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Abstract

The need for statistical tools capable of addressing high-dimensional data is ever-growing. One

such tool is that of differential networks, which have become increasing popular within various

branches of science. The popularity of differential networks and their subsequent analysis is largely

attributed to their ability to effectively represent the relationships between factors of complex systems

over time, or over various experimental conditions. However, a differential network is not easily cal-

culated, and in high dimensional settings common within biological sciences they must be estimated.

Motivated by this, this dissertation comprehensively explores differential networks and the efficient

estimation thereof through the use of a R package developed throughout the course of this research

- dineR.
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Glossary, Abbreviations and Acronyms

ADMM Alternating direction method of multipliers. 21, 43, 46–49, 51, 53, 56, 66, 76

AIC Akaike information criterion. 57

BIC Bayesian information criterion. 57, 58

big data Extremely large or complex datasets, whose size or complexity prohibits the use of traditional

statistical tools for analysis. 8, 10

block coordinate descent An optimization algorithm that finds the minimum of a function iteratively,

by minimizing it in one coordinate plane at a time. 26, 31

CLIME Constrained `1 - minimization for inverse matrix estimation. 28

dineR Differential Network Estimation package in R developed during this research and available on

CRAN. 2, 53, 54, 56–59, 62, 66, 68, 75, 76

EBIC Extended Bayesian information criterion. 57, 58, 60, 72

epidemiology The branch of medical sciences responsible for studying disease occurrence, progression

and spread. 11

genomic The study of the genomes - the genetic material that makes up a organism or cell. 11, 16, 30

GGM Gaussian graphical model. 15, 16, 24, 51

high-dimensional Datasets in which the number of features recorded exceeds the number of observa-

tions present. That is p > n. 2, 11, 14, 16, 17, 22, 23, 25–27, 31, 34, 37, 42, 43, 49, 57–59

LASSO Least absolute shrinkage and selection operator. 20, 24–31, 48–51, 61, 62, 64, 72

MCP Minimax concave penalty. 20, 29, 30, 48, 56, 61, 62, 64, 66, 68

nonparanormal Distributions that can be represented as a semi-parametric Gaussian copula. 15, 32

SCAD Smoothly clipped absolute deviation. 20, 22, 25, 28–30, 48, 56, 61, 62, 64, 65

sparsity The proportion of elements within a matrix that are zero. That is the number of zero-valued

elements over the total number of elements within the matrix. 12, 24, 29, 31, 33, 41, 43

TPR True positive rate. 59, 61, 62
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ultra high-dimensional Datasets in which the number of features recorded greatly exceeds the number

of observations present. That is p >> n. 29, 43, 47, 57, 59, 72, 75
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1 Introduction

Data is a drastically growing resource, with more data having been generated in the last two years alone

than in all of human history preceding that [29]. As the volume of data available explodes, so too has the

average size of datasets. This is seen as data scientists were surveyed on the largest dataset they processed

annually, with the median response growing from approximately 6 gigabytes in 2006 to as large as 30

gigabytes in 2015 [55]. The increasing frequency that these exceptionally large datasets are encountered

has lead to the development and popularisation, as seen in Figure 1 [73], of the term big data.

Figure 1: Google search trends on big data

Big data refers to any and all data, whose size or complexity prohibits the use of traditional statistical

techniques to perform analyses. This prohibition has resulted in the development of several statistical

methods, designed with the ability to specifically address such complexities. One such method is differ-

ential networks. Before further details on differential networks can be introduced, graphical modelling

preliminaries are required. Reason being is graphical models form the foundation of all visualisation and

interpretation of differential networks, as will be shown later [68].

1.1 Graphical Modelling Preliminaries

Graphical models, often referred to as networks in literature, are considered the union of probability

theory and graph theory [51]. By design, graphical models aim to capture and represent the interactions

between the various components of complex systems [68]. This ability, as well as the ability to clearly
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illustrate the behaviour of each of the system’s components in response to changes in external stimuli

has seen the popularity of network theory grow exponentially in many sciences as of late [7]. Sciences

in which network theory has seen this growth include social sciences, medical and biological sciences,

physics as well as epidemiology [7].

Formally, a graphical model is defined as G = {V,E} [39]. Where V is referred to as the set of nodes

or vertices of the graph, which represent the variables in the given problem [51]. While, E is the edge

set of the graph that consists of pairs of nodes, also called arcs or links, who characterise the interactions

between nodes [68]. An introductory graphical model can be seen in the below figure:

Figure 2: Introductory graphical model

The above graphical model, Figure 2, is derived from the following sets: nodes = {X1, X2, X3, X4, X5}

and edges = ({X1, X2}, {X1, X3}, {X3, X4}). One main motivation for the use of graphical models, such

as the above, is the ability to observe changes in any complex system represented by a graph, G, by

observing changes in the its nodes, V , or its edges, E, or both [65]. Most systems such as those within

computational biology, climate studies, genomics, finance and medical imaging, all of which are often

high-dimensional, only undergo changes within their edge set [92]. That is, changes occur within the

interactions of the system’s components over time or in reaction to changes in environmental factors [92].

Changes in the node set, although less common, are still possible such as those frequently observed in

communication and social networks, where the number of components within the network grow overtime

[7, 65]. For the purposes of this dissertation, it will be assumed that the node set of any network shown

here is fixed, and only the edges will be expected to undergo changes. This is a reasonable assumption,

as all of the practical applications will be performed on clinical data in which the node set should almost

never change [31]. Another structural difference that may be observed between graphical models is the
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form of the edge joining any two nodes. There are two forms which edges may undertake, that is edges

may be directed or undirected [40]. If edges are undirected, which is the most frequently observed case,

any single edge is simply a pair of nodes, which indicate there is a non-zero association between the

two variables represented by the nodes [68]. However, there are two main ways this association between

variables can be determined. To illustrate this, consider a graph G = {V,E} where V = {1, 2, ..., n}

represents the set of nodes and E describes the edges between said nodes, all related to a set of random

variables X1, X2, ..., Xn. The first manner in which the edges may be determined is through the use of

marginal inference procedures. That is, an edge is said to exist between variable Xi and variable Xj if

and only if the variables are dependent on one another [65]. Mathematically, nodes i and j are connected

if and only if ρ(Xi, Xj) 6= 0. There are however, several different means to examine ρ and thus whether

a marginal dependence between any two nodes exists. One possible measure is the Pearson correlation

coefficient. In this case, the network for the random variables corresponds to a set of non-diagonal

components of the sample correlation matrix, R [65]. These components are selected through the use

of hypothesis tests, with H0 : ρ(Xi, Xj) = 0. Alternatively, the set of significant correlations can be

obtained by the use of a thresholding parameter, λ, whereby all the correlations larger than λ are deemed

significant [65]. λ here is a tuning parameter that allows the user to control the level of sparsity within the

network, something which becomes of great importance later when estimating the network. One severe

disadvantage of making use of the marginal inference procedures, despite their simplicity is that marginal

inference procedures cannot differentiate between relationships which are direct from those which are

indirect [65]. A simple example can illustrate this shortfall. Consider the variables X1, ..., X5 all of which

follow a normal distribution. Assume the true underlying network G is categorised by three edges as in

Figure 2. Thus, the edges are known and are namely {X1 −X2, X1 −X3, X3 −X4}. Secondly, assume

ρ(X1, X2) = 0.8 = ρ(X1, X3). However, this second assumption then implies that ρ(X2, X3) = 0.64, that

in turn implies that the graph has an additional edge in the form X2−X3, which is incorrect [65]. Thus,

to address the above issue, an alternative to the marginal inference procedures is required.

Conditional association measures aim to address the above limitation by making use of a slightly

different description as to that provided above. Under conditional inference procedures, an undirected

edge exists between two nodes i and j if and only if the variable Xi and variable Xj are conditionally

dependent, given all other variables [65]. This approach, although more computationally taxing than

the marginal one, has been shown to provide results which may be far more scientifically valuable [65].

The use of conditional dependencies can also be shown to have addressed the issue introduced in the

example above, as the partial correlation between variable X2 and variable X3 given variable X1 is zero.

Having shown that making use of conditional associations addresses the main issue arising from the use

of marginal inference as previously described, there is another advantage from utilising the conditional
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approach. That being there exist many well developed non-parametric approaches to obtain the network

when considering conditional dependencies, however for the purposes of this dissertation it is important

to note that these approaches all perform inadequately when the system consists of a large number of

nodes [65]. Moreover, these techniques do not extend easily to a high-dimensional setting, which as will

be discussed later, is the focus of the work here [65]. Taking into account the above, and the fact that

parametric graphical models extend far easier to a high-dimensional setting, the focus for the remainder

of this document is on that of parametric graphical models.

Thus far, only undirected graphs have been considered however there exists another popular sub-

category of graphical models. In this case, edges are directed and consist of two components namely a

parent node and a child node which describes the direction of the edge between the nodes [68]. Statis-

tically, a directed edge only exists between two variables if there is a causal relationship between said

variables [68]. The parent node is then representative of the cause variable, and similarly the child node

represents the effect variable [68]. In summary, most graphical models can then be considered to fall

within one of the following sub-categories:

Graphical Models
The union of prob-
ability theory and

graphical theory [51].

Undirected Graphs
• Nodes represent variables.

• Edges are characterized by the
correlation between variables [39].

• Referred to as Markov Random
Fields or Markov Networks [51].

Directed Graphs

• Nodes represent variables.

• Edges are characterized by causal
relationship between variables [68].

• Referred to as Bayesian Networks
[51].

Chain Graphical Models
A graphical model con-

sisting of both undirected
and directed edges [51].

Figure 3: Overview of graphical models

For the purposes of this research, edges will assumed to be undirected and thus the work going forward

is centered on undirected graphical networks for three main reasons. Firstly, the available literature and

subsequent applications of directed networks thereof is by far in the minority when compared with their
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undirected counterparts [65]. Secondly, the determination of causal relationships between variables in

high-dimensional settings is extremely computationally taxing. This makes the application of directed

networks very rarely feasible in the event whereby the number of variables outnumbers the number

of observations significantly which will be explored within the application section of this dissertation.

Thirdly, the purpose of this dissertation is to examine differential networks and as such undirected graphs

which are components therein.

In Figure 3, the types of graphical models listed is not exhaustive and several other structures for

graphical models exist, such as factor graphs, directed cyclic graphs, directed acyclic graphs, forest graphs,

moral graphs, join trees, clique trees, junctions trees and geographical networks [68]. To illustrate the

power of graphical models as a whole, consider Figure 4 and Figure 5 which represent a geographical

network and the corresponding map of Liverpool City that illustrates the number of new weekly reported

COVID-19 cases during the 41st week of lockdown in England.
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Figure 4: COVID-19 cases by municipality
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Figure 5: Geographical network of municipalities

Figures such as the above provide researchers and lawmakers with valuable information regarding the

spread of COVID-19 and the subsequent areas that were most at risk given an outbreak in a particular

region. Researchers could then anticipate a high number of cases in regions who are highly connected

to the region currently experiencing an outbreak. Geographical networks such as that shown above

can be greatly improved to include epidemiological factors, and even transportation networks that can

then also be used to predict the disease transmission allowing for proactive measures, such as the region
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lockdown implemented in Leicester City by the English government in June 2020. Despite the usefulness

of geographical networks, there is however one such special case of graphical models that is the most

extensively studied and applied approach within literature [43]. The special case is that of the Gaussian

graphical model.

Gaussian graphical models, GGMs, follow the same general framework as all graphical models, that

is the graph is defined as G = {V,E} with V the set of nodes, and E the edges joining the nodes [43].

The defining trait of GGMs is that it is assumed the underlying distribution of the variables, captured

as nodes, is normal [43]. The assumption of normality although a rather stringent one, and one that is

known not to hold in almost all real-world scenarios, will be later shown to be easily relaxed through

the use of several nonparanormal transformations that will allow the capturing of non-normal data as a

Gaussian graphical model without loss of generality [42, 43]. As with any assumption, it is important

to understand the motivation behind assuming normality here. The motivation is that if the objective

is to make use of a p-dimensional vector x, with x ∼ Np(µ,Σ), and obtain the underlying graphical

model encoded within the data then the complete graphical model is described by the inverse covariance

matrix of x. The use of GGMs has become common practice in many fields such as speech processing,

image analysis, bioinformatics, gene regulation and macroeconomics [17, 39, 90, 92]. The reason for

GGMs popularity within such fields has to do with the scale of problems regularly observed within these

fields. That is, problems within these disciplines routinely involve thousands or even millions of random

variables that are all related to one another [39]. These relationships between variables are more often

than not extremely complex, and as such cannot intuitively be visualized through the use of traditional

statistical approaches [39]. GGMs however provide a robust framework for addressing such scenarios as

shown below.

Figure 6: Heatmap of a correlation matrix
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Figure 6 visualises a heatmap of the 10 × 10 correlation matrix shown in Table 9 which is a figure

commonly examined within literature. However, despite there being only 10 variables present within the

above example, identifying the various relationships that exist is not a trivial task and grows exponentially

in complexity as the number of variables considered increases.

1

2

3

4

5

6

7

8

9

10

Figure 7: Graphical model representation of correlation matrix

Figure 7, however depicts the graphical model obtained from Figure 6, and when inspected the

interactions between variables becomes far clearer. This clearly illustrates the significant benefit of

applying GGMs, specifically in a high-dimensional setting. As such, while also in an attempt to remain

consistent with existing practical applications in biological sciences, it will be assumed that the underlying

distribution of any set of variables examined here is normal [31]. This will make the findings of the work

here applicable to a wide variety of biological settings. Lastly, until this point networks have only been

mentioned at a single point in time, or at a particular state but it is often of interest to examine a complex

system over time, or in response to external stimuli [37]. To extend the theory introduced thus far, an

adaption is to compare networks over time or networks under various states such as pre-treatment against

post-treatment which gives rise to differential networks [65].

1.2 Differential Networks

In sciences such as genomics, or medical sciences it is not of considerable interest to examine any single

network as the relationships that exist between components are rather well documented [65]. Within
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these sciences, and several other fields it is of greater interest to examine differences between networks

[65]. Differences between networks can be a single network observed at different points in time, or the

same network observed in response to different experimental conditions [17]. One example of this is

the comparison of a network of medical measurements for individuals before a cancer treatment to a

network of medical measurements for individuals during cancer treatment. Such a comparison provides

insight into cancer progression and the response to the selected treatment [65]. Thus, making use of the

assumptions provided in Section 1.1, a differential network is defined as the difference between two inverse

covariance matrices, also referred to as precision matrices [69]. Mathematically, a differential network is

represented as follows:

∆ = Σ−11 −Σ−12 , (1)

where Σ1 and Σ2 are the covariance matrices of experimental state 1 and 2 respectively. The mo-

tivation behind calculating ∆ is to be able to capture and hopefully explain any changes between the

conditional correlations across the two states [69]. One such use case whereby differential networks and

their ensuing analysis is commonly deployed is genetics [94]. An example of this is whereby gene expres-

sion levels are represented as vertices in a graphical model whose edges are characterized as the conditional

dependency relationships between genes [94]. Within gene expression level studies it is common however

to have this data available under various conditions. It is then possible to derive a differential network,

∆, for any combination of two of the conditions present. Any element of ∆ is then the difference between

the partial covariance for a pair of genes across the prescribed conditions [94]. In the above example,

allowance was only made to consider two conditions, however this is not a necessary requirement to derive

a valid differential network. If the aim is to study gene expression levels over K different conditions, with

K > 2, one possible way to address this would be to determine all possible pairwise differential networks

[94]. This approach, although valid, would be both time consuming and computationally taxing. Thus,

the possibly more favourable approach would be to evaluate the pairwise difference between each con-

dition’s relevant precision matrix and a common precision matrix, such as a pooled covariance matrix

across all K conditions [94].

At first glance, it appears rather simple to obtain a differential network, but there is one key challenge.

That is, the determination of differential networks relies upon two inverse covariance matrices [69]. These

inverse covariance matrices become increasingly problematic to determine as the number of covariates

considered increases [69]. In a high-dimensional setting, whereby the number of variables, p, is larger than

the number of observations, n, these covariance matrices become singular and as such their inverses do not

exist [5]. However, in many of the disciplines mentioned thus far, the data is frequently high-dimensional

[65]. It is then vitally important to possess tools to overcome the singularity of the covariance matrices.
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Currently the most popular techniques that allow the issue of non-invertible covariance matrices to be

circumvented are to either estimate the differential network as a whole, or the network components,

precision matrices, individually [69]. Depending on the approach taken from those above, the steps to

estimate ∆ differ greatly, but so too do the assumptions regarding the individual precision matrices and

indeed the differential network itself. Hence, it is important to consider the purpose of the results one

hopes to obtain and decide upon an appropriate approach with the relevant assumptions attached.

1.3 Optimisation and Estimation

As it will be later shown within this dissertation, all of the processes currently available for differential

network estimation consist of two broad steps. That is, in order to estimate a differential network,

literature states an appropriate loss function must first be derived or selected [3, 69, 90, 94]. The

target of this loss function can then either be the differential network as a whole, or the individual

precision matrices that make up the differential network [94, 90, 69], with the differences between these

two approaches further explored in Section 1.4. Once a loss function has been selected, an applicable

optimization scheme based on the characteristics of the loss function can then be implemented to optimize

the loss function and arrive at the differential network estimate. Both of these two steps are common

throughout many branches of physics, mathematics and statistics. However, before providing specific

details regarding each of these steps in the context of this dissertation, it is important to consider loss

functions and optimization in a universal setting.

Consider the common transportation problem as defined by Pedregal [59]. That is, a company has

an in-demand product which they must distribute globally from m of their manufacturing plants to n

different distributions points. The quantities shipped from each manufacturing plant can be represented

mathematically as s1, s2, ..., sm, with the amounts to be received at each center being r1, r2, ..., rn. The

cost of transportation for a single unit of product from plant j to the distribution center i is known in

advance as cji. It then becomes of great interest to the company to determine the quantity of product

that can be sent between destination j and i while maintaining transportation costs that are as low as

possible [59].

To solve the above problem, it is first represented mathematically. That is, if the quantity of product

transported from plant j to point i is represented by xji then the optimization problem is clearly to

minimize the following:
∑
j,i cjixji. However, there are several restrictions on the amount of product

that may be shipped. Namely, any one manufacturing plant has a finite amount of product available to

ship. Thus the following inequality must hold:
∑
i xji = sj . Similarly, any distribution point only has a

finite amount of demand, and as such a second inequality must hold:
∑
j xji = ri. One final restriction

exists, that is no quantity shipped may be negative and as such xji ≥ 0 must hold. This mathematical
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problem, as represented in Figure 8, is then one which is facing many companies globally.
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Figure 8: Common transportation problem as a geographical network for m = 4 and n = 3

The above problem then contains an objective function,
∑
j,i cjixji, aptly named as it contains the

objective of the problem, to solve for xji. As the above problem now has a well defined objective function,

it can be minimized through an applicable optimization process to provide the product quantities for

which the cost of transportation is a minimum. In this particular example, the optimization problem is

then one more specifically of minimization and as such, the objective function can be referred to as a

loss function or cost function [24], however often times the desire is to maximize some quantity. Under

such circumstances, the objective function is then referred to as a utility or fitness function. For the

purposes of this dissertation, only loss functions will be considered, as all current literature regarding the

estimation of differential networks make use of minimization to arrive at the estimate [9]. The above loss

function is a rather specific one, with little value to problems other than the transportation one described

above, however throughout statistics, there are several well known and commonly used loss functions,

such as:

• Mean Square Error Loss: MSE = 1
n

∑n
i=1(yi − ŷi)2

• Mean Absolute Error Loss: MAE = 1
n

∑n
i=1 |yi − xi|
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• Huber Loss: Huber =


(yi − ŷi)2 for |yi − ŷi| ≤ γ

2γ|yi − ŷi| − γ2 otherwise

where n is the number of observations, yi are the observed values, ŷi are the predicted values, and

γ is a hyper-parameter that allows one to control the influence extreme values have on the model. The

above mathematical functions, can then be represented graphically as is shown in Figure 9.
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Figure 9: Common loss functions for regression

These loss functions although powerful, are not always applicable. For example, when performing

classification, one may be tempted to deploy the above loss functions, but these loss functions were

specifically developed to aid in regression-type problems and as such perform poorly in classification

settings. It is thus vitally important that the loss function is correctly chosen based on the circumstances

of the problem at hand. Keeping this in mind, there are several well-defined loss functions that have been

proven both theoretically and numerically to handle the task of differential network estimation extremely

efficiently. These loss functions will be the focus of this dissertation, and are the graphical LASSO loss

function of Friedman et al. [28], d-trace loss function of Yuan et al. [90], SCAD, and MCP loss functions

[52].

The above loss functions, will then be minimized through the use of optimization. Optimization

techniques usually involve a significant amount of non-trivial mathematics as matrix derivatives are

utilized. At their core however, optimization techniques simply begin with an initial guess for the quantity

of interest [59]. This guess is then plugged into the algorithm which then returns an update on the
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quantity of interest, this process is then repeated several times until the returned quantity is equal to the

supplied, indicating convergence [59]. For the purposes of this dissertation, the optimization scheme that

will be used in conjugation with each of the previously mentioned loss functions is that of alternating

direction method of multipliers, ADMM. ADMM is considered a robust, state-of-the-art optimization

scheme capable of efficiently solving the loss functions of interest even in high-dimensional settings where

other optimization schemes encounter difficulties [9]. Hence, both loss functions and optimization as a

whole have been discussed briefly while the specific loss functions and optimization technique deployed

throughout this dissertation have been introduced further specifics regarding their uses within differential

network estimation are covered in Section 3.

1.4 Literature Review

This section acts as a description of the key sources which were consulted throughout this dissertation.

The sources considered within this section are by no means exhaustive either in terms of the sources that

were reviewed for this research, or in terms of the available literature. This section does however briefly

describe the sources that make significant contributions to this dissertation.

Arguably one of the two most valuable sources that was consulted is that of the work by Shojaie [65].

Within his paper, Shojaie provides an extremely comprehensive overview of differential networks as a

whole. This includes the definition of a differential network, and recognizes their subsequent use thereof

within medicine to explore disease development and progression. Shojaie next provides a description

of the two different associations that one may consider to determine undirected edges within a network

[65]. Gaussian graphical models are also introduced, but so too are graphical models in which the

underlying distribution is no longer assumed to be normal [65]. Graphical models with different underlying

distributions are not explored here, but could form the foundation of beneficial future work. Lastly,

Shojaie provides the framework of various statistical methods for performing differential network analysis.

This includes how one can go about hypothesis testing whether differences between networks exist locally

or even globally [65].

The second most valuable source reviewed is the paper by Tang et al. [69] whose paper introduces

differential networks alongside the reasoning why a differential network can very rarely be directly deter-

mined and as such must be estimated instead [69]. This will be discussed in greater detail in Section 2.

Tang et al. also provide a brief overview of existing estimation procedures, before introducing the math-

ematics and theory behind their own proposed algorithm. Their methodology, although new, still relies

on the same optimization technique as preceding approaches [69]. That is, most differential network esti-

mation frameworks make use of alternating direction method of multipliers, ADMM, as the optimization

process with the difference between these frameworks arising from their use of different loss functions
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[69]. Lastly, they provide a practical comparison between algorithms on simulated data which seem to

support their hypothesis that their proposed method is indeed faster than previously defined methods

[69].

To complement the above sources, several other articles were consulted for the relevant details regard-

ing the estimation and optimization as discussed by Tang et al. [69]. These remaining sources can then

be categorized as follows: covariance matrix estimation, differential network estimation, optimization and

the application of these theories in practical settings.

1.4.1 Covariance Matrix Estimation

Before considering the estimation of differential networks, it is important to explore the estimation of

covariance matrices as many of the estimation techniques for differential networks are merely extensions

of methods for covariance matrix estimation.

The first source that was considered in this vein is the work of Bickel and Levina [5]. Their work

focuses on the estimation of a single covariance matrix, such as through the use of the maximum likelihood

estimate Σ̂ = 1
n

∑n
i=1(xi − x̄)(xi − x̄)T , with xi = (x1, ..., xp)

T with x̄ = 1
n

∑n
i=1 xi, commonly seen

throughout literature [5]. The paper then provides details regarding regularizing the sample covariance

matrix, or its inverse to allow one to overcome the difficulties experienced in the estimation of Σ when

either p→∞ or n→∞. With n the number of observations and p the number of dimensions. Lastly, the

paper shows that the estimates obtained by means of their regularization schemes are consistent given

the covariance matrices are considered well-conditioned [5]. This is a concept that is deployed within the

R package of Tang et al. [69].

The paper by Rothman et al. [62] builds on this idea. That is, Rothman et al. introduce the concept

of generalized thresholding of large covariance matrices to ease the estimation process [62]. Generalized

thresholding combines shrinkage methods with those of thresholding, with the objective to gain a more

flexible approach than simply making use of either thresholding or shrinkage on their own [62]. Hence,

one can apply any elementwise generalized thresholding that satisfies the conditions as given by Rothman

et al. and obtain a consistent estimate of the covariance matrix that would otherwise be non-trivial in a

high-dimensional setting. This idea follows closely to that of smoothly clipped absolute deviation, SCAD,

regression which will be explored in Section 4. and as such is important to beware of. Lastly, within the

application section Rothman et al. compare the accuracy of the covariance matrix estimates to the true

covariance matrices. This is something that is not done by Tang et al. [69], and will be addressed in this

dissertation.

One shortfall of the the work done by Rothman et al. [62] is that the generalized thresholding needs

to be manually specified and as such is not adaptively tuned according to various properties of the
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covariance matrix itself. Cai and Liu [12] were able to directly address this shortfall, with one additional

condition. Adaptive thresholding is a technique that applies generalized thresholding to sparse covariance

matrices, depending on the variability of the matrix elements [12]. Put simply, the generalized threshold

as described by Rothman et al. applies a single threshold to every element of the covariance matrix, while

adaptive thresholding allows for the threshold to vary over these same elements [12]. This results in an

approach with greater flexibility which is more applicable to commonly seen heteroscedastic problems

while still remaining theoretically valid but also lowering the computational cost of estimation [12].

Finally, an important consideration which is shown within this article that has thus far be excluded is

the selection of any tuning parameters. That is, Cai and Liu [12] provide a robust manner which one can

employ to tune parameters when performing covariance matrix estimation that will be extended to the

estimation of differential networks.

The next two papers which were examined follow closely in nature. That is, both sources provide

an overview of single covariance matrix estimation and various estimation schemes one can make use of

rather than a single scheme as is the case in the above 3 sources. The first source is the work of Tong

et al. [71] in which the estimation of several matrices in a high-dimensional context is reviewed. Tong

et al. discuss the use of variance and covariance matrix estimates in several branches of statistics such as

linear discriminant analysis, principal component analysis and for the construction of t-tests [71]. The

use of these estimates prompts their discussion on the estimation of variances through various methods.

The provided variance estimators fall within one of three families. Namely the estimators are either

regression, Bayesian or shrinkage in nature [71]. Secondly, three further families of estimators specifically

for covariance matrix estimation are also included. These families include sparse estimators, ridge-type

estimators and lastly Stein-type estimators [71]. Finally, the families of ridge-type estimators and sparse

estimators are extended to allow for the estimation of precision matrices [71]. It is however noted that

the Stein-type estimators are also known to be easily extended to precision matrix estimation.

The other source consulted that excellently summarises the estimation of both covariance and precision

matrices, is the work of Fan et al. [27] which acts as a great compliment to the theory of Tong et al.

[71]. Here, Fan et al. provide an overview of thresholding in the form of adaptive thresholding, entry-

dependent thresholding and generalized thresholding. Fan et al. [27] also introduce a thresholding constant

that allows one to guarantee the estimate obtained is positive-definite [27]. As with Tong et al. [71], Fan

et al. [27] then extend their theory on covariance matrices to precision matrices. This includes the

estimation of precision matrices through column-wise or penalized likelihood approaches [27]. Arguably

the most important section within this paper, is the component regarding tuning-insensitive approaches

to precision matrix estimation, TIGER1 and EPIC2 [71]. This is extremely valuable as current methods
1The tuning-insensitive graph estimation and regression method
2The estimating precision matrix with calibration method
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for differential network estimation rely on at least one tuning parameter, λ, that controls the level of

sparsity of the estimate [69]. The selection of this λ is by no means straight forward and any adaptation

of existing estimation procedures to one that is more tuning-insensitive would be welcomed as a more

robust alternative.

All of the above sources mentioned within this sub-section only consider the estimation of a single

matrix, and as is the case with differential networks it may be more beneficial to estimate various ma-

trices simultaneously [94]. The above summarised work has been broadened to include the estimation of

various matrices simultaneously. A particular occurrence of this, is that of Chiquet et al. [17]. Chiquet

et al. critically evaluate the estimation of several matrices simultaneously in an attempt to overcome

the assumption in a Gaussian graphical model that the underlying data arises from an independent and

identically distributed sample [17]. Experience suggests however that this assumption will most likely not

hold in many real-world scenarios and as such Chiquet et al. propose a remedy to overcome violations

of this assumption. The suggested solution is to estimate multiple GGMs, with each GGM matching a

different distribution that corresponds to a different experimental condition [17]. Chiquet et al. go on

to then provide the details of three LASSO-type approaches which are shown to numerically perform at

least as well as the neighbourhood selection of Meinshausen and Bühlmann [48].

Another valuable contribution to the estimation of multiple covariance matrices is that of Guo et al.

[34]. The objective of the authors here was near identical to that of Chiquet et al. with the main difference

being the estimation procedure itself. That is, Guo et al. derived a method to estimate multiple Gaussian

graphical models by leveraging the expected common structure across each of the covariance matrices

while still allowing for differences to exist between their elements [34]. This objective is achieved through

the use of a hierarchical penalty function within the loss function that removes repeated zeros across the

matrices to ease the computation [34]. Hence, the method of Guo et al. can be considered to exploit

the sparsity pattern of covariance matrices, which will be commonly observed within differential network

estimation.

The last source consulted on multiple covariance estimation is the work of Zhu and Li [96]. They

introduce an important distinction to the estimation process that differentiates their proposal significantly

from the above methods. In estimating a covariance matrix or its inverse if a loss function is utilized, it is

almost always convex in nature. This is due to the fact that convex loss functions can be easily minimized

through the use any one of the many well-documented optimization procedures. However, the distinction

which Zhu and Li [96] make is that their suggested loss function is non-convex. This adaptation presents

difficulties both computationally and theoretically, but Zhu and Li were able to prove mathematically

that the minimum of their loss function is indeed the precision matrix of interest [96]. Lastly, Zhu and

Li [96] specify an optimization scheme for their loss function and show numerically that their method
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outperforms existing methods for precision matrix estimation. The idea of deploying a non-convex loss

function is one that will also be applied to differential networks within this dissertation such as SCAD in

the context of regression.

1.4.2 LASSO and Alternatives

Up until this point the method of estimation has differed greatly between each of the above sources,

however there are several estimation techniques for both single matrices and differential networks as a

whole that have been built on the work of Tibshirani [70]. This particular paper is widely considered

within statistics as one of the most influential papers to have been published and has amassed nearly

40000 citations to date. The basic idea that Tibshirani introduced was to perform standard linear

regression with the inclusion of a constraint on the regression coefficients [70]. The constraint being that

if β = (β1, β2, ..., βp)
T are the regression coefficients then the following restriction must hold:

∑
j |βj | ≤

t, t > 0 [70]. The constraint could also be structured into a traditional regression model which then is

considered the least absolute shrinkage and selection operator, LASSO, in the context of regression, with

the following penalized loss function:

n∑
i=1

(yi −
∑
j=1

xijβj)
2 + λ

p∑
j=1

|βj |, (2)

where yi, xi = (xi1, ..., xip)
T , i = 1, ..., n are the response and predictor variables respectively with

λ > 0 a tuning parameter that allows one to control the amount of shrinkage imposed on any βj [70].

Depending on the choice of λ, it is very common that several of the regression coefficients are eliminated

from the model, as their value is shrunken to zero. This results in a simpler model than originally had.

The ability to remove coefficients from the model provides the ability to be able control both the variance

of the parameter estimates but also their ensuing bias [70]. The power of Tibshirani’s regression model

is thus clearly evident but in its current state cannot be readily applied to estimate either precision or

covariance matrices respectively.

Meinshausen and Bühlmann [48] did however extend LASSO regression as defined by Tibshirani to

perform matrix estimation. They describe how the use of LASSO and neighbourhood selection can ac-

curately estimate large networks. They also show that their combination of neighbourhood selection and

LASSO is a viable strategy for variable selection, even in high-dimensional settings [48]. By deploying

neighbourhood selection, the assumption that the underlying distribution of the data is normal is tech-

nically no longer required. But, Meinshausen and Bühlmann [48] were able to show that by including

said assumption, their approach inherited some advantageous theoretical properties. The main one being

that their estimator was proven to be consistent [48]. Finally, Meinshausen and Bühlmann were able to

show that their proposed procedure achieved favourable results when compared to maximum likelihood
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based estimation. Hence, while the method introduced by Meinshausen and Bühlmann is a valuable

contribution to matrix estimation as a whole, their comparison is less than ideal. That is, the issues that

stem from attempting to implement maximum likelihood estimators in high-dimensional settings are

well-documented and a more useful contrast of approaches could have been included. One such example

could have been to include the work done by Zhu and Li [96] or Guo et al. [34].

The next source inspected is that of Friedman et al. [28]. In this journal paper Friedman et al. first es-

tablish graphical LASSO which forms the foundation of many differential network estimation algorithms.

Graphical LASSO provides a powerful, systematic approach to estimate sparse inverse covariance matrices

[28]. The difference between the theory mentioned by Friedman et al. [28], and the content described by

Rothman et al. [62] and Cai and Liu [12] is that Friedman et al. assumes the observations within the data

follow a multivariate normal distribution with mean µ and covariance matrix Σ [28]. This assumption

of normality provides a very convenient loss function in the form log(det(Ω)) − tr(SΩ) − p||Ω||1, with

Ω = Σ−1, S = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)T the sample covariance matrix, p the dimension of the data

and ||Ω||1 = max
1≤j≤n

(∑n
i=1 |Ωij |

)
[28]. This loss function is convex and as such can be efficiently solved

through the use of block coordinate descent [28]. Thus, Friedman et al. described a model that is both

computationally and theoretically attractive to the estimation of precision matrices such as those seen as

the components of a differential network.

Despite the groundbreaking nature of graphical LASSO at the time of publication by Friedman et al.

[28], it is not without fault. In 2012 Mazumder and Hastie [47] published a paper showing the there

are several circumstances under which graphical LASSO fails to converge [47]. They were also able to

illustrate that in situations whereby the algorithm converged, the resulting precision matrix was not the

true inverse of the estimated covariance matrix [47]. The reason for such issues was discovered to be as a

result of the choice of target in the optimization procedure [47]. That is, in graphical LASSO the target

of the block coordinate descent optimization is Σ and not Σ−1 [47]. Mazumder and Hastie [47] proposed

two modifications to circumvent theses issues seen in graphical LASSO. Both of the modifications involve

the use of alternative optimization algorithms which make use of Σ−1 as the objective of the minimization

[47]. The result was alternatives to standard graphical LASSO, within the same family of algorithms so

to speak, that performed as least as well as graphical LASSO in most settings, but also outperforming it

under other circumstances [47].

Friedman et al., Mazumder and Hastie are not the only authors that have published alternatives

to traditional LASSO, in 2006 Zou [97] discovered a powerful manner to improve upon the work of

Tibshirani [70]. Zou found that the LASSO, when deployed for the purposes of variable selection, is not

always consistent. Zou was then able to derive a condition, necessary to guarantee the consistency of

LASSO [97]. It is thus plausible to suspect their will be contexts within which this condition is violated
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and a further alternative is required. Zou developed such an alternative. Namely, adaptive LASSO

which derives its name as it extends LASSO to include weights which adaptively penalize each regression

coefficient [97]. That is, taking the LASSO model as derived by Tibshirani, adaptive LASSO has the

following loss function:

n∑
i=1

(yi −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

ŵj |βj |, (3)

with the weight vector being ŵj = 1
|β̂j |

, β̂j being the jth element of any consistent estimator β̂ =

(β̂1, ..., β̂p)
T of β = (β1, ..., βp)

T and γ simply chosen so that γ > 0 holds. The above model is shown

by Zou to outperform standard LASSO in various conditions but not universally. As such, rather than

invalidating LASSO, adaptive LASSO provides a powerful compliment that could possibly be extended

beyond the purposes of variable selection to accomplish covariance precision matrix estimation [97].

In fact, Zhou et al. show adaptive LASSO can readily be utilized for covariance matrix estimation [95].

However, adaptive LASSO, as described above, is technically a two-stage process. The first step involves

the determination of appropriate weights for the regression coefficients, with the second step being the

implementation of said weights within the actual regression model itself [95]. Previously, Zou suggested

making use of the estimated ordinary least squares regression coefficients to determine the initial weights.

In high-dimensional settings, the calculation of the required inverse for ordinary least squares is by no

means trivial so Zhou et al. suggested a substitute. The substitute is to first apply standard LASSO

and obtain a set of regression coefficient estimates, these estimates can then be plugged in and used to

determine the weight vector [95]. Adaptive LASSO can then be implemented, with the requirement of

weaker conditions than those required by say graphical LASSO, but with a greater computational cost

due to the two-step nature of the procedure [97]. One final challenge encountered with adaptive LASSO,

is that there exists a small probability that the estimate obtained is not necessarily unique [95]. This

is an issue that afflicts all optimization techniques when the loss function is convex in nature, but not

strictly convex and as such is not a concern isolated to only adaptive LASSO.

All of the loss functions considered thus far within this section are either that of LASSO or direct

relatives thereof. However, several other authors have developed their own loss functions to perform

the same task. Zhang and Zou released a paper in 2014 which identified a weakness with the most

commonly used loss functions for sparse precision matrix estimation, including graphical LASSO. The

weakness being that these loss functions do not guarantee the final estimate is positive-definite [92].

Zhang and Zou then aimed to make use of the same assumptions as Friedman et al. and develop their

own loss function which guarantees a positive-definite precision matrix estimate [92]. This gave rise to

the convex D-trace loss function which improved upon the graphical LASSO in various aspects. Namely,

the D-trace was mathematically simpler hence allowing for greater theoretical analysis but also easing the
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computational cost despite relying on the same optimization architecture [92]. Zhang and Zou however

concluded that in order to make use of their loss function, an additional condition over those required

for graphical LASSO is necessary. This condition, named the irrepresentability condition does not always

hold and as such it is possible for there to be circumstances in which the graphical LASSO loss function

outperforms the D-trace loss function as is shown by Zhang and Zou in their numerical results. Thus,

one cannot conclude one loss function dominates the other, but rather both loss functions have their own

individual merits [92].

The above idea is further extended if the loss function of Cai et al. [13] is considered. Just as Zhang

and Zou built upon the work of Friedman et al. so too did Cai et al. when developing their loss function.

Cai et al. were able to derive a method for inverse covariance estimation, aptly named constrained `1 -

minimization for inverse matrix estimation, CLIME. CLIME was then shown to have favourable rates

of convergence under weaker assumptions than graphical LASSO [13]. These rates of convergence were

derived theoretically and seen experimentally to hold when the data had an underlying distribution

whose tail was polynomial or exponential [13]. CLIME does have a well-documented drawback that

plagues covariance and precision matrix estimation. That is, the CLIME estimator is commonly solved

for by iteratively stepping through each data column [13]. This results in a precision matrix estimate

that is not necessary symmetric and subsequently requires a further step to symmetrize the estimate and

obtain a valid precision matrix estimate. The added step can be done in several manners, but will always

add to the computational cost taken to arrive at a valid estimate.

Although both of the above sources aimed to improve upon graphical LASSO, there is one matter

upon which neither loss function improved. The matter being that the penalty portion of the loss function

is linear with regards to the regression coefficients. This is easily verified by inspection of the penalty

most commonly written as λ
∑
j |βj | in literature. As a result, LASSO results in biased estimates for large

regression coefficients [26]. One way to address this bias is through the use of non-convex penalties such

as the smoothly clipped absolute deviation penalty, SCAD, [26]. One paper which explores this, in the

specific context of network estimation is that of Fan et al. [26]. Fan et al. implement and compare SCAD

with another non-convex penalty already encountered - adaptive LASSO [26]. Within this comparison

it is discovered that SCAD produces estimates that satisfy the three desirable properties of any network

estimate. These properties are that the estimate is sparse, consistent and unbiased for large values

[26]. The estimator of Fan et al. is obtained by adjusting adaptive LASSO to iteratively re-weight the

regression coefficients through the use of the SCAD penalty [26]. The estimator itself is still however

solved by the framework of graphical LASSO [26]. Despite the use of the same optimization approach the

SCAD penalty performs better than both adaptive LASSO and standard LASSO in both the simulation

studies and real-world example done by Fan et al. [26]. That is, SCAD produced the estimates with the
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lowest bias, as it provided the estimates with the highest sparsity [26]. Indicating that SCAD was able

to correctly set more of the spurious non-zero entries in the network estimate to zero [26].

The SCAD penalty is not the only non-convex penalty that has been the recipient of significant

attention recently for performing network estimation. Another such penalty is that of the minimax

concave penalty, MCP, introduced by Zhang [91]. MCP, like SCAD aims to address the issues of bias

seen within implementations of LASSO [91]. According to Zhang, MCP does this by "minimizing the

maximum concavity" [91]. Broadly speaking this means that MCP is the closest penalty function to being

convex, while actually being non-convex.3 Zhang provides derivations confirming that MCP maintains the

favourable properties of nearly unbiased and consistent estimates, even in ultra high-dimensional settings,

p >> n, while remaining computationally efficient [91]. There is a further distinction between the process

described by Zhang and that described by Fan et al. for SCAD. Unlike SCAD, MCP does not make use of

the graphical LASSO framework to minimize the loss function, but rather Zhang introduced an algorithm

specifically for this task. The algorithm in question is that of PLUS, penalized linear unbiased selection

[91]. The reason for the development and deployment of PLUS here is due to its unique ability to move

the solution path between local minima where other algorithms would otherwise be stuck in a single local

minimum [91]. This combination of MCP and PLUS indicate that Zhang’s approach should obtain the

global minimum rather than a local minimum more frequently than graphical LASSO. The phenomena

of optimization methods getting caught in a local minimum is visualized below.

Figure 10: Contour plot with optimization methods
3Kenneth Tay, "The minimax concave penalty (MCP)", Statistical Odds & Ends, retrieved on April 23, 2021 from

https://statisticaloddsandends.wordpress.com/2019/12/09/the-minimax-concave-penalty-\gls{MCP}/

29

https://github.com/RicSalgado/DifferentialNetworks/blob/master/Introduction/ContourPlot.html
https://statisticaloddsandends.wordpress.com/2019/12/09/the-minimax-concave-penalty-\gls {MCP}/


Figure 10 represents a contour map to illustrate a 2-dimensional optimization problem. The lighter

the colour, the lower the point in the contour. It is known that the global is minimum is situated at the

green dot, while there is a local minimum situated at the red dot. Each of the algorithms have the same

starting values, shown as the black dot. The objective of the optimization algorithms, represented by the

4 coloured lines, is to determine the absolute minimum. It is clear that 3 of the 4 algorithms would lead

to erroneous thinking that the local minimum is the global minimum.. This clearly shows the importance

of optimization algorithms requiring tools to exit local minima to avoid such errors.

To conclude, two sources in which multiple of the above techniques were simultaneously examined

are considered. Namely the work of Pötscher and Leeb [60], and Ogutu and Piepho [52] respectively.

Pötscher and Leeb investigated the distributional and asymptotic distributional properties of estimators

obtained through LASSO, SCAD (also called soft thresholding) and hard thresholding [60]. Pötscher and

Leeb confirm that each of the estimators is indeed consistent, while also providing the multimodal, and

thus non-normal, finite-sample distributions [60]. Pötscher and Leeb also contradict many of the above

papers. The contradiction being that previous derivations of the oracle property4 may not necessarily

hold as previously suspected [60]. Next Ogutu and Piepho implement MCP, SCAD and LASSO amongst

various other regression models to perform genomic prediction. This paper is of particular interest as it

focuses solely on the application aspect of each of the regression models, instead of the heavy focus on

the theoretical components observed thus far. Ogutu and Piepho aim to compare the prediction accuracy

of each of the models. An interesting aspect of this comparison is that the prediction accuracy greatly

improved across most of the models when any tuning parameters were selected through the use cross

validation rather than through the use of information theoretic criteria [52]. This is of particular interest

as Tang et al. [69] only made use of such criteria to select their tuning parameter and may mean their

methods could be readily improved upon. Lastly, Ogutu and Piepho concluded that none of the selected

regression models consistently outperformed any other, with the significant difference between models

only being observed in their computation time taken to arrive at the solution [52]. Thus, having explored

in great detail the most popular approaches used for network estimation, the focus now shifts to those

approaches for differential network estimation.

1.4.3 Differential Network Estimation

Differential network analysis is not a particularly new field however the estimation thereof is extremely

new with very few specialized procedures currently documented. That is, differential network estimation

can be broken into two main approaches. Either each individual precision matrix is estimated separately

using any of the approaches discussed in Section 1.4 and the difference of the estimates is then taken, or

the differential network as a whole is estimated. This subsection focuses upon the methods that aim to
4The penalized estimator has the same performance regardless of whether the true underlying model was known a-priori.
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estimate the differential network as a whole. This will be the case throughout the dissertation, as the

focus is on the differential networks, each of the condition specific networks do not necessarily need to be

recovered.

In 2014, Zhao et al. developed the first procedure for the direct estimation of differential networks.

Their proposed approach was to deploy a Dantzig-type5 estimator that was uniquely equipped to handle

high-dimensional problems [94]. Zhao et al. were also able to show that an advantage of the direct estima-

tion of differential networks is that any common features observed across each of the precision matrices

can be exploited to increase the sparsity and subsequently ease computation [94]. Direct estimation is

not without its shortfalls. One such shortfall is that the estimate is not necessarily symmetric [94]. How-

ever, a differential network is simply the difference between two symmetric matrices and as such should

always be symmetric. A further step is then introduced by Zhao et al. to guarantee the symmetry of

the estimate. Zhao et al. like many of the authors mentioned here make use of block coordinate descent

to optimize their loss function and the Akaike information criterion, AIC, to tune their model [94]. An

important note here is that the technique here is not fundamentally built on single matrix estimation but

was designed specifically with differential network estimation in mind.

In contrast to the above, there is an approach for differential network estimation that is entirely based

upon existing covariance and precision matrix estimation. That is the D-trace loss function defined in [92]

is extended to a differential network context by Yuan et al. [90]. As was the case before, the algorithm is

built upon the LASSO framework first developed by Tibshirani [70] and then later extended by Friedman

et al. [28]. As such, the optimization technique remains largely the same, however the optimization does

become a two-step procedure that provides a symmetric estimate [69]. The only significant difference

is then in the loss function, as the loss function must now undertake a new target [90]. Lastly, Yuan

et al. opted to deploy the Bayesian information criterion in their practical applications to select their

tuning parameter. In these practical applications it is shown that the D-trace loss function outperforms

the Dantzig-type approach of Zhao et al. and even the fused graphical LASSO of [23]. Thus, arguably

making the D-trace the most attractive estimation procedure at the time of its publication.

However, this did not remain the case for very long. In 2018, Jiang et al. derived a cutting edge

technique to perform quadratic discriminant analysis. Their approach as is the case within discriminant

analysis requires the calculation of a discriminant function [38]. This function contains one term of par-

ticular interest to this dissertation. Namely, Ω = Σ−12 −Σ−11 [38]. This means that in order to execute

quadratic discriminant analysis in a high-dimensional setting as described by Jiang et al., differential net-

work estimation is required. Knowing this fact, Jiang et al. formulated their own approach for differential

network estimation, employing block coordinate descent to minimize their specified loss function. Their

approach holds considerable computational advantages over techniques such as those of Zhao et al. [94]
5A tribute to George Dantzig, as the loss function is convex in nature and essentially a variable selection procedure.
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and even Yuan et al. [90]. This is a substantial feat, given Yuan et al. guaranteed a symmetric estimate,

while as in the case of Zhao et al. [94], Jiang et al. required an additional step to ensure symmetry [38]. It

is important to note that for each of the three differential network estimation algorithms mentioned above,

the estimators were proven to be consistent [69]. From a theoretical perspective, each of the algorithms

then appear to be on equal footing, with the main difference being observed across their computational

costs.

To further explore the use and need of the above techniques two further sources are consulted. These

sources both focus upon on applications in a biological setting, specifically protein or gene interactions

and microarray6 data. The sources consulted are that of Gill et al. [31] and Ideker and Krogan [37]

respectively. Ideker and Krogan focus on the use of previously determined networks to illustrate the

value of differential networks and their analyses for gene interactions. Ideker and Krogan conclude that as

access to state of the art technologies increases, so too will the availability of protein and gene interaction

data [37]. It is at this point in time that Ideker and Krogan suspect that differential network analysis

will become commonplace as a result of being one of the few approaches uniquely equipped to such data

[37]. Gill et al. provide a different perspective, in that their paper focuses upon one of the metrics which

do exist to perform differential network analysis. Namely, a connectivity score that provides insights

into the strength of network interactions should they exist [31]. This score can be calculated to explore

the interaction between any two nodes, or aggregated to gain information on the entire network as a

whole [31]. One fact evident from both of these sources is that the data in question for which differential

networks may be of the most use is usually not normal and as such violates the assumption made by

Gaussian graphical models [65]. The need for procedures to circumvent such scenarios is then vitally

important.

Such procedures do exist, such as those formulated by Liu et al. [42], Liu et al. [43] or Xue and

Zou [89]. Each of these papers introduce the concept of a nonparanormal distribution. This refers

to any distribution, whose cumulative distribution function can have a set of unknown nonparametric

transformations applied to make the cumulative distribution function equal to that of the standard normal

distribution [42, 43, 89]. Simply, a transformation on the variables follows the normal distribution. The

ability to make such a transformation relaxes the assumption that the underlying data must be normal,

and as such provides the ability to extend Gaussian graphical modelling based estimation to non-normal

data [42]. This adaptation implies that the differential network estimation discussed thus far within the

dissertation is more robust, as there are more applicable scenarios for said procedures. Lastly, the details

of these procedures although excluded here are later discussed in Section 3.3.
6The study of the interactions/states of multiple genes simultaneously. This typically involves examining thousands of

genes concurrently.
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1.5 Research Objectives

The objectives of the work shown within this dissertation can be categorised into one of two components.

The first component is a thorough and comprehensive exploration of differential networks. This includes

an examination of all the relevant theory on the definition and formulation of differential networks, as well

as a brief overview of several real-world scenarios in which differential networks are currently deployed.

In addition to this, a motivation as to why differential network estimation is often necessary will be

provided, accompanied by a study of the various avenues of estimation one may undertake. This will be

done such that an individual with no prior knowledge of networks, will be fully aware of their definition,

usefulness as well as be equipped with the necessary knowledge to estimate a differential network through

the use of the most appropriate estimation method given their specific problem characteristics.

The second component of the objectives within this dissertation, is to extend the currently available

and documented estimation techniques. There are several aspects upon which it is hoped that the current

techniques may be extended upon. These aspects are summarised below.

• There currently exists several works regarding the estimation of differential networks or the use

thereof. However, within these works, there is often little to no discussion regarding the accuracy of

the differential network estimate obtained. As such, the accuracy of the various estimates one can

obtain through the different estimation procedures will be explored through the use of simulation

studies, such that the exact analytical network will be available for comparison.

• Within the above objective, the sole focus will be to compare the estimation algorithms. Although,

it is also of interest to determine the effect, if any, that the correlation between variables has upon

the estimate acquired. This is important to be able to quantify, as the correlation of the variables

is directly linked to the sparsity of the network, where the level of sparsity within the network

estimate is often varied through the use of a tuning parameter to ease estimation [5].

• As will be shown in the application of this dissertation, Section 4, current implementations of the

available estimation procedures place significant emphasis upon the solution path obtained for the

different values undertaken by the tuning parameter, λ [69]. The optimal λ is most often selected

by making use of either the Akaike information criterion or the Bayesian information criterion. One

problem incurred when making use of such criteria is that, the choice of λ for the two criterion

often does not coincide. As such, this dissertation will aim to provide a more robust approach for

selecting the optimal λ.

• Lastly, in literature most applications regarding differential networks involve a stringent assumption

of normality [42, 47, 65]. In real-world applications however, such an assumption will most likely

be violated. It is thus of great importance to examine what impact such a violation has on the
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estimation of differential networks. Investigation will also be performed regarding what influence

the transformations currently available to relax the assumption of normality have on the estimation

procedure [42, 43].

Having defined the objectives of this dissertation, the first component of these objectives is now

addressed.

2 Differential Networks

2.1 Background

Differential networks are by no means a recent development within statistics, with their analysis being

studied as far back as 2012 [37]. However, the need for tools such as differential networks has never

been greater. This is due to the fact that the fourth industrial revolution, the digital revolution, is

well and truly underway, and along with it some of humanities greatest technological advancements [63].

These advancements have brought the ability to capture and record more data than ever before. For

example, Google the largest search engine in the world is estimated to receive more than 40,000 search

queries every second, and holds an estimated 10-15 Exabytes of data, where a single Exabyte is a equal

to a billion Gigabytes [49]. Similar patterns can be seen in industries like banking, or healthcare where

the availability of data has exploded over the last decade [72]. As a result, it is vitally important for

companies, and researchers to have access to robust, well-developed statistical tools that are capable of

addressing larger and larger datasets to provide previously unknown insights. Differential networks are

exactly that, with one main drawn back. That is, in high-dimensional settings, a differential network

cannot be directly determined but must rather be estimated. The reason for this, follows as a result of

their mathematical definition. A differential network, ∆, is as follows:

∆ = Σ−11 −Σ−12 , (4)

where Σ−11 and Σ−12 are the inverse covariance matrices of state 1 and state 2 of interest respectively

[65]. It is clear, that in order to obtain a differential network, one must be able to determine two

inverse matrices. In low-dimensional settings this is trivial, but this is not the case in commonly seen

high-dimensional scenarios [69]. In such scenarios, the number of features often exceeds the number of

observations, and thus the matrices whose inverses are required are that of Σ1 : n1 × p and Σ2 : n2 × p

where n1 < p and n2 < p. It is then a well known algebraic result that Σ1 and Σ2 are both not of full

rank, and are singular matrices, whose inverses do not exist [69]. This result is confirmed in the below

lemma.
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Lemma 2.1. A matrix that is not of full rank, is non-invertible. That is, its inverse does not exist.

Proof. First consider what it means for a matrix to be invertible, that is matrix A is said to be invertible

if AB = BA = I. Secondly assume A is not of full rank, and that its columns are v1, ..., vn which are

then linearly dependent. By definition of linear dependence, there are then constants c1, ..., cn not all

equal to zero, such that:

c1v1 + ...+ cnvn = 0 (5)

Next, if w is defined as a vector containing all the entries c1, ..., cn, then w 6= 0. Then rewriting

equation 5 as follows:

Aw = c1v1 + ...+ cnvn = 0 (6)

But it is also known that:

A0 = 0 (7)

Hence, if A−1 does exist then:

0 = A−10

w = A−10

Which implies that w = 0 which is not the case, and as such A−1 does not exist.

Hence, having illustrated the main issue encountered when attempting to determine a differential

network, it is important to note that there are means to overcome such an issue. That is, in practice

a differential network is almost never directly calculated but rather it must be estimated through the

use of sophisticated mathematical and statistical techniques [69]. Further details of these techniques are

provided in Section 3.

With the definition of a differential network as well as the sciences and industries wherein they are of

great interest introduced previously, the motivation for why one might wish to obtain a differential network

is now discussed. A differential network is a powerful tool which captures changes in the conditional

correlations between two states [69]. Put more simply, a differential network gives insights and allows

one to observe changes in the interactions amongst variables given some environmental stimuli has been

altered [69]. This ability is showcased in the below figures.
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Figure 11: Graphical model for state 1
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Figure 12: Graphical model for state 2

Figure 11 and Figure 12 represent two graphical models that illustrate the relationships between 5

different features for the same cohort under two different experimental conditions. Using the common

biological settings for networks, assume state 1 represents the before treatment measurements for the

cohort of subjects, all of which have a particular illness of disease. Then, assume state 2 represents the

after treatment measurements for this same cohort. A differential network can then be obtained from

these networks to clearly illustrate the differences between the interactions of features across these two

states as a whole.
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Figure 13: Differential network for the simulated states

36

https://github.com/RicSalgado/DifferentialNetworks/blob/master/DifferentialNetworks/DifferentialNetworkIllustration.R
https://github.com/RicSalgado/DifferentialNetworks/blob/master/DifferentialNetworks/DifferentialNetworkIllustration.R
https://github.com/RicSalgado/DifferentialNetworks/blob/master/DifferentialNetworks/DifferentialNetworkIllustration.R


Figure 13 is exactly that differential network. This differential network, can then be examined to find

the relationship between features 3 and 5 has been altered in response to the treatment while so too has

the relationship between feature 1 and 5, and that between feature 3 and 2. Each of these changes can

actually be seen when performing visual inspection of Figure 12 and Figure 11, but any analysis done

through the means of the visual inspection of two separate networks becomes exponentially harder as

the number of features grows. It is also known that in many biological studies, the number of features

available can easily be in the millions making such a comparison not feasible [65]. A differential network’s

value is thus its ability, particularly in high-dimensional settings whereby changes amongst relationships

are not easily observable across multiple networks, to accurately and conveniently represent such changes

[69]. This ability, combined with the ever-growing size of datasets, has made differential networks a

cornerstone of statistical analysis in many areas of biological sciences where networks have been used to

gain understanding of disease progression and initiation [65].

This popularity of differential networks is expected not only to grow further within biological sciences,

but also to spread to other industries such as finance and social sciences whereby differential networks

currently see little to no implementation [65]. For this reason, this dissertation aims to provide a robust R

package that is freely available on CRAN that allows any and all researchers or companies to implement

differential networks in a manner that is both easy to do so, and computationally efficient. Before specific

details regarding the capabilities and usage of this package are provided, it is important to note that the

network examples shown within this section have only been for illustration purposes, and do not reflect

real-world scenarios. It is noteworthy to then include a real-world example.

2.2 Example Usage

A practical example of a graphical model derived from a differential network is now provided. The

example below considers a estrogen microarray dataset available within R, specifically the Bioconductor

package [36]. The dataset consists of the responses of various genes to estrogen simulation. The procedure

was to first normalise the data, in accordance with the assumptions described previously. Secondly, to

simplify any plotting and the further results obtained, simple linear regression was applied to determine

the 25 most significant genes within the dataset. The objective is to then investigate how the interactions

amongst genes change between the before estrogen simulation state and the after estrogen simulation

state. This was done through means of a differential network, which in this particular case did not need

to be estimated, as the data in question is not high-dimensional in nature, and as such the differential

network was calculated directly in Figure 14.
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Figure 14: Initial differential network

Having acquired the above graphical model, another common analysis is performed. That is, any

communities within the graphical model are clustered according to their edge betweenness. The results

of this are shown below in Figure 15.

Figure 15: Clustered differential network
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Having obtained the above differential networks, typically the next step would be to perform an

analysis on the network [65]. This analysis would investigate the cause as to why possible changes in

specific relationships occurred, or why other relationships did not change. In the case of a disease study,

the network would be examined to determine whether the disease progression is being effected by the

chosen treatment, and if so to what degree. Such analyses have been performed to great success in various

papers, as shown in the below figure.
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Figure 16: Applications of differential network and their analyses in biological sciences
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Analyses as those done in each of the papers mentioned in Figure 16, rely heavily on background

knowledge regarding the specific science of interest. For example, to draw analyses on the networks

shown in Figure 14 or Figure 15, prior knowledge of genetics would be required. Within this dissertation,

it is thus not possible to mention every method of analysis nor is it the intention. There are however,

several universal methods of analysis that may be applied to any graphical model that is of interest.

2.3 Differential Network Analysis

Differential networks, like all graphical models, can be analysed and investigated through the use of a

number of different statistical methods [65]. These methods can be categorized into two broad groups,

those which examine the network globally, and those which examine local components of the network

[65]. Global methods, are calculated over the entire network, and give a holistic summary of the rela-

tionships which characterize the network, while local methods are only determined for a particular node,

neighborhood of nodes, or some subset of the network, sub-network, and provide insight into a snapshot

of the network. Each of these measures of analysis have their own respective merits, however more often

then not, they should be calculated in tandem to produce the most comprehensive analysis [65].

Arguably, the most popular global measure for analysing networks is the structural Hamming distance.

The Hamming distance by definition is simply the count of the number of edges that differ between any

two networks [65]. Hence, the Hamming distance, like all global measures, provides the answer to whether

networks N1 and N2 are equal, and this is the case only when the Hamming distance is zero, as then there

are no differences in the edges of the two networks. Other common global measures include exploring

weighted differences [65] or even measures such as those which consider the degree of distribution, edge

density, average degree, shortest path, diameter, average path length, average connectivity, clustering

coefficient, cluster size, number of cluster and also the centrality of the network, for further details on

how these measures can be calculated see the work of Shojaie and Sedaghat [66]. Having considered the

above global measures, it is possible to extend them to obtain local equivalents. That is, each of the above

global measures can be converted to a local measure by calculating the measure over only a particular

subset of the nodes and or edges within the network. Local measures are extremely predominant within

disease progression studies, as often only a few features are of interest as they are strongly related to the

actual development and the ensuing treatment of the disease [65].

Thus far, the methods considered for analysing differential networks are all quantitative in nature.

Recent works however, have shown that these measures can yield undesirable results, and produce false

positives when aiming to identify differences within the network structures [65]. Thus, new frameworks

have been recently developed in the form of discriminant connectivity analysis to address said issues,

but also provide the connectivity patterns between nodes, which are often of greater scientific value

40



[65]. Although differential connectivity analysis might yield several advantages over standard differential

network analysis, it is far more testing to implement as well as reliant on further assumptions [65].

Differential connectivity analysis remains as an area of possible future work, while the focus of this

dissertation now switches. That is, specific analyses of differential networks are not discussed beyond this

point within the dissertation, but the main objective of the dissertation is now examined. The intention

is now to compare the various estimation techniques for ∆, taking into account various conditions, such

as normality, dimension, sparsity and the accuracy of the estimated differential network obtained.

3 Optimisation and Estimation

As discussed within Section 1.3, there are two main specifications that must be made in order to estimate

a differential network. Namely, an optimization algorithm must be selected and an objective function

determined on which the optimization will be performed. Before specifics of the algorithm and objective

functions used to estimate a differential network are provided, optimization as a whole is first introduced.

Any optimization problem has the following mathematical representation:

minimize f0(x) (8)

subject to fi(x) ≤ bi, i = 1, ...,m. (9)

The above representation, then consists of several components, namely equation 8 represents the objective

function and equation 9 represents the constraint functions that must be satisfied [8]. Optimization has

many sub-classes, for example linear optimization refers any optimization problem in which both the

objective functions, and constraint functions are linear in nature. Non-linear optimization is another

popular sub-class of optimization which describes problems in which one of the objectives functions, or

constraint functions are non-linear. The category of optimization focused upon within this dissertation is

convex optimization. A convex optimization problem can then be represented mathematically as follows:

minimize f0(x) (10)

subject to fi(x) ≤ bi, i = 1, ..., n, (11)

where the functions f0, ..., fn are all convex. That is:

fi(αx+ βy) ≤ αfi(x) + βfi(y) (12)

for all α, β ∈ R where α + β = 1 with α, β ≥ 0 and x, y ∈ Rn [8]. There exist many well known
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functions that are convex in nature such as those shown in Figure 17.

Figure 17: Common convex functions

Each of the functions shown in Figure 17 are convex on the domain x ∈ (−∞,∞), however there exist

functions such as y = 1
x which are convex on a subset of their domain and are concave elsewhere. For the

purposes of this research, only functions which are convex in nature across the entirety of their domain

will be considered. The motivation behind focusing upon convex optimization within this dissertation

stems from the fact that convex optimization problems very rarely if ever have analytical solutions, convex

optimization problems do however, have very efficient computational means of arriving at an approximate

solution [9]. Koenker and Mizera [41] put it extremely well that, "without convexity we risk wandering

around in the wilderness always looking for a higher mountain, or a deeper valley. With convexity we

can proceed with confidence toward a solution". As such, convexity removes the risk of the optimization

algorithm confusing any local minima or maxima for the global saddle point of interest. It is these

computational methods that will be used to obtain differential network estimates, as in high-dimensional

settings the inverse covariance matrices required to otherwise obtain an analytical estimate do not exist.

Thus, having introduced the general form of optimization problems and the particular form focused upon

within this work, it is now important to consider the framework that will be used to solve such problems.

3.1 Alternating Direction Method of Multipliers and it’s Preliminaries

There currently exists a vast number of optimization algorithms capable of solving convex optimization

problems, with each algorithm having a particular advantage and use case in which it should be preferred
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over other alternatives. However there is currently only one optimization algorithm widely implemented

in the estimation of differential networks. The algorithm is that of alternating direction method of

multipliers, ADMM. ADMM is favoured for such applications due to the algorithm’s excellent performance

in high-dimensional settings while remaining extremely simple mathematically and computationally as

will later be shown [9]. ADMM has also shown the ability to solve distributed problems, in which the

data in question is spread across multiple storage locations, with efficiency equivalent to that of other

state-of-the-algorithms [9]. ADMM is by no means the most powerful algorithm available, and for any

particular problem there exists an algorithm capable of outperforming ADMM but it is the flexibility of

ADMM to solve a wide range of problems all extremely well that make it useful for differential network

estimation [9]. That is, ADMM is able to approximate a differential network in low-dimensional, high-

dimensional, and even ultra high-dimensional settings with differing degrees of sparsity present and little

assumptions regarding the loss function at hand [9].

Having introduced why ADMM is the optimization of choice throughout this dissertation, it is now

important to define the optimization scheme. ADMM is said to be the conjunction between two popular

procedures, namely the method of multipliers and dual ascent as advantages of each approach are present

within ADMM [9]. Thus, before introducing ADMM these precursors will be discussed.

3.1.1 Augmented Lagrangian with Dual Ascent

Consider, a general convex optimization problem as introduced earlier, that is:

minimize f(x) (13)

subject to Ax = b (14)

where f is a convex function. The above problem can then be rewritten into two common components

seen throughout optimization. That is, the problem can be broken down into a primal element and a

dual element. Each iteration of the optimization then involves the solving of the dual problem first, and

then the use of the solution of the dual to aid in the solving of the primal [9]. The motivation behind this

restructuring of the problem arises from the fact that it simplifies the problem at hand by breaking the

single problem into two slightly simpler sub-problems. More specifically, the solution of the dual problem

is a lower bound, which eases the computation cost of the subsequent solving of the primal. In terms of

complexity, the dual is often magnitudes easier to solve than the primal, hence providing any user a less

demanding point of entry into the problem at hand [9]. There is a great deal of literature on how primal

and dual elements can and should be selected, however as this research explores existing optimization

schemes with well-defined primal and dual functions, the inspiration behind the specific selections will

not be explored.
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The problem described by equations 13 and 14 can then be represented as a dual Lagrangian problem

whose primal function is:

L(x, y) = f(x) + yT (Ax− b) (15)

and whose dual is:

g(y) = inf
x
L(x, y) = −f∗(−AT y)− bT y, (16)

where f∗ is a convex conjugate of f and y is traditionally referred to as the Lagrange multiplier but is

more commonly referred to as the dual variable. In order to solve the above dual Lagrangian problem,

one must first resolve the dual problem. This is done as follows:

maximize g(y). (17)

The optimal primal point x∗ can be obtained from the optimal dual point y∗ by solving the following

x∗ = argmin
x

L(x, y∗) (18)

Thus far, within this section, only how the original convex problem can be reformulated has been provided.

The next point of discussion is then how one can go about solving such a problem. The dual ascent

method is one technique capable of just that [9]. The basic principle of dual ascent is to utilize the

gradient of a function to obtain convergence. That is, the gradient of the function is used to ensure the

algorithm proceeds in each iteration in the correct direction towards the global maximum. This process,

referred to as gradient ascent requires g to be differentiable such that it’s gradient, Og(y) exists [9]. This

gradient, is trivially determined by inspecting equation 16 such that Og(y) = Ax+ − b, from which it is

clear that in order to solve for the gradient, x+ = argmin
x

L(x, y) must first be solved [9]. Dual ascent can

be summarized as the following algorithm:
Algorithm 1: Dual Ascent

1 Initialise x+ = argmin
x

L(x, y);

2 repeat

3 xk+1 := argmin
x

L(x, yk);

4 yk+1 := yk + αk(Axk+1 − b);

5 until convergence;

where αk ≥ 0 is said to be the step-size of iteration k and represents the quantity by which the

optimization can tend to the global minimum in any one iteration [9]. By further examining the above

algorithm, the origins of the name dual ascent become clear. Although, the method is one of minimization,

the dual variable is increased in each iteration shown in step 4 above. However, recalling that the dual

44



problem is actually a lower bound for the primal problem, as the scheme iterates the lower bound

increases i.e ascends to a maximum at which the global solution is obtained. In summary dual ascent

performs minimization, by indirectly obtaining a maximum for the dual problem [9]. Dual ascent is

then an extremely powerful optimization scheme, with a wide-variety of uses but it is not without it’s

shortfalls. Dual ascent is extremely sensitive to several factors, amongst others the differentiability of

g, the convexity of f and the choice of αk [9]. Similarly, because the original problem has been broken

down into two sub-problems, convergence is often very slow. A more efficient, robust alternative is thus

required.

3.1.2 Augmented Lagrangian with Method of Multipliers

An interesting question to consider having defined dual ascent is that, why split the original problem as

described by equations 13 and 14 into a primal and dual component instead of using the gradient of the

objective function to obtain a solution. Especially given dual ascent’s stringent assumptions and slow

convergence. The answer is simply, by making use of the decomposition of a problem as described by

dual ascent the user gains the ability to perform distributed computing [9]. Distributed computing, also

referred to as decentralized optimization, is extremely valuable in today’s age as a consequence of the

ever increasing challenges surrounding modern data. Often times, it may be too costly to compile large

datasets on a single storage device, or regulatory restrictions may not allow for data to leave it’s territory

of origin. In such scenarios, the only manner in which a global solution can be obtained is through the use

of distributed computing in which solutions are obtained for each subset of the data, and then aggregated

to obtain a final solution [8]. Dual ascent, is then an algorithm which addresses exactly that but due

to the method’s weaknesses as well as scenarios in which distributed computing may not be necessary, a

more robust alternative is required. One such alternative is the method of multipliers.

As in the case of the dual ascent, the method of multiplier algorithm applies Lagrangian techniques to

restructure the original problem [9]. The main difference between dual ascent and method of multipliers, is

that while dual ascent incorporates a dual Lagrangian into the problem framework, method of multipliers

utilizes the augmented Lagrangian ideology [9]. To see this difference, once again consider the general

convex optimization as illustrated below:

minimize f(x) (19)

subject to Ax = b (20)

To circumvent the assumption of strict convexity required in dual ascent, method of multipliers considers
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the following augmented Lagrangian:

Lp(x, y) = f(x) + yT (Ax− b) +
(ρ

2

)
||Ax− b||22, (21)

where ||X||2 =
(∑n

i=1

∑m
j=1 x

2
ij

)0.5
and ρ is a penalty parameter [8]. Using the augmented Lagrangian,

equations 19 and 20 can then be rewritten as follows:

minimize f(x) +
(ρ

2

)
||Ax− b||22 (22)

subject to Ax = b (23)

By comparing the problem described by equations 19 and 20 with the problem characterized by equations

22 and 23 it is clear the two problems are equivalents as when Ax = b, the second term in equation 22

is simply zero. Having restructured the problem through the use of augmented Lagrangian the problem

can then be solved. The manner in which this is done is nearly identical to that of dual ascent, with the

new algorithm being described below:
Algorithm 2: Method of Multipliers

1 Initialise x+ = argmin
x

Lp(x, y);

2 repeat

3 xk+1 := argmin
x

Lp(x, y
k);

4 yk+1 := yk + ρ(Axk+1 − b);

5 until convergence;

The algorithm has the same overall structure and steps as dual ascent, with the only significant

difference occurring in step 3 in which Lp is now used rather than L. This change, although subtle

has a number of significant advantages over dual ascent. That is, method of multipliers is applicable

in circumstances where the function f is convex, unlike dual ascent which requires f to be strictly

convex [9]. Similarly, dual ascent relies heavily on the differentiability of the dual function g(y), but

gp(y) = infx Lp(x, y) the dual function under the method of multipliers is differentiable under a greater

set of conditions making the approach more robust.

It appears then that the method of multipliers has addressed several of the issues present within dual

ascent, however this has come at a cost. The cost being that method of multipliers can not be used to

perform distributed computing as unlike the dual Lagrangian, the augmented Lagrangian function is not

separable [9]. Ideally, there would be an algorithm with robustness equal to that of method of multipliers

as well as the decentralized characteristics of dual ascent. Alternating direction method of multipliers,

ADMM, is one such optimization procedure that attempts to incorporate the advantages of these two

models into a single scheme [9].
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3.1.3 Alternating Direction Method of Multipliers

ADMM, briefly can be thought of as the union of the dual ascent and method of multipliers algorithms

above and as such inherits their best qualities. ADMM is a powerful, flexible and robust optimization

scheme that is immune to violations to a variety of the assumptions required for dual ascent [9]. Once

again, the algorithm is not without it’s shortfalls. Due it’s flexibility, ADMM is very general and as

such the computational complexity of the approach is extremely high. In turn, this can make ADMM

convergence rates appear exceedingly poor when compared to alternatives [9]. What ADMM does provide,

that strongly motivates it’s use for the estimation of differential networks despite the slower rates of

convergence is the algorithm’s flexibility [69]. ADMM has been shown to converge in low, high and

even ultra high-dimensional settings, while remaining unaffected by differing sparsity and covariance

structures for a variety of loss functions [9]. This makes ADMM the perfect algorithm for differential

network estimation, as there exist a wide variety of sparsity levels and dimensionality structures of interest

across the various sciences in which differential networks are of use. ADMM thus solves a constrained

convex optimization problem, shown in equations 19 and 20 by solving, a different yet equivalent problem

[9]:

minimize f(x) + g(z) (24)

subject to Ax+Bz = c (25)

The idea is then similar to dual ascent, in which the original problem is broken down into two, slightly

simpler sub-problems except that rather than introducing an additional function directly ADMM intro-

duces an auxiliary variable z. It remains assumed that f is convex, but that so too is g [9]. The solution

to the above problem is then found through the use of the augmented Lagrangian which is now:

Lp(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
(ρ

2

)
||Ax+Bz − c||22, (26)

which is then solved through the following steps:
Algorithm 3: Alternating Direction Method of Multipliers

1 Initialise x+ = argmin
x

Lp(x, z, y);

2 repeat

3 xk+1 := argmin
x

Lp(x, z
k, yk);

4 zk+1 := argmin
z

Lp(x
k+1, z, yk);

5 yk+1 := yk + ρ(Axk+1 +Bzk+1 − c);

6 until convergence;
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By examining the above algorithm, it is evident the same formula present within dual ascent and

method of multipliers still holds. That is, there is a primal component, in this case two variables x and z

respectively, while y is the dual variable as before. The name alternating direction method of multipliers,

then stems from the fact that the primal variables are not updated simultaneously, but rather in a

sequential manner, first x then z, then x again alternating until convergence [9]. For further details

regarding the theoretical properties of ADMM such as the method’s convergence rates, the reader is

referred to the work of Boyd et al. [9]. The focus of this dissertation, now becomes to adjust the standard

convex optimization problem above into one which performs differential network estimation with the aid

of ADMM.

3.2 Loss Functions

For the purposes of this dissertation, there are now four loss functions which will be considered. The

d-trace loss function of Yuan et al. [90], the graphical LASSO loss function developed by Friedman et al.

[28], as well as a SCAD and MCP modification thereof. These loss functions, although some of which are

investigated in Tang et al. [69], differ as none of the functions utilized for the purpose of this research allow

for an asymmetric estimate of the differential network, ∆. The motivation for this, is that a differential

network as defined earlier, is the difference between two inverse covariances matrices, and as symmetry

is preserved by inversion, ∆ should consequently also be symmetric [65, 69]. Lastly, for conciseness none

of the derivations of these loss functions are included with this dissertation as such results are readily

available [69, 90, 60, 52]. The objective is thus to describe the loss functions used for differential network

estimation, and the respective ADMM scheme to minimize each function.

3.2.1 D-trace

The first loss function considered is the d-trace loss function of Yuan et al. [90]. The loss function is thus

given by the following equation:

LD(∆) =
1

4
[tr{S1∆(∆S2)T }+ tr{S2∆(∆S1)T }]− tr{∆(S1 − S2)}+ λ||∆||1 (27)

It is thus extremely evident that the above loss functions draws inspiration from the standard LASSO

of Tibshirani [70] and has been shown to have excellent performance in a variety of numerical scenarios

[90]. The significant difference between the d-trace loss above, and the loss functions which follow is that

the d-trace relies on what is referred to as an irrepresentability condition [90]. This condition represents

several assumptions regarding ∆. Namely, ∆ is assumed to be a positive-definite sparse matrix, whose

elements have a finite upper bound [90]. Given the stringency of these assumptions, it is clear that they

may not always hold in practice and as such the performance of the d-trace loss function may falter. It is
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also not possible to check the validity of such assumptions before estimating ∆ and as such one may be

unknowingly violating the irrepresentability condition. However, should these assumptions be met the

solving of the d-trace loss function through the use of ADMM is expected to be immensely efficient [90].

In order to solve equation 27 the augmented Lagrangian is first required, which is given as:

L(∆, A,B) = LD(∆) +
(ρ

2

)
||∆−A+B||22 + λ||A||1 (28)

Using the theory discussed in Section 3.1.3 the ADMM scheme for the D-trace loss function is then:
Algorithm 4: ADMM for the D-trace Loss

1 Initialise ∆+ = argmin L(∆, A,B);

2 repeat

3 ∆k+1 := argmin L(∆, Ak, Bk) = argmin LD(∆) + (ρ2 )||∆−A+B||22;

4 Ak+1 := argmin L(∆k+1, Ak, Bk);

5 Bk+1 := ∆k+1 −Ak+1 +Bk+1;

6 until convergence;

Although the above algorithm is rather simple and elegantly fits with the ADMM framework the issue

of possible violations to the irrepresentability condition remain, and as such alternative loss functions

must be explored.

3.2.2 Graphical LASSO with SCAD and MCP

As in the case of the d-trace loss function above, the graphical LASSO loss function is built upon the

work of Tibshirani [70]. Friedman et al. noticed that when making use of the standard LASSO loss to

perform covariance and precision matrix estimation, there were several unexpected consequences. This

included poor accuracies when estimating precision matrices, as the LASSO did not directly estimate the

precision matrix but rather the covariance matrix which was then inverted [48, 28]. In scenarios which

are high-dimensional, this approach is of little value as the covariance matrix estimate is non-invertible

regardless of whether the matrix is estimated or not. Friedman et al. purposed a slight modification to the

general LASSO that was able to address the shortcoming, and has been readily extended to differential

network estimation [28, 69]. The graphical LASSO loss function is then as follows:

L(∆) =
1

2
tr{∆TS1∆S2} − tr{∆(S1 − S2)}+ p(∆), (29)

where p(∆) is referred to as the penalization term which is p(∆) = λ||∆||1 for standard graphical LASSO

[28]. Within this dissertation standard graphical LASSO will be used going forward, but so too will

two variations. The various penalization terms considered in conjugation with graphical LASSO are

summarized as follows:
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• Standard penalty term, referred to as the traditional graphical LASSO penalty [28, 69]:

p(β) = λ||β||1

• SCAD penalty term [26, 60]:

p(β) =


λ|β| if |β| ≤ λ

2aλ|β|−β2−λ2

2(a−1 ifλ < |β| ≤ aλ

λ2(a+1)
2 otherwise.

• MCP penalty term [26, 60]:

p(β) =


λ|β| − β2

2a if|β| ≤ aλ

1
2aλ

2 if|β| > aλ

where a is referred to as a thresholding parameter, and β is the parameter undergoing estimation.

Each of the above penalties behave in a slightly different manner, but have the same overall objective to

reduce the effect of large values of β so as to improve the bias of any possible parameter estimate [26].

The manner in which each of these penalties does the above, can be visualized as follows:
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Figure 18: Behaviour of various penalty functions
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From Figure 18 the varying degrees of penalization enforced by each of the different penalty functions

is clearly evident. Having defined the different penalty terms which may be used within a graphical

LASSO loss function, it is now important to consider the ADMM steps to solve such a function. The

augmented Lagrangian for the graphical LASSO loss is then as follows [69]:

L(∆, A,B) = L(∆) +
(ρ

2

)
||∆−A+B||22, (30)

where L(∆) is as in equation 29. Hence, in order to solve the above Lagrangian the general framework

of ADMM is utilized, with the algorithm given as [69]:

Algorithm 5: ADMM for the graphical LASSO loss

1 Initialise ∆+ = argmin L(∆, A,B);

2 repeat

3 ∆k+1 := argmin L(∆, Ak, Bk) = argmin L(∆) +
(
ρ
2

)
||∆−A+B||22;

4 Ak+1 := argmin L(∆k+1, Ak, Bk);

5 Bk+1 := ∆k+1 −Ak+1 +Bk+1;

6 until convergence;

Above is then an algorithm which can efficiently solve the graphical LASSO loss function to arrive

at an estimate for a differential network making use of either one of the three different penalty functions

considered.

3.3 Nonparanormal Transformations

There remains one final consideration before proceeding with the application section of this dissertation.

That is, as the estimation of differential networks relies on Gaussian graphical models it is assumed that

the underlying data considered is normal [89]. In practice, when working with non-simulated data this

is an assumption which will almost always not hold. There thus exists a significant need in order to

overcome violations to this assumption, and the ability to relax the assumption to a certain degree. One

way to do this, is through what is referred to as a nonparanormal, semi-parametric Gaussian copula,

transformation. The idea is that by replacing the variables X1, X2, ..., Xp with a transformed version

f(X1), f(X2), ..., f(Xp), given the correct transformation f , f(X1), f(X2), ..., f(Xp) are said to follow

an extension of the normal distribution - the nonparanormal distribution [42]. The result is a family

of distributions that are not assumed to be normally distributed, while the association changes between

variables is entirely captured by the precision matrix as required for GGMs [42]. To visualize this extension

of the normal distribution, a Venn diagram of the normal family of distribution and it’s related families

is considered. From Figure 19 it is clear the nonparanormal family of distributions includes the normal

distribution but consists of a far greater number of distributions thus making the framework described
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within this research for differential network estimation applicable under a larger variety of circumstances

[42, 43, 89].

Nonparanormal Elliptical

Multivariate t

Gaussian

Figure 19: Venn diagram of relationships between distributions

The definition of a variable which is said to follow a nonparanormal distribution is now provided. The

p-dimensional random vector X is said to follow a nonparanormal distribution if there exists differentiable

and monotone functions {fi}pj=1 so that f(X) ∼ N(µ,Σ) [42]. If this criteria is met, then X is said to

nonparanormally distributed represented as follows:

X ∼ NPN(µ,Σ, f). (31)

From the above, it is clear that the choice of f is by no means trivial and there currently exist three

well studied methods to transform X. The first method is the simplest and is referred to as the shrinkage

method. That is, each observation is ranked according to it’s size relative to all over observations in

the dataset [43]. The rank of each observation is then divided by n + 1, where n is the number of

observations, this value is then used to obtain a corresponding normal quantile value [43]. The second

approach, referred to as the truncation method is near identical to the method above, except only a

select few, determined through the use of a specified threshold, of the largest and smallest observations

undergo the shrinkage transformation [43]. The third and final method of transformation is the skeptic

transformation, in which observations are transformed through the use of the following equation:

f(X) = 2 ∗ sin
( π

6ρ

)
, (32)

where ρ is the Spearman correlation coefficient of X. Thus, the application of any of the above

transformations is non-iterative, and as such should carry an extremely minimal computation cost to the

estimation of differential networks, while allowing for the stringent assumption of normality to be relaxed
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to a large degree [42]. The focus of this dissertation now becomes to examine and quantify the impact

that the above transformation amongst other factors has on differential network estimation.

4 Application

Upon beginning the application section of this dissertation, it became apparent that there does not exist a

robust and readily available manner in which differential networks can be estimated from a programming

perspective. Previous implementations such as those done by Zhang and Zou [92] and Friedman et al.

[28] both rely significantly on coding experience and knowledge of the components of differential network

estimation such as ADMM as both of these applications are coded from first principles. There does,

however exist many packages centered around differential networks, but only upon their analysis such as

those by Gill et al. [33] and Class et al. [19]. As a result, any researcher wishing to explore differential

networks faces an extremely high barrier to entry as there is no accessible means to estimate a differential

network. With the above in mind, as well as the growing popularity of differential networks discussed

previously, the idea within this research then became to develop a R package capable of performing

differential network estimation. This objective, amongst others was achieved.

The package dineR, differential network estimation in R, was developed throughout the course of

this research. And although the development of a package is an accomplishment in it’s own right, it was

decided to go one step further. That is, the package was published and since approved by CRAN. CRAN,

the Comprehensive R Archive Network is by no means a traditional scientific journal with an impact

factor, however CRAN is seen by many as the senior authority on R packages [35]. As such, getting

approval from CRAN is an extremely difficult task as many coding standards and practices must be met,

all of which dineR met.

dineR is built entirely in R and thus completely open-source, freely available and capable of running

on Windows 10, Windows 11, MAC and Linux. In terms of accessibility, the package is available directly

from CRAN - here but also natively in RStudio. The package relies on only 3 other R packages, none of

which are directly involved in the estimation procedures themselves. As such, any and all estimation done

through the use of the package is extremely efficient. However, arguably the most significant contribution

of dineR is the ease at which a differential network can be estimated. That is, a user need only specify

the two different data samples representative of the states under investigation. Several of the package’s

capabilities are now discussed in further detail.

4.1 dineR Details

As mentioned previously, dineR was built entirely in R which is an interpreted programming language.

This means that in order to execute any R code, or code from any interpreted programming language
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for that matter, the code must first be translated to machine code before it is executed. As such, the

package is not as fast as it would have been if it were to have been built in a complied programming

language like C++ which is complied directly to machine code. However, what the package loses in speed

is extremely marginal compared to what it gains in terms of ease of use, readability of the code and code

development time. This will be shown in various of the functions available with the package.

4.1.1 Data Generation and Transformation

Within dineR, a function has been provided to generate data. The motivation behind providing such a

function stems from the fact that simulations are arguably the most robust and reproducible manner to

benchmark the estimation methods that follow. Secondly, should any user wish to explore the capabilities

of the package and differential networks as a whole, providing a quick and easy way to generate appropriate

data allows for exactly that. The function is then as follows:

data_generator(n, p, Delta = NULL, case = "sparse", seed = NULL),

while the arguments of the function are then described as:

• n - The number of observations.

• p - The number of features.

• Delta - An optional parameter that allows the user to provide a differential network, that will be

used to obtain the sample covariance matrices.

• case - An optional parameter that allows the user to specify under which case they wish the

covariance matrices to be determined. Options are "sparse" or "asymsparse".

• seed - An optional parameter that allows the user to make any data generation reproducible.

The function thus generates two multivariate normal samples of size n × p. For these samples, the

covariance structures are defined through the specification of an a-priori differential network. If no

network is provided, the default is then as follows:

∆∗ =



0 −1 0 · · · 0

−1 2 0 · · · 0

0 0 0 · · · 0

...
...

...
...

...

0 0 0 · · · 0


In practice, there would never be a need to estimate the differential network, if the network is known

a-priori. However, the idea within this simulation is to have the differential network known so that the

54



accuracies of the estimation procedure can be investigated and benchmarked. Using either the default or

user provided differential network, the sparsity of the sample covariance matrices can then be adjusted

through the case parameter. That is, if the case selected is the sparse instance, then Σ−11 = Ω1 has the

following properties:

• Ω11,1 = Ω1p,p = 4
3 ,

• Ω1i,i = 5
3 when i 6= 1 and i 6= p,

• Ω1i,j = 2
3 when |i− j| = 1,

• Ω1i,j = 0 otherwise.

If the case selected is the asymsparse option, which represents asymptotically sparse, then Ω1 has the

following property:

• Ω1i,j = 0.5|i−j| for all values of i and j.

The data generating function although useful, is merely an auxiliary function as any meaningful

estimation of differential networks will require real-world data. Real-world data, however will almost

always not follow a normal distribution as is required by one of the early assumptions in order to make

use of the Gaussian graphical model framework. The next function aids in the relaxation of this particular

assumption should the data in question not follow a multivariate normal distribution.

4.1.1.1 Nonparanormal Transformations

Making use of the theory as discussed by Liu et al. [42], Xue and Zou [89], Liu et al. [43] which is

mentioned in detail in Section 3.3 the following function provides a means to transform non-normal data

into that of nonparanormal data through the use of three different methods. The function is then as

follows:

npn(x, npn_func = "shrinkage", npn_thresh = NULL, verbose = TRUE),

while the arguments of the function are then described as:

• x - The multivariate non-normal data to be transformed.

• npn_func - An optional parameter that allows the user to specify the method of transformation.

Can either be "shrinkage", "truncation" or "skeptic" as described in Section 3.3.

• npn_thresh - An optional parameter that allows the user to specify the truncation threshold that

is used when making use of the truncation method of transformation.
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• verbose - An optional Boolean parameter that controls whether additional output is provided when

making use of the function.

The above function is particularly necessary, as a violation to such a key assumption such as normality

would have otherwise unpredictable effects on the estimation, and make any subsequent analysis of the

estimate obtained of little to no value. The next step, now that data has either been appropriately

generated or transformed is to then perform the estimation in question.

4.1.2 Estimation

The function discussed within this subsection, is by far the most significant contribution made by dineR.

The actions performed by the functions discussed thus far, can each be completed with rather simple

code, requiring very little code development time. However, the procedures automated by the estimation

function are by no means trivial. That is, the function specifies the loss function, performs ADMM

optimization for a variety of values for the regularization/penalization term, λ, and allows for the tuning

of λ through the use of either the Akaike information criterion, Bayesian information criterion or even

the extended Bayesian information criterion. The function is then as follows:

estimation(X, Y, lambdas = NULL, lambda_min_ratio = 0.3, nlambda = 10, a = NULL,

loss = "lasso", tuning = "none", perturb = FALSE, stop_tol = 1e-5,

max_iter = 500, correlation = FALSE, Delta_init = NULL, rho=NULL,

gamma=NULL),

while the arguments of the function are then described as:

• X - The first multivariate normal sample, i.e for group 1 or state 1 of interest.

• Y - The second multivariate normal sample, i.e for group 2 or state 2 of interest.

• lambda - An optional parameter that specifies the regularization values of λ to be considered within

the loss functions.

• lambda_min_ratio - An optional parameter that defines the smallest regularization value consid-

ered, as a portion of the largest regularization value.

• nlambda - An optional parameter that determines the number of regularization values to be con-

sidered.

• a - An optional parameter that allows the user to control the thresholding parameter used within

the SCAD and MCP loss functions respectively.
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• loss - An optional parameter that the user can use to alternate between the 4 different loss functions

available.

• tuning - An optional parameter the user can specify to select a tuning scheme.

There exist 7 additional parameters, all of which are optional, available to the user. These additional

parameters simply allow for greater control over the optimization process, such as the maximum number

of iterations, stop tolerance or the ability to print a summary of the estimation results. Thus, having

touched on the pertinent parameters available to any user of dineR, it is important to note that further

details on each of the functions, their parameters, and outputs are all available within the package’s

documentation visible on CRAN, or GitHub.

4.1.3 Selection and Tuning

As mentioned above, dineR is capable of performing tuning to aid the user in selecting the best estimate

from the various estimates obtained for the different values of λ. There exist three different built in

methods to tune the model. That is through the well-known methods of AIC and BIC, however throughout

the course of this research it was encountered that these two criterion did not always agree and as such

a more sophisticated alternative was required. The extended Bayesian information criteria, EBIC, of

Chen and Chen [14] was such an alternative. The AIC and BIC, although commonly used throughout

a variety of settings in statistics have been shown to perform poorly in high-dimensional settings [14].

The EBIC has however been found to have excellent performance in ultra high-dimensional scenarios,

with the consistency of the measure even been proven as the number of features tends to infinity [14].

In addition, the simplicity of the AIC and BIC often mean they are implemented despite violations to

their required conditions for validity [14]. As such, the EBIC is an extremely attractive alternative even

before taking into account it’s superb ability in highly collinear scenarios as well as in sparse settings

[15]. Having discussed the advantages of the EBIC it is important to note that the method is not without

fault. The major difficulty being that within the EBIC there exists a tuning parameter, γ, that must be

selected [14, 15]. This is extremely counter-intuitive as the motivation behind deploying these criterion is

to tune the original estimation model to find the best λ. There does however exist an industry standard

that has shown favourable behaviour under a large number of numerical settings, that is set γ = 0.5 [15].

This is the standard used within dineR, however should the user wish to experiment with alternatives

the option is present within the package.

As the reasoning behind the inclusion of EBIC has now been provided, specifics regarding the measure

are now introduced under the assumption that reader is familiar with the specifics of the AIC of Akaike [1]

and BIC developed by Schwarz [64]. Assume yi and xi represent independent observations for i = 1, ..., n,

then the conditional density of yi on xi is f(yi|xi, θ) with θ a p-dimensional vector of model parameters
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and p some positive integer. By definition, the likelihood function of θ follows as:

L(θ) = f(x; θ) =

n∏
i=1

f(yi|xi, θ). (33)

The BIC of Schwarz is then derived as follows:

BIC = −2 logL(θ̂(s)) + v(s) log(n), (34)

where s ⊂ {1, ..., p}, v(s) is the cardinality of s, that is the number of components in s, and θ(s) is

the set of parameters from θ who are outside the set s. However, to determine the first component in

the above equation, a Laplace approximation is required [14], and as the name suggests BIC relies on

Bayes theorem. That is, BIC relies on a prior density to determine the posterior probabilities of s. The

precision of the Laplace approximation has been shown to be extremely sensitive to the prior density,

and in high-dimensional settings this results in BIC selecting far too many parameters [14]. This is due

to the fact that models with more parameters, always have higher posterior probabilities [14]. For the

purposes of this dissertation, it is thus not of great value to have a method that says the model with more

parameters, the differential network with the least zero entries, is simply best. The manner in which the

EBIC overcomes this particular shortfall is by introducing a penalty which increases as the number of

parameters grows [15]. EBIC is then as follows:

EBIC = −2 logL(θ̂(s)) + v(s) log(n) + 2v(s)γ log p, (35)

where γ ≥ 0 [15]. Comparing equation 34 to equation 35, it is clear that the first two terms in both

methods are identical. The difference between methods is thus attributed to the third term within EBIC

- the penalization term. Previously, when using the BIC method, the model with the most parameters

which would subsequently have the highest posterior probability would be selected [14]. However, in

the EBIC this is no longer guaranteed to be the case - allowing for more parsimonious model selection.

Having briefly introduced EBIC, the reader is referred to the works of Chen and Chen [14] and Chen

and Chen [15] for further details on EBIC in which the theoretical validity and deviations of consistency,

which are excluded from this research for conciseness, are provided.

In conclusion, dineR’s capabilities as described above along with the growth of differential networks in

many scientific fields combined with the rising popularity of R as a programming language as documented

by the TIOBE index shown below in Figure 20 place dineR at the cutting-edge of what could be many

future statistical analyses. Some such analyses are shown within the next section.
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Figure 20: TIOBE index for programming language popularity

4.2 Implementation

4.2.1 Simulation Study

The objective is to now benchmark and analysis the performance of dineR under a variety of different

environmental conditions. There are 3 main scenarios in which dineR will be implemented. The first

scenario of interest is a simulation study, using the package’s built-in function to generate a variety

of data. Similar to the work of Tang et al. [69], the number of observations will be fixed and several

different dimensionality structures will be considered. Namely, n = 100 and p = 10, 20, 50, 100, 200, 500.

As mentioned previously, the data generated will follow a multivariate normal distribution, and as such

there are no concerns regarding violations to the assumption of normality. However, to explore the

effect on the estimation process of the nonparanormal transformation, nonparanormal data will also be

generated. The impact of varying correlation structures will also be investigated by generating data of

varying covariance and subsequent correlation structures. Lastly, in high-dimensional and ultra high-

dimensional settings the run-times of the differential network estimation procedures can become very

large, such that it may not be possible to apply each loss function in dineR. As a result, this research will

aim to determine under which experimental conditions each loss function should be favoured if at all. In

order to compare the respective loss functions, and the impact of the differing environment conditions the

computation time of the estimation process along with the accuracy of the differential network estimate

obtained will all be investigated. To investigate the accuracy of the estimate the true positive rate, TPR,

will be considered. The TPR in this context is defined as [62]:

TPR =
#{(i, j) : ω̂ij) = 0 and ωij = 0}

#{(i, j) : ωij = 0}
, (36)
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where ωij is an element of the true differential network, ∆, and ω̂ij is the corresponding element in

the estimated differential network ∆∗. The differential networks under the above conditions are now

estimated for 20 different values of λ, for a maximum of 500 iterations with EBIC the choice of tuning

mechanism. The results for this, when comparing the competing loss functions yields the following results:

0

50

100

0 100 200 300 400 500
p

T
im

e(
in

 s
ec

on
ds

)

Loss function
Lasso
D−trace
SCAD
MCP

Figure 21: Computation time against dimensionality - Sparse case
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Figure 22: True positive rate against dimensionality - Sparse case
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Table 1: Computation time(in seconds) - Sparse case
Dimensions LASSO D-trace SCAD MCP

10 0.05 0.06 0.03 0.03
20 0.04 0.14 0.06 0.04
50 0.51 0.96 0.53 0.42
100 2.82 4.86 3.70 2.02
200 7.79 140.13 7.47 8.13
500 51.17 10388.93 67.25 69.03

Table 2: True positive rate - Sparse case
Dimensions LASSO D-trace SCAD MCP

10 0.9896907 0.9072165 0.9896907 0.9896907
20 1.0000000 1.0000000 1.0000000 1.0000000
50 1.0000000 0.9787745 1.0000000 1.0000000
100 1.0000000 0.9915975 1.0000000 1.0000000
200 1.0000000 0.9740481 1.0000000 1.0000000
500 1.0000000 0.9817758 1.0000000 1.0000000

From Figure 21 and Table 1 it is clear that the LASSO, SCAD and MCP loss functions all appear

to have equivalent computational performance with the d-trace loss function being significantly slower

particularly for p = 500 in which the computation time was so large that for clarity it was removed

from the plot. It was also of great interest as to whether the additional computational time taken by

the d-trace implementation would yield additional accuracy as a result. But it is clear from Figure 22

and Table 2 that this was not the case with the d-trace loss function producing accuracies worse in all

but one dimension in which the accuracy was only equal to that of the other methods. Thus, the above

early signs indicate that despite the d-trace loss function having several favourable theoretical properties,

it’s numerical performance is well below that of it’s competitors. The above results, summarize the

performance for the four loss functions in which the covariance matrices are sparse, naturally the next

comparison explores their performance under an asymptotically sparse covariance structures. As before,

the computation times, and accuracy through the use of the TPR are investigated, and were obtained as

shown below.

Table 3: Computation time(in seconds) - Asymptotically sparse case
Dimensions LASSO D-trace SCAD MCP

10 0.02 0.06 0.03 0.02
20 0.05 0.11 0.04 0.04
50 0.23 1.07 0.25 0.19
100 1.62 3.23 1.61 1.82
200 6.11 51.24 6.42 8.09
500 37.36 5451.88 37.15 44.85

From Figure 23 and Table 4 it is evident that the results under the asymptotically sparse case follow

closely from the results of the sparse case. That is, the d-trace loss function illustrated far worse perfor-

mance than the other loss functions, with the computation time of the d-trace loss function for p = 200
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significantly exceeding the computation time of the LASSO, SCAD and MCP loss functions even when

the number of dimensions was more the double, p = 500.
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Figure 23: Computation time against dimensionality - Asymptotically sparse case

The main difference between the results for the asymptotically sparse case and those shown previously

for the sparse case is that the LASSO function is not longer far and ahead the fastest loss function as the

SCAD function produced near identical times for the different dimensions considered. The TPR’s of the

four loss functions were then obtained as:

Table 4: True positive rate - Asymptotically sparse case
Dimensions LASSO D-trace SCAD MCP

10 0.9896907 0.8453608 0.9896907 0.9896907
20 1.0000000 1.0000000 1.0000000 1.0000000
50 1.0000000 0.9991990 1.0000000 1.0000000
100 1.0000000 0.9900970 1.0000000 1.0000000
200 1.0000000 0.9887242 1.0000000 1.0000000
500 1.0000000 0.9981320 1.0000000 1.0000000

Investigating Table 4 and Figure 24 it can be seen that as the with computations time for the asymptot-

ically sparse case, the d-trace loss function produces the worst accuracy of any of the functions considered

across the variety of dimensionality structures considered. Thus far there appears to be little to no mo-

tivation for the use and implementation of the d-trace loss function given the results observed. However,

as mentioned previously dineR allows several nonparanormal transformations to be applied to data that

is otherwise non-normal. As with the above results, the effect of applying such transformations is now

examined to determine what if any affect the transformation has on both the computation time and
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accuracy of the differential network estimation.
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Figure 24: True positive rate against dimensionality - Asymptotically sparse case

Thus, having completed the analyses for standard normal data, the analyses are repeated using data

that has undergone the truncation nonparanormal transformation. The results obtained were as follows:
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Figure 25: Computation time against dimensionality - Sparse case with nonparanormal transformation
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Table 5: Computation time(in seconds) - Sparse case with nonparanormal transformation
Dimensions LASSO D-trace SCAD MCP

10 0.01 0.07 0.01 0.02
20 0.02 0.08 0.03 0.03
50 0.18 0.75 0.18 0.20
100 2.34 5.34 2.75 2.34
200 7.02 189.67 6.72 6.93
500 48.17 8182.14 47.42 42.20
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Figure 26: True positive rate against dimensionality - Sparse case with nonparanormal transformation

Table 6: True positive rate - Sparse case with nonparanormal transformation
Dimensions LASSO D-trace SCAD MCP

10 0.9793814 0.8350515 0.9793814 0.9793814
20 1.0000000 0.9798489 1.0000000 1.0000000
50 1.0000000 0.9879856 1.0000000 1.0000000
100 1.0000000 0.9855957 1.0000000 1.0000000
200 1.0000000 0.9658974 1.0000000 1.0000000
500 1.0000000 0.9837518 1.0000000 1.0000000

From Figures 25 and 26, along with the results shown in Tables 5 and 6 the effect of the nonparanormal

transformation is evident. That is, applying such a transformation had an extremely marginal impact

with the overall trends remaining consistent with what was observed without the transformation applied.

The d-trace loss functions provides, by far the worst computational performance and once again the worst

accuracy of estimates. One key difference observable within these results, is that unlike previously where

LASSO and SCAD provided superior performance, the MCP loss function is now the most efficient. It is

of interest to examine whether this remains the case when considering asymptotically sparse covariance

matrices along with the nonparanormal transformation. These results were obtained as follows:
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Figure 27: Computation time against dimensionality - Asymptotically sparse case with nonparanormal
transformation
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Figure 28: True positive rate against dimensionality - Asymptotically sparse case with nonparanormal
transformation

The final analysis shown above indicates a similar story to that of the previous analyses. The d-trace

loss function is by far the slowest of the loss functions considered, with the worst overall accuracy. For

the remainder of the loss functions, their performance remains relatively equivalent with the SCAD and
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MCP providing slightly better performance as has been the case for both experiments making use of the

nonparanormal data.

Table 7: Computation time(in seconds) - Asymptotically sparse case with nonparanormal transformation
Dimensions LASSO D-trace SCAD MCP

10 1.36 0.06 0.01 0.02
20 0.03 0.15 0.03 0.02
50 0.38 0.91 0.34 0.34
100 1.51 4.22 1.60 1.25
200 3.31 29.38 3.49 2.68
500 54.81 9252.86 50.69 50.71

Table 8: True positive rate - Asymptotically sparse case with nonparanormal transformation
Dimensions LASSO D-trace SCAD MCP

10 1 0.9381443 1 1
20 1 1.0000000 1 1
50 1 0.9118943 1 1
100 1 0.9991998 1 1
200 1 0.9994500 1 1
500 1 0.9877839 1 1

From the above analyses, it can be seen that the d-trace function should almost always be avoided, and

a possible explanation for it’s particular poor showing across the four different settings considered is that in

none of the investigations was the the irrepresentability condition verified. From the theory within Section

3.2 violations to this condition are known to have a significant impact on the optimization. It is important

to note that despite possible violations to this assumption, the accuracy of the estimate obtained from

the d-trace loss function, along with the accuracies of the other loss functions were all extremely excellent

and as such one can be confident of obtaining an accurate estimate in similar circumstances to the ones

described above using dineR. Lastly, it is also of interest to take note that throughout the four different

cases presented above, no one loss function dominated the alternatives. This is in line with expectations,

as each loss function is expected to thrive to differing degrees under different experimental conditions

[52].

Having completed the above analyses in which the different loss functions were directly compared

to one another under a variety of dimensionality structures and covariance patterns, it then became of

interest to investigate the impact that these differences had on any one loss functions as a whole. That is,

the four different scenarios, the sparse case with normal data, the asymptotically sparse with normal data,

the sparse case with the nonparanormal data and the asymptotically sparse case with nonparanormal

data were all reconsidered. This time however, each individual loss function was only compared with itself

to provide insight into the effect of the nonparanormal transformation and differing covariance structures

had on the performance of the ADMM optimization. The results obtained, were as follows:
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Figure 29: Computation time against dimensionality - LASSO loss function
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Figure 30: Computation time against dimensionality - D-trace loss function
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Figure 31: Computation time against dimensionality - SCAD loss function
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Figure 32: Computation time against dimensionality - MCP loss function

By examining the above figures, it is evident that the optimization was most efficient in the asymp-

totically sparse case for all of the loss functions, except the MCP loss in which the sparse case with

nonparanormal data slightly edged it. The most interesting finding from the above figures is the fact that

when the precision matrices are sparse, it is more efficient to apply the nonparanormal transformation

even if the data in questions is normally distributed. The simulation studies thus far have provided

available insight into the numerical behaviour of the different loss functions, and shown under which cir-

cumstances each loss function should be slightly favoured over it’s alternatives. Using this information,

two real-world datasets are visited for which differential networks will be estimated with the use of dineR.

4.2.2 SARS-CoV-2 Analysis

Given the recent SARS-CoV-2, COVID-19, global pandemic there has been significant interest on studies

surrounding the long-term effects of the illness and it’s variants, as well as the safety and efficacy of

the vaccines in place. However, there exists a shortage of openly available patient-level data required

for differential network estimation to be of use. As such, the dissertation aims to examine the impact

of SARS-CoV-2 to various non-patient level factors, such as unemployment, death rates, and income.

To perform such an analysis, the data of Xu et al. [88] was considered. The data in question, consists

of a variety of information for each state in the United States of America. This includes, the median

temperature of the state, whether the state is held by the Republican party or the Democratic party, the

unemployment rate, median age, population density, median income and several others. The aim is to

then find several unique and valuable insights present within the data that are not easily discoverable

without the use of differential networks. There were then three different analyses explored. The first

investigation performed, was to determine whether Republican states were adversely effected more so

or less so during the pandemic when compared to Democratic states. The differential network obtained
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when comparing these two different political regimes is then the following:
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Figure 33: Differential network investigating the impact of the different governing parties

From Figure 33 it thus appears that the differences between political regimes across the various states

through the United States of America did not effect any of the variables related to the SARS-CoV-2

pandemic such as the death or vaccination rates or even the unemployment figures. The one relationship

that did however differ between these political parties’ states is the income per capita and the population

density of their respective states. One possible explanation for this could be that two of the most densely

populated states, California and New York are both ran by the Democratic party, while states such as

Texas, Alabama and Missouri which all have far lower population densities are Republican states. Having

investigated the impact of SARS-CoV-2 across the different states, taking into account the ruling political
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party, it then became of interest to investigate as to what, if any effect temperature had on the variables

in question. The differential network comparing the 25 hottest states, to the 25 coldest states was then

as follows:
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Figure 34: Differential network investigating the impact of median temperature

From Figure 34 there is again, one singular difference between the changes between variables observed

between the hotter states when compared to the colder states. That is, there was a change between

the relationship of the number of deaths per 100 000 individuals and the population density. This is

by no means a ground breaking insight, as due to the air-born nature of SARS-CoV-2 as well as the

contagiousness of the illness, it is expected that as the population density increases, so too does the

deaths. However, what is of great interest here is that as the population density changed, the number
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of deaths changed disproportionately between hotter and colder states, indicating that temperature may

indeed have had an effect on the spread of SARS-CoV-2. Whether this difference is as a result of the

virus behaving differently in different climates is unsure, as the difference could possibly be related to

differences in population behaviour, such as poorer mask usage in warmer weather, or people isolating at

home more in colder circumstances.

The final experiment considered was then whether the median impact played a role on the effect of

the pandemic. The differential network obtained, comparing the 25 wealthiest states, to the 25 poorest

states is then as follows:
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Figure 35: Differential network investigating the impact of median income

From Figure 35 it is clear that of the three different scenarios considered, income per capita had by
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far the most differences across the relationships observed. This indicates that there was a stark contrast

between the impact of SARS-CoV-2 on poor states when compared to the richer states. This type of

result, is expected as richer states will have access to better health care systems. Individuals in high

income positions, can also afford to quarantine in the event of suspected exposure to the virus, something

less wealthy individuals may not be afforded. Similarly, low income states will have large numbers of

their population staying in smaller households, in which there may be a large number of occupants to

reduce costs. Lastly, wealthier individuals are also not as reliant on public transport to the same degree

as lower income citizens where the risk of exposure is high. Thus, while many of the above factors are

well-known and extensively documented, differential networks such as the above can be used to pinpoint

the area in most urgent need of being addressed to lessen and possibly prevent disproportionate impacts

of global crises such as the current ongoing pandemic. For example in the above graphic, variable 3 -

death rate per 100 000 inhabitants and variable 20 - the obesity rate undergo a change in association

between the richer and poor states. As such, the United States government may be able to lower the

death rate in poorer states, by addressing the obesity rates in these states. This is an extremely powerful

insight, as uncertainty remains high, combined with vaccine hesitancy and the threat of SARS-CoV-2

becoming endemic alternative measures are desperately needed to curb this virus, with no end in sight

in the near future.

4.2.3 Ultra High-Dimensional Analysis

Having illustrated the power of differential networks in Section 4.2.2, their ability in a high-dimensional

setting is now considered. To showcase this, the data in the spls R package [18] complied and collected by

Singh et al. [67] is explored. The data consists of only 102 observations but more than 6000 features and

as such is considered truly ultra high-dimensional according to Fan and Lv’s definition which states data

is considered ultra high-dimensional when the number of features is one or more magnitudes larger than

the number of observations. The number of features under consideration here, is then 60 magnitudes

larger than the number of observations. The data in question consists of prostate tumor gene expression

data, with two different cohorts present. That is, there are 52 individuals’ measurements present with

the dataset, while there are also 50 gene expression measurements for individuals confirmed to have a

prostate tumor.

A differential network for the data will then be estimated, considering 10 different values for λ, with

the optimal value of λ being selected through the use of the EBIC. The data has also been normalized

and as such, the nonparanormal transformation will not be applied. The loss function of choice, will be

the LASSO loss function, as it is assumed that many of the interactions between the two states will be

similar making it appropriate to assume ∆̂ will be sparse and the LASSO loss was most efficient for such
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a setting in the simulation studies. The differential network was thus obtained, with the a set of 6033

vertices as visualized from the below output:

Figure 36: Vertices for prostate tumor gene expression data

If the number of edges are then considered, the results are as follows:

Figure 37: Non-zero edges for prostate tumor gene expression data

There are thus, only 549 non-zero edges in the entire network of 6033 × 6033 = 36397089 possible

interactions. Since, only the variables which have some non-zero interaction between them are of interest,

all of the vertices without an edge can be dropped from the analysis. This produces the following output:
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Figure 38: Vertices with non-zero edges for prostate tumor gene expression data

With the corresponding differential network obtained as:

Figure 39: Differential network with only non-zero edges for prostate tumor gene expression data
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Hence, although differential networks are not typically considered as a means to perform dimension-

ality reduction, for this particular problem the network was able to reduce the number of features that

must be studied from 6033 to a far more manageable 125 features. This is a reduction of approximately

98%, and as such makes any and all statistical analysis far simpler as now differential network analysis

can be applied to these selected features to quantify the extent to which the relationships differ and if

there are any underlying clusters present to assist researchers in developing efficient cancer treatments,

but also investigating cancer progression.

5 Conclusion

Upon beginning this research, there did not exist a readily available manner to estimate differential

networks, however with the development of dineR the foundation has been laid to place differential

networks at the forefront of big data statistical analysis going forward. This research then acts as

a manual on all things differential networks. From the technicalities of their estimation in R, to their

definition, understanding and the motivation for their use. Details regarding the history and development

of differential network estimation were also discussed, while the optimization schemes and loss functions

most commonly used were also provided. Numerical analyses were also considered to evaluate dineR and

it’s respective efficiency as well as the efficiency and accuracy of the proposed methods of estimation.

Violations to the crucial assumptions of the theoretical underpinning graphical theory was also addressed.

Lastly, real-world data examples were considered to showcase the true power of differential networks, in

both low-dimensional setting and the far more complicated and traditionally troublesome ultra high-

dimensional scenario. Despite each of the above, and having addressed each of the objectives of this

research in full, there exist several interesting avenues for future work which may prove groundbreaking.

5.1 Future Works

Such avenues include:

• Investigation and formalization of graphical models in which the underling distribution is no longer

assumed to be Gaussian. Several scenarios in which these models may be of great use, include real-

world applications in which the data is heavy-tailed, exponential, or in which the data is discrete

such as in a binary or Poisson setting [65].

• More and more techniques are being developed to aid in the estimation of differential networks,

while very few specialized techniques exist to perform informative and efficient statistical analysis on

differential networks [37]. With most existing methods being far too general, or extremely specific
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to a particular problem and as such requiring significant background knowledge. It thus may be of

significant interest to develop and fine-tune approaches to assist with this task.

• Most existing estimation schemes for differential networks make use of the same optimization proce-

dure. That is, they all make sure of alternating direction method of multipliers, ADMM. It should

thus be examined as to whether appropriate alternative optimization procedures exist and can be

applied to benefit estimation.

• dineR currently does not allow for parallelization of code to speed up the performance, and as such

given the computation cost of solving large scale differential networks should be included within

the package to further improve efficiency.

• Lastly, and arguably the most exciting yet difficult avenue for future work is the consideration of

directed graphs. The inclusion of directions within the graphical structure considered carries both

a complex theoretical component, but also a far greater computational cost than in the undirected

case. However, the resulting networks may be of even greater interest, due to additional information

regarding the changes in relationships encoded within the network.
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Appendix

The programming language of choice for this dissertation is that of the programming language R, version

3.6.3, developed by the R Core Team [61].

R: A language and environment for statistical computing. R Foundation for Statistical Computing,

Vienna, Austria, available at: https://cran.r-project.org/bin/windows/base/

The respective versions of the packages utilised within this research are:

• BiocManager - version 1.30.10 [50]

• Bioconductor - version 2.46.0 [36]

• devtools - version 2.4.2 [86]

• dineR - version 1.0.0 [45]

• dplyr - version 1.0.7 [85]

• ggplot2 - version 3.3.0 [80]

• ggraph - version 2.0.5 [58]

• gtrendsR - version 1.4.8 [46]

• igraph - version 1.2.6 [21]

• MASS - version 7.3.54 [76]

• Matrix - version 1.2.18 [2]

• mixtools - version 1.2.0 [4]

• pkgdown - version 1.6.1 [82]

• progress - version 1.2.2 [20]

• readr - version 2.0.1 [83]

• reshape - version 1.4.4 [79]

• rhub - version 1.1.1 [22]

• sf - version 1.0.2 [56]

• spdep - version 1.1.8 [6]

• spls - version 2.2.3 [18]
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• tidygraph - version 1.2.0 [57]

• tidyr - version 1.1.3 [81]

• usethis - version 2.1.3 [84]

• viridis - version 0.6.1 [30]

There was also a single figure that was generated through the use of HTML [78].

All code used throughout this research dissertation is available online at: https://github.com/

RicSalgado/DifferentialNetworks and was executed on a personal computer containing the following

specifications:

• Operating System: Windows 10 Home Single Language 64-bit.

• Processor: AMD Ryzen 5 1600 (AF) Hexa Core @ 3.2GHz.

• Memory: 16 GB DDR4 RAM @ 3200Mhz.
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Supplementary Tables and Output

Table 9: Introductory Correlation Matrix
Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8 Var 9 Var 10

Var 1 1.00 -0.26 0.21 0 0.00 0.00 0.00 0.25 0.00 -0.32
Var 2 -0.33 1.00 -0.20 0 0.00 0.43 0.00 0.00 0.30 0.00
Var 3 0.27 -0.20 1.00 0 0.00 0.00 0.00 0.00 0.00 0.00
Var 4 0.00 0.00 0.00 1 0.00 0.00 0.00 0.00 0.00 0.00
Var 5 0.00 0.00 0.00 0 1.00 0.00 0.32 0.27 -0.25 -0.29
Var 6 0.00 0.34 0.00 0 0.00 1.00 0.00 0.00 0.00 -0.26
Var 7 0.00 0.00 0.00 0 0.44 0.00 1.00 0.28 0.00 0.00
Var 8 0.30 0.00 0.00 0 0.42 0.00 0.32 1.00 0.00 0.00
Var 9 0.00 0.21 0.00 0 -0.30 0.00 0.00 0.00 1.00 0.00
Var 10 -0.36 0.00 0.00 0 -0.42 -0.29 0.00 0.00 0.00 1.00
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