤ f(x

[k]
n+1). (4.1.1)

Since the objective is to minimize our function, f(x
[k]
1 ) would naturally be the “best” point as

it corresponds the smallest function value, and it logically follows that x(k)
n+1 is the worst point. In

order for the algorithm to perform properly and be well defined, consistent tie-breaking rules are

required (Lagarias et al., 1998). After the calculation of one or more trial points and evaluating

the function value f at each of these points, the kth iteration generates a set of n+ 1 vertices that

define a different simplex for the next iteration.

There are four possible operations: reflection, expansion, contraction, and shrinkage, each

with an associated scalar parameters ρ, η, γ, and ν respectively. These coefficients should satisfy

the following constraints:

ρ > 0, η > 1, 0 < γ < 1, and 0 < ν < 1. (4.1.2)

Common initial choices for the parameters in (4.1.2) are

ρ = 1, η = 2, γ =
1

2
, and ν =

1

2
. (4.1.3)

The generic algorithm has two possible outcomes. The first is a single new vertex (the accepted

point), which will replace the current worst point xn+1. In the second a shrink step is performed

(see Figure 4.1), and a set of n new points together with the best point x1 will form the simplex

at the next iteration. A kind of “search direction” is defined by xn+1 and x̄, the centroid of all

vertices except xn+1. The Nelder-Mead algorithm at each iteration k is now outlined.

Step 1: Order
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Chapter 4. 4.1. The Nelder-Mead simplex method

First we order the n + 1 vertices such that f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1), using a

consistent tie-breaking rule as shown.

Step 2: Reflect

Next we compute the reflection point xr from the following

xr = x̄+ ρ(x̄− xn+1), (4.1.4)

where x̄ is the centroid of the n best vertices (excluding xn+1). In other words x̄ =

1
n

∑n
i=1 xi. Next evaluate fr = f(xr), and if f1 ≤ fr < fn, we accept the reflected

point xr and terminate the iteration.

Step 3: Expand

If however fr < f1, we calculate the expansion point xe from

xe = x̄+ η(xr − x̄) (4.1.5)

and evaluate fe = f(xe). If fe < fr, accept the expansion point xe and terminate the

iteration.

Step 4: Contract

Conversely, if fr ≥ fn, we perform a contraction operation between x̄ and the better point

between xn+1 and xr. There are two possible contraction operations depending on the

relation between fr and fn+1.

1. Outside contraction:

If fn ≤ fr < fn+1 (i.e. xr is strictly better than xn+1), we then perform what is known as

an outside contraction

xc = x̄+ γ(xr − x̄) (4.1.6)

and evaluate fc = f(xc). If fc ≤ fr, we accept xc and terminate the iteration; otherwise we

proceed to step 5.

2. Inside contraction:

If fr ≥ fn+1 (i.e. xn+1 is better than xr), we then perform what is known as an inside
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Chapter 4. 4.1. The Nelder-Mead simplex method

contraction

x′c = x̄− γ(x̄− xn+1), (4.1.7)

and evaluate f ′c = f(xc)
′. If f ′c ≤ fn+1, we accept x′c and terminate the iteration, otherwise

we proceed to step 5.

Step 5: Perform a shrink step

Here we define n new vertices from

vi = x1 + ν(xi − x1) i = 2, ..., n+ 1 (4.1.8)

and evaluate f at these points. The vertices of the simplex at the next iteration will then be

x1, v2, ..., vn+1.

Something that is not explicitly stated in Nelder and Mead (1965) is how the points should

be ordered in the case of equal function values, otherwise known as a tie-breaking criterion. The

following tie-break rules are defined for a step when a shrink occurs, and for when a non-shrink

step occurs:

1. Non-shrink tie-break rule

When a non-shrink step occurs, the worst point x[k]
n+1 is discarded. The point created during

the kth iteration, which we denote v[k], becomes a new vertex and takes the j + 1th position

among the vertices where

j = max
0≤`≤n

{`|f(v[k]) < f(x
[k]
`+1)}. (4.1.9)

In this step all other vertices retain their relative ordering.

2. Shrink tie-break rule

In the instance of a shrink step, the only point that is carried over is the best point x[k]
1 . There

is thus only one tie-breaking rule for the case where two or more points are tied for the best

point. If

min{f(v
[k]
2 ), . . . , f(v

[k]
n+1) = f(x

[k]
1 )}, (4.1.10)
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Chapter 4. 4.2. The EM algorithm

then set xk+1
1 = x

[k]
1 .

A simple graphical outline of how each step works is given in Figure 4.1.

Figure 4.1: An illustration of the steps of the Nelder-Mead simplex method. Obtained from Cheng
and Mailund (2015).

4.2 The EM algorithm

The Expectation-maximization (EM) algorithm is an iterative method developed by Dempster,

Laird, and Rubin (1977) with the aim of computing maximum likelihood estimates in the presence

of incomplete (or missing) data. It is also possible to make use of this method by reframing the

problem as if there were missing data. The name of the method is derived from the fact that the

process consists of an expectation step (E-step) followed by a maximization step (M-step).

The following will serve as a general introduction to the EM algorithm (Moon, 1996). Let

Y be the sample space of observations, with y ∈ Rm an observation from Y , and let X be the

underlying sample space, where x ∈ Rn and m < n. We refer to x as the complete data, which

is not observed directly, but only through y such that y = y(x) where y(x) is a many-to-one

mapping. Let fX(x|θ) denote the pdf of the complete data with θ ∈ Ω the set of parameters of f .

The pdf of the incomplete data is given by

gY (y|θ) =

∫
X (y)

fX(x|θ) dx (4.2.1)

which also defines the relation between the complete and incomplete data specification. A useful
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Chapter 4. 4.2. The EM algorithm

aspect of the EM algorithm is that even though the problem may not be one of incomplete data,

by formulating it as such we simplify the computation of the maximum likelihood estimates. Let

L(θ) = gY (y|θ) denote the incomplete-data likelihood function and let

logL(θ) = log gY (y|θ) (4.2.2)

denote the corresponding log-likelihood function. The objective of the EM algorithm is to max-

imise the complete-data log-likelihood function log fX(x|θ). The issue, however, is that we do not

possess the data x to compute this log-likehood. What the EM algorithm does is circumvent this

problem by maximising the expectation of log fX(x|θ) given the observed data y and the current

estimate for θ. In other words it indirectly solves the incomplete-data log-likelihood function in

(4.2.2) by iteratively solving in terms of log fX(x|θ). But, since we cannot observe x, we instead

maximize the conditional expectation of log fX(x|θ) given y. Thus, for the (k + 1)th iteration of

the EM algorithm we compute the following (in the form of the aforementioned E- and M-steps):

E-Step: Compute Q(θ,θ[k]) where

Q(θ,θ(k)) =

∫
X (y)

log f(x|θ)f(x|y,θ[k]) dx

= E[log f(x|θ)|y,θ[k]]. (4.2.3)

M-Step: Choose θ[k+1] such that

Q(θ[k+1],θ[k]) ≥ Q(θ,θ[k]) for all θ ∈ Ω. (4.2.4)

The process alternates the E- and M- steps above until some form of convergence criterion is met.

Some common criteria include the use of a suitable norm || · ||p such that

||θ[k+1] − θ[k]||p < ε (4.2.5)

for some choice of ε > 0. Common choices of norms are the L1 norm (p = 1), and the L2, or

Euclidean norm (p = 2). Another common stop criterion simply involves assessing the change in
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Chapter 4. 4.2. The EM algorithm

log-likelihood function value at each iteration for the current set of parameters:

`(θ[k+1])− `(θ[k]) (4.2.6)

and to stop when the change is deemed insignificant. Although the EM algorithm can be summed

up with the expectation and maximization steps outlined above, it may also be useful to expand

upon this somewhat. The following steps provide some more detail as to the inner workings of the

process:

Step 1: For k = 0, where k is the current iteration, take a sensible initial estimate θ[k] for the set

of parameters θ.

Step 2: Using this current estimate for θ as well as the observed data y, we calculate the condi-

tional pdf f(x|y,θ[k]) for the complete data x.

Step 3: With this conditional pdf calculated in Step 2, we can formulate the conditional expected

log-likelihood as in the E-step:

Q(θ,θ(k)) =

∫
X (y)

log f(x|θ)f(x|y,θ[k]) dx

= E[log f(x|θ)|y,θ[k]]. (4.2.7)

Step 4: Find the value of θ that maximizes (4.2.7). Set the resulting estimate as the new estimate

θ[k+1].

Step 5: If the chosen convergence criteria are met, then terminate the process. Otherwise incre-

ment m to m = m+ 1 and return to Step 2.

It can be proved that, when performing the iterations of the EM algorithm, the resulting estimate

cannot get worse, which is not to say that it will improve with each iteration. The method will

often find a peak at the top of the likelihood function, but, in the event that there are multiple

potential maxima present (multiple peaks), the EM will not necessarily converge to the true global

maximum. As such it is often necessary to perform the EM estimation process for an array of initial

values as to discern which point may be the global maximum. Other issues such as the flatness
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Chapter 4. 4.2. The EM algorithm

of the log-likelihood function can also play a part in the ability of the algorithm to converge to a

global, or even local maximum point (see Prause 1999 and Barndorff-Nielsen and Blaesild 1981).

4.2.1 Estimation of the parameters of the generalized hyperbolic dis-

tribution using the EM algorithm

One would not typically think that the EM algorithm can be applied to the generalized hyperbolic

distribution. However, the mean-variance representation (see (2.1.2)) of the GH distribution comes

in handy here and is well suited for EM estimation. The structure of the EM algorithm that follows

is taken from McNeil et al. (2015, pp. 81-83) and Hu (2005, pp. 27-35).

Assume we have a dataset x1, x2, . . . , xn to which we want to fit a univariate generelized

hyperbolic distribution or one of its subclasses. Let θ = (λ, χ, ψ, β, µ) be the set of parameters

we wish to estimate. We then maximize

`(θ;x) =
n∑
i=1

log fX(xi;θ) (4.2.8)

where fX(xi,θ) is the pdf of the generalized hyperbolic distribution in (2.1.2). It should already

be clear that the estimation is no easy task due to the large number of parameters. However, if we

were able to observe the latent mixing variable W in (A.3), this would make the problem much

easier. Thus the problem is now to solve the following augmented log-likelihood function:

`(θ;x,w) =

n∑
i=1

log fXi,Wi(xi, wi;θ). (4.2.9)

Using the normal mean-variance mixture representation of the generalized hyperbolic distri-

bution (see (2.1.7)), we are able to rewrite the log-likelihood function as

˜̀(θ;x,w) =

n∑
i=1

log fXi|Wi
(xi|wi;µ, β) +

n∑
i=1

log fWi(wi;λ, χ, ψ)

= L1(µ, β;x|w) + L2(λ, χ, ψ;w)

(4.2.10)
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Chapter 4. 4.2. The EM algorithm

where X|(W = w) ∼ N(µ + βw,w) and fX|W (x|w) is the pdf of the conditional normal dis-

tribution, and fW (w) is the pdf of the GIG mixing variable such that W ∼ GIG(λ, ψ, χ). What

makes the use of this representation so powerful is it allows us to maximise L1 and L2 separately,

meaning we can maximize µ, β and λ, ψ, χ separately. Since X|(W = w) ∼ N(µ + βw,w), we

can write the pdf as

fX|W (x|w) =
1√
2πw

e
− 1

2

(
(x−(µ+βw))2

w

)
(4.2.11)

and we can get the explicit form for the log-likelihood function L1 as

L1(µ, β;x|w) = −n
2

log 2π − 1

2

n∑
i=1

logwi

− 1

2

n∑
i=1

1

wi
(xi − (µ+ βwi))

2 . (4.2.12)

From (2.1.1), we get the explicit form of the log-likelihood function L2 as

L2(λ, χ, ψ;w) =
nλ

2
logψ − nλ

2
log (χ)− 2 log

(
2Kλ(

√
χψ)

)
+ (λ− 1)

n∑
i=1

logwi −
1

2

n∑
i=1

(χw−1
i + ψwi). (4.2.13)

The estimates for µ and β are obtained by maximizing L1. If we suppose that the latent mixing

variable W is observable, then we take the partial derivatives of L1 with respect to the parameters

µ and β and set them equal to zero as follows

∂L1

∂µ
= 0,

∂L1

∂β
= 0. (4.2.14)

These equations are commonly referred to as the likelihood equations and are typically solved

in a simultaneous fashion to get the corresponding maximum likelihood estimates. Solving the

above set of equations gives us the following MLEs for µ and β

µ̂ =

∑n
i=1w

−1
i xi − nβ∑n

i=1w
−1
i

(4.2.15)
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Chapter 4. 4.2. The EM algorithm

and

β̂ =

∑n
i=1 xi − nµ∑n

i=1wi
. (4.2.16)

The estimates for λ, χ, and ψ are similarly obtained through the maximization of L2. For the

time being λ will be fixed, as it does not seem possible to calibrate λ as well. As with L1, we take

the partial derivatives of L2 w.r.t χ and ψ and set them equal to zero as follows

∂L2

∂χ
= 0,

∂L2

∂ψ
= 0. (4.2.17)

Solving for the above set of likelihood equations is not as straightforward as with L1. We first

have to solve for ζ =
√
χψ from the following equation

n−2
n∑
i=1

wi

n∑
j=1

w−1
j K2

λ(ζ)ζ + 2λ(ζ)− ζK2
λ(ζ) = 0. (4.2.18)

After solving for ζ, we are able to get the following expressions for χ and ψ

χ̂ =
n−1ζ

∑n
i=1wiKλ(ζ)

Kλ+1(ζ)
(4.2.19)

and

ψ̂ =
ζ2

χ
. (4.2.20)

However, contrary to previous assumptions, the latent mixing variables W1,W2, . . . ,Wn are

not observable. We thus need an iterative setup consisting of an E-step and M-step as with the EM-

algorithm. In the E-step, we calculate the conditional expectation of the augmented log-likelihood

function given the current parameter estimates and the data. Suppose were are at step k in the

iterative procedure. The goal then is to calculate the following conditional expectation and get a

new function to maximize:

Q(θ,θ[k]) = E
(

log L̃(θ;x,W1, . . . ,Wn)|x;θ[k]
)
. (4.2.21)
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Chapter 4. 4.2. The EM algorithm

In the M-step, we maximize the function in (4.2.21) and get a new set of estimates parm[k+1]. We

can observe from (4.2.12) and (4.2.13), that this is equivalent to replacing the wi, w−1
i , and logwi

terms in the augmented log-likelihood function by their conditional estimates E(Wi|xi;θ[k]),

E(W−1
i |xi;θ[k]), and E(log(Wi)|xi;θ[k]). The function Q(θ,θ[k]) is thus re-expressed by ob-

servations and known conditional expectations such that it can be maximized. The following

expressions follow if W ∼ GIG(λ, χ, ψ), and will be needed later:

E(Wα) =

(
χ

ψ

)α
2 Kλ+α(

√
χψ)

Kλ(
√
χψ)

, (4.2.22)

and

E(logW ) =
dE(Wα)

dα
|α=0. (4.2.23)

While we can use (4.2.22) directly, especially for α = −1 and α = 1 as required, (4.2.23) will

require numerical methods to solve. Fortunately, if one looks at (4.2.13), the E(log(Wi)|xi;θ[k])

term is only needed if we solve for λ, and since we fix λ this term is not needed. Following the

notation as in McNeil et al. (2015, pp. 81-83), let

η
[k]
i = E

(
Wi|xi;θ[k]

)
, (4.2.24)

δ
[k]
i = E

(
W−1
i |xi;θ

[k]
)
, (4.2.25)

ξ
[k]
i = E

(
log (Wi)|xi;θ[k]

)
. (4.2.26)

Then, by using (4.2.22) and (4.2.23) we get the following

η
[k]
i =

√
χ

ψ

Kλ+1(
√
χψ)

Kλ(
√
χψ)

, (4.2.27)

and

δ
[k]
i =

√
ψ

χ

Kλ−1(
√
χψ)

Kλ(
√
χψ)

. (4.2.28)

Now we just replace the latent variables in the M-step with the corresponding conditional expec-

40

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 4. 4.3. A new method: profile likelihood based alternating algorithm

tations, giving us the following estimates at the kth iteration:

µ[k+1] =

∑n
i=1 δ

[k]
i xi − nβ[k]∑n
i=1 δ

[k]
i

, (4.2.29)

β[k+1] =

∑n
i=1 xi − nµ[k+1]∑n

i=1 η
[k]
i

, (4.2.30)

χ[k+1] =
n−1ζ

∑n
i=1 η

[k]
i Kλ(ζ)

Kλ+1(ζ)
, (4.2.31)

ψ[k+1] =
ζ2

χ[k+1]
. (4.2.32)

All that follows now is to repeat the process and update the estimates at each iteration until the

selected convergence criteria are met.

4.3 A new method: profile likelihood based alternating

algorithm

One of the issues of using the full log-likelihood function is that the overall region is quite flat. This

leads to optimization methods either stopping/getting stuck before reaching the global maximum,

or progressing in the wrong search direction altogether. This issue is not limited to the numerical

methods used here, but is a consequence of numerical methods as a whole when a flat function

region is present. This stems from the fact that whether the method makes use of the function

gradient or simply the function values, the steepness of the functions region, especially around a

global or local maximum will have an impact on the methods ability to correctly converge.

In much the same way we use the profile log-likelihood to allow for interpretable visual results,

we can use it to split the estimation process up into two parts instead of simultaneously estimating

all the parameters. By analysing the marginal (profile) log-likelihood functions and splitting the

parameter set in two, this creates a desirable situation whereby the functions to be maximised are

better behaved than the full log-likelihood. This is due to the lower dimensional space in which

the function is minimized which in turn allows for better performance of the numerical methods.

The formulation that follows is for the subclasses of the GH distribution that have fixed λ.
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Chapter 4. 4.3. A new method: profile likelihood based alternating algorithm

In a similar fashion to the profile likelihood, the parameter vector θ = (α, β, δ, µ) is split into

ξ = (α, β), and η = (δ, µ). This choice of split was decided based on trial and error, and

it was found that this pairing led to convergence of the algorithm. It is of course possible that

other pairings could very well lead to the same outcome, but this pairing seemed to have the most

consistent convergence. The first log-likelihood function will maximized on ξ = (α, β), with

η = (δ, µ) fixed, and the second will be maximized on η = (δ, µ), with ξ = (α, β) fixed. The

equations to be maximized are thus given by

Lp1(ξ) = sup
η

L(ξ,η) (4.3.1)

and

Lp2(η) = sup
ξ
L(ξ,η). (4.3.2)

This algorithm is implemented as follows:

Step 1: Set k = 0. Select a set of initial values θk = (αk, βk, δk, µk).

Step 2: Maximize Lp2(η) with respect to η = (δ, µ) giving us parameters µk+1 and δk+1.

Step 3: Set µk = µk+1 and δk = δk+1.

Step 4: Maximize Lp1(ξ) with respect to ξ = (α, β) giving us parameters αk+1 and βk+1.

Step 5: Set αk = αk+1 and βk = βk+1.

Step 6: If |θk+1 − θk| > ε, set k = k + 1 and return to step 2.

Step 7: If the maximum |θk+1 − θk| < ε we terminate the process, where ε is the smallest

acceptable variation for the process to repeat (typically chosen to be between 10−3 and

10−6).

There was a rather interesting discovery, in that the addition of λ into the estimation process

is actually possible. In fact the resulting estimates corresponded with those of the other methods

used. For clarity, λwas introduced into the estimation process by setting ξ = (λ, α, β), η = (δ, µ),

and simply proceeding as before. While including λ in this fashion yielded positive results, it was

found when testing other parameter combinations that success is not guaranteed.
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Chapter 4. 4.3. A new method: profile likelihood based alternating algorithm

It is therefore advised that the reader defines ξ and η as sensibly as possible, with the alter-

native being simple trial and error. In practice it was found that setting η = (δ, µ), and setting ξ

to the remaining parameters was quite reliable. A step-by-step outline of the algorithm is given in

Algorithm 1.

Algorithm 1 Profile likelihood based alternating algorithm
Step 1: Set iteration number k = 0.

Step 2: Choose initial values θk = (αk, βk, δk, µk).

Step 3: Maximize Lp2(η) w.r.t. η = (δ, µ), yielding parameters µk+1 and δk+1.

Step 4: Set µk = µk+1 and δk = δk+1.

Step 5: Maximize Lp1(ξ) w.r.t. ξ = (α, β), yielding parameters αk+1 and βk+1.

Step 6: Set αk = αk+1 and βk = βk+1.

Step 7: If |θk+1 − θk| > ε, set k = k + 1 and return to step 2.

Step 8: If |θk+1 − θk| < ε, where ε is smallest acceptable variation for the process to repeat

(typically chosen to be between 10−3 and 10−6).
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Chapter 5

Application

This chapter contains a full discussion of the findings when fitting the GH distribution to data.

A full exploratory analysis for a selection of popular datasets is performed, whereby we look at

the behaviour of the log-likelihood function, and the resulting impact on the estimation process.

We also look at the importance of initial value selection, as well as the importance of selecting

an appropriate subclass of the GH distribution. The estimation results are analysed and compared

using some popular goodness-of-fit statistics, and finally, a simulation study is conducted to shed

more light on some of the findings when fitting the GH distribution to the real world data sets.

The exploration aspect is carried out in the R Software environment, with some deviation to

other platforms that provide similar function optimization routines. This is, however, purely for

comparative reasons and as such the focus of the discussion that follows will be on the process

in R. Since we are working with the generalized hyperbolic distribution, it is natural to make use

of any packages that accommodate this distribution and make the process easier. There are three

notable packages that deal with the generalized hyperbolic distribution, namely:

1. The ghyp package .

2. The GeneralizedHyperbolic package.

3. The HyperbolicDist package.

The above packages offer very similar functions and toolkits, and as such there is some overlap

in the core functions offered. Much of the variation comes from the auxiliary functions and options
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Chapter 5. 5.1. Data sets

and as such these packages will be used in tandem for the most part. It is worth noting that there

is some dependency between the above packages, and although some function calls appear the

same, they are in fact uniquely defined in each package and as a result some care is needed when

working between the packages. An apparent example can be seen with the function pghyp().

Below is an illustration of how the functions are defined in each of the respective packages :

1. ghyp package

pghyp(q, object = ghyp(), n.sim = , subdivisions = ,

rel.tol = ,abs.tol = , lower.tail = )

2. GeneralizedHyperbolic package

pghyp(q, mu = , delta = , alpha = , beta = , lambda = ,

param = c(mu, delta, alpha, beta, lambda),

lower.tail = , subdivisions = ,ntTol = ,

valueOnly = , ...)

3. HyperbolicDist package

pghyp(q, Theta, small = , tiny = ,deriv = ,

subdivisions = ,accuracy = , ...)

At the time of writing, the HyperbolicDist package provided the more tractable function

options and, as a result, was the package primarily used.

5.1 Data sets

5.1.1 NYSE composite index

The NYSE Composite Index measures the performance of all common stocks listed on the New

York Stock Exchange, including American Depositary Receipts issued by foreign companies, Real

Estate Investment Trusts and tracking stocks. The weights of the index constituents are calculated

on the basis of their free-float market capitalization. The index itself is calculated on the basis

of price return and total return, which includes dividends. The breadth of the NYSE Composite
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Chapter 5. 5.2. Fitting GH distributions to the data

Index makes it a far better indicator of market performance than narrow indexes that have far fewer

components.

This data set is chosen as it is used in Prause (1999), which is widely considered a useful

resource on the topic of the GH distribution and related subfamilies. This data is readily available

on most stock exchange websites as this is a relatively popular index. The NYSE composite

index dataset covers the daily high from January 2, 1990 to November 29, 1996. We fit the GH

distribution and subclasses to the log-returns of the data. The log-return of a price (St)t≥0 for time

interval ~∆t (in this instance one day) is defined as

Xt = logSt − logSt−~∆t. (5.1.1)

where Xt is the stock price at time t. The return during n periods is thus the sum of the single

period returns.

5.1.2 S&P 500 index

The following data set provides the year end prices of Standard and Poorś most notable stock

market price index, the S&P 500. It contains the year end price of the index from 1800 through

to 2001 and contains 201 observations. The data is taken from Brown et al. (2002), and can also

be found in the GeneralizedHyperbolic package in the R software environment. For this study we

will be looking at the proportional changes of the stock price:

Yt =
Xt−1

Xt
, (5.1.2)

where Yt is the ratio of the stock price at time t− 1 to the ratio at time t.

5.2 Fitting GH distributions to the data

Due to the large number of parameters in the generalized hyperbolic distribution, as well as the

form of the pdf, numerical methods will be needed in order to estimate the parameters. Fortunately,

R has an abundance of resources to deal with this. Commonly used functions for optimization in-
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Chapter 5. 5.2. Fitting GH distributions to the data

clude nlminb(), which performs unconstrained as well as box constrained optimizations using

PORT routines (Quasi-Newton), and the optim() function, which performs general-purpose op-

timization base on Nelder-Mead, quasi-Newton and conjugate-gradient algorithms, and the con-

strOptim() function, which provides the same functionality as the optim() function, while also

allowing for the inclusion of linear inequality constraints between the parameters. There are

naturally many other functions that perform similar optimization routines but with some slight

variation.

There are a number of aspects of the Generalized Hyperbolic distribution that have an impact

on the estimation process, and the consequent restrictions this imposes on available methods.The

biggest issue in the context of exploring the log-likelihood is the lack of a closed-form derivative

for the pdf (see equation (2.1.5)). This is primarily due to the presence of Bessel functions in the

pdf (see equations (2.1.5) and (B.1)). It is thus not possible to make use of gradient based meth-

ods when performing numerical optimization, and in the few cases that the procedure functions

normally, the relevant optimization routine attempts to calculate and work with an approximation

of the gradient of the log-likelihood. This is, however, extremely unreliable, as in the majority of

the practical findings this does not work.

Another aspect of the GH distribution that needs to be considered is the parameters themselves.

Not only are there a large number of parameters to estimate, but there are a staggering number of

parameterizations that have been proposed in the literature over the years. The two most com-

monly used parametrizations are the (λ, ψ, β, χ, µ) parametrization that follows naturally from

the derivation of the GH distribution (see (2.1.2)), and the (λ, α, β, δ, µ) parametrization proposed

by Barndorff-Nielsen (1978). For the remaining parametrizations please refer to section (2.3).

The most widely used parametrization seems to be the (λ, α, β, δ, µ) parametrization proposed

by Barndorff-Nielsen (1978), and as such this will be the parametrization used to fit the GH distri-

bution and related subtypes to our real world datasets. An important aspect that comes with using

this parametrization is not only the general parameter constraints inherent to the GH distribution,

but the bounded relationship between the α and β parameters as well. The constraint |β| < |α|

creates a boundary that is rather problematic for general purpose optimization routines, especially

those that do not explicitly account for this constraint. This is generally only a problem when
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Chapter 5. 5.2. Fitting GH distributions to the data

the parameters are simultaneously estimated with methods such as the Nelder-Mead algorithm, or

related simultaneous routines.

There is, fortunately, a function in R that can account for not only this constraint, but any

constraints that the function to be maximized may have. The constrOptim() function performs

optimization subject to a linear inequality using an adaptive barrier algorithm. The function es-

sentially allows for the explicit specification of constraints on the parameter space beforehand,

and takes this into account when performing the optimization, thus mitigating the aforementioned

issue. Preliminary findings indicate a substantial improvement when using constrOptim() over the

existing methods that do not account for the constraints.

A last note, but certainly not the least important, is that of the shape of the log-likelihood

function of the GH distribution. Prause (1999), Protassov (2004), Aas and Haff (2006), Barndorff-

Nielsen and Blaesild (1981), and Snoussi and Idier (2006) all report on the GH distribution having

a flat log-likelihood function. There are many consequences to this, the first being that it is rather

difficult to accurately estimate λ (the parameter responsible for the subclasses). This is especially

true when smaller sample sizes are used, and in fact it will later be shown that even in larger

sample instances, the estimation of this parameter is quite unstable. To mitigate this issue, many

papers resort to fixing λ to a value corresponding to a known subclass.

While this may be a decent circumvention to the problem, it is by no means a clean cut solution.

In Prause (1997) it is indicated that the NIG subclass is a rather good fit for financial asset data. It

is, however, also shown in Barndorff-Nielsen (1995) that different subclasses can have near identi-

cal densities, where a hyperbolic (λ = 1), and a normal inverse Gaussian (λ = −0.5) distribution

are shown to be almost the same. This is an unfortunate caveat of having a flat log-likelihood

function, as not only is it more difficult for numerical methods to find the global maximum of

the log-likelihood, but there may be multiple estimate permutations leading to seemingly identical

densities.

For the process of fitting the GH distribution to the NYSE composite index data, as well as the

S&P 500 data, we will make use of the following methods:

1. Nelder-Mead simplex method (see section 4.1).

2. Expectation Maximization (EM) algorithm(see section 4.2).
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Chapter 5. 5.2. Fitting GH distributions to the data

3. Alternating profile likelihood based algorithm(see section 4.3).

The Nelder-Mead simplex method is a widely used numerical method and is especially useful

in that it does not require the calculation or use of derivatives. This is very useful when working

with the GH distribution as there does not exist a closed form for the derivative of the pdf. It is also

one of the method options within the optim() function, a commonly used function for numerical

optimization in R. The use of this method will also serve as a good baseline for assessing the

performance of the ML estimation of the GH parameters in the methods that follow.

An extension of the optim() function, namely the constrOptim() function, will also be consid-

ered. This function allows for specification of linear inequality constraints while using the Nelder-

Mead simplex method to minimize the objective function. This allows us to consider α > 0,

δ > 0, and especially the bounded relationship |β| < α.

The EM algorithm is one of the most commonly used methods in the literature for the estima-

tion of the GH parameters. Prause (1999), McNeil et al. (2015), Aas and Haff (2006), Hu (2005),

Karlis (2002), Hellmich and Kassberger (2011), and Panahi (2018) all make use of the EM algo-

rithm to fit the GH model or one of its subclasses to data. See section 4.2.1 for a breakdown of the

EM algorithm in the context of the GH distribution. A limitation of the EM algorithm as given in

4.2.1 is that it is not possible to report is inspired. The current solution is to proceed by fixing the

value of λ to a value corresponding to one of the GH distribution subclasses, as is done in majority

in the literature.

Before diving into the specifics, it is useful to begin with an illustration of the log-likelihood

function to get a better sense of what we are working with. Since the log-likelihood function is

a function of five variables (four if we count λ as fixed), we need to make use of profiling the

log-likelihood function in order to allow a visual representation in lower-dimensional space. As

outlined in section 3.1.1, we reduce the dimensionality of the log-likelihood function by fixing a set

of nuisance parameters. The majority of what follows will focus on the α and β parameters of the

GH distribution, as the bounded relationship between these parameters, specifically that |β| < α,

and the ensuing feasible region it creates is of particular interest in the context of exploration. As

such we fix the µ and δ parameters giving us the following log-likelihood function as in section
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Chapter 5. 5.2. Fitting GH distributions to the data

3.1.1:

`p(ξ) = sup
η

`(ξ,η) (5.2.1)

Figure 5.1 provides a graphical representation of the profile log-likelihood in terms of α and

β. The profile log-likelihood is transformed into the likelihood ratio test statistic (also called

deviance) as follows

D(α, β) = 2
{
`p(α̂, β̂)− `p(α, β)

}
, (5.2.2)

where `p(α̂, β̂) is the overall maximum of `p(α, β).
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Figure 5.1: Contour level plot of the deviance function. Data simulated from GH(4,20,10,1,0)
with sample size n = 50

One of the issues with displaying the profile likelihood in this fashion, i.e. by fixing the nui-

sance parameters, is that one does not always capture the behaviour of the log-likelihood function

in full. This is due to the fact that by fixing µ and δ in this way, we are effectively “snapshotting”

the log-likelihood function at these values. As a consequence, we are no longer able to get an

idea of the behaviour of this function in its entirety. To expand on this, consider the instance that

we standardize µ and δ, i.e. set (µ, δ) = (0, 1). This may create and entirely different region for

D(α, β) compared to, say, setting (µ, δ) = (0, 0.001).

This can also be seen in Figures 5.2a and 5.2b, where different selections for µ and δ result
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Chapter 5. 5.2. Fitting GH distributions to the data

in significantly different behaviours of the log-likelihood function. Raue et al. (2009) discusses

two different kinds of parameter non-identifiability that can be seen here. The first is structural

non-identifiability, which relates to the model itself and does not depend on the underlying data.

The second is practical non-identifiability, which takes into account the underlying data.

Structural non-identifiability is a likely indicator of redundant parameters, whereas practical

non-identifiability indicates that the sample size may be to small, or that the data itself may not be

suited to the model being considered. Figure 5.2a displays similar visual properties to the struc-

tural non-identifiability described in Raue et al. (2009), whereas Figure 5.2b indicates practically

non-identifiable behaviour. For a more detailed breakdown and description please see Raue et al.

(2009).
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(a) deviance contour for (µ, δ) = (0, 1).
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(b) Deviance contour for (µ, δ) = (0, 0.001).

Figure 5.2: Contour plots in terms of the deviance (as defined in (5.2.2)) for the α and β parame-
ters.

To circumvent the issues of displaying the profile likelihood in this fashion, the following is

proposed. Instead of analysing the behaviour of the profile log-likelihood function as before, we

initialize a grid of starting values θ0 = (α0, β0, δ0, µ0), and proceed to fit a GH model to the both

datasets using the Nelder-Mead simplex method. The resulting final estimates (α̂, β̂) for each

starting value choice are plotted against the corresponding log-likelihood value at each point. The

purpose of this is to provide a means of illustrating the behaviour of the log-likelihood function

without needing to fix the values of the nuisance parameters µ and δ. The expectation is that this

perceived behaviour of the log-likelihood function will be better illustrated.
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Chapter 5. 5.2. Fitting GH distributions to the data

First, for each starting value in the grid, unconstrained optimization is performed using the

Nelder-Mead simplex method. This is done by means of the optim() function in R. The resulting

estimates and corresponding log-likelihood values are recorded for each value in the grid. This is

done to allow us to visualise the behaviour of the log-likelihood function in terms of α and β, but

without having to fix δ and µ, and lose out on the impact these parameters may have on the shape

of the log-likelihood function. This process is done for the generalized hyperbolic model, as well

as the hyperbolic, and normal inverse Gaussian subclasses.

The resulting estimates for α and β are plotted against one another. Each (α, β) point is

grouped according to its associated log-likelihood value as this allows us to artificially construct a

contour-like region, and thus graphically depict the perceived behaviour of the log-likelihood func-

tion. In Figures 5.3-5.5 we observe the results of fitting the generalized hyperbolic, hyperbolic,

and normal inverse Gaussian models to the NYSE composite index data using optim().
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Figure 5.3: Scatterplot of (α̂, β̂) estimates: NYSE Composite Index GH fit.
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Chapter 5. 5.2. Fitting GH distributions to the data
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Figure 5.4: Scatterplot of (α̂, β̂) estimates: NYSE Composite Index hyperbolic fit.
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Figure 5.5: Scatterplot of (α̂, β̂) estimates: NYSE Composite Index NIG fit.
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Chapter 5. 5.2. Fitting GH distributions to the data

Looking at Figures 5.3 and 5.4, there is clear indication of this perceived flatness of the log-

likelihood function. This is especially apparent in Figure 5.3, where we have this consistent region

spanning from α = 0 all the way to α = 200 with a negligible difference in log-likelihood values.

This corresponds to statements made in the literature on the impact that λ has on the flatness of

the log-likelihood function. We also see that even when λ is fixed in the hyperbolic case, we still

have somewhat of a flat linear region, although now not as pronounced. Another interesting aspect

of the hyperbolic fit in Figure 5.4 is that there seems to be some linearity along the lower bound

of the |β| < α constraint, and to a lesser extent the upper bound. This linearity could indicate

possible identifiability issues stemming from the α and β parameters. This linearity can also be

seen in Figure 5.3, although not as much.

When looking at Figure 5.5, we see that the points are rather nicely spread in a circular fashion

around a single peak. This peak does in fact corresponded to the global maximum, and although

the log-likelihood values are still quite close in magnitude, this function seems to be much better

behaved than those corresponding to the hyperbolic and generalized hyperbolic fits. It has been

stated in the literature (see Prause, 1999) that the normal inverse Gaussian subclass is well suited

to model financial returns and financial data, and this is confirmed by the outcome in Figure 5.5.

In order to account for potential point overlap, Tables 5.1 - 5.3 have been included to compli-

ment Figures 5.3 - 5.5. This is done simply to ensure that the figures are not misleading, and to

give us an idea of how many points lie in each of the pre-defined log-likelihood brackets.

This process will now be repeated using the constrOptim() function. Recall the constrOptim()

function has the same functionality as optim(), but allows for the specification of linear constraints.

This is useful as three out of the five parameters of the GH distribution are bound by such con-

straints, and as will now be shown, the consideration of these constraints are quite important when

estimating the GH distribution or one of its subtypes. In Figures 5.6 - 5.8 we observe the re-

sults of fitting the generalized hyperbolic, hyperbolic, normal inverse Gaussian, and hyberbolic

asymmetric t models to the NYSE composite index data using constrOptim().

Comparing the value spread in Figure 5.6 with that of Figure 5.3, it is clear that the considera-

tion of constraints has a positive impact on the outcome of the estimation process. Although there

now seems to be a form indicating a local as well as a global maximum, this is much better than
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Chapter 5. 5.2. Fitting GH distributions to the data

Table 5.1: The number of estimates falling in each log-likelihood bracket corresponding to the GH
distribution as in Figure 5.3.

Log-likelihood Value Number of Estimates

≥ 6406 240

≥ 6400 1611

≥ 6300 835

≥ 6200 34

≥ 6100 7

≥ 6000 9

< 6000 258

Table 5.2: The number of estimates falling in each log-likelihood bracket corresponding to the
hyperbolic subclass as in Figure 5.4.

Log-likelihood Value Number of Estimates

≥ 6408 117

≥ 6400 202

≥ 6300 172

≥ 6200 35

≥ 6000 44

< 6000 55

the large region spanning α = 0 to α = 200 that was found in Figure 5.3. The same improvements

can be observed in Figures 5.7 and 5.8, where the points are much more concentrated about the

maximum. The only problem that seems to persist is that of the perceived collinearity between

α and β. Even with the inclusion of the parameter constraints in the estimation process we still

observe this relation, in fact it is made even clearer in this instance. It is again observed that the
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Chapter 5. 5.2. Fitting GH distributions to the data

Table 5.3: The number of estimates falling in each log-likelihood bracket corresponding to the
NIG subclass as in Figure 5.5.

Log-likelihood Value Number of Estimates

≥ 6406 149

≥ 6400 195

≥ 6300 281
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Figure 5.6: Scatterplot of (α̂, β̂) estimates for GH fit: NYSE composite index.

difference in log-likelihood values is quite small even in the instances where λ is fixed. As before,

Tables 5.4 - 5.6 have been included to compliment Figures 5.6 - 5.8.

The chosen grid spans 625 points when λ is fixed at the outset, and 3125 when we estimate

λ (GH model). To give a crude idea of how the final estimates compare with the initial grid of

points, Figure 5.9 provides the same scatterplot of points as Figure 5.3, but with the inclusion of

a visual indicator of the initial value grid for α and β (in RED). It is clear that many of initial

value permutations resulted in divergent behaviour rather then staying in the realm of the global
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Chapter 5. 5.2. Fitting GH distributions to the data

220

230

240

−60 −30 0 30
beta

al
ph

a

log−likelihood

>= 6408

>= 6400

>= 6300

>= 6200

Figure 5.7: Scatterplot of (α̂, β̂) estimates for hyperbolic fit: NYSE composite index.
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Figure 5.8: Scatterplot of (α̂, β̂) estimates for NIG fit: NYSE composite index.
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Chapter 5. 5.2. Fitting GH distributions to the data

Table 5.4: The number of estimates falling in each log-likelihood bracket corresponding to the GH
distribution as in Figure 5.6.

Log-likelihood Value Number of Estimates

≥ 6406 241

≥ 6400 1611

≥ 6300 897

≥ 6200 55

≥ 6100 13

≥ 6000 17

< 6000 291

Table 5.5: The number of estimates falling in each log-likelihood bracket corresponding to the
hyperbolic subclass as in Figure 5.7.

Log-likelihood Value Number of Estimates

≥ 6408 117

≥ 6400 202

≥ 6300 172

≥ 6200 35

≥ 6000 44

< 6000 55

maximum. This may be due the the associated µ and δ values, but upon observing the resulting

set of points and comparing them with the initial values, this cannot be said as the values conflict

with this notion.
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Chapter 5. 5.2. Fitting GH distributions to the data

Table 5.6: The number of estimates falling in each log-likelihood bracket corresponding to the
NIG subclass as in Figure 5.8.

Log-likelihood Value Number of Estimates

≥ 6406 149

≥ 6400 195

≥ 6300 281
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Figure 5.9: Scatterplot of (α̂, β̂) estimates for GH fit with initial value overlay: NYSE composite
index.

We observe similar behaviours when fitting GH models to the S&P 500 Index data. As before,

in Figures 5.10-5.12 we observe the results of fitting the generalized hyperbolic, hyperbolic, and

normal inverse Gaussian models to the data. What stands out here, is while there were indicators

of dependency between the α and β parameters when fitting the models to the NYSE data, Figures

5.11 and 5.12 provide a strong indication of dependency between α and β. There is a strong linear

region for the α and β parameters, all corresponding to approximately the same log-likelihood
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Chapter 5. 5.2. Fitting GH distributions to the data

value. This is a strong indicator of a potential structural non-identifiability (see Raue et al., 2009).

0

10

20

30

40

50

−25 0 25 50
beta

al
ph

a

log−likelihood

other

>= 86

>= 80

>= 60

>= 40

>= 20

< 0

Figure 5.10: Scatterplot of (α̂, β̂) estimates: S&P 500 Index GH fit.
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Figure 5.11: Scatterplot of (α̂, β̂) estimates: S&P 500 Index hyperbolic fit.
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Chapter 5. 5.2. Fitting GH distributions to the data
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Figure 5.12: Scatterplot of (α̂, β̂) estimates: S&P 500 Index NIG fit.

This analysis provides clear emphasis on the importance of initial value selection, as not only

does this influence the likelihood of converging to the global maximum, but clearly can result in

divergent behaviour by moving away from the maximum point and not towards. The problem

is exacerbated when variation in λ is introduced. Despite this clear dependence on the initial

value when using the Nelder-Mead algorithm, it will be shown later that in most instances the

resulting estimate is quite good when an appropriate initial value is chosen. It is, however, worth

mentioning that there is no guarantee that an sensibly chosen initial value will converge, and as

such it is advised to consider more commonly used methods such as the EM algorithm, or the

proposed method that is outlined in section 4.3.

The next method that was considered is the EM algorithm, most notably for its aforementioned

prevalence in literature for fitting GH models to data. Sections 4.2 and 4.2.1 provide an overview

of the EM algorithm, as well as the EM algorithm in the context of the GH distribution and how to

implement it. The discussion that follows will be focused on the performance of the EM algorithm

as well as the limitations that were found when implementing it.

While this analysis proved useful with a simultaneous optimization routine such as the Nelder-
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Chapter 5. 5.2. Fitting GH distributions to the data

Mead algorithm, the same visual representation is not really possible with the EM algorithm. In the

case of the EM algorithm one of two things happened. Either the choice of initial value resulted

in the process converging to the global maximum value, or the algorithm got caught in a local

maximum. This is, however, a known behaviour of the EM algorithm and as such did not raise a

particular concern.

Of course, it is not always feasible to do an entire analysis across a grid of what can very easily

be a substantial number of initial values. This can be an extremely costly process, especially when

the underlying data contains a great many points, and if the estimation method being used has

a significant time to completion. It also needs to be factored, as with any iterative method, that

convergence time is not consistent across initial value choices. A solution to this is of course to put

a upper limit on the number of iterations before terminating the procedure. It has, however, been

found in some instances that while the process may slow down and exceed the chosen iteration

limit of 103, if left to run it would eventually converge to the global maximum.

When this analysis across the same grid of points is applied to the method proposed in sec-

tion 4.3, the results where quite promising. Where the other methods had a significant subset of

iterations either failing to reach the global maximum, or getting caught in a local maximum, this

method had a 100% convergence rate to the global maximum point. This means that, for every

permutation of initial value in the chosen grid, the algorithm ended up converging to the global

maximum point of the given log-likelihood function for this specific case.

This method is clearly more resistant to the impact of the initial value choice. This increased

robustness can likely be attributed to the fundamental principle of the algorithm. By splitting

the likelihood function into parts, we reduce the dimensionality of the subsequent functions to

maximize. This has the effect of improving the overall shape and behaviour of the function to be

maximized. Another convenient aspect of this method lies in its construction. The optimization

routine used for each profiled likelihood function is decided by the user, and as such can be adapted

and even applied in numerous ways and to other distributions as well.
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Chapter 5. 5.3. Initial value selection

5.3 Initial value selection

This section will contain a discussion on the findings related to the choice of initial value, as well

as the impact this had on each estimation method. When making use of numerical methods to find

the maximum a function, it is necessary to provide an initial value to start off the process. The

importance of this selection should not be understated, as it can often be the deciding factor in the

successful convergence of the algorithm. This can clearly be seen by the results in section 5.2,

where for even seemingly sensible initial value choices the algorithm either got caught in a local

maximum, or failed to converge. The process of selecting initial values can also provide some

valuable insights regarding the fitting process. These values can provide a good indicator of the

parameter ranges, allowing us to better gauge the permissible range of the underlying parameters.

In terms of initial value selection for fitting a GH model to data, there is a recurring method in

the literature. Aas and Haff (2006), Panahi (2018), Karlis (2002), and Rathgeber et al. (2017) all

make use of the moment estimates as a starting point for the estimation of the GH parameters. It is

important to clarify that the method of moments estimates are only viable when is fixed to a corre-

sponding subclass such as the hyperbolic or normal inverse Gaussian models. An appealing aspect

of the NIG subclass lies in the rather simple and straightforward moments (see section 2.2.6) that

allow for easy moment estimation. In the other subclass instances we are fortunate to have pack-

ages at our disposal allowing for straightforward calculations of the moment estimates for both

the hyperbolic and hyperbolic asymmetric t subclasses. Please refer to the GeneralizedHyperbolic

and SkewHyperbolic packages for the required functions to get the moment estimates.

When it comes to initial value selection for the full GH model, the process is not so simple.

While the moment estimates of the NIG, HYP, and HAt subclasses are tractable, and as a result

more easily obtainable, the same cannot be said for the full GH model. The moments in their

standard form, as in section 2.4.2, cannot be readily solved to obtain moment estimates. There

does exist a rather advanced methodology in Rathgeber et al. (2017), but that is beyond the scope

of this study, and as will be shown shortly, it is not a necessary measure to obtain initial values for

the GH model.

Prause (1999) propose a useful starting point, whereby they set β = 0, resulting in a symmetric

model, as well choosing a reasonable kurtosis value (e.g. ξ ≈ 0.7). It was also found that the
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Chapter 5. 5.4. Estimation results

sample mean and sample standard deviation are good starting choices for µ0 and δ0 respectively.

This allows us to make use of the fourth alternate parameterization in section (2.3) to solve for α0,

namely

ξ =
1√

1 + ζ
, (5.3.1)

and using ζ = δ
√
α2 − β2 we get

ξ =
1√

1 + δ
√
α2 − β2

, (5.3.2)

and since we have initial estimates for all but α, this allows us to easily solve for α using (5.3.2).

All that then remains is to find an initial estimate for λ. Since we have estimates for the other four

parameters, a reasonable solution is simply to find the maximum likelihood estimate for λ given

these initial estimates, much in the same fashion as profile likelihood estimation.

This process (adapted from Prause (1999)) gives us the following initial values:

(λ0, α0, β0, δ0, µ0) = (0.48, 158.34, 0, 0.0066, 0.00040).

Comparing this vector with the resulting global maximum (see Table 5.7 and Prause (1999, p. 34))

(λ̂, α̂, β̂, δ̂, µ̂) = (0.81, 212.56,−5.93, 0.0022, 0.00066),

this method seems to generate reasonable starting values for the full GH model, and for all in-

stances, save the unconstrained Nelder-Mead algorithm, performed quite well in converging to the

global maximum (see Table 5.7).

5.4 Estimation results

Tables 5.7 and 5.8 contain the resulting estimates for the GH, NIG, hyberbolic and hyperbolic

asymmetric t distributions fitted to the NYSE Composite Index and S&P 500 index datasets re-

spectively. The tables contain the resulting estimates from the following methods:

1. Nelder-Mead simplex method.
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Chapter 5. 5.4. Estimation results

2. Nelder-Mead simplex method with linear constraints.

3. EM algorithm.

4. Profile likelihood based alternating estimation.

In Table 5.7 we observe the result of fitting the models to the NYSE Composite Index data. For

both the hyperbolic and normal inverse Gaussian subclasses all the estimation methods performed

rather well, in that they were all able to converge to their respective global maximum points. In the

full GH estimation it is clear that the Nelder-Mead simplex method did not adequately converge

to the global maximum point. This is clearly a consequence of the flatness of the log-likelihood

function, further amplified by the inclusion of λ in the estimation process, and referring back to

Figure 5.3 this is not surprising. The hyberbolic asymmetric t fit had some stability issues when

various initial values were tested, but when the moment estimates were used as initial values the

process seems to converge to the required maximum.

Something that was found when fitting the GH model or one of the relevant subclasses, is that

it is not always correct to assume a subclass will be a good fit. For some of the fitted subclasses, the

likelihood of stability issues and inadequate convergence was higher. There were also instances of

non-convergence, and sometimes even divergence. Another aspect that must be carefully consid-

ered is the proximity of the initial values for α and β to the boundary of the constraint |β| < α. It

is found that when α0 β0 are close in magnitude, the estimation algorithm can get “stuck” on the

line that governs the constraint between these parameters, and consequently fail to converge to the

global maximum point.

Another scenario that can occur is the global maximum point itself being close to this bound-

ary. This is often an indication that the current distribution being fitted is not the most suitable and

another subclass should be fitted. A direct example can be found in Table 5.8, where the full GH

fit is rather close to the hyperbolic asymmetric t fit for the S&P 500 index dataset. In this instance

it would be better suited to assume a hyperbolic asymmetric t model from the outset.

Looking at Table 5.8, namely the estimation results for the S&P 500 dataset, there are some-

what more instances of non-convergence, and potentially even divergence of the estimation algo-

rithms. In the hyperbolic subclass fit, the EM algorithm fails to converge to the global maximum

point, seemingly exhibiting the behaviour more commonly seen with the Nelder-Mead simplex
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Chapter 5. 5.5. Model fit assessment

method and other general purpose optimization strategies. When the NIG model is considered,

both iterations of the Nelder-Mead simplex method fail to converge to the global maximum point,

instead getting caught in a local maximum. The EM algorithm shows a similar outcome, but with

a slightly more desirable estimate. The new alternating method actually managed to converge

to a point that could resemble a global maximum point, if one were to compare log-likelihood

values across the subclass fits. An important note, however, is that the alternating method took

much longer to converge when the NIG subclass is fit. Most iterative methods would have some

built-in stop criterion that would prevent this point from ever being reached. This is most likely an

indication that the NIG fit is not ideal for this data.

If we compare the full GH fit with the hyperbolic asymmetric t fit, we see that they are really

quite similar. This is a strong indicator that the hyperbolic asymmetric t fit is ideal for the S&P

500 dataset. When fitting the full GH model in this fashion and the parameters are leaning towards

one of the subclasses, it is advised to instead fit the relevant subclass, as it has already been shown

what impact the variation of λ has on the estimation process.

5.5 Model fit assessment

In this section we will be analysing and comparing each of the model fits for both the NYSE data

and the S&P 500 data. Figure 5.13 provides a graphical overlay of the densities of the various fitted

distributions, as well as a normal fit, with the empirical pdf. In Figure 5.13b we have multiple QQ-

plots overlayed in a similar pattern. It is clear here that the normal fit is not appropriate to this data.

This is to be expected given the nature of the chosen datasets, and the typical tail properties present

in financial data. Looking at Figures 5.13a and 5.13b, it seems as if the full GH distribution, as

well the selected subclasses all provide an adequate fit to the data.
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Chapter 5. 5.5. Model fit assessment

Table 5.7: Estimates for the GH distribution and relevant subclasses: NYSE composite index.

λ α β δ µ Log-L

Hyperbolic

Nelder-Mead 1 225.04 -5.68 0.0016 0.00064 6408.27

Nelder-Mead (constrained) 1 224.91 -6.12 0.0016 0.00066 6408.27

EM-algorithm 1 226.33 -5.91 0.0016 0.00065 6408.26

New method 1 225.03 -5.84 0.0016 0.00064 6408.27

Normal inverse Gaussian

Nelder-Mead -0.5 136.36 -8.89 0.0059 0.00079 6406.74

Nelder-Mead (constrained) -0.5 136.50 -8.85 0.0059 0.00079 6406.74

EM-algorithm -0.5 139.13 -9.19 0.0060 0.00080 6406.72

New method -0.5 135.84 -8.80 0.0059 0.00078 6406.74

Generalized hyperbolic

Nelder-Mead 0.67 203.49 -7.09 0.0027 0.00070 6408.26

Nelder-Mead (constrained) 0.84 215.08 -6.72 0.0022 0.00068 6408.30

New method 0.81 212.56 -5.93 0.0022 0.00066 6408.31

Hyperbolic asymmetric t

Nelder-Mead -1.94 9.71 -9.71 0.0093 0.00084 6402.09

Nelder-Mead (constrained) -1.94 9.66 -9.66 0.0093 0.00084 6402.09

New method -1.96 9.91 -9.91 0.0094 0.00084 6402.09
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Chapter 5. 5.5. Model fit assessment

Table 5.8: Estimates for the GH distribution and relevant subclasses: S&P 500 index.

λ α β δ µ Log-L

Hyperbolic

Nelder-Mead 1 15.96 7.35 0.1734 0.8352 85.06

Nelder-Mead (constrained) 1 15.98 7.37 0.1735 0.8349 85.06

EM-algorithm 1 8.37 1.43 4.14e-14 0.9423 80.80

New method 1 15.09 6.58 0.1650 0.8464 85.05

Normal inverse Gaussian

Nelder-Mead -0.5 414.44 -392.76 0.4381 2.2882 38.39

Nelder-Mead (constrained) -0.5 415.99 -394.85 0.4298 2.839 38.38

EM-algorithm -0.5 151.51 -95.82 1.9947 2.6133 60.88

New method -0.5 11.94 6.05 0.2183 0.8557 85.58

Generalized hyperbolic

Nelder-Mead -4.37 7.8088 7.8087 0.3648 0.8299 86.35

Nelder-Mead (constrained) -4.36 7.8119 7.8117 0.3644 0.8298 86.35

New method -4.44 8.1109 8.1106 0.3666 0.8256 86.35

Hyperbolic asymmetric t

Nelder-Mead -4.49 8.20 8.20 0.3684 0.8244 86.35

Nelder-Mead (constrained) -4.52 8.24 8.24 0.3699 0.8236 86.35

New method -4.47 8.19 8.19 0.3676 0.8247 86.35
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(b) QQ-plot: NYSE Composite Index.

Figure 5.13: NYSE Composite Index.

The first measure that will be used to assess the various fitted models will be the Kolmogorov-

Smirnov (KS) distance (see Massey Jr, 1951). The KS distance is used to test the equality of two

one-dimensional distributions by comparing the empirical CDF with the fitted CDF. We define the

KS distance as the supremum of the difference between the empirical CDF and the fitted CDF as

follows

KS = sup
x
|Fn(x)− F (x)| , (5.5.1)

where Fn(x) refers to the empirical CDF and is defined as

Fn(x) =
1

n

n∑
i=1

IXi≤x (5.5.2)

where 1Xi≤x is an indicator function and is defined as

IXi≤x =


1 if Xi ≤ x

0 otherwise
(5.5.3)

We will also be using the Anderson-Darling (AD) statistic as a measure of the goodness-of-fit
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Chapter 5. 5.5. Model fit assessment

(see Anderson and Darling, 1954). The AD statistic is defined as

AD = sup
x

|Fn(x)− F (x)|√
Fn(x)(1− Fn(x))

. (5.5.4)

While both measures are similarly constructed, the AD test is more sensitive to the tail structure

of the distribution, whereas the KS test is more focused on the central structure of the distribution.

Considering that the tail behaviour is an appealing aspect of the generalized hyperbolic model,

and thus an important aspect to consider, we will likely favour this metric over the KS distance.

As a final addition we will also consider Akaike information criterion (AIC) (see Akaike,

1998). For a given model with k parameters to estimate, the AIC is defined as:

AIC = 2k − 2 `(θ̂), (5.5.5)

where `(θ̂) is the log-likelihood value corresponding the the maximum likelihood estimate θ̂ as

before. The resulting measures can be found in Table 5.9. It is important to note that the values

in Table 5.9 are only test statistics, not significance values, and they cannot be interpreted in an

inferential sense.

For the NYSE Composite Index dataset, we see that for both the KS test and the AD test the

full GH distribution and the NIG subclass are favoured, with the NIG subclass being preferred in

the latter case. It is, however, clear that while there is a favourite in each case, the differences in

the test statistics are rather small. This points back to the flatness of the log-likelihood function,

as well as the potential overfitting problem faced by this class of distributions, especially when λ

is arbitrary. Interestingly enough, the AIC metric actually favours the NIG fit the least, with the

hyperbolic fit being the most favourable according to this test. It should again be noted that the

differences in AIC values are really quite small, again pointing to the undesirable shape of the

log-likelihood function of the GH distribution and its subclasses.

For the S&P 500 index we observed a similar trend. In this instance we see that the full

GH model and the hyperbolic asymmetric t subclass are favoured in terms of the KS and AD

statistics. These values are very close in magnitude, but this is to be expected considering the

striking similarity of the full GH and HAt estimates in Table 5.8. Here we see that the AIC
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Chapter 5. 5.5. Model fit assessment

statistic also favours the hyperbolic asymmetric t distribution over the others. We also observe the

same trend as before, specifically the small differences in magnitudes of the measures in Table

5.9 between the different model fits. This seems to be a recurring problem of the GH distribution,

especially considering that the S&P 500 index contains 200 observations, compared to the 1749

observations in the NYSE Composite Index dataset.

Table 5.9: Goodness-of-fit metrics for the GH, NIG, Hyperbolic and hyperbolic asymmetric t
distributions fitted to the NYSE Composite Index and S&P 500 Index data.

Kolmogorov-Smirnov Anderson-Darling AIC

Statistic Statistic

NYSE Composite Index

GH 0.0160 0.0497 -12806.61

HYP 0.0185 0.0548 -12808.53

NIG 0.0176 0.0404 -12805.48

HAt 0.0223 0.0508 -12796.18

S&P 500 Index

GH 0.0397 0.1120 -162.699

HYP 0.0411 0.2246 -162.102

NIG 0.0406 0.1555 -163.169

HAt 0.0393 0.1122 -164.699
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Chapter 5. 5.6. Simulation study

5.6 Simulation study

In order to get a better understanding of the stability of fitting the generalized hyperbolic distribu-

tion to data, a simulation study will be performed. In this study we simulate datasets of size 2000

from the full GH distribution, as well as the NIG and hyperbolic subclasses. The parameter values

in each case are chosen to be the maximum likelihood estimates for each of the subclasses fitted

to the NYSE Composite Index data.

This will allow for a more consistent comparison, as these estimates come from fitting notable

subclasses of the GH distribution, as well as the full GH distribution to the same dataset. Simulat-

ing in this fashion also ensures that a meaningful set of parameters is chosen to simulate from in

each case, and helps paint a picture as to the stability of the fitting the GH model and its subclasses

to real world datasets.

A description of the process to generate the ensuing tables will now be given. For varying

sample sizes, we sample with replacement, much in the fashion of a bootstrap, after which we fit

the relevant GH model or subclass to this sampled dataset. This process is repeated 100 times for

each sample size, thus allowing us to compute the mean and standard errors of the parameters in

each case.

In Tables 5.10 and 5.11 provide the means and standard errors of the parameters corresponding

to the normal inverse Gaussian subclass fit. While the δ and µ parameters are relatively stable

throughout, it is clear that this is not the case with α and β. It is only from sample size 1000

onwards the we begin to observe reasonable stability in the α and β parameters in terms of the

mean and standard error.

In Tables 5.12 and 5.13 we observe that while the values of δ and µ are again stable throughout,

The α and β parameters are again showing some instability. While it can be argued that the α and

β parameters have a more consistent convergence pattern to the MLE estimates as we increase

the sample size n, what is alarming is that even at a sample of size 2000 these values are still

significantly off from the MLE. From Table 5.7, for the hyperbolic fit we see that the estimates for

α and β are 225.03 and -5.84 respectively. While this α is not so far from average α value of 230.12

we observe when n = 2000, the average β value of -16.30 is quite far from the corresponding MLE

value.
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Chapter 6. 5.6. Simulation study

What is most alarming, however, is what can be seen in Tables 5.14 and 5.15, that is, the means

and standard errors when the full GH model is fitted. While the δ and µ parameters are exhibiting

the same behaviours as before, we again observe some stability issues in terms of α and β. What

is especially interesting, is what can be observed when we look at the stability of the λ parameter.

For smaller sample sizes the average estimate for λ is significantly different from the estimated

value of 0.81 in Table 5.7. Not only this, but at the observed rate of change, it seems entirely

possible, if not likely, that an average value close to the estimated value of 0.81 will only happen

for sample sizes of 10000 or more.

This occurance serves as a reinforcement of the same pattern of behaviours stemming from

the estimation of the λ parameter, namely a negative impact not only on the shape and behaviour

of the log-likelihood function of the GH distribuution, but on the estimation process itself and the

quality of the resulting parameter estimates. This surely calls into question whether λ should be

included in the estimation process, as this analysis has shown that it seems a much more sensible

choice to fix λ and fit the relevant subclass/es to the data.

Table 5.10: Mean of the estimates of the NIG subclass (see (2.2.10)) at different sample sizes:
NYSE Composite Index; 100 iterations

Sample Size Mean Mean Mean Mean

α β δ µ

50 183.16 -5.13 0.0073 0.00060

100 178.63 -2.48 0.0074 0.00076

150 169.89 -7.57 0.0075 0.00084

200 169.27 -7.36 0.0072 0.00082

250 158.46 -10.20 0.0070 0.00088

500 147.41 -8.82 0.0066 0.00095

750 145.85 -9.90 0.0066 0.00095

1000 140.59 -9.05 0.0065 0.00091

1500 139.83 -7.68 0.0064 0.00089

2000 139.23 -7.70 0.0064 0.00090
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Chapter 6. 5.6. Simulation study

Table 5.11: Standard error of the estimates of the NIG subclass (see (2.2.10)) at different sample
sizes: NYSE Composite Index; 100 iterations

Sample Size Std error Std error Std error Std error

α β δ µ

50 9.158 5.601 0.00030 0.00018

100 6.866 3.572 0.00022 0.00013

150 6.360 2.621 0.00023 0.00011

200 6.362 2.466 0.00020 0.000097

250 4.822 2.115 0.00017 0.000079

500 3.257 1.460 0.000094 0.000056

750 2.067 1.314 0.000082 0.000048

1000 1.764 1.011 0.000061 0.000044

1500 1.568 0.9977 0.000048 0.000041

2000 1.278 0.8514 0.000046 0.000040

Table 5.12: Mean of the estimates of the hyperbolic subclass (see (2.2.4)) at different sample sizes:
NYSE Composite Index; 100 iterations

Sample Size Mean Mean Mean Mean

α β δ µ

50 259.12 -22.29 0.0016 0.00097

100 261.75 -22.68 0.0020 0.00084

150 242.28 -17.00 0.0015 0.00082

200 244.28 -20.63 0.0017 0.00087

250 244.94 -18.86 0.0019 0.00090

500 234.88 -17.33 0.0015 0.00083

750 229.72 -18.76 0.0013 0.00090

1000 230.39 -17.48 0.0013 0.00085

1500 230.29 -15.73 0.0013 0.00080

2000 230.12 -16.30 0.0013 0.00079
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Chapter 6. 5.6. Simulation study

Table 5.13: Standard error of the estimates of the hyperbolic subclass (see (2.2.4)) at different
sample sizes: NYSE Composite Index; 100 iterations

Sample Size Std error Std error Std error Std error

α β δ µ

50 5.589 4.772 0.00028 0.00016

100 5.625 4.898 0.00029 0.00014

150 3.889 2.959 0.00021 0.00011

200 3.924 2.251 0.00019 0.000071

250 3.359 1.929 0.00022 0.000071

500 2.226 1.966 0.00014 0.000062

750 1.611 2.136 0.00012 0.000080

1000 1.414 1.798 0.00010 0.000062

1500 1.073 0.8536 0.000077 0.000029

2000 1.012 0.9682 0.000080 0.000034

Table 5.14: Mean of the estimates of the GH distribution (see (2.1.2)) at different sample sizes:
NYSE Composite Index; 100 iterations

Sample Size Mean Mean Mean Mean Mean

λ α β δ µ

50 -3.594 235.10 -44.27 0.0075 0.00140

100 -2.430 177.70 -12.47 0.0064 0.00072

150 -0.1369 168.94 -11.57 0.0042 0.00069

200 0.1706 175.22 -13.64 0.0034 0.00078

250 0.2892 175.34 -12.16 0.0031 0.00071

500 0.4392 184.19 -13.93 0.0028 0.00080

750 0.4548 180.05 -12.25 0.0027 0.00069

1000 0.4677 182.68 -12.77 0.0028 0.00072

1500 0.4689 180.83 -12.47 0.0028 0.00075

2000 0.5424 186.97 -11.43 0.0026 0.00071

75

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 6. 5.6. Simulation study

Table 5.15: Standard error of the estimates of the GH distribution (see (2.1.2)) at different sample
sizes: NYSE Composite Index; 100 iterations.

Sample Size Std error Std error Std error Std error Std error

λ α β δ µ

50 1.468 17.82 16.22 0.0015 0.00033

100 1.365 9.39 7.202 0.0013 0.00019

150 0.2160 7.51 2.790 0.00053 0.000090

200 0.1192 6.02 2.230 0.00039 0.000079

250 0.0971 6.02 1.858 0.00031 0.000064

500 0.0680 4.30 1.157 0.00025 0.000041

750 0.0593 4.01 0.9486 0.00020 0.000034

1000 0.0552 3.75 0.8244 0.00019 0.000029

1500 0.0468 2.91 0.6241 0.00017 0.000023

2000 0.0447 3.09 0.6404 0.00016 0.000023
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Chapter 6

Synthesis

This final chapter serves as a conclusion to the study, with a summary of the findings, a discussion

on the study’s significance, and lastly a brief outline of potential avenues of departure for future

work.

6.1 Findings

As it can clearly be seen in the exploratory analysis undertaken in chapter 5, there exist clear

problems that need to be navigated when fitting the GH distribution to data by means of the log-

likelihood function. This stems not only from the formulation of the GH distribution, but from the

behaviour of the ensuing log-likelihood function. There is clear evidence that the dimensionality

of the parameter space causes behavioural problems in terms of the log-likelihood. This seems to

stem not only from a potential over-parameterization, but from the numerical limitations imposed

by the funcional form of the GH distribution.

This is not to say that fitting the GH model to data is a fruitless pursuit. This simply means

that a certain degree of care needs to be exercised when fitting the model. It was, for example,

found that the inclusion of the λ parameter had a significant impact on not only the likelihood of

convergence, but on the likelihood of converging to an adequate estimate. This is in large part due

the the flatness of the log-likelihood function, especially that contributed by the λ parameter. This

can be seen when comparing the regions in Figures 5.4, 5.5, and 5.3.
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Chapter 6. 6.2. Significance of study

There also seems to be some linearity in the relationship between the α and β parameters,

as can be seen in Figures 5.3, 5.4, 5.7, and 5.8. This is a possible indication of a redundant

parameterization, but can also be an indication of a practical identifiability issue stemming from

the data (see Raue et al., 2009). The simulation study conducted also serves to support this notion,

as it was shown in Tables 5.10, 5.12, and 5.14 that we only begin to see convergence to the true

parameter values for sample sizes of 2000 and above. In the GH instance specifically (see Table

5.14), there is still a discrepancy between the average estimate values and true parameter values at

the sample of size 2000.

6.2 Significance of study

It is easy to overlook issues stemming from the behaviour of the log-likelihood function or the

parameters themselves, especially when the role they play is not so obvious. In the context of

the GH distribution, it was shown that different subclass can have largely similar shapes, and in

some instances can have virtually identical fits to the data. It is also shown in Figures 5.3 and 5.4

that vastly different parameter estimates have near identical log-likelihood values. This makes it

somewhat dangerous to simply accept the resulting estimate without further investigation. There is

also the issue of getting caught in a local maximum, which, in tandem with the the log-likelihood

function behaviour, further reduces the validity of the resulting estimate. The inability of visualis-

ing the behaviour of the log-likelihood function due to its dimension is also a contributing factor.

It is therefore of critical importance to be aware of these potential pitfalls. In this study it is shown

that when certain measures are taken, such as fixing certain problematic parameters or breaking up

the log-likelihood function to allow for better behaviour, and an understanding of the underlying

distribution exists, then there is a much better likelihood of successfully fitting the model to the

data.

6.3 Future prospects

This study serves to create a platform as a byproduct of an exploratory analysis into maximum

likelihood estimation in the context of the generalized hyperbolic model. What has been found,
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Appendix A. 6.3. Future prospects

however, is that while some of the findings are likely unique to the underlying distribution, there

are certainly instances where these findings can also apply to similar distributions. The GH distri-

bution is considered a flexible distribution class, whereby the pdf is regulated by four parameters,

thus allowing for greater variation in terms of measures of skewness and of kurtosis. There are

an array of flexible distributions (see Ley, 2015), and it is therefore expected that these issues of

log-likelihood behaviour and potential over-parameterization, as well as the issues they bring, may

also be present within distributions conforming the the flexible distribution structure.
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Appendix A

Continuous normal mixture

distributions

The following information is extracted from McNeil, Frey, and Embrechts (2005, pg. 73-78) and

will serve as a brief overview of the mechanics of normal mean-variance mixtures, and is essential

in the derivation of the GH distribution and its various subclasses, as well as the estimation of the

GH parameters by means of the EM algorithm. The process of normal mean-variance mixtures

involves the introduction of randomness into the variance component, as well as the mean compo-

nent of the normal distribution by means of a positive mixing variable which will be denoted by

W throughout the text that follows.

Normal variance mixtures

Definition A.1. The random variableX ∈ R is said to have a normal variance mixture distribution

if

X
d
= µ+

√
WZ (A.1)

where

1. Z ∼ N(0, 1),

2. W ≥ 0 is any non-negative, scalar-valued random variable independent of Z, and

3. µ is a parameter in R.
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Appendix A.

We refer to these distributions as variance mixtures, since by conditioning on the mixing vari-

able W we observe that

X|(W = w) ∼ N(µ,W ). (A.2)

The distribution of the random variable X is thought of as a composite distribution, con-

structed by taking a set of univariate normal distributions with equal means and equal variances

up to a multiplicative constant w. The mixture distribution is then constructed by randomly draw-

ing from the set of composite normal distributions according to the weighting determining by the

mixing variableW . It needs to be noted that this mixture, namely the distribution ofX is not itself

a normal distribution.

Normal mean-variance mixtures

The resulting mixture distributions from normal variance mixtures have what is called elliptical

symmetry. This does not align with the inherent structure of the typical dataset to which we fit

the GH distribution. As previously stated the GH distribution is a popular choice when modelling

financial data such as stock returns, which tend to have heavier tales for negative returns than for

positive returns. In contrast to normal variance mixtures where the resulting mixture distributions

have elliptical symmetry, normal mean-variance mixtures add asymmetry to the process by mixing

normal distributions that have different means as well as different variances.

Definition A.2. The random variable X ∈ R is said to have a normal mean-variance mixture

distribution if

X
d
= µ+ βW +

√
WZ (A.3)

where

1. Z ∼ N(0, 1),

2. W ≥ 0 is any non-negative, scalar-valued random variable independent of Z, and

3. µ and β are parameters in R.
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From this definition we have that

X|(W = w) ∼ N(µ+ βW,W ). (A.4)
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Appendix B

Modified Bessel functions

In this appendix a few key results and properties of modified Bessel functions are discussed which

are useful in deriving and working with the generalized hyperbolic distributions. The following

information is taken from Paolella (2007) as well as Bibby & Sørensen (2003). The modified

Bessel function of the third kind with index λ is defined by the following integral expression

Kλ(x) =
1

2

∫ ∞
0

tλ−1e−
1
2
x(t+ 1

t
) dt, x > 0. (B.1)

What makes this expression interesting is its similarity to the gamma function, and it will later be

shown how these two functions are related.

The modified Bessel function of the third kind has the following key properties:

K−λ(x) = Kλ(x) (B.2)

Kλ+1(x) =
2λ

x
Kλ(x) +Kλ−1(x) (B.3)

K ′λ(x) =
−λ
x
Kλ(x)−Kλ−1(x) (B.4)

For λ = n+ 1
2 , with n = 0, 1, 2, . . . , we have

Kn+ 1
2
(x) =

√
π

2x
e−x

(
1 +

n∑
i=1

(n+ i)!

(n− i)! i!
(2x)−i

)
(B.5)
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For x = 0, the modified Bessel function has a singular point (or singularity), and for small

values of x we have

Kλ(x) ∼ −ln(x) for x→ 0, λ = 0. (B.6)

Kλ(x) ∼ Γ(λ)2|λ|−1x−|λ| for x→ 0, λ 6= 0. (B.7)

The following integral expression is closely related to the Bessel function, and is of importance

as it is used in the derivation of the generalized hyperbolic distributions as well as in many of the

subfamily pdf function expressions:

kλ(χ, ψ) =

∫ ∞
0

xλ−1e−
1
2

(χx−1+ψx) dx. (B.8)

This integral converges for arbitrary λ ∈ R and χ, ψ > 0. By setting η =
√

χ
ψ , ω =

√
χψ, and

using the substitution x = ηy we get

kλ(χ, ψ) =

∫ ∞
0

xλ−1e−
1
2

(χx−1+ψx) dx.

=

∫ ∞
0

xλ−1e
− 1

2
ω((x

η
)−1+x

η
)
dx.

=

∫ ∞
0

(ηy)λ−1e−
1
2
ω(y−1+y)η dy.

= 2ηλ
1

2

∫ ∞
0

yλ−1e−
1
2
ω(y−1+y) dy.

= 2ηλKλ(ω). (B.9)

This gives us the following

kλ(χ, ψ) = 2ηλKλ(ω) = 2

(
χ

ψ

)λ
2

Kλ

(√
χψ
)
. (B.10)

The expression in (B.8) also has two boundary cases to which it converges. The first case occurs

if χ = 0 and ψ > 0, and convergence occurs if and only if λ > 0. For this boundary case, we use
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of the substitution y = ψ
2 x which gives us the following:

kλ(0, ψ) =

∫ ∞
0

xλ−1e−
1
2
ψx dx

=

(
ψ

2

)−λ ∫ ∞
0

yλ−1e−y dy

=

(
ψ

2

)−λ
Γ(λ). (B.11)

(B.12)

The second boundary case occurs if χ > 0 and ψ = 0, and convergence occurs if and only if

λ < 0. For this case we make use of the substitution y = ψ
2x , which gives us

kλ(χ, 0) =

∫ ∞
0

xλ−1e−
1
2
χx−1

dx

=
(χ

2

)λ ∫ ∞
0

y−λ−1e−y dy

=
(χ

2

)λ
Γ(−λ). (B.13)

(B.14)

This gives us the expressions

kλ(0, ψ) =

(
ψ

2

)−λ
Γ(λ) (B.15)

and

kλ(χ, 0) =
(χ

2

)λ
Γ(−λ). (B.16)

The function in (B.8) possesses the following useful properties

kλ(χ, ψ) = k−λ(ψ, χ), (B.17)

and

kλ(χ, ψ) = rλkλ(r−1χ, rψ) ∀r > 0. (B.18)
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