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Summary 

It is well-known that non-Newtonian fluids such as polymers melts do not 
satisfy the usual adherence boundary condition. On the other hand, the 
available theory relies heavily on the no-slip assumption. The purpose of this 
work is to establish the well-posedness of the initial-boundary-value problem 
for flows of second grade fluids subject to general partial slip boundary con
ditions. It is assumed that the fluid satisfies the usual thermodynamical 
restrictions, that the domain of fl.ow is bounded and simply-connected, and 
that the slip yield stress is zero. 

The proof is based on a fixed point formulation of the problem which de
composes it into three linear ones: a Stokes type problem and two transport 
problems. After proving the solvability of these auxiliary problems by the 
Faedo-Galerkin method, the existence of a unique classical solution, local in 
time, is established by means of a Schauder fixed point theorem. Then global 
a priori estimates are derived to obtain a unique global classical solution for 
sufficiently small data and large viscosity. The solution is found to be stable 
under mild restrictions on the slip operator. 
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Opsomming 

Dit is algemeen bekend dat nie-Newtonse vloeistowwe soos gesmelte polimere 
nie die gebruiklike geen-glyding randvoorwaarde bevredig nie. N ogtans steun 
die bestaande teorie swaar op die geen-glyding aanname. Die doel van hi
erdie werk is om te toon dat die begin- randwaardeprobleem vir vloeie van 
tweede-graadse vloeistowwe onderhewig aan algemene gly-randvoorwaardes 
goedgeformuleer is. Dit word aanvaar dat die vloeistof die gebruiklike ter
modinamiese beperkings bevredig, dat die vloeigebied begrens en enkelvoudig 
samehangend is, en dat die gly-drumpelspanning nul is. 

Die bewys is gebaseer op 'n dekpuntformulering van die probleem wat dit 
ontbind in drie lineere probleme: 'n Stokes-tipe probleem en twee transport
probleme. Die oplosbaarheid van hierdie hulpprobleme word bewys deur die 
Faedo-Galerkinmetode, en daarna word die bestaan van 'n unieke klassieke 
oplossing, lokaal in tyd, bewys met behulp van 'n Schauder-dekpuntstelling. 
Globale a priori afskattings word clan afgelei om 'n unieke globale klassieke 
oplossing te verkry vir klein genoeg data en groot genoeg viskositeit. Die 
oplossing is stabiel onder matige beperkings op die gly-operator. 
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Chapter 1 

INTRODUCTION 

Heaven knows what seeming nonsense may 

not tomorrow be demonstrated truth! 

A. N. Whitehead 

1.1 Newtonian Fluids and Boundary Slip 

The question of whether there is a relative velocity between the fluid and 
the obstacle when a viscous fluid flows past a fixed obstacle has a long and 
interesting history. In the absence of reliable experimental observations it is 
natural to expect that some kind of friction law will apply at the fluid-solid 
interface. Thus in 1827 C.L.M.H. Navier formulated a boundary condition 
which admits partial slip. According to Navier's slip law the tangential 
component of the stress in the fluid is proportional to the slip velocity, i.e. 

(1.1) 

where v denotes the velocity of the fluid, n is the outward unit normal on 
the solid surface r, Vw is the velocity of the solid, 

T =-pl+ µ[Vv + (Vvf] (1.2) 

is the stress tensor in the fluid, with p the pressure and µ the coefficient of 
viscosity, and k is a positive constant ( k is usually called the slip coefficient, 

3 
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CHAPTER 1. INTRODUCTION 4 

and 1 / k the coefficient of momentum transfer ( or friction), but for simplicity 
the term slip coefficient will henceforth be used to refer to -1 / k instead). In 
1845 C.G. Stokes also conjectured that the no-slip condition 

V = 0 on f (1.3) 

holds at most for small fluid velocities, and that for larger velocities the 
tangential force is proportional to the square of the slip velocity, i.e. 

(1.4) 

However, by 1850 he had rejected this in favour of the no-slip condition on 
the basis of experimental observations and the argument that the presence of 
slip would imply an infinitely greater resistance to the sliding of one portion 
of fluid past another than to the sliding of fluid over a solid. 
[ More precisely: any slip between the particles trapped in the surface ir
regularities ( which are large compared with the size of the fluid molecules, 
so that the fluid-wall interaction is essentially the same as in the fluid) and 
the neighbouring fluid molecules would create an infinite velocity gradient, 
and the resulting infinite viscous stress would eliminate the discontinuity 
instantaneously. ] 

Due to conflicting experimental results, however, the matter continued to 
attract much debate for several more decades. This is not surprising in the 
light of the considerable technical difficulties involved in acquiring accurate 
measurements of fluid velocities near solid boundaries ( as witnessed by the 
fact that Ludwig Prandtl arrived at the idea of boundary layers only in 1904). 
For a detailed discussion of these results and related references, see (1, pp. 
676-9] ( which gives an account starting with observations by Daniel Bernoulli 
in 1738), [2] and [13, pp. 1213-4]. The relevant fact is that by the end of the 
nineteenth century the validity of the no-slip condition for most real fluids 
(as modelled by the Navier-Stokes/Stokes and continuity equations) under 
moderate pressures and velocities appears to have been well established. The 
almost universal acceptance of the no-slip condition is based on ([2]): 

(a) experiments involving the variation of the physical surface, 
(b) comparisons between experimental and theoretical solutions ( that satisfy 
the no-slip condition) of simple flow problems, 
( c) direct observations of fluids near surfaces, 
( d) arguments involving the molecular interactions between solids (kinetic 
theory), and more recently, 
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CHAPTER 1. INTRODUCTION 5 

( e) comparisons between numerical simulations and experimental results of 
a large array of complex fl.ow problems. 

The mathematical convenience of the no-slip condition is undoubtedly an
other reason why it has been adopted in the vast majority of theoretical and 
numerical studies to date. Modern, accurate observations [3] indicate that 
this may not be fully justified (for non-wetting fluids). 

One significant exception to the no-slip rule concerns the motion of slightly 
rarefied gases. As early as 1875, experiments by Kundt and Warburg con
clusively demonstrated that gases at low pressures slip past solid surfaces 
[7, chapter VIII]. Maxwell in 1879, followed by Knudsen and others [8], then 
proceeded to develop a theory of gas slippage. In particular, when the Knud
sen number ( I< n = A/ L, where A is the mean free path of the gas molecules 
and L is some characteristic length) is sufficiently large, velocity slip and a 
temperature jump occur at the wall surface. Moreover, for a certain range 
of Knudsen numbers this phenomenon has a continuum model: the N avier
Stokes equations subject to partial slip conditions of the form 

(1.5) 

Here k, k1 , k2 are positive constants, T is the temperature of the gas, Tw is 
wall temperature and s denotes the unit vector in the direction of ( v - Vw )T. 
(For a unidirectional flow v = (v1 (x1 , x2), 0, 0) in the half-space x2 ~ 0 this 
becomes 

Various studies have yielded refinements of (1.5), including second-order 
and nonlinear slip laws ([9, chapter 3], [10, chapter VIII], [11, chapter 7], 
(12, 13, 14, 15, 16, 17, 18], (19, sections 1.4, 6.2], (20]). These works mostly 
attempt to obtain analytical/ quantitative characterizations of the slip law 
and to establish the limitations of the continuum model, which is of practi
cal relevance to high altitude aerodynamics, the launching of satellites, etc. 
[ As a rocket travels upwards through the atmosphere, it moves through a 
continuum region (Na vier-Stokes equations, no velocity slip), the so-called 
slip flow region (Navier-Stokes equations, partial slip conditions (1.5)), a 
transition region (kinetic theory, Maxwell-Boltzmann equation) and the re
gion of free molecular flow (where molecular interactions are negligible).] 
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CHAPTER 1. INTRODUCTION 6 

Not surprisingly, the gas slippage problem has been the subject of countless 
numerical simulations (see e.g. (21, 22]). 

For ordinary fluids, the free surfaces in free boundary problems (FBPs) are 
generally modelled as being stress free, so that the condition of perfect 
slip ( usually in combination with the condition that the normal stress is 
proportional to the curvature of the free surface) applies: 

(Tn)r = o on r. (1.6) 

The first existence results for FBPs were obtained only fairly recently, follow
ing the work of (23] on the stationary Stokes equations in a fixed domain with 
perfect boundary slip, i.e. the mixed boundary problem (MBP) with bound
ary conditions (1.l)i, (1.6). These results for the MBP - which appears as 
an auxiliary problem in the fixed point approach to the FBP - have since 
been extended to the time-dependent Stokes and Na vier-Stokes equations 
with the perfect slip condition, as well as with the inhomogeneous traction 
condition 

(Tn)r = uT on r, (1. 7) 

where <Tr is some given function (combined with either ( 1.1 )i or a condition 
prescribing the normal stress); see e.g. (24, 25, 26, 27, 28, 29, 30, 31]. The 
theory of Na vier-Stokes FBPs has also grown rapidly. For more detail, see 
the survey [32] and the references therein. 

A fundamental problem in the study of FBPs is the appearance of infinite 
velocity gradients at the contact lines (points in the two-dimensional case) 
where the free and rigid surfaces meet. These (apparent) stress singularities, 
which result from 
(a) the presence of edges (corners) in the flow domain, and 
(b) the no-slip condition on the fixed part of the boundary, 
have been successfully incorporated into the mathematical treatment of FBPs 
by the use of function spaces with weighted norms, albeit at the expense of 
much added technical complexity. As the concept of infinite forces ( or energy) 
is physically meaningless, this remains unsatisfactory however. 

The inadequacy of the no-slip condition is particularly clear when one consid
ers the motion of the contact line where a fluid-fluid interface meets a solid 
surface. The analysis of [5] ( which also applies to non-Newtonian fluids) 
shows that although a no-slip condition on the solid surface is kinematically 
compatible with a moving contact line if the fluid-fluid interface rolls onto or 
off the solid surface, it necessarily gives rise to a discontinuous velocity field 
and unbounded gradient, irrespective of the boundary condition on the fluid 
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CHAPTER 1. INTRODUCTION 7 

interface. The natural route - as suggested earlier by [4] - is to relax the 
no-slip condition on the solid surface by applying a partial slip condition in a 
neighbourhood ( which should ideally not be fixed in advance, but determined 
as part of the solution) of the contact line. Some numerical and analytical 
(infinitesimal analysis, etc.) studies - for example [33, 72, 76, 78, 89] - have 
focused specifically on the stress singularities and the extent to which it can 
be alleviated by permitting partial slip. In fact, the well-posedness of certain 
FBPs for the N avier-Stokes equations with partial slip conditions on the fixed 
boundaries has been established in [34, 35, 36, 37, 38, 39]. On the other hand, 
the work of [6] indicates that the effect of long-range Van der Waals forces 
in suppressing the singularity at the contact line may sometimes dominate 
over that of slippage. 

It is worth noting here that the slip coefficient Sin Navier's slip law, written 
as 

(1.8) 

may be a function of x E r. Thus condition (1.8) (with uT = 0) may de
scribe perfect slip (S = 0), partial slip (-oo < S < 0) and no-slip ( after 
division by S = -oo) on different parts of the boundary. 
(Figure 1 illustrates typical velocity profiles in a neighbourhood of the bound
ary for these three cases. It is assumed that v = (v1 (x 2), 0, 0), x2 ~ 0, so 
that (1.8) reduces to 

8v1 
-a = -Sv1 = ISlv1.) 

X2 

With regard to the MBPs for incompressible Navier-Stokes flows subject 
to partial slip, there are some theoretical results for both thermally conduc
tive fluids [40] and isothermal fluids [41, 42, 44, 45, 46], as well as several 
numerical/analytical studies [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. 
The well-posedness of the Navier-Stokes equations for compressible heat
conducting fluids has also been studied [59, 60, 62]. For the isothermal case, 
the work of [64, 65] is particularly interesting. They numerically solved an 
extrusion problem subject to a nonlinear slip law of the form 

where the mi are positive material parameters. When the slip velocity is in 
the range between the local maximum and minimum of this S-shaped slip law 
( see Figure 2(b)), the flow is unstable and a hysteresis effect - self-sustained 
oscillations of the pressure drop and the mass flow rate at the exit - occurs. 
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CHAPTER 1. INTRODUCTION 8 

Partial slip conditions are also encountered in a wide variety of situations 
in which the flow is modelled by the Stokes equations or some other simpli
fication/ approximation of the Na vier-Stokes equations. Firstly, for viscous 
flows past/through porous materials, Navier's slip law (referred to as the 
condition of Beavers and Joseph, or of Saffman, in this context) is applied 
on the permeable boundary to match the flow inside the porous material 
( usually described by Darcy's law or a generalization of it) with the N avier
Stokes/Stokes flow on the outside [66, 67, 68, 69, 70, 71, 72, 73]. Navier's law 
(here called the Maxwell condition) also appears in lubrication models of the 
motion of a viscous droplet over a solid surface [74, 75, 76, 77] and fluid mod
els of glaciers [78, 79]. Models that approximate the boundary behaviour of 
fluids may also involve some kind of slip condition [80, 81, 82, 83, 84, 85, 86]. 
For example, the boundary layer analysis of [87] employs the quadratic slip 
law ( 1 .4). There does not appear to be many applications to Newtonian 
flows of yield stress slip conditions, i.e. partial slip laws in which the shear 
stress must exceed some critical value (henceforth called the slip yield stress) 
before slip occurs, but the analytical study [89] is an example. Interestingly, 
for rarefied gases [88, p. 240] suggests a condition of this kind in which the 
slip yield stress is proportional to the normal stress, namely (1.1) with k 
defined by 

(1.10) 

otherwise, 

where q1 and q2 are positive constants. Lastly, one notes that vorticity 
boundary conditions of the type 

( curl v - c) x n == 0 

where c is prescribed, also allow tangential slip [91, 92]. [90] gives other 
examples of such "kinematic" slip conditions. 
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CHAPTER 1. INTRODUCTION 9 

( a) no slip (b) partial slip ( c) perfect slip 

Figure 1 
Typical velocity profiles in a neighbourhood of a solid boundary. 

l(Tn)rl 

(a) Na vier, Stokes slip (b) non-monotone slip 

Figure 2 
Examples of partial slip laws. 

( c) yield stress slip 
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CHAPTER 1. INTRODUCTION 

1.2 Nonlinear Fluids and Boundary Slip 

A large variety of fluids, including biological fluids (blood, protein solutions, 
food, etc.), molten metals, multigrade oils, printing inks, paints, suspensions, 
polymer solutions and molten plastics, exhibit a wide spectrum of memory 
and nonlinear effects ( dependence of the stress on the deformation history, 
shear thinning/thickening, stress relaxation, creep, normal stress differences, 
yield stress) which cannot be described by the linearly viscous Newtonian 
model (1.2). The study of these interesting substances, collectively known as 
non-Newtonian ( or nonlinear) fluids, has intensified with the growth of 
the polymer and plastics industry over the last four decades. In the process a 
complex body of theory and models has been developed, the detail of which 
is not important here; see [93, 94, 95, 96] for an overview. 

Experimental observations of wall slip in the flow of nonlinear fluids such 
as paint, paste, polymeric solutions, lubricants, hydraulic fracturing fluids, 
biological fluids, emulsions and polymer melts have been reported since the 
1920's ([3]). Recent experimental measurements of polymer melts show that 
the shear stress at the wall is a nonlinear function (S-shaped, as in Figure 
2(b)) of the slip velocity ( [97, 98]). In the case of highly entangled polymers, 
a yield stress slip law applies, and the slip-stress function may have more 
than one local minimum ([99]; see Figure 2(c)). Several analytical/numerical 
studies have produced stochastic-mechanical molecular theories (in which the 
polymers are modelled as beads consisting of Hookean spring-dumbbells) to 
explain this nonlinear behaviour and to derive formulae for the associated 
macroscopic slip laws ([100, 101, 102, 103]). The relevant point is that in 
general non-Newtonian fluids do slip past solid surfaces, and that these slip
stress relations are nonlinear. 

Despite the above-mentioned developments, Navier's slip condition - which 
involves only one parameter - continues to be used in numerical simulations 
of non-Newtonian flows (for various fluid models) with boundary slip ([104, 
105, 106, 107, 108]). To mention one alternative, the slip law in [109] is 
defined piecewise, with the shear stress proportional to different powers of 
the magnitude of the slip velocity for different ranges of the slip velocity. 
Other simple models include perfect slip ([110]) and ones in which the slip 
velocity is proportional to a power, or a hyperbolic function, of the magnitude 
of the tangential stress ([111]). 

The stick-slip problem - in which there is a sudden transition from no-slip 
to perfect slip along the boundary, with a resulting stress singularity - has 
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CHAPTER 1. INTRODUCTION 11 

also been analyzed for some non-Newtonian fluid models ([112, 113, 114]). In 
particular, [113] shows that for a second grade fluid ( defined in the next 
section) the shear stress is O(r-112

), where r is the distance to the singularity, 
while the pressure and the normal stress are O(r-1 ). Hence the total force on 
the wall behaves like ln r, which is physically unreasonable (not integrable). 
This suggests that a partial slip condition should be applied - perhaps a yield 
stress slip condition of the form 

_ _ { ~ f(l(Tn)TI ~ CTy) l~;:;TI if l(Tn)TI > CTy, 
( V Vw )-r - -r 

0 otherwise, 

(1.11) 

where the non-negative function f ( ·) and slip yield stress ay are determined 
experimentally, as in [114] (for a power-law fluid). 

The existence theory for non-Newtonian fluids with partial wall slip ap
pears to be scant; I am only aware of the following two results for incompress
ible nonlinearly viscous fluids: [115] considers the steady rectilinear motion 
in a cylindrical domain (so that v = (v1(x1 , x 2 ), 0, 0)) of a fluid with stress 
tensor 

(1.12) 

where the effective viscosity M = M(IA1 1
2
), subject to a slip law of the type 

(1.8) withs= S(lvl 2
, ~), ~ E an (which reduces to 

Under suitable conditions on M and S, the existence of a unique weak solu
tion is established by means of a monotone operator argument. More gener
ally, [116] considers the nonstationary, nonisothermic motion in a bounded 
domain of a fluid (1.12) with M = M(IA1 1

2
, 0), where 0 denotes the temper

ature, and slip law (1.8) with S = S(lvl 2
, 0). The Faedo-Galerkin method is 

used to prove the existence of a generalized solution of the initial-boundary
value problem in a given finite time interval. The restrictions imposed on S 
in these two papers are given in Remark 5.10 on page 95. 
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CHAPTER 1. INTRODUCTION 12 

1.3 Second Grade Fluids 

Amongst the many families of models for nonlinear fluids that were proposed 
during the past 50 years or so, those of differential type (see [94] for the 
precise meaning of this), also called Rivlin-Ericksen fluids, have proved to be 
exceptionally successful and popular. An important subclass of the fluids of 
differential type are the fluids of complexity n. The Cauchy stress tensor 
for an incompressible fluid of complexity n is of the form 

where the spherical stress -pl reflects the assumption of incompressibility, 
and A1, ... , An are the first n Rivlin-Ericksen tensors ((93]), defined recur
sively by 

A 1 = v'v + (v'v)I', 

An= DtAn-1 + An-1(v'v) + (v'v)I' An-1, n 2 2, 

where Dt denotes the material time derivative. Thus, for example, 

A2 = DtA1 + A1(v'v) + (v'vf A1, 

A3 = DtA2 + A2(v'v) + (v'v f A2 

= D;A1 + 2(DtA1)(v'v) + 2(v'vf(DtA1) + A1(Dtv'v) + (Dtv'vf A1 

+ A1(v'v)2 + 2(v'vf A1(v'v) + (v'vT)2A1. 

Fluids of grade n are examples of fluids of complexity n. In particular, the 
stress tensors for fluids of grades 1, ... , 4, respectively, are assumed to be of 
the following form ((94, p. 494]): 

,[1l = -pl+ µA1, 

,[2] = ,[l] + a1A2 + a2Ai, 

,[31 = ,[21 + /j1A 3 + /12(A1A2 + A2A1) + /j3tr(Ai)A2, 

,[4] = ,[3l + 11A4 + 1'2(A3A1 + A1A3) + ')'3A~ 

+ ')'4(A2Ai + AiA2) + 1's(trA2)A2 + 1'6(trA2)Ai 

+ b1(trA3) + ')'str(A2A1)]A1, 

(1.13) 

where µ, ai, /1i and ,'i are (possibly temperature dependent) material coeffi
cients. Hence a first grade fluid is simply a Newtonian fluid, and a second 
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CHAPTER 1. INTRODUCTION 13 

grade fluid is a generalization of it. For a short derivation of the grade 2 
tensor (as an expansion to the tensor for a simple fluid with fading memory), 
see [117, pp. 52 - 54]. 

The validity of the second ( and higher) grade model as an exact descrip
tion of a real fluid has been the subject of some controversy over many years 
([118, 119,120,121,122,123,124,125,126,127,128,129,130,131, 132,133]), 
despite the seemingly conclusive stability study [119]. However, the lucid 
analysis and survey of [132] - which discusses the somewhat messy history of 
the debate in depth - has finally resolved the issue. In short, when the ma
terial coefficients are consistent with the restrictions ·of thermodynamics 
( see section 2.1), the second ( and third) grade model is a perfectly valid 
constitutive equation. 

Special flows of second and third grade fluids have been investigated analyt
ically and numerically by several authors, and a number of exact solutions 
have been constructed (e.g. [134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 158, 159]). Al
though the equations of motion for a second grade fluid involves third-order 
spatial derivatives, the no-slip condition suffices in these studies because of 
the additional assumptions. However, [161] and [162] provide examples in 
which the no-slip condition does not determine the solution uniquely. In 
[163] this is overcome by imposing additional velocity and shear rate condi
tions at the boundary, but physically meaningful boundary conditions of this 
kind have not yet been identified. The no-slip condition is also inadequate for 
certain problems in bounded domains; see [164] and the references therein. 

The question of the existence, uniqueness and stability of solutions to the 
general initial-boundary-value problem for an incompressible second grade 
fluid in a bounded domain, with no slip, has only been addressed recently. 
The first step was taken when [165] proved the global (in time) existence 
and uniqueness of a generalized solution to a linearized version of the 
problem by formulating it in terms of u = v - o:16 v and applying the 
Faedo-Galerkin method. Then [166] followed a similar approach (using the 
quantity curl (v - o:16v) and applying the Faedo-Galerkin method to the 
full problem) to obtain a unique solution, global in time if n C R2 and local 
in time if n C R 3

, for flows with 

(1.14) 

Similarly, [167] established existence results for certain one-dimensional flows 
of a so-called power-law fluid of grade two (with shear-dependent viscosity). 
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Significantly, [168] succeeded recently in proving the global existence of the 
variational solution - which is also classical if the data is sufficiently smooth 
- by this direct approach. 

The first existence and uniqueness results for classical solutions were es
tablished by [170], who formulated the problem as a fixed point problem in 
u = v - a 1Lv. No restriction is placed on a 2 in [170], but a 1 > 0 must be 
sufficiently large for the global existence result to hold. This is somewhat 
counter-intuitive, especially as [171] proved that the stationary problem is 
well-posed for arbitrary values of a 1 > 0 and a 2 . They considered a fixed 
point problem in w, based on the Helmholtz decomposition Lv = w + V1r. 
This approach was generalized in [172] and [173] to obtain local and global 
existence results for a class of complexity-2 fluids with shear-dependent vis
cosity which include second grade fluids that satisfy (1.14), as well as certain 
third grade fluids ( see section 2.1). The main virtue of these fixed point 
methods ( which were apparently adapted from [190]) is that it decomposes 
the nonlinear problem into linear ones. Furthermore, by taking the data 
sufficiently small, the nonlinearity can be controlled by the linear terms. 

Employing a different fixed point argument (in which the unknown is u = 
curl ( v - a 16 v)), [17 4] showed that the lower bound imposed on a 1 in [170] 
can be removed if (1.14) holds. This result was extended to third grade 
fluids by a similar argument in [175]. Moreover, using multivalued fixed 
point theory, [176] derived a local existence result for flows subject to the 
Dirichlet boundary condition 

V = V* on an, 

and showed that the solution is unique if V*•n = 0 on an. 

Lastly, note that in the above-mentioned existence studies the initial condi
tion is effectively of the form 

(Bv)(0)=v 0 inn, 

where B is a linear operator determined by the fixed point decomposition of 
the problem. 
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1.4 Thesis Problem 

The techniques ( specifically the evaluation of boundary integrals arising from 
Green's formulas) used in the stability and existence and studies mentioned 
above in many instances rely in an essential way on the assumption of no 
slip, which - as the remarks in the previous sections suggest - may be in
appropriate for second grade fluids. To evaluate the second grade model 
(and, for that matter, any other nonlinear model for which no convincing ex
perimental data is available) properly, it should be studied under conditions 
that allow for the possibility of slip. 

The aim of this thesis is therefore to prove the existence and uniqueness of 
classical solutions - local and global in time - subject to general stress-slip 
boundary conditions of the form 

(Tn)r = S(lvl)v + d } 
v•n = 0 

on an x (0, T), (1.16) 

where n denotes the outward unit normal to an, d is a tangential surface 
force, and the slip coefficient S is assumed to be a smooth function of the 
magnitude of the slip velocity. (Note that the slip yield stress in (1.16) is 
zero, i.e. when d = 0, the slip velocity is nonzero whenever u = (T n )r is.) 

It is assumed that (1.14) holds with a 1 > 0. 
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Chapter 2 

THE SLIP PROBLEM 

Better a slip on the floor than a slip of the tongue. 

Sirach 20: 18 

This chapter starts with an introduction of the governing equations ( section 
2 .1), followed by a discussion of the slip boundary condition ( section 2. 2) 
and a (preliminary) formulation of the slip problem as a fixed point problem 
( section 2.3). 

16 
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2.1 Equations of Motion 

As indicated in section 1.3, the Cauchy stress tensor T for an incompressible 
fluid of grade two is given by 

(2.1) 

where p is the pressure, µ is the viscosity, and a 1 and a 2 are the normal 
stress moduli. A 1 and A 2 are the first two Rivlin-Ericksen tensors, i.e. 

A1 = Vv + (Vvf, 

A2 = DtA1 + A1Vv + (Vvf A1, 

with V denoting the velocity field and Dt = a I at + v• \7 the material time 
derivative. Using the identity 

A1Vv + (Vvf A1 = (Vv) 2 + 2(Vvf(Vv) + (\7vT)2 

=Ai+ A1 W - W A1, 

where W = ~(v'v - (v'v f), the stress tensor can also be written as 

[119] derived necessary and sufficient conditions for a fluid modelled by this 
relation to be compatible with thermodynamics (see pp. 196 - 198 of 
[119] for the precise meaning of this, and for the formulation of the following 
two inequalities). In particular, the Clausius-Duhem inequality implies that 

(2.3) 

and the assumption that the Helmholtz free energy is a minimum when the 
fluid is in rest requires that 

(2.4) 

Under these restrictions the equations of motion ( conservation of linear mo
mentum and of the total mass) for an incompressible second grade fluid in 
a thermally passive environment ( so that the temperature and therefore 
also µ, a 1 , a 2 are constant) are 

a at ( V - O'.~ V) - V ~ V = \7 p - cur 1 ( V - O'.~ V) X V + g 

V•v = 0 
} in !1 x (0, T), 

(2.5) 
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where n denotes the (fixed) domain of flow in R 3
, T > 0 is a chosen length 

of time, curl v = v' xv, a= aif p, v = µ/ p, pis the constant density of the 
fluid, and the modified pressure 

~ 1 2 1 2 
p = c/>- p/p- -lvl + a(v•6v + -IA1I ). 

2 4 
(2.6) 

Here the body force has been split into a conservative part pv' c/> and a ro
tational part pg (i.e. v' •g = 0 in n, g·n = 0 on 80) via the Helmholtz 
decomposition. The derivation of equations (2.5) - (2.6) can be found in 
section 2.4. Note that once v and v'p have been determined from (2.5), v'jj 
is fixed by (2.6). 

Remark 2.1 ( a) It is worth pointing out that the derivation of conditions 
(2.3) - (2.4) in [119] does not require the choice of a boundary condition, 
and is therefore valid in the present situation as well. On the other hand, 
the no-slip condition does play a crucial role in the proofs of asymptotic 
stability in [119, 120], and the unboundedness and instability results (for the 
case a 1 < 0) of [119, 120, 121]. In fact, seemingly insurmountable technical 
difficulties ( due to the non-disappearance of boundary integrals containing 
higher-order derivatives) would otherwise appear. However, [127] showed 
that the rest state of a second grade fluid in a half-space ( or domains with 
flat boundaries) with stress-free boundaries, i.e. perfect slip, is conditionally 
stable for arbitrary a 2 ifµ > 0, a 1 > 0, and unstable if a 1 < 0. As the partial 
slip condition is in a sense intermediate to the extremes of no and perfect 
slip, this provides additional support for the use of assumptions (2.3) - (2.4) 
here. 

(b) The thermodynamic restrictions on the material moduli of a third grade 
fluid (see section 1.3) were shown by [120] to be 

µ 2 o, a1 2 o, la1 + a2 I ::::; J24µf33, 

/31 = 0, /32 = 0, /33 2 0, 
(2.7) 

which reduce to (2.3) - (2.4) when /33 = 0. Under these conditions the stress 
tensor (1.13)3 becomes 

The corresponding equations of motion are given on page 27 in section 2.4. 
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2.2 The Slip Boundary Condition 

Let n be a bounded domain with boundary an of class C 2. Setting S = S / p 
and d = d/ P, the tangential stress condition (1.16) on an becomes 

u = (Tn)T = pS(lvl)v + pd, (2.9) 

which can be written as 

(2.10) 

where R(x) = S(x)x corresponds to the slip-stress functions sketched in 
Figure 2. To simplify the analysis somewhat (in particular the estimates 
derived below), it will be assumed that S is not a (general) function of 
y E an. It is also convenient to assume that S is a smooth function of lv12, 
but this is not a serious restriction: for any chosen m 2:: 0 and M > 0, one 
knows from Sobolev's imbedding theorem [201] that there is a constant L 
such that the ball B(0, M) in Hm+2(n) is contained in the ball B(0, L) in 
cm(n). Assume that V E Hm+2(n) with llvllm+2 ~ M, let s E C[0, L] and 
let I< be any fixed constant. Then, by Weierstrass' theorem, for every c > 0 
there exists a polynomial Ne such that 

IIS( y'x) - I< - Ne(x)llqo,£2) < L: l' 
and thus 

(2.11) 

(2.12) 

Hence, without loss of generality (at least when (2.9), (2.10) is viewed as 
an approximation of an empirical relation), one may assume that S(x) = 
J{ + N(x 2

), X E [0, L], for some constant J{ and function N E C 00 [0, L2
]. 

Actually it is sufficient here ( see Remark 2.4( e) with regard to the dependence 
in y) to assume the following: 

Assumption 2.2 The slip coefficient S is of the form 

S(y, x) = I<(y) + N(x2
), (y, x) E an x [O, L], (2.13) 

with I< E Cm(an) and NE Cm[0, L2
] for some m 2:: 0. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



CHAPTER 2. THE SLIP PROBLEM 20 

It will actually be sufficient to take N E cm. The following lemma shows 
that N then has the boundedness and continuity properties necessary for the 
arguments in Sections 3.3 and 4.1: 

Lemma 2.3 Suppose that m 2:: 0, f E Hm(n), N E cm[a, b] and that N(f) 
is well-defined in n. Then 

(a) N(f) E Hm(n) and 

IIN(f)llm ~ II NII cm( 1n1 112 + C(n, m)[llfllm + 11111:J ). (2.14) 

(b) Form = 0 or m 2:: 2, if N E cm+i[a, b] and g is a function with the same 
properties as f, then 

IIN(f) - N(g)llm ~ C(n, m)IIN'llcm(l + 11111: + IIYll:)11! - Yllm• (2.15) 

Form= 1, if f E H2 (0), g E H1(0) and N(g) is well-defined, then 

IIN(f) - N(g)lli ~ C(O)IIN'llc1 (1 + ll\7 flli)llf - Yll1- (2.16) 

Proof. The inequalities are derived from the chain rule for the derivatives 
of N(f); see Section 2.4. 

Remark 2.4 ( a) It appears that to date only certain diluted polymer sus
pensions have been clearly identified as ones for which the second grade model 
is an accurate description ([132]). Moreover, there is seemingly no experi
mental data available on the interaction of a second grade fluid with a fixed 
surface - of any material or degree of roughness - that can be used to infer 
a suitable slip law. The model (2.9), (2.13) - which should be viewed as an 
additional constitutive law - was chosen because it is sufficiently general to 
incorporate the vast majority of the models for nonlinear fluids appearing in 
the literature, including stress-slip relations with multiple local extrema ( e.g. 
the bell-shaped curves of [100] and the refinements thereof in [99]). Moreover, 
its relation to N avier's slip law is simple and it is mathematically convenient. 

(b) One limitation of (2.9) - potentially significant (but also immaterial) in 
the light of the absence of empirical data - is that it excludes the possibility of 
a yield stress condition; due to the factor v in the right hand side, v is nonzero 
whenever u is. As mentioned in Section 1.2, for some nonlinear fluids the 
modulus lul of the tangential surface stress must reach a critical value, say 
ay, before macroscopic velocity slip occurs. In the absence of evidence to the 
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contrary, it would be desirable to have a slip model for second grade fluids 
which allows for this possibility. One would then have an interesting free 
boundary problem, since (although an is fixed) the slip region is not known 
in advance, so that one does not know where to apply the slip law and the 
no-slip condition. In an iterative numerical method this may conceivably 
be overcome by incorporating a stick-slip test into the solution scheme ( e.g. 
at each point of the boundary, use the velocity field calculated during the 
previous iteration to test whether lul < (J'y: if so, use v = 0 there during the 
present iteration; else apply the slip law there), but there does not appear to 
be any theoretical results of this kind for nonlinear fluids. The model (2.9), 
(2.13) does allow for points of no-slip to occur, but it is not necessary to 
determine these explicitly since (2.9) applies on the whole boundary. 

Furthermore, for the method of proof employed here it was necessary to 
express the tangential surface stress vector u as a function of the slip velocity 
v, and in the case of a yield stress condition this is not possible where v = 0 
(since one only knows that lul < (J'Y ). 

(c) If a= 0 and N = constant, then (2.5) and (2.9) reduce to the Navier
Stokes equations and Na vier's law, the usual slip law for such fluids. It would 
therefore be reasonable to assume that N = N(O) if a = 0, but this is not 
necessary here. 

Note that one may always assume that N(O) = 0; if not, replace N and K 
by N - N(O) and K + N(O). Then, by the mean-value theorem, 

IIN(f)llo s IIN'llc0 llfllo, 
so that the term involving 1n1 can be dropped from (2.14). 

(d) In (2.13) N is expressed as a function of lv(y)l 2
, rather than lv(y)I, to 

satisfy the conditions of Lemma 2.3. The only purpose of the coefficient p is 
to help simplify equation (II)* on page 46; it could just as well be absorbed 
into S. 

( e) For the sake of simplicity, it is assumed N is not a function of y E an, but 
such dependence can easily be incorporated into the work (by adapting the 
estimates for N). This would allow for possible variations in the stress-slip 
interaction due to local changes in the roughness or material properties of 
the boundary surface. As a further generalization - for situations where it 
cannot reasonably be assumed that the temperature is constant ( for example 
in die casting processes) - one could consider general temperature-dependent 
slip laws (as in [116)). 
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2.3 Fixed Point Formulation 

The method of [174] can be adapted as follows. Applying the curl operator 
to equation (2.5)i and using the identity 

curl (u xv)= v•Vu - u•Vv + (V•v)u - (V•u)v (2.17) 

with 
u = B1v = curl (v - a~v), 

so that V •u = V •v = 0, one obtains 

-at+ -;:(u - curl v) = u•Vv - v•Vu + h au v } 
~ inn X (O,T), 

V•u = 0 

u(O) = uo inn, 

where h = curl g and u 0 = B1 v 0 . 

Furthermore, using an extension n of n ton, extend 

to n by defining 

Then 

so that 

and thus 

v•Vai = vk(A1ijnj - nrA1r/i/ii),k 

= vk(A1ij,knj - nrAlrj,knjni) 

+ Vk(A1ijnj,k - A1rAnrnjni),k), i = 1, 2, 3, 

([(v•v7)Ai]n)T = v•v7a + b on an, 
where b is defined by its components 

(2.18) 

(I) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
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It follows that 

aA1 
U == µ(A1n)T + a1([m + (v•V)A1 + A1 W - W A1]n)T 

aa 
== µa + a1 ( at + v •Va + b + c), 

where 
c = ([A1 W - W A1]n)T, (2.23) 

so that equation (1.16)i becomes 

- +-a+ v•Va = -Sv - b - c + -d on an x (0, T), aa V 1 1 } 
at a a a (II)* 

a(O) = a 0 on an, 

Hence, existence will be proved once it is shown that the mapping 

<l> : ( </J, 11) 1-t V 1-t ( U, a), (2.24) 

where v solves 

curl(v-a~v) =</J }· n (OT) 
V •V == 0 Ill H, X ' ' 

v•n = 0 } on an x (0, T), 
(A1n)T == 11 

(III) 

and u and a are solutions of problems (I) and (II)*, has a fixed point. 

Remark 2.5 (a) Note that a in (II)* is understood to denote the trace of a 
function defined in n and that 11 can be extended as in (2.20). Moreover, if 
11 = a on an, then v•V11 = v•Va on an since vis tangential to an. Thus 
(III)4 is sufficient to ensure that (2.21) will hold whenever ( u, a) is a fixed 
point. By the same argument, it follows from equation (2.22)2 that the trace 
of b is independent of the choice of n. 

(b) In the exact definition of <I> problem (II)* will be replaced by a problem 
in n, namely problem (II) in Proposition 3.11 on page 46. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



CHAPTER 2. THE SLIP PROBLEM 24 

2.4 Appendix 

Derivation of equations (2.5) - (2.6). 
The local equations for the balance of linear momentum for a fluid described 
by (2.2) are 

av ~ 1 - + v•v7v - f = -v7•T at P 

= -~v7p + vv7•A1 + av7•(v•v7 A1 + aAi + A 1 W - W Ai) (2-25) 
P m 

+ (a+ ,B)v7•Ai, 

where f denotes the specific body force per unit mass and ,B = a 2 / p. These 
equations can be simplified in several ways by means of the identities collected 
Ill 

Lemma2.6 Let Vm = {v E Hm(n): v7•v = O}, m = 1,2, ... , and for 
VE H1(n) set w = curl V = v7 XV and 

1 1 
A1 = 

2
[v7v + (v7vf], W = 

2
[v7v - (v7vf]. 

Furthermore, for any two second order tensors I<= [I<i1] and L = [Li1] with 
components in H1 ( D,), and I< symmetric, define v7 •I<, v7 L and I< : v7 L by 

(v7•I<)·=J< .. ·=J<· .. i=123 
i Ji,J iJ,J' ' ' ' 

(v7 L hji = Lji,k, i, j, k = 1, 2, 3, (2.26) 

Then 

(a) v7•A1 = 6v V v E ½. 

(b) v7•(v•v7 Ai)= v•v7(6v) + (v7vf: v7 A1 V v E ½. 

(c) v7•(A1 W - W Ai)= (v7vf 6v + 2v7v: v7W V v E ½. 

(d) 'v•(v•'v A1 + A1 W - W A1) = 2(.6. W)v + 'v(v•.6.v + ~IA11 2
) 

Vv E ½. 

(e) 2(6 W)a = (6w) X a V VE H 3(n), Va E R 3
• 

1 
(f) v•v7v = w XV+ 2v7lvl 2 V VE H1(n). 

1 
(g) v7•Ai = 2v7•[v7v(v7vf] + 4v7IA11 2 + A1(6v) V v E ½. 
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Proof. The arguments are elementary, but since (for this very reason) it 
does not appear in the literature, it is copied out here to show the precise 
relation between the terms in the stress tensor and those in the equations 
of motion. For the sake of clarity, the components of A 1 will be denoted 
without the subscript 1. Where applicable, the relation v7 •v = 0 and the 
definitions (2.26) (from [210, pp. 39, 62]) are applied without mention. 

( a) is self-evident, and (b) is immediate from 

( vkAj,k),j = vk( Vi,jjk + Vj,jik) + Vk,jAji,k 

= vk(6vi),k + vk,j(v7 A1)kji, i = 1, 2, 3. 

(c)Fori=l,2,3, 

( Aik wkj - wikAkj) ,j 

1 1 
= 2(vi,kj + Vk,ij)(vk,j - Vj,k) + 2(vi,k + Vk,i)(vk,jj - Vj,jk) 

1 1 
- 2(vi,kj - Vk,ij)(vk,j + Vj,k) - 2(vi,k - Vk,i)(vk,jj + Vj,jk) 

= Vk · (vk · - V · k) · + Vk ·Vk · · ,J ,i i, ,J ,i ,JJ 

( d) From the derivations of (b) and ( c) above one has 

[v7•(A1 W - W A1 + v•v7 A1)]i 

= Vk,iVk,jj + Vk,j( Vk,ji - Vi,jk) + Vk,j( Vi,jk + Vj,ki) + VkVi,jjk 

= VkVi,jjk + Vk,iVk,jj + Vk,jAkj,i, i = 1, 2, 3. 

On the other hand, 

and 

[2(6W)v + v7(v•6v)]i 

= ( Vi,jkk - Vj,ikk )vj + VjVj,kki + Vj,iVj,kk 

= Vk Vi,jjk + Vk,iVk,jj, i = 1, 2, 3, 
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(e) Set u = D.v, then h.W(v) = W(u) and D.curlv = curlu, so that (e) 
reduces to the well-known identity 

2W(u)xa=curluxa, \/aER3
, 

which follows easily via the "c8 rule". 

(f) It suffices to note that (w x v)i = 2WijVj = (vi,j - Vj,i)Vj and (Vlvl 2)i = 
(vjvJ,i = 2vjVj,i, i = 1, 2, 3. 

(g) For i = 1, 2, 3, [V•(A~)]i = Ak,jAkj + AikAkj,j =I+ J, with 

I = Vi,kjAkj = 2vi,kjVj,k = 2( Vi,kVj,k),j = 2(V •[(Vv )(Vv f])i 

and 
1 

J = Vk ··Ak· + A-kAk· · = -Ak· -Ak· + A-kvk ·· ,iJ 1 i J,J 
2 

J,i 1 i ,JJ 

1 ( ) 1 2 = 4 AkjAkj ,i + Aikh.vk = (4VIA1I + A1D.v)i. 

Observe that (g) also holds if the condition V •v = 0 is replaced by 2vi,kVj,kj = 
AikVj,kj, i = 1,2,3, or, equivalently, w x V(V•v) = 0. 

By the Helmholtz decomposition, f is of the form 

f = Vcp + g, V•g = 0 inn x (0, T), g•n = 0 on an x (0, T). (2.27) 

Thus, setting p = cp- p/ p and applying (a) - (b) to (2.25) yields 

~(v - ah.v) + v•V(v - ah.v) - vh.v - Vp- g 
at 

= a[(Vvf: V A 1 + V•(A1 W - W Ai)]+ (a+ ,B)V•A~ inn x (0, T), 

V•v = 0 
(2.28) 

as in [170, 171, 172]. Alternatively, using (a), (d) - (g) to express the non
linear terms in gradient form and/or in terms of w, one obtains 

a 
at(v-ah.v)-vh.v+(w-ah.w) xv-g 

= Vp +(a+ ,B)(2V•[(Vv)(Vvf] + A1(h.v)) 

V•v = 0 

where 

in n x (0, T), (2.29) 
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These equations seemingly lend themselves more readily to analysis than 
(2.28), as is witnessed by the majority of recent publications on second grade 
fluids; see e.g. [138, 140, 142, 144, 154, 166, 174, 176]. 

Lastly,notingthattr(A~) == IA11 2 and V•(IA11 2A1) == A1VIA1l 2 +IA11 2Lv, 
and comparing (2.8) with (2.1), one arrives at the corresponding form of 
the equations of motion for an incompressible fluid of grade 3 satisfying 
conditions (2. 7): 

a 
at(v-aLv)-vLv+(w-aLw) xv 

== Vp +(a+ ,B)(2V•[(Vv)(Vvf] + A 1 (Lv)) in n x (0, T), (2.31) 
+ ,(A1VIA11 2 + 1Ail2 Lv) + g 

V•v = 0 

with p as in (2.30) and , = ,83 / p, as in e.g. [148, 175]. 

The proof of Lemma 2.3 is based on the following chain rule: 

Lemma 2. 7 Let N E cm[a, b], m 2:: 1, a < b, and let f E Hm(n), with n 
a domain in Rn, n 2:: 1, and suppose that No f is well-defined on n. Then, 
for every a = (a1, ... , an), with a1, ... , an nonnegative integers and lal 
a1 +···+an::; m, 

101 
D0 (N O t)(~) = L N(i)(f(~ )) 

i=l 
L 

{,81, ... ,t} 
E B(i, a) 

where the constants C (,81
, ... , ,8i) are positive integers and 

j=l 

(2.32) 

B( . ) _ {{f-ll f-li}. If.Iii > l · _ l · f.ll . . . (.li _ } i, O'. - fJ ' ... 'fJ . fJ - ' J - ' ... 'i, fJ + + fJ - O'. . 

Proof. For a complex function N : C t-+ C, sufficient conditions for the 
validity of such a chain rule, and the form of the terms, are given in [206, 
p. XIX]. Since the precise formula and proof are omitted, a complete proof 
seems in order: 

It suffices to consider a with !al = m. If m = 1, then a = eh for some 
1 ::; h ::; n, where ej = Jhj, j = 1, ... , n. Hence (2.32) holds, because 
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8(1,a) = {{a}} and Nof E L2(0), so that 8hN(f(x)) = N'(f(x))8hf(x) 
by Theorem 2.1.11 of [214, p. 48]. 
(One could also use the result of [206, p. XX]: If N is Lipschitz continuous 
and has a bounded derivative N' with at most countably many discontinu
ities, and f E H 1(0), then N(f) E H 1(0) and the above chain rule holds. 
Moreover, N(HJ(O)) c HJ(O) if N(O) = 0. 
Lemma 2.5 of [209, p. 219] states: Suppose that N E C1(R), N' E L00 (R), 
n is an open subset of Rn, f is real-valued and locally integrable over n and 
all its first-order weak derivatives on n exists. Then all the first-order weak 
derivatives on n of N o f exists and the above chain rule holds.) 

Suppose that (2.32) holds for a fixed m ~ 1 and consider any a with lal = 
m + 1. Choose an 1 ::; h ::; n for which ah ~ 1 and set a = a - eh. Then 
lal = m, so that, by (2.32), 

m 

D0 N(f(x )) = ahD0 N(f(x )) = L N(i)(f(x )) X 

i=l 

m 

+ L N(i+1)(f(x)) 
i=l 

l L . C(·/, ... ,,')ahf(x{DD''J(x)) 
{ 1' ' ... ' --yi} 

E B(i,o:) 

m 

= N'(f(x))8hD 0 f + L N(i)(f(x)) L C(01, ... ,o•i IT D61
J(x) 

i=2 {~1, ... ,~i} j=l 

EBh(i,o:) 

+ N(m+ll(J(:z:)) L M(x)(D D'"Y;J(x)) 
{--y1, ... ,--ym} 

E B(m, o:) 
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where 

Bh(i,o:) 

= {{,81, ... ,,ai-1,,Bj +e\,Bi+i, ... ,,Bi}: {,81, ... ,,Bi} E B(i,o:), 

. - 1 "} u {{ 1 i-1 h} . { 1 i-1} E B(. 1 )} J - , ... ,i 1 , ... ,, ,e . , , ... ,, i- ,a 

= B(i, a), 2 :Si :Sm, 

{{ ,1, ... ',m, eh}: { ,1, ... ',m} E B(m, o:)} = B(m+l, a) (since B(m, o:) = 
{ { 1

1 , ... , ,m}} ), and the integers C(<5 1
, ... , <5i) are determined from the 

corresponding constants C(,81, ... , ,Bi), C( ,1, ... , ,i-l) by the definition of 
Bh(i, o:). Thus (2.32) holds form+ 1. o 

Proof of Lemma 2.3. 
(a) Let 

i 

1 . II w P(,B , ... ,,Bi; f) = D f, 
j=l 

Q(i, o:, f) = L C(,81, ... , ,Bi)P(,81, ... , ,Bi;!), 
{fl, ... ,/i} 

EB(i,o:) 

R% = L IID0 N(f)II~, 
lo:l=k 

with B ( i, o:) defined as in Lemma 2. 7, then 

m 

IIN(f)II~ = L RZ, 
k=O 

For m = 0 and m = 1, inequality (2.14) follows from 

Ro= IIN(f)llo :S 11Nllc0 1n1 112, 

R1 = IIV N(f)llo = IIN'(f)V fllo :S IIN'llc0 IIV fllo-

Let m ~ 2, then for k = 1, ... , m, using (2.32) and the inequality 

one gets 
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k 

Ri - L 11 L N(i)(f)Q(i, a, !)II~ 

k 

::; kllN'll~k-1 L L II L 

where 

lo:I = k i = 1 { al ai} JJ , ... ,JJ 

EB(i,o:) 

::; kC(k)IIN'll~k-1 [ L t L IIP(,81, • • • ',8\ flll~] 
lo:l=k i=l {···} 

C(k) = max{IB(i,a)IC(,81, ... ,,Bi) : {,8 1
, ... ,,Bi} E B(i,a), 

1::; i::; k, lal = k}. 

It remains to find an estimate for the term inside the summation: 

If i = 1, then {,81, ... ,,Bi}= {a}, and 

IIP(a; !)Ila= IID0 !Ila::; llfllk• 

30 

If i == 2, then IJ3jl ::; k - l, j = 1, 2, (since IJ3jl 2:: 1, j == 1, ... , i) so that 
from (3.48), 

IIP(,8 1 ,,82
; !)Ila::; C(O)IID

131
Jll1IID

132
Jlli::; C(O)llfllr 

If i 2:: 3, then IJ3j I ::; k - 2, j = 1, ... , i, and so by the algebra property of 
H 2(0), 

i 

IIP(,81, ... ',8\ !)Ila ::; C1(n)i-l II 11n13JJll2 ::; C1(n)i-l 11111t. 
j=l 
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Thus 

Ri :::; k6(k)6(n, k)IIN'll~•-{f k t IB(i, a)l-llflli;] 

:::; C'(n, k)IIN'll~m-, [t llfll!:] · 
where 6 = max(l, C(n), C1(n)2k-2) and (using n C R 3

) C(n, k) = k(k/2 + 
l)(k+ l)C(k)2C. Hence, using the inequality x2 + ·. • +x2m ~ m(x2+x2m) ~ 
m(x + xm)2, summing over k and setting C(n, m)2 = m I::;;1=1 C(n, k), one 
obtains (2.14): 

IIN(f)llm ~ IINllc01n1 112 + C(n, m)IIN'llcm-l [llfllm + 11111:]. 

(b) By the mean-value theorem and the inequalities (3.47), (3.48), 

IIN(f) - N(g)llo ~ IIN'llc0 llf - 9llo 

and, since V N(f) = N'(f)V f, 

IIV(N(f) - N(g))llo 

~ ll(N'(f) - N'(g))V fllo + IIN'(g)V(f - g)llo 

~ C(O)IIN"llc0 llf - 9ll1IIV fll1 + IIN'llc0 IIV(f - g)llo• 

This establishes (2.15) form = 0, 1. Now let m ~ 2. In addition to the nota-
tion defined in (a), set P(/3r, ... , {35; ·) = 1 if r >sand let S(/31, ... , {3i; f, g) 
= P(/31, ... , {3i; f) - P(/31, ... , {3i; g). By applying Lemma 2. 7 and rearrang-
ing terms one obtains 

D0 (N(f) - N(g)) 

101 
= L N(i)(f) 

i=l 

101 

L C(/31, ... '/3i)S({31, ... '/3\ f, g) 

{/31, ... '/3i} 
E B(i, o) 

+ L [N(i)(f)- N(i)(g)]Q(i,o,g). 
i=l 
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and 

t 

= L P({31, ... '{3s-1; f)P({38; f - g)P({3s+1' ... '{3\ g). 
s=l 

As in (a) it follows that for i = 1 (and lal = k) this reduces to 

IIS(a; f,g)llo = IIP(a; f - g)llo ~ Ill - 9llk, 

while for i = 2 one has 

11 S(f31
, f3 2

; f, g) Ila 

~ C(n)11nf3\t - g)ll111Df3
2

glli + c(n)11nf3
1

Jllil1Df3
2

(J - g)lli 
~ 2C(O)max(llfllk, ll9llk)llf - 9llk, 

and for i ~ 3, 

32 

Moreover, f and g are continuous since m ~ 2, so that by the mean-value 
theorem 

With the above inequalities in hand, proceeding as in ( a) yields 

IIN(f) - N(g)II~ 

'.:o IIN'l[~ollf - YII~ + C(O, m)211N'll~m[t IIYII!: }1J - YII~ 

+ C(O, m)211N'l[~m-1 [t max(l[Jllm, 11Yllm)2
'-

2}J - gl[~, 

or 

IIN(f) - N(g)llm ~ C(n, m)IIN'llcm(l + 11111: + 11911:)llf - 9llm• 
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Chapter 3 

SOLVABILITY OF THE 
AUXILIARY PROBLEMS 

The purpose of this chapter is to establish the well-posedness of the auxiliary 
problems (I) - (III) and to derive a priori estimates for their solutions. First 
it is necessary to introduce some notation: 

n denotes a bounded and, unless stated otherwise, simply-connected domain 
of class C 2 in R3, and nT and anT denote n X (0, T) and an X (0, T), 
respectively. When an is required to have additional regularity, this will be 
indicated. 

For m a nonnegative integer and 1 < q < oo, wm,q(n) is the usual Sobolev 
space with norm ll·llm,q, with Lq(n) denoting the space wm,q(n). Form ~ 
1, the associated trace space is denoted by wm-I/q,q( an) and its norm by 
ll-llm-1/q,q,on• Hm(n) denotes the Sobolev space wm,2(n) of order m with 
inner product(·, ·)m and norm ll·llm, with H0 (n) denoting L2 (n). The inner 
product and norm of Hm-1/2(an) = wm-1/2,2(an), m ~ 1, are denoted by 

( ·, · )m-1/2,an and II· llm-1/2,an-

For a detailed treatment of these spaces, consult e.g. [201] or [209]. The 
important properties here are that Hm(n) is a multiplicative algebra for 
m ~ 2, i.e. there is a constant C1 = C1(n) such that if u, v E Hm(n), then 
u. VE Hm(n) and 

(3.1) 

and that the trace operator 'Yo : Hm ( n) 1---t Hm-1/2 (an), m ~ 1, is bounded, 

33 
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i.e. 

ll,o(u)llm-1/2,an::; C2(n,m)llullm Vu E Hm(n), (3.2) 

and surjective, and therefore also has a continuous right inverse. The corre
sponding spaces of vector fields are denoted by boldface letters, i.e. 

etc., with their inner products and norms denoted as in the case of the scalar 
fields. 

Certain subspaces arise naturally in the treatment of the problem: for m 2 0, 
set 

Ym = Ym(n) = { v E Hm(n): v7•v = O}, 

Xm = Xm(n) = {v E Ym: v•n = 0 on an}, 

Ym+i = Ym+i (n) = { v E Hm+1(n) : v•n = 0 on an}, 

Zm+I/2 = Zm+1/2(an) = {a E Hm+l/2(an): a•n = O}. 

These are Hilbert spaces with the inner products of the associated Sobolev 
spaces. 

Furthermore, for a given time T > 0 and Banach space Y with norm ll·IIY, 
LP(0, T; Y) (1 ::; p < oo) denotes the Banach space of all measurable func-

tions v: t E (0, T) r-+ v(t) E Y such that the norm Jt llv(t)llfdt is finite, 
L00 (0, T; Y) denotes the Banach space of all measurable, essentially bounded 
functions on (0, T) with values in Y, and 
wk,P(0, T; Y) (k 2 0, 1 ::; p ::; oo) is the space of functions in LP(0, T; Y) 
for which the distributional time derivatives of order up to k are also in this 
space. In addition, 
Ck([0, T]; Y) (k 2 0) denotes the space of k times continuously differentiable 
functions on the closed interval [O, T] with values in Y. 

The norms in LP(0, T; Hm(n)) and LP(0, T; Hm-l/2
( an)), 1 ::; p < 00 are 

denoted by 11 • IILP,m,T and II· IILP,m-1/2,T,an, respectively. 
The usual norms in wk,00 (0, T; Hm(n)) and wk,00 (0, T; Hm-lf2(an)) are 

denoted by ll·llk,m,T and ll·llk,m-1/2,T,an, respectively, and fork= 0 by ll-llm,T 
and ll·llm-1/2,T,an• 

Lastly, the constant C which appears in inequalities denotes a generic positive 
constant that may take different values even in the same calculation. Where 
necessary, constants are fixed by the addition of a subscript or superscript, 
or by using other letters. The quantities on which a constant may possibly 
depend are given in brackets. 
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3.1 The Stokes Problem 

The first step in making the definition of the map <I> in Section 2.3 rigorous 
is to establish the well-posedness of the the auxiliary problem 

curl(v-a~v)=<P}· 0 

V•v = 0 m HT, 

v•n = 0 } on any. 
(A1n)r = T/ 

(III) 

One needs the following two lemmas: 

Lemma 3.1 Suppose that n is a bounded, simply-connected domain of class 
cm+2

' m 2:: 0, and let <I> E wk,00 (0, T; Ym), k 2:: 0. Then there exists a unique 
vector field 1P E wk,00 (0, T; Xm+I) such that 

curl 1/J = </:> in Dr, 

111/Jllk,m+I,T ~ C(n, m)llc/>llk,m,T• 

Proof. See Lemma 2.1 on p. 300 of [174]. 

(3.3) 

(3.4) 

□ 

Lemma 3.2 Let n be an open bounded set in Rn, n 2:: 2, with a boundary of 
class cm+2, m 2:: 0, and suppose that 

is a solution of the problem 

v - a.6.v + V7r = 1/J } 
't"7 inn, 
v •V = g 

v•n = h } 
(A ) 

- on an. 
ln T - 'TJ 

If 1/J E wm,q(n), g E wm+l,q(n), h E wm+2-I/q,q(an) and 
'T/ E wm+i-I/q,q(aD), then 

V E wm+2,q(n), 71' E wm+l,q(n), 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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and there exists a constant C = C(n, m, q, a) such that 

llvllm+2,q + llv77rllm,q + }~{ ll1r + rllo,q 

~ C(ll1Pllm,q + IIYllmH,q + llhllm+2-l/q,q,an 

+ ll11llm+1-l/q,q,an + dqllvllo,q) 

(3.9) 

with dq = l for l < q < 2, dq = 0 for q ~ 2. Moreover, if q ~ 2, the solution 
zs unique. 

Proof. The proof of (3.8) and (3.9) is similar to that of Proposition 2.2 
in (185] for the Stokes equation with a Dirichlet boundary condition, and is 
given in full in Section 3.4. 

The uniqueness for q ~ 2 is proved in the usual way: if u is a solution of the 
corresponding homogeneous problem, then taking the L2 (!1) inner product 
of (3.6)i with u and integrating by parts yields 

Remark 3.3 (a) From the proofs of Lemma 4.2 (on page 67) and Theorem 
4.4 ( on page 71) it is clear that one actually only requires the case k = 0 of 
Lemma 3.1 and Proposition 3.4 below to prove that <I> has fixed point (in the 
setting defined in Section 4.1), and the case k = l for deriving the additional 
regularity of the resulting vector field v. 

(b) If n is a region in R 3 obtained by revolution around a vector k through 
a point x 0 , then problem (3.6), (3.7) differs from the corresponding Stokes 
slip problem ( without the term v in (3.6)i; see e.g. [23, 25]) in that (3.6) 
- (3. 7) does not impose a compatibility condition on 1j, and 17. Taking the 
L 2 (!1) inner product of (3.6)i with u 0 = k x (x-x0 ) (which satisfies v7•u0 = 
0, Ai ( uo) = 0, Uo•n = 0) simply gives 

(v,uo)o + a(11,uo)o,an = ('lj,,uo)o. 

( Of course one still has the condition 

1 g = f h.) 
n lan 
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Proposition 3.4 Let n be a simply-connected domain in R 3 of class Cm+3, 
m ~ 0, and, for k ~ 0, let 

(3.10) 

Then there exists a unique vector field VE wk,00 (0, T; Xm+3) satisfying (III). 
Moreover, there is a constant C3 = C3 (m, n, a) such that 

(3.11) 

Proof. Since n is simply connected and ¢ is solenoidal, one knows from 
Lemma 3.1 that there exists a uniquely determined 1/J E Wk• 00 (0, T; Xm+i) 
such that 

curl 1P = <P, 111/Jllm+i,T ::; C(m, f!)ll</Jllm,T· 
Hence it suffices to establish the unique solvability of the problem 

v - a~v + V1r == 1/J 
V•v = 0 

v•n = 0 

} in f!T, 

} on 8f!T, 

where V1r is the irrotational part of 1/J - v + a~v. 

(3.12) 

First let k == 0. In view of Lemma 3.2 it only remains to prove that, given 
1/J E L2 (0), r, E Z 1; 2 , there exists a solution v E X 2 , 1r E H 1 (0) to (3.12) 
(with t treated as a parameter). Inequality (3.11) will then follow by taking 
suprema over (0, T] in (3.9). This result follows by simplification from (27], 
where the corresponding stationary N avier-Stokes slip problem is considered. 
The Stokes problem with perfect slip ( r, = 0) is studied in [23, 25]. 

Fork ~ l, differentiating the equations (3.12) k times with respect tot, using 
the uniqueness of the solution - in short, replacing ¢, r, and v by their k-th 
t-derivatives in (3.12) - and applying the estimate derived for k = 0 shows 
that V E wk,00 (0, T; Xm+3) and that (3.11) holds. 

Remark 3.5 (a) As W 1•2(0, T; Hm+3 (0)) is continuously imbedded in 
C([0, T]; Hm+3(O)) (see e.g. (212, p. 480], (206, p. XIII] or (185, Chapter III, 
Lemma 2.1]), it follows that 

(3.13) 
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if k 2 1 in Proposition 3.4. 

(b) It follows from the linearity (in both the data and solution) of the problem 
and the a priori estimate for the stationary problem that if instead of (3.10) 
one assumes that 

</> E C([O, T]; Vm), 1J E C([O, T]; Zm+3/2), 

then v also satisfies (3.13). 
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3.2 The Transport Problem 

One advantage of the fixed point formulation (2.24) over a more direct attack 
on the problem lies in the relative simplicity of problem (I) ( and problem (II) 
in the next section): the nonlinear third-order equation (2.5)i is transformed 
to the linear first-order equation (I)i. The resulting initial-value problem 

8u V at+ a (u - curl v) = u•v'v - v•v'u + h in nT, 

v'•u=O innT, (I) 

u(O) = uo inn 

is solved in [174] via the Galerkin method and the following inequalities: 

Lemma 3.6 (a) Form ~ 0 there is a constant C4 = C4(0, m) such that if 
V E Xm+2 and u E Hm(n), then 

(3.14) 

with C4 = 0 if m = 0, and r(l) = 2, r(2) = 1 and r(m) = 0 form~ 3. 

(b) Fors = l, 2, 3, u E H 3-s(n) and v E Hs(n), 

(c) Fors= 1, 2, u E H 3-s(n) and v E Hi+s(n), 

llu•v'vll1 ~ C5(0)llul13-sllvlli+s• 

(d) If m ~ 2, u E Hm(n) and v E Hm+i(n), then 

(3.15) 

(3.16) 

(3.17) 

Proof. Inequalities (3.14) - (3.16) are proved via the Sobolev imbedding 
theorem as in [187], and inequality (3.17) follows from (3.1). See Section 3.4 
for the detail. 

Allowing for greater regularity of the initial velocity field, Lemma 2.4 of [174] 
can be slightly extended to 
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Proposition 3. 7 Let q and m satisfy one of the conditions 

(a) q = 0,m 2:: 1, (b) q = l,m 2:: 0, (c) q = 2,m 2:: 0, 

and assume that n is class cm+q+3 • 

If V E L00 (0, T; Xm+3) with llvllm+3,T :s; M, h E L00 (0, T; Ym+q) and Uo E 
Hm+q ( n), then there exists a unique solution u to (I)i, (Ih such that 

u E L00 (0, T; Hm+q(f!)) n W1
•
00 (0, T; Hm-i+q(f!)), 

llullm+q,T +II~: II :s; C6(n, m, q, M, T, ~' llhllm+q,T, lluollm+q). 
m-l+q,T 

(3.18) 
Moreover, if V•u0 = 0 inn, then V•u = 0 in Or. 

Proof. Case (a) is Lemma 2.4 of (174] and the other two cases are proved 
in the same way by making use of Lemma 3.6. Note that for each k 2:: 0, the 
statement for case ( c) with m = k implies case (b) with m = k + 1, which 
in turn implies case (a) with m = k + 2. A detailed proof can be found in 
Section 3.4. D 

Alternatively, to highlight the dependence on the regularity of v, one can 
write Proposition 3. 7 as 

Proposition 3.8 Let m 2:: 1, assume that n is of class cm+3 , and de

fine n(l) = 2, n(m) = 1 for m 2:: 2. If v E L00 (0, T; Xm+n(m)) with 

llvllm+n(m),T :s; M, h E L00 (0, T; Ym) and Uo E Hm(n), then there exists 
a unique solution u to (I)i, (Ih such that 

u E L00 (0, T; Hm(f!)) n W1
•
00 (0, T; Hm-1 (0)), 

lluJlm,T + II~: L,,T ::; C6(n, m, M, T, ~, llhllm,T, lluollm), 

with V•u = 0 if V•uo = 0. 

(3.19) 

Proof. The statements for m = 1 and m 2:: 2 follow from parts (b) ( with 
m = 0) and (c) of Proposition 3.7, respectively. 
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Remark 3. 9 (a) The condition V •v = 0 in Propositions 3. 7 and 3.8 is only 
necessary for establishing the incompressibility of u, because the boundary 
condition 

v•n == 0 on 8fh 

alone ensures the uniqueness of the solution (see page 56). 

(b) It is shown in e.g. [212, Chapter XVIII] that the space 

W(0, T; Hm(n), Hm-1(0)) 

= { u E L2 (0, T; Hm(D)) : u' E L2(0, T; Hm-1 (0))}, 

which equipped with the inner product 

( U, V )w == ( U, V )m,T + ( U 1
, v')m-1,T 

is a Hilbert space, is continuously imbedded in C([O, T]; Hm-l/2(0)). Hence 
(3.18) with q == 0 implies that 

(3.20) 

( c) Proposition 3. 7( a) is sufficient for the arguments in Chapter 4 and has a 
simple proof (the Galerkin method), but does not establish that u: [O, T] i---+ 

Hm(n) is continuous. Using the theory of [186] - [188] (which involves the 
use of strongly continuous groups), [193] proved the well-posedness of a class 
of initial-boundary-value problems for transport equations of the form 

au . at+ v•Vu +Au== f m nT, 

where A== [aij] denotes a matrix, of which (I) 1 is a special case. From this 
one can extract the following result, which shows that the solution does have 
the persistence property if v is sufficiently regular. 

Proposition 3.10 For m 2: 0, let n be of class er, r == max(l, m), let 
h E L1(0, T; Hm(n)), u 0 E Hm(n) and define n(0) == 4, n(l) = n(2) = 3, 
n( m) = 1 for m 2: 3, and assume that 

(3.21) 

with 
V•n = 0 on 8f1T, 
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Then problem (I) 1 , (Ih has a unique solution u E C ( [O, T]; Hm ( n)) and there 
are constants C = C(n, m) such that 

V 
vT C(- + llvllm+n(m),T )T 

llullm,T ~ C(lluollm + -llvllm+l,T + llhllv,m,T)e a 
O'. 

(3.22) 
Moreover, if m ~ 3 then 

V 
vT C(- + llvllm+i,T )T 

llullm-1,T ~ C(lluollm-1 + ~llvllm,T + llhllv,m-1,T )e a , 

and if v*, a*, u;, v*, h* is another set of functions verifying the above 
hypotheses and u* is the corresponding solution, then 

llu - u*llm-1,T 
* ~ C{lluo - u;llm-1 + TII: V - :* v*llm,T + llh - h*llv,m-1,T 

vT v v* * + (lluollm + -llvllm+i,T + llhllv,m,T)(I- - -;I+ llv - V llm,T)x 
O'. O'. O'. 

V v* 
C(- + ---; + llvllm+i,T + llv*llm+i,T )T} 

xe a a . 

Proof. Extend v to [-T, O] by v(t) = v(-t), extend h in the same way 
and set 

V V 
A= -I+ 'vv, f = -curl v + h. 

O'. O'. 

Then, for m ~ 2, assumption (3.21), the imbedding mentioned in Remark 
3.5(a) and the Sobolev imbedding Hs+2(n) y cs(n) ensure that 

v, A E L00 (-T, T; cr(n)) n C([-T, T]; cr- 1(0)), 

/ E L1(-T,T;Hm(O)), 

so that one may apply Corollary 2.3 of [193] (with k = m, l = 0, n = N = 3, 
p = 2) to obtain the desired result. Similarly, for m ~ 3, (3.21) implies that 

v, A E L00 (-T, T; Hm(O)) n C([-T, T]; Hm-1 (0)), 

/ E L1(-T, T; Hm(O)), 

and therefore Corollaries 2.3* and 2.4* of [193] apply. 
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3.3 The Boundary Problem 

The aim of this section is to formulate and solve a problem in n with the 
property that the trace of its solution is a solution of problem (II)* (see page 
23). A natural approach is to simply extend the terms in the right hand side 
of (II)t to n by using their form on an and an extension n of n. 

Let an be of class Cm+4, m 2:: 0. Then n E cm+3( an), so that it can be 
extended to a vector field f,, E Hm+3 (0) (with llnllm+3 ~ Cllnllm+5/2,an = 
C(O); in fact, according to Proposition 4.9 on p. 251 of [209) one may take 
n E cm+3 ( n)). In the same way I< E cm+2 (an) can be extended to a 
function k E cm+2 ( n). 

Thus, given ¢,, TJ and v as in Proposition 3.4, and a constant M such that 
llvllm+3,T ~ M, define a as in (2.20) and b as in (2.22). Then, using the 
algebra property (3.1) of Hm+2(n), 

llallm+2 ~ IIA1(v)nllm+2 + ll(n•A1(v)n)nllm+2 

~ Cllv'vllm+2(llnll~+2 + l)llnllm+2, 

while 

llbillm+2 ~ IIA1rjVk(nrn/ii),kllm+2 + IIA1ijVknj,kllm+2 

~ C;(IIA1rillm+2llvkllm+2ll(nrnjni),kllm+2 

+ IIA1ijllm+2 llvkllm+2 llnj,k llm+2) 

~ Cllv'vllm+2llvllm+2(3llnll~+2 + l)llnllm+3, i = 1,2,3, 

with C independent of v (and m, n), and thus 

a E L00 (0, T; Ym+2), llallm+2,T ~ C(n, m)M, (3.23) 

b E L00 (0, T; Hm+2(0)), llbllm+2,T ~ C(n, m)M2
• (3.24) 

Similarly, define C in n by 

then 

llcillm+2 ~ C1ll[A1 W - A1 W)ijllm+2llnjllm+2 

+ Cfll[A1 W - A1 W)kjllm+2llnkllm+2llnjllm+2llnillm+2 

~ Cllv'vll~+2(llnll~+2 + l)llnllm+2, i = 1, 2, 3, 
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with C independent of v, and therefore 

In addition, N(•) being independent of y E an, N(lvl)v is well-defined inn. 
Moreover, for any V E Hm+2(n), it follows from (3.1) that lvl 2 E Hm+2(n) 
with lllvl 2 llm+2 :S C1llvll~+2, and therefore from (2.14) that 

IIN(lvl
2
)llm+2::; IINllcm+2(IDl 112 + C[C1llvll~+2 + C~llvll~~i

2
)]). (3.27) 

Hence, again by (3.1), S(lvl)v E UX)(O, T; Ym+2) with 

IIS(lvl)vllm+2,T 

::; C(n, m)(lli<llcm+2 + IINllcm+2( 1n1 112 + M 2 + M 2mH))M. 
(3.28) 

(One can replace m + 2 by m + 3 here, but (3.28) suffices for (3.30)3 below.) 
Lastly, if d E L00 (0, T; Zm+3; 2 ), then, using any bounded right inverse of the 

trace map, d can be extended to a vector field d E L00 (0, T; Ym+2) such that 

These extensions (plus the requirement on r, in Proposition 3.4) suggest the 
following problem: 

Given V E L00 (0, T; Xm+3) with llvllm+3,T ::; M, find a E L00 (0, T; Ym+2) 
satisfying 

aa v 1 1 ,. 
at+ ~a+ v•Va = ~S(lvl)v - b - C + O'. d in nT, 

a•n = 0 on 80T, 

a(O) = a0 in n, 

where a0 E Hm+2(n) is defined as in (2.20), using v 0 instead of v. 

(3.29) 

However, due to the boundary condition (3.29)2 and the absence of a "com
plementing" term ( corresponding to V 1r in (3.6)) in equation (3.29)i, one 
cannot expect this problem to be well-posed in general. Moreover, since 
Yi is dense in L 2(0) (so that no Helmholtz-type decomposition _is possible; 
Yo= L2(n) as in [191] is the only possibility) and, to my best knowledge, the 
orthogonal complement of Yr;, in Hn(n) has not been characterised for any 
n ~ 1 ([191] only gives a characterisation of the orthogonal complement of 
Xn in Yr;,), it is not clear how a proof analogous to that in [189, 192] could be 
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constructed. Instead I shall formulate a problem with a solenoidal solution, 
so that the properties of Xn can be exploited as in [189, 192]. 

Extension to n. 
Given any </> E L00 (0, T; Ym), m ~ 0, TJ E L00 (0, T; Xm+2 ) (with the right 
hand side of (3.11) smaller than M so that llvllm+3,T ~ M), let v be as 
in Proposition 3.4, define bas in Section 2.3 and let d E L00 (0, T; Zm+3; 2 ). 

Then, by (3.26), (3.28) and the well-known existence results for the Stokes 
problem ([183, 184]), there exist unique functions s, c, d E L00 (0, T; Xm+2 ) 

and scalar fields p1 , p2 , p3 (unique up to a constant) such that 

and 

6 S + "v Pl = 0 in f!T 

"v•s = 0 in f!T, 

s = S(lvl)v on anT, 
llsllm+2,T 

~ C(n, m)(llkllcrn+2 + IINllcrn+2 (InI 112 + M 2 + M 2mH))M, 

6c + "v P2 = 0 in f!T 

"v •C = 0 in nT, 

C = ([A1 W - W A1]n)T on anT, 
llcllm+2,T ~ C(O,m)M2, 

6d + "v p3 = 0 in nT 

"v •C = 0 in nT, 

d = d on anT, 

lldllm+2,T ~ C(n, m)lldllm+3/2,T,8n• 

Furthermore, by (2.21) and (III) 4 , 

(3.30) 

(3.31) 

(3.32) 

and therefore there exists a unique vector field b E L00 (0, T; Ym+2 ) solving 
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the Stokes problem 

6b + Vp4 = 0 in Or 

v-b = -V•(v•V11) = -(Vv)I': V17 in Or, 

b = b on anr, 
llbllm+2,r::; C(O,m)(M + ll11llm+2,r)M, 

(3.33) 

the last estimate following with the help of the trace theorem, (3.24) and the 
inequality 

(3.34) 

which is easily proved by means of (3.47) and (3.48) (see the proof of (3.16), 
s = l) and (3.1). Lastly, with a 0 defined as in Section 2.3, one can find 
Wo E Xm+2 such that Wo = ao on an and llwallm+2::; C(O,m)llaallm+3/2,an 
(via a Stokes problem, for example). For any such choice of w 0 one has 

Proposition 3.11 Let n be a bounded domain of class cmH, m ~ l, and 
suppose that 1J, v, s, b, c and d are as described above. Then there exists a 
unique solution 

E L00 (0 T X ) n W1·00 (0 T X ) nq E L00 (0, T·, Hm+2(n)) W , ; m+2 , ; m+l , V H 

(3.35) 
to the problem 

aw V V 

-+-w+v•Vw+v'q=f inOr, at a 

V•w = 0 in nT, 

W•n = 0 on anr, 
w(O) = Wo inn, 

(II) 

where f = s/a-b-c+d/a E L00 (0,T;Ym+2) andwo E Xm+2· Moreover, 

dw 
llwllm+2,r + lldtllm+1,r + IIVqllm+2,r ~ C1(n, m, T, v, a, M, · · · 

(3.36) 

· · - IIKllcm+2 , IINllcm+2 , llwallm+2, lldllm+3/2,r,an, ll11llm+2,r). 
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Proof. The proof follows that of [189, 192], and is given in Section 3.4. 
The restriction m ~ 1 is necessary for the derivation of an a priori estimate 
of the irrotational term in (II)i. 

Remark 3.12 (a) The function q in (II) is the solution (unique up to a 
constant) of the problem 

6q = v'·(f - v•v'w) = -v'•(v•v'w + b) 

= v'•(v•v'[71 - w]) = (v'vf: v'(71 - w) in fh, 
8q V 

an = (f - v•v'w)•n = -(v•v'w + b)•n on anT, 

the second equality in both equations following from (3.30) - (3.33). Now, if 
w = 11, then (by (111)4 and (2.19)) w = 11 = (A1n)T = a on anT, and thus, 
by Remark 2.5(a) and (2.21), 

v•v'w = v•v'a, v•v'w + b = ([(v•v')Ai]n)T on anT. 

This implies that v' q = 0 and, taking the trace of equation (II)i, that the 
slip boundary condition is satisfied. 

(b) By the argument leading to (3.20), it follows from (3.35) that 

w E C([O, T]; Hm+3f 2(0)). 

In fact, assuming only that d E £1(0, T; Zm+3;2), so that d E L1(0, T; Xm+2) 
with 

lldllv,m+2,T::; C(O,m)lldllv,m+3/2,T,an, 

one sees from (3.30)4, (3.31)4 and (3.33)4 that / E L1(0, T; Hm+2(D,)) with 

ll/llv,m+2,T ::; C(n, m, a, lli<llcm+2 ' IINllcm+2 ' llvllm+3,T, ll11llm+2,T )T 

+ C(n, m)lldllv,m+3/2,T,an-

Hence, by virtue of the statements in (a), the following lemma - a slight 
variation of Proposition 3.10 - shows that if ( u, w) is a fixed point of <I> ( as 
defined in Section 4.1), then 

(3.37) 
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Lemma 3.13 For m 2:: 1, let n be of class cm+2, let Wo E Hm+2(n), 
/ E L1(0, T; Hm+2(n)), and assume that 

with 
V•n = 0 on anT. 

Then the initial-value problem 

aw V 
-+-w+v•'vw=f at a 

w(O) = Wo 

in nT, } 

inn, 
(3.38) 

has a unique solution w E C([O, T]; Hm+2(n)) and there are constants C = 
C(n, m) such that 

(3.39) 
V 

C(- + llvllm+2 T)T 
llwllm+i,T::; C(llwollm+i + 11/llv,m+i,T)e a ' 

Moreover, if v*, a*, w;, f*, v* is another set of functions verifying the above 
hypotheses and w* is the corresponding solution, then 

llw - w*llm+i,T::; C{llwo - w~llm+i + llf - f*llo,m+i,T 
V v* . 

+ (llwollm+2 + ll/llo,m+2,T)(I- - ~I+ llv - v*llm+i,T)X 
a a 

V v* 
C(- +-; + llvllm+2,T + llv*llm+2,T)T} xe a a . 

Proof. As in the proof of Proposition 3.10, extend v and f symmetrically 
to [-T, 0) and set A= (v/a)I, so that 

v, A E L00 (-T, T; Hm+2(0)) n C([-T, T]; Hm+1(0)), 

/ E L1(-T,T;Hm+2(0)), 

and then apply Corollaries 2.3* and 2.4* of [193). 
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3.4 Appendix 

Proof of Lemma 3.2. 
Firstly, write equations (3.6) in the form 

1 
(L - -)v1 

a 

1 
--71" 1 

a ' 

1 
--11"2 
a' 

1 
--11",n 

a 

1 
- -7/Jn, 

a 

g. 

Let Vn+i = -1r / a and f = ( -7/Ji/ a, ... , -7/Jn/ a, g), then this becomes 

N 

Li\j(8)vj(~) = Ji(~) inn, i = 1, ... , N, (3.40) 
j=l 

where N = n + 1, 8 = ( 81 , ... , 8n), and the matrix [£ii({)], { = (6, ... , ~n) E 
Rn, is given by 

£ii({)= l{l 2 oii - 1/a, 1{1 2 = ~i + · · · + ~~' i,j = 1, ... , n, 
Rnj({) = -Rjn({) = ~j, j = 1, ... , n, (3.41) 
fn+I,n+i({) = 0. 

Following the proof of Proposition 2.2 in [185, p. 34] for the Stokes problem 
with a Dirichlet boundary condition, define two systems of weights by s1 = 
... =Sn= O,sn+I = -1, and t1 = ... tn = 2,tn+I = 1. Then Si::; 0 and 
degree(Rij({))::; si+tj, as required by [184, p. 38]. The matrix[£~/{)], where 
f~j(e) consists of the terms in fij({) that are of order Si + tj in e, is then 
identical to the corresponding matrix in [185]: 

. 1e1 2 -6 
1e1 2 -6 

[£~/{)] = (3.42) 

1e1 2 
-~n 

6 6 ~n 0 

It is easy to show by induction that £({) = det[f~i({)] = l{l 2n, so that 
£({) =/: 0 for nonzero real{, i.e. (3.6) is elliptic. In fact, (3.6) is uniformly 
elliptic in the sense of [184] (with m = n, A= 1 in (1.7) of [184]). 
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Moreover, the supplementary condition on£ is satisfied: £(e) is of even 
degree 2n, and for every pair of linearly independent real vectors e, e' - in 
particular, for each point re of an, e a tangent and e' a normal at re - the 
polynomial £(e + re') in T has exactly n roots with positive imaginary part, 
namely r+(e, e') = ilel/le' I: 

[(e + re')•(e + re')t 

(lel2 + le' l2r
2r 

le'l2n( T - ilel/le'lt( T + ilel/le' 1r 
Let Th (re) E cm+ 1 (an)' h = 1, ... ' n' denote a system of orthonormal vectors 
spanning the tangent plane at re E an and set <p = ( 1J•T1' ... '1J•Tn-

1
, h ). 

Then the n boundary conditions (3. 7) can be expressed as 

N 

L Bhj(re, 8)vAre) = cf>h(re) on an, h = 1, ... , n, 
j=l 

where 

(3.43) 

dn-1,1 dn-1,2 dn-1,n 0 
n1(re) n2(re) nn(re) 0 

with dhj(re, e) = r/(re)(n(re)•e) + rJj(re)(rh(re)•e), h = 1, ... , n - 1, 
j = l, ... ,n. 

Take r 1 = ... = rn = -1 and rn+I = -2, then degree(Bhj) ::; rh + tj and 
[B~j] = [Bhj], where B~j(re,e) consists of the terms in Bhj(re,e) that are 
of order rh + tj in e. Now it only remains to verify the complementing 
boundary condition (which ensures that (3.6), (3.7) is coercive): 

For an arbitrary re E an, let n denote the ( outward) unit normal at re, let e 
be any nonzero real tangent vector to an at re, and define [,ik ( •) = .e5k ( ·), 

j,k = 1, ... ,N. Then 
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[B~j(e + 7n)][£jk(e + 7n)) 

(7l7 + b1n1)Q(7) 

( 7 f 7 + b2 n 1) Q ( 7) 

(7;-17 + bn-1n1)Q(7) 

n1Q(7) 

where Q(7) = 1e1 2 + 72, bh = Th•e. 
(Since e-n = 0, lnl = 1, one has 

(7r!7 + b1nn)Q(7) 2b17 

( 7;:7 + b2nn)Q( 7) 2b27 

(7;:-17 + bn-lnn)Q(7) 2bn-17 

nnQ( 7) 7 

le+ 7nl2 = Q(7), dhj(a!,e + 7n) = 7jh7 + nj(Th•e) = 7/7 + bhnj, 
~7=1(7jh7 + bhnj)(ej + 7nj) = 2bh7, ~7=1 nj(ej + 7nj) = 7.) 

(3.44) 

Let 7+ = 7+(e,n) = ilel, set M+(7) = (7 - 7+r and suppose that C = 
( C1, ... , Cn) is a constant vector with the property that, as polynomials in 7, 

n N 

L Ch(L B~j_cjk) = 0 (mod M+), k = 1, ... , n, 
h=l j=l 

C•[7(7f, ... , 7;-l, 0) + nk(b1, ... , bn--1, 1))(7 - 7+)(7 + 7+) 
= 0 (mod M+), k = 1, ... , n - 1, 

(3.45) 

_ 7C•(2b1, ... , 2bn-I, 1) ~ 0 ·· (mod M+). (3.46) 
- - I 

From (3.46) one gets C·(2b1, ... , 2bn-i, 1 )-= 0~ -~nus·; 'if'n = 2, then (3.45) 
implies that 

so that 

or 

C1 T 1 + ... + Cn-1 Tn-l + ½1e1cnn = 0, 

and therefore C = 0. If n ?:: 3, (3.45) implies that 
C1 T 1 + · · · + Cn-1 Tn-I = 0 and C·(b1, ... , bn-I, 1) = 0, so that C = 0. Hence 
the rows of [B~j][,Cjk] are linearly independent modulo M+( 7 ). 
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The statement of the lemma now follows by applying the classical Theorem 
10.5 of [184]. The change in notation is 

N=n+l(n~2), 
t' = max(ti) = 2 
f1 max(0, rh + 1) = 0, 
.e+ti -m+2 (j = l, ... ,n), 
.e - Si = m ( i = 1, ... , n ), 
f-rh =m+l (h= 1, ... ,n), 

Proof of Lemma 3.6. 
Recall the well-known estimates 

p = q, 
m=n,A=l, 
.e = m ~ 0, 
f+tn+i=m+l, 
f - Sn+i = m + 1, 
f - rn+I = m + 2. 

□ 

llfgllo::; C(n)llfll2llgllo, f E H2(n), g E L2(n), (3.47) 

llfgllo::; C(n)llfll1llgll1, f,g E H1(n), (3.48) 

which follow from the Cauchy-Schwarz inequality and the imbeddings 
H 2 (n) Y CB(n) and H 1 (n) Y L4 (n), respectively. 

(a) One has 

with 

(v•Vu,u)m = L (Da(v•Vu),Dau) 0 

lal :5 m 

0</3-5.cx 

C = (a1) (a2) (a3) cx,/3 f31 f32 {33 . 

As in [187], ((v•V)Dau, Dau)0 = 0 since v E Xm+2• Thus inequality (3.14) 
follows from the following inequalities for 0 < /3 :S a ( which satisfy la - /31 = 
lal - 1/31): 

If lf31 = 1, then by (3.47), 

ll(D/3v•V)Dcx-/3ullo::; CIID/3vll2IIV ncx-/Jullo::; Cllvll3llull1al· 

If lf31 = 2, then by (3.48), 

ll(D/3v•V)Dcx-/3ullo::; CIID13vll1IIV ncx-/3ull1::; Cllvll3llull1a1• 
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If l,81 ~ 3, then by (3.47), 

ll(D~v-v')D0 -~ullo::; CIID~vllollv' D0 -~ull2::; Cllvll1~illull1al-l~l+3· 

(b) The inequalities for s == 1, 2, 3 follow from inequalities (3.47), (3.48) and 
(3.4 7), respectively. 

(c) In the light of the estimates (3.15) for llv•v'ullo it suffices to note that, 
by (3.47) and (3.48), for every 1 ::; i, k ::; 3, 

and 

llui,kvi,illo::; Cllui,kll1llvi,illi ::; Cllull2llvl12, 
II U j Vi ,j k 110 ::; C I I U j 11 2 11 Vi ,j k 11 0 ::; C I I U I I 2 I I V 11 2 , 

lluj,kVi,illo::; Cllui,kllollvi,ill2 ::; Cllull1llvll3, 
lluivi,jk Ila ::; ClluJ 1 llvi,jk Iii ::; Cllulli llv 113• 

• 
( d) This is clear from the algebra property ( 3 .1) of Hm ( n) for m 2 2. D 

For the proof of Proposition 3. 7 and some of the proofs in the later chapters 
one needs a version of Gronwall 's lemma. In the literature this usually 
refers to results of the type in (a) - ( c) below, but in some papers ( e.g. 
[170, 174, 172, 176]) the inequality in ( cl), also goes by this name. 

Lemma 3.14 (a) Let f,g: [t0 ,T0 ] f--+ R be continuous functions and 
c : [to, T0 ] f--+ R an integrable function, with g, c 2 0 on [to, T0 ], which satisfy 

Then 

f(t)::; g(t) + r c(s)f(s)ds, Vt E [to, T0 ]. 

lto 

f(t) ::; g(t) + r g(s)c(s)ef: c(r)drds, Vt E [to, T0 ]. 

lto 

(b) Let f, g : [to, To] f--+ R be continuous functions, with g decreasing, which 
for a constant c > 0 satisfy 

Then 

f(t)::; g(t) +Cr f(s)ds, Vt E [to, To], 
lto 

f(t)::; g(t)ec(t-to), Vt E [to, To]. 
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(c) Let f E L00 (t 0 , T0 ) and suppose there are constants c ~ 0, b such that 

f(t) :Sb+ c ( f(s)ds, Vt E [to, To], 
lto 

Then 
f(t) :S bec(t-to), for a.e. t E [to, To]. 

( d) Let f : [to, T0 ] M R be a nonnegative continuous function with an in
tegrable derivative a.e. in [to, T0 ] (i.e. f is absolutely continuous) which, for 
constants b, c { of any sign), satisfies 

f'(t) :S b + cf(t), for a.e. t E [to, To]. 

Then 
b 

f(t) :S ec(t-to) f(to) + -(ec(t-to) - 1), Vt E [to, To], (3.49) 
C 

with the inequality reducing to f(t) :S f(t 0 ) + b(t - to) if c = 0. 

Proof. (a) is given in [215, p. 508], (b) is Proposition 3.10 of [208, p. 82], 
(c) is given in [197, p. 124], and (d) follows by factor integration. (For other 
versions of the lemma, with stronger smoothness conditions on f and g, see 
[211, p. 436].) o 

Proof of Proposition 3. 7. 
The proof is by the Galerkin method, of which the first step is to derive a 

priori estimates for the solution of problem (I). Let m and q satisfy any of 
the relations ( a) - ( c ), then it follows from Lemma 3.6 that 

{ CsllvJl3llul11 if m + q = l [(3.16), s = 2] 
llu•v'vllm+q < 

- C5llvllm+q+l llullm+q if m + q ~ 2 [(3.17)] 

:S C5llvllm+311ullm+q, (3.50) 

{ C4llvJl3JluJlf if m + q = l [(3.14), r == 2] 

l(v•v'u,u)m+ql :S C4llvll3llull~ if m + q = 2 [(3.14),r = l] 

C4 llv llm+q llull~+q if m + q ~ 3 [(3.14), r = 0] 

:S C4llvllm+311ull~+q' (3.51) 

{ Csllvll2llull1 if m + q = l [(3.15), s = l] 

llv•v'ullm+q-1 :S C5llvll2llull2 if m + q = 2 [(3.16),s = l] 

C5llvllm+q-1 llullm+q if m + q ~ 3 [(3.17)] 
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:::; C5llvllm+2llullm+q· (3.52) 

Taking the Hm+q(n) inner product of (I)l with u gives 

V 
-(curl v, u)m+q + (u•Vv, u)m+q 
O' 

- (v•Vu, u)m+q + (h, u)m+q· (3.53) 

By the triangle, Schwarz and Cauchy inequalities, 

(3.54) 

Hence, from (3.50), (3.51), (3.53) and (3.54) one obtains 

(3.55) 

By using llvllm+3,T :::; M and inequality (3.49), one finds that 

with 

Furthermore, from (1) 1 and inequalities (3.50) and (3.52) it follows that 

du 
lldtllm+q-1,T 

:=:; V (llullm+q-1,T + v'2llvllm+q,T) + 2C5llvllm+3,Tllullm+q,T + llhllm+q-1,T 
O' 

(3.57) 
where 
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Using the estimates (3.56) and (3.57), one can now show by the Faedo
Galerkin method (as in [185, Chapter III] or the proof of Proposition 3.11 
below) that there exists a solution to problem (I) with the stated regularity 
properties. The uniqueness of the solution follows easily: 

If u 1 and u 2 are any two solutions of (I), then u = u 1 
- u 2 solves the 

homogeneous problem 

8u V -+-u at a 
u(0) 0 inn. 

With f(t) = llu(t)II~, using (v•Vu,u)o = 0, (3.15) and llvll3,T::; M gives 

(3.58) 

and thus by (3.49), f = 0, i.e. u 1 = u 2 . Observe that u is unique even 
if v is not solenoidal, since by a simple integration by parts, the boundary 
condition v•n = 0 on 8fh and inequality (3.47) one obtains 

1 2 
-(v•Vu,u)o = 2(V•v, lul )o::; C(O)Mf(t), 

and therefore again an equation of the form (3.58). 

Lastly, the incompressibility of u is proved as in [17 4, p. 38]: Taking the 
divergence of (I)i and using the identity (2.17) and the incompressibility of 
v and h = curl g yields 

8( V - + -( = -V•(curl (u xv)+ (v) = -v•V( at a 

where ( = V •u. Multiplying this equation by (, integrating over n and 
noting that (v•V(, ()0 = 0 since v E X 1 , one obtains 

and therefore ( = 0 in [O, T]. □ 

The proof of Proposition 3.11 relies on the following two well-known results, 
the second of which is usually referred to as "Aubin's lemma". 
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Lemma 3.15 Let T > 0 and let X and Y be Hilbert spaces or separable 
Banach spaces with dual spaces X' and Y'. Suppose that Y is continuously 
and densely imbedded in X. If 

Un ---+ u weakly* in L00 (0, T; X') 

and 
dun ( ) dt ---+ x weakly* in L 00 0, T; Y' , 

then 
du 

V - in L00 (0, T·, Y'). 
A, - dt 

Proof. See [200, p. 68]. 

Lemma 3.16 (a) Let X 0 , X, X 1 be three Banach spaces, with X 0 and X 1 

reflexive, such that 
Xo c.....+c.....+X c.....+X1. 

Then, for any O < T < oo, 1 < Pi < oo, i = 1, 2, the space 

equipped with the norm 

is a Banach space. Moreover, one has the imbeddings 

W c.....+ C([0,T];X1), 

W Ye.....+ £PO (0, T; X). 
(3.59) 

(b) If, in addition, X1 is a Hilbert space, then one may take p1 = 1 in (a). 

( c) If Xo, X, X1 in ( a) are Hilbert spaces, then 

W(0, T; Xo, Xi) = W(0, T; 2, 2; Xo, X1) 

is a Hilbert space with the inner product 

dv dw 
( v, W )w = ( v, W )L2(0,T;Xo) + ( di' dt )£2(0,T;Xi)· 
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Proof. See (199, p. 57] or (185, p. 271] for (a), and (185, pp. 274 - 278] for 
(b) and ( c). D 

Proof of Proposition 3.11. 
The proof is by the Faedo-Galerkin method with a special basis, as in the 
proof of (189] for the Euler equations. 

Basis. 
Let m ~ 0 be fixed. For each g E X 0 , the mapping v 1-t (v,g) 0 defines a 
bounded linear functional on Xm+2 and thus, by the Lax-Milgram theorem, 
there exists a unique Lg E Xm+2 such that 

(v,g)o = (v, Lg)m+2 Vv E Xm+2· (3.60) 

In fact, as an is of class Cm+4 ( for the construction of n), it follows from 
Theorem 4.1 (with k = 2) of (191] that Lg E Xm+4• (It is mentioned in (192) 
and [191) (see ( 4.27) on p. 1294) that Lg E X 2(m+2) if an is of class c2(m+2), 
but this is not necessary; v•Vwn E Hm+2(n) if Wn E Hm+3 (n).) 

The linear operator L: Xo 1-t Xo is self-adjoint, bounded (with IILII* :S 1) 
and compact (since Hm+2(n) yy L2(0)). Furthermore, X 0 is an inner
product space (a closed subspace of L2(0)) and L(Xo) is dense in X 0 (since 
if v E Xo and (Lg,v)o = 0 Vg E Xo, then (g,Lv)o = 0 Vg E X 0 , i.e. 
Lv = 0, and thus v = 0 as Lis injective). Hence (by Theorem 6.4-B of [196] 
or Theorem 7.C of [203)) L possesses a sequence of nonzero eigenvalues (1/ Ai) 
(with Ai -+ oo, i-+ oo) such that the corresponding sequence of eigenvectors 
(yJ is orthonormal and complete in L2(n) and satisfies: 

(3.61) 

For each n ~ 1, let yn = span{y1 , ... , Yn}, and let Pn: L2(n) 1-t yn denote 
the corresponding orthogonal projection. (Note that, by (3.61), (Yi, Yj)m+2 = 
OijAi, i, j = 1, 2, ... Hence the Yi are orthogonal in Xm+2, 11Yill~+2 = Ai, and 
Pn is also the orthogonal projection of Xm+2 onto yn.) 

Approximate Problem. 
For n ~ 1, set Won = Pn w 0 and consider the following problem: 

Find 
n 

Wn(t) = L 9nj(i)yj (3.62) 
j=l 
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satisfying 

awn V V • 

(-a+ -Wn + v•\lwn, YJo = (f, Yi)o, i = 1, ... , n, 
t a (3.63) 

Wn(O) = Won, 

where f = s/a - b - c + d/a. The equations (3.63) are equivalent to the 
system of n linear first-order ordinary differential equations 

y~(t) + An(t)yn(t) = f n(t), 
Yn(O) = Yon, 

where An(t), f n(t) and Yon are defined by 

9oni = 9oi = (wo,Yi)o, i,j = 1, ... ,n. 

As 

IAijl S v + llvll2,rllYjll1 S !:_+max(~'•••, Fn)M, 
a a 

(3.64) 

I/ii S 11/llo,r S 11/112,r S C(n,a, llkllc2 , IINllc2 ,M, lldll3;2,r,cm, 1111112,r) 
(from (3.30) - (3.33)), the coefficients Aij(t) and fi(t) are integrable and 
bounded on (0, T), and therefore the classical results of [195] (seep. 74 and 
Problem 1 on p. 97-98), ensure that this problem has a unique solution on 
[O, T] satisfying 

i.e. 

(3.65) 

(As m + 4 2: 2, the partial derivative a;n also exists and equals d:n a.e. 

in Or.) 

A Priori Estimates. 
Equation (3.63) can be written as 

dwn V V 

( dt' Yi)o + (;-wn, YJo + (P[v•\lwn + b], YJo 

( 1 v v ldv ) . = -s - c + - , Yi 0 , i = 1, ... , n, 
a a 

(3.66) 
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where P denotes the orthogonal projection of L2(0) onto X 0 . Multiplying 
(3.66) by Ai and using (3.61) gives 

(3.67) 

and multiplying this by 9ni(t) and adding in i = 1, ... , n yields 

1 d 2 V 2 

2dtllwnllm+2 + ~llwnllm+2 

= -(P[v•v'Wn + b], Wn)m+2 + ( 2-s - c, Wn)m+2 (3.68) 
Q 

= -(Vqn,Wn)m+2 - (v•Vwn,Wn)m+2 + (f,wn)m+2, 

where, for each t E I, qn(t) satisfies the Neumann problem 

on an. 

Despite the problematic Vwn-term in the boundary condition (which disap
pears in the case of the no-slip problem) the method of Lemmas 1.1 and 1.2 
in [189] ( which involves a local representation of an, the classical regularity 
results for the Neumann problem (see [182] or e.g. [207, pp. 13 - 15]; an is a 
bounded open set of class cm+2), and the fact that Hm+i(n) is an algebra 
for m ~ 1) can be used to show that 

Furthermore, according to (3.14), 

while 

l(v•Vwn,Wn)m+2I ~ C4llvllm+2+r(m+2)llwnll:n+2, 
~ C4Mllwnll:n+2, 
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Hence, applying the Schwarz and Cauchy inequalities in (3.68), one gets 

l d 2 v 2 

2 dtllwnllm+2 + allwnllm+2 
1 V 1 V 

:::; {-llsllm+2 +(Cs+ l)llbllm+2 + llcllm+2 + -lldllm+2}llwnllm+2 
a a 

+ (Cs+ C4)Mllwnll~+2 
1 2 

:::; {(Cs+ C4)M + 2(c1 + c2 + c3 + c4)}llwnllm+2 

1 v 2 ( Cs + 1 )2 
v 2 1 v 2 1 v 2 

+ 2c1a2 llsllm+2 + 2c2 llbllm+2 + 2c3 llcllm+2 + 2c4a2 lldllm+2· 

With e.g. c: 1 = ... = c:4 = v/(4a), this gives 

(3. 70) 

where the last inequality was derived from the estimates in (3.30) - (3.33). 
Thus, by Gronwall's inequality (3.49), 

(3. 71) 

where E 1 depends only on 

and is defined by 

independent of n, i.e. Wn remains bounded in VX)(O, T; Xm+2 ) as n ➔ oo. 

Since the Yi are orthogonal in X0 , (3.63)i can be written as 
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Thus, using (3.71) form== 1, 

dwn V V 

ll&llo,T ~ ~llwnllo,T + llv•Vwnllo,T + llfllo,T 
V V 

~ (- + C(O)M)E1 + 11/llo,T, 
a 

i.e. w~ remains bounded in L00 (0, T; L 2(0)) as n -+ oo. (One can also de
rive this estimate by multiplying (3.63) 1 by g~/t), summing over i == 1, ... , n, 
applying the Cauchy-Schwarz inequality and then dividing by llw~(t)llo-) 

Passage to Limit. 
The estimates derived above show that 

( Wn) is bounded in L00 (0, T; Xm+2), 

(d:n) is bounded in £00 (0, T; L 2(0)). 

(3. 72) 

(3. 73) 

From (3.72) and the fact that L00 (0, T; Xm+2) (where Xm+2 is identified 
with its dual X~+2 via the Riesz representation theorem) is the dual of 
L1(0, T; Xm+2), which is separable, it follows that there is a subsequence 
(wq) of (wn) and a function w* E L00 (0, T; Xm+2) such that 

(3. 7 4) 

This implies that Wq -+ w* weakly* in L00 (0, T; L2(0)). (Given any </> E 
L1(0, T; L2(0)), applying the Riesz representation theorem to the functionals 
y i---+ (y, </>(t))o on Xm+2 shows that there is a function { E L1(0, T; Xm+2 ) 

(with ll{(t)llm+2 = 11</J(t)llo) such that 

1T ( u(t), <p(t))o dt = 1T ( u(t), e{i))m+2 dt Vu E £ 00 (0, T; Xm+z). ) 

Hence, using (3.73) and Lemma 3.15 (with X == Y == L 2(0)) in a similar 
argument as above, one can extract a subsequence ( Wr) of ( Wq) such that 

dwr dw* . 2 dt-+ dt weakly* m L00 (0, T; L (0)). (3.75) 

Furthermore, as T is finite, (3. 72) - (3. 73) implies that 

(wr) is bounded in L2(0, T; Xm+2), 

(d:,) is bounded in L2(0, T; L2(0)), 
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and therefore, by Lemma 3.16, there exists a subsequence ( Ws) of ( Wr) and 
a function w E W(O, T; Xm+2, L2(f2)) such that 

ws---+ w weakly in W(O, T; Xm+2, L2(0)), (3.76) 

Ws ---, w strongly in L00 (0, T; Xm+i)- (3.77) 

(3.74) means that for each <PE L1(0, T; Xm+2) :) L2(0, T; Xm+2), 

i.e. Wq ---+ w* weakly in L2(0, T; Xm+2). On the other hand, (3. 76) implies 
that W 8 ---+ w weakly in L2(0, T; Xm+2). Hence w* = w. 

Now let r.p E C0([0, T]) and y E X 0 . Then there is a sequence (yn), yn E yn, 
such that yn ---+ y in L2(0). Thus, defining 1/Jn(t) = r.p(t)yn and 1/;(t) = 
r.p(t)y, 

"Pn ---+ 1P strongly in L2(0, T; L2(0)). (3. 78) 

From equation (3.63) one deduces 

By virtue of (3. 78) and (3. 76), which implies that w: ---+ w' weakly in 
L2(0, T; L2(0)), 

1T ( w:(t ), 'lj, ,( t) )0 dt --+ 1T ( w'( t), .J,( t))0 dt, s --+ oo. (3. 79) 

Furthermore, (3.77) ensures that W 8 ---+ w strongly in L2 (0, T; L2(0)), so 
that 

1T ( w,(t), 'lj, ,(t))o dt --+ 1T ( w(t), .J,(t))o dt, s --+ oo. (3.80) 

Similarly, since (3.77) implies that W 8 ---+ w strongly in L2(0, T; H1(0)), the 
estimate llv•V(ws - w)llo::; C5(0)llvll2,rllws - wll1 shows that v•Vws---+ 
v•Vw strongly in L2 (0, T; L 2(0)) and therefore 

1T(v•'vw,(t),.J,,(t))o dt--+ 1T(v•'vw(t),.J,(t))o dt, s--+ oo. (3.81) 
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Lastly, it also follows from (3. 78) that 

1T ('j(t), 1/J,(t))0 dt ---t [ (f (t), 1/J(t))o dt, s ---too. (3.82) 

Hence, in the limit one obtains 

1Tdw V 1Tv 
(-d (t) + -w(t) + v(t)•Vw(t), Y)oc.p(t) dt = (f(t), y)0c.p(t) dt 

o t a o 

Vy E Xo, V c.p E C0 ([0, T]), 

and thus, by the density of C0([0, T]) in L2(0, T), 

dw v v 

(-d + -w + v•Vw - f, Y)o = 0, Vy E Xo, for a.e. t E (0, T), 
t a 

or equivalently, 

dw v v 1 1 v 

- = --w - P(v•Vw + b) + -s - c + -d for a.e. t E (0, T). (3.83) 
dt a a a 

In the light of (3. 75) and the classical Helmholtz decomposition, this estab
lishes the existence of q E L(O, T; H1(0)) satisfying equation (II)i. In fact, 
as P E £(Hm+i(n)) with IIPII* = C(n) (see [185, p. 18]; an E cm+2), one 
gets 

dw 
II dtllm+l,T 

::::; C(O)(Cs(O,m)llvllm+i,Tllwllm+2,T + llbllm+i,T) 

+ ~llwllm+l,T + ~llsllm+l,T + llcllm+l,T + ~lldllm+i,T 
a a a 

(3.84) 

::::; E2, 

where 

+ ~ (llkllcm+l + IINllcm+l [1!11 112 + M 2 + M 2
m+

2
]) + ! lldllm+l/2,T,an}, 

by applying the estimates (3.15), (3.30)4 - (3.33)4 and (3.71). Hence 

dw 00 ( ) di E L 0, T; Xm+l , 
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The initial value w(O) is well-defined and belongs to X 0 , because w E 

W 1•2(0, T; X 0 ) c C([O, T]; X 0 ). To verify the initial condition, choose a 
function <.p E C 1 ([0, T]) with cp(O) #- 0 and cp(T) = 0 (say cp(t) = 1 - t/T) in 
the definitions of1/J and 1/Jn above (3.78). Then 

(3.85) 

Hence, integrating by parts (see [212, p. 477]) and using (3.79) (or (3.80) -
(3.82)), (3.77) and (3.85), one finds 

-1T ( w(t), t//{t))o dt - ( w(O), Y)o<,0(0) 

= 1T ( w'(t), tp(t))o dt 

[ = 1T (-~w(t) - v(t)-'\7w(t) + f(t), 1/;(t))o dt 
o a 

= lim 1T (-~ws(t) - Vs(t)•v'ws(t) + f(t), 1/Js(t))o dt] 
s ➔ oo o a 

= lim {T(w:(t),1/Js(t))o dt 
s ➔ oola 

= - lim {T (ws(t), 1/J:(t))o dt - lim (ws(O), Ys)o<.p(O) 
s ➔ oo J0 s ➔ oo 

= -1T ( w( t), tp'( t) )o dt - ( Wo, y )o<,0(0) V y E Xo, 

and therefore w(O) = w 0 as w0 E X 0 . 

Lastly, as w is solenoidal by construction, it remains to note that w is unique 
by the argument in the proof of Proposition 3. 7; see (3.58). (It follows that 
one may take ( Ws) to be the whole sequence ( wn).) 
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Chapter 4 

LOCAL SOLUTIONS 

He who despises small things 

will fail little by little. 

Sirach 19:1 

By construction, the nonlinear terms in the original problem were either 
transformed to terms which are linear in the unknowns of the auxiliary prob
lems (I) - (III), or became data terms in these problems. Hence in the 
previous chapter the nonlinear aspect of the problem was restricted to the 
derivation of bounds for terms in the right hand sides of the equations, which 
was easily accomplished via the algebra property of the Sobolev spaces. In 
this chapter the nonlinearity of the problem, essentially contained in the 
mapping <I>, is addressed by means of a Schauder fixed point theorem. In 
this way the fixed point approach also allows one to circumvent some "hard 
analysis" by exploiting the "soft analysis" imbedded in a general theorem. 

66 
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4.1 Existence 

The existence proof is based on the following version of the Schauder Fixed
Point Theorem: 

Lemma 4.1 Let G be a nonempty, closed, convex subset of a Banach space 
X, and suppose <I> : X :) G -+ X is a continuous operator such that <I>( G) C 
G and <I>( G) is relatively compact. Then <I> has a fixed point. 

Proof. See e.g. [205, p. 153] or [198, p. 171]. 

Let T > 0, m ~ l and suppose that n is a bounded simply connected domain 
of class cmH_ Given D > 0, Uo E Ym with lluollm ~ D, and Wo E Xm+2 
with llwollm+2 ~ D, define the Banach space 

X = X(T, n, m) = C([O, T]; Vm-d X C([O, T]; Xm+i), 

with the norm 

II( <P, 1J)llx = max(llct>llm-1,T, ll11llm+1,T ), 

and the subset 

G = G(T, n, m, D, uo, wo) = {(cp, 77) EX: 

ct> E L00 (0, T; Hm(n)), ll<t>llm,T ~ D, cp(0) = Uo, 

7J E L00 (0, T; Hm+2(n)), ll11llm+2,T ~ D, 77(0) = Wo}, 

G is clearly nonempty (take cp = Uo, 1J = wo), and ford E L00 (0, T; Zm+3/2), 
h E L00 (0, T; Ym), Propositions 3.4, 3. 7 and 3.11 show that the map 

<I>: X:) G ~ X: (4>, 77) ~ (v, 77) ~ (u, w), 

where v denotes the solution of problem (III), and u and w are the solutions 
of the corresponding problems (I) and (II), is well-defined. Furthermore, one 
has 

Lemma 4.2 (a) For any T, D, u 0 , w 0 and h that satisfy the above condi
tions, G is bounded, convex and closed in X, <I>( G) is relatively compact in 
X, and <I> is continuous. 

(b) For arbitrary V > 0, a> 0, m ~ l, K, NE cm+2, Uo E Ym, Wo E Xm+2, 
h E L 00 (0, oo; Ym), d E L 00 (0, oo; Zm+3/2) and fl > D* = max(lluollm, llwollm+2) 
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there exists a T* > 0 such that <P has a fixed point for any O < T :::; T*. In 
particular, one may take 

-1 ln(FaD
2 

+ F1) f v i ro > 0, 
Fa FoD; + F1 

T* = 
D2 - D2 

* 

where 
V 

Fa = CaD - -, Co = Ca(O, m, a), 
a 

_ 4vC; 0 D 2 2a 2 F1 =max(--+ -llhllm 00 , F), 
O'. V ' 

if Fa::; 0, 

( 4.1) 

c~ ~ ~ ~ ~ g 
F = Cg{ ioD ( !__[ jjJ<jj~m+2 + IINll~m+2(IOI~ + ClaDl + (C10D)im+\)] 

V O'. 

1.. 2. 1 2. 
+ a[C10 + l]D) + -lldllm+3/2,oo,an}, 

VO'. 

with C9 (0, m) as in (3. 10) and C10(n, m, a) as in (4.22). 

Proof. (a) The proof of Lemma 3.1 in [17 4] can be adapted in a straight
forward manner to the present situation. This is not surprising as problems 
(I) and (II) are apparently similar in many respects. The main difference is 
in showing that the mapping ( ¢, 1J) i--+ w is continuous, which is done as in 
the proof of Lemma 2.2 in [170] ( or Theorem 2.3 in [172]). The complete 
proof is given in Section 4.3. 

(b) In view of (a) and Lemma4.l it only remains to show that <P(G) CG. For 
any ( ¢, 1J) E G, ( u, w) = <P( ¢, 1J) satisfies the required initial and regularity 
conditions according to Propositions 3.4 (k = 1), 3.8 and 3.11. Moreover, 
with C10 defined as in ( 4.22), it follows from (3.11) and the definition of G 
that the corresponding solution v of problem (III) satisfies llvllm+3,T::; C10D. 
Hence, taking M = C10D, one sees from (3.55) and (3.70) (on pages 55 and 
61) that both llull~ and llwll~+2 satisfy the inequality 

f'(t) + v f(t)::; F1 + CaDf(t), Co= 2(C4 + max(C5,Cs))C10, 
a 

inf. Here C4(0, m) and C5(0) are the constants in Lemma 3.6, and C8 (0, m) 
is as in (3.69). Thus, setting F0 = C0 D - v/a = max(Do, E0 ) and applying 
the Gronwall inequality (3.49) with f(O) ::; D;, one obtains 

f(t)::; (D; + ::)(eFot - 1) + n;, Vt E [0, T]. (4.2) 
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If F0 > 0 the right hand side of ( 4.2) is less than. or equal to D2 if 

1 D 2 - D 2 

T5:_T*= F}n(l+ D;+Fi/~
0

), (4.3) 

which is (4.l)i. If F0 = 0 one has f(t) 5:. F1T + D; and thus (4.1)2. This is 
also sufficient if F0 < 0, because ( 4.2) then gives 

J(t) :':::'. D;eFot + ~: (eFot - 1) :':::'. D; + FiT. (4.4) 

□ 

In summary, one has the following local ( or "small-time") existence result: 

Theorem 4.3 Let O be a bounded, simply-connected domain of class Cm+4, 
m ~ 1, and assume that V > 0, O'. > 0, I<, N E cm+2

, D > D* ~ 0, 
g E L00 (0, oo; Xm+i) and d E L00 (0, oo; Zm+3 ; 2 ). Then there is a constant 
c* = C*(O, m, a) > 0 with the property that if Vo E Xm+3 and 

then there exists a T > 0 such that the slip problem 

a at (v - a6v) - v6v + curl (v - a6v) = '7p + g in Or, 

'7•v = 0 

8A1 
([vA1 + a( 8t + v•'7 A1 + A1 W - W A1)]n)T 

=(I<+ N(lvl 2))v + d 

v•n = 0 

v(O) = Vo 

has a solution 

in Or, 

on 80r, 

on 80r, 

in 0, 

v E C([0, T]; Hm+3 (0)) n W1
•
00 (0, T; Hm+2(0)), 

'7p E L00 (0, T; Hm(O)), 

(4.5) 

(4.6) 

(4.7) 

and there are constants C10 and C11 , depending only on 0, m and a, such 
that 

llvllm+3,r 5:. CwD, 

dv A 

lldtllm+2,r 5:. Cu([v + D + III<llcm+ 1 + C(D)IINllcm+ 1 ]D (4.8) 

+ llcurlgllm-1,r + lldllm+i/2,r,en), 
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Moreover, if m 2: 2 and 

then 

~: E L00 (0, T; Hm+l(fl)), v E C1([0, T]; cm-1(n)), (4.9) 

so that v is a classical solution if m 2: 4. 

Proof. Let u 0 and w 0 be defined as before, then there is a constant 
C = C(!1, m, a) such that max(lluollm, llwollm+2) ::; Cllvollm+3· Thus, with 
C* = 1/C, h = curlg and T = T* as in (4.1), Lemma 4.2 ensures the 
existence of a fixed point ( u, w) E G of the associated mapping <I>. By 
definition of G and Proposition 3.4 (with k = 0 and k = l, resp.), the 
corresponding solution v of problem (III) satisfies 

(4.10) 

Moreover, from the definition of G and the proof of Lemma 4.2, 

where C10 = C10(!1, m, a) is as in (4.22). Setting M = C10 D and replacing 
D1 by D in inequality (3.57)i ( with q = 0) yields 

du 
lldtllm-1,T::; C(n, m, a)(v + D)D + llhllm-1,T· 

Similarly, replacing E1 by D in (3.84) ( with 17 = w) gives 

dw " 
II dtllm+i,T::; C(n, m, a)(v + D + III<llcm+l + C(D)IINllm+i)D 

C(n, m) + ---lldllm+l/2,T,an, 
a 

so that (4.8)2 is immediate from inequality (3.11) with k = 1: 

dv du dw 
II dtllm+2,T ::; C(n, m, a)(ll dtllm-1,T + 11 dtllm+i,T ). 

Furthermore, reversing the steps in Section 2.3, one can write equation (I)i 
as 

a 
curl [

8
t(v - a6v) - v6v + curl (v - a6v) xv - g] = 0 in fh. 
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Eliminating the curl then yields (4.6)i for a unique "vp E £<X>(O, T; Hm(n)). 

Concerning the initial condition, the continuity of v on [O, T] guarantees that 
v(O) E Xm+2 is well-defined. Moreover, since the map B1 : Hm+2(D,) 1--t 

Ym.:._ 1 is continuous for m 2:: 1, 

= lim B1v(t) = lim u(t) = u 0 = curl (vo - a6vo) 
t ➔ O t ➔ O 

in Ym-i • Similarly, via the boundedness of B2 : Hm+2(n) 1--t Zm+i;2, one 
gets 

(A1(v(0))n)r = ao = (A1(vo)n)r on an. 
Thus v(O) - v0 E Xm+2 C X3 is the solution of the stationary version of 
problem (III) with zero data, which is identically zero, i.e. v(O) = v0 E Xm+3. 

Lastly, noting that n(m) ~ 3 form 2:: 1, it follows from (4.10), Proposition 
3.10 and Lemma 3.13 that 

u E C([O, T]; Vm), w E C([O, T]; Xm+2 ), 

which, in turn, as indicated in Remark 3.5(b ), implies that 

V E C([O, T]; Xm+3)· 

The smoothness property ( 4.9) can be derived by arguments analogous to 
those in [17 4, pp. 310 - 311]. See the proof in Section 4.3. D 

An alternative, slightly more natural, formulation of the theorem is: 

Theorem 4.4 Let n, m, v, a, I<, N, g and d be as in Theorem 4- 3 and let 
v 0 E Xm+3 . Then, for each c > 0, there is a time T > 0 such that problem 
(4.6) has a solution with the regularity properties (4- 7) and (4-9). Moreover, 
there are constants C = C(n, m, a) and C} = C(n, m, a, llvollm+3 + c) such 
that 

llvllm+3,T ~ C(llvollm+3 + c), 
dv - A 

lldtllm+2,T ~ C([v + 1 + III<llcm+i + IINllcm+ 1 ](llvollm+3 + c) 

+ llcurlgllm-1,T + lldllm+i/2,T,cm). 

The following remarks motivate the need for additional a priori estimates in 
order to establish global ( or "large-time") existence. 
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Remark 4.5 (a) From the definition of F1 in Lemma 4.2 one has the lower 
bound 

( 4.11) 

which results from the term ( v / a )curl v in equation (I) and the terms b 
and s in equation (II). This implies that, for any choice of D*, the time 
T* in (4.1) is bounded with respect to D. For example, if D ---+ oo then 
F0 ,Fi/F0 ~ C(O,m,v,a)D and therefore T*--+ 0 (see (4.3)). On the 
other hand, if D* = 0 and D---+ 0, then (4.1)2 gives T* ~ C(O,m,v,a), 
irrespective of the values of h, I<, N and d. Here one could attempt to 
improve on ( 4.1 )2 by using 

f( t) < D2eFot + F1 (eF0 t _ l) < D2 _ F1 
- * Fo - * Fo 

instead of (4.4). However, even if D*, I<, N, d and g are all zero, inequality 
(4.11) shows that -Fi/ F0 > aFif v ~ C(O, m, v, a)D2, where 

( 4.12) 

is unknown (in general at least) and cannot be assumed to be less than 1. 

(b) The boundary condition ( A 1 n )-r = 11 in problem (III) is independent 
of a. Hence, unlike the situation in [170], the constant C3 (0, m, a) of the 
estimate (3.11) for the Stokes problem - and therefore C10(0, m, a) in (4.22) 
- is not of the form C(n, m)/a. Thus, in view of the first term in (4.12), it 
seems impossible to deduce directly from ( 4.1 )2 the existence of a solution 
for an arbitrary finite T (not to mention a global solution as in [170]) by 
choosing a sufficiently large, and a/ v and D correspondingly small. 
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4.2 Uniqueness 

The important relation here is Korn's (second) inequality: 

Lemma 4.6 If n is a bounded domain with a Lipschitz continuous boundary, 
then there is a constant K = K(f!) > 0 such that 

Proof. See [202, p. 110], [207, p. 86], [48, p. 701] or [22, p. 31]. D 

The following lemma (with ~ = 0) shows that the solution obtained in 
Theorem 4.4 is unique: 

Lemma 4. 7 Let n be a bounded domain of class C 4 with an = r U ~, 
r n ~ = 0, and suppose that F : X 3 i---+ Z 1; 2(f) is an operator with the 
continuity property 

Then, for any O < T < oo, a > 0, /3 = a2/ p E R, and arbitrary data v 0 E 
X3, VE E L 00 (0, T; Z5;2(~)), IE L00 (0, T; L 2(n)) and d E L 00 (0, T; Z1;2(f)), 
the problem 

av ~ ~ 
at+ v•'\7v = '\7·T(v,p) + f in nr, 

'\7•v = 0 in nr, 

V•n = 0 on anT, (4.15) 
V-r = VE on ~T, 

(Tn)-r(v) = F(v) + d on fT, 

v(O) = Vo inn, 

where 

can have at most one solution v, '\7 p with 
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Proof. Let v1,p1 and v 2 ,p2 be any two solutions of problem (4.15) and 
set Ti= T(vi,pi),i = 1,2, V = v 1 -v2 ,P = p1 

- p2
• Then, subtracting 

the equation ( 4.15)i in v 2 from the corresponding equation in v 1
, taking the 

L2(n) scalar product of the difference with V and integrating by parts, one 
gets 

ld 2 1 1 2 2 2 dt IIVllo + (v •v'v - v •v'v 'V)o 

= ([T1 
- T2]n, V)o,an - (T1 -T2, v'V)o 

= (F(v 1
) - F(v2

), V)o,r - ~(T1 
- T2, A1(V))o, 

For each t E [O, T], v 2 E X 3 , so that 

(v 2 •v'V, V)0 = 0 

and thus, using (3.47), 

(4.16) 

l(v1•v'v1 - v 2•v'v2
, V)ol = l(V•v'v1, V)ol ~ C(n)llv1113,TIIVII~- (4.17) 

In the same way one has 

and so, with the help of (3.48) and Korn's inequality, 

l(v1•v' A1(v1) - v2 •v' A1(v 2
), A1(V))ol = l(V•v' A1(v1), A1(V))ol 

:::'. C(!1)llv1lla,rllVllillA1(V)llo :::'. Cj,? llv1IIJ,r(IIA1(V)II~ + IIVII~)-
( 4.18) 

Similarly, by (3.47), 

l(A1(v1)2 - A1(v 2)2, A1(V))ol 

= l(A1(V)A1(v1) + A1(v2)A1(V),A1(V))ol (4.19) 

~ C(O)(llv1113,T + llv2 lb,T)IIA1(V)ll~-

Furthermore, since A 1(V)W(v1): A1(V) = W(v 1 )A1(V): A1(V) = 
W( v 1

): A 1 (V) 2 = 0, it follows as in ( 4.18) via (3.47) and Korn's inequality 
that 

l([A1 W - W A1](v1) - [A1 W - W Ai](v2
), A1(V))ol 

= l(A1(v2)W(V) - W(V)A1(v 2
), A1(V))ol 

:::'. C~) llv2 lla,r(IIA1(V)llg + IIVllg). 
( 4.20) 
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Lastly, by the trace theorem, assumption ( 4.14) and Korn's inequality, 

l(F(v 1
) - F(v 2

), V)o,rl ~ C(IIA1(v)II~ + llvll~) (4.21) 

with C = C2 (0)Cp(O, llv 1 113,T, llv2 113,T)/K. Collecting inequalities (4.17) -
(4.21) into equation (4.16) yields 

! (IIV II~+ ; IIA, (V)II~) :S: min(~ a/2) (IIVII~ + illA1(V)II~) 

with C = C(O, llv1 113,T, llv2 ll3,T, CF, a, v, la+/31). Since V(O) = 0, Gronwall's 
lemma implies that V = 0, and consequently also v' P = 0. 

Remark 4.8 (a) Inequality (4.14) holds for F(v) =(I<+ N(lvl 2))v, since 
- using the imbedding H 3 (0) y C 1(0) and inequalities (2.16), (3.1) and 
(2.14) - one has 

with 

IIF(v) - F(v')llo,r ~ C(O)(III<llc0 llv - v'lli + 11) 

11 = IIN(lvl2)v - N(lv'l 2)v'lli ~ 12 + 13, 

12 = ll{N(lvl 2
) - N(lv'l 2)}vll1 

~ C(O)llvll3IIN'llc1 (1 + llv'(lvl 2)lli)ll(v + v')•(v - v')ll1 
~ C(O)IINllc2 llvll3(l + llvll~)(llvll3 + llv'lh)llv - v'lli, 

]3 = IIN(lv'l 2)(v - v')lli 
~ C(O)IINllc3 ( v1fn1 + C(O)(lllv'l 2 ll3 + lllv'l 2 ll~)llv - v'lli 
~ C(O)IINllc3 (l + llv'II~ + llv'll~)llv - v'lli-

(b) With r = 0, the Lemma provides a simple uniqueness proof for the 
Dirichlet problems (on bounded domains) considered in (166, 170, 174, 176]. 
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4.3 Appendix 

Proof of Lemma 4.2(a). 
The convexity and boundedness of G is obvious. 

To prove that G is closed in X, let (<l>n, 'Tin), n = l, 2, ... , be a sequence in 
G converging to(</:>, 11) in X. Then </:>(0) = u 0 and 11(0) = w 0 because 

max(ll</:>(0) - uollm-1, 1111(0) - Wollm+i) 

= max(ll</:>(0) - </>n(0)llm-1, 1111(0) -17n(0)llm+i) 

::; II ( </:>, 11) - ( <f>n, 'Tin) llx -+ 0, n -+ 00. 

Moreover, for a.e. t E [0,T], (<l>n(t)) is a bounded sequence in the reflexive 
Banach space Hm(n) and therefore has a subsequence (<l>nk(t)) which con
verges weakly to some '¢(t) in Hm(n), which (by a corollary of the Hahn
Banach theorem; see e.g. [204, p. 262]) implies that 

As Hm(n) yy Hm-1(n), the subsequence converges to 1/J(t) in Hm-1(n) 

and hence by uniqueness of limits, </>(t) = '¢(t) E Hm(n) with 11</>(t)llm ::; 
D. (Alternatively, since Hm(n) y Hm-1(n), the subsequence converges 
weakly to 1/J(t) in Hm- 1(0) and hence by the uniqueness of weak limits, 
</:>(t) = '¢(t).) In the same way it follows that 11 E L00 (0, T; Hm+2(n)) with 
II 11llm+2,T ::; D. Thus ( </:>, 11) E G. 

To prove that <I>( G) is compact, let ( Un, wn), n = l, 2, ... , be any sequence 
in <I>(G). Then there is a sequence (</>n,11n) in G such that (un,wn) = 
<I>(</>n,11n) satisfies ll(un,wn) - (un,wn)llx < l/n,n = 1,2, ... With Vn 
denoting the solution of problem (III) corresponding to the data ( <f>n, 11n), 
we know from (3.11) (with k = l) that 

llvnllm+3,T ::; C3(n, m, a)(ll<l>nllm,T + C2(n, m )ll11nllm+2,T) 

::; C10(n, m, a)D, 

where C10 = C3(1 + C2 ), and thus from (3.18) that 

Un is bounded in L00 (0, T; Vm), 

dun 
dt is bounded in L

00
(0, T; Ym-d· 

( 4.22) 
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This implies that Un is bounded in W 1
•
2(0, T; Ym- 1), which is compactly 

imbedded in C ( [O, T]; Ym-i) ( [172, p. 538]), so that ( Un) has a subsequence 
which converges to, say, u in C([O, T]; Ym-i). By a similar argument, based 
on (3.36), the corresponding subsequence of ( wn) has a subsequence ( Wnk) 
which converges to aw in C([O,T];Xm+i)- Hence (unk,Wnk)--+ (u,w) in 
X. 

For any (¢, 11), (<Pn, 11n) E G, let v, Vn be the solutions of the corresponding 
problems (III) and set ( u, w) = <I>(</>, 11 ), ( Un, Wn) = <I>( <Pn, 11n). Then V - Vn 
is the solution of (III) with the data ( q:, - <Pn, 11 - 11n), and as in ( 4.22) we 
have 

llvllm+3,T, llvnllm+3,T ~ C10(n, m, a)D, (4.23) 

llv - Vnllm+3,T ~ C10(n, m, a)II(</>, 11) - (<Pn, 11n)llx, (4.24) 

and thus by case (a) of (3.18), with M = C10D, 

Furthermore, via (3.14) - (3.17) we obtain 

llu•v'v - Un•v'vnllm-1 

~ llu•v'(v - Vn)llm-1 + ll(u - Un)•v'vnllm-1 

~ C5(llullm-1llv - Vnllm+2 + llu - Unllm-1llvnllm+2) 

and 

l(v•v'u - Vn•v'un, u - Un)m-1 I 

(4.25) 

( 4.26) 

~ ll(v - Vn)•v'ullm-1llu - Unllm-1 + l(vn•v'(u - Un),u - Un)m-11 
~ C5llv - Vnllm+2llullmllu - Unllm-1 + C4llvnllm+illu - Unll~-1-

( 4.27) 
Subtracting equation (I) 1 for Un from the one for u gives 

8 V 
-(u-u )+-(u-u) =u•v'v-u •v'v -v•v'u+v •v'v at n a n V n n n n 

+ -curl ( v - vn)-
a 

Let dn(t) = llu - Unllm-1• Then taking the inner product in Hm- 1(n) of 
this equation with u - Un, and applying the Cauchy-Schwarz inequality and 
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( 4.23) - ( 4.27) yields 

ll 
[ d~ ( t) + -dn ( t)] dn ( t) 

Q'. 

2v ::; [-llv - Vnllm + C5llullm-illv - Vnllm+2 + C5dn(t)llvnllm+2 
Q'. 

+ C5llv - Vnllm+2llullm + C4llvnllm+1dn(t)]dn(t) 
ll ::; [( C4 + C5)C10Ddn(t) + 2( - + C5C6)C1oll ( <P, 11) - ( <Pn, 11n) llx ]dn( t) 
Q'. 

or 

It follows that 

with K1 = er if ,,\ = 0 and K1 = e(1 - e->-T)/ ,,\ otherwise, i.e. the map 
(</>, 11) r-+ u: Gr-+ C([O, T]; Hm- 1(!1)) is Lipschitz continuous. 

Subtracting equation (I)i for Wn from the corresponding equation in w gives 

1 (V V V V V V = - S - Sn) - b + bn - C + Cn, 
Q'. 

where Sn denotes s( vn), etc. As in [170, 172] one can avoid the difficulty of 
deriving an estimate for the irrotational term by working in L2 (!1). Define 
Yn(t) = llw - wnllo and take the L2(!1) scalar product of the above equation 
with w - Wn. Since by (3.14) and (3.15) 

l(v•v'w - Vn•v'wn, W - Wn)ol 

::; l(v - Vn)•v'w,w - Wn)ol + l(vn•v7(w -wn),w -wn)ol 

S C5llv - Vnll2llwlliYn(t), 

application of the Cauchy-Schwarz inequality and division by Yn(t) yields 

y~(t) + v Yn(t) ::; !..11s - snllo + llb - b~llo + lie - Cnllo 
a a (4.29) 

+ C511v - Vnll2llwlli-
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By construction, s - Sn satisfies the Stokes equation with zero body force and 
is solenoidal in fh, and is equal to S(lvl)v - S(lvnl)vn on 80r. Hence, for 
each t, it follows from the well-known results of [183] (see Theorem VII), the 
extension (3.28), the trace theorem, the algebra property (3.1) and Lemma 
2.3 (with f = lvl2 ,g = lvnl2, so that llf - gll2 ~ C1llv + Vnll2llv - vnll2) that 

lls-snll2 
~ C(O)IIS(lvl)v - S(lvnl)vnll3/2,an 
~ C(O)(IIKllc2 llv - Vn 112 + C1IIN(lvl2)ll2llv - Vnll2 

+ C1IIN(lvl2) - N(lvnl2)ll2llvnll2) ( 4.30) 

~ C(O)llv - Vnll2· 

·{IIKllc2 + IINllc2 (IOl 112 + C(n)[C1llvll~ + C;llvll~]) 
+ C(O)IIN'llc2 (l + Cfllvll~ + Cfllvnll~)C1(llvll2 + llvnll2)}. 

One could also use the estimate of [183] for lls - lnlli, but the H 2(0)
estimate is convenient and suffices since m 2:'.: 1. In the same way, with c and 
Cn denoting the extension (3.25) for v and Vn respectively, one obtains 

lie - Cnll2 ~ C(O)ll([A1(v)W(v) - W(v)A1(v)]n)T 

- ([A1(vn)W(vn) - W(vn)A1(vn)]n)Tll3/2,an 

~ C(O)llc - Cnll2 
~ C(O)(llvll3 + llvnll3)11v - Vnll3• 

Furthermore, with b and bn defined as in (2.22), 

6(b - bn) + V(1r - 7rn) = 0 in Or, 

V•(b - bn) = (Vvnf: v,,,n - (Vvf: v,,, in nT, 

b - bn = b - bn on anT' 

and thus, by [183] and the trace theorem, 

with 
ll(Vvf: v,,, - (Vvnf: v,,,nll1 

~ IIV(v - vnf: v,,,111 + IIV(vnf: V('T/ - 'T/n)ll1 
~ C(O)(llv - Vnll3IITJll2 + llvnll3ll'T/ - 'T/nll2) 

( 4.31) 
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according to (3.34 )i, and, for i = 1, 2, 3, 

llbi - bni 112 
::; IIA1(v)rj{(v - Vn)•V[nJi/ii])ll2 + IIA1(v - Vn)rj(Vn•V[nrnjni])ll2 

+ IIA1(v)ij((v - Vn)•Vnj)ll2 + IIA1(v - Vn)ij(Vn•Vnj)ll2 

::; C(n)(llvll311v - Vnll2 + llv - Vnlbllvnll2), 

Collecting the inequalities ( 4.30) - ( 4.32) in ( 4.29) and using (3.36) ( with 
m = 1) and (4.23) - (4.24) one gets 

y~(t) + ~Yn(t)::; ,11(¢, 11) - (<Pn, 11n)llx, y(0) = 0, 
O' 

, = ,(n, m, T, a, v, D, III<llc3 , 11Nllc3 ), 

and thus 
( 4.33) 

with K2 = a,(1 - e-vT/0 )/v. Now let (<Pn,11n) ---+ (<P,11) in X, then it 
follows from ( 4.28) and ( 4.33) that 

Un---+ u in C([0, T]; Hm-1(n)), Wn---+ win C([0, T]; L2 (f!)). (4.34) 

Suppose that (wn) does not converge tow in C([0, T]; Hm+l(f!)), then there 
exists an c > 0 and a subsequence ( Wnk) such that 

( 4.35) 

By the precompactness of <I>(G) in X, (unk,wnk) has a subsequence 
( Umk, Wmk) which converges to, say, ( u*, w*) in X. This and ( 4.34 h implies 
that Wmk ---+ w = w* in C([0, T]; Hm+1 (n)), contradicting (4.35). Hence 
( Un, wn) ---+ ( u, w) in X, i.e. <I> is continuous. □ 

Proof of Theorem 4.4 (contd.). 
Differentiating equation (I)i with respect to t gives 

a2u V au av au av av au ah - + -(- - curl-)= -•Vv + u•V- - -•Vu - v•V- + -
at 2 a at at at at at at at ' 

where h = curlg, so that 
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According to Propositions 3.8 and 3.4, for m ~ 1, 

u E £00(0, T; Hm(/J)), ~: E £00 (0, T; Hm- 1(/J)), 

v E £ 00 (0, T; Hm+3 (1J)), !: E £00 (0, T; Hm+2 (1J)), 

and therefore, for m 2:: 2, one can use Lemma 3.6 to obtain the estimates 

au du 
118t•Vvllm-2,T::; C5lldtllm-2,Tllvllm+1,T < oo, 

av dv 
llu•V8tllm-2,T::; C5llullm-2,Tlldtllm+1,T < oo, 

av dv 
118t•Vullm-2,T::; C5lldtllm,Tllullm-l,T < oo, 

au du 
llv•V8tllm-2,T::; C5llvllm,Tlldtllm-l,T < oo, 

and hence 
u E W2

•
00 (0, T; Hm-2 (0)). 

In the same fashion, differentiating (III)i with respect to t yields 

a2w l/ aw av aw l as ab ac 1 ad 
at2 + a at + at . V w + V. V at = ~ at - at - at + ~at. 

Now, from Proposition 3.11 one has 

w E £ 00 (0, T; Xm+2), ~: E £00 (0, T; Hm+l(!J)), 

and therefore, from Lemma 3.6 form 2:: 2, 

av dv 
118t•Vwllm,T::; C5II dt llm,rllwllm+l,T < oo, 

aw dw 
llv•V8tllm,T::; C5llvllm,Tlldtllm+1,T < 00. 

( 4.36) 

In addition, differentiating the Stokes problem defining s with respect to t 
and using the boundedness of the trace map ,o : Hm(n) r--+ Hm- 1

/
2

( an), 
one finds 

} in nT, 

} on anT, 
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and thus, using the a priori estimate for the Stokes problem ( with t treated 
as a parameter) and the algebra property (3.1), 

as 
11 at llm,T 

::; C(!1, m)(llkllc= + IIN(lvl2)llm,T + IIN'(lvl2)llm,Tllvll~.T)II !: llm,T < 00 

since, as in (3.27), 

IIN(lvl 2)llm,T::; C(n, m, llvllm,r)IINllcm, 
IIN'(lvl2 )llm,T::; C(n, m, llvllm,T )IINllcm+l · 

By similar reasoning it follows that 

and consequently, with the help of the estimate (3.34), that 

ab dv 
11 at llm,T::; C(n, m)(lldtllm+i,T(llwllm,T + llvllm,T) 

dw dv 
+ llvllm+i,T(lldtllm,T + lldtllm,T)) < 00. 

One also has 

and as a result, via (3.1), 

ac dv 
11 at llm,T::; C(n, m)lldtllm+i,Tllvllm,T < 00. 
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In the same way it follows that 

Collecting all the bounds, one obtains 

( 4.37) 

In conclusion, from ( 4.36), ( 4.37) and Proposition 3.4 one deduces that 

i.e. 

or 

v, !: E W1
•
00(0, T; Hm+l(f!)) Y C([O, T]; Jr+1(n)), 

VE C1([o, T); Hm+1(n)) y C1([o, T]; cm- 1(n)). 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021



Chapter 5 

GLOBAL SOLUTIONS 

The aim of this chapter is to construct a global solution by repeated applica
tion of the local existence theorem. The main hurdle is to derive appropriate 
time-independent estimates in order to establish that the solution always re
mains in the same ball as the initial data. This is done for an arbitrary a > 0 
and slip coefficient S( ·) under the assumption that the initial data and the 
force fields are sufficiently small and that v is sufficiently large. However, the 
existence and stability results do not apply when n is rotationally symmetric 
and S( ·) is allowed to have nonnegative values. 

84 
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5.1 Existence 

The following result is a slight variation of Lemma 2.5 of [174). 

Lemma 5.1 Let T > 0 and suppose that y(t) is a non-negative, continu
ous function on [0, T] with an integrable derivative in (0, T) satisfying the 
inequality 

y'(t) + [k1 - G(y(t))]y(t) ~ F(t) Vt E [0, T), (5.1) 

where k1 > 0, G is a non-negative, continuous function such that G( x) ~ k2 

for all x E [0, c:) for some k2 ~ k1 and € > 0, and F is a non-negative, 
integrable function. If 

y(O) + 1T F(t) dt < E 

then 

y(t) + (k 1 - k2 ) 1T y(s) ds ::0: y(O) + 1T F(s) ds Vt E [0, T]. (5.2) 

Proof. Assume there is at such that y(t) = c: and y(t) < c: for all t E [0, t). 
Then k1 - G(y(t)) 2:: k1 - k2 and thus y'(t) ~ F(t) for all t E [0, t). Thus, 
integrating over [0, t) and using the non-negativity of F(t), one gets 

y(t) :::: y(O) + l F(t) dt < c, 

a contradiction. Hence y( t) < € for all t E [0, c), so that inequality ( 5.2) 
follows from integrating (5.1) over [0, T]. □ 

The following three versions of the Poincare-Morrey inequality, the first 
two of which will be used later, highlights a difference between the no-slip 
and slip boundary conditions. 

Lemma 5.2 Let n be a bounded domain with a Lipschitz continuous bound
ary. Set 

S = span{/3 x ~ : /3 E R3, 1/31 = 1, /3 is a symmetry axis of n} 

and let II · lls denote the norm in L 2 
( n) / S. In addition, for an arbitrary 

subsurface ~ c an with meas(~) > 0, define 

H~(O) = {v E H1(0): v = 0 on~}. 
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Then there exists a constant Gp == Cp(n) such that 

IIA1(v)II~ + llv•nll~,an ~ Cpllvll1 V v E H 1(n), (5.3) 

IIA1(v)II~ ~ Cpllvll~ \;/VE H~(n). 

Proof. See [22, p. 31], [48, p. 701] and [213, p. 115] ( or [202, p. 115]), 
respectively. 

Under the 

Assumption 5.3 n has no axes of symmetry. 

one can use the previous two lemmas to derive global a priori estimates: 

Lemma 5.4 Let n be a bounded simply-connected domain without symmetry 
axes, with 80 of class Cm+4, m ~ l, a > 0 and I<, N E cm+2. Then there 
is a constant 

v* == v*(n, m, a, III<llcm+2, IINllcm+2) 
such that for each v ~ v* there exist positive constants 80 , 81, 10 , 11 , which 
depend at most on n, m, v, a, III<llcm+2 and IINllcm+2, and have the following 
property: 

(a) If, for any given T > 0, initial values Uo E Ym, Wo E Xm+2 and force 
fields g E L 2(0, T; Xm+i ), d E L2(0, T; Zm+3/2) with 

lluollm + llwollm+2 < 80, IIYIIL2,m+1,T + lldllL2,m+3/2,T,an < ,o, (5.4) 

( u, w, v) is a solution of the corresponding problems (I) - (III) with ( ¢, 1J) == 
( u, w) ( and thus '\7 q == 0) and satisfies 

then 

u E L00 (0, T; Hm(O)) n W 1
•
00 (0, T; Hm-1 (0)), 

w E L00 (0, T; Xm+2) n W1·00 (0, T; Xm+i), 
V E L00 (0, T; Xm+3), 

llull~.T + llwll~+2,T + ;o: 1T ( llu(s )II~+ llw(s )11~+2) ds 

~ 81( lluoll~ + llwoll~+2) + ,1( IIYlli2,m+1,T + lldlli2,m+3/2,T,an ), 
(5.5) 
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(b) If, in addition, g E L00 (0, T; Xm) and d E L00 (0, T; Zm+1; 2 ), then 

du dw 
lldtllm-1,T + lldtllm+i,T 

::; C(n, m, a)(IIYllm,T + lldllm+i/2,T,an) + C(n, m, v, a, 11Kllcm+2' (5.5) 

IINllcm+2, lluollm + llwollm+2, IIYIIL2 ,m+1,T + lldllL2 ,m+3/2,T,an). 

Proof. (a) First it is necessary to derive some 

Estimates of v. 
From the proof of Proposition 3.4 and inequality ( 4.22) it is clear that for 
every fixed t one has the estimate 

llv(t)11~+3::; C10(n,a)2(llu(t)II~ + llw(t)ll~+2)- (5.7) 

Furthermore, applying the identity (2.17) to equation (I)i with u = curl ( v -
a6v) gives 

a V -a curl(v - a6v) + -(curl(v - a6v)- curlv) + curlg 
t a 

= -curl (curl (v - a6v) xv) in Or, 

which implies that 

a at (v - a6v) - v6v = Vp - curl (v - a6v) xv+ curlg in nT 

for some p E L00 (0, T; Hm(n)), since n is simply-connected. By proceeding 
as in Section 4.2, i.e. writing the above equation in the form 

av at + v • v v = v • T( v, P) / P + g, 

taking the L2(0)-inner product with v, applying a standard Green's formula, 
and noting that 

(v•Vv, v)o = (pl, A1)0 = (v•VA1, A1)0 = (A1 W - W A1, A1)0 = 0, 

one arrives at 

d 2 a 2 2 
dt (llvllo + 2IIA1 llo) + vllA1 llo 

= 2(g, v )o + 2(S(lvl), lvl2)o,an + 2( d, v )o,an 

::; 2C2(0)2IISllc0 llvlli + 2(11Yllo + C2(0)lldllo,an)llvlli-
(5.8) 

::; 2(C2(n)211s11c0 + c)llvlli + ~(IIYII~ + C2(0)2lldll~.an), C > 0. 
c 
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Assuming that n has no axes of symmetry, it follows from (5.3) 2 and Korn's 
inequality ( 4.13) that 

IIA1II~ 2: 0;: 1 (IIA1II~ + llvll~) 2: c:c: 1 llvllr (5.9) 

Setting c = vKCp/(4Cp + 4), integrating over [O, t], applying (5.9) and 

min(l, i)Kllv(t)II~::; llv(t)II~ + illA1(t)II~, 

2 °
1 

( 2 2 llvalla + 2 IA1 va)lla ::; max(l, 2a)llvallu 
(5.10) 

and dividing by min(l, a/2)K, one obtains 

llvlltr + >., 1T llv(s )llf ds :"::: >-2llvoll~ + ; 1T (llg(s )II~+ lld(s )11~,an) ds, 

2 vCp 2 2 A1 = max(l, -)(2C 2 - -C2(n) II SIieo ), 
a P + K 

if 

[ Alternatively, setting J(t) = llv(t)lll + (a/2)IIA1(t)lll and applying 

II 
2 2Cp 2 a 2 

A1 Ila 2:: aCp + 2 (llvlla + 2IIA1 Ila) 

(5.11) 

( 5.12) 

and (5.lO)i to inequality (5.8) with c = min(l, a/2)vKCp /(2aCp + 4) leads 
to 

J'(t) $; ->.1*J(t) + max(l, C2(!1}2)max(l, ~) 2°'C~ + 4 (llgll~ + lldll~ an), 
Q VK p ' 

vCp 2 2 2 A1* = C - max(l, -)-C2(n) IISllco, 
a P+2 a K 

and thus, via Gronwall's lemma and the inequalities (5.10), 

,x 
llv(t)lli ~ A2e->.1*tllvalli + ;* (1 - e->.1*t)(llg(t)II~ + lld(t)ll~.an) 

V 
1* (5.13) 

:"::: >-2llvoll~ + vt (llg(t)II~ + lld(t)ll~.an) Vt E [O, Tl, 
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(5.14) 
for any given T > 0, if 

Note that the right hand sides of the estimates (5.11) and (5.13) - (5.14) are 
independent of T. The remainder of the proof is a direct generalization of 
the proof of Lemma 2.6 in (174], and is given in Section 5.3. 

An alternative to Assumption 5.3 is 

Assumption 5.5 There is a constant S0 > 0 such that 

S ( x) :s; -S0 V x ~ 0. 

Instead of Lemma 5.4 one then has 

Lemma 5.6 Let n be a bounded, simply-connected domain of class Cm+4, 
m ~ 1, a > 0 and I<, N E cm+2

, with So as above. Then there is a constant 

v* = v*(n, m, a, So, 11kllcm+2' 11Nllcm+2) 
such that for each v ~ v* there exist positive constants 80 , 81, 10 , 11 , which 
depend only on n, m, v, a, llkllcm+2 and IINll~m+2, and have the property 
described in Lemma 5.4(a). 

Proof. Inequality (5.7) remains unchanged, but inequality (5.8) becomes 

d 2 a 2 I 2 II 112 dt (llvllo + 2IIA1 llo) + vi A1 llo + 2So v o,an 

:s; 2(g, v)o + 2(d, v)o,an (5.15) 

CpS0 2 So 2 2 2 2 II 12 
:s; - 2-llvllo + 2 11vllo,an + CpSo IIYllo + So di o,an· 
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Furthermore, by the Poincare-Morrey inequality (5.3)i and Korn's inequality, 

(Gp+ })IIA1(t)II~ + {llv(t)ll~.an 

:2: CpllA1(t)II~ + 3~P llv(t)II~ (5.16) 

:2: KCpllv(t)II~ + C; llv(t)II~ Vt E [O, T]. 

Thus, integrating (5.15) over [O, t], applying inequalities (5.7) and (5.16), 
taking the supremum over [O, T] and dividing by min(l, a/2)/'i,, one gets 

llvlltr + T/11T !Iv( s) II~ ds + T/21T II A, ( s) II~ ds 

'.S'. T/3 llvoll~ + T/41T ( Ilg( s) II~ + lid( s) I lo.an) ds, 

where 

2 1 2 
f/1 = GpSomax(l, -), T/2 = (v - vo)-max(l, -) 

a K, a 
1 2 2 2 1 

ry3 = -max(l, -)max(l, 2a), ry4 = -
5 

max(l, -)max(l, G ), 
K, a /'i, o a p 

if 

a 
[ One could also set f(t) = llv(t)lli + -IIA1(t)II~ and use 

2 

a 3 3 Gp 
( 2Gp + 2)IIA1(t)II~ + 211v(t)11~.an ~ Gpf(t) + 2 11v(t)II~ 

to obtain 

J'( t) + GpSof(t) + (v - Vo*) IIA1 (t) II~ 

( 5.17) 

(5.18) 

2 1 (5.19) 
~ So max(l, Gp )(llg(t)II~ + lld(t)ll~.an) Vt E [O, T) 

for 
v ~ Vo* = ( aGp + 3)So/2. (5.20) 

It then follows (again from Gronwall's lemma and (5.7)) that 

llv(t)II~ + c:~o (1 - e-CpSot)IIA1(t)II~ 

~ 173e-CpSotllvollf + 174(1 - e-CpSot)(llg(t)II~ + lld(t)ll~.an) 
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for all t E [0, T], and (by integrating (5.19) over [0, t], etc.) that 

llvllrr + CpSo 1T llv(s )Iii ds + T/21T IIA1 (s )II~ ds 

:S T/3llvolli + T/41T (Ilg( s )II~ + lld( s) 11~.an) ds. ] 

91 

The lower bound (5.18) [or (5.20)] on v was imposed in order to simplify the 
expressions 171 , ... , 174 , but is not really necessary here. Requiring only that 
v > 0, one can derive estimates in terms of min(v, 2S0), as will be done in 
the next section (see the proof of Proposition 5.9(c)). 

The proof now proceeds exactly as in Section 5.3 for Lemma 5.4, the only 
difference being that in the case m = 0 one must define 

r = 4v173C;0 _ 4vC;0max(2, 1/o) 
01 _ 1 + --- - 1 + C er 

01]1 K, poo 

CF 4v174 CF 8v ,1=-+--=-+-------
- v 0171 v OK, min(l, Gp )CpSf 

□ 

Now one can establish the existence of global classical solutions: 

Theorem 5.7 Let m ~ 1 and let n, o, I<, N and v* be as in Lemma 5.4 
or Lemma 5.6. Then, for every v > v*, there are positive constants o and 1 , 
depending only on n, m, v, o, III<llcm+2 and IINllcm+2, such that if 

Vo E Xm+3, llvollm+3 < O, 

g E L00 (0, oo; Xm+1) n L2(0, oo; Xm+i), 

d E L00 (0, oo; Zm+3/2) n L2(0, oo; Zm+3/2), 

IIYIIL2,m+l,oo + lldllL2,m+3/2,oo,811 < ,, 

( 5.21) 

then the slip problem ( 4.6) has a unique solution v, V p for all t E [0, oo), 
satisfying the regularity conditions ( 4. 7) for every O < T < oo. 

Proof. With o0 , o1 , 10 and 11 as in Lemma 5.4 (Lemma 5.6, resp.) and C* 
as in Theorem 4.4, assume that 

llvollm+3 < O = C*min(l, ~)°0
• 

2vo1 2 

IIYIIL2,m+i,oo + lldll£2,m+3/2,oo,an <I= min(,o, ~)-
(5.22) 
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Then, defining u 0 and w 0 as before, it follows from the definition of C* (see 
the first paragraph in the proof of Theorem 4.4) that 

Thus, by Theorem 4.3 (with D* = 50/2 and, for example, D = 60 ) there 
exists a unique solution v 1 on [O, T]. Moreover, from the inequalities (5.5) 
( of Lemma 5.4 or 5.6), (5.23) and (5.22)2 one has 

max(llu1(T)llm, llw1(T)llm+2)2 

~ 261max(lluollm, llwollm+2)
2 + 1'1(IIYlli2,m+1,oo + lldlli2,m+3/2,oo,an) 

< 55 + 55 = ( 60 )2. 
8 8 2 

Hence one may again apply Theorem 4.3 and Lemma 5.4 (Lemma 5.6, resp.) 
to deduce the existence of a unique solution u 2

, v 2
, w 2 on [T, 2T] with v 2(T) = 

v 1(T), etc. From Propositions 3.7 and 3.11 and (4.7) it is clear that the re
sulting vector functions u, v, w on [O, 2T] satisfy the conditions of Lemma 
5.4 (Lemma 5.6, resp.) with 2T instead of T, and so it follows as above from 
(5.5) that 

60 
max(jju(2T)llm, llw(2T)llm+2) < 2 . 

By repeating this procedure one obtains a solution on [O, oo) with the stated 
regularity properties, the uniqueness being ensured by Lemma 4. 7. □ 
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5.2 Stability of the Rest State 

The quantity 
a 

E(t) = llv(t)II~ + 2IIA1(t)II~, 

which was encountered in the previous section, can be interpreted as the 
sum of the averaged kinetic and stretching energy in the fluid at time t. For 
flows that satisfy the no-slip condition on a portion of the boundary, [119, 
pp. 221 - 222] showed that E(t) cannot decay to zero in a finite time. Not 
surprisingly, this is also the case here: 

Proposition 5.8 Let n be a bounded domain, v ~ 0, a > 0 and suppose 
that 

S = inf S(x) > -oo. 
x~O 

Then there is a constant C = C(f!) such that any global solution v of the slip 
problem ( 4.9) under a conservative body force {i.e. g = 0, d = 0) satisfies 

max(l, 2a)llv(t)lli ~ E(t) ~ E(ot>d ~ min(l, ~ )~llvollie-,\t (5.24) 

for all t ~ 0, with 

A = max( ~(v + C(O)lmin(O, S)I), C(O)lmin(O, S)I) ~ 0. (5.25) 
a 

Moreover, if n is not rotationally symmetric, or if there is a fixed subsurface 
I; can of nonzero measure such that v = 0 on I; for all t ~ 0, then 

(5.26) 

Proof. Since S(lvl) ~ S ~ min(O, S) = -lmin(O, S)I, it follows from 
equation (5.8)i, the trace theorem and Korn's inequality that 

E'(t) ~ -vllA1(t)II~ - lmin(O, S)IC2(!1)2llv(t)lli 

~ -(v + C(O)lmin(O, S)l)IIA1(t)II~ - C(O)lmin(O, S)l-llv(t)II~ 

~ -AE(t) Vt~ 0, 

where C = C2(!1)2 / ~ and A is as in (5.25). This yields (5.24) upon inte
gration, and (5.26) is then immediate from (5.9), which follows from the 
Poincare-Morrey inequality (5.3)2 or (5.3)3. 
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Proposition 5.9 Let n be a bounded domain, v 2:: 0, a > 0, g = 0, d = 0, 
and assume that 

S = sup S(x) < oo. 
x~O 

Then, for any global solution v of the slip problem (4,9}, with any initial 
value v 0 , one has: 

(a) If S ~ 0, then 
E' ( t) ~ 0 V t 2:: 0, (5.27) 

i.e. the null solution is (monotonically) stable in the Lyapounov sense: 
For any t 0 2:: 0 and E > 0, if 

llv(to)II~ < 1':min(l, ~)min(l, -
2
1 

)c2
, 

2 a 

then llv(t)lli ~ c for allt 2:: to, 

(b) If n has no axes of symmetry, or if there is a subsurface ~ c an of 
nonzero measure such that v = 0 on ~ for all t 2:: 0, then there exist positive 
constants C, C>., C 11 , depending only on n and a, such that 

for all t 2:: 0 and 
A = -C>.(V - C11 S), 

so that the null solution is exponentially stable if v > C 11 S. 

( c) If S = -S0 < 0 and v > 0, then 

for all t 2:: 0 and 
A = 2vC pmin( v, 2S0 ) 

2v + aCpmin(v, 2S0 ) > O, 

i.e. the null solution is exponentially stable. 

Proof. From equation (5.8), 

E'(t) + vllA1(t)II~ = 2(S(lvl), lvl 2)o,an ~ 2Sllv(t)11~,an, (5.30) 

which establishes (a) in view of (5.10). 
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Inequality (5.30) also shows that one may substitute max(O, S) for II SIieo in 
the derivation of inequality (5.13)i (page 88), so that (b) holds with 

Gp 2 2aCp + 4 2 CA= C 2' ell= max(l,-) C C2(n). 
a P+ a "'p 

To verify ( c), set 
2v 

c = 2v + aCpmin(v, 2S0)' 

then inequalities (5.30) and (5.3)i give 

-E'(t) 

2: vllA1(t)II~ + 2Sollv(t)11~,an 

2: (v- cmin(v,2So))IIA1(t)II~ + cmin(v,2So)(IIA1(t)II~ + llv(t)ll~,an) 

2: (1 - c)vllA1(t)II~ + cCpmin(v, 2So)llv(t)II~ 

= cCpmin(v, 2S0 )E(t) Vt 2: 0. 

Remark 5.10 (a) The assumption in Proposition 5.9(c) - that Sis bounded 
from above by a negative number - excludes the important (for free surface 
flows) case of perfect slip, but is not unreasonable in the light of the restric
tions imposed by the existence proofs of [115] and [116] (for simpler fluids). 
With the notation as on page 11, [115] assumes that 

S(v, y), ~: (v, y) E C0 ([0, oo) x 811), 

and 
-Si:::; S:::; -So 

as 
S+v- < -S2 av -

as> 0 av -

V (v, y) E [0, oo) x an, 

where S0 , S1, S2 are positive constants, while [116] requires that 

S( v, 0), ~: ( v, 0) E C0 ([0, oo) x R), 

in addition to (5.31) with (5.31)3 replaced by 

vl!!I :S: S3 V (v,y) E [O,oo) x R, 

( 5.31) 
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for some constant S3 > 0. (In both cases, identical regularity and growth 
conditions (with Min place of -S) are also imposed on the viscosity function 
M.) 

(b) The stability result of [127] for flows with perfect slip in unbounded 
domains assumes that the boundary is fiat, in which case the condition 

(Tn)T = 0 on an 

becomes equivalent to 

(A1n)T = curlv X n = 0 on an. 

For incompressible second grade fluids that satisfy the no-slip condition this 
holds on smooth boundaries of arbitrary shape, as can be seen from the 
formula derived in [181]: 

( c) As a final comment, I point out that the arguments (involving eigenvalues) 
employed in [119, section 9] and [121], section 7, to prove the stability of 
arbitrary base flows rely on the no-slip condition to a degree that seems 
impossible to circumvent in any obvious manner. 
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5.3 Appendix 

Proof of Lemma 5.4 (contd.). 
The case m = 0. 
Taking the L 2 (f!)-scalar product of equation (I)i with u gives 

l d 2 V 2 V 
--d llullo + -llullo = -(curlv,u)o + (u•Vv,u)o(curlg,u) 0 2 t a a 

S v'2( ~llvll1 + IIYlli)llullo + llv•Vullollullo 
a 

97 

as (v•Vu, u)0 = 0. Hence, after using inequality (3.15) (withs= 3) and the 
Cauchy inequality as in (3.55 h, one obtains 

d v 4v 4a 

dt llull~ + -!lull~ s 2Csllvll311ull~ + -llvllf + -IIYllf. a a v 
(5.32) 

Similarly, taking the scalar product of equation (II)i (see page 46) and w in 
H 2(f!) and applying inequality (3.14) gives 

l d 2 V 2 v 

--d llwll2 + -llwll2 = -(v•Vw,w)2 + (f,wh 
2 t a 

2 1 V 1 V s C4(!1)11vl'311wll2 + (-llsll2 + llbll2 + llcll2 + -lldll2)llwll2, 
a a 

(5.33) 

while the a priori estimate for the Stokes problem, the steps leading to (3.24), 
(3.26) and (3.28), and inequality (3.34)i imply that 

llsll2 s C(n)(lli<llc2 + IINllc2 [ 1n1 112 + llvll~ + llvll~l )llvll2, 
llbll2 S C(f!)llvll3(llvll2 + llwll2), 
llcll2 s C(f!)llvll;, 
lldll2 S C(f!)lldl'3;2,an-

From (5.34)4 and Cauchy's inequality one also gets 

v v 2 c(n) 2 lldll2llwll2 s 2llull2 + ~lldl'3;2,an· 

(5.34) 

(5.35) 

Thus, by adding (5.32) and (5.33) and using (5.34) - (5.35), one arrives at 

d V 
dt (llull~ + llwll~) + ~(llull~ + llwll~) 

s c(n){ ~(lli<llc2 + IINllc2 [ 1n1 112 + llvll; + llvll~ l )llvll3 
a (5.36) 

+ llvll; }llwll2 + C(f2)11vll3(11ull~ + llwll~) 
4v 2 4a 2 C(f!) 2 + ~llvll1 + ~IIYll1 + ~lldll3;2,an· 
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With y(t) = llu(t)116+ llw(t)II~, it follows from (5.7) that llvll3::; C10y'y, and 
hence from (5.36) that 

V 
y'(t) + [- - G(y(t))]y(t)::; F(t) Vt E [O, T], (5.37) 

a 

where G(x) = Cc(IIKllc2 + IINllc2(l +x+x2)+vx), X 2:: 0, for some constant 
Cc = Cc(n, a) and 

4v 2 CF 2 2 
F(t) = ~llv(t)ll1 + -;-(llg(t)ll1 + lldll3/2,an) 

with CF= max(4a, C(n)/a). Assume that 

v > v* = max(vo, 2aCc(n, a)(IIKllc2 + IINllc2 )). (5.38) 

Then, since G is continuous and G(O) = Ca(IIKllc2 + IINllc2 ), there exists an 
c: = c:(n,v,a, IIKllc2, IINllc2) > 0 such that G(x)::; v/(2a) for all x E [0,c:]. 
Moreover, by (5.11) and (5.7) (form= 0, t = 0) 

y(O) + 1T F(t) dt ~ J,y(O) + ")'1 1T (llg(t)II~ + lld(t)ll~12,an) dt 

with 

8 
= 

1 
4v.X2C;0 _ 

1 
8vC;0 (Cp + l)max(2, 1/a) 

1 - + a.X1 - + vCpK - 4C?(Cp + l)IISllco' 

CF 4A3 CF 32(Cp + 1)2max(l, en ,1 = - + - = - + -----------
v a.Xi v aKCp[vCpK - 4C?(Cp + l)IISllco ]' 

Hence, if 

lluollo + 1lwoll2 < Jo = {;;;, 

IIYllu,,,T + lldllu,3/2,r,an < 'Yo = f1i;_, 
then according to Lemma 5.1 (with k1 = 2k2 = v/a), 

V {T 
llull~,T + llwlltT + 2a}o ( llu(s)II~ + llw(s)ll;)ds 

::; 81( lluoll~ + llwoll;) + ,1( IIYlli2,1,T + lldlli2,3;2,T,an ). 

(5.39) 

(5.40) 

[ Note that the bounds 80 , 10 on the magnitude of the data can be made 
arbitrarily large by taking v* sufficiently large; when v --+ oo, then c --+ oo 
and 81 --+ J1, say, ,1 --+ 0, so that do --+ oo, ,o --+ oo. 
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This also shows that 80 , 81, 10 and 11 can be chosen independent of v: 
Choose av*> max(vo,2aG(0)) such that 81(v)::; J1 + 1 and 11 (v)::; 1 for 
all v ~ v*. Then there is an c > 0, depending only on v* and G( ·), such that 
G(x) ::; v* /(2a) for all x E [0, c]. Hence it suffices to replace c51 and 11 by 
81 + 1 and 1.) 

The case m = 1. 
Taking m + q = 1 in (3.50) - (3.55), one gets 

Moreover, for any m ~ 1, arguing as in (5.33) - (5.34) yields 

d 2 V 2 

dt llwllm+2 + ~llwllm+2 

::; c(n){ .!_(III<llc2 + IINllcm+2 [ 1n1 112 + llvll~+2 + llvll~~t] )llvllm+2 a 

+ llvllm+2(llvllm+3 + l1wllm+2) + llvll~+3}11wllm+2 

+ 2C4(!1)llvllm+2llwll~+2 + c;~) lldll~+J/2,an· 
(5.42) 

Hence, setting Y1(t) = llu(t)lli + llw(t)II~, adding (5.41) to (5.42) with m = 1 
and using the estimates llwll3 ::; y'YI, llvll4 ::; C10y'YI, one obtains 

(5.43) 

where G1 is a function of the same form as G. If conditions (5.38) and (5.39) 
are satisfied, then by (5.7) and (5.40), 

4v {T I 2 2 [ 2 2 
~ Jo I v(t)ll2 dt::; 8C10 81y(0) + ,1(IIYIIL2,1,T + lldllL2,3/2,T,an) ]. 

( One could apply Cauchy's inequality to the term 

1 A / 

-C(O)(III<llc2 + 11Nllc3 1O1 1 2)llvl13llwl13 
a 

in (5.42) and take the resulting llvll~-term to the right hand side of (5.43), 
but there is seemingly not much to gain from this.) 
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Therefore, in the same way as before, it follows from Lemma 5.1 that there 
exist positive constants vf, <50,1, ,0,1, 81,1 and ,1,1 such that if v > vf and 

then 

llullrr + llwllh + :a [ ( llu(s)II~ + llw(s)II~) ds 
(5.44) 

~ 81,1( lluoll~ + llwoll~) + ,1,1( IIYlli2,2,T + lldlli2,5;2,r,an ). 

The general case m 2: 2. 
Let k 2: 2 and assume that (5.5)i holds for m = k - l. From (3.50) - (3.55) 
one has 

(5.45) 

Hence, by adding (5.45) and (5.42) (with m = k) and using the estimate 
( 5. 7), one again obtains a differential inequality of the type ( 5.1) in 

Yk(t) = llu(t)II~ + llw(t)ll~+2, 

with 

- 4v 2 1 2 2 
Fk(t) = ~llv(t)llk+i + --;;CFk(n, a, k)( llg(t)llk+i + lld(t)llk+3/2,an ). 

As above, from (5. 7) and the induction hypothesis one has 

4v {T llv(t)ll%+1 dt 
a lo 

~ 8C10(n, a)2[ <51,k-lYk-1(O) + ,1,k-1(IIYlli2,k,T + lldllL2,k+I/2,T,an)], 

and therefore, by the same reasoning as before, it follows that inequality 
(5.5)i holds form = k, and thus for all m 2: 2. 

(b) By adding inequalities (3.57) ( with q = 0) and (3.84) ( with E1, M, 'I] 
replaced by llwllm+2,T, llvllm+3,T, w, respectively) and using (5.7) one obtains 

du dw 1o C(n, m) 
lldtllm-1,T + lldtllm+i,T ~ v211Yllm,T + O'. lldllm+I/2,T,an 

+ C(n, v, a, IIKllc2, IINllcm+l, llullm,T, llwllm+2,T ), 

and therefore (5.6) by virtue of (5.5). 
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5.4 List of Constants 

Constant Equation Page 

C1 (3.1) 33 

C2 (3.2) 34 

C3 (3.11) 37 

C4 (3.14) 39 
C5 (3.15) 39 

c6 (3.18) 40 
C1 (3.36) 46 

Do, D1 (3.56) 55 
D2 (3.57) 55 
Cs (3.69) 60 
Cg, F (3.70) 61 
Ea, E1 (3. 71) 61 
E2 (3.84) 64 

D, D* 67 
T*, F0 , F1 , F ( 4.1) 68 

c* (4.5) 69 
M 70 
K, (4.13) 73 
C10 ( 4.22) 76 
Gp (5.3) 86 
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