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ABSTRACT

We investigate the spectral problem of spin chain models in a family of 4𝐷 N =

2 superconformal quiver gauge theories, constructed as an orbifold of N = 4
super Yang-Mills theory, in the planar limit. We consider two scalar subsectors,
namely, the dense 𝑋𝑌 sector (constructed out of scalar fields in the bifundamental
representation of the gauge groups) and the dilute 𝑋𝑍 sector (constructed out of
scalar fields in the bifundamental and adjoint representations of the gauge groups).
At one-loop level, we show that the 𝑋𝑌 sector can be mapped to an alternating-bond
spin chain model and that the 𝑋𝑍 sector can be mapped to a dynamical Temperley-
Lieb spin chain model. Using the coordinate Bethe ansatz and techniques from
alternating-bond spin chains, we are able to solve the eigenvalue problem for both
sectors up to the two magnon level by enhancing the usual Bethe wavefunctions with
an extra set of momenta that is not a permutation of the original set of momenta.
Thus, the two magnon sector already exhibits diffractive scattering. The solutions
exhibit rich physics and properties, such as two scattering matrices and a ratio
function, which we study in detail. The dispersion relation, which is shared by both
scalar subsectors, can be naturally parametrised using elliptic functions. Finally,
given our solution for the two magnon problem, we discuss the challenges that arise
in attempting to extend the construction of the wavefunctions to the three magnon
problem, as well as the notion of quantum integrability within our scalar subsectors.
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C h a p t e r 1

INTRODUCTION

Superconformal gauge theories are marvellous theoretical laboratories to study dif-
ferent aspects of gauge theories. Due to the high amount of symmetry present in
these theories, they admit exact computations which may not be achievable in less
symmetric theories such as quantum chromodynamics (QCD).

The canonical example of a superconformal gauge theory is the non-abelian maxi-
mally symmetric N = 4 super Yang-Mills theory (SYM) in flat 4𝐷 spacetime with
gauge group𝑈 (𝑁) and Yang-Mills coupling 𝑔𝑌𝑀 . The theory shows many remark-
able properties such as a vanishing beta function 𝛽(𝑔𝑌𝑀) to all loop orders, which
means its conformal symmetry is not broken by anomalous effects (equivalently,
it has a zero conformal anomaly to all loop orders) [1, 2, 3]. In addition, in the
planar limit where 𝑁 → ∞ and the ’t Hooft coupling 𝜆 = 𝑔2

𝑌𝑀
𝑁 is kept fixed, it

is the dual theory to Type IIb string theory on an 𝐴𝑑𝑆5 × 𝑆5 background. This
is an example of the celebrated AdS/CFT correspondence [4]. However, for this
thesis, its most important feature is the fact that it is integrable in the planar limit
since its dilatation operator can be mapped to an integrable spin chain Hamiltonian
with spin chain states corresponding to single trace operators. This was discovered
for a small 𝔰𝔲(2) ⊂ 𝔰𝔲(4)𝑅 closed scalar subsector of the R-symmetry at one-loop
order, where the dilatation operator was mapped to the integrable ferromagnetic
Heisenberg model [5], and with the full one-loop Hamiltonian being determined in
[6]. The details of this theory have been studied in great detail to higher loops using
spin chain techniques such as the coordinate Bethe ansatz, algebraic Bethe ansatz,
and the nested algebraic Bethe ansatz [7]. We note that the higher loop dispersion
relation is given by [8, 9, 10, 11]

𝐸 (𝑝) =
√︂

1 + 4𝑔2
𝑌𝑀

sin2( 𝑝
2
), (1.1)

which, as we will see, has a resemblance to the one-loop dispersion relation that we
find in this thesis.

In terms of the amount of symmetry present in the theory, however,N = 4 SYM is an
unrealistic theory compared to experimentally-tested gauge theories such as QCD.
It is therefore of physical interest to try to study less supersymmetric theories. From
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a practical point of view, it is highly favourable to approach this in a systematic
and controlled manner. More precisely, we would like to reduce the amount of
supersymmetry in the theory but keep other useful symmetries intact, such as
conformal symmetry. Such theories can be elegantly constructed using an orbifold
construction. On the gravity side of the correspondence, given by Type IIb string
theory, the 𝑅−symmetry of N = 4 SYM is matched with the isometry group
𝑆𝑂 (6) ∼ 𝑆𝑈 (4)𝑅 of the 5-sphere 𝑆5, which is generated by 16 supergenerators.
One can remove some of the supergenerators by forming an orbifold space. The
construction, outlined in [12, 13, 14, 15, 16], is achieved by acting non-freely
with a discrete abelian subgroup Γ ⊂ 𝑆𝑂 (6) on the 𝑆5 manifold. There is also a
corresponding action on the Chan-Paton indices that label the 𝑁 stack of𝐷3−branes.
This deforms 𝑆5 into an orbifold space where all points in the orbit, generated by
the discrete group Γ, are identified. Points invariant under Γ become singular points
(and therefore, 𝑆5/Γ is no longer a topological space). The 𝐴𝑑𝑆5 space is left
untouched thus its isometry group, the conformal group 𝑆𝑂 (4, 2), is left intact. The
resulting orbifold theory is given by 𝐴𝑑𝑆5 × 𝑆5/Γ with a quiver gauge group.

In this thesis, focusing on the gauge theory side, we will consider the simplest
orbifold theory which is determined by Γ = Z2 1. The resulting supersymmetry is
reduced from N = 4 to N = 2 (in other words, 8 of the 16 supergenerators survive
the orbifold construction) and the gauge group is given by a Z2 quiver product of
gauge groups. Consequently for the field content, one finds fields that are either in
the adjoint representation of one of the two gauge groups or fields that are in the
bifundamental representation of each gauge group. There is also an overall 𝑆𝑈 (2)𝐿
flavour symmetry left over from the construction. Furthermore, we also obtain a
family of one-parameter N = 2 superconformal theories specified by a parameter
𝜅 = 𝑔2/𝑔1 where 𝑔𝑖, 𝑖 = 1, 2, are the two gauge couplings of the N = 2 quiver
theory. We can vary this parameter to marginally deform the theory away from the
orbifold point 𝜅 = 1, keeping the conformal symmetry intact. In this thesis, we will
study these family of theories by using spin chain models and techniques.

The orbifold point 𝜅 = 1, where the N = 2 quiver theory is undeformed, has been
studied using the algebraic Bethe ansatz [14] (see also [13][12][17]). In particular,
one can again use a spin chain picture by mapping the dilatation operator to a
spin chain model but with the addition of the orbifold twist appearing as an extra

1As standard in the literature, we will also refer to the gauge theory side as an orbifold theory,
even though we technically use an algebra quotient to reduce the supersymmetry from N = 4 to
N = 2.
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excitation. The spin chain model is the Heisenberg ferromagnetic model, similar to
the N = 4 case and, therefore, the theory remains integrable after performing the
orbifold. On the other hand, the limit 𝜅 → 0 in a small scalar subsector, consisting
of scalar fields from the N = 2 vector multiplet in the adjoint and scalar fields
from the N = 2 hypermultiplet in the bifundamental of the theory, has also been
studied [18] 2. Unlike the closed 𝔰𝔲(2) subsector studied in the N = 4 SYM case,
there is no R-symmetry that rotates the scalar fields from the two N = 2 multiplets
into each other since they are in different representations of the gauge groups of the
quiver theory. In this limit, one of the gauge groups decouples from the theory and
the remaining field content matches that of N = 2 superconformal QCD (SCQCD)
with fields transforming in the fundamental of the remaining gauge group. The
uncoupled gauge group becomes a global symmetry of the theory, combined with
the 𝑆𝑈 (2)𝐿 flavour symmetry from the orbifold construction. Using the coordinate
Bethe ansatz and checking the Yang-Baxter equation, one can show that N = 2
SCQCD is integrable in the mentioned scalar subsector.

Fascinatingly, for the interpolating theory 𝜅 ∈ (0, 1), the S-matrix in the same
scalar subsector violates the Yang-Baxter equation and would, therefore, not be
expected to be integrable [18]. In particular, using the coordinate Bethe ansatz, one
finds two XXZ spin chains that are Z2 conjugate but mix with each other due to
constraints imposed by the gauge indices. This leads to twoZ2 conjugate 𝑆−matrices
that, together, do not satisfy the Yang-Baxter equation for the interpolating theory.
However, integrability is a subtle concept in quantum mechanics [20] and is not
yet as well defined as its classical counterpart. Apart from the usual Yang-Baxter
equation tested by [18], there are more exotic versions such as the quasi-Hopf version
of the quantum Yang-Baxter equation [21, 22, 23] or the dynamical Yang-Baxter
equation [24, 25] realized through elliptic quantum groups 3.

For this thesis, our motivation is to continue and expand on the study of the scalar
sector of [18] using spin chain models and techniques. We will use the coordinate
Bethe ansatz to solve two closed scalar subsectors up to the two magnon level.
Despite working at first loop order, we find the dispersion relation

𝐸 (𝑝; 𝜅) = 1
𝜅
+ 𝜅 ± 1

𝜅

√︃
(1 + 𝜅2)2 − 4𝜅2 sin2 𝑝, (1.2)

2The full Hamiltonian in the flavour-singlet sector was determined in [19].
3It is also worth noting that there is always an integrable 𝑆𝑈 (2, 1|2) sector inherited by the

daughter N = 2 theories from the N = 4 mother theory [26].
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which, due to the square root, bears resemblance to the higher loop dispersion rela-
tion given in equation (1.1). We will show that the two magnon problem for both
sectors can be solved using techniques from alternating-bond spin chains. This is
achieved by enhancing the usual Bethe ansatz with an extra set of momenta, and
its permutation, that is generically complex-valued. The resulting two magnon
wavefunctions for each of our sectors, which are characterised by a ratio function,
have rich properties. Due to the extra set of momenta, we find two S-matrices for
two different scattering channels. We study these S-matrices and their properties
in detail. Finally, we will provide some comments about the technical difficulties
in constructing the three magnon wavefunctions and the question of quantum inte-
grability for our sectors. There is convincing evidence that the interpolating theory
has a deformed symmetry algebra that is realized by an elliptic quantum group [27]
and a dynamical Yang-Baxter equation. In this regard, the results in this thesis may
help to illuminate the construction of an elliptic R-matrix using the algebraic Bethe
ansatz.

Furthermore, we hope that the program started in this thesis work may ultimately
lead to deeper insights to N = 2 SCFTs as a whole. There are still interesting open
questions regarding N = 2 theories. For example, the classification or landscape
of possible N = 2 theories has been broadened due to the discovery of N = 2
theories with no lagrangian description [28] such as the 𝑇𝑛 trinion theories [29, 30]
and Argyres-Douglas theories [31].

The outline for this thesis is as follows:

In Chapter 2 we discuss the background theory which supports the later results
chapters. We start by discussing the relevant N = 2 and N = 4 supermultiplets in
Section 2.1.1 and their shortening conditions. The superconformal algebra is stated
in Appendix A. In Section 2.2, we setup our spin chain formalism. We demonstrate
the formalism on two spin chain models given by the integrable Heisenberg ferro-
magnetic spin chain and the non-integrable spin-1 model that exhibits diffractive
scattering. These examples also allows us to demonstrate the coordinate Bethe
ansatz technique first used in [32]. We conclude the spin chain section by discussing
the alternating-bond/alternating-spin model. Then, in Section 2.3, we derive the
one-loop dilatation operator for N = 4 SYM in the scalar sector of the theory.
Looking at a small closed subsector, we argue that it can be mapped to the in-
tegrable Heisenberg spin chain model. Finally, in Section 2.4, we construct the
N = 2 quiver gauge theory and derive its one-loop planar dilatation operator in a
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scalar subsector. More precisely, we argue the N = 2 one-loop Hamiltonian in the
“upstairs” N = 4 picture for our scalar sectors and, in Appendix B, we derive the
form for the scalar Hamiltonian in the “downstairs” N = 2 picture. In Appendix B,
we show that the two pictures are in agreement with each other. Finally, we discuss
a useful notation for the Hamiltonian which makes use of a dynamical parameter in
Section 2.4.3.

In Chapters 3 and 4, we study two closed scalar subsectors which we call the dense
𝑋𝑌 sector and the dilute 𝑋𝑍 sector, respectively. In Section 3.1, we solve the
one magnon problem for the 𝑋𝑌 sector. In Section 3.2, we solve the two magnon
problem. We first solve it for the special centre-of-mass (CoM) case using contact
terms. Next, we solve the two magnon problem in general using alternating-bond
spin chain techniques. Using the dispersion relation, we show that there exists an
extra set of momenta that needs to be added to the Bethe wavefunctions to solve
the two magnon problem. In Appendix C, we study the two magnon continuum by
deriving the boundaries of the continua. We next discuss the effects of boundary
conditions for an infinite length spin chain or the CoM case which leads us to the
restricted solution. It turns out that this restricted solution is the one which is most
appropriate for taking the CoM limit. We discuss this limit, including the subtleties
that arise, and show how the contact terms of the CoM solution are recovered from
the restricted solution. Finally, in Section 3.3, we formulate the Bethe ansatz for a
closed spin chain for the XY sector in both the twisted and the untwisted case.

Despite having different Hamiltonians, the 𝑋𝑌 sector and 𝑋𝑍 sector share the same
dispersion relation. Thus, the procedure described above is also used for the dilute
𝑋𝑍 sector and the overall features of the solutions is therefore very similar. The one
magnon case is solved in Section 4.1 and the two magnon case is solved in Section
4.2. The Bethe ansatz for a closed spin chain for the 𝑋𝑍 sector is stated in Section
4.3.

In Chapter 5, we argue that the dispersion relation and the ratio functions, computed
for each sector, can be naturally parametrised using elliptic functions. We show an
interesting relation for the two ratio functions which can be related by a modular
transformation. In Chapter 6, we discuss some of the technical details towards con-
structing the three magnon wavefunctions. We also discuss the notion of quantum
integrability for our scalar subsectors based on the two magnon data.

Finally, in Chapter 7, we provide our conclusion based on the results for this thesis.
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C h a p t e r 2

THEORY

In this chapter, we will develop the theory that supports the later results sections of
this thesis.

2.1 Supersymmetry
In this section, we describe the relevant supermultiplets for the N = 2 and N = 4
cases. Following [33, 28, 34, 18], we will describe the BPS (shortening) conditions
imposed on the highest weight states and the unitarity constraints on the conformal
dimension Δ. In Section 2.3 and Section 2.4, we will give explicit examples of
single trace operators that are part of the short supermultiplets. Using the BPS and
unitarity conditions, we can then identify spin chain vacua which will be used in the
results section of this thesis.

Following [33], the full N -extended superconformal algebra 𝔰𝔲(2, 2|N) in 4-
dimensions is given in Appendix A. Since we are discussing supermultiplets, the
important algebra relations for this section are

{Q𝐴
𝛼,S

𝛽

𝐵
} = 4

(
𝛿𝐴𝐵

(
𝑀

𝛽
𝛼 − 1

2
𝑖𝛿

𝛽
𝛼 𝐷

)
− 𝛿 𝛽

𝛼 𝑅
𝐴
𝛽

)
,

{Q𝐴
𝛼, S̄𝐴 ¤𝛼} = 0, {S 𝛼

𝐴 , Q̄𝐵 ¤𝛼} = 0,[
𝐷,Q𝐴

𝛼

]
=
𝑖

2
Q𝐴
𝛼,

[
𝐷, Q̄𝐴 ¤𝛼

]
=
𝑖

2
Q̄𝐴 ¤𝛼,[

𝐷,S 𝛼
𝐴

]
= − 𝑖

2
S 𝛼
𝐴 ,

[
𝐷, S̄𝐴 ¤𝛼] = − 𝑖

2
S̄𝐴 ¤𝛼 .

(2.1)

Note in particular that the commutators with the generator 𝐷 imply that the confor-
mal dimension of states in a multiplet get raised (by the supergenerators Q, Q̄) or
lowered (by the supergenerators S, S̄) by 1/2 [28].

2.1.1 Supermultiplets
In this subsection, we describe the relevant supermultiplets and important shortening
conditions. We will consider two specific shortening conditions which will be used
for constructing the highest weight state (or ground state) of our spin chain picture
(see Section 2.4).

A state in a supermultiplet carries the following labels: |Δ, [𝑅]⟩( 𝑗 , 𝑗) . The charge
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Δ (or the conformal dimension) is the eigenvalue of an operator measured by the
dilatation operator 𝐷 and ( 𝑗 , 𝑗) are the Lorentz charges for 𝔰𝔩(2) ⊕ 𝔰𝔩(2). The
label [𝑅] is the R-symmetry representation and depends on which case we are
considering. For the N = 2 case (with R-symmetry given by 𝔰𝔲(2)𝑅 ⊕ 𝔲(1)𝑟), the
R-symmetry charge [𝑅] is given by (𝑅, 𝑟) where 𝑅 is the Cartan charge for 𝔰𝔲(2)𝑅
(which can be integer or half-integer valued) and 𝑟 is the 𝔲(1)𝑟 charge. For the case
N = 4 (with R-symmetry given by 𝔰𝔲(4)𝑅, which is rank 3 and therefore contains
three copies of 𝔰𝔩(2)), we will use the Dynkin labels [𝑞, 𝑝, 𝑠] (which are integer
valued [35, 36]) for [𝑅].

The highest weight state (also called the superconformal primary state) of a super-
multiplet will be denoted as |Δ, [𝑅]⟩hw

( 𝑗 , 𝑗) . It is the state annihilated by the following
generators

𝐾 ¤𝛼𝛼 |Δ, [𝑅]⟩hw
( 𝑗 , 𝑗) = 0, S 𝛼

𝐴 |Δ, [𝑅]⟩hw
( 𝑗 , 𝑗) = 0, S̄𝐴 ¤𝛼 |Δ, [𝑅]⟩hw

( 𝑗 , 𝑗) = 0, (2.2)

for all 𝐴 = 1, ..,N and 𝛼, ¤𝛼 = ±. Starting with the highest weight state, one may
generate the descendant states in the supermultiplet by acting with the supergen-
erators Q𝐴

𝛼, Q̄𝐵 ¤𝛼 (see Appendix (A) for their charges). The supermultiplets are
generically denoted as 𝜒[𝑅] ( 𝑗 , 𝑗) .

As determined in [33] (see also [28, 18]), one may ensure unitary representations by
imposing BPS conditions which leads to unitarity constraints in terms of the labels
(Δ, [𝑅], 𝑗 , 𝑗) for the highest weight state. For the N = 2 case, there are three types
of conditions:

• A-type: These are generic long multiplets and with no shortening conditions.

• B-type: These are called 1/4-BPS since 1/4 of the supercharges annihilate
the highest weight state.

• C-type: These are called 1/8-BPS since 1/8 of the supercharges annihilate
the highest weight state.

In addition, one may combine these supermultiplets to obtain 1/2-BPS multiplets.
For this thesis, we will only need to consider the B-type supermultiplets as well as
their combinations.
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N = 2 Shortening conditions

There are two important shortening conditions that we will consider. Following [28,
18, 33], we will consider the B-type BPS condition with 𝑗 = 0 (and 𝑗 = 0 for the
conjugate case)

• Type B1: Q1
𝛼 |Δ, 𝑅, 𝑟⟩hw

(0, 𝑗) = 0
(
or B̄1: Q̄1 ¤𝛼 |Δ, 𝑅, 𝑟⟩hw

( 𝑗 ,0) = 0
)
, 𝛼, ¤𝛼 = ±

• Type B2: Q2
𝛼 |Δ, 𝑅, 𝑟⟩hw

(0, 𝑗) = 0
(

or B̄2: Q̄2 ¤𝛼 |Δ, 𝑅, 𝑟⟩hw
( 𝑗 ,0) = 0

)
, 𝛼, ¤𝛼 = ±

Recall for the N = 2 case, [𝑅] is given by (𝑅, 𝑟). As mentioned above, two (out
of the eight) generators annihilate the highest weight state and, thus, this condition
is 1/4-BPS. This leads to the following unitarity constraints for the highest weight
states [33] (conjugation reverses the signs of 𝑟 and ( 𝑗 , 𝑗))

• For B1,B2: Δ = 2𝑅 + 𝑟

• For B̄1, B̄2: Δ = 2𝑅 − 𝑟

Following [33, 28, 18], the supermultiplets are denoted as B𝑅,𝑟 (0, 𝑗) and B̄𝑅,𝑟 (0, 𝑗) .

Furthermore, we may combine these short supermultiplets to form 1/2-BPS mul-
tiplets. We will consider two types of combinations, namely, the E-type and the
B̂-type. In particular, with 𝑅 = 0 and 𝑗 = 0, we have [33, 28, 18]

• Type E (B1 ∩ B2): Q1
𝛼 |Δ, 0, 𝑟⟩hw

(0, 𝑗) = 0 and Q2
𝛼 |Δ, 0, 𝑟⟩hw

(0, 𝑗) = 0

There is also of course the conjugate case Ē which is the combination of the
conditions for B̄1 and B̄2. Finally, with 𝑟 = 0 and 𝑗 = 𝑗 = 0, we have the B̂-type
case

• Type B̂ (B1 ∩ B̄2): Q1
𝛼 |Δ, 𝑅, 0⟩hw

(0,0) = 0 and Q̄2 ¤𝛼 |Δ, 𝑅, 0⟩hw
(0,0) = 0

Under these conditions, one finds the following unitarity constraints for the highest
weight state [33]

• For E: Δ = 𝑟 (and Δ = −𝑟 for the conjugate Ē)

• For B̂: Δ = 2𝑅
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The corresponding supermultiplets are denoted as E𝑟 (0, 𝑗) , Ē−𝑟 ( 𝑗 ,0) and B̂𝑅. These
multiplets are special since they are protected by representation theory from recom-
bination [33, 28, 18]. Thus, any operators that belong to these supermultiplets are
protected from receiving corrections (or anomalous dimensions) to their conformal
dimension Δ. These operators will therefore be candidates for vacua (lowest energy
states) when we consider the spin chain formalism later in this thesis (see Section
2.4).

Finally, we mention two special cases for the multiplets E𝑟 (0, 𝑗) (the case for the
conjugate is similar) and B̂𝑅. For B̂𝑅, we consider the case when 𝑅 = 1/2 which
means that Δ = 2𝑅 = 1. Using the compact notation 𝑅( 𝑗 , 𝑗) from [33], we can
start with the highest weight state 1

2 (0,0) (with Δ = 1) and can act with 𝑄2
𝛼 and

𝑄̄1 ¤𝛼 to generate the descendent states (see Appendix A for their charges). Imposing
the equations of motion (which sets states with negative contributions to zero, see
page 35 of [33]), we find the states given in Figure 2.1. Note that we follow the

Figure 2.1: The N = 2 half hypermultiplet contained in the supermultiplet B̂ 1
2
.

conventions of [33] where a ↙-arrow indicates the action of Q and a ↘-arrow
indicates the action of Q̄. This yields the N = 2 half hypermultiplet [33, 28, 34].
CPT invariance of this multiplet depends on the choice of gauge group: if the gauge
group is 𝔰𝔲(2), then the doublet of scalars transform in a pseudo-real representation
(of the R-symmetry algebra and the gauge algebra) and the half hypermultiplet is
CPT invariant. For higher rank gauge groups, one must include the CPT conjugate
states to construct the full N = 2 hypermultiplet [28, 34]. The full hypermultiplet
consists of two Weyl spinors and a 𝔰𝔲(2)𝑅-doublet of complex scalars.
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The case E𝑟 (0,0) (with 𝑟 = 1, 𝑗 = 0) gives the N = 2 vector multiplet with its
equations of motion and an auxiliary field [28] (which contributes null states). After
removing these null states, the standard N = 2 vector multiplet is given by D0(0,0)

(see page 20 of [33]). The states are shown in Figure 2.2 where both D0(0,0) and

Figure 2.2: The N = 2 vector multiplet contained in the supermultiplets D0(0,0) and
D̄0(0,0) .

its conjugate D̄0(0,0) is shown. The vector multiplet consists of a complex scalar, a
doublet of Weyl spinors and a vector gauge field.

N = 4 Shortening Conditions

For the N = 4 case, we only consider one shortening condition. In this case, states
and supermultiplets are dressed with the following labels: Δ, [𝑞, 𝑝, 𝑠], and ( 𝑗 , 𝑗).
The symbols [𝑞, 𝑝, 𝑠] are the Dynkin labels for the R-symmetry 𝔰𝔲(4)𝑅 (see for
example Appendix B in [35]). The other labels are the same as in the N = 2 case.

Following the notation of [33, 28, 18], the 1/2-BPS short supermultiplet that we will
consider is B

1
2 ,

1
2

[0,𝑝,0] with 𝑗 = 𝑗 = 0 (the 1
2 ,

1
2 labels mean 1/2-BPS). The unitarity

constraint for the highest weight state is given by Δ = 𝑝. This supermultiplet is also
protected from recombination and thus states belonging to this supermultiplet are
candidates for spin chain vacua (see Section 2.3).

As in the N = 2 case, we mention a special case given by B
1
2 ,

1
2

[0,1,0] . This is the N = 4
vector multiplet [33, 28]. It consists of one vector gauge field, four Weyl fermions
in the 4 of 𝔰𝔲(4)𝑅 and six real scalar fields in the antisymmetric 6 of 𝔰𝔲(4)𝑅 (or the
fundamental of 𝔰𝔬(6)).
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2.2 Spin Chains
In this section, we develop the theory behind spin chain models with an 𝔰𝔲(2)
symmetry. In terms of a physical system, a spin chain is quite simple. It has a
single spatial dimension which consists of discrete lattice points or sites that is
occupied by a particle in a representation of some Lie algebra. Adding a temporal
dimension, they are examples of a (1 + 1)-dimensional lattice model. The particles
only have internal degrees of freedom and are fixed in space. Interactions are
mediated through the coupling of these internal degrees of freedom which, for
this thesis, will be the spin of each particle. The strength of the spin coupling
(or bond strength) is determined by a constant parameter 𝐽 > 0. The choice of
parameter −𝐽 leads to ferromagnetic behaviour while 𝐽 leads to antiferromagnetic
behaviour. Furthermore, these interactions can be nearest-neighbour or long range.
Finally, one may impose boundary conditions such as periodic conditions (in other
words, putting the lattice on a circle) and open boundary conditions. As we will
show, despite spin chain models having a relatively simple setup, they are models
with rich physics exhibiting excitations, scattering and, sometimes, deep algebraic
structures such as integrability to quantum groups (which can arise as deformations
of a symmetry given by a Lie algebra).

In this section, we will first develop the theory behind a general ferromagnetic spin-S
model by motivating the form for the Hamiltonian. This section will also set the
formalism for spin chains. We will then consider two examples to demonstrate the
formalism, namely, the isotropic Heisenberg spin-1/2 chain and a spin-1 model.
These examples also serve a further purpose: the Heisenberg model can be shown
to be quantum integrable. In addition, this model appears in the 𝔰𝔲(2) subsector
in planar N = 4 super Yang-Mills theory (see Section 2.3). On the other hand,
the spin-1 model is not integrable for general values of the coupling constant but
can still be solved up to the three spin deviation case. The form of the three spin
deviation wavefunctions bears remarkable similarity to the wavefunctions computed
for the N = 2 quiver Hamiltonians in our results section. Finally, we will briefly
mention the alternating-spin/alternating-bond chain which is a generalization of the
ferromagnetic spin-S model. Our results section will serve as a demonstration of a
special case of this model.

2.2.1 Setup
We consider a lattice of 𝐿-sites. For this thesis, we will assume that each lattice
site hosts a particle in a spin-𝑆 representation of 𝔰𝔲(2) where 𝑆 can be integer or



12

half-integer valued and 𝑆 ≥ 1/2. Then, the local Hilbert space Hℓ at each site ℓ is
spanned by the basis states {|𝑆, 𝑗⟩}, 𝑗 ∈ {−𝑆,−𝑆 + 1, ..., 𝑆 − 1, 𝑆} and is (2𝑆 + 1)-
dimensional (as will be discussed below, the basis states are eigenvectors of the 𝑆𝑧

spin operator). The first label 𝑆 is the total spin and the second label 𝑗 is the z-spin
projection. If it is clear from the context, we will drop the first label for a spin state
and simply write | 𝑗⟩. The total Hilbert space of the spin chain is therefore given by
a tensor product

H =

𝐿⊗
ℓ=1

Hℓ, (2.3)

where ℓ ∈ Z labels the lattice coordinate. It is clearly (2𝑆 + 1)𝐿-dimensional.

The observables of the spin chain are given by spin operators. Concretely, let 𝑆𝑖 be
a representation of the 𝔰𝔲(2) algebra (in what follows, we set ℏ = 1) [37][

𝑆𝑖, 𝑆 𝑗
]
= 𝑖𝜖 𝑖 𝑗 𝑘𝑆𝑘 , 𝑖 𝑗 , 𝑘 = {𝑥, 𝑦, 𝑧}, (2.4)

where the structure constant 𝜖 𝑖 𝑗 𝑘 is fixed as 𝜖𝑥𝑦𝑧 = 1 and is totally antisymmetric.
The basis states {| 𝑗⟩}, 𝑗 ∈ {−𝑆,−𝑆+1, ..., 𝑆−1, 𝑆} discussed above are eigenvectors
of the spin operator 𝑆𝑧

𝑆𝑧 | 𝑗⟩ = 𝑗 | 𝑗⟩, 𝑗 ∈ {−𝑆,−𝑆 + 1, ..., 𝑆 − 1, 𝑆}. (2.5)

For example, the spin-1/2 representation is given by (2 × 2)-matrices, that can be
written in terms of the Pauli matrices 𝑆𝑖 = (1/2)𝜎𝑖, and act on a 2-dimensional
Hilbert space spanned by basis eigenstates {| − 1/2⟩, |1/2⟩}. Furthermore, we can
use the Cartan algebra formalism [38] to define raising and lowering operators that
will move us between states in the multiplet {| 𝑗⟩}. This is achieved by complexifying
𝔰𝔲(2) → 𝔰𝔲(2)C � 𝔰𝔩(2). More precisely, we define

𝑆± := 𝑆𝑥 ± 𝑖𝑆𝑦, (𝑆±)† = 𝑆∓, (2.6)

which gives the 𝔰𝔩(2) algebra[
𝑆𝑧, 𝑆±

]
= ±𝑆±,

[
𝑆+, 𝑆−

]
= 2𝑆𝑧,

[
𝑆±, 𝑆±

]
= 0. (2.7)

For a state | 𝑗⟩, the operators 𝑆± shift the eigenstates as follows (see page 79 of [38])

𝑆± | 𝑗⟩ =
√︁
𝑆(𝑆 + 1) − 𝑗 ( 𝑗 ± 1) | 𝑗 ± 1⟩. (2.8)

There exist two special states called the highest weight state, which is annihilated
by 𝑆+, and the lowest weight state, which is annihilated by 𝑆− [38]. In our setup,
these states are | 𝑗 = 𝑆⟩ and | 𝑗 = −𝑆⟩, respectively

𝑆+ |𝑆⟩ = 0, 𝑆− | − 𝑆⟩ = 0. (2.9)
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Thus, starting from the highest weight state, we can apply the lowering operator
2S-times to find (up to some constant factor depending on the spin representation 𝑆
of the system - see equation (2.8))

(𝑆−)2𝑆 | 𝑗 = 𝑆⟩ ∼ | 𝑗 = −𝑆⟩. (2.10)

To lift the action of these operators to the entire spin chain, we define the lattice spin
operator 𝑆𝑖

ℓ

𝑆𝑖ℓ = 11
⊗ · · · ⊗ 1

ℓ−1
⊗ 𝑆𝑖

ℓ
⊗ 1
ℓ+1

⊗ · · · ⊗ 1
𝐿
, (2.11)

where the labels underneath indicate the lattice coordinate. In other words, 𝑆𝑖
ℓ

acts
non-trivially on site ℓ and trivially elsewhere. This is also a representation of the
𝔰𝔲(2) algebra [37] [

𝑆𝑖𝑚, 𝑆
𝑗
𝑛

]
= 𝑖𝛿𝑚𝑛𝜖

𝑖 𝑗 𝑘𝑆𝑘 , 𝑖, 𝑗 , 𝑘 = {𝑥, 𝑦, 𝑧}, (2.12)

which is said to be ultralocal since the operators at different sites commute. In
exactly the same manner, we can lift the raising/lowering operators to the full spin
chain [37][

𝑆𝑧𝑚, 𝑆
±
𝑛

]
= ±𝛿𝑚𝑛𝑆±𝑛 ,

[
𝑆+𝑚, 𝑆

−
𝑛

]
= 2𝛿𝑚𝑛𝑆𝑧𝑛,

[
𝑆±𝑚, 𝑆

±
𝑛

]
= 0. (2.13)

Generalised Spin-S Hamiltonian

We are interested in the energy spectrum of the spin chain. The corresponding
operator is, of course, the Hamiltonian 𝐻. Similar to the discussion in [37], the
Hamiltonian will be constructed to be

• isotropic or rotationally invariant: [𝑆𝑧, 𝐻] = 0

• homogeneous or translationally invariant

• nearest-neighbour interactions

For the last point, nearest-neighbour interactions are implemented by two sites 𝑚, 𝑛
constrained to |𝑚 − 𝑛| = 1. Thus, our Hamiltonian will be dressed with subscripts
𝐻ℓ,ℓ+1. The first point implies that 𝐻 is a rank-0 tensor or scalar constructed out of
the spin operators Sℓ = (𝑆𝑥

ℓ
, 𝑆

𝑦

ℓ
, 𝑆𝑧
ℓ
); in other words, terms of the form (Sℓ · Sℓ+1)
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since [𝑆𝑧, S · S] = 0. Now, since we are considering generalised spin-𝑆 spin chains,
the Hamiltonian can be expanded in terms of (Sℓ ·Sℓ+1) as a polynomial of degree 𝑑

𝐻ℓ,ℓ+1 = −𝐽 (0) − 𝐽 (1) (Sℓ · Sℓ+1) − 𝐽 (2) (Sℓ · Sℓ+1)2 − ... − 𝐽 (𝑑) (Sℓ · Sℓ+1)𝑑 . (2.14)

The parameters 𝐽 (𝑖) , 𝑖 = {1, ..., 𝑑}, set the bond strength and, since we only consider
the ferromagnetic regime in this thesis, will always be assumed to be 𝐽 (𝑖) ≥ 0. The
term with the parameter 𝐽 (0) is the identity operator. Terms proportional to the
identity operator only shift the energy eigenvalues and do not affect the physics of
the system. We can thus add or subtract these terms as needed. Next, we use the
well-known expansion

Sℓ · Sℓ+1 = 𝑆𝑥ℓ𝑆
𝑥
ℓ+1 + 𝑆

𝑦

ℓ
𝑆
𝑦

ℓ+1 + 𝑆
𝑧
ℓ
𝑆𝑧
ℓ+1

= 𝑆𝑧
ℓ
𝑆𝑧
ℓ+1 +

1
2

(
𝑆+ℓ 𝑆

−
ℓ+1 + 𝑆

−
ℓ 𝑆

+
ℓ+1

)
.

(2.15)

From equation (2.10), for a highest weight state say, we can act up to 𝑑 = 2𝑆 after
which all terms 𝑑 > 2𝑆 in the expansion acting on a state | 𝑗⟩ vanishes (see also [39]
and page 84 of [40]). Therefore,

𝐻ℓ,ℓ+1 = −
2𝑆∑︁
𝑝=1

𝐽 (𝑝) (Sℓ · Sℓ+1)𝑝 . (2.16)

The total Hamiltonian is therefore given by

𝐻 =

𝐿∑︁
ℓ=1

𝐻ℓ,ℓ+1

= −
𝐿∑︁
ℓ=1

2𝑆∑︁
𝑝=1

𝐽 (𝑝) (Sℓ · Sℓ+1)𝑝 .
(2.17)

Finally, to implement translational invariance, let𝑈 = exp(𝑖𝑇) be the unitary hermi-
tian operator that shifts each site of the chain by one site ℓ to ℓ−1. Lattice translations
are generated by the momentum operator 𝑇 with eigenvalue 𝐾 ∈ R, which is the
total momentum (for 𝑈, the eigenvalue is exp(iK)). Translational invariance of the
Hamiltonian is then implemented by [37, 40]

[𝑈, 𝐻] = 0. (2.18)

If the spin chain is periodic, then the total momentum is quantised since 𝑈𝐿 =

1 ⇒ 𝐾 ∈ 2𝜋𝑐/𝐿 where 𝑐 ∈ {0, 1, ..., 𝐿 − 1} (see the example of the Heisenberg
ferromagnetic model in Section 2.2.2) and

𝐻 = −
𝐿∑︁
ℓ=1

2𝑆∑︁
𝑝=1

𝐽 (𝑝) (Sℓ · Sℓ+1)𝑝, 𝑆ℓ+𝐿 = 𝑆ℓ . (2.19)
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In Section 2.2.4, we will generalize the above Hamiltonian further to include
alternating-bonds and alternating-spins.

Spin Chain States

For the ground state of the model, we use the highest weight state. Physically, we
take this to be the state with all particle spins aligned with the positive z-axis. More
precisely, for general spin-S, the ground state is the state with all 𝑗 set to 𝑗 = 𝑆

|0⟩ = |𝑆⟩1 ⊗ |𝑆⟩2 ⊗ · · · ⊗ |𝑆⟩ℓ ⊗ · · · ⊗ |𝑆⟩𝐿 , (2.20)

where as before, the subscripts indicate lattice coordinates. As a shorthand notation,
we will suppress the tensor symbols and simply write

|0⟩ = |𝑆
1
𝑆
2
· · · 𝑆

ℓ
· · · 𝑆

𝐿
⟩. (2.21)

Looking at equation (2.15) and equation (2.19), we note that each term in the
polynomial has a raising operator 𝑆+ which annihilates |0⟩ (see equation (2.9))
except for the term proportional to (𝑆𝑧

ℓ
𝑆𝑧
ℓ+1)

𝑝. Thus, using equation (2.5) (lifted
to the full lattice similar to equation (2.11)), we find the ground state energy (we
assume periodic boundary conditions)

𝐻 |0⟩ = −
𝐿∑︁
ℓ=1

2𝑆∑︁
𝑝=1

𝐽 (𝑝) (Sℓ · Sℓ+1)𝑝 |𝑆
1
𝑆
2
· · · 𝑆

ℓ
· · · 𝑆

𝐿
⟩

= −
𝐿∑︁
ℓ=1

2𝑆∑︁
𝑝=1

𝐽 (𝑝) (𝑆𝑧
ℓ
𝑆𝑧
ℓ+1)

𝑝 |𝑆
1
𝑆
2
· · · 𝑆

ℓ
· · · 𝑆

𝐿
⟩

= 𝐸0 |0⟩,

(2.22)

where

𝐸0 = −𝐿
2𝑆∑︁
𝑝=1

𝐽 (𝑝)𝑆2𝑝 . (2.23)

For example, for 𝑆 = 1/2, 𝐸0 = −𝐽 (1)𝐿/4 which matches [41].

A spin deviation is created by acting with the lowering operator at site ℓ on |0⟩. A
single spin deviation at site ℓ is

𝑆−ℓ |𝑆
1
𝑆
2
· · · 𝑆

ℓ
· · · 𝑆

𝐿
⟩ =

√
2𝑆 |𝑆

1
𝑆
2
· · · 𝑆 − 1

ℓ
· · · 𝑆

𝐿
⟩, (2.24)

where we used equation (2.8). Two spin deviations at sites ℓ1, ℓ2 can be created by
acting twice with the lowering operator

𝑆−ℓ1𝑆
−
ℓ2
|𝑆
1
· · · 𝑆

ℓ1
· · · 𝑆

ℓ2
· · · 𝑆

𝐿
⟩ = 2𝑆 |𝑆

1
· · · 𝑆 − 1

ℓ1
· · · 𝑆 − 1

ℓ2
· · · 𝑆

𝐿
⟩. (2.25)
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If 𝑆 > 1/2, then we can act at least twice with the lowering operator on the same
site ℓ

(𝑆−ℓ )
2 |𝑆

1
𝑆
2
· · · 𝑆

ℓ
· · · 𝑆

𝐿
⟩ = 2

√︁
𝑆(2𝑆 − 1) |𝑆

1
𝑆
2
· · · 𝑆 − 2

ℓ
· · · 𝑆

𝐿
⟩. (2.26)

One may continue in this manner and create more spin deviations.

These states are not eigenstates of the Hamiltonian. Instead, the action of the
Hamiltonian on a state with spin deviation on site ℓ is a mixture or linear combination
of states with spin deviations shifted by a single site. The diagonalisation problem
of the Hamiltonian, however, is greatly simplified by the fact that 𝐻 commutes with
the total z-spin operator

𝑆𝑧,tot =

𝐿∑︁
ℓ=1

𝑆𝑧
ℓ
,

[
𝑆𝑧,tot, 𝐻

]
= 0. (2.27)

This relation implies that, given 𝑟 spin deviations, the Hamiltonian preserves 𝑟. The
approach to diagonalizing the Hamiltonian is to solve it in sectors for a given value
of 𝑟.

The Hamiltonian, which can be represented as a (2𝑆 + 1)𝐿 × (2𝑆 + 1)𝐿-matrix, can
grow rapidly in size as 𝐿 grows. Thus, the problem of diagonalising the Hamiltonian
is a formidable linear algebra problem. Despite this complexity, there exist exactly
solvable models, of which the Heisenberg model is perhaps the most well-known.
In the next subsection, we will solve this model using the celebrated coordinate
Bethe ansatz [32]. As we will discuss, the solvability displayed in this model is due
to integrability.

2.2.2 Example I: Integrable Heisenberg Ferromagnetic Spin Chain
For this example, we look at the following special case of the Hamiltonian (2.17)
where 𝑆 = 1/2. Following the discussion in [41], we will assume periodic equations
and set 𝐽 (1) = 𝐽. The local two-site Hamiltonian is therefore given by

𝐻 = −𝐽
𝐿∑︁
ℓ=1

(
Sℓ · Sℓ+1 −

1
4
12×2 ⊗ 12×2

)
= −𝐽

𝐿∑︁
ℓ=1

(
𝑆𝑧
ℓ
𝑆𝑧
ℓ+1 +

1
2

(
𝑆+ℓ 𝑆

−
ℓ+1 + 𝑆

−
ℓ 𝑆

+
ℓ+1

)
− 1

4
12×2 ⊗ 12×2

)
,

(2.28)

where12×2⊗12×2 is the two-site identity (as discussed, this shifts all the eigenvalues;
in particular, we will show that the ground state is shifted to 𝐸0 = 0). This is the fa-
mous isotropic Heisenberg model for a one-dimensional ferromagnet. Perhaps even
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more famously, Hans Bethe was able to solve the model exactly using the coordinate
Bethe ansatz [32] (as we will show, this is due to the model exhibiting integrability).
In this approach, each sector with 𝑟 spin deviations can be solved by taking a linear
combination of all the states and introducing spin wave coefficients. These spin
waves are complex plane waves dependent on a set of numbers {𝑝1, 𝑝2, ..., 𝑝𝑟} (sub-
ject to constraints introduced by conserved charges) and are referred to as magnons.
In this section, we will demonstrate the approach which will be useful to compare
to when we consider more general spin models later. In addition, as we will argue
later, the one-loop mixing matrix for the anomalous dimensions of scalar fields in
the closed 𝔰𝔲(2)-subsector of N = 4 super Yang-Mills can be mapped exactly to
this model.

As mentioned in the previous section, the spin-1/2 representation is a 2-dimensional
representation of the 𝔰𝔲(2)-algebra called the fundamental representation. It can
therefore be represented by (2 × 2)-matrices acting on a complex 2-dimensional
Hilbert space H spanned by the basis states

H = spanC{|
1
2
,

1
2
⟩, |1

2
,−1

2
⟩} � C2. (2.29)

The spin operators are given by the (2 × 2)-Pauli matrices

𝑆𝑖 =
1
2
𝜎𝑖, 𝑖 = 𝑥, 𝑦, 𝑧 (2.30)

where

𝜎𝑥 =

(
0 1
1 0

)
, 𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
, 𝜎𝑧 =

(
1 0
0 −1

)
. (2.31)

As is often conventional in the literature (see for example [41, 42, 43]), we will use
the notation | 12 ,

1
2⟩ = | ↑⟩ and | 12 ,−

1
2⟩ = | ↓⟩. For a length-𝐿 spin chain, the ground

state is given by equation (2.21)

|0⟩ = | ↑
1
↑
2
· · · ↑

ℓ

· · · ↑
𝐿

⟩, (2.32)

and we have
𝑆+ℓ | ↑

1
↑
2
· · · ↑

ℓ

· · · ↑
𝐿

⟩ = 0, 𝑆−ℓ | ↑
1
↑
2
· · · ↑

ℓ

· · · ↑
𝐿

⟩ = | ↑
1
↑
2
· · · ↓

ℓ

· · · ↑
𝐿

⟩,

𝑆𝑧
ℓ
| ↑

1
↑
2
· · · ↑

ℓ

· · · ↑
𝐿

⟩ = 1
2
| ↑

1
↑
2
· · · ↑

ℓ

· · · ↑
𝐿

⟩,

𝑆𝑧
ℓ
| ↑

1
↑
2
· · · ↓

ℓ

· · · ↑
𝐿

⟩ = −1
2
| ↑

1
↑
2
· · · ↓

ℓ

· · · ↑
𝐿

⟩.

(2.33)

The unshifted ground state energy is given by equation (2.23) 𝐸0 = −𝐽𝐿/4, however,
since we shifted by (1/4)1, this shifts 𝐸0 to 𝐸0 = 0 (we shift by the identity since
this is how it appears in the context of N = 4 super Yang-Mills theory).
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One Magnon

A single spin deviation is introduced using equation (2.24). We will first solve
the one magnon system for an infinite length spin chain and, at the end, we will
implement periodic boundary conditions. Physically, one may think of this as
solving the bulk equations on a long spin chain while first ignoring the sites at the
boundaries of the spin chain. Following [32, 41], we take a linear combination of
these states by Fourier expanding in a coordinate basis

|𝑝⟩ =
∑︁
ℓ∈Z

𝜓(ℓ) |ℓ⟩, (2.34)

where
|ℓ⟩ = 𝑆−ℓ | ↑

1
↑
2
· · · ↑

ℓ

· · · ↑
𝐿

⟩

= | ↑
1
↑
2
· · · ↓

ℓ

· · · ↑
𝐿

⟩,
(2.35)

and
𝜓(ℓ) = 𝑒𝑖𝑝ℓ . (2.36)

Consider the action of each term in the Hamiltonian for two sites (ℓ − 1, ℓ) and
(ℓ, ℓ + 1). First,

𝑆𝑧
ℓ−1𝑆

𝑧
ℓ
| ↑

1
· · · ↑

ℓ−1
↓
ℓ

↑
ℓ+1

· · · ↑
𝐿

⟩ = −1
4
| ↑

1
· · · ↑

ℓ−1
↓
ℓ

↑
ℓ+1

· · · ↑
𝐿

⟩,

𝑆𝑧
ℓ
𝑆𝑧
ℓ+1 | ↑

1
· · · ↑

ℓ−1
↓
ℓ

↑
ℓ+1

· · · ↑
𝐿

⟩ = −1
4
| ↑

1
· · · ↑

ℓ−1
↓
ℓ

↑
ℓ+1

· · · ↑
𝐿

⟩,
(2.37)

which we observe acts like an identity term. Next,

𝑆−ℓ−1𝑆
+
ℓ | ↑

1
· · · ↑

ℓ−1
↓
ℓ

↑
ℓ+1

· · · ↑
𝐿

⟩ = | ↑
1
· · · ↓

ℓ−1
↑
ℓ

↑
ℓ+1

· · · ↑
𝐿

⟩,

𝑆+ℓ 𝑆
−
ℓ+1 | ↑

1
· · · ↑

ℓ−1
↓
ℓ

↑
ℓ+1

· · · ↑
𝐿

⟩ = | ↑
1
· · · ↑

ℓ−1
↑
ℓ

↓
ℓ+1

· · · ↑
𝐿

⟩,
(2.38)

which we observe acts as permutation terms (the other combinations of the rais-
ing/lowering terms vanish). In fact, we may write the Hamiltonian for two sites
(ℓ, ℓ + 1) as [44]

𝐻ℓ,ℓ+1 = −𝐽
(
𝑆𝑧
ℓ
𝑆𝑧
ℓ+1 +

1
2

(
𝑆+ℓ 𝑆

−
ℓ+1 + 𝑆

−
ℓ 𝑆

+
ℓ+1

)
− 1

4
12×2 ⊗ 12×2

)
= −𝐽

2
(
𝑃ℓ,ℓ+1 − 12×2 ⊗ 12×2

)
,

(2.39)
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where 𝑃ℓ,ℓ+1 is the permutation matrix

𝑃ℓ,ℓ+1 =

©­­­­­«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®®®®¬ℓ,ℓ+1

. (2.40)

In matrix notation, the single site states are represented by column matrices | ↑
⟩ = (1, 0)𝑇 , | ↓⟩ = (0, 1)𝑇 and the two site states {| ↑↑⟩, | ↑↓⟩, | ↓↑⟩, | ↓↓⟩} are
constructed by the Kronecker product. The two site Hamiltonian is represented in
matrix form as

𝐻ℓ,ℓ+1 =

©­­­­­«
0 0 0 0
0 𝐽

2 − 𝐽
2 0

0 − 𝐽
2

𝐽
2 0

0 0 0 0

ª®®®®®¬ℓ,ℓ+1

. (2.41)

We will refer to the above matrix for 𝐻ℓ,ℓ+1, up to possible shifts by the identity, as
Heisenberg-type.

To solve the eigenvalue equation

𝐻 |𝑝⟩ = 𝐸1(𝑝) |𝑝⟩, (2.42)

we consider a single arbitrary site ℓ. Using the form given by equation (2.39), the
terms that contribute to this site yield the following equation

𝐽𝜓(ℓ) − 𝐽

2
𝜓(ℓ − 1) − 𝐽

2
𝜓(ℓ + 1) = 𝐸1(𝑝)𝜓(ℓ). (2.43)

This equation is easily solved by equation (2.34) with eigenvalue

𝐸1(𝑝) = 2𝐽 sin2
( 𝑝

2

)
. (2.44)

The energy is a conserved charge. The total momentum 𝐾 , the eigenvalue of the
lattice translation operator𝑈 (see the discussion around equation (2.18)), is another
conserved charge

𝑈 |𝑝⟩ =
∑︁
ℓ∈Z

𝑒𝑖𝑝ℓ𝑈 |ℓ⟩

=
∑︁
ℓ∈Z

𝑒𝑖𝑝ℓ |ℓ − 1⟩

= 𝑒𝑖𝑝
∑︁
ℓ′∈Z

𝑒𝑖𝑝ℓ
′ |ℓ′⟩, ℓ′ = ℓ − 1

= 𝑒𝑖𝑝 |𝑝⟩,

(2.45)
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where we clearly have 𝐾 = 𝑝.

Finally, we implement periodicity by placing the spin chain on a circle with 𝐿 lattice
sites. Then, using the above result, we find [32, 41]

𝑈𝐿 |𝑝⟩ = |𝑝⟩
⇒ 𝜓(ℓ + 𝐿) = 𝜓(ℓ)
⇒ 𝑒𝑖𝑝𝐿 = 1.

(2.46)

This is an 𝐿-th root of unity equation which is solved by

𝑝 =
2𝜋𝑐
𝐿
, 𝑐 = 0, 1, ..., 𝐿 − 1. (2.47)

In other words, 𝑝 is quantised.

Finally, we briefly mention that the system can be parametrised by uniformising
momentum space. We first rewrite 𝐸1 in terms of the coupling 𝐽/2

𝐸1(𝑝) =
𝐽

2
𝐸 (𝑝), 𝐸 (𝑝) = 4 sin2

( 𝑝
2

)
. (2.48)

Then, using the condition [43, 42] (see also equation (4.42) in [5] and the discussions
in [45])

𝑑𝑢 = −𝑑𝑝
𝐸

⇒ 𝑢 =
1
2

cot
( 𝑝

2

)
, (2.49)

from which it follows that

𝑝(𝑢) = −𝑖 ln
𝑢 + 𝑖

2

𝑢 − 𝑖
2
, 𝑒𝑖𝑝(𝑢) =

𝑢 + 𝑖
2

𝑢 − 𝑖
2
. (2.50)

The energy eigenvalue then becomes

𝐸1(𝑢) =
𝐽

2
1

𝑢2 + 1
4
. (2.51)

Two Magnons

We next consider two spin deviations. As for the one magnon case, we start by first
assuming an infinite length spin chain and then solving the system’s equations. At
the end, we implement periodic boundary conditions on the wavefunction, which
will give the well-known Bethe quantum numbers. Following the same arguments
as for the one magnon case, we start with the following ansatz for the wavefunction

|𝑝1, 𝑝2⟩ =
∑︁
ℓ1,ℓ2∈Z
ℓ1<ℓ2

𝜓(ℓ1, ℓ2) |ℓ1, ℓ2⟩, (2.52)
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where
𝜓(ℓ1, ℓ2) = 𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 . (2.53)

One may think of 𝜓(ℓ1, ℓ2) as the product of two one-particle states. Note the sum
over the set of integers with the ordering ℓ1 < ℓ2.

There are two sets of equations: first, the non-interacting equation given by ℓ2−ℓ1 >

1

2𝐽𝜓(ℓ1, ℓ2) −
𝐽

2
𝜓(ℓ1 − 1, ℓ2) −

𝐽

2
𝜓(ℓ1 + 1, ℓ2) −

𝐽

2
𝜓(ℓ1, ℓ2 − 1) − 𝐽

2
𝜓(ℓ1, ℓ2 + 1)

= 𝐸2(𝑝1, 𝑝2)𝜓(ℓ1, ℓ2),
(2.54)

and, secondly, the interacting equation given by ℓ2 − ℓ1 = 1

𝐽𝜓(ℓ, ℓ + 1) − 𝐽

2
𝜓(ℓ − 1, ℓ + 1) − 𝐽

2
𝜓(ℓ, ℓ + 2) = 𝐸2(𝑝1, 𝑝2)𝜓(ℓ, ℓ + 1). (2.55)

The non-interacting equation is solved by 𝜓(ℓ1, ℓ2) if

𝐸2(𝑝1, 𝑝2) = 𝐸1(𝑝1) + 𝐸1(𝑝2). (2.56)

However, for this expression for the dispersion relation, 𝜓(ℓ1, ℓ2) is not a solution
of the interacting equation.

As an observation, one notices immediately a symmetry of 𝐸2 under the permutation
from {𝑝1, 𝑝2} → {𝑝2, 𝑝1}. In other words, the term exp(𝑖𝑝2ℓ1 + 𝑖𝑝1ℓ2) is also a
solution of the non-interacting equation. Since each of the terms (the original
momenta and the permuted momenta) are a solution of the non-interacting equation,
their sum is also a solution. This is one of the key insights of [32] and we therefore
update the wavefunction to a linear combination of these solutions [32, 41]

𝜓(ℓ1, ℓ2) = 𝐴(𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴(𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 . (2.57)

This linear combination is a solution of the interacting equation if the general
coefficients satisfy

𝑆(𝑝1, 𝑝2) :=
𝐴(𝑝2, 𝑝1)
𝐴(𝑝1, 𝑝2)

= −𝑒
𝑖(𝑝1+𝑝2) − 2𝑒𝑖𝑝2 + 1
𝑒𝑖(𝑝1+𝑝2) − 2𝑒𝑖𝑝1 + 1

. (2.58)

The ratio 𝑆 is called the scattering matrix (even though it is a scalar quantity (or
(1 × 1)-matrix), we will continue to refer to it as a matrix). The scattering matrix is
a phase

|𝑆(𝑝1, 𝑝2) | = 1, (2.59)
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and it obeys physical unitarity

𝑆(𝑝1, 𝑝2)† = 𝑆(𝑝2, 𝑝1) = 1/𝑆(𝑝1, 𝑝2). (2.60)

Physically, this result is interpreted as spin wave scattering: we start with two
incoming spin waves with momenta {𝑝1, 𝑝2} and these states scatter with outgoing
momenta {𝑝2, 𝑝1}, with the outgoing wavefunction picking up a phase given by
𝑆(𝑝1, 𝑝2). Consequently, by introducing Θ(𝑝1, 𝑝2) as (see for example [41]; note
that our S-matrix is defined as the inverse of their S-matrix)

Θ(𝑝1, 𝑝2) := −𝑖 ln (𝑆(𝑝1, 𝑝2)) , (2.61)

one may rewrite the wavefunction as

𝜓(ℓ1, ℓ2) = 𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2+ 1
2Θ(𝑝2,𝑝1) + 𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2+ 1

2Θ(𝑝1,𝑝2) . (2.62)

Finally, similar to the one magnon case, the total momentum eigenvalue is given
by 𝐾 = 𝑝1 + 𝑝2 ∈ R. Note that 𝑝1, 𝑝2 are not true momenta but merely a labeling
device (as conventional in the literature, however, we will continue to refer to 𝑝1, 𝑝2

as momenta); rather, it is their sum that gives the eigenvalue. In fact, as will discuss,
𝑝1, 𝑝2 can be complex valued as well. The lattice momentum is, as always in
quantum mechanics, given by the real-valued eigenvalue of a hermitian operator.

We now implement periodic boundary conditions. Since we have the ordering
ℓ1 < ℓ2, periodicity implies the following constraint

𝜓(ℓ1, ℓ2) = 𝜓(ℓ2, ℓ1 + 𝐿)
⇒ 𝑒𝑖𝑝1𝐿 = 𝑒−𝑖Θ(𝑝1,𝑝2) = 𝑆(𝑝1, 𝑝2)−1, 𝑒𝑖𝑝2𝐿 = 𝑒𝑖Θ(𝑝1,𝑝2) = 𝑆(𝑝1, 𝑝2).

(2.63)

Physically, one can think about this result as follows [42, 43]: the magnon 𝑝1 at
site ℓ1 say, is transported once around the circle. As it does so, it scatters through
the second magnon 𝑝2 and picks up a phase before returning to the same site
ℓ on the circle. Solving the 𝐿-th root of unity equations: exp(𝑖𝐿 (𝑝1 + 1

𝐿
Θ) =

1, exp(𝑖𝐿 (𝑝2 − 1
𝐿
Θ) = 1, one finds that [41, 32]

𝐿𝑝1 = 2𝜋𝜆1 − Θ(𝑝1, 𝑝2), 𝐿𝑝2 = 2𝜋𝜆2 + Θ(𝑝1, 𝑝2) (2.64)

where 𝜆𝑖 ∈ {0, 1, ..., 𝐿 − 1}, 𝑖 = 1, 2. The integers 𝜆𝑖 are called the Bethe quantum
numbers. Equation (2.63) is called the Bethe ansatz equation. This, of course,
quantises the total momentum to be [41]

𝐾 = 𝑝1 + 𝑝2 =
2𝜋
𝐿

(𝜆1 + 𝜆2) , 𝜆𝑖 ∈ {0, 1, ..., 𝐿 − 1}, 𝑖 = 1, 2. (2.65)
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The remaining task is to determine the pairs (𝜆1, 𝜆2) subject to Bethe ansatz equation.

The pairs have real-valued solutions leading to {𝑝1, 𝑝2} that satisfy energy and
momentum conservation. In addition, the pairs also have complex-valued solutions.
The complex-valued solutions yield {𝑝1, 𝑝2} which must be of the form 𝑝1 =

𝐾/2+ 𝑖𝑣, 𝑝2 = 𝐾/2− 𝑖𝑣, 𝑣 > 0, because 𝐾 = 𝑝1+ 𝑝2 ∈ R. These complex solutions
are bound states of the spin waves since the the probability distribution |𝜓 |2 favours
the spin deviations being nearest-neighbour. They are also zeroes or poles of the
S-matrix. For a detailed study, see Hans Bethe’s original paper [32] as well as [41].

Finally, we can use the parametrisation from the one magnon section to write the
dispersion relation as (with 𝑝1 = 𝑝1(𝑢1), 𝑝2 = 𝑝2(𝑢2))

𝐸2(𝑢1, 𝑢2) =
2∑︁
𝑖=1

𝐸1(𝑢𝑖), 𝐸1(𝑢𝑖) =
𝐽

2
1

𝑢2
𝑖
+ 1

4
, (2.66)

and the Bethe ansatz equation as(
𝑢1 + 𝑖

2

𝑢1 − 𝑖
2

)𝐿
=
𝑢1 − 𝑢2 + 𝑖
𝑢1 − 𝑢2 − 𝑖

,

(
𝑢2 + 𝑖

2

𝑢2 − 𝑖
2

)𝐿
=
𝑢1 − 𝑢2 − 𝑖
𝑢1 − 𝑢2 + 𝑖

. (2.67)

Three Magnons and Integrability

In solving the two magnon problem, Hans Bethe [32] showed that the 𝑟 magnon
problem was automatically solved. This astonishing result is due to this model
exhibiting quantum integrability (see the definition in equation (2.75). In the next
section, we will consider a spin-1 model that is non-integrable.

Inspired by the two magnon wavefunction, we start by making the following ansatz
for an infinite length spin chain

|𝑝1, 𝑝2, 𝑝3⟩ =
∑︁

ℓ1,ℓ2,ℓ3∈Z
ℓ1<ℓ2<ℓ3

∑︁
𝜎∈𝑆3

𝐴(𝑝𝜎(1) , 𝑝𝜎(2) , 𝑝𝜎(3))𝑒𝑖𝑝𝜎 (1)ℓ1+𝑖𝑝𝜎 (2)ℓ2+𝑖𝑝𝜎 (3)ℓ3 . (2.68)

As in the two magnon case, there are three systems of equations: for arbitrary sites
ℓ1, ℓ2, ℓ3 with ℓ2 − ℓ1 > 1, ℓ3 − ℓ2 > 1, we have the non-interacting equation

3𝐽𝜓(ℓ1, ℓ2, ℓ3) −
𝐽

2
𝜓(ℓ1 − 1, ℓ2, ℓ3) −

𝐽

2
𝜓(ℓ1 + 1, ℓ2, ℓ3) −

𝐽

2
𝜓(ℓ1, ℓ2 − 1, ℓ3)

− 𝐽

2
𝜓(ℓ1, ℓ2 + 1, ℓ3) −

𝐽

2
𝜓(ℓ1, ℓ2, ℓ3 − 1) − 𝐽

2
𝜓(ℓ1, ℓ2, ℓ3 + 1)

= 𝐸3(𝑝1, 𝑝2, 𝑝3)𝜓(ℓ1, ℓ2, ℓ3).
(2.69)
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For ℓ2 − ℓ1 = 1 or ℓ3 − ℓ2 = 1, we have two interacting equations for two magnons
(the third magnon being a distance greater than one site away)

2𝐽𝜓(ℓ, ℓ + 1, ℓ3) −
𝐽

2
𝜓(ℓ − 1, ℓ + 1, ℓ3) −

𝐽

2
𝜓(ℓ, ℓ + 2, ℓ3) −

𝐽

2
𝜓(ℓ, ℓ + 1, ℓ3 − 1)

− 𝐽

2
𝜓(ℓ, ℓ + 1, ℓ3 + 1) = 𝐸3(𝑝1, 𝑝2, 𝑝3)𝜓(ℓ, ℓ + 1, ℓ3)

2𝐽𝜓(ℓ1, ℓ, ℓ + 1) − 𝐽

2
𝜓(ℓ1 − 1, ℓ, ℓ + 1) − 𝐽

2
𝜓(ℓ1 + 1, ℓ, ℓ + 1) − 𝐽

2
𝜓(ℓ1, ℓ − 1, ℓ + 1)

− 𝐽

2
𝜓(ℓ1, ℓ, ℓ + 2) = 𝐸3(𝑝1, 𝑝2, 𝑝3)𝜓(ℓ1, ℓ, ℓ + 1).

(2.70)
Finally, there is the three particle interacting equation

𝐽𝜓(ℓ−1, ℓ, ℓ+1)−𝐽
2
𝜓(ℓ−2, ℓ, ℓ+1)−𝐽

2
𝜓(ℓ−1, ℓ, ℓ+2) = 𝐸3(𝑝1, 𝑝2, 𝑝3)𝜓(ℓ−1, ℓ, ℓ+1).

(2.71)
Each term in the ansatz is a solution of equation (2.69) and, therefore, the sum is
also a solution with energy eigenvalue 𝐸3(𝑝1, 𝑝2, 𝑝3) = 𝐸1(𝑝1) + 𝐸1(𝑝2) + 𝐸1(𝑝3).

Next, we solve equation (2.70). Noting that these equations involve two-body
scattering, there are two routes one my travel by starting with the initial set
of momenta {𝑝1, 𝑝2, 𝑝3} and ending with the maximally permuted set of mo-
menta {𝑝3, 𝑝2, 𝑝1}. The first route, through two body scattering, is given by the
(12) − (13) − (23) sequence of permutations: {𝑝1, 𝑝2, 𝑝3} → {𝑝2, 𝑝1, 𝑝3} →
{𝑝2, 𝑝3, 𝑝1} → {𝑝3, 𝑝2, 𝑝1}. The second route is given by the sequence (23) −
(13) − (12): {𝑝1, 𝑝2, 𝑝3} → {𝑝1, 𝑝3, 𝑝2} → {𝑝3, 𝑝1, 𝑝2} → {𝑝3, 𝑝2, 𝑝1}. In terms
of the coefficient 𝐴(𝑝1, 𝑝2, 𝑝3) and using the solution from the two magnon system,
the first route gives

𝐴(𝑝2, 𝑝1, 𝑝3)
𝐴(𝑝1, 𝑝2, 𝑝3)

= 𝑆(𝑝1, 𝑝2),

𝐴(𝑝2, 𝑝3, 𝑝1)
𝐴(𝑝1, 𝑝2, 𝑝3)

=
𝐴(𝑝2, 𝑝3, 𝑝1)
𝐴(𝑝2, 𝑝1, 𝑝3)

𝐴(𝑝2, 𝑝1, 𝑝3)
𝐴(𝑝1, 𝑝2, 𝑝3)

= 𝑆(𝑝1, 𝑝3)𝑆(𝑝1, 𝑝2),
𝐴(𝑝3, 𝑝2, 𝑝1)
𝐴(𝑝1, 𝑝2, 𝑝3)

=
𝐴(𝑝3, 𝑝2, 𝑝1)
𝐴(𝑝2, 𝑝3, 𝑝1)

𝐴(𝑝2, 𝑝3, 𝑝1)
𝐴(𝑝2, 𝑝1, 𝑝3)

𝐴(𝑝2, 𝑝1, 𝑝3)
𝐴(𝑝1, 𝑝2, 𝑝3)

= 𝑆(𝑝2, 𝑝3)𝑆(𝑝1, 𝑝3)𝑆(𝑝1, 𝑝2).

(2.72)
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In exactly the same manner, the second route gives

𝐴(𝑝1, 𝑝3, 𝑝2)
𝐴(𝑝1, 𝑝2, 𝑝3)

= 𝑆(𝑝2, 𝑝3),

𝐴(𝑝3, 𝑝1, 𝑝2)
𝐴(𝑝1, 𝑝2, 𝑝3)

=
𝐴(𝑝3, 𝑝1, 𝑝2)
𝐴(𝑝1, 𝑝3, 𝑝2)

𝐴(𝑝1, 𝑝3, 𝑝2)
𝐴(𝑝1, 𝑝2, 𝑝3)

= 𝑆(𝑝1, 𝑝3)𝑆(𝑝2, 𝑝3),
𝐴(𝑝3, 𝑝2, 𝑝1)
𝐴(𝑝1, 𝑝2, 𝑝3)

=
𝐴(𝑝3, 𝑝2, 𝑝1)
𝐴(𝑝3, 𝑝1, 𝑝2)

𝐴(𝑝3, 𝑝1, 𝑝2)
𝐴(𝑝1, 𝑝3, 𝑝2)

𝐴(𝑝1, 𝑝3, 𝑝2)
𝐴(𝑝1, 𝑝2, 𝑝3)

= 𝑆(𝑝1, 𝑝2)𝑆(𝑝1, 𝑝3)𝑆(𝑝2, 𝑝3).

(2.73)

Notice that the ratios for the amplitudes appear as products of the two magnon S-
matrices. This property is called factorization. The above forms for the coefficients
solves equations (2.70). In addition, we find an example of the celebrated Yang-
Baxter equation (although for this case, it is trivial because the S-matrices are
1 × 1-matrices)

𝑆(𝑝2, 𝑝3)𝑆(𝑝1, 𝑝3)𝑆(𝑝1, 𝑝2) = 𝑆(𝑝1, 𝑝2)𝑆(𝑝1, 𝑝3)𝑆(𝑝2, 𝑝3), (2.74)

which is graphically shown in Figure 2.3 (we used the shorthand notation 𝑆(𝑝𝑖, 𝑝 𝑗 ) =
𝑆𝑖 𝑗 ).

Figure 2.3: Yang-Baxter equation

Fascinatingly, the solution for the two-magnon/one-free interacting equation is also
a solution of the three-magnon interacting equation (2.71). Thus, the system for
three magnons is completely solved by two magnon processes.

The fact that we can use two magnon data to completely solve the three magnon case
is strong evidence that the model is quantum integrable. As a practical definition
for quantum integrability, we will use the definition from [46]:
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Definition (Quantum Integrability): A quantum system is said to be quantum inte-
grable if the system exhibits non-diffractive scattering. More concretely, if the three
magnon wavefunction 𝜓(ℓ1, ℓ2, ℓ3) contains a diffractive term and is, therefore, of
the form [47, 48, 46]

𝜓(ℓ1, ℓ2, ℓ3) =
∑︁

ℓ1,ℓ2,ℓ3∈Z
ℓ1<ℓ2<ℓ3

∑︁
𝜎∈𝑆3

𝐴(𝑝𝜎(1) , 𝑝𝜎(2) , 𝑝𝜎(3))𝑒𝑖𝑝𝜎 (1)ℓ1+𝑖𝑝𝜎 (2)ℓ2+𝑖𝑝𝜎 (3)ℓ3

+
∫
𝐾,𝐸3 fixed

𝑑𝑘1𝑑𝑘2𝑑𝑘3 𝐴diff(𝑘1, 𝑘2, 𝑘3)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2+𝑖𝑘3ℓ3 ,

(2.75)

where “𝐾, 𝐸3 fixed” means that the integral is constrained to the manifolds in
momentum space given by 𝐾 = 𝑝1 + 𝑝2 + 𝑝3 = 𝑘1 + 𝑘2 + 𝑘3, and 𝐸3 = 𝐸1(𝑝1) +
𝐸1(𝑝2) + 𝐸1(𝑝3) = 𝐸1(𝑘1) + 𝐸1(𝑘2) + 𝐸1(𝑘3), then the system exhibits diffractive
scattering and is non-integrable. The first term is the usual Bethe ansatz that accounts
for pure two body scattering. The second term accounts for diffractive scattering
processes which are true three-body scattering processes (in the sense that it cannot
be decomposed to two-body scattering processes).

For the above definition, we note that the test for integrability is at the three spin
deviation level since we are testing for true three-body scattering. The two spin
deviation problem is therefore insensitive to integrability and can always be solved
regardless of whether integrability is present. The three spin deviation problem for
the Heisenberg model is completely solved by the ansatz (2.68). It clearly does not
have a diffractive term and is, according to the above definition, quantum integrable.
In addition, note that scattering its incoming set of momenta {𝑝1, 𝑝2, 𝑝3} yields
an outgoing set of momenta that is a permutation of the original set (for example,
{𝑝3, 𝑝2, 𝑝1}). This is due to the existence of a tower of higher conserved charges (for
an explicit construction of these charges, see [49])1. In contrast, a non-integrable
system will have three-body scattering processes that lead to a new set of momenta
{𝑘1, 𝑘2, 𝑘3} (subject to energy and momentum conservation). Note also that the S-
matrices computed using the diffractive coefficient 𝐴diff will not decompose into two-
body S-matrices (when solving in terms of 𝐴(𝑝1, 𝑝2, 𝑝3)) so that a non-integrable
system will not have S-matrix factorization. Finally, we briefly mention that the
question of quantum integrability is more subtle than the classical counterpart. A
detailed discussion on the various definitions for quantum integrability (including
the definition we use for this thesis) is discussed in [20].

1This is also commonly used as a definition of quantum integrability, although one needs to be
careful about the subtleties which are discussed in [20].
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General Solution

Due to the model being integrable, the solution for three magnons generalizes to 𝑟
magnons. The wavefunction is given by [32, 5, 42, 37]

|𝑝1, 𝑝2, ..., 𝑝𝑟⟩ =
∑︁

ℓ1,ℓ2,..,ℓ𝑟∈Z
ℓ1<ℓ2<···<ℓ𝑟

∑︁
𝜎∈𝑆𝑟

𝐴(𝑝𝜎(1) , 𝑝𝜎(2) , ..., 𝑝𝜎(𝑟))𝑒𝑖𝑝𝜎 (1)ℓ1+𝑖𝑝𝜎 (2)ℓ2+...+𝑖𝑝𝜎 (𝑟)ℓ𝑟 .

(2.76)
The system is solved by the Bethe equations with S-matrix factorization(

𝑢 𝑗 + 𝑖
2

𝑢 𝑗 − 𝑖
2

)𝐿
=

𝑟∏
𝑘≠ 𝑗

𝑢 𝑗 − 𝑢𝑘 + 𝑖
𝑢 𝑗 − 𝑢𝑘 − 𝑖

, (2.77)

and with energy eigenvalue

𝐸 (𝑢1, ..., 𝑢𝑟) =
𝑟∑︁
𝑖=1

𝐸 (𝑢𝑖). (2.78)

2.2.3 Example II: Solvable Spin-1 Chain with Diffractive Scattering
In the previous section, we discussed an example of an integrable spin chain model.
In particular, once the two magnon solution was found, integrability implied that
the 𝑟-magnon solution was solved using only two magnon data. In this section, we
study a spin-1 model that, except for two special values of the coupling constant,
is not integrable. Despite the absence of integrability, we can still solve the three
magnon case using the method in [47].

The model

For this section, we will only consider an infinite length spin chain (in other words,
we ignore boundary conditions). The spin-1 Hamiltonian we will consider is given
by [47]

𝐻 =
∑︁
ℓ∈Z

𝐻ℓ,ℓ+1, (2.79)

where the two site Hamiltonian is given by

𝐻ℓ,ℓ+1 = 1 − (Sℓ · Sℓ+1) + 𝐽
(
1 − (Sℓ · Sℓ+1)2

)
. (2.80)

This is an example of the Hamiltonian (2.17), where we have again shifted by the
identity so that the ground state is 𝐸0 = 0. The term linear in (Sℓ · Sℓ+1) is called
dipolar and the quadratic term is called quadrupolar. For 𝐽 = 1, the Hamiltonian
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has an enhanced 𝔰𝔲(3) symmetry (in addition to the 𝔰𝔲(2) symmetry) [47] (see
especially the discussion in [50]).

We again expand in terms of equation (2.15). Then, using our labeling in terms of
the z-axis spin 𝑗 = 1, 0,−1 and looking at two arbitrary sites (ℓ, ℓ + 1), we have the
basis states

| 𝑗1⟩ℓ ⊗ | 𝑗2⟩ℓ+1, 𝑗𝑖 ∈ {1, 0,−1}, 𝑖 = 1, 2, (2.81)

with ground state 𝑗𝑖 = 1, 𝑖 = 1, 2. Notice that we can have two spin deviations
on a single site, unlike the Heisenberg spin chain studied in the previous section.
More precisely, the action of the spin operators 𝑆+

ℓ
, 𝑆−
ℓ

on the ground state is given
by equations (2.24), (2.25) and (2.26)

𝑆+ |1⟩ = 0, 𝑆− |1⟩ =
√

2|0⟩, (𝑆−)2 |1⟩ = 2| − 1⟩, (2.82)

together with
𝑆𝑧
ℓ
| 𝑗⟩ℓ = 𝑗 | 𝑗⟩ℓ, 𝑗 = 1, 0,−1. (2.83)

Then, the two-site Hamiltonian gives [47]

𝐻ℓ,ℓ+1 | ± 1⟩ℓ ⊗ | ± 1⟩ℓ+1 = 0,

𝐻ℓ,ℓ+1 | ± 1⟩ℓ ⊗ |0⟩ℓ+1 = | ± 1⟩ℓ ⊗ |0⟩ℓ+1 − |0⟩ℓ ⊗ | ± 1⟩ℓ+1,

𝐻ℓ,ℓ+1 |0⟩ℓ ⊗ | ± 1⟩ℓ+1 = |0⟩ℓ ⊗ | ± 1⟩ℓ+1 − | ± 1⟩ℓ ⊗ |0⟩ℓ+1,

𝐻ℓ,ℓ+1 |0⟩ℓ ⊗ |0⟩ℓ+1 = (1 − 𝐽)
(
|0⟩ℓ ⊗ |0⟩ℓ+1 − |1⟩ℓ ⊗ | − 1⟩ℓ+1

− | − 1⟩ℓ ⊗ |1⟩ℓ+1
)
,

𝐻ℓ,ℓ+1 | ± 1⟩ℓ ⊗ | ∓ 1⟩ℓ+1 = (2 − 𝐽) | ± 1⟩ℓ ⊗ | ∓ 1⟩ℓ+1 + (𝐽 − 1) |0⟩ℓ ⊗ |0⟩ℓ+1

− 𝐽 | ∓ 1⟩ℓ ⊗ | ± 1⟩ℓ+1.

(2.84)

One Spin Deviation

Similar to the Heisenberg spin chain, we solve the one magnon problem by Fourier
expanding in a coordinate basis. The state is given by [47]

|𝑝⟩ =
∑︁
ℓ∈Z

𝑒𝑖𝑝ℓ |ℓ⟩, (2.85)

where |ℓ⟩ = 𝑆−
ℓ
|0⟩. The one magnon energy is given by

𝐸1(𝑝) = 4 sin2(𝑝/2). (2.86)
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This energy closely matches the Heisenberg spin chain since only the linear term for
Sℓ · Sℓ+1 contributes in the one magnon case (see the second and third equations in
equation (2.84) which closely resemble the analogous equations for the Heisenberg
system).

Two Spin Deviations

For this case, we observe the first significant difference between the spin-1 system
and the spin-1/2 system, namely, the fact that we can have two spin deviations on
the same site ℓ. The ansatz for the wavefunction is [47]

|𝑝1, 𝑝2⟩ =
∑︁
ℓ1,ℓ2∈Z
ℓ1<ℓ2

𝛼(ℓ1, ℓ2) |ℓ1, ℓ2⟩ +
∑︁
ℓ∈Z

𝛽(ℓ) |ℓ, ℓ⟩,
(2.87)

where |ℓ, ℓ⟩ = (𝑆−
ℓ
)2 |0⟩. This is a state called a quadruplon [47].

The non-interacting equations for ℓ2 − ℓ1 > 1 are given by

4𝛼(ℓ1, ℓ2) − 𝛼(ℓ1 − 1, ℓ2) − 𝛼(ℓ1 + 1, ℓ2) − 𝛼(ℓ1, ℓ2 − 1) − 𝛼(ℓ1, ℓ2 + 1)
= 𝐸2(𝑝1, 𝑝2) 𝛼(ℓ1, ℓ2)

(2.88)

For the interacting equations ℓ2 − ℓ1 = 1 and ℓ2 − ℓ1 = 0, we have

(3 − 𝐽)𝛼(ℓ, ℓ + 1) − 𝛼(ℓ − 1, ℓ + 1) − 𝛼(ℓ, ℓ + 2) + (𝐽 − 1) (𝛽(ℓ) + 𝛽(ℓ + 1))
= 𝐸2(𝑝1, 𝑝2) 𝛼(ℓ, ℓ + 1),

2(2 − 𝐽)𝛽(ℓ) − 𝐽 (𝛽(ℓ − 1) + 𝛽(ℓ + 1)) + (𝐽 − 1) (𝛼(ℓ − 1, ℓ) + 𝛼(ℓ, ℓ + 1))
= 𝐸2(𝑝1, 𝑝2) 𝛽(ℓ).

(2.89)
For the special value 𝐽 = 1, which is the special point where 𝐻 has an extra
𝔰𝔲(3) invariance, notice that the system of interacting equations decouple into two
independent systems. The quadruplon state, referred to in [50] as a quadrupole wave,
becomes an eigenstate of the Hamiltonian with 𝛽(𝑝) = exp(𝑖𝐾), 𝐾 = 𝑝1 + 𝑝2, and
energy degenerate with the energy for the one magnon state [47]. For 𝐽 ≠ 1, the
quadruplon is a resonant state.

For 𝐽 ≠ 1, the system of equations can be solved with the ansatz [47]

𝛼(ℓ1, ℓ2) = 𝐴(𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 − 𝐴(𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

𝛽(𝑝1, 𝑝2) = 𝐵(𝑝1, 𝑝2)𝑒𝑖(𝑝1+𝑝2)ℓ
(2.90)
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with energy 𝐸2(𝑝1, 𝑝2) = 𝐸1(𝑝1) + 𝐸1(𝑝2) and

𝐴(𝑥, 𝑦) = 𝑒𝑖𝑦 + 𝑒𝑖(𝑥+2𝑦) − (1 + 𝐽)𝑒2𝑖𝑥 − (1 + 3𝐽)𝑒𝑖(𝑥+𝑦)

+ 𝐽
(
3𝑒𝑖𝑥 + 3𝑒𝑖(2𝑥+𝑦) − 1 − 𝑒2𝑖(𝑥+𝑦)

)
,

𝐵(𝑥, 𝑦) = (1 − 𝐽)
(
𝑒𝑖𝑦 − 𝑒𝑖𝑥

) (
1 + 𝑒𝑖(𝑥+𝑦)

)
.

(2.91)

Following the discussion around quantum integrability (see equation (2.75)), we
note that the two spin deviation case can be solved despite the system not being
integrable (in other words, the two spin deviation case is insensitive to integrability)
[47].

Three Spin Deviations

Due to the quadruplon excitation being a resonance, the quadruplon is unstable.
In particular, it leads to diffractive scattering in the three magnon case (see page
3 of [47]) which means the model is non-integrable according to the definition in
equation (2.75), for which the wavefunction for a general non-integable spin chain
is given by

𝜓(ℓ1, ℓ2, ℓ3) =
∑︁

ℓ1,ℓ2,ℓ3∈Z
ℓ1<ℓ2<ℓ3

∑︁
𝜎∈𝑆3

𝐴(𝑝𝜎(1) , 𝑝𝜎(2) , 𝑝𝜎(3))𝑒𝑖𝑝𝜎 (1)ℓ1+𝑖𝑝𝜎 (2)ℓ2+𝑖𝑝𝜎 (3)ℓ3

+
∫
𝐾,𝐸3 fixed

𝑑𝑘1𝑑𝑘2𝑑𝑘3 𝐴diff(𝑘1, 𝑘2, 𝑘3)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2+𝑖𝑘3ℓ3 .

(2.92)

Interestingly, using the degenerative discrete-diffractive wavefunctions given in [47]
(which is a special case of the non-integable wavefunction above for this spin-1
model), we can still solve the three magnon problem using a discrete and finite set
of terms. In this approach, the above wavefunction can be reduced to the discrete
form

𝜓(ℓ1, ℓ2, ℓ3) =
𝑀∑︁
𝑚=1

∑︁
ℓ1,ℓ2,ℓ3∈Z
ℓ1<ℓ2<ℓ3

∑︁
𝜎∈𝑆3

𝐴
(𝑚)
𝜎(1)𝜎(2)𝜎(3)𝑒

𝑖𝑝
(𝑚)
𝜎 (1)ℓ1+𝑖𝑝

(𝑚)
𝜎 (2)ℓ2+𝑖𝑝

(𝑚)
𝜎 (3)ℓ3 , (2.93)

where we have introduced the compact notation

𝐴
(𝑚)
𝑖 𝑗 𝑘

= 𝐴(𝑚) (𝑝 (𝑚)
𝑖
, 𝑝

(𝑚)
𝑗
, 𝑝

(𝑚)
𝑘

). (2.94)

The parameter𝑚 labels a set of momenta (that is not a permutation of the original set
of momenta) of which there is a finite number 1 < 𝑀 < ∞ (the 𝑀 = 1 case would



31

of course give the original integrable Bethe ansatz). In other words, by adding finite
sets of extra momenta and using the same discrete form for the usual Bethe ansatz,
the three spin deviation case for this system can be solved. Following [47], we will
show that we only need one extra set of momenta to solve the system of equations;
in other words, the total sets of momenta are 𝑀 = 2.

Starting first with an initial set of momenta {𝑝1, 𝑝2, 𝑝3}, the initial ansatz is given
by [47]

|𝑝1, 𝑝2, 𝑝3⟩ =
∑︁

ℓ1,ℓ2,ℓ3∈Z
ℓ1<ℓ2<ℓ3

𝛼(ℓ1, ℓ2, ℓ3) |ℓ1, ℓ2, ℓ3⟩

+
∑︁
ℓ1,ℓ2∈Z
ℓ1<ℓ2

[
𝛽(1) (ℓ1, ℓ2) |ℓ1, ℓ1, ℓ2⟩ + 𝛽(2) (ℓ1, ℓ2) |ℓ1, ℓ2, ℓ2⟩

]
.

(2.95)

Using the compact notation introduced above, the non-interacting equations for
ℓ2 − ℓ1 > 1, ℓ3 − ℓ2 > 1 are given by

6𝛼ℓ1,ℓ2,ℓ3 − 𝛼ℓ1−1,ℓ2,ℓ3 − 𝛼ℓ1+1,ℓ2,ℓ3 − 𝛼ℓ1,ℓ2−1,ℓ3 − 𝛼ℓ1,ℓ2+1,ℓ3 − 𝛼ℓ1,ℓ2,ℓ3−1 − 𝛼ℓ1,ℓ2,ℓ3+1

= 𝐸3 𝛼ℓ1,ℓ2,ℓ3 ,

(2.96)
the two particle interacting equations for |ℓ3 − ℓ | > 1, |ℓ2 − ℓ | > 1 are given by

(5 − 𝐽) 𝛼ℓ−1,ℓ,ℓ3 − 𝛼ℓ−2,ℓ,ℓ3 − 𝛼ℓ−1,ℓ+1,ℓ3 − 𝛼ℓ−1,ℓ,ℓ3−1 − 𝛼ℓ−1,ℓ,ℓ3+1

+ (𝐽 − 1)
(
𝛽
(1)
ℓ−1,ℓ3

+ 𝛽(1)
ℓ,ℓ3

)
= 𝐸3 𝛼ℓ−1,ℓ,ℓ3 ,

(5 − 𝐽) 𝛼ℓ1,ℓ,ℓ+1 − 𝛼ℓ1−1,ℓ,ℓ+1 − 𝛼ℓ1+1,ℓ,ℓ+1 − 𝛼ℓ1,ℓ−1,ℓ+1 − 𝛼ℓ1,ℓ,ℓ+2,

+ (𝐽 − 1)
(
𝛽
(2)
ℓ1,ℓ

+ 𝛽(2)
ℓ1,ℓ+1

)
= 𝐸3 𝛼ℓ1,ℓ,ℓ+1,

2 (3 − 𝐽) 𝛽(1)
ℓ,ℓ3

− 𝛽(1)
ℓ,ℓ3+1 − 𝛽

(1)
ℓ,ℓ3−1 − 𝐽

(
𝛽
(1)
ℓ−1,ℓ3

+ 𝛽(1)
ℓ+1,ℓ3

)
+ (𝐽 − 1)

(
𝛼ℓ,ℓ+1,ℓ3 + 𝛼ℓ−1,ℓ,ℓ3

)
= 𝐸3 𝛽

(1)
ℓ,ℓ3
,

2 (3 − 𝐽) 𝛽(2)
ℓ1,ℓ

− 𝛽(2)
ℓ1−1,ℓ − 𝛽

(2)
ℓ1+1,ℓ − 𝐽

(
𝛽
(2)
ℓ1,ℓ−1 + 𝛽

(2)
ℓ1,ℓ+1

)
+ (𝐽 − 1)

(
𝛼ℓ1,ℓ−1,ℓ + 𝛼ℓ1,ℓ,ℓ+1

)
= 𝐸3 𝛽

(2)
ℓ1,ℓ
,

(2.97)

and, finally, the three particle interacting equations are given by

2 (2 − 𝐽) 𝛼ℓ−1,ℓ,ℓ+1 − 𝛼ℓ−2,ℓ,ℓ+1 − 𝛼ℓ−1,ℓ,ℓ+2

+ (𝐽 − 1)
(
𝛽
(1)
ℓ−1,ℓ+1 + 𝛽

(1)
ℓ,ℓ+1 + 𝛽

(2)
ℓ−1,ℓ + 𝛽

(2)
ℓ−1,ℓ+1

)
= 𝐸3 𝛼ℓ−1,ℓ,ℓ+1,

(2.98)



32

and

(4 − 𝐽) 𝛽(1)
ℓ,ℓ+1 − 𝛽

(1)
ℓ,ℓ+2 − 𝐽𝛽

(1)
ℓ−1,ℓ+1 − 𝛽

(2)
ℓ,ℓ+1 + (𝐽 − 1) 𝛼ℓ−1,ℓ,ℓ+1 = 𝐸3 𝛽

(1)
ℓ,ℓ+1,

(4 − 𝐽) 𝛽(2)
ℓ−1,ℓ − 𝛽

(2)
ℓ−2,ℓ − 𝐽𝛽

(2)
ℓ−1,ℓ+1 − 𝛽

(1)
ℓ−1,ℓ + (𝐽 − 1) 𝛼ℓ−1,ℓ,ℓ+1 = 𝐸3 𝛽

(2)
ℓ−1,ℓ .

(2.99)
We will use the more compact notation in [47] for the terms generated by the action
of the permutation group 𝑆3: we use the completely antisymmetric symbol 𝜖𝑎𝑏𝑐 = 1.
Then, using equation (2.91) and assuming only two-body scattering for the moment
(so that the coefficients factorize), we make the ansatz [47]

𝛼(ℓ1, ℓ2, ℓ3) =
3∑︁

𝑎,𝑏,𝑐=1
𝜖𝑎𝑏𝑐𝐴(𝑝𝑎, 𝑝𝑏)𝐴(𝑝𝑎, 𝑝𝑐)𝐴(𝑝𝑏, 𝑝𝑐)𝑒𝑖𝑝𝑎ℓ1+𝑖𝑝𝑏ℓ2+𝑖𝑝𝑐ℓ3 ,

𝛽(1) (ℓ1, ℓ2) =
1
2

3∑︁
𝑎,𝑏,𝑐=1

𝜖𝑎𝑏𝑐𝐵(𝑝𝑎, 𝑝𝑏)𝐴(𝑝𝑎, 𝑝𝑐)𝐴(𝑝𝑏, 𝑝𝑐)𝑒𝑖(𝑝𝑎+𝑝𝑏)ℓ1+𝑖𝑝𝑐ℓ2 ,

𝛽(2) (ℓ1, ℓ2) =
1
2

3∑︁
𝑎,𝑏,𝑐=1

𝜖𝑎𝑏𝑐𝐴(𝑝𝑎, 𝑝𝑏)𝐴(𝑝𝑎, 𝑝𝑐)𝐵(𝑝𝑏, 𝑝𝑐)𝑒𝑖𝑝𝑎ℓ1+𝑖(𝑝𝑏+𝑝𝑐)ℓ2 .

(2.100)
This solves equations (2.96) - (2.98) with energy eigenvalue 𝐸3(𝑝1, 𝑝2, 𝑝3) =

𝐸1(𝑝1) + 𝐸1(𝑝2) + 𝐸1(𝑝3). However, the ansatz is not a solution of equation (2.99)
as (for 𝐽 ≠ 1) the quadruplons are unstable resonant states that produce diffractive
scattering processes (which are three-body processes).

Despite this, [47] found that one can manipulate equation (2.99) (after substituting
equation (2.100)) to find the equations

𝑋 (1) (𝑝1, 𝑝2, 𝑝3) =
(
1 − 𝐽2

)
𝜙(𝑝1, 𝑝2, 𝑝3)

[
(𝐸3 − 5) 𝑒𝑖𝐾 − 1 + 𝐽

(
2 + 3𝑒𝑖𝐾 + 𝑒2𝑖𝐾

) ]
,

𝑋 (2) (𝑝1, 𝑝2, 𝑝3) =
(
1 − 𝐽2

)
𝜙(𝑝1, 𝑝2, 𝑝3)

[
𝑒𝑖𝐾 − 𝐸3 + 5 − 𝐽

(
3 + 2𝑒𝑖𝐾 + 𝑒−𝑖𝐾

) ]
,

(2.101)
where 𝐾 = 𝑝1 + 𝑝2 + 𝑝3 and

𝜙(𝑝1, 𝑝2, 𝑝3) =
(
𝑒𝑖𝑝1 − 𝑒𝑖𝑝2

) (
𝑒𝑖𝑝2 − 𝑒𝑖𝑝3

) (
𝑒𝑖𝑝3 − 𝑒𝑖𝑝1

) 3∏
𝑗=1

(
1 − 𝑒𝑖𝑝 𝑗

)
. (2.102)

Analysing 𝑋 (𝑖) , 𝑖 = 1, 2, we note that for 𝐽 = 1 the equations vanish and thus we have
no diffractive scattering. For 𝐽 ≠ 1, note that the terms in square brackets consist of
conserved charges𝐾, 𝐸3. The coefficient 𝜙, however, contains no conserved charges.
By using an extra set of momenta {𝑘1, 𝑘2, 𝑘3} subject to the same energy/momentum
constraints and multiplying the Bethe ansatz by an overall factor 𝜙(𝑘1, 𝑘2, 𝑘3) (the
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wavefunctions will still satisfy the other equations), one finds the new equations for
𝑋 (𝑖)

𝑋 (1) (𝑝1, 𝑝2, 𝑝3)

=

(
1 − 𝐽2

)
𝜙(𝑘1, 𝑘2, 𝑘3)𝜙(𝑝1, 𝑝2, 𝑝3)

[
(𝐸3 − 5) 𝑒𝑖𝐾 − 1 + 𝐽

(
2 + 3𝑒𝑖𝐾 + 𝑒2𝑖𝐾

) ]
,

𝑋 (2) (𝑝1, 𝑝2, 𝑝3)

=

(
1 − 𝐽2

)
𝜙(𝑘1, 𝑘2, 𝑘3)𝜙(𝑝1, 𝑝2, 𝑝3)

[
𝑒𝑖𝐾 − 𝐸3 + 5 − 𝐽

(
3 + 2𝑒𝑖𝐾 + 𝑒−𝑖𝐾

) ]
.

(2.103)
Noticing that the two sets of momenta appear symmetrically, we find that the
𝑋 (𝑖) , 𝑖 = 1, 2 equations vanish if we update the wavefunctions to

𝛼(ℓ1, ℓ2, ℓ3) = 𝜙(𝑘1, 𝑘2, 𝑘3)𝛼𝑝1,𝑝2,𝑝3 (ℓ1, ℓ2, ℓ3) − 𝜙(𝑝1, 𝑝2, 𝑝3)𝛼𝑘1,𝑘2,𝑘3 (ℓ1, ℓ2, ℓ3),
𝛽(1) (ℓ1, ℓ2) = 𝜙(𝑘1, 𝑘2, 𝑘3)𝛽(1)𝑝1,𝑝2,𝑝3 (ℓ1, ℓ2) − 𝜙(𝑝1, 𝑝2, 𝑝3)𝛽(1)𝑘1,𝑘2,𝑘3

(ℓ1, ℓ2),

𝛽(2) (ℓ1, ℓ2) = 𝜙(𝑘1, 𝑘2, 𝑘3)𝛽(2)𝑝1,𝑝2,𝑝3 (ℓ1, ℓ2) − 𝜙(𝑝1, 𝑝2, 𝑝3)𝛽(2)𝑘1,𝑘2,𝑘3
(ℓ1, ℓ2),

(2.104)
where the subscripts on 𝛼, 𝛽 mean equation (2.100) with the indicated set of mo-
menta.

Thus, despite the absence of integrability, we can solve the system of equations for
three spin deviations. However, unlike the integrable Heisenberg model which is
completely solved using two magnon data, the four spin deviation problem (and the
more general r spin deviation problem) will need to be solved in its own right (see
the discussion in [47]).

2.2.4 Alternating-Spin/Alternating-Bond Spin Chains
In this section, we state the alternating-spin/alternating-bond chain model, which
is a generalization of the Hamiltonian in equation (2.17). The models we consider
were studied in [51, 52] (see also [53, 54]).

We start by dividing the spin chain into even and odd-valued sublattices. To introduce
alternating spin representations, we assume that even-valued sites host the spin-𝑆′

representation and odd-valued sites host the spin-𝑆 representation. In this case,
the polynomial can be expanded to order 𝑑 = min(𝑆′, 𝑆). Similar to [51], we will
assume without loss of generality that 𝑆′ ≤ 𝑆. Then, depending on whether the sites
are even-odd (eo) or odd-even (oe), the two site Hamiltonian becomes

𝐻eo
2ℓ,2ℓ+1 = −

2𝑆′∑︁
𝑝=1

𝐽 (𝑝) (S′
2ℓ · S2ℓ+1)𝑝, 𝐻oe

2ℓ+1,2ℓ+2 = −
2𝑆′∑︁
𝑝=1

𝐽 (𝑝) (S2ℓ+1 · S′
2ℓ+2)𝑝,

(2.105)
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where we have emphasised the even/odd sublattices in the lattice coordinates. Fur-
thermore, one may deform the spin chain through the spin couplings by introducing
couplings 𝐽 (𝑝)1 and 𝐽 (𝑝)2 , thus leading to an alternating-spin/alternating-bond spin
chain

𝐻eo
2ℓ,2ℓ+1 = −

2𝑆′∑︁
𝑝=1

𝐽
(𝑝)
1 (S′

2ℓ · S2ℓ+1)𝑝, 𝐻oe
2ℓ+1,2ℓ+2 = −

2𝑆′∑︁
𝑝=1

𝐽
(𝑝)
2 (S2ℓ+1 · S′

2ℓ+2)𝑝 .

(2.106)
Assuming the length 𝐿 of the spin chain to be an even integer 𝐿 ∈ 2Z, the total
Hamiltonian for the model is given by

𝐻 =

𝐿/2∑︁
ℓ=1

[
𝐻eo

2ℓ,2ℓ+1 + 𝐻
oe
2ℓ+1,2ℓ+2

]
= −

𝐿/2∑︁
ℓ=1

2𝑆′∑︁
𝑝=1

[
𝐽
(𝑝)
1 (S′

2ℓ · S2ℓ+1)𝑝 + 𝐽 (𝑝)2 (S2ℓ+1 · S′
2ℓ+2)𝑝

]
.

(2.107)

In Chapter 3,4 of this thesis, we will solve this type of model up to the two magnon
case using the methods of [51, 52].

2.3 Integrable Spin Chains in Planar N = 4 Super Yang-Mills Theory
In this section, we briefly demonstrate how spin chains arise in planar N = 4 super
Yang-Mills (SYM) theory. We only consider single trace operators constructed out
of scalar fields in the N = 4 supermultiplet in the large-𝑁 (planar) limit.

As we will argue, the problem of computing anomalous dimensions is transformed to
the problem of diagonalising a mixing matrix (with eigenvalues being the anomalous
dimensions). The problem is considerably complicated by the fact that the operators
mix under the action of the mixing matrix and the space of operators grows very
large. However, the discovery of integrability in [5] (through mapping the mixing
matrix to the integrable Heisenberg ferromagnetic Hamiltonian) for a small closed
subsector of the theory, made the problem solvable by spin chain methods.

Field Content

The field content of N = 4 SYM belongs to the vector supermultiplet B
1
2 ,

1
2

[0,1,0]
described in Section 2.1.1. Using the notation [𝑝, 𝑞, 𝑟] ( 𝑗 , 𝑗) (recall that [𝑝, 𝑞, 𝑟] is
the 𝔰𝔲(4)𝑅 Dynkin labels), the highest weight state has labels [0, 1, 0] (0,0) . The
Dynkin label [0, 1, 0] is the antisymmetric selfdual 6 of 𝔰𝔲(4)𝑅 or the fundamental
of 𝔰𝔬(6). Thus, the highest weight state is given by six real scalars 𝜙𝐼 , 𝐼 = 4, ..., 9
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(we choose this numbering to align with [18] and the discussion in Section 2.4).
Acting with the supergenerators Q, Q̄, one may generate the remaining states in
the supermultiplet (see page 37-38 of [33]). Acting once with the supergenerators
yields the two descendant states [1, 0, 0] ( 1

2 ,0)
and [0, 0, 1] (0, 12 ) . The Dynkin label

[1, 0, 0] is the fundamental 4 of 𝔰𝔲(4)𝑅 and [0, 0, 1] is the antifundamental 4̄ of
𝔰𝔲(4)𝑅. Thus, [1, 0, 0] ( 1

2 ,0)
is a left-moving Weyl fermion 𝜓𝐴𝛼 and [0, 0, 1] (0, 12 ) is a

right-moving Weyl fermion 𝜓̄𝐴 ¤𝛼, where 𝐴 = 1, .., 4. Finally, acting once more with
the supergenerators, one obtains the descendants [0, 0, 0] (1,0) and [0, 0, 0] (0,1) . This
is the well-known decomposition of the antisymmetric field strength tensor 𝐹𝜇𝜈 into
its selfdual and anti-selfdual parts 𝐹𝛼𝛽 and 𝐹̄¤𝛼 ¤𝛽 (see, for example, the discussion on
page 41 of [55]). It is a scalar field with respect to the R-symmetry and contains the
gauge field 𝐴𝜇. Finally, although not needed for this thesis, we mention that B

1
2 ,

1
2

[0,1,0]
also includes an arbitrary number of covariant derivatives D𝛼 ¤𝛼 [28]. In summary,
the field content for N = 4 SYM is given by the set

𝑉N=4 = {𝜙𝐼 , 𝜓𝐴𝛼, 𝜓̄𝐴 ¤𝛼, 𝐹𝛼𝛽, 𝐹̄¤𝛼 ¤𝛽}, 𝐼 = 4, ..., 9, 𝐴 = 1, ..., 4, (2.108)

and one may act with an arbitrary number 𝑛 ∈ N covariant derivatives D𝑛 [𝑉N=4].
All fields in the supermultiplet are in the adjoint representation of the gauge group
𝑆𝑈 (𝑁); in other words, for any field 𝜒 ∈ 𝑉N=4,

𝜒 = 𝜒𝑎𝑏 = 𝜒
𝑚 (𝑇𝑚)𝑎𝑏, 𝑎, 𝑏 = 1, ..., 𝑁, 𝜒𝑚 ∈ C, (2.109)

where 𝑇𝑚, 𝑚 = 1, ..., 𝑁2 − 1, are the traceless hermitian generators of 𝔰𝔲(𝑁). In
particular, note that

(𝜒𝑎𝑏)
† = 𝜒̄𝑏𝑎 = 𝜒̄

𝑚 (𝑇𝑚)𝑏𝑎 . (2.110)

Correlation Functions of Scalar Operators

We consider the problem of computing the anomalous dimensions of scalar operators
in the theory. Observables are constructed out of single or multitrace trace operators
(the trace is taken over the gauge indices and ensures gauge invariance) through the
fields in 𝑉N=4. For example, one may construct the following single trace scalar
operator consisting of a linear combination of 𝐿 scalar fields inserted at a spacetime
point 𝑥 as follows

O𝐼1𝐼2···𝐼𝐿 (𝑥) = 𝜒𝐼1𝐼2···𝐼𝐿Tr(𝜙𝐼1𝜙𝐼2 · · · 𝜙𝐼𝐿 ) (𝑥), (2.111)

where the coefficient 𝜒𝐼1𝐼2···𝐼𝐿 is a totally symmetric traceless rank-L tensor of 𝔰𝔬(6).
Multitrace operators are constructed through products of traces but, since we are
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considering the planar (large-N) limit, these multitrace sectors decouple from the
theory and therefore do not contribute to single trace operator correlators.

To compute the conformal dimension Δ of O𝐼1𝐼2···𝐼𝐿 , we observe that it appears
explicitly in the two-point correlator of the single trace operator with itself (the
spacetime dependence part is completely fixed by conformal symmetry, see [56])

⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩ ∼ 1
|𝑥 − 𝑦 |2Δ

, (2.112)

where we have used (O𝐽1𝐽2···𝐽𝐿 )† = Ō𝐽1𝐽2···𝐽𝐿 with the gauge indices transforming as
in equation (2.110).

The scaling dimension Δ picks up corrective terms when quantum interactions are
turned on; more precisely, Δ = Δ0 + 𝛾(𝜆) where Δ0 is the classical (non-quantum)
scaling dimension of the field and 𝛾(𝜆) is the corrective factor called the anomalous
dimension. The coupling 𝜆 is the well-known ’t Hooft coupling [57]

𝜆 = 𝑔2
𝑌𝑀𝑁, (2.113)

which is kept fixed for
𝑁 → ∞, 𝑔YM → 0. (2.114)

Here, 𝑔YM is the Yang-Mills coupling. For 𝜆 << 1, the anomalous dimension can be
determined perturbatively. In this section, we will determine 𝛾(𝜆) to first (one-loop)
order.

It is insightful to first consider an example (we will follow [43, 35, 58, 7]). This
example also allows us to introduce a convenient Feynman diagram approach for
the large-N limit in which only planar diagrams survive. We start by combining the
six scalar fields 𝜙𝐼 in the vector supermultiplet of N = 4 into the following scalar
fields (and their complex conjugates) [43]

𝑍 =
1
√

2

(
𝜙4 + 𝑖𝜙5

)
, 𝑋 =

1
√

2

(
𝜙6 + 𝑖𝜙7

)
, 𝑌 =

1
√

2

(
𝜙8 + 𝑖𝜙9

)
. (2.115)

In 𝑑 = 4, each scalar field hasΔ = 1 and is, of course, spinless. In terms of the Cartan
charges (Δ, 𝑗 , 𝑗 ; 𝐽1, 𝐽2, 𝐽3) (Δ is the scaling dimension, 𝑗 , 𝑗 is the Lorentz charges
and (𝐽1, 𝐽2, 𝐽3) is the R-charges of the Cartan subalgebra of 𝔰𝔲(4)𝑅 2). Thus, 𝑍 has

2To be explicitly clear, we will use parentheses for the Cartan charges (which can be half-integer
valued) and brackets for the Dynkin labels (which are integer valued)
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labels (1, 0, 0; 1, 0, 0), 𝑋 has labels (1, 0, 0; 0, 1, 0) and 𝑌 has labels (1, 0, 0; 0, 0, 1).
Then, the length 𝐿 single trace operator (𝐿 ≥ 2 since Tr(𝑍) = 0)

O(𝑥) = Tr (𝑍𝑍 · · · 𝑍) (𝑥), (2.116)

has Cartan labels (𝐿, 0, 0; 𝐿, 0, 0) or, equivalently, Δ = 𝐽1 = 𝐿. It is an example
of a chiral operator or 1/2-BPS operator as it is the highest weight state in the
supermultiplet B

1
2 ,

1
2

[0,𝑝,0] with 𝑝 = 𝐿. As mentioned in Section 2.1.1, its conformal
dimension Δ is fixed by supersymmetry to be Δ = 𝑝 and thus, when considering the
interacting theory, does not receive corrective terms (anomalous dimensions).

We will use the following two-point correlator [43] (see also [56])

⟨𝑍𝑎𝑏 (𝑥) 𝑍̄
𝑐
𝑑 (𝑦)⟩ =

𝛿𝑎
𝑑
𝛿 𝑐
𝑏

4𝜋2 |𝑥 − 𝑦 |2
, (2.117)

with spatial dependence determined completely by conformal symmetry. We nor-
malize the above chiral operator as follows

O𝐶 (𝑥) =
(4𝜋2)𝐿/2
√
𝐿𝑁𝐿/2

Tr(𝑍𝐿). (2.118)

We consider the case when 𝐿 = 3 (the following arguments can easily be generalized
to 𝐿). We find the following correlator

⟨O𝐶 (𝑥)O𝐶 (𝑦)†⟩ =
(4𝜋2)3

3𝑁3 ⟨
(
𝑍𝑎𝑏𝑍

𝑏
𝑐𝑍

𝑐
𝑎

)
(𝑥)

(
𝑍𝑎

′

𝑏′𝑍
𝑏′
𝑐′𝑍

𝑐′
𝑎′

)†
(𝑦)⟩

=
(4𝜋2)3

3𝑁3 ⟨𝑍𝑎𝑏𝑍
𝑏
𝑐𝑍

𝑐
𝑎 𝑍̄

𝑎′
𝑐′ 𝑍̄

𝑐′

𝑏′ 𝑍̄
𝑏′
𝑎′⟩,

(2.119)

where in the last line we suppressed the spacetime dependence. The correlator can
be decomposed into two-point correlators using Wick contractions. However, in the
large-N limit, not all of these terms will survive.

A useful diagrammatic approach is to use fat Feynman graphs where the gauge
indices for the matrix fields are made explicit in the Feynman diagram (similar to
[57]). The two-point correlator in equation (2.117) is represented by Figure 2.4
below.
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𝑑 

𝑏   

𝑐   

𝑎   

Figure 2.4: The two-point correlator. The upper index flows away from the operator
and the lower index flows towards the operator.

There are six diagrams since there are 3! Wick contractions. Two of these diagrams
are presented in Figure 2.5. Observe that Figure 2.5(a) has three closed loops. This
translates to the following terms for the gauge indices

⟨𝑍𝑎𝑏𝑍
𝑏
𝑐𝑍

𝑐
𝑎 𝑍̄

𝑎′

𝑐′ 𝑍̄
𝑐′

𝑏′ 𝑍̄
𝑏′

𝑎′⟩ → 𝛿𝑎𝑎′𝛿
𝑏′

𝑏 𝛿
𝑏
𝑏′𝛿

𝑐′
𝑐 𝛿

𝑐
𝑐′𝛿

𝑎′
𝑎

= 𝑁3.

(2.120)

In other words, each closed loop contributes a factor of 𝑁 . In contrast, Figure 2.5(b)
only has one closed loop which matches the Wick contraction

⟨𝑍𝑎𝑏𝑍
𝑏
𝑐𝑍

𝑐
𝑎 𝑍̄

𝑎′

𝑐′ 𝑍̄
𝑐′

𝑏′ 𝑍̄
𝑏′

𝑎′⟩ → 𝛿𝑎𝑎′𝛿
𝑏′

𝑏 𝛿
𝑏
𝑐′𝛿

𝑎′
𝑐 𝛿

𝑐
𝑏′𝛿

𝑐′
𝑎

= 𝑁.

(2.121)

Observe that Figure 2.5(a) is planar and Figure 2.5(b) is non-planar.

𝑎′ 𝑎′

𝑎 𝑎

𝑏′𝑏′

𝑏𝑏

𝑐′𝑐′

𝑐𝑐

(a)

 

𝑎′ 𝑎′𝑏′𝑏′

𝑏𝑏𝑎 𝑎

𝑐′𝑐′

𝑐𝑐

(b)

Figure 2.5: Examples of Feynman graphs for the case L=3. (a) Planar diagram, (b)
non-planar diagram.

The non-planar diagram contributes to the overall correlator a term with 1/𝑁2 which
is subleading in the large-N limit. Thus, we ignore all non-planar diagrams. In total,
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by shifting each connecting arm in the diagram by one site, there are three planar
diagrams of order 𝑁3. Inserting these results back into the correlator and adding the
spacetime dependence (see equation (2.117)), we find that the correlator reduces to

⟨O𝐶 (𝑥)O𝐶 (𝑦)†⟩ =
1

|𝑥 − 𝑦 |6
, for 𝑁 −→ ∞. (2.122)

The result easily generalizes to a string of 𝐿 Z-fields [43]

⟨O𝐶 (𝑥)O𝐶 (𝑦)†⟩ =
𝐿𝑁𝐿

(
√
𝐿𝑁𝐿/2)2 |𝑥 − 𝑦 |2𝐿

=
1

|𝑥 − 𝑦 |2𝐿
.

(2.123)

We note that the factor
√
𝐿 in equation (2.118) counts the number of planar diagrams

(which was 3 in the 𝐿 = 3 example). Importantly, note that supersymmetry protects
the conformal dimension of this special operator to all loop orders in the perturbative
analysis.

We return to the general operator written in equation (2.111) but we normalize it as
follows

O𝐼1𝐼2···𝐼𝐿 (𝑥) =
(4𝜋)𝐿/2√︁

𝐶𝐼1𝐼2···𝐼𝐿𝑁
𝐿/2

Tr(𝜙𝐼1𝜙𝐼2 · · · 𝜙𝐼𝐿 ) (𝑥), (2.124)

where the 𝔰𝔬(6) tensor 𝐶𝐼1𝐼2···𝐼𝐿 is totally symmetric and traceless (it generalizes
the factor

√
𝐿 in equation (2.118)). It takes the maximal value 𝑛 if the indices are

invariant under shifts by 𝐿/𝑛; in particular, if all the indices satisfy 𝐼1 = 𝐼2 = · · · = 𝐼𝐿
and are invariant under shifts by 1, so that 𝑛 = 𝐿, we recover the normalization in
equation (2.118) [43, 35]. Generally, these operators do have anomalous dimensions
added to their classical conformal dimensions. We therefore consider the problem
of computing the anomalous dimension. Since we are only considering scalar
operators, we only need to consider the bosonic part of the N = 4 SYM action,
which is given by [43]

𝑆N=4 =
1

2𝑔2
𝑌𝑀

∫
𝑑4𝑥

(
− 1

2
Tr𝐹2 + TrD𝜇𝜙𝐼D𝜇𝜙𝐼 − 1

2
Tr[𝜙𝐼 , 𝜙𝐽]2

+ fermions
)
.

(2.125)

We examine, in particular, the quartic scalar interaction term (in terms of the R-
symmetry, we will argue that the other interaction terms only contribute terms
proportional to the identity; the proportionality constant can be fixed by using our
knowledge of representation theory). Rescaling the fields by absorbing a factor of
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𝑔YM, the quartic interaction term (which we represent with the symbol K) can be
expanded as

K(𝑥) =
𝑔2

YM
4

∑︁
𝐼,𝐽

(Tr(𝜙𝐼𝜙𝐼𝜙𝐽𝜙𝐽) (𝑥) − Tr(𝜙𝐼𝜙𝐽𝜙𝐼𝜙𝐽) (𝑥)) . (2.126)

We can represent these interaction terms as a vertex with four connections. For
example, the first term in K(𝑥) can be represented as in Figure 2.6.

Figure 2.6: Four vertex diagram for the first term in K (the second term is similar).

Then, inserting these terms into the correlator, we can use the Feynman diagram
approach from our example to compute the Wick contractions in the planar limit.
We will calculate the one-loop (first order) correction to the two-point correlator in
the planar limit

⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩
≈ ⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩(0) + ⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩(1) ,

(2.127)

where the subscript (0) indicates zero-order/tree-level and (1) indicates the first-
order/one-loop correction. The tree-level correlator is given by

⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩(0)

=
1

𝐶𝐼1𝐼2···𝐼𝐿

(
𝛿
𝐽1
𝐼1
𝛿
𝐽2
𝐼2

· · · 𝛿 𝐽𝐿
𝐼𝐿

+ cycles
) 1
|𝑥 − 𝑦 |2𝐿

.
(2.128)

The first term with the delta symbols is the generalized version of Figure 2.5. The
term cycles means all shifts of the connecting arms by one site (which is the other
possible planar diagrams). This will, for example, give the term 𝛿

𝐽2
𝐼1
𝛿
𝐽3
𝐼2

· · · 𝛿 𝐽1
𝐼𝐿

(and
similar for the other terms).

The one-loop correlator is computed the same as the tree level correlator, except for
the insertion of the two vertices given by K(𝑧)

⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩(1)

= ⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)
(
𝑖

∫
𝑑4𝑧 K(𝑧)

)
Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩(0) .

(2.129)
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Following [43], we consider the subcorrelator

⟨(𝜙𝐼𝑘𝜙𝐼𝑘+1)𝑎𝑐 (𝑥) 𝑖
∫

𝑑4𝑧 K(𝑧) (𝜙𝐽𝑘+1𝜙𝐽𝑘 )𝑐′𝑎′ (𝑦)⟩. (2.130)

In Figure 2.7, we show the Feynman diagram with one of the terms from the scalar
vertex K inserted (we suppressed the gauge indices).

Figure 2.7: A term from the scalar vertex K inserted into the subcorrelator. The
open ends of the diagram illustrate the fact that we are only considering a section
of the entire Feynman diagram.

For both terms inK, there are two closed color loops in each diagram which therefore
contributes a factor of 𝑁2. For the first term, given by the vertex in Figure 2.6, the
R-symmetry indices flow as 𝛿𝐼𝑘 𝐼𝛿𝐼𝑘+1𝐼𝛿

𝐽𝑘
𝐽
𝛿
𝐽𝑘+1
𝐽

= 𝛿𝐼𝑘 𝐼𝑘+1𝛿
𝐽𝑘𝐽𝑘+1 . In the same manner

and by rotating the vertex, we obtain three more terms to find a total contribution

2𝑁2𝛿𝑎𝑎′𝛿
𝑐′
𝑐 𝛿𝐼𝑘 𝐼𝑘+1𝛿

𝐽𝑘𝐽𝑘+1 + 2𝑁2𝛿𝑎𝑎′𝛿
𝑐′
𝑐 𝛿

𝐽𝑘
𝐼𝑘
𝛿
𝐽𝑘+1
𝐼𝑘+1

. (2.131)

The vertex for the second term (which has the same diagram as Figure 2.6 except for
the R-symmetry indices) works identically the same and gives the total contribution

4𝑁2𝛿𝑎𝑎′𝛿
𝑐′
𝑐 𝛿𝐼𝑘 𝐼𝛿𝐼𝑘+1𝐽𝛿

𝐽𝑘
𝐽
𝛿
𝐽𝑘+1
𝐼

= 4𝑁2𝛿𝑎𝑎′𝛿
𝑐′
𝑐 𝛿

𝐽𝑘+1
𝐼𝑘

𝛿
𝐽𝑘
𝐼𝑘+1
. (2.132)

Importantly, notice that the scalar vertex can only connect nearest-neighbour sites
since next-to-nearest-neighbour sites, say, will lead to a non-planar diagram.

Using equation (2.117) (there are four propagators in Figure 2.7), the subcorrelator
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is thus given by [43]

⟨(𝜙𝐼𝑘𝜙𝐼𝑘+1)𝑎𝑐 (𝑥) 𝑖
∫

𝑑4𝑧 K(𝑧) (𝜙𝐽𝑘+1𝜙𝐽𝑘 )𝑐′𝑎′ (𝑦)⟩

= 𝑖
𝑁

(4𝜋2)4 𝛿
𝑎
𝑎′𝛿

𝑐′
𝑐

𝑔2
𝑌𝑀
𝑁

4

(
2𝛿𝐼𝑘 𝐼𝑘+1𝛿

𝐽𝑘𝐽𝑘+1 + 2𝛿 𝐽𝑘
𝐼𝑘
𝛿
𝐽𝑘+1
𝐼𝑘+1

− 4𝛿 𝐽𝑘+1
𝐼𝑘

𝛿
𝐽𝑘
𝐼𝑘+1

)
×

∫
𝑑4𝑧

|𝑧 − 𝑥 |4 |𝑧 − 𝑦 |4
.

(2.133)

The integral over 𝑧 remains to be determined for the subcorrelator. Following [43],
we note that the integral is logarithmically divergent for 𝑧 → 𝑥 and 𝑧 → 𝑦 and it is
therefore required to regularize the integral by adding a UV cutoff Λ (for long range
𝑧 → ∞, the integral is well behaved and therefore free of IR divergences). We also
Wick rotate from Minkowski space to Euclidean space 𝑑4𝑧 → 𝑖𝑑4𝑧𝐸 . The integral
is restricted to |𝑧𝐸 − 𝑥 | ≤ Λ−1, |𝑧𝐸 − 𝑦 | ≤ Λ−1 and is dominated by regions near the
cutoff Λ. It can be approximated to [43]

𝑖

∫
𝑑4𝑧𝐸

|𝑧 − 𝑥 |4 |𝑧 − 𝑦 |4
≈ 2𝑖

|𝑥 − 𝑦 |4

∫ |𝑥−𝑦 |

Λ−1

𝑑4𝜌 𝑑Ω3

𝜌

=
2𝜋2𝑖

|𝑥 − 𝑦 |4
ln

(
Λ2 |𝑥 − 𝑦 |2

)
.

(2.134)

Thus, using the ’t Hooft coupling 𝜆, the subcorrelator reduces to

⟨(𝜙𝐼𝑘𝜙𝐼𝑘+1)𝑎𝑐 (𝑥) 𝑖
∫

𝑑4𝑧 K(𝑧) (𝜙𝐽𝑘+1𝜙𝐽𝑘 )𝑐′𝑎′ (𝑦)⟩

=
𝑁𝛿𝑎

𝑎′𝛿
𝑐′
𝑐

(4𝜋2)2 |𝑥 − 𝑦 |4
𝜆

16𝜋2

(
2𝛿 𝐽𝑘+1

𝐼𝑘
𝛿
𝐽𝑘
𝐼𝑘+1

− 𝛿𝐼𝑘 𝐼𝑘+1𝛿
𝐽𝑘𝐽𝑘+1 − 𝛿 𝐽𝑘

𝐼𝑘
𝛿
𝐽𝑘+1
𝐼𝑘+1

)
× ln

(
Λ2 |𝑥 − 𝑦 |2

)
.

(2.135)

Notice that the first term with delta symbols is a permutation term and the second
term is a trace term (the third term is, of course, an identity term). As in [43], we
therefore find the one-loop correlator contribution

⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩(1) =
𝜆

16𝜋2
ln

(
Λ2 |𝑥 − 𝑦 |2

)
|𝑥 − 𝑦 |2𝐿

×
𝐿∑︁
ℓ=1

(
2𝑃ℓ,ℓ+1 − 𝐾ℓ,ℓ+1 − 1 + 𝐶

) 1√︁
𝐶𝐼1𝐼2···𝐼𝐿𝐶𝐽1𝐽2···𝐽𝐿

𝛿
𝐽1
𝐼1
𝛿
𝐽2
𝐼2

· · · 𝛿 𝐽𝐿
𝐼𝐿

+ cycles,

(2.136)

where we have defined the nearest-neighbour permutation operator 𝑃ℓ,ℓ+1 which acts
on sites ℓ, ℓ + 1 and trivially elsewhere [43]

𝑃ℓ,ℓ+1𝛿
𝐽1
𝐼1
𝛿
𝐽2
𝐼2

· · · 𝛿 𝐽ℓ
𝐼ℓ
𝛿
𝐽ℓ+1
𝐼ℓ+1

· · · 𝛿 𝐽𝐿
𝐼𝐿

= 𝛿
𝐽1
𝐼1
𝛿
𝐽2
𝐼2

· · · 𝛿 𝐽ℓ+1
𝐼ℓ

𝛿
𝐽ℓ
𝐼ℓ+1

· · · 𝛿 𝐽𝐿
𝐼𝐿
, (2.137)
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and the nearest-neighbour trace operator 𝐾ℓ,ℓ+1 as [43]

𝐾ℓ,ℓ+1𝛿
𝐽1
𝐼1
𝛿
𝐽2
𝐼2

· · · 𝛿 𝐽ℓ
𝐼ℓ
𝛿
𝐽ℓ+1
𝐼ℓ+1

· · · 𝛿 𝐽𝐿
𝐼𝐿

= 𝛿
𝐽1
𝐼1
𝛿
𝐽2
𝐼2

· · · 𝛿𝐼ℓ 𝐼ℓ+1𝛿
𝐽ℓ 𝐽ℓ+1 · · · 𝛿 𝐽𝐿

𝐼𝐿
. (2.138)

As in [43], we have added an extra constant term 𝐶 (in other words, a term propor-
tional to the identity). This accounts for the other interacting terms from the action
that contribute and is shown in Diagram (2.8) (we have suppressed the double-line
notation).

(a) (b) (c)

Figure 2.8: The remaining one-loop contributions from the N = 4 SYM action. (a)
Gluon exchange, (b) scalar self-energy from a gluon and (c) scalar self-energy from
a fermion loop.

For (a) and (b) (which displays gluon exchange and scalar self-energy from a gluon,
respectively), we know that the gauge field 𝐴𝜇 is not charged under 𝔰𝔲(4)𝑅 (see the
discussion about the field content at the beginning of this section) and thus does not
affect the incoming-to-outgoing R-symmetry indices (in other words, it contributes a
term proportional to the identity). Finally, for (c) (which displays scalar self-energy
from a fermion loop), the contribution is again proportional to the identity since the
fermion loop involves only one scalar and R-charge conservation (thus, leading to
the contribution 𝛿𝐽𝑘

𝐼𝑘
for site 𝑘). The constant 𝐶 will be fixed when we consider the

𝔰𝔲(2) closed subsector (see equation (2.141)).

In total, adding the tree-level correlator and the one-loop correlator, we find [43]

⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩
≈ ⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩(0) + ⟨O𝐼1𝐼2···𝐼𝐿 (𝑥)Ō𝐽1𝐽2···𝐽𝐿 (𝑦)⟩(1)

=
1

|𝑥 − 𝑦 |2𝐿

(
1 − 𝜆

16𝜋2 ln
(
Λ2 |𝑥 − 𝑦 |2

)
×

𝐿∑︁
ℓ=1

(
𝐶 − 1 − 2𝑃ℓ,ℓ+1 + 𝐾ℓ,ℓ+1

)
𝛿
𝐽1
𝐼1
𝛿
𝐽2
𝐼2

· · · 𝛿 𝐽𝐿
𝐼𝐿

)
+ cycles

=
1

|𝑥 − 𝑦 |2𝐿
(
1 − ln

(
Λ2 |𝑥 − 𝑦 |2

)
Γ 𝛿

𝐽1
𝐼1
𝛿
𝐽2
𝐼2

· · · 𝛿 𝐽𝐿
𝐼𝐿

)
+ cycles,

(2.139)
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where we have defined the one-loop mixing matrix Γ [43]

Γ =
𝜆

16𝜋2

𝐿∑︁
ℓ=1

(
𝐶 − 1 − 2𝑃ℓ,ℓ+1 + 𝐾ℓ,ℓ+1

)
, (2.140)

with the constant 𝐶 to still be determined. The anomalous dimensions at one-loop
are determined by diagonalizing the mixing matrix Γ.

Closed 𝔰𝔲(2) Subsector and Spin Chain Identification

For a given length 𝐿 spin chain, the vector space spanned by basis states that
diagonalise Γ can be enormous (due to operator mixing) and, thus, a difficult linear
algebra problem. However, starting with the insights of [5] and the discovery of
integrability, the diagonalisation problem becomes much more tractable.

We consider a closed subsector 𝔰𝔲(2) ⊂ 𝔰𝔲(4)𝑅 which is constructed out of the
doublet {𝑍, 𝑋}. By closed, we mean the following: we consider single trace
operators constructed out of strings of 𝑍 and 𝑋 fields. For a single trace operator
Tr(𝑍𝐿−𝑀𝑋𝑀), we have the Cartan charges (𝐿, 0, 0; 𝐿−𝑀, 𝑀, 0) (see the discussion
around equation (2.115)). The action of Γ preserves these charges and can only mix
single trace operators constructed out of 𝑍, 𝑋 fields, up to reshuffled combinations,
with the same charges.

We consider again a length 𝐿 single trace chiral operator O𝐶 made out of a string
of 𝑍-fields as in equation (2.118). From our previous arguments, we know that this
operator’s scalar dimension Δ = 𝐿 is protected by supersymmetry from correction
terms (since it is the highest weight state of B

1
2 ,

1
2

[0,𝐿,0]); in other words, this operator
does not have an anomalous dimension and is, therefore, an eigenstate of Γ (with
eigenvalue 0). For a string of 𝑍-fields, the action of the permutation operator is
𝑃ℓ,ℓ+1O𝐶 = O𝐶 and the action of the trace operator is 𝐾ℓ,ℓ+1O𝐶 = 0 (since there are
no conjugate fields in this subsector). Thus,

Γ O𝐶 =
𝜆

16𝜋2

𝐿∑︁
ℓ=1

(1 − 𝐶 − 2) O𝐶 = 0

⇒ 𝐶 = −1.

(2.141)

This fixes 𝐶 in equation (2.140). For this subsector then, the mixing matrix reduces
to [5, 43]

Γ =
𝜆

8𝜋2

𝐿∑︁
ℓ=1

(
1 − 𝑃ℓ,ℓ+1

)
. (2.142)
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The insight from [5] is that we can precisely match this with the spin-1/2 Heisenberg
ferromagnetic spin chain model; more precisely, we identify Γ with the Hamiltonian
in equation (2.28) (see in particular equation (2.39)) with 𝐽/2 = 𝜆/(8𝜋2) ⇒ 𝐽 =

𝜆/(4𝜋2).

For the spin deviations, we identify the chiral primary operator O𝐶 with the spin-1/2
ground state in equation (2.32) and 𝑍 =↑. Spin deviations are introduced by 𝑋 =↓.
For example,

Tr(𝑍𝑍𝑍𝑋𝑍𝑍𝑍𝑋𝑍) ↦→ | ↑↑↑↓↑↑↑↓↑⟩. (2.143)

The 𝑟-spin deviation problem for this model is solved using the methods shown in
Section 2.2.2. The 𝔰𝔲(2) subsector is thus planar integrable at one-loop.

In fact, for N = 4 SYM, planar integrability extends to the full scalar sector [6]
as well as to higher loop orders [7, 59, 60]. From this viewpoint, it is interesting
to understand what happens in more general theories, especially theories with less
supersymmetry.

2.4 N = 2 Quiver Gauge Theory
In this section, we discuss the class of N = 2 theories which arise as an orbifold of
N = 4 SYM. In particular, we will use the discrete abelian group Z2 to reduce the
supersymmetry from N = 4 to N = 2. The orbifold procedure also has an action
inside the gauge group which leads to a product of gauge groups [12]. Furthermore,
the corresponding two gauge couplings, which can be collected into a deformation
parameter 𝜅, can be deformed without breaking the conformal symmetry of the
theory. We thus obtain a one-parameter family of N = 2 theories that can be
marginally deformed.

We also derive the one-loop Hamiltonian for two closed scalar subsectors. For the
spin chains studied in this thesis, it will be most convenient to work in the “upstairs”
picture using the N = 4 chiral fields. The Hamiltonian in the “downstairs” picture
using the N = 2 orbifold projected fields is discussed in detail in Appendix B.

2.4.1 N = 2 Quiver Theory from Z2 Orbifold of N = 4 SYM
In Section 2.3, we discussed the field content for N = 4 SYM. For this section, we
will follow the discussion in [18, 61]. We will also use their notation 𝑋𝐼 , 𝐼 = 4, ..., 9
to represent the six real scalar fields. The symbol 𝜙 will be used for the orbifold
projected scalar fields.
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From Section 2.3, the field content of N = 4 SYM consists of a gauge field 𝐴𝜇,
four Weyl fermions 𝜆𝐴𝛼 and real scalar fields 𝑋𝐼 . The fermions 𝜆𝐴𝛼 transform in the
fundamental 4 of 𝔰𝔲(4)𝑅 and the scalars 𝑋𝐼 transform in the vector representation
6 of 𝔰𝔬(6), which is the antisymmetric selfdual 6 of 𝔰𝔲(4)𝑅. The gauge field is
scalar with respect to the R-symmetry. All fields transform in the adjoint of the
gauge group 𝑆𝑈 (𝑁). For the scalars, we can make the 𝔰𝔲(4)𝑅 symmetry more
manifest by combining the six real scalars into a selfdual antisymmetric matrix
𝑋𝐴𝐵, 𝐴, 𝐵 = 1, ..., 4, where the reality (selfdual) condition is given by

(𝑋𝐴𝐵)† =
1
2
𝜖 𝐴𝐵𝐶𝐷𝑋𝐶𝐷 . (2.144)

Hermitian conjugation is performed in color space. Explicitly, the matrix 𝑋𝐴𝐵 is
given by [18]

𝑋𝐴𝐵 =
1
√

2

©­­­­­«
0 𝑋4 + 𝑖𝑋5 𝑋7 + 𝑖𝑋6 𝑋8 + 𝑖𝑋9

−𝑋4 − 𝑖𝑋5 0 𝑋8 − 𝑖𝑋9 −𝑋7 + 𝑖𝑋6

−𝑋7 − 𝑖𝑋6 −𝑋8 + 𝑖𝑋9 0 𝑋4 − 𝑖𝑋5

−𝑋8 − 𝑖𝑋9 𝑋7 − 𝑖𝑋6 −𝑋4 + 𝑖𝑋5 0

ª®®®®®¬
(2.145)

The construction of the matrix can be found in [62, 63]. As in [18, 61], the matrix
is divided into four quadrants which is useful for the discussion below.

Using the conventions in [18, 61], we pick out a 𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅×𝑈 (1)𝑟 ⊂ 𝑆𝑈 (4)𝑅.
In particular, for the orbifold theory, we will choose 𝑆𝑈 (2)𝑅 ×𝑈 (1)𝑟 as the N = 2
R-symmetry group with an additional global flavour symmetry given by 𝑆𝑈 (2)𝐿 .
Define submatrices ZIJ and XIÎ ,I,I = ±, Î = ±̂, as

ZIJ =

(
0 𝑍

−𝑍 0

)
, XIÎ =

1
√

2

(
𝑋7 + 𝑖𝑋6 𝑋8 + 𝑖𝑋9

𝑋8 − 𝑖𝑋9 −𝑋7 + 𝑖𝑋6

)
, (2.146)

where 𝑍 = 1√
2
(𝑋4+𝑖𝑋5) andXIÎ obeys the reality condition (𝜒IÎ)† = −𝜖IJ 𝜖 ÎĴ 𝜒JĴ .

An index I will transform under 𝑆𝑈 (2)𝑅 and an index Î will transform under
𝑆𝑈 (2)𝐿 . This divides 𝑋𝐴𝐵 into

𝑋𝐴𝐵 =

(
ZIJ XIÎ
(XIÎ)† Z̄ÎĴ

)
. (2.147)

Schematically,

𝑋𝐴𝐵 =

©­­­­­«
𝑆𝑈 (2)𝑅 ×𝑈 (1)𝑟

𝑆𝑈 (2)𝐿 ×𝑈 (1)∗𝑟

ª®®®®®¬
. (2.148)
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Note that the first quadrant in the above matrix has labels 𝐼, 𝐽 and the fourth quadrant
has labels 𝐼, 𝐽; the second and third quadrants have mixed labels 𝐼, 𝐼.

Using the conventions in [18, 61], 𝑍 transforms under𝑈 (1)𝑟 with charge−1; the total
symmetry group forZIJ is 𝑆𝑈 (2)𝑅×𝑈 (1)𝑟 . The matrixX𝐼 𝐼 is in the bifundamental
of 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 and is neutral with respect to𝑈 (1)𝑟 .

We note, as in [18, 61], that 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 ≃ 𝑆𝑂 (4) rotates the fields 6789 into
one another and𝑈 (1)𝑟 ≃ 𝑆𝑂 (2) rotates the fields 45 into one another. Furthermore,
diagonal 𝑆𝑈 (2) transformations preserve Tr(X𝐼 𝐼) = 2𝑖𝑋6 and thus correspond to
789 rotations.

Z2 Orbifold

To reduce the amount of supersymmetry, we use an abelian finite discrete group
Γ = Z𝑝 that is embedded into both the gauge group and the R-symmetry group [12].
For Γ ⊂ 𝑆𝑈 (𝑝𝑁), the subgroup is generated by the block diagonal (𝑝𝑁 × 𝑝𝑁)-
generator [62, 12, 14, 13]

𝛾 =

©­­­­­«
1𝑁×𝑁

𝜔1𝑁×𝑁
. . .

𝜔𝑝−1
1𝑁×𝑁

ª®®®®®¬
, 𝜔 = 𝑒

2𝜋𝑖
𝑝 . (2.149)

For the R-symmetry group 𝑆𝑈 (4)𝑅, the generator is given by four phases specified by
a set of four integers 𝑞𝐴, 𝐴 = 1, ..., 4, with the condition 𝑞1 +𝑞2 +𝑞3 +𝑞4 = 0 mod 𝑝
[62, 14]. The action on the Weyl fermions is given by

𝜆𝐴 → 𝑒
2𝜋𝑖𝑞𝐴

𝑝 𝜆𝐴, (2.150)

and the action on the scalar fields is given by

𝑋𝐴𝐵 → 𝑒
2𝜋𝑖 (𝑞𝐴+𝑞𝐵)

𝑝 𝑋𝐴𝐵. (2.151)

The gauge field 𝐴𝜇 is, of course, scalar with respect to the R-symmetry. Then, the
orbifold gauge theory is specified by the constraint [14, 62]

𝐴𝜇 = 𝛾𝐴𝜇𝛾
−1, 𝜆𝐴 = 𝜔𝑞𝐴𝛾𝜆𝐴𝛾−1, 𝑋𝐴𝐵 = 𝜔𝑞𝐴+𝑞𝐵𝛾𝑋𝐴𝐵𝛾

−1. (2.152)

Written slightly differently, we have

𝐴𝜇𝛾 = 𝛾𝐴𝜇, 𝜆𝐴𝛾 = 𝜔𝑞𝐴𝛾𝜆𝐴, 𝑋𝐴𝐵𝛾 = 𝜔𝑞𝐴+𝑞𝐵𝛾𝑋𝐴𝐵. (2.153)
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Fields that exchange with 𝛾 are referred to as the untwisted sector while fields that
pick up an additional phase when exchanged with 𝛾 are referred to as the twisted
sector [28, 14, 13]. These sectors will play a role in Section 3.3.

We specialize to 𝑝 = 2 so that Γ = Z2. Without loss of generality, we take
𝑞1 = 𝑞2 = 0 and 𝑞3 = −𝑞4 = 1. The subgroup embedded inside the gauge group
𝑆𝑈 (2𝑁) is then generated by

𝛾 =

(
1𝑁×𝑁 0

0 −1𝑁×𝑁

)
. (2.154)

Defining

𝜆𝐴 =

(
𝜆I

𝜆Î

)
, (2.155)

and using equation (2.147), the action of Z2 on the fields is then given by

𝐴𝜇 ↦→ 𝛾𝐴𝜇𝛾, Z𝐼𝐽 ↦→ 𝛾Z𝐼𝐽𝛾, X𝐼 𝐼 ↦→ −𝛾X𝐼 𝐼𝛾, 𝜆𝐼 ↦→ 𝛾𝜆𝐼𝛾, 𝜆𝐼 ↦→ −𝛾𝜆𝐼𝛾.
(2.156)

Under the constraint in equation (2.152), we find the Z2-invariant fields stated in3

[18, 61]

𝐴𝜇 =

(
𝐴𝑎
𝜇 𝑏

0
0 𝐴̌𝑎̌

𝜇 𝑏̌

)
, 𝑍 =

(
𝜙𝑎
𝑏

0
0 𝜙𝑎̌

𝑏̌

)
, 𝜆I =

(
𝜆𝑎I 𝑏

0
0 𝜆̌𝑎̌

I 𝑏̌

)
, 𝜆Î =

(
0 𝜓𝑎

Î 𝑎̌

𝜓̃ 𝑏̌
Î 𝑏

0

)
,

XIÎ =

(
0 𝑄𝑎

IÎ 𝑎̌

−𝜖IJ 𝜖ÎĴ 𝑄̃
𝑏̌ĴJ
𝑏

0

)
.

(2.157)
TheZ2 projection factors the gauge group 𝑆𝑈 (2𝑁) into a product 𝑆𝑈 (𝑁1)×𝑆𝑈 (𝑁2).
An index 𝑎 will transform under 𝑆𝑈 (𝑁1) and an index 𝑎̌ will transform under
𝑆𝑈 (𝑁2). In addition, the R-symmetry 𝑆𝑈 (4)𝑅 is broken to 𝑆𝑈 (2)𝑅 ×𝑈 (1)𝑟 . The
supergenerators for 𝑆𝑈 (2)𝐿 are projected out and, thus, 𝑆𝑈 (2)𝐿 becomes a global
bosonic flavour symmetry. In N = 2 language, we have [18, 1]

• Two N = 2 vector multiplets in the adjoint of each gauge group: {𝜙, 𝜆I , 𝐴𝜇}
and {𝜙, 𝜆̌I , 𝐴̌𝜇}, I = ±,

• Two hypermultiplets in the bifundamental of the gauge groups: {𝑄I+̂, 𝜓+̂, 𝜓̃+̂},
{𝑄I−̂, 𝜓−̂, 𝜓̃−̂}, I = ±.

3Any field with a single Î index will pick up a factor of −1. For example, 𝜒−−̂ = 𝑋13 ↦→
𝑒𝑖 (𝑞1+𝑞3) 𝜋𝑋13 = −𝑋13 = −𝜒−−̂.
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The N = 2 vector multiplets belong to the D0(0,0) supermultiplet discussed in
Section 2.1.1. The hypermultiplets belongs to the B̂ 1

2
supermultiplet. Following the

conventions of [18], the R-symmetry charges are listed in table (2.1) together with
the product gauge group representations and the 𝑆𝑈 (2)𝐿 flavour symmetry.

N = 2 Quiver Symmetries
𝑆𝑈 (𝑁) 𝑆𝑈 (𝑁̌) 𝑆𝑈 (2)𝑅 𝑆𝑈 (2)𝐿 𝑈 (1)𝑟

𝐴𝜇 adj 1 1 1 0
𝐴̌𝜇 1 adj 1 1 0
𝜙 adj 1 1 1 -1
𝜙 1 adj 1 1 -1
𝜆I adj 1 2 1 -1/2
𝜆̂I 1 adj 2 1 -1/2
𝑄IÎ □ □ 2 2 0
𝜓Î □ □ 1 2 +1/2
𝜓̌Î □ □ 1 2 +1/2

Table 2.1: The N = 2 orbifold fields and their symmetries [18]. For the conjugate
fields, the results are similar except for conjugating the gauge group representations
and the𝑈 (1)𝑟 charge.

We will focus on the N = 2 SCFT which interpolates between the Z2 orbifold
of N = 4 SYM and N = 2 superconformal QCD (SCQCD). Starting from the
Z2 orbifold where the couplings of the two gauge groups are equal, 𝑔1 = 𝑔2, also
known as the orbifold point, we will be interested in the marginally deformed theory
with 𝑔1 ≠ 𝑔2. The marginal deformation introduces an one parameter family of
theories parametrised by the ratio 𝜅 = 𝑔2/𝑔1. Without loss of generality, we will
take 𝜅 ≤ 1. For all allowed values of 𝜅 ∈ [0, 1] this one parameter family of theories
enjoys the full N = 2 superconformal algebra (SCA) including the 𝑆𝑈 (2)𝑅 ×𝑈 (1)𝑟
R-symmetries but also an extra 𝑆𝑈 (2)𝐿 global symmetry which is special for the Z2

quiver.

The edge of the conformal manifold where 𝑔2 → 0 or equivalently 𝜅 → 0 is
special. In this limit, the second gauge group gets ungauged and becomes a global
symmetry, which combines with the extra 𝑆𝑈 (2)𝐿 to give the 𝑈 (𝑁 𝑓 ) = 𝑈 (2𝑁)
flavour symmetry of SCQCD; more precisely, the ungauged index 𝑎̌ and the flavour
symmetry 𝑆𝑈 (2)𝐿 can be combined into a single enhanced index 𝑖 = (𝑎̌,I) =

1, ..., 𝑁 𝑓 with 𝑁 𝑓 = 2𝑁 [18, 28].4
4In the limit 𝜅 → 0 the spin chain states (single trace local operators) which are not in a 𝑆𝑈 (2)𝐿
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1 2

𝑄12

𝑄21

𝑄21
𝑄12𝜙1 𝜙2

Figure 2.9: The Z2 quiver. The color groups are denoted by blobs representing the
field content of the N = 1 vector multiplets inside the N = 2 vector multiplets. We
use N = 1 language for the hypermultiplets. The arrow to the right is 𝑄Î while the
arrow to the left is 𝑄̃Î .

For the results in this thesis, however, it is most convenient to work with the 2𝑁×2𝑁
color matrices in the mother N = 4 theory, which, in N = 1 language, contains the
three chiral superfields which were defined in Section 2.3 as 𝑍 = 1√

2
(𝑋4 + 𝑖𝑋5), 𝑋 =

1√
2
(𝑋6 + 𝑖𝑋7), 𝑌 = 1√

2
(𝑋8 + 𝑖𝑋9) in the adjoint of the 𝑆𝑈 (2𝑁) gauge group (see

[28]). In this picture, the orbifold projected N = 2 scalar fields can be arranged as5

𝑋 =

(
𝑄12

𝑄21

)
, 𝑌 =

(
𝑄̃12

𝑄̃21

)
, 𝑍 =

(
𝜙1

𝜙2

)
. (2.158)

In terms of equation (2.157), 𝜙1 = 𝜙, 𝜙2 = 𝜙, 𝑄12 = 𝑄̃12 = 𝑄 and 𝑄21 = 𝑄̃21 = 𝑄̃.
The Z2 quiver diagram is shown in Figure 2.9. We see that while 𝑍 acts diagonally
and thus keeps us on the same node of the quiver, 𝑋 takes us clockwise around
the quiver while 𝑌 takes us anticlockwise.6 From the surviving 𝑁 × 𝑁 blocks, 𝑄12

and 𝑄̃12 have the same bifundamental color structure □1 ×□2, and similarly for the
case for 𝑄21 and 𝑄̃21 but with the opposite orientation □1 × □2. Thus, we can put
them together in a doublet of an extra 𝑆𝑈 (2)𝐿 with index 𝐼, as follows (see also the
hypermultiplet described earlier in this section)

𝑄 𝐼 =
(
𝑄12 , 𝑄̃12

)𝑇 and 𝑄̃ 𝐼 =
(
𝑄̃21 , 𝑄21

)𝑇
. (2.159)

The superpotential is explicitly invariant under the extra 𝑆𝑈 (2)𝐿 rotating the doublets
of 𝑆𝑈 (2)𝐿 in (2.159) and can be written as [28]

WZ2 = 𝑖𝑔1 tr2

(
𝑄̃ 𝐼𝜙1𝑄 𝐼

)
− 𝑖𝑔2 tr1

(
𝑄 𝐼𝜙2𝑄̃

𝐼
)
, (2.160)

singlet representation break. What is more, the bifundamental hypermultiplet fields stick together
forming dimers which are much more difficult to treat. In this thesis we will not consider this limit,
but rather the spin chain at generic values of 𝜅, which can be thought of as a regularisation of the
SCQCD spin chain.

5Despite the notation 𝑄̃, the fields are all holomorphic.
6This distinction is not very important here as there are only two nodes, but it becomes more

relevant for Z𝑘 quivers. The quiver for the N = 2 preserving Z3 orbifold is displayed in [27].
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or more explicitly as

WZ2 = 𝑖𝑔1 tr2(𝑄21𝜙1𝑄12 −𝑄21𝜙1𝑄12) − 𝑖𝑔2 tr1(𝑄12𝜙2𝑄21 −𝑄12𝜙2𝑄21) . (2.161)

This second more explicit form may be more intuitive as it is easy to remember that
the bifundamental fields 𝑄𝑖 𝑗 and 𝑄̃𝑖 𝑗 are labelled according to the direction of the
arrows. For instance, 𝑄12 transforms in the fundamental of gauge group 1 and the
antifundamental of gauge group 2 (□1 ×□2).

As already mentioned, we have the choice of working in the daughter N = 2 SCFT
picture (with our single letter basis composed of the six fields 𝜙𝑖 and 𝑄𝑖 𝑗 , 𝑄̃𝑖 𝑗 ) or in
the mother N = 4 SYM picture where the single site basis is made out of 𝑋,𝑌, 𝑍 .
We will mostly use the latter as it allows us to simplify the discussion. As we will
see, the information of whether we are working with the upper or lower component
of a given field in the N = 4 picture will be provided by a dynamical parameter 𝜆.

2.4.2 One-Loop Hamiltonian for the Interpolating Theory
In this thesis, we will focus on the one-loop holomorphic SU(3) sector of the Z2

quiver. In the mother N = 4 SYM this sector is made up of three complex scalar
fields 𝑋,𝑌, 𝑍 in the adjoint of the SU(2𝑁) gauge group. The planar Hamiltonian
of this theory has been derived, for the full scalar sector, in [18] and discussed in
Appendix B. We begin by visually rederiving the Hamiltonian in two SU(2)-like
sectors, the one sector formed by the fields 𝑋 and 𝑌 and the other sector formed by
𝑋 and 𝑍 , so that we can highlight the difference between these sectors. We refer
to these sectors as 𝑆𝑈 (2)-like because, although they resemble the 𝔰𝔲(2) ⊂ 𝔰𝔲(4)𝑅
sector discussed in Section 2.3, there is no symmetry that rotates the fields into each
other since they have different gauge structures.

The XY sector

In Section 2.3 for the N = 4 theory, we considered the closed 𝔰𝔲(2) ⊂ 𝔰𝔲(4)𝑅
subsector that is constructed out of 𝑍,𝑌 chiral fields. In this section, we consider
the N = 2 orbifold projected 𝑍,𝑌 fields which constitutes a 𝑆𝑈 (2)-like closed
subsector. This is the sector which includes all the (holomorphic) bifundamental
fields. To derive the Hamiltonian, we start by considering the 𝜙𝑖 F-terms

𝐹𝜙1 = 𝑖𝑔1(𝑄12𝑄21 −𝑄12𝑄21) , 𝐹𝜙2 = 𝑖𝑔2(𝑄21𝑄12 −𝑄21𝑄12). (2.162)
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From the potential 𝐹𝐹̄ and following the treatment in [64], we can immediately
draw the vertices contributing to the one-loop Hamiltonian. These are shown in
Figure 2.10.

𝑄12 𝑄21

𝑄12 𝑄21

𝑔2
1

𝑄12 𝑄21

𝑄12 𝑄21

−𝑔2
1

𝑄21 𝑄12

𝑄21 𝑄12

𝑔2
2

𝑄21 𝑄12

𝑄21 𝑄12

−𝑔2
2

𝑄12 𝑄21

𝑄12 𝑄21
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1

𝑄12 𝑄21

𝑄12 𝑄21

−𝑔2
1

𝑄21 𝑄12

𝑄21 𝑄12

𝑔2
2

𝑄21 𝑄12
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2

Figure 2.10: The vertices contributing to the Hamiltonian in the 𝑋𝑌 sector. A solid
blue line denotes the first gauge group and a dashed red line denotes the second
gauge group. Time moves upwards. Here we have already performed the Wick
contractions of the conjugate fields with the second gauge invariant operator to
write the vertices directly as spin chain interactions.

After taking out an overall factor of 𝑔1𝑔2 and defining 𝜅 = 𝑔2/𝑔1, we find the
Hamiltonian:

𝐻ℓ,ℓ+1 =

©­­­­­­­­­­­­­­­«

0 0 0 0 0 0 0 0
0 𝜅−1 −𝜅−1 0 0 0 0 0
0 −𝜅−1 𝜅−1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 𝜅 −𝜅 0
0 0 0 0 0 −𝜅 𝜅 0
0 0 0 0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

, in the basis

©­­­­­­­­­­­­­­­«

𝑄12𝑄21

𝑄12𝑄̃21

𝑄̃12𝑄21

𝑄̃12𝑄̃21

𝑄21𝑄12

𝑄21𝑄̃12

𝑄̃21𝑄12

𝑄̃21𝑄̃12

ª®®®®®®®®®®®®®®®¬

,

(2.163)
where the indices ℓ, ℓ + 1 denote the nearest-neighbour sites of the spin chain.
Note that the basis is 8-dimensional instead of 16-dimensional as one would expect
given our four fields. The remaining combinations of fields cannot occur, as they
are not allowed by the gauge structure (for example, a 𝑄12 cannot be followed
by a 𝑄12 or 𝑄̃12). We have chosen this truncated basis such that the upper left
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block of the Hamiltonian corresponds to the first gauge group to the left of the
first site where the Hamiltonian acts. In other words, the upper left block acts on
two bifundamental squarks which are contracted or in the singlet representation of
the second gauge group and, with their indices open, means that they are in the
bifundamental representation of the first color group (□1 ×□1). On the other hand,
the lower right block of the Hamiltonian acts on two squarks which have open color
indices from the second gauge group (□2×□2) and are color contracted with respect
to the first color group. We emphasise that, although the Hamiltonian looks block-
diagonal, this is an artifact of the notation. The same fields appear in both blocks,
and thus the upper and lower blocks of the Hamiltonian will mix when acting on a
spin chain configuration.

For this and other reasons to become clear later, we will prefer to work in the mother
N = 4 picture, where we only deal with the 2𝑁 × 2𝑁 fields 𝑋,𝑌 instead of their
component fields. A spin chain state such as |𝑋𝑌𝑋𝑌𝑌𝑋 · · · ⟩ in the N = 4 picture
can be decomposed into two states, in this case

��𝑄12𝑄̃21𝑄12𝑄̃21𝑄̃12𝑄21 · · · ⟩ and��𝑄21𝑄̃12𝑄21𝑄̃12𝑄̃21𝑄12 · · · ⟩ in the N = 2 picture. These states can of course be
mapped to each other by exchanging the gauge groups. In the 𝑋𝑌 picture, which of
the two chains we are considering is uniquely defined by specifying the gauge group
to the left of a given site of the chain (meaning the first index of the bifundamental
field at that site). Without loss of generality we can take this reference site to be the
first site of the chain.

Similarly, the above action of the Hamiltonian is decomposed into an action of two
Hamiltonians in the 𝑋𝑌 basis. Whether we are on the upper or lower block again
depends on which gauge group is to the left of the first site we are acting on. We
call these Hamiltonians H1 and H2, with

H1 =

©­­­­­«
0 0 0 0
0 𝜅−1 −𝜅−1 0
0 −𝜅−1 𝜅−1 0
0 0 0 0

ª®®®®®¬
, H2 =

©­­­­­«
0 0 0 0
0 𝜅 −𝜅 0
0 −𝜅 𝜅 0
0 0 0 0

ª®®®®®¬
, in the basis

©­­­­­«
𝑋𝑋

𝑋𝑌

𝑌𝑋

𝑌𝑌

ª®®®®®¬𝑖=1,2
(2.164)

where the notation is that H1 acts on the basis labelled by 𝑖 = 1 in the representation
□1×□1 of the color group, whileH2 acts on the basis with 𝑖 = 2 in the representation
□2 × □2. In other words, by H1 we denote the Hamiltonian which is applicable
when the gauge group to the left of a site ℓ along the chain is the first one, while H2

is the corresponding Hamiltonian when the gauge group to the left of a site ℓ is the
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second one. Both Hamiltonians are of XXX-type but with different (ferromagnetic)
couplings given by 𝜅−1 and 𝜅, respectively. We will refer to the Hamiltonians as
Heisenberg-type.

Given that the 𝑋𝑌 sector is only made up of bifundamentals, which means that
the gauge group alternates at consecutive sites (regardless of whether the field at
that site is an 𝑋 or a 𝑌 ), we conclude that the Hamiltonian of this sector alternates
between H1 and H2. If, for instance, we fix the gauge group to the left of the first
site to be the first one, we will have H1 acting on odd-even sites and H2 acting on
even-odd sites.

We conclude that the 𝑋𝑌 sector of the interpolating theory is governed by an
alternating-bond XXX-model Hamiltonian, as described in Section 2.2.4. In Chapter
3 we will study this alternating spin chain in more detail using the coordinate Bethe
ansatz.

From the Hamiltonian derived in (2.164) from [18], which is also discussed in
Appendix B, we can start with the form of the Hamiltonian given in equation (B.43).
Firstly, we note thatK is zero on our sector as we look only at the upper components
(IJ = ++) of the 𝑆𝑈 (2)𝑅 triplet 𝑄𝑄̃ or 𝑄̃𝑄. Then the only contributions that are
left in our sector are

H1 |𝑄𝑄̃⟩ = 2K̂|𝑄𝑄̃⟩ , H2 |𝑄̃𝑄⟩ = 2𝜅2K̂|𝑄̃𝑄⟩ (2.165)

Rescaling the Hamiltonian by an overall 2𝜅 and choosing the basis (2.163) we get
(2.164).

XZ sector

In this sector we will consider operators composed of the bifundamental field 𝑋 and
the adjoint field 𝑍 . To find the Hamiltonian we will need the 𝑄̃𝑖 𝑗 F-terms

𝐹𝑄̃12
= 𝑖(𝑔2𝜙2𝑄21 − 𝑔1𝑄21𝜙1) , 𝐹𝑄̃21

= 𝑖(𝑔1𝜙1𝑄12 − 𝑔2𝑄12𝜙2), (2.166)

which lead to the interactions shown in Figure 2.11.
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Figure 2.11: The vertices contributing to the Hamiltonian in the 𝑋𝑍 sector. A solid
blue line denotes the first and a dashed red line denotes the second gauge group.
Time moves upwards. Here we have already performed the Wick contractions of
the conjugate fields with the second gauge invariant operator to write the vertices
directly as spin chain interactions.

We will again divide by an overall factor of 𝑔1𝑔2, resulting in the Hamiltonian:

𝐻𝑖,𝑖+1 =

©­­­­­­­­­­­­­­­«

0 0 0 0 0 0 0 0
0 𝜅 −1 0 0 0 0 0
0 −1 𝜅−1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 𝜅−1 −1 0
0 0 0 0 0 −1 𝜅 0
0 0 0 0 0 0 0 0

ª®®®®®®®®®®®®®®®¬

, in the basis

©­­­­­­­­­­­­­­­«

𝑄12𝑄21

𝑄12𝜙2

𝜙1𝑄12

𝜙1𝜙1

𝑄21𝑄12

𝑄21𝜙1

𝜙2𝑄21

𝜙2𝜙2

ª®®®®®®®®®®®®®®®¬

.

(2.167)
As before, the upper left block contains the interactions with the first gauge group on
the left, while the lower right block the opposite. The state space is again truncated
as some combinations of fields (e.g. 𝜙1𝜙2) cannot occur due to the gauge index
structure. The Hamiltonian (2.167) can of course also be reproduced from the more
general scalar Hamiltonian in [18] (see also Appendix B).

As in the XY sector, we will again prefer to use the Hamiltonian for the N = 4
𝑋 and 𝑍 fields rather than their N = 2 component fields. For instance, a state
like |𝑋𝑋𝑍𝑋𝑍𝑍 · · · ⟩ will correspond to two states |𝑄12𝑄21𝜙1𝑄12𝜙2𝜙2 · · · ⟩ and its
Z2 conjugate |𝑄21𝑄12𝜙2𝑄21𝜙1𝜙1 · · · ⟩ depending on the gauge group at a given
reference site. To act with the Hamiltonian on the 𝑋, 𝑍 basis, we again need to
specify whether the gauge group is 1 or 2 to the left of the first site where the
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Hamiltonian acts. The major difference from the 𝑋𝑌 sector is that the gauge group
does not change on crossing a 𝑍 field. We write:

H1 =

©­­­­­«
0 0 0 0
0 𝜅 −1 0
0 −1 𝜅−1 0
0 0 0 0

ª®®®®®¬
, H2 =

©­­­­­«
0 0 0 0
0 𝜅−1 −1 0
0 −1 𝜅 0
0 0 0 0

ª®®®®®¬
, in the basis

©­­­­­«
𝑋𝑋

𝑋𝑍

𝑍𝑋

𝑍𝑍

ª®®®®®¬𝑖=1,2

,

(2.168)
where the notation is that H𝑖 acts on the basis in the gauge group representation
□𝑖 ×□ 𝑗 where 𝑗 is not correlated to 𝑖 as above and can take both 1,2 values. More
explicitly, H1 is the Hamiltonian acting on two sites where the gauge group to
the left of the first site is the first one, while H2 acts when the gauge group to
the left is the second one. Unlike the 𝑋𝑌 sector, where each Hamiltonian was of
Heisenberg-type, in the 𝑋𝑍 sector the Hamiltonians are of Temperley-Lieb type [40].
This immediately brings to mind the XXZ model7 whose quantum-group invariant
Hamiltonian (obtained by adding an appropriate boundary term to the open chain) is
of Temperley-Lieb type. However, unlike the XXZ case, this Hamiltonian changes
dynamically along the chain, since H1 is exchanged with H2 (and vice versa) every
time one crosses an 𝑋 field. We will see in Chapter 4 that 𝑍 excitations around
the vacuum formed by the 𝑋 fields behave very similarly to those of the alternating
𝑋𝑌 sector. On the other hand, as the Hamiltonian does not change when crossing
a 𝑍 field, 𝑋 excitations around the 𝑍 vacuum can be expected to behave similarly
to those of the XXZ model. This is precisely what was found in the study of this
case in [18], where the 𝑆-matrix for two-𝑋 magnon scattering in the 𝑍 vacuum was
found to be of XXZ-type. More appropriately, using the language of the current
thesis, the 𝑆-matrix for two-𝑋 magnon scattering in the 𝑍 vacuum was found to be
a dynamical XXZ 𝑆-matrix.

There is of course a third SU(2)-like sector formed by the 𝑌 and 𝑍 fields but it is
equivalent to the 𝑋𝑍 sector by exchanging the 𝑄𝑖 𝑗 fields with the 𝑄̃𝑖 𝑗 ones. We will
therefore not consider this sector separately.

2.4.3 The dynamical Hamiltonian
A very useful concept is the introduction of a dynamical parameter 𝜆. A more
complete motivation is given in [27] where 𝜆 is an additional parameter in the R-
matrix that leads to a dynamical Yang-Baxter equation. For this thesis, however,

7This model is an integrable deformation of the model studied in Section 2.2.2 by deforming the
coupling constant in front of the 𝜎𝑧

ℓ
𝜎𝑧
ℓ+1 term in the Hamiltonian (2.28). See [40][37].
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the motivation for introducing the dynamical parameter is simply that it provides
us with a very natural language with which to describe the spin chains under study,
and, we expect, similar spin chains one might want to consider for larger sectors in
the Z2 quiver or for more general quivers.

The dynamical parameter naturally divides the lattice up for each sector. For an
arbitrary site ℓ on the spin chain, we place the dynamical parameter to its left. Then,
a dynamical Hamiltonian 𝐻 (𝜆) acting on sites (ℓ, ℓ + 1) will “see” the parameter 𝜆
and this will determine how 𝐻 (𝜆) acts on the two sites. With motivation from [27],
we impose the following rule: if the field at site ℓ is 𝑋 or𝑌 , then crossing these fields
to site ℓ + 1 shifts the dynamical parameter to 𝜆′ (in other words, site ℓ + 1 will “see”
the dynamical parameter 𝜆′); and if the field at site ℓ is 𝑍 , then crossing the field to
site ℓ +1 does not shift the dynamical parameter (in other words, site ℓ +1 will “see”
the dynamical parameter 𝜆). Thus, for the 𝑋𝑌 sector, we will have an alternating
sequence of dynamical parameters since every time we cross an 𝑋 or 𝑌 field, the
dynamical parameter is shifted. Due to this fact, we will refer to the XY sector as
the “dense" 𝑋𝑌 sector. For the 𝑋𝑍 sector, the dynamical parameter only shifts when
we cross an 𝑋 field but not a 𝑍 field. We will refer to the 𝑋𝑍 sector as the “dilute"
𝑋𝑍 sector. For both these sectors, there are only two dynamical parameters 𝜆, 𝜆′.
Thus, crossing an 𝑋 or 𝑌 field twice returns us to the same parameter. In terms of
the deformation parameter 𝜅, shifting the dynamical parameter captures the effect
of 𝜅 → 1/𝜅 (see the Hamiltonians below).

For alternating chains such as the 𝑋𝑌 sector, one can of course assign different
Hamiltonians on even-odd and odd-even sites and study them without needing
the dynamical parameter. But for dilute-type sectors where different fields affect
the Hamiltonian in different ways (e.g. as in the 𝑋𝑍 sector where crossing a 𝑍
field leaves 𝜅 invariant while crossing an 𝑋 field takes 𝜅 → 1/𝜅), the dynamical
parameter appears to be very helpful in organising the computation. There is always
the alternative of working in the N = 2 picture, with the 8× 8 Hamiltonians (2.163)
and (2.167) but this carries its own problems as the multiparticle basis is not a
direct product of the single-particle basis (e.g. combinations such as 𝑄12𝑄̃12 are
not allowed by the gauge indices). Working in what we call the dynamical N = 4
picture, with the dynamical parameter tracking the gauge group at each site of the
chain, any combination one writes is automatically correct.

We can now summarise the Hamiltonians in the two sectors of relevance as follows:
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XY sector:

H(𝜆) =
©­­­­­«

0 0 0 0
0 𝜅−1 −𝜅−1 0
0 −𝜅−1 𝜅−1 0
0 0 0 0

ª®®®®®¬
and H(𝜆′) =

©­­­­­«
0 0 0 0
0 𝜅 −𝜅 0
0 −𝜅 𝜅 0
0 0 0 0

ª®®®®®¬
. (2.169)

XZ sector:

H(𝜆) =
©­­­­­«
0 0 0 0
0 𝜅 −1 0
0 −1 𝜅−1 0
0 0 0 0

ª®®®®®¬
and H(𝜆′) =

©­­­­­«
0 0 0 0
0 𝜅−1 −1 0
0 −1 𝜅 0
0 0 0 0

ª®®®®®¬
. (2.170)

In the next chapter, we will study the two magnon problem for the 𝑋𝑌 sector
Hamiltonian, and in Chapter 4 that of the 𝑋𝑍 sector Hamiltonian above.



59

C h a p t e r 3

SPIN CHAINS IN THE DENSE XY SECTOR

We focus on the Heisenberg-type Hamiltonian (2.169) which describes the 𝑋𝑌

sector. As discussed, we characterise this sector as “dense” since the dynamical
parameter shifts every time we cross a field. Since the shift is the same regardless
of whether the field is an 𝑋 or a 𝑌 , the dynamical parameter will alternate between
two values 𝜆 and 𝜆′, and thus the Hamiltonian will be alternately H(𝜆) or H(𝜆′)
given in (2.169).1 So the net effect is that of an alternating bond Hamiltonian.

Choosing the convention that 𝜆′ is on even sites and 𝜆 on odd sites, H𝜆′ will act on
even-odd sites while H𝜆 will act on odd-even sites (see Figure 3.1). We can make
this explicit by writing the Hamiltonian as

H𝑒𝑜 =

©­­­­­«
0 0 0 0
0 𝜅 −𝜅 0
0 −𝜅 𝜅 0
0 0 0 0

ª®®®®®¬
, H𝑜𝑒 =

©­­­­­«
0 0 0 0
0 1/𝜅 −1/𝜅 0
0 −1/𝜅 1/𝜅 0
0 0 0 0

ª®®®®®¬
. (3.1)

Since the Hamiltonian is invariant under 𝜅 → 1/𝜅, without loss of generality we
can take 𝜅 ≤ 1. Alternating nearest-neighbour chains such as this have been studied
in [52, 51] and discussed in Section 2.2.4. The dispersion relations and overall
treatment of the chains are similar in both the bond and spin alternation case. There
are also known materials which exhibit such alternating ferromagnetic behaviour,
see e.g. [65] for an example with bond alternation and [66] for a case with spin
alternation.2

The works of [52, 51] mostly studied the two magnon problem. The three- and
multi-magnon problems were considered in [67, 68], without, however, making
use of a Bethe-type approach but rather the recursion method (e.g. [69]) which
is applicable regardless of integrability. A long-wavelength approximation to this
chain, which might be relevant for comparisons to the string sigma model side, is
discussed in [70].

1This behaviour is specific for the Z2 quiver case. For Z𝑘 quivers, where we would expect 𝑘 − 1
parameters 𝜆𝑖 , the 𝑋 and 𝑌 field would shift them differently.

2Let us remark that the literature on antiferromagnetic alternating chains is much more extensive,
as well as that on chains with alternating antiferromagnetic/ferromagnetic bonds.
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H𝑒𝑜 H𝑜𝑒 H𝑒𝑜 H𝑜𝑒 H𝑒𝑜 H𝑜𝑒 H𝑒𝑜

2𝑠 2𝑠+1 2𝑠+2 2𝑠+3 2𝑠+4 2𝑠+5 2𝑠+6 2𝑠+7

Figure 3.1: A section of the alternating bond spin chain for the XY sector. We
emphasise the alternating nature by showing the bonds between lattice sites as a
dashed line or a thick line.

For this sector, we note that there are two equivalent pseudovacua, |· · · 𝑋𝑋𝑋𝑋𝑋 · · · ⟩
and |· · ·𝑌𝑌𝑌𝑌𝑌 · · · ⟩ which belong to the 1/2−BPS supermultiplet B̂𝑅 discussed in
Section 2.1.1 with Δ = 2𝑅 3. Thus, since these are protected, they have zero energy.
We will choose the 𝑋 vacuum as a reference and consider 𝑌 spin deviations on top
of this reference state. Following in large part the techniques outlined in [52, 51],
we will study the diagonalisation of the one and two magnon Hamiltonian for this
alternating chain.

Finally, we can of course explicitly relate these Hamiltonians to the alternating
model stated in Section 2.2.4. Note that we can have only one spin deviation from
a 𝑋 at some site ℓ. Thus, we have 𝑆 = 𝑆′ = 1/2 (consequently, 𝑝 = 1) and therefore
we use the spin-1/2 Pauli matrices 𝑆𝑖 = 1/2 𝜎𝑖, 𝑖 = {𝑥, 𝑦, 𝑧}. Setting 𝐽1 = 2𝑔2

2 and
𝐽2 = 2𝑔2

1, we find for equation (2.107)

𝐻 = −𝑔1𝑔2

𝐿/2∑︁
ℓ=1

[
2
𝑔2

𝑔1

(
S′

2ℓ · S2ℓ+1
)
+ 2

𝑔1

𝑔2

(
S2ℓ+1 · S′

2ℓ+2
) ]

= −𝑔1𝑔2

𝐿/2∑︁
ℓ=1

[
2𝜅

(
S′

2ℓ · S2ℓ+1
)
+ 2
𝜅

(
S2ℓ+1 · S′

2ℓ+2
) ]
,

(3.2)

where we have used the deformation parameter 𝜅 = 𝑔2/𝑔1. Thus far, we have
(looking at local sites (2ℓ, 2ℓ + 1) and (2ℓ + 1, 2ℓ + 2))

−2𝜅 (S2ℓ · S2ℓ+1) =
©­­­­­«
− 𝜅

2 0 0 0
0 𝜅

2 −𝜅 0
0 −𝜅 𝜅

2 0
0 0 0 − 𝜅

2

ª®®®®®¬2ℓ,2ℓ+1

, (3.3)

3In terms of the N = 2 fields in the downstairs picture and written in terms of single trace
operators, these are the operators Tr

[
(𝑄12𝑄21)𝑅

]
and Tr

[
(𝑄21𝑄12)𝑅

]
.
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and

−2
𝜅
(S2ℓ+1 · S2ℓ+2) =

©­­­­­«
− 1

2𝜅 0 0 0
0 1

2𝜅 −1
𝜅

0
0 −1

𝜅
1

2𝜅 0
0 0 0 − 1

2𝜅

ª®®®®®¬2ℓ+1,2ℓ+2

. (3.4)

These are precisely our two Hamiltonians up to a shift by the identity operator which
does not affect the physics of the system. Upon shifting by the identity4 (1/4)1 ⊗ 1
and setting 𝑆𝑖 = (1/2) 𝜎𝑖, 𝑖 = {𝑥, 𝑦, 𝑧}, we find

−𝜅
2

(
𝜎𝑖2ℓ ⊗ 𝜎

𝑖
2ℓ+1 − 12ℓ ⊗ 12ℓ+1

)
=

©­­­­­«
0 0 0 0
0 𝜅 −𝜅 0
0 −𝜅 𝜅 0
0 0 0 0

ª®®®®®¬2ℓ,2ℓ+1

, (3.5)

and

− 1
2𝜅

(
𝜎𝑖2ℓ+1 ⊗ 𝜎

𝑖
2ℓ+2 − 12ℓ+1 ⊗ 12ℓ+2

)
=

©­­­­­«
0 0 0 0
0 1

𝜅
−1
𝜅

0
0 −1

𝜅
1
𝜅

0
0 0 0 0

ª®®®®®¬2ℓ+1,2ℓ+2

. (3.6)

Note that there is a summation on the 𝑖 index above. Rescaling 𝐻 ↦→ (1/𝑔1𝑔2)𝐻, we
thus conclude that our system is an alternating-bond spin chain with Hamiltonian
(we suppress the tensor notation)

𝐻 = −
𝐿/2∑︁
ℓ=1

[
𝜅

2
(
𝜎𝑖2ℓ𝜎

𝑖
2ℓ+1 − 12ℓ12ℓ+1

)
+ 1

2𝜅
(
𝜎𝑖2ℓ+1𝜎

𝑖
2ℓ+2 − 12ℓ+112ℓ+2

) ]
, (3.7)

where 𝑖 = {𝑥, 𝑦, 𝑧}.

3.1 One magnon
Let us start by considering a single 𝑌 magnon in the 𝑋 vacuum and proceed to solve
the one magnon problem 𝐻 |𝑝⟩ = 𝐸1(𝑝) |𝑝⟩. Due to the alternating-bond nature of
the spin chain, there will be two equations to solve, namely, for 𝑌 on even sites and
for 𝑌 on odd sites. Denoting these states by |2𝑟 ⟩ and |2𝑠 + 1⟩, the equations are(

𝜅 + 𝜅−1
)
|2𝑟 ⟩ − 𝜅−1 |2𝑟 − 1⟩ − 𝜅 |2𝑟 + 1⟩ = 𝐸1 |2𝑟 ⟩ and(

𝜅 + 𝜅−1
)
|2𝑠 + 1⟩ − 𝜅 |2𝑠 ⟩ − 𝜅−1 |2𝑠 + 2⟩ = 𝐸1 |2𝑠 + 1⟩ .

(3.8)

4The vacuum energy is simply shifted to 𝐸0 = 0; the energy of a spin deviation, shifted by the
same amount, is measured relative to the ground state and thus does not change.
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We will therefore take for our ansatz a superposition of a single 𝑌 excitation on odd
and even sites

|𝑝⟩ =
∑︁
ℓ∈2Z

𝜓𝑒 (ℓ) |ℓ⟩ +
∑︁

ℓ∈2Z+1
𝜓𝑜 (ℓ) |ℓ⟩. (3.9)

This leads to the following equations:

𝜅−1 (𝜓𝑒 (2𝑟) − 𝜓𝑜 (2𝑟 − 1)
)
+ 𝜅

(
𝜓𝑒 (2𝑟) − 𝜓𝑜 (2𝑟 + 1)

)
= 𝐸1(𝑝)𝜓𝑒 (2𝑟), (3.10)

and

𝜅
(
𝜓𝑜 (2𝑠 + 1) − 𝜓𝑒 (2𝑠)

)
+ 𝜅−1 (𝜓𝑜 (2𝑠 + 1) − 𝜓𝑒 (2𝑠 + 2)

)
= 𝐸1(𝑝)𝜓𝑜 (2𝑠 + 1) ,

(3.11)
which can be solved easily by the Bethe-type ansatz

𝜓𝑒 (ℓ) = 𝐴𝑒 (𝑝)𝑒𝑖𝑝ℓ, 𝜓𝑜 (ℓ) = 𝐴𝑜 (𝑝)𝑒𝑖𝑝ℓ , (3.12)

where the ratio between the even and odd amplitudes is fixed to be

𝑟 (𝑝; 𝜅) = 𝐴𝑜 (𝑝)
𝐴𝑒 (𝑝)

= ∓𝑒
𝑖𝑝
√

1 + 𝜅2𝑒−2𝑖𝑝
√

1 + 𝜅2𝑒2𝑖𝑝
. (3.13)

The eigenvalue of the eigenvector (3.9) is

𝐸1(𝑝) = 𝐸1(𝑝; 𝜅) = 1
𝜅
+ 𝜅 ± 1

𝜅

√︃
(1 + 𝜅2)2 − 4𝜅2 sin2 𝑝 . (3.14)

Similarly to [52, 51], we will call the negative branch of the square root the acoustic
branch and the positive branch the optical branch. The acoustic branch is the one
which includes the zero-energy state 𝐸1(0) = 0. As can be seen in Figure 3.2, as 𝜅
is tuned away from 1, a gap of magnitude 2(1/𝜅 − 𝜅) develops between the branches
at the boundary of the Brillouin zone, which is at 𝑝 = 𝜋/2. Therefore, scattering
states are confined either to the lower (“acoustic”) or upper (“optical”) branch.

Note that by a choice of branch cut we can also bring the energy eigenvalue to the
form

𝐸1(𝑝; 𝜅) = 𝜅 + 1
𝜅
± 1
𝜅

√︁
1 + 𝜅2𝑒−2𝑖𝑝

√︁
1 + 𝜅2𝑒2𝑖𝑝 . (3.15)

In this section we will choose to use the dispersion relation in this form. Some
motivation for this will be discussed in Chapter 5. Without loss of generality, we
will work with the acoustic branch; however, when considering specific solutions
(such as in section 3.3), magnons belonging to both branches need to be considered
(as well as solutions with complex momenta which can lead to energies between the
branches.)
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0 𝜋/2 𝜋
0

4
2(𝜅+1/𝜅)

2 (𝜅−1−𝜅)

{

Acoustic branch

Optical branch

Figure 3.2: A plot of the 1-magnon energy 𝐸1 (blue line) for 𝜅 < 1, as compared to
the XXX energy 𝐸𝑋𝑋𝑋1 = 2(1 − cos 𝑝) at 𝜅 = 1. The gap between the branches is
2(1/𝜅 − 𝜅), and the maximum of the energy is 2(𝜅 + 𝜅−1).

We observe that the energy is even under reflection of the momentum, while the
ratio function is inverted

𝐸1(−𝑝; 𝜅) = 𝐸1(𝑝; 𝜅) , 𝑟 (−𝑝; 𝜅) = 1
𝑟 (𝑝; 𝜅) . (3.16)

Similarly, the energy is invariant under the Z2 transformation 𝜅 → 1/𝜅, while the
ratio is again inverted

𝐸1(𝑝; 1/𝜅) = 𝐸1(𝑝; 𝜅) , 𝑟 (𝑝; 1/𝜅) = 1
𝑟 (𝑝; 𝜅) . (3.17)

This behaviour of the ratio function is natural, since the Z2 transformation exchanges
the gauge groups and thus the even and odd sites of the chain. Thus, the energy
eigenfunction is also an eigenfunction of the Z2 symmetry 𝜅 → 1/𝜅

Z2 |𝑝⟩ =
1

𝑟 (𝑝; 𝜅) |𝑝⟩ . (3.18)

In the following, we will work with a fixed value of 𝜅, so where no confusion can
arise, we will simply write 𝑟 (𝑝) = 𝑟 (𝑝; 𝜅).

In the orbifold limit 𝜅 → 1, the alternating-bond behaviour disappears, as both
Hamiltonians reduce to the well-known ferromagnetic XXX Hamiltonian. This fact
is also reflected in the dispersion relation reducing to the standard XXX form and
the ratio between even and odd sites becoming trivial

𝐸1(𝑝; 1) = 2(1 − cos(𝑝)) = 4 sin2(𝑝/2) , 𝑟 (𝑝; 1) = 1 . (3.19)



64

Note, however, that even though the Hamiltonian is that of the XXX model, the
orbifold limit is not equivalent to N = 4 SYM as one also needs to include the
twisted sector. The orbifold limit and the corresponding Bethe ansatz have been
discussed in detail in [14, 13, 71, 17].

We will now proceed to the two magnon problem which, as we will see, exhibits
several novel features compared to the XXX case.

3.2 Two magnons
Following the treatment of [52, 51] and similar to Section 2.2.2, we will organise the
eigenvalue problem for two magnons into non-interacting and interacting equations.
The difference from the standard analysis of Section 2.2.2 is that the equations
depend on whether the magnons are at even-even, even-odd, odd-even or odd-odd
sites. The non-interacting equations for even-even and even-odd sites are

2(𝜅 + 𝜅−1) |2𝑟,2𝑠 ⟩ − 𝜅−1( |2𝑟−1,2𝑠 ⟩ + |2𝑟,2𝑠−1⟩) − 𝜅( |2𝑟+1,2𝑠 ⟩ + |2𝑟,2𝑠+1⟩)
= 𝐸2 |2𝑟,2𝑠 ⟩
and

2(𝜅 + 𝜅−1) |2𝑟,2𝑠+1⟩ − 𝜅−1( |2𝑟−1,2𝑠+1⟩ + |2𝑟,2𝑠+2⟩) − 𝜅( |2𝑟+1,2𝑠+1⟩ + |2𝑟,2𝑠 ⟩)
= 𝐸2 |2𝑟,2𝑠+1⟩ ,

(3.20)

and the odd-even and odd-odd cases can be obtained from these by taking 𝜅 →
𝜅−1. There are two interacting equations, depending on whether the neighbouring
magnons are at even-odd or odd-even sites

2𝜅−1 |2𝑟, 2𝑟+1⟩ − 𝜅−1 |2𝑟−1, 2𝑟+1⟩ − 𝜅−1 |2𝑟, 2𝑟+2⟩ = 𝐸2 |2𝑟, 2𝑟+1⟩ and

2𝜅 |2𝑟−1, 2𝑟 ⟩ − 𝜅 |2𝑟−2, 2𝑟 ⟩ − 𝜅 |2𝑟−1, 2𝑟+1⟩ = 𝐸2 |2𝑟−1, 2𝑟 ⟩
(3.21)

Since the non-interacting equations are simply sums of the 1-magnon equations, it
is easy to check that an ansatz of the type

|𝑝1, 𝑝2 ⟩ =
∑︁
𝑟<𝑠

𝜓𝑒𝑒 (2𝑟, 2𝑠) |2𝑟, 2𝑠 ⟩+
∑︁
𝑟<𝑠+1

𝜓𝑒𝑜 (2𝑟, 2𝑠+1) |2𝑟, 2𝑠+1⟩

+
∑︁
𝑟<𝑠+1

𝜓𝑜𝑒 (2𝑟−1, 2𝑠) |2𝑟−1, 2𝑠 ⟩+
∑︁
𝑟<𝑠

𝜓𝑜𝑜 (2𝑟+1, 2𝑠+1) |2𝑟+1, 2𝑠+1⟩ ,

(3.22)
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where (with ℓ1, ℓ2 being even or odd as specified by the indices on 𝜓)

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝐴𝑒𝑒 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 ,

𝜓𝑒𝑜 (ℓ1, ℓ2) = 𝐴𝑒𝑜 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 ,

𝜓𝑜𝑒 (ℓ1, ℓ2) = 𝐴𝑜𝑒 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 ,

𝜓𝑜𝑜 (ℓ1, ℓ2) = 𝐴𝑜𝑜 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 ,

(3.23)

and where the coefficients are fixed in terms of 𝐴𝑒𝑒 (𝑝1, 𝑝2) as

𝐴𝑒𝑜 (𝑝1, 𝑝2) = 𝑟 (𝑝2)𝐴𝑒𝑒 (𝑝1, 𝑝2) ,
𝐴𝑜𝑒 (𝑝1, 𝑝2) = 𝑟 (𝑝1)𝐴𝑒𝑒 (𝑝1, 𝑝2) ,
𝐴𝑜𝑜 (𝑝1, 𝑝2) = 𝑟 (𝑝1)𝑟 (𝑝2)𝐴𝑒𝑒 (𝑝1, 𝑝2) ,

(3.24)

solves the non-interacting equations, with the additive eigenvalue 𝐸2(𝑝1, 𝑝2) =

𝐸1(𝑝1) + 𝐸1(𝑝2). To solve the interacting equations, the usual Bethe approach
would be to add terms with swapped momenta to the wavefunctions (see Section
2.2.2), i.e. with 𝑒𝑖ℓ1𝑝2+𝑖ℓ2𝑝1 in the exponent. However, in this case this does not
lead to a solution, thus we will need to enhance the Bethe ansatz (3.22) to obtain a
solution.

3.2.1 Centre-of-mass solution
One way to improve on (3.22) is by adding, apart from swapped terms, also contact
terms to the wavefunction. As we will see, this will indeed provide a solution, but
only in the centre-of-mass frame where 𝑝1 + 𝑝2 = 0. The origin of these contact
terms will become clearer in the next section, after we solve the more general case
of 𝑝1 + 𝑝2 ≠ 0.

We will now write

|𝑝1, 𝑝2 ⟩ =
∑︁
𝑟<𝑠

𝜓𝑒𝑒 (2𝑟, 2𝑠) |2𝑟, 2𝑠 ⟩+
∑︁
𝑟<𝑠+1

𝜓𝑒𝑜 (2𝑟, 2𝑠+1) |2𝑟, 2𝑠+1⟩

+
∑︁
𝑟<𝑠+1

𝜓𝑜𝑒 (2𝑟−1, 2𝑠) |2𝑟−1, 2𝑠 ⟩+
∑︁
𝑟<𝑠

𝜓𝑜𝑜 (2𝑟+1, 2𝑠+1) |2𝑟+1, 2𝑠+1⟩ ,

(3.25)
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where

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝐴𝑒𝑒 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑒𝑒 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 ,

𝜓𝑜𝑜 (ℓ1, ℓ2) = 𝐴𝑜𝑜 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑜𝑜 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 ,

𝜓𝑒𝑜 (ℓ1, ℓ2) = 𝐴𝑒𝑜 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 (1 + 𝛿ℓ1+1,ℓ2A(𝑝1, 𝑝2))
+ 𝐴𝑒𝑜 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 (1 + 𝛿ℓ1+1,ℓ2A(𝑝2, 𝑝1)),

𝜓𝑜𝑒 (ℓ1, ℓ2) = 𝐴𝑜𝑒 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 (1 + 𝛿ℓ1+1,ℓ2B(𝑝1, 𝑝2))
+ 𝐴𝑜𝑒 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 (1 + 𝛿ℓ1+1,ℓ2B(𝑝2, 𝑝1)).

(3.26)

We have locally enhanced the wavefunctions for𝜓𝑒𝑜,𝜓𝑜𝑒 for nearest-neighbour terms
by adding general coefficients A, B which play the role of contact terms. Note that
we are not assuming that A(𝑝2, 𝑝1),B(𝑝2, 𝑝1) are related to A(𝑝1, 𝑝2),B(𝑝1, 𝑝2)
by permuting the momenta, so we have four independent contact terms. At this
stage we have not imposed the CoM frame yet (so we keep 𝑝2 in the notation for
now) but we will soon see that the condition 𝑝2 = −𝑝1 is required for consistency
of the ansatz.

Factoring out the overall coefficient 𝐴𝑒𝑒 (𝑝1, 𝑝2), we can write the wavefunctions as

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝑆(𝑝1, 𝑝2)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

𝜓𝑜𝑜 (ℓ1, ℓ2) = 𝑟 (𝑝1)𝑟 (𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝑟 (𝑝1)𝑟 (𝑝2)𝑆(𝑝1, 𝑝2)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

𝜓𝑒𝑜 (ℓ1, ℓ2) = 𝑟 (𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 (1 + 𝛿ℓ1+1,ℓ2A(𝑝1, 𝑝2))
+ 𝑟 (𝑝1)𝑆(𝑝1, 𝑝2)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 (1 + 𝛿ℓ1+1,ℓ2A(𝑝2, 𝑝1))

𝜓𝑜𝑒 (ℓ1, ℓ2) = 𝑟 (𝑝1)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 (1 + 𝛿ℓ1+1,ℓ2B(𝑝1, 𝑝2))
+ 𝑟 (𝑝2)𝑆(𝑝1, 𝑝2)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 (1 + 𝛿ℓ1+1,ℓ2B(𝑝2, 𝑝1)).

(3.27)

where we have defined 𝑆(𝑝1, 𝑝2) = 𝐴𝑒𝑒 (𝑝2, 𝑝1)/𝐴𝑒𝑒 (𝑝1, 𝑝2). We thus need to deter-
mine 𝑆(𝑝1, 𝑝2) and the four contact termsA(𝑝1, 𝑝2),A(𝑝2, 𝑝1),B(𝑝1, 𝑝2),B(𝑝2, 𝑝1)
in order to obtain a solution.

Next-to-nearest neighbour magnons

The first thing to consider when adding contact terms that only arise at nearest-
neighbour sites, is that they will jump out to the next-to-nearest neighbour terms
and enter the even-even and odd-odd non-interacting equations (3.20) when 𝑠 = 𝑟+1.
However, we have already computed the eigenvalue for the non-interacting equations,
which of course includes this case. To not spoil the eigenvalue that we found, we
will need to constrain the contact terms. Looking at the (2𝑟, 2𝑟 + 2) equation, we
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find the constraint

A(𝑝1, 𝑝2) = −𝜅2 𝑟 (𝑝1)
𝑟 (𝑝2)

𝑒𝑖(𝑝1+𝑝2)B(𝑝1, 𝑝2) . (3.28)

Similarly, from the (2𝑟 + 1, 2𝑟 + 3) equation, we have

A(𝑝1, 𝑝2) = −𝜅2 𝑟 (𝑝1)
𝑟 (𝑝2)

𝑒−𝑖(𝑝1+𝑝2)B(𝑝1, 𝑝2) . (3.29)

These equations can only agree if 𝐾 = 𝑝1+ 𝑝2 = 𝑛𝜋, 𝑛 ∈ Z. We will choose 𝑛 = 0 to
keep 𝐾 in the first Brillouin zone 𝐾 ∈ (−𝜋/2, 𝜋/2]. This leads to a single constraint

A(𝑝,−𝑝) = −𝜅2 𝑟 (𝑝)
𝑟 (−𝑝) B(𝑝,−𝑝). (3.30)

We will thus restrict to the centre-of-mass case for the rest of this section.

Interacting Equations

Substituting the ansatz (3.26) together with (3.30) in the interacting equations (3.21),
we can solve for 𝐴𝑒𝑒 (−𝑝, 𝑝) in terms of 𝐴𝑒𝑒 (𝑝,−𝑝) in each case to find an expression
for the 𝑆-matrix 𝑆(𝑝,−𝑝). We find

𝑆 (𝑒𝑜) (𝑝,−𝑝) =
𝑒−2𝑖 𝑝 (

B(𝑝,−𝑝)𝜅2(2 − 𝐸2𝜅) − (B(𝑝,−𝑝) − 1)𝑒2𝑖 𝑝 (𝐸2𝜅 − 2) + 2
)

B(−𝑝, 𝑝) (𝐸2𝜅 − 2)
(
1 + 𝜅2𝑒2𝑖 𝑝 ) − 𝐸2𝜅 − 2𝑒2𝑖 𝑝 + 2

,

(3.31)
from the even-odd equation, while the odd-even equation gives

𝑆 (𝑜𝑒) (𝑝,−𝑝) =
𝑒−2𝑖 𝑝 (

−(1 + B(𝑝,−𝑝))𝑒2𝑖 𝑝 (𝐸2 − 2𝜅) + 𝜅(−2 + B(𝑝,−𝑝)𝜅(2𝜅 − 𝐸2))
)

𝐸2
(
1 + B(−𝑝, 𝑝) (1 + 𝑒2𝑖 𝑝𝜅2) − 2𝜅(1 − 𝑒2𝑖 𝑝 + B(−𝑝, 𝑝) (1 + 𝑒2𝑖 𝑝𝜅2))

) .
(3.32)

To keep the expressions compact we write 𝐸2 for the centre-of-mass energy 𝐸2 =

2(𝜅 + 1/𝜅) − 2
√

1 + 𝜅2𝑒2𝑖𝑝
√

1 + 𝜅2𝑒−2𝑖𝑝.

Of course, the two expressions for the 𝑆-matrix need to agree. Setting them equal
we can solve for B(−𝑝, 𝑝) to find

B(−𝑝, 𝑝) = 𝐹 (𝑝)B(𝑝,−𝑝) + G(𝑝), (3.33)

where

𝐹 (𝑝) = −
(
𝜅2 + 𝑒2𝑖𝑝 ) (

𝐸2
2𝜅 + 𝐸2

(
𝜅2 + 1

) (
−2 + 𝑒2𝑖𝑝 ) − 4𝜅

(
−1 + 𝑒2𝑖𝑝 ) )(

1 + 𝜅2𝑒2𝑖𝑝 ) (
𝐸2

2𝜅
(
−𝑒2𝑖𝑝 ) + 𝐸2

(
𝜅2 + 1

) (
−1 + 2𝑒2𝑖𝑝 ) − 4𝜅

(
−1 + 𝑒2𝑖𝑝 ) ) ,

(3.34)
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and

G(𝑝) =
𝐸2

(
𝜅2 − 1

) (
−1 + 𝑒4𝑖𝑝 )(

1 + 𝜅2𝑒2𝑖𝑝 ) (
𝐸2

2𝜅𝑒
2𝑖𝑝 − 𝐸2

(
𝜅2 + 1

) (
−1 + 2𝑒2𝑖𝑝 ) + 4𝜅

(
−1 + 𝑒2𝑖𝑝 ) ) .

(3.35)
Substituting this solution for B(−𝑝, 𝑝) into either of the 𝑆-matrices above we find
that the dependence on B(𝑝,−𝑝) cancels out and we obtain our final 𝑆-matrix in
the centre-of-mass frame

𝑆CoM(𝑝,−𝑝) =
𝑒−2𝑖𝑝 (

𝐸2
2𝜅

(
−𝑒2𝑖𝑝 ) + 𝐸2

(
𝜅2 + 1

) (
−1 + 2𝑒2𝑖𝑝 ) − 4𝜅

(
−1 + 𝑒2𝑖𝑝 ) )

𝐸2
2𝜅 + 𝐸2

(
𝜅2 + 1

) (
−2 + 𝑒2𝑖𝑝 ) − 4𝜅

(
−1 + 𝑒2𝑖𝑝 ) .

(3.36)

Final form of the contact terms

At this stage, looking at our ansatz (3.27) evaluated in the 𝐾 = 0 frame, the only
term left to determine is B(𝑝,−𝑝) which appears in the direct even-odd (after using
(3.30)) and odd-even terms, as everything else is expressed in terms of it (and G(𝑝)
which was fixed above). However, now that we have 𝑆CoM(𝑝,−𝑝), we can check
that 𝐹 (𝑝) factors as

𝐹 (𝑝) = −𝑟 (𝑝)2𝑒−2𝑖𝑝𝑆CoM(𝑝,−𝑝)−1, (3.37)

and therefore,

B(−𝑝, 𝑝) = −1 + 𝜅2𝑒−2𝑖𝑝

1 + 𝜅2𝑒2𝑖𝑝 𝑆(𝑝,−𝑝)
−1
CoMB(𝑝,−𝑝) + G(𝑝). (3.38)

Noting that the ratio between the swapped and direct terms, for ℓ2 = ℓ1 + 1, is

𝑟 (𝑝2)𝑆CoM(𝑝1, 𝑝2)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

𝑟 (𝑝1)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2
→ 1 + 𝜅2𝑒2𝑖𝑝

1 + 𝜅2𝑒−2𝑖𝑝 𝑆CoM(𝑝,−𝑝) as 𝑝1 → 𝑝, 𝑝2 → −𝑝,
(3.39)

we find that the B(𝑝,−𝑝) term coming from (3.38) precisely cancels the B(𝑝,−𝑝)
term in both the even-odd and odd-even wavefunctions.5 We are then left with only
the G(𝑝) contact term. Recalling also that 𝑟 (−𝑝) = 1/𝑟 (𝑝), we can write the final

5Of course, this cancellation means that the ansatz (3.27) was too permissive and we could have
started with a more restrictive ansatz, with a contact term only in the direct or only in the swapped
wavefunctions.



69

solution of the 𝑋𝑌 -sector 2-magnon problem in the centre-of-mass frame as

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝑒𝑖𝑝ℓ1+𝑖(−𝑝)ℓ2 + 𝑆(𝑝,−𝑝)𝑒𝑖(−𝑝)ℓ1+𝑖𝑝ℓ2 ,
𝜓𝑜𝑜 (ℓ1, ℓ2) = 𝑒𝑖𝑝ℓ1+𝑖(−𝑝)ℓ2 + 𝑆(𝑝,−𝑝)𝑒𝑖(−𝑝)ℓ1+𝑖𝑝ℓ2) ,

𝜓𝑜𝑒 (ℓ1, ℓ2) = 𝑟 (𝑝)𝑒𝑖𝑝ℓ1+𝑖(−𝑝)ℓ2 +
1

𝑟 (𝑝) 𝑆(𝑝,−𝑝)𝑒
𝑖(−𝑝)ℓ1+𝑖𝑝ℓ2 (1 + 𝛿ℓ1+1,ℓ2G(𝑝)),

𝜓𝑒𝑜 (ℓ1, ℓ2) =
1

𝑟 (𝑝) 𝑒
𝑖𝑝ℓ1+𝑖(−𝑝)ℓ2 + 𝑟 (𝑝)𝑆(𝑝,−𝑝)𝑒𝑖(−𝑝)ℓ1+𝑖𝑝ℓ2 (1 − 𝛿ℓ1+1,ℓ2

𝜅2

𝑟 (𝑝)2G(𝑝)) .
(3.40)

Note that we now have a contact term only in the swapped parts of 𝜓𝑜𝑒 and 𝜓𝑒𝑜.
However, by their nature, the placement of contact terms is ambiguous and we could
for instance move them to the direct terms. Sending 𝑝 ↦→ −𝑝, we find

B(𝑝,−𝑝) = 𝐹 (−𝑝)B(−𝑝, 𝑝) + G(−𝑝)

⇒ B(−𝑝, 𝑝) = 1
𝐹 (−𝑝) B(𝑝,−𝑝) − G(−𝑝)

𝐹 (−𝑝)

⇒ 𝐹 (−𝑝) = 1
𝐹 (𝑝) , G(−𝑝) = −𝐹 (−𝑝)G(𝑝).

(3.41)

The identity for 𝐹 is expected given the form in equation (3.37). The identity for G
can be written as

𝑆(𝑝,−𝑝)G(𝑝)/𝑟 (𝑝) = G(−𝑝)𝑒−2𝑖𝑝𝑟 (𝑝) , (3.42)

which leads to an equivalent form of writing the solution as follows

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝑒𝑖 𝑝ℓ1+𝑖 (−𝑝)ℓ2 + 𝑆(𝑝,−𝑝)𝑒𝑖 (−𝑝)ℓ1+𝑖 𝑝ℓ2

𝜓𝑜𝑜 (ℓ1, ℓ2) = 𝑒𝑖 𝑝ℓ1+𝑖 (−𝑝)ℓ2 + 𝑆(𝑝,−𝑝)𝑒𝑖 (−𝑝)ℓ1+𝑖 𝑝ℓ2)

𝜓𝑜𝑒 (ℓ1, ℓ2) = 𝑟 (𝑝)𝑒𝑖 𝑝ℓ1+𝑖 (−𝑝)ℓ2 (1 + 𝛿ℓ1+1,ℓ2G(−𝑝)) + 1
𝑟 (𝑝) 𝑆(𝑝,−𝑝)𝑒

𝑖 (−𝑝)ℓ1+𝑖 𝑝ℓ2

𝜓𝑒𝑜 (ℓ1, ℓ2) =
1

𝑟 (𝑝) 𝑒
𝑖 𝑝ℓ1+𝑖 (−𝑝)ℓ2 (1 − 𝛿ℓ1+1,ℓ2 𝜅

2𝑟 (𝑝)2G(−𝑝)) + 𝑟 (𝑝)𝑆(𝑝,−𝑝)𝑒𝑖 (−𝑝)ℓ1+𝑖 𝑝ℓ2 .

(3.43)

Note that we distribute the term exp(−2𝑖𝑝) into the overall exponent as exp(𝑖(−𝑝) (2ℓ−
1) − 𝑖𝑝+ 𝑖𝑝(2ℓ) − 𝑖𝑝) = exp(𝑖(−𝑝) (2ℓ) + 𝑖𝑝(2ℓ−1)). This is because the exp(−2𝑖𝑝)
term comes from contributions of 𝑝1 and 𝑝2: exp(−𝑖(𝑝1 − 𝑝2)). In turn, this has the
effect of exchanging 𝑝1 and 𝑝2 to give the direct momenta6 exponential term. The
above final form will be useful when recovering the contact terms from the general
solution in Section 3.2.4.

6By direct momenta, we mean the unpermuted incoming set of momenta {𝑝1, 𝑝2}.
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At this point, if we were only interested in two magnon excitations we would be done,
since in string theory we need to impose the zero momentum condition. However,
we wish to solve the chain for arbitrary two magnon centre-of-mass momentum 𝐾 ,
as that would be necessary if we were to feed the solution into the three-magnon
problem at a later stage. Therefore, starting from the next section we will study
how to solve the two magnon problem for 𝐾 ≠ 0. Apart from exhibiting several
interesting features, our solution will also shed light on the origin of the centre-of-
mass contact terms, which were introduced by hand.

3.2.2 General solution
To solve the 2-magnon problem beyond the CoM frame we will follow the work of
[51, 52] on alternating chains (see also Section 2.2.4). As usual for the coordinate
Bethe ansatz, one starts by splitting the eigenvalue equations into non-interacting and
interacting ones. The non-interacting ones are those involving states where no two
magnons are next to each other. First one finds all solutions of the non-interacting
equations (all the values of the momenta 𝑝1 and 𝑝2 that solve all those equations with
given energy 𝐸 and total momentum 𝐾). One then combines them appropriately
to solve the interacting equations. The new feature in [51, 52], compared to more
standard spin chains, is that there is more than one set of momenta {𝑝1, 𝑝2} giving
the same 𝐸2 and 𝐾 . These additional momenta also need to be added in order to
obtain a solution of the interacting equations.

One can also think of the above in terms of the formalism of [47], where apart
from the usual Bethe swap of momenta one allows a discrete number of additional
momenta (see Section 2.2.3). In that work, the additional momenta were needed
for the three magnon problem, but in our case we see the need already at the two
magnon level.

For the non-interacting equations (3.20) we make the same ansatz as (3.25), including
the relations (3.24). The difference is in treating the interacting equations (3.21).
Following the treatment in [51, 52], instead of contact terms as in (3.26), we will add
an extra set of momenta {𝑘1, 𝑘2} which also correspond to the same total momentum
𝐾 and energy 𝐸2. By adding these terms (and their permutations) to our ansatz, we
will show that the interacting equations are satisfied without any constraints on the
momenta.
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The additional momenta

The main important feature of the type of dispersion relation (3.14) is that one can
achieve the same two magnon energy with more than one set of momenta. To see
this, let us consider the solutions of the equations

𝐾 = 𝑝1 + 𝑝2 and 𝐸2(𝑝1, 𝑝2) = 𝐸1(𝑝1) + 𝐸2(𝑝2) , (3.44)

for given total momentum 𝐾 and total energy 𝐸2. Rewriting (3.14) slightly, we have

𝐸2(𝑝1, 𝑝2) = 2(𝜅 + 1/𝜅) + 1
𝜅
𝛾1
√
𝐴 + 1

𝜅
𝛾2
√
𝐵, 𝛾1 = 𝛾2 = ±1, (3.45)

where 𝐴 = 𝜅4 + 1 + 2𝜅2cos(2𝑝1), 𝐵 = 𝜅4 + 1 + 2𝜅2cos(2𝑝2). We switch to new
variables𝐾 = 𝑝1+𝑝2 and 2𝑞 = 𝑝1−𝑝2 so that 𝑝1 = (1/2)𝐾+𝑞 and 𝑝2 = (1/2)𝐾−𝑞.
Then, defining Ω = 𝐸2𝜅 − 2𝜅(𝜅 + 1/𝜅), we find that

Ω = 𝛾1
√
𝐴 + 𝛾2

√
𝐵

⇒ 𝐴 = Ω2 − 2𝛾2Ω
√
𝐵 + 𝐵

⇒ 4Ω2𝐵 = Ω4 −Ω2𝐴 +Ω2𝐵 −Ω2𝐴 + 𝐴2 − 𝐴𝐵 +Ω2𝐵 − 𝐴𝐵 + 𝐵2

⇒ Ω4 − 2Ω2𝐴 − 2Ω2𝐵 + 𝐴2 − 2𝐴𝐵 + 𝐵2 = 0.

(3.46)

Substituting

𝐴 = 𝜅4 + 1 + 2𝜅2cos(𝐾)cos(2𝑞) − 2𝜅2sin(𝐾)sin(2𝑞),
𝐵 = 𝜅4 + 1 + 2𝜅2cos(𝐾)cos(2𝑞) + 2𝜅2sin(𝐾)sin(2𝑞),

(3.47)

into the above equation, one can solve for cos(2𝑞) to find 7

cos(2𝑞) = 𝑇1

32𝜅4 ±
√
𝑇2

32𝜅4 ,
(3.48)

where
𝑇1 = −8𝜅2 cot(𝐾)csc(𝐾) Ω2,

𝑇2 = 64𝜅4 sin2(𝐾) (−4𝜅4Ω2 +Ω4 − 4Ω2 + 16𝜅4sin2(𝐾)) + 64𝜅4Ω4cos2(𝐾).
(3.49)

One of the signs for the square root gives back our first momenta {𝑝1, 𝑝2} as well as
{𝑝2, 𝑝1} (since cos is an even function). The other sign gives a new set of momenta
{𝑘1, 𝑘2} (as well as {𝑘2, 𝑘1}) for the same (𝐾, 𝐸2). This new set of momenta is
generally complex valued with equal but opposite imaginary parts (since 𝐾 is always
real valued). The real parts also have the interesting feature that they differ by 𝜋.
This makes them different from a bound state which has equal real parts given by
𝐾/2. In addition, bound states can also be determined by looking for zeroes and
poles of the S-matrix 8. It can be checked that these new momenta are neither zeroes

7Observe that the signs 𝛾1, 𝛾2 have been squared out of the final expression.
8As a practical example of this, see the spin chain computations performed in [18].
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nor poles of the S-matrix determined later in this section. Rather, the new set of
momenta are resonances [72][73] 9.

(a) 𝜅 = 1 (b) 𝜅 = 8/10

(c) 𝜅 = 5/10 (d) 𝜅 = 1/10

Figure 3.3: E-K graphs for various values of 𝜅. The y-axis is the energy 𝐸 and the
x-axis is the total momentum 𝐾 . We show half of the Brillouin zones. The shaded
regions are the scattering continua. The vertical dashed line denotes 𝐾𝑐. After 𝐾𝑐,
the blue dashed line becomes a true boundary for the upper and lower continua.
Note that the y-axis does change drastically from 𝜅 = 5/10 to 𝜅 = 1/10.

Figure 3.4: Krupennikov zones
9See especially the discussion on page 99 of [72] for resonances that do not appear as poles or

zeroes of the S-matrix.
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In Figure 3.3, we have plotted the E-K graphs for various values of 𝜅. The derivation
of continua boundaries is performed in Appendix C. The orbifold case, 𝜅 = 1, is
shown in Figure 3.3a. It has a single scattering continuum which reflects the fact
that the orbifold point is described by the XXX Heisenberg model (see, for example,
Figure 2 of [41]). The Brillouin zone, of which we show half in the figures, extends
to 𝜋.

Tuning away from the orbifold point to 𝜅 = 8/10, the scattering continuum splits
into three distinct scattering continua in Figure 3.3b with the Brillouin zone now
extending to 𝜋/2 (see also Figure 3.2). These continua are labeled as in Figure
3.4 using the Krupennikov zones described in [52][51]. Regions II, IV and VI
label the three scattering continua which are combinations of acoustic-acoustic
(AA, the lower region II and IV), optic-optic (OO, the upper region II and IV) and
mixed acoustic-optic (AO, region VI). In these regions and before the critical point
𝐾 = 𝐾𝑐 = cos−1(𝜅2), the solutions for 𝑞 consist of two real 𝑞 solutions and two
complex 𝑞 solutions. After 𝐾𝑐 and as discussed in Appendix C, the blue dashed line
becomes a true continuum boundary and is given by the curves 𝑍𝑎 for the AA region
and 𝑍𝑑 for the OO region. For the AA region (the argument is identical for the OO
case), the upper orange curve𝑊𝑏 (which is a true continuum boundary for 𝐾 ≤ 𝐾𝑐)
traces into the continuum below 𝑍𝑎 and, together, these curves define region IV. The
curve 𝑊𝑏, now being inside the continuum, forms internal van Hove singularities.
Crossing over this curve, from region II to region IV, changes the nature of the 𝑞
solutions such that all solutions are real-valued. Outside of the scattering continua,
given by regions III and V, all the 𝑞 solutions are complex-valued. Bound state
solutions exist in these regions and were studied in [52][51].

Tuning 𝜅 further away from the orbifold point, as shown in Figure 3.3c and most
notably in 3.3d, the continua start to flatten and the gaps between the continua start
increasing. Notice also that the critical points 𝐾 = 𝐾𝑐 shift towards the end of the
first Brillouin zone, which starts to shrink region IV. The collapsing of the continua
matches the results shown in Figure 2 of [18] which also exhibits flattening continua
as 𝜅 approaches zero (in their case, they were studying spin chains in the XZ sector,
which we will also study later in Chapter 4 (although, for a different choice of
vacuum)).

Thus, in summary, there are four solutions given by {𝑞1, 𝑞2} and their negatives.
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Note that the we can add the solutions together to give

cos(2𝑞1) + cos(2𝑞2) = − (𝐸2 − 2(𝜅 + 1/𝜅))2 cos𝐾
2 sin2 𝐾

. (3.50)

To translate this new set of momenta back into the form {𝑘1, 𝑘2}, let us assume an
initial set of momenta {𝑝1, 𝑝2} with sum 𝐾 = 𝑝1 + 𝑝2 and difference 2𝑞1 = 𝑝1 − 𝑝2.
Then, with the same 𝐾 = 𝑘1 + 𝑘2 but with difference 2𝑞2 = 𝑘1 − 𝑘2, we find

𝑘1,2 =
𝐾

2
± 𝜋

2
∓ 1

2
arccos

(
cos(𝑝1 − 𝑝2) +

(𝐸2 − 2(𝜅 + 1/𝜅))2 cos𝐾
2 sin2 𝐾

)
, (3.51)

where we used that arccos(−𝑥) = 𝜋 − arccos(𝑥).

Let us remark that the possibility of additional momenta is not there for the XXX
dispersion relation 𝐸2 = 2(1 − cos(𝑝1)) + 2(1 − cos(𝑝2)), where the only solutions
(up to periodicity) are the original 𝑝1, 𝑝2 and their permutation 𝑝2, 𝑝1. This feature
is characteristic of staggered-type chains such as the one under study (see e.g.
a comment in [74], p.137). Of course, the swapped solutions 𝑞1 → −𝑞1 and
𝑞2 → −𝑞2 are still there in (3.50), so we find a total of four solutions of our two
magnon dispersion relation:

Direct 𝑝 Swapped 𝑝 Direct 𝑘 Swapped 𝑘
{𝑝1, 𝑝2} {𝑝2, 𝑝1} {𝑘1, 𝑘2} {𝑘2, 𝑘1}

As all these momenta have the same total energy and momentum, the most general
wavefunction for fixed 𝐾 and 𝐸2 will be a superposition of all of them. As expected
from the discussion in [52, 51], generalising the Bethe ansatz to include the 𝑘
momenta will indeed lead to a solution of the interacting equations.

Generalised Bethe ansatz

Given the above discussion, we will now update the wavefunction (3.22) to include
all the four sets of momenta. We have:

|𝑝1, 𝑝2, 𝑘1, 𝑘2 ⟩ =
∑︁
𝑟<𝑠

(
𝜓𝑒𝑒 (2𝑟, 2𝑠) |2𝑟, 2𝑠 ⟩+𝜓𝑜𝑜 (2𝑟+1, 2𝑠+1) |2𝑟+1, 2𝑠+1⟩

)
+

∑︁
𝑟<𝑠+1

(
𝜓𝑜𝑒 (2𝑟−1, 2𝑠) |2𝑟−1, 2𝑠 ⟩+ 𝜓𝑒𝑜 (2𝑟, 2𝑠+1) |2𝑟, 2𝑠+1⟩

)
,

(3.52)
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with

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝐴𝑒𝑒 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑒𝑒 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝑒𝑒 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝑒𝑒 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑒𝑜 (ℓ1, ℓ2) = 𝐴𝑒𝑜 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑒𝑜 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝑒𝑜 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝑒𝑜 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑜𝑒 (ℓ1, ℓ2) = 𝐴𝑜𝑒 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑜𝑒 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝑜𝑒 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝑜𝑒 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑜𝑜 (ℓ1, ℓ2) = 𝐴𝑜𝑜 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑜𝑜 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝑜𝑜 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝑜𝑜 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 .

(3.53)

Each of these extra terms are solutions of the non-interacting equations and there-
fore their sum is also a solution of the non-interacting equations. From the non-
interacting equations, the coefficients for the direct and swapped 𝑝 momenta are
fixed in terms of 𝐴𝑒𝑒 (𝑝1, 𝑝2)and 𝐴𝑒𝑒 (𝑝2, 𝑝1) as in equation (3.24), of course with
𝑝1 ↔ 𝑝2 in the swapped case. In exactly the same manner, the coefficients for
the direct 𝑘 momenta and swapped 𝑘 momenta are fixed, through the appropri-
ate replacements in equation (3.24), in terms of the coefficients 𝐴𝑒𝑒 (𝑘1, 𝑘2) and
𝐴𝑒𝑒 (𝑘2, 𝑘1), respectively. Explicitly, we have (with ℓ1, ℓ2 even or odd as required by
the labels)

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝐴𝑒𝑒 (𝑝1, 𝑝2)𝑒𝑖 𝑝1ℓ1+𝑖 𝑝2ℓ2 + 𝐴𝑒𝑒 (𝑝2, 𝑝1)𝑒𝑖 𝑝2ℓ1+𝑖 𝑝1ℓ2

+ 𝐴𝑒𝑒 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝑒𝑒 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑒𝑜 (ℓ1, ℓ2) = 𝑟 (𝑝2) 𝐴𝑒𝑒 (𝑝1, 𝑝2)𝑒𝑖 𝑝1ℓ1+𝑖 𝑝2ℓ2 + 𝑟 (𝑝1) 𝐴𝑒𝑒 (𝑝2, 𝑝1)𝑒𝑖 𝑝2ℓ1+𝑖 𝑝1ℓ2

+ 𝑟 (𝑘2) 𝐴𝑒𝑒 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝑟 (𝑘1) 𝐴𝑒𝑒 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑜𝑒 (ℓ1, ℓ2) = 𝑟 (𝑝1) 𝐴𝑒𝑒 (𝑝1, 𝑝2)𝑒𝑖 𝑝1ℓ1+𝑖 𝑝2ℓ2 + 𝑟 (𝑝2) 𝐴𝑒𝑒 (𝑝2, 𝑝1)𝑒𝑖 𝑝2ℓ1+𝑖 𝑝1ℓ2

+ 𝑟 (𝑘1) 𝐴𝑒𝑒 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝑟 (𝑘2) 𝐴𝑒𝑒 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑜𝑜 (ℓ1, ℓ2) = 𝑟 (𝑝1)𝑟 (𝑝2) 𝐴𝑒𝑒 (𝑝1, 𝑝2)𝑒𝑖 𝑝1ℓ1+𝑖 𝑝2ℓ2 + 𝑟 (𝑝1)𝑟 (𝑝2) 𝐴𝑒𝑒 (𝑝2, 𝑝1)𝑒𝑖 𝑝2ℓ1+𝑖 𝑝1ℓ2

+ 𝑟 (𝑘1)𝑟 (𝑘2) 𝐴𝑒𝑒 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝑟 (𝑘1)𝑟 (𝑘2) 𝐴𝑒𝑒 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 .

(3.54)

Imposing the non-interacting equations has left us with four remaining coefficients:
𝐴𝑒𝑒 (𝑝1, 𝑝2), 𝐴𝑒𝑒 (𝑝2, 𝑝1), 𝐴𝑒𝑒 (𝑘1, 𝑘2) and 𝐴𝑒𝑒 (𝑘2, 𝑘1). These coefficients will be
fixed in terms of 𝐴𝑒𝑒 (𝑝1, 𝑝2) through the interacting equations and will give us our
final S-matrices.
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Interacting equations

It is useful to simplify the interacting equations (3.21) by noting the fact that
the even-odd and odd-even non-interacting equations (3.20) also hold if we set
𝑟 = 𝑠 (even though these equations are unphysical). We can subtract the even-odd
interacting equation in (3.21) from the corresponding one in (3.20) and similarly for
the odd-even one, to obtain the two equations

1
𝜅
𝜓𝑒𝑒 (2𝑟, 2𝑟) −

2
𝜅
𝜓𝑜𝑒 (2𝑟 − 1, 2𝑟) + 1

𝜅
𝜓𝑜𝑜 (2𝑟 − 1, 2𝑟 − 1) = 0 , (3.55)

and

𝜅 𝜓𝑒𝑒 (2𝑠, 2𝑠) − 2𝜅 𝜓𝑒𝑜 (2𝑠, 2𝑠 + 1) + 𝜅 𝜓𝑜𝑜 (2𝑠 + 1, 2𝑠 + 1) = 0 . (3.56)

Now we apply the following procedure to solve these equations10:

• We take equation (3.55) and disregard the coefficients 𝐴𝑒𝑒 (𝑘1, 𝑘2) and 𝐴𝑒𝑒 (𝑘2, 𝑘1)
momentarily. We then solve equation (3.55) for 𝐴𝑒𝑒 (𝑝2, 𝑝1) in terms of
𝐴𝑒𝑒 (𝑝1, 𝑝2). This gives us the S-matrix for {𝑝1, 𝑝2} → {𝑝2, 𝑝1} scattering.

• Next, we disregard the coefficients 𝐴𝑒𝑒 (𝑝1, 𝑝2) and 𝐴𝑒𝑒 (𝑝2, 𝑝1) momentarily
and solve again equation (3.55) but this time for 𝐴𝑒𝑒 (𝑘2, 𝑘1) in terms of
𝐴𝑒𝑒 (𝑘1, 𝑘2). This gives us the S-matrix for {𝑘1, 𝑘2} → {𝑘2, 𝑘1} scattering.

• Since each scattering sector is solved, their sum also solves equation (3.55).
It does not however solve equation (3.56), but we still have two coefficients
remaining: 𝐴𝑒𝑒 (𝑝1, 𝑝2) and 𝐴𝑒𝑒 (𝑘1, 𝑘2) (after substituting the results from
the previous points). We can therefore solve for 𝐴𝑒𝑒 (𝑘1, 𝑘2) in terms of
𝐴𝑒𝑒 (𝑝1, 𝑝2) which gives us the S-matrix for {𝑝1, 𝑝2} → {𝑘1, 𝑘2} scattering.
Thus, equation (3.56) is also solved.

It should be noted that we could also start this procedure with equation (3.56) first
and then end with equation (3.55). The S-matrices will be different to the first
procedure but are related by inversion of 𝜅, except for the S-matrices where we go
from 𝑝’s to 𝑘’s.

10As we will later show, this procedure results in two magnon wavefunctions with exactly the
same form as the three spin deviation wavefunctions (2.104) in Section 2.2.3.
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Following the above procedure, in the end we find two Z2-conjugate solutions for
the remaining coefficients. The first solution is given by

𝐴𝑒𝑒 (𝑝1, 𝑝2) =
(
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

)
𝑎(𝑝1, 𝑝2)

𝐴𝑒𝑒 (𝑝2, 𝑝1) = −
(
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

)
𝑎(𝑝2, 𝑝1)

𝐴𝑒𝑒 (𝑘1, 𝑘2) = −
(
𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)

)
𝑎(𝑘1, 𝑘2)

𝐴𝑒𝑒 (𝑘2, 𝑘1) = −
(
𝑎(𝑝1, 𝑝2)𝑏(𝑝2, 𝑝1) − 𝑏(𝑝1, 𝑝2)𝑎(𝑝2, 𝑝1)

)
𝑎(𝑘2, 𝑘1) ,

(3.57)

and the second solution (for which we will use the letter 𝐵) is given by

𝐵𝑒𝑒 (𝑝1, 𝑝2) =
(
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

)
𝑏(𝑝1, 𝑝2)

𝐵𝑒𝑒 (𝑝2, 𝑝1) = −
(
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

)
𝑏(𝑝2, 𝑝1)

𝐵𝑒𝑒 (𝑘1, 𝑘2) = −
(
𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)

)
𝑏(𝑘1, 𝑘2)

𝐵𝑒𝑒 (𝑘2, 𝑘1) = −
(
𝑎(𝑝1, 𝑝2)𝑏(𝑝2, 𝑝1) − 𝑏(𝑝1, 𝑝2)𝑎(𝑝2, 𝑝1)

)
𝑏(𝑘2, 𝑘1) ,

(3.58)

where the coefficients 𝑎, 𝑏 are

𝑎(𝑝1, 𝑝2, 𝜅) = 𝑒𝑖(𝑝1+𝑝2) − 2𝑒𝑖𝑝1𝑟 (𝑝2, 𝜅) + 𝑟 (𝑝1, 𝜅)𝑟 (𝑝2, 𝜅) ,
𝑏(𝑝1, 𝑝2, 𝜅) = 1 − 2𝑒𝑖𝑝1𝑟 (𝑝1, 𝜅) + 𝑟 (𝑝1, 𝜅)𝑟 (𝑝2, 𝜅)𝑒𝑖(𝑝1+𝑝2) ,

(3.59)

where the ratio 𝑟 (𝑝, 𝜅) is defined in equation (3.13). Clearly, these coefficients are
deformations of the terms appearing in the XXX 𝑆-matrix, to which they reduce in
the 𝜅 = 1 limit. That is, 𝑎(𝑝1, 𝑝2, 1) = 𝑏(𝑝1, 𝑝2, 1) = 1 − 2𝑒𝑖𝑝1 + 𝑒𝑖(𝑝1+𝑝2) .

For the wavefunction 𝜓𝑒𝑒 (ℓ1, ℓ2), we can therefore combine the two solutions with
general coefficients 𝛼, 𝛽

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝛼 𝜓𝐴𝑒𝑒 (ℓ1, ℓ2) + 𝛽 𝜓𝐵𝑒𝑒 (ℓ1, ℓ2), (3.60)

where the notation is that 𝜓𝐴𝑒𝑒 has the 𝐴-coefficients and 𝜓𝐵𝑒𝑒 has the 𝐵-coefficients.
Note that 𝐴, 𝐵 are not indices, just different labels for the different wavefunctions.
The even-odd, odd-even and odd-odd parts of the wavefunction are as above but
with appropriate placements of 𝑟 (𝑝). As we will show later, combining 𝜓𝐴 and 𝜓𝐵

in this way is necessary in order to get an eigenstate of the Z2 symmetry.

In summary, the total eigenstate that solves the two magnon problem is given by

|𝜓 ⟩tot = 𝛼 |𝑝1, 𝑝2, 𝑘1, 𝑘2⟩𝐴 + 𝛽 |𝑝1, 𝑝2, 𝑘1, 𝑘2⟩𝐵 . (3.61)

Let us note that the structure of the solution bears a strong similarity to the approach
of [47]. As discussed in Section 2.2.3, an extra set of momenta was used to solve
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the three spin deviation problem for a spin-1 non-integrable system (for which there
exists a scattering channel that exhibits diffractive scattering) by introducing a finite
number of extra discrete diffractive terms to the usual Bethe ansatz. The main
difference here is that the additional set of momenta already appears at the two
magnon level. Writing, for example, 𝜓𝐴𝑒𝑒 (ℓ1, ℓ2) as

𝜓𝐴𝑒𝑒 (ℓ1, ℓ2) = Ψ(𝑘1, 𝑘2)Ω𝐴 (𝑝1, 𝑝2; ℓ1, ℓ2) − Ψ(𝑝1, 𝑝2)Ω𝐴 (𝑘1, 𝑘2; ℓ1, ℓ2), (3.62)

where (here 𝑞𝑖 stands for either 𝑝𝑖 or 𝑘𝑖)

Ψ(𝑞1, 𝑞2) = 𝑎(𝑞2, 𝑞1)𝑏(𝑞1, 𝑞2) − 𝑏(𝑞2, 𝑞1)𝑎(𝑞1, 𝑞2), (3.63)

and

Ω𝐴 (𝑞1, 𝑞2; ℓ1, ℓ2) = 𝑎(𝑞1, 𝑞2)𝑒𝑖𝑞1ℓ1+𝑖𝑞2ℓ2 − 𝑎(𝑞2, 𝑞1)𝑒𝑖𝑞2ℓ1+𝑖𝑞1ℓ2 , (3.64)

the similarity to equation (2.104) is apparent.

Properties of the 𝑆-matrices

Factoring 𝐴𝑒𝑒 (𝑝1, 𝑝2) out from the above wavefunctions, we have

𝜓𝑒𝑒 (ℓ1, ℓ2) = 𝑒𝑖 𝑝1ℓ1+𝑖 𝑝2ℓ2 + 𝑆(𝑝1, 𝑝2)𝑒𝑖 𝑝2ℓ1+𝑖 𝑝1ℓ2

+ 𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑆(𝑘1, 𝑘2)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑒𝑜 (ℓ1, ℓ2) = 𝑟 (𝑝2)𝑒𝑖 𝑝1ℓ1+𝑖 𝑝2ℓ2 + 𝑟 (𝑝1)𝑆(𝑝1, 𝑝2)𝑒𝑖 𝑝2ℓ1+𝑖 𝑝1ℓ2

+ 𝑟 (𝑘2)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2

+ 𝑟 (𝑘1)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑆(𝑘1, 𝑘2)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑜𝑒 (ℓ1, ℓ2) = 𝑟 (𝑝1)𝑒𝑖 𝑝1ℓ1+𝑖 𝑝2ℓ2 + 𝑟 (𝑝2)𝑆(𝑝1, 𝑝2)𝑒𝑖 𝑝2ℓ1+𝑖 𝑝1ℓ2

+ 𝑟 (𝑘1)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2

+ 𝑟 (𝑘2)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑆(𝑘1, 𝑘2)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝑜𝑜 (ℓ1, ℓ2) = 𝑟 (𝑝1)𝑟 (𝑝2)𝑒𝑖 𝑝1ℓ1+𝑖 𝑝2ℓ2 + 𝑟 (𝑝1)𝑟 (𝑝2)𝑆(𝑝1, 𝑝2)𝑒𝑖 𝑝2ℓ1+𝑖 𝑝1ℓ2

+ 𝑟 (𝑘1)𝑟 (𝑘2)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2

+ 𝑟 (𝑘1)𝑟 (𝑘2)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑆(𝑘1, 𝑘2)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

(3.65)

where we have defined three S-matrices:

𝑆(𝑝1, 𝑝2) =
𝐴𝑒𝑒 (𝑝2, 𝑝1)
𝐴𝑒𝑒 (𝑝1, 𝑝2)

, 𝑆(𝑘1, 𝑘2) =
𝐴𝑒𝑒 (𝑘2, 𝑘1)
𝐴𝑒𝑒 (𝑘1, 𝑘2)

, 𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2) =
𝐴𝑒𝑒 (𝑘1, 𝑘2)
𝐴𝑒𝑒 (𝑝1, 𝑝2)

.

(3.66)

The 𝑆-matrix 𝑆(𝑝1, 𝑝2) is the usual Bethe ansatz 𝑆-matrix, while 𝑆(𝑘1, 𝑘2) plays
the same role for the 𝑘 momenta. However 𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2) is a new object, which
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describes the scattering where an initial state with momenta {𝑝1, 𝑝2} becomes a
final state with momenta {𝑘1, 𝑘2}.

For the 𝐴 solution, these 𝑆-matrices take the form

𝑆𝐴 (𝑝1, 𝑝2; 𝜅) = −𝑎(𝑝2, 𝑝1)
𝑎(𝑝1, 𝑝2)

, 𝑆𝐴 (𝑘1, 𝑘2; 𝜅) = −𝑎(𝑘2, 𝑘1)
𝑎(𝑘1, 𝑘2)

. (3.67)

while 𝑇 is

𝑇 𝐴 (𝑝1, 𝑝2; 𝑘1, 𝑘2, 𝜅) = −𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

𝑎(𝑘1, 𝑘2)
𝑎(𝑝1, 𝑝2)

.

(3.68)
Similarly, for the solution with 𝐵 coefficients we have,

𝑆𝐵 (𝑝1, 𝑝2; 𝜅) = −𝑏(𝑝2, 𝑝1)
𝑏(𝑝1, 𝑝2)

, 𝑆𝐵 (𝑘1, 𝑘2; 𝜅) = −𝑏(𝑘2, 𝑘1)
𝑏(𝑘1, 𝑘2)

, (3.69)

and

𝑇𝐵 (𝑝1, 𝑝2; 𝑘1, 𝑘2; 𝜅) = −𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

𝑏(𝑘1, 𝑘2)
𝑏(𝑝1, 𝑝2)

.

(3.70)
It is intriguing to note that we can write all the 𝑆-matrices above (3.67), (3.69),
(3.68) and (3.70) in a unified form by including the ratio of the Wronskian-type
terms even for the 𝑆𝐴, 𝑆𝐵 where the Wronskian-type factor becomes trivial. Using
generic momenta 𝑞1, 𝑞2 → 𝑞′1, 𝑞

′
2 for the scattering process, we obtain the unifying

formula:

𝑆(𝑞1, 𝑞2; 𝑞′1, 𝑞
′
2) = −𝑎(𝑞2, 𝑞1)𝑏(𝑞1, 𝑞2) − 𝑏(𝑞2, 𝑞1)𝑎(𝑞1, 𝑞2)

𝑎(𝑞′2, 𝑞
′
1)𝑏(𝑞

′
1, 𝑞

′
2) − 𝑏(𝑞

′
2, 𝑞

′
1)𝑎(𝑞

′
1, 𝑞

′
2)
𝑏(𝑞′1, 𝑞

′
2)

𝑏(𝑞1, 𝑞2)
(3.71)

and we see that 𝑆(𝑝1, 𝑝2; 𝑝2, 𝑝1) = −𝑆(𝑝1, 𝑝2), 𝑆(𝑘1, 𝑘2; 𝑘2, 𝑘1) = −𝑆(𝑘1, 𝑘2) and
𝑆(𝑝1, 𝑝2; 𝑘1, 𝑘2) = 𝑇 (𝑝1, 𝑝2; 𝑘1, 𝑘2).

The 𝑆 matrices for the 𝑝 and 𝑘 momenta satisfy the unitary condition

𝑆𝐴 (𝑝1, 𝑝2)𝑆𝐴 (𝑝2, 𝑝1) = 1 , 𝑆𝐵 (𝑝1, 𝑝2)𝑆𝐵 (𝑝2, 𝑝1) = 1 (3.72)

as well as
𝑆𝐴 (𝑝, 𝑝) = −1 , 𝑆𝐵 (𝑝, 𝑝) = −1. (3.73)

They also smoothly reduce to the XXX 𝑆-matrix as 𝜅 → 1, e.g

𝑆𝐴(𝑝1, 𝑝2) = −𝑒
𝑖 (𝑝1+𝑝2) − 2𝑒𝑖 𝑝2𝑟 (𝑝1, 𝜅) + 𝑟 (𝑝1, 𝜅)𝑟 (𝑝2, 𝜅)
𝑒𝑖 (𝑝1+𝑝2) − 2𝑒𝑖 𝑝1𝑟 (𝑝2, 𝜅) + 𝑟 (𝑝1, 𝜅)𝑟 (𝑝2, 𝜅)

𝜅→1−→ −𝑒
𝑖 (𝑝1+𝑝2) − 2𝑒𝑖 𝑝2 + 1
𝑒𝑖 (𝑝1+𝑝2) − 2𝑒𝑖 𝑝1 + 1

.

(3.74)



80

Using that 𝑟 (0, 𝜅) = 1, it can also be easily seen that

𝑆𝐴,𝐵 (0, 𝑝) = 𝑆𝐴,𝐵 (𝑝, 0) = 1, (3.75)

a property it shares with the XXX-model 𝑆-matrix.

On the other hand, |𝑇 | ≠ 1 and therefore it is not a phase 11. There is an interesting
identity that one can derive by thinking physically about scattering from {𝑝1, 𝑝2} to
{𝑘2, 𝑘1}: one can first send {𝑝1, 𝑝2} → {𝑘1, 𝑘2} and then {𝑘1, 𝑘2} → {𝑘2, 𝑘1} or
one can first send {𝑝1, 𝑝2} → {𝑝2, 𝑝1} and then {𝑝2, 𝑝1} → {𝑘2, 𝑘1}. This gives

𝑆𝐴 (𝑘1, 𝑘2)𝑇 𝐴 (𝑝1, 𝑝2, 𝑘1, 𝑘2) = 𝑇 𝐴 (𝑝2, 𝑝1, 𝑘2, 𝑘1)𝑆𝐴 (𝑝1, 𝑝2), (3.76)

and a similar identity for the 𝐵 coefficient solutions.

Symmetries

The two solutions |𝑝1, 𝑝2, 𝑘1, 𝑘2 ⟩𝐴 and |𝑝1, 𝑝2, 𝑘1, 𝑘2 ⟩𝐵 are related by Z2 symmetry.
Recalling that 𝑟 (𝑝, 1/𝜅) = 1/𝑟 (𝑝, 𝜅), we can see that

𝑎(𝑝1, 𝑝2, 1/𝜅) =
1

𝑟 (𝑝1)𝑟 (𝑝2)
𝑏(𝑝1, 𝑝2, 𝜅),

𝑏(𝑝1, 𝑝2, 1/𝜅) =
1

𝑟 (𝑝1)𝑟 (𝑝2)
𝑎(𝑝1, 𝑝2, 𝜅) ,

(3.77)

from which we find for the 𝑆-matrices ({𝑥, 𝑦} = {𝑝1, 𝑝2} or {𝑘1, 𝑘2}, similar for
{𝑤, 𝑧})

𝑆𝐴 (𝑥, 𝑦, 1/𝜅) = 𝑆𝐵 (𝑥, 𝑦, 𝜅), 𝑇 𝐴 (𝑥, 𝑦, 𝑤, 𝑧, 1/𝜅) = 𝑟 (𝑘1)𝑟 (𝑘2)
𝑟 (𝑝1)𝑟 (𝑝2)

𝑇𝐵 (𝑥, 𝑦, 𝑤, 𝑧, 𝜅).
(3.78)

Using (3.77) one can check that the total action of Z2 on say 𝜓𝐴𝑒𝑒 is

𝜓𝐴𝑒𝑒 → −𝑟 (𝑝1)−2𝑟 (𝑝2)−2𝑟 (𝑘1)−2𝑟 (𝑘2)−2𝜓𝐵𝑜𝑜 . (3.79)

The other wavefunctions work similarly, with even and odd sites being exchanged
by the Z2 action. Therefore, if we want the general solution (3.61) to also be an
eigenstate of Z2 we need to impose 𝛼(1/𝜅) = ±𝛽(𝜅) and we find

Z2 |𝜓 ⟩tot = ∓
(
𝑟 (𝑝1)𝑟 (𝑝2)𝑟 (𝑘1)𝑟 (𝑘2)

)−2 |𝜓 ⟩tot. (3.80)
11However we expect that a process where 𝑝1 + 𝑝2 → 𝑘1 + 𝑘2 is compensated by the inverse

process.
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It is also useful to study the symmetries related to permutations between the 𝑝 and
𝑘 momenta. Let us define the transformations:

𝜎𝑝 : {𝑝1, 𝑝2} ↔ {𝑝2, 𝑝1} , 𝜎𝑘 : {𝑘1, 𝑘2} ↔ {𝑘2, 𝑘1} , 𝜎𝑝𝑘,1 : {𝑝1, 𝑝2} ↔ {𝑘1, 𝑘2} ,
(3.81)

and where the additional map 𝜎𝑝𝑘,2 : {𝑝1, 𝑝2} ↔ {𝑘2, 𝑘1} is a composition, e.g.
𝜎𝑝𝑘,2 = 𝜎𝑘 ◦𝜎𝑝𝑘,1 ◦𝜎𝑝. We can now consider how these maps act on different parts
of the wavefunctions, for example:

𝜎𝑝𝜓𝑜𝑒 (ℓ1, ℓ2) = −𝜓𝑜𝑒 (ℓ1, ℓ2)
𝜎𝑘𝜓𝑜𝑒 (ℓ1, ℓ2) = −𝜓𝑜𝑒 (ℓ1, ℓ2)
𝜎𝑝𝑘,1𝜓𝑜𝑒 (ℓ1, ℓ2) = −𝜓𝑜𝑒 (ℓ1, ℓ2)
𝜎𝑝𝑘,2𝜓𝑜𝑒 (ℓ1, ℓ2) = −𝜓𝑜𝑒 (ℓ1, ℓ2).

(3.82)

In Table 3.1, we summarise the action of the Z2 maps, as well as the momentum
permutation maps, on the 𝐴 and 𝐵 solutions.

Transformation Wavefunction
|𝜓⟩(𝑟) |𝜓⟩(𝐴) |𝜓⟩(𝐵)

Z2 −𝑧(𝑟) |𝜓⟩(𝑟) −𝑧(𝑔) |𝜓⟩(𝐵) −𝑧(𝑔) |𝜓⟩(𝐴)
𝜎𝑝 −|𝜓⟩(𝑟) −|𝜓⟩(𝐴) −|𝜓⟩(𝐵)
𝜎𝑘 · −|𝜓⟩(𝐴) −|𝜓⟩(𝐵)
𝜎𝑝𝑘,1 · −|𝜓⟩(𝐴) −|𝜓⟩(𝐵)
𝜎𝑝𝑘,2 · −|𝜓⟩(𝐴) −|𝜓⟩(𝐵)
𝜎𝑝 ◦ 𝜎𝑘 · +|𝜓⟩(𝐴) +|𝜓⟩(𝐵)
𝜎𝑝 ◦ 𝜎𝑝𝑘,1 · +|𝜓⟩(𝐴) +|𝜓⟩(𝐵)
𝜎𝑝 ◦ 𝜎𝑝𝑘,2 · +|𝜓⟩(𝐴) +|𝜓⟩(𝐵)
𝜎𝑛 (−1)𝑛 |𝜓⟩(𝐴) (−1)𝑛 |𝜓⟩(𝐵)

Table 3.1: A summary of the transformations of the wavefunctions considered
in the text under the discrete symmetries of the problem. Here |𝜓 ⟩(𝑟) is the re-
stricted solution (3.84) while the two general solutions are as given in (3.52) with
the coefficients in (3.57),(3.58) respectively. The respective Z2 eigenvalues are
𝑧𝑟 = (𝑟 (𝑝1)𝑟 (𝑝2))−2(𝑟 (𝑘1)𝑟 (𝑘2))−1 and 𝑧𝑔 = (𝑟 (𝑝1)𝑟 (𝑝2))−2(𝑟 (𝑘1)𝑟 (𝑘2))−2. The
momentum maps are as defined in (3.81). (𝜎𝑛 means any 𝑛-composition of the
sigma operators).

To conclude this section, we have exhibited the solution of the 2-magnon problem
for the alternating Hamiltonian (3.1). The general solution includes scattering of the
original momenta to another set of momenta which are not related by permutations.
This feature, which is characteristic of staggered-type chains, can be thought of in
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terms of the discrete diffractive framework discussed in Section 2.2.3 and, at least
for the cases discussed there, is not by itself an impediment to solvability. Therefore,
even though our system does exhibit diffractive scattering, and would on the surface
appear to fail Sutherland’s criterion of quantum integrability [46] (see also [48] and
the discussion in Section 2.2.2), we believe that it is important to understand how far
one can extend the Bethe ansatz framework for the study of the three- and higher-
magnon problem, and in particular whether a discrete-diffractive ansatz can play a
role in its solution.12

3.2.3 Restricted solution
As mentioned in the previous section, the 𝑘-momenta are generally complex-valued.
This can lead to divergences coming from the exponents exp(𝑖𝑘1ℓ1 + 𝑖𝑘2ℓ2) and
exp(𝑖𝑘2ℓ1 + 𝑖𝑘1ℓ2) in the wavefunctions. In fact, there are two ways this can happen:
in the case of an infinite length spin chain, one of these terms will exponentially
increase as the relative distance |ℓ2−ℓ1 | → ∞; and, when considering the CoM case
𝐾 = 0, the imaginary parts of 𝑘1, 𝑘2 diverge to complex infinity which again leads
to exponentially increasing/decaying terms even for finite length chains. Thus, in
these cases, the four term solution that we found in Section 3.2.2 is not applicable.
However, it is possible to take an appropriate linear combination of the two Z2

conjugate solutions which removes the unwanted term.

Let us write 𝑘1 = 𝐾/2 + 𝜋/2 − 𝑖𝑣, 𝑘2 = 𝐾/2 − 𝜋/2 + 𝑖𝑣, 𝑣 ≥ 0. Since in the
wavefunction we have ℓ2 > ℓ1, the term with swapped 𝑘-momenta is the one leading
to the divergence in the cases described above: |exp(𝑖𝑘2ℓ1 + 𝑖𝑘1ℓ2) | ∼ |𝑒𝑣(ℓ2−ℓ1) | →
∞.

Therefore, let us try to solve the eigenvalue problem while imposing the boundary
condition that there are no divergences at infinite relative distance or 𝐾 = 0. This
requires that the swapped 𝑘 coefficients be set to zero. The ansatz will still be of the

12Sutherland’s criterion, discussed in Section 2.2.2, applies to the three- and higher-magnon
problem, while here we already see additional momenta at the two magnon level. We can expect, of
course, that the additional momenta will be a feature of the higher-magnon problems as well.
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form (3.52), however now each Bethe wavefunction will consist of just three terms13

𝜓
(𝑟)
𝑒𝑒 (ℓ1, ℓ2) = 𝐴𝑒𝑒 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑒𝑒 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝑒𝑒 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 ,

𝜓
(𝑟)
𝑜𝑒 (ℓ1, ℓ2) = 𝐴𝑜𝑒 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑜𝑒 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝑜𝑒 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 ,

𝜓
(𝑟)
𝑒𝑜 (ℓ1, ℓ2) = 𝐴𝑒𝑜 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑒𝑜 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝑒𝑜 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 ,

𝜓
(𝑟)
𝑜𝑜 (ℓ1, ℓ2) = 𝐴𝑜𝑜 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝑜𝑜 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝑜𝑜 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 .

(3.83)

We will call this the restricted solution, and we will see that it is still possible to
solve all the equations with this restriction.14. The solution is as follows:

𝐴𝑒𝑒 (𝑝1, 𝑝2) = 𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2) ,
𝐴𝑒𝑒 (𝑝2, 𝑝1) = −

(
𝑎(𝑘2, 𝑘1)𝑏(𝑝2, 𝑝1) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝2, 𝑝1)

)
,

𝐴𝑒𝑒 (𝑘1, 𝑘2) = −
(
𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)

)
.

(3.84)

We observe that the 𝐴’s here are quadratic in the 𝑎, 𝑏-coefficients, unlike the general
(3.57), (3.58) which are cubic.

Let us call |𝜓 ⟩(𝑟) = |𝑝1, 𝑝2; 𝑘1, 𝑘2 ⟩(𝑟) the solution obtained by substituting (3.84)
in (3.52). For the above equations, we found this solution by directly solving the
interacting equations with the restriction of no swapped 𝑘 momenta. We should, of
course, be able to recover this result from the four-term solution in equation (3.61)
by tuning the 𝛼, 𝛽 coefficients in such a way that the swapped 𝑘-momenta terms
vanish. To show how this works, we set 𝛼 = 𝛼′/𝑎(𝑘1, 𝑘2) and 𝛽 = 𝛽′/𝑏(𝑘1, 𝑘2) in

13To be clear, we could have chosen to remove any one of the four momentum pairs
{𝑝1, 𝑝2}, {𝑝2, 𝑝1}, {𝑘1, 𝑘2}, {𝑘2, 𝑘1} from the ansatz. The specific choice of removing {𝑘2, 𝑘1}
is the one that is relevant when we start with real {𝑝1, 𝑝2} and demand 𝑝1 + 𝑝2 → 0.

14Since we have established that, apart from the CoM case, there is no solution if we drop the
𝑘 momenta completely, this ansatz also contains the minimal number of terms needed to solve the
interacting equations.
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(3.61). Then, for instance for 𝜓𝑒𝑒, we can write

𝛼 𝜓𝐴𝑒𝑒 (ℓ1, ℓ2) + 𝛽 𝜓𝐵𝑒𝑒 (ℓ1, ℓ2)
= [𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)]

× ( 𝛼′

𝑎(𝑘1, 𝑘2)
𝑎(𝑝1, 𝑝2) +

𝛽′

𝑏(𝑘1, 𝑘2)
𝑏(𝑝1, 𝑝2))𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2

− [𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)]

× ( 𝛼′

𝑎(𝑘1, 𝑘2)
𝑎(𝑝2, 𝑝1) +

𝛽′

𝑏(𝑘1, 𝑘2)
𝑏(𝑝2, 𝑝1))𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

− [𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)]

× ( 𝛼′

𝑎(𝑘1, 𝑘2)
𝑎(𝑘1, 𝑘2) +

𝛽′

𝑏(𝑘1, 𝑘2)
𝑏(𝑘1, 𝑘2))𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2

+ [𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)]

× ( 𝛼′

𝑎(𝑘1, 𝑘2)
𝑎(𝑘2, 𝑘1) +

𝛽′

𝑏(𝑘1, 𝑘2)
𝑏(𝑘2, 𝑘1))𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2

.

(3.85)

The swapped 𝑘-momenta term vanishes if we take

𝛼′

𝛽′
= −𝑎(𝑘1, 𝑘2)

𝑎(𝑘2, 𝑘1)
𝑏(𝑘2, 𝑘1)
𝑏(𝑘1, 𝑘2)

. (3.86)

For the coefficient in the first line above, we can substitute and rearrange as follows

[𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)] (
𝛼′

𝑎(𝑘1, 𝑘2)
𝑎(𝑝1, 𝑝2) +

𝛽′

𝑏(𝑘1, 𝑘2)
𝑏(𝑝1, 𝑝2))

= 𝛼′
[
𝑎(𝑘2, 𝑘1)
𝑎(𝑘1, 𝑘2)

𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)
]
𝑎(𝑝1, 𝑝2)

+ 𝛽′
[
𝑎(𝑘2, 𝑘1) −

𝑏(𝑘2, 𝑘1)
𝑏(𝑘1, 𝑘2)

𝑎(𝑘1, 𝑘2)
]
𝑏(𝑝1, 𝑝2)

= 𝛽′
(
− 𝑎(𝑘1, 𝑘2)
𝑎(𝑘2, 𝑘1)

𝑏(𝑘2, 𝑘1)
𝑏(𝑘1, 𝑘2)

[
𝑎(𝑘2, 𝑘1)
𝑎(𝑘1, 𝑘2)

𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)
]
𝑎(𝑝1, 𝑝2)

+
[
𝑎(𝑘2, 𝑘1) −

𝑏(𝑘2, 𝑘1)
𝑏(𝑘1, 𝑘2)

𝑎(𝑘1, 𝑘2)
]
𝑏(𝑝1, 𝑝2)

)
= 𝛽′

(
[𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)]

+
[
𝑎(𝑘1, 𝑘2)
𝑎(𝑘2, 𝑘1)

𝑏(𝑘2, 𝑘1)
𝑏(𝑘1, 𝑘2)

𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2) −
𝑏(𝑘2, 𝑘1)
𝑏(𝑘1, 𝑘2)

𝑎(𝑘1, 𝑘2)𝑏(𝑝1, 𝑝2)
] )

= 𝛽′
(
[𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)]

+ 𝛼
′

𝛽′
[𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)]

)
= 𝛽′(1 + 𝛼

′

𝛽′
) [𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)] .

(3.87)
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For the other terms in the second and third line, we find the same overall factor.
Thus,

𝛼 𝜓𝐴𝑒𝑒 (ℓ1, ℓ2) + 𝛽 𝜓𝐵𝑒𝑒 (ℓ1, ℓ2) = 𝛽′(1 + 𝛼
′

𝛽′
)𝜓 (𝑟)

𝑒𝑒 (ℓ1, ℓ2). (3.88)

The same is true for the 𝑒𝑜, 𝑜𝑒 and 𝑜𝑜 wavefunctions. We can therefore express the
restricted solution as

|𝜓⟩(𝑟) =
1

𝑎(𝑘1, 𝑘2)
𝑐

1 + 𝑐 |𝜓⟩𝐴 +
1

𝑏(𝑘1, 𝑘2)
1

1 + 𝑐 |𝜓⟩𝐵, (3.89)

where
𝑐 = −𝑏(𝑘2, 𝑘1)

𝑏(𝑘1, 𝑘2)
𝑎(𝑘1, 𝑘2)
𝑎(𝑘2, 𝑘1)

. (3.90)

As mentioned, this is the solution that we expect to describe the two magnon problem
for infinite chains. In addition, it will play an important role in in Section 3.2.4 as
it will be the starting point for taking the centre-of-mass frame limit 𝐾 → 0.

Let us take a closer look at the 𝑆-matrices appearing in the restricted solution, which
we call 𝑆(𝑟) and 𝑇 (𝑟) . They are

𝑆(𝑟) (𝑝1, 𝑝2; 𝑘1, 𝑘2; 𝜅) = 𝐴𝑒𝑒 (𝑝2, 𝑝1)
𝐴𝑒𝑒 (𝑝1, 𝑝2)

= −𝑎(𝑘2, 𝑘1)𝑏(𝑝2, 𝑝1) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝2, 𝑝1)
𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)

,

(3.91)
and

𝑇 (𝑟) (𝑝1, 𝑝2; 𝑘1, 𝑘2; 𝜅) = 𝐴𝑒𝑒 (𝑘1, 𝑘2)
𝐴𝑒𝑒 (𝑝1, 𝑝2)

= −𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)
𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)

.

(3.92)
Note in particular that the 𝑆-matrix 𝑆(𝑟) swapping 𝑝1 ↔ 𝑝2 now also depends on
the 𝑘 momenta. It still satisfies the unitary condition

𝑆(𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑆(𝑟) (𝑝2, 𝑝1, 𝑘1, 𝑘2) = 1, (3.93)

as well as the condition 𝑆(𝑟) (𝑝1, 𝑝1, 𝑘1, 𝑘2) = −1. (Note that 𝑝2 = 𝑝1 does not imply
that 𝑘2 = 𝑘1). It also smoothly reduces to the 𝑋𝑋𝑋 𝑆-matrix as 𝜅 → 1. Importantly,
it is Z2 invariant

𝑆(𝑟) (𝑝1, 𝑝2; 𝑘1, 𝑘2; 1/𝜅) = 𝑆(𝑟) (𝑝1, 𝑝2; 𝑘1, 𝑘2; 𝜅). (3.94)

The importance of this is that, as we will see in Section 3.2.4, in the limit 𝐾 → 0
𝑆(𝑟) will become the centre-of-mass 𝑆-matrix (3.36), which determines the CoM
spectrum of our system and thus needs to be Z2 invariant.
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Similarly to the analysis carried out for the general solution, it can be shown that the
full restricted solution |𝜓⟩(𝑟) is a Z2 eigenstate

Z2 |𝜓⟩(𝑟) = −
(
𝑟 (𝑝1)𝑟 (𝑝2)

)−2 (
𝑟 (𝑘1)𝑟 (𝑘2)

)−1 |𝜓⟩(𝑟) . (3.95)

Of course, unlike the general solution, the restricted solution only has the 𝜎𝑝 mo-
mentum exchange symmetry, as the boundary condition has broken the symmetry
between the four sets of momenta {𝑝1, 𝑝2}, {𝑝2, 𝑝1}, {𝑘1, 𝑘2}, {𝑘2, 𝑘1}.

3.2.4 Restricted solution in the CoM limit
In this section, we show how the generalised Bethe ansatz (3.54) for the XY sector,
which involves a second set of momenta, reduces to the more standard Bethe ansatz
(3.43) in the centre-of-mass frame 𝐾 = 0. Understanding this limit will also clarify
the origin of the contact terms that appear in the CoM frame.

To start, note (as can be seen from inspection of (3.51) that as𝐾 → 0, the 𝑘 momenta
scale as 𝑘1 → 𝜋/2 − 𝑖∞ and 𝑘2 → 𝜋/2 + 𝑖∞. So the centre-of-mass limit needs to
be taken very carefully.

As discussed, the relevant wavefunction on which to take the limit is the restricted
solution (3.84), which contains only the direct 𝑘 momenta 𝑘1, 𝑘2 (and not the
swapped ones 𝑘2, 𝑘1 which leads to a divergent term). Let us write the 𝑆 and 𝑇
matrices arising in that solution, as found in section 3.2.3 (for general {𝑝1, 𝑝2}), as
follows

𝑆(𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2) = −𝑎(𝑘2, 𝑘1)𝑏(𝑝2, 𝑝1) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝2, 𝑝1)
𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)

= − 𝑓 𝑏(𝑝2, 𝑝1) − 𝑎(𝑝2, 𝑝1)
𝑓 𝑏(𝑝1, 𝑝2) − 𝑎(𝑝1, 𝑝2)

,

(3.96)

and

𝑇 (𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2) = −𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)
𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)

= − 1
𝑏(𝑘2, 𝑘1)

𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)
𝑓 𝑏(𝑝1, 𝑝2) − 𝑎(𝑝1, 𝑝2)

,

(3.97)
where we have defined

𝑓 =
𝑎(𝑘2, 𝑘1)
𝑏(𝑘2, 𝑘1)

. (3.98)

Now, we choose 𝑘1, 𝑘2 to be of the form 𝑘1 = 𝐾/2 + 𝜋/2− 𝑖𝑣, 𝑘2 = 𝐾/2− 𝜋/2 + 𝑖𝑣,
where 𝑣 ≥ 0, since this leads to a decaying exponential in the wavefunctions. Noting
the 1/sin2(𝐾) term in (3.51), it is clear that for 𝐾 sufficiently small the argument
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of the arccos will eventually exceed 1 and the arccos term will become (positive)
imaginary. As 𝐾 is further decreased towards zero, 𝑣 → ∞.

What we will now show is that, in the limit where 𝑝2 → −𝑝1,

1) 𝑆(𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2) −→ 𝑆𝐶𝑜𝑀 (𝑝,−𝑝),
2) 𝑟 (𝑘1)𝑇 (𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒−𝑖𝑘1 −→ 𝑟 (𝑝)𝑒−𝑖𝑝G(−𝑝).

(3.99)

We will thus completely recover the centre-of-mass wavefunctions that were orig-
inally found using the contact term method in Section 3.2.1. For point 2, which
we show later in this section, note that this comes from the fact that only nearest-
neighbour terms for the {𝑘1, 𝑘2}-term survive the limit. Consequently, looking at
the wavefunctions in equation (3.83), the {𝑘1, 𝑘2}-terms for even-even and odd-odd
completely vanish (as they do not have nearest neighbour terms); for the odd-even
and even-odd terms, only (2ℓ − 1, 2ℓ) and (2ℓ, 2ℓ + 1) survives, thus generating the
𝛿ℓ1+1,ℓ2 which was entered by hand in the CoM wavefunctions.15

Recovering the centre-of-mass 𝑆-matrix:

To take the limits of the 𝑆 matrix, it is clearly important to understand the limit of
the function 𝑓 in (3.98) as 𝑝2 → −𝑝1, as the other terms remain finite and non-zero
in the limit. An important result concerns the limits of the ratio functions appearing
in the 𝑎 and 𝑏 coefficients. They are

𝑟 (𝑘1) = −1
𝜅
, 𝑟 (𝑘2) = 𝜅 , as 𝑝2 → −𝑝1 . (3.100)

We note the minus sign appearing in 𝑟 (𝑘1), which is important to get the right limit.
Using this result, and also recalling that 𝑟 (−𝑝) = 1/𝑟 (𝑝), we find in the limit

𝑓 = − −𝜅 + 2𝑒𝑖𝑘2 + 𝜅𝑒𝑖(𝑝1+𝑝2)

𝜅(2𝜅𝑒𝑖𝑘2 + 𝑒𝑖(𝑝1+𝑝2) − 1)
. (3.101)

Here we have taken the 𝐾 → 0 limit only of the ratio functions, and still need to
take it in the exponents. The naive limit of this expression gives 0/0, so to obtain
a definite limit, we first express 𝑘2 in terms of 𝑝1, 𝑝2 using (3.51) and then set
𝑝2 = −𝑝1 + 𝜖 , so that the limit becomes 𝜖 → 0. Since the equations for 𝑘1, 𝑘2

contain an arccos, we are able to remove the exponents using the formula

arccos(𝑧) = −𝑖 ln
(
𝑧 +

√︁
𝑧2 − 1

)
. (3.102)

15We note that this behaviour resembles that of bound states for the spin-1/2 XXX chain whose
imaginary part can diverge and lead to localised interactions (see e.g. the introduction to the Bethe
ansatz [41]).
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After some analysis, we can extract the divergent terms csc(𝜖) from both the nu-
merator and denominator of equation (3.101). To take the limit 𝜖 → 0, we apply
l’Hopital’s rule to finally obtain the complete limit for 𝑓 :

𝑓 (𝑝,−𝑝) = −1 +
√

1 + 𝜅2𝑒−2𝑖𝑝1
√

1 + 𝜅2𝑒2𝑖𝑝1

𝜅2 −
√

1 + 𝜅2𝑒−2𝑖𝑝1
√

1 + 𝜅2𝑒2𝑖𝑝1
. (3.103)

Substituting this back into 𝑆(𝑝1, 𝑝2, 𝑘1, 𝑘2) and setting 𝑝2 → −𝑝1 for the other
terms (which are harmless), we find that

𝑆(𝑝1, 𝑝2, 𝑘1, 𝑘2) −→ 𝑆CoM(𝑝,−𝑝) , (3.104)

where 𝑆CoM(𝑝,−𝑝) is given in (3.36). We have thus confirmed that the CoM 𝑆-
matrix obtained using the contact-term approach is a limiting case of the 𝑆-matrix
for the restricted solution.

Recovering the contact term

The final step to confirm that the full centre-of-mass solution arises as a limit of the
restricted solution is to check that the contact term G arises from one of the terms
with additional momenta. Let us focus on the following term for the odd-even part
of the wavefunction (3.84)

𝑟 (𝑘1)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 . (3.105)

We set ℓ2 = 2ℓ and ℓ1 = 2ℓ − (2𝑚 + 1) where 𝑚 ≥ 0. Therefore, 𝑚 = 0 corresponds
to the nearest-neighbour case. After using that 𝑘1 + 𝑘2 → 0 in the limit, we are left
with

𝑟 (𝑘1)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒−𝑖𝑘1 (2𝑚+1)

= −𝑟 (𝑘1)
𝑒−𝑖𝑘1 (2𝑚+1)

𝑏(𝑘2, 𝑘1)
𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)

𝑓 𝑏(𝑝1, 𝑝2) − 𝑎(𝑝1, 𝑝2)
.

(3.106)

The factor 𝑓 was determined above. Proceeding in a similar manner as before, we
find that the term

𝑒−𝑖𝑘1 (2𝑚+1)

𝑏(𝑘2, 𝑘1)
𝜖→0−→ 𝑒−𝑖𝑘1 (2𝑚+1)

−2𝜅𝑒𝑖𝑘2 − 𝑒𝑖(𝑝1+𝑝2) + 1
, (3.107)

where we have again taken a partial limit. This factor vanishes in the full 𝜖 → 0
limit when 𝑚 > 0. However, 𝑚 = 0 gives a non-zero result, which is the nearest-
neighbour term and produces the 𝛿ℓ1,ℓ1+1 contact term that we originally inserted
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by hand in the CoM method. More precisely, upon taking 𝜖 → 0 the 𝑚 = 0 term
reduces to:

𝜅

−2𝜅2 + 2
√

1 + 𝜅2𝑒−2𝑖𝑝
√

1 + 𝜅2𝑒2𝑖𝑝
. (3.108)

Putting everything together we conclude that out of all the {𝑘1, 𝑘2}-dependent terms
in the odd-even part of (3.84), the only one that survives the centre-of-mass limit is

𝑟 (𝑘1)𝑇 (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒𝑖ℓ1𝑘1+𝑖(ℓ1+1)𝑘2 𝜖→0−→ 𝑟 (𝑝)𝑒−𝑖𝑝G(−𝑝). (3.109)

which is precisely the centre-of-mass contact term appearing in the odd-even part of
(3.84). A similar procedure applies to the even-odd part. We have thus shown how
the general method of [52, 51, 47] of adding additional momenta also applies in the
centre-of-mass frame, as long as the limit is taken carefully. All terms containing 𝑘
momenta in the wavefunction vanish, apart from the nearest-neighbour term which
produces the centre-of-mass contact term. This explains the physical origin of the
contact terms. We end by noting that in the standard XXX Bethe ansatz at 𝜅 = 1,
the momenta diverge in the limit 𝐾 → 𝜋. Moving slightly away from 𝜅 = 1, we
see that the 𝑘 momenta are finite in the CoM limit at 𝐾 = 𝜋. So in a sense the role
of the 𝑝 and 𝑘 momenta is exchanged at 𝐾 = 𝜋 and this might allow us to think of
the 𝜅 ≠ 1 theory and the additional-momenta Bethe ansatz as a regularisation of the
XXX Bethe ansatz at 𝐾 = 𝜋.16

3.3 Bethe Ansatz for the XY Sector
In this section we show how our two magnon solution can be used to find the
spectrum for closed chains. Note that in the 𝑋𝑌 sector only even-length closed
chains are allowed, as otherwise the gauge indices of the first and last sites cannot
be matched.17

As explained, we are not only interested in solutions satisfying the zero-momentum
constraint, 𝐾 = 0, but also in solutions with nonzero 𝐾 . This is because we wish
to think of our solutions as part of an eventual multi-magnon solution, which does
satisfy the momentum constraint.

Starting with the one magnon momenta, in the untwisted sector, they are simply
obtained by imposing periodicity, 𝑒𝑖𝐿𝑝 = 1 (see also Section 2.2.2). Even though

16Recall that one always obtains a better understanding of the Bethe roots by regularising the
Bethe ansatz. A more standard way of doing this is by introducing a phase that changes the periodicity
properties (see e.g. [42] for a discussion).

17Also 𝐿 needs to be larger than 2, as for 𝐿 = 2 double-trace contributions, which are otherwise
subleading in the planar limit, become important [18].
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they are of course equal to their corresponding values for the XXX limit at 𝜅 = 1,
the energies are different due to the dispersion relation (3.14). Since the 𝑆-matrices
of the general two magnon solution (3.67),(3.69) satisfy 𝑆(𝑝, 0) = 1, we can always
construct periodic two magnon wavefunctions by taking e.g. 𝑝2 = 0 and 𝑝1 to be a
one magnon momentum. Thus the one magnon energies are two magnon energies
as well.

Proceeding to “true” two magnon energies, we saw in Section 3.2.2 that the solution
of the two magnon problem for our alternating chain requires the addition of a
second set of momenta, {𝑘1, 𝑘2}, on top of the original set of momenta {𝑝1, 𝑝2}.
These momenta are uniquely defined by the relations

𝑝1 + 𝑝2 = 𝑘1 + 𝑘2 = 𝐾 and 𝐸 (𝑝1) + 𝐸 (𝑝2) = 𝐸 (𝑘1) + 𝐸 (𝑘2) = 𝐸2 , (3.110)

with 𝐸 (𝑝) the one magnon dispersion relation (which can belong to either the upper
or lower branch).

We also saw that when going to the centre-of-mass frame where 𝐾 = 0, the 𝑘
momenta diverge and one needs to take a subtle limit to keep the wavefunction
finite. However, once the limit is taken (the details are in Section 3.2.4), one is left
with the centre-of-mass 𝑆-matrix (3.36) for the 𝑝 momenta which allows us to write
a standard two magnon Bethe ansatz.18 For the untwisted sector, the periodicity
equation coming from the Bethe ansatz is much like the usual one and reads

𝑒𝑖𝑝𝐿 = 1/𝑆(𝑝,−𝑝) , (3.111)

with 𝑆 as in (3.36).

Now, in the orbifold limit we also need to consider the twisted sector states [71,
17, 14, 13]. These are spin chains which include the twist matrix 𝛾 (see Section
2.4) somewhere on the chain. Without loss of generality, it can be taken to be the
first or last site, and its effect is to modify the periodicity condition by a phase. In
the Z2 case this phase is just −1 (see equation (2.153)), which means that to get
the full spectrum (still at the orbifold limit) one needs to consider also antiperiodic
chains. Precisely the same is true in the interpolating theory. For one magnon states
we simply impose 𝑒𝑖𝑝𝐿 = −1, which gives the correct one magnon energies (and
trivially some two magnon energies where one of the momenta is zero). For the two

18We emphasise that the 𝑝 and 𝑘 momenta appear symmetrically in the wavefunction so which
ones we call 𝑝 and 𝑘 is a matter of notation. We call 𝑝 the solutions of (3.110) which stay finite in
the CoM limit.
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magnon twisted sector states we use the ansatz

𝑒𝑖𝑝𝐿 = −1/𝑆(𝑝,−𝑝) , (3.112)

with 𝑆 again as in (3.36).

However, to get the full set of two magnon energies we also need to consider the case
where 𝐾 ≠ 0. In this case our two magnon wavefunction is a linear combination
of Bethe-like states, some of which depend on the 𝑝 momenta and some on the 𝑘
momenta. Imposing periodicity on such a wavefunction requires additional steps
which we outline below.

First of all, it is clear that one cannot impose periodicity on the 𝐴 or 𝐵 solutions
(3.57,3.58) separately. As in the CoM case, one needs to combine them. We will
thus write

|𝜓 ⟩tot = 𝐴(𝑝1, 𝑝2, 𝑘1, 𝑘2) + 𝑥𝐵(𝑝1, 𝑝2, 𝑘1, 𝑘2) , (3.113)

with 𝑥 a function which, in principle, depends on all the momenta. For the XXX
case, reviewed in Section 2.2.2, where we just have

|𝑙1, 𝑙2 ⟩ = 𝐴12(𝑝)𝑒𝑖𝑙1𝑝1+𝑖𝑙2𝑝2 + 𝐴21(𝑝)𝑒𝑖𝑙1𝑝2+𝑖𝑙2𝑝1 , (3.114)

the periodicity requirement (|𝑙1 + 𝐿, 𝑙2 ⟩ = |𝑙1, 𝑙2 ⟩) is imposed as

𝐴12(𝑝)𝑒𝑖𝑙1𝑝1+𝑖𝑙2𝑝2 = 𝐴21(𝑝)𝑒𝑖𝑙2𝑝2+𝑖(𝑙1+𝐿)𝑝1 ⇒ 𝑒𝑖𝐿𝑝1 =
𝐴12(𝑝)
𝐴21(𝑝)

, (3.115)

leading to the usual 𝑆-matrix 𝑆12 = 𝐴21/𝐴12. For our case, it turns out that the only
modification required is the introduction of the ratio 𝑥. In particular, we will impose
periodicity separately on the 𝑝 and 𝑘 momenta as

(𝐴ee,𝑝
12 + 𝑥𝐵ee,𝑝

12 )𝑒𝑖(𝑙1𝑝1+𝑙2𝑝2) = (𝐴ee,𝑝
21 + 𝑥𝐵ee,𝑝

21 )𝑒𝑖(𝑙2𝑝2+(𝑙1+𝐿)𝑝1) ,

(𝐴ee,𝑘
12 + 𝑥𝐵ee,𝑘

12 )𝑒𝑖(𝑙1𝑘1+𝑙2𝑘2) = (𝐴ee,𝑘
21 + 𝑥𝐵ee,𝑘

21 )𝑒𝑖(𝑙2𝑘2+(𝑙1+𝐿)𝑘1) ,
(3.116)

for the even-even parts. We also impose the same condition on the odd-odd parts,
while for the even-odd and odd-even ones we have

(𝐴eo,𝑝
12 + 𝑥𝐵eo,𝑝

12 )𝑒𝑖(𝑙1𝑝1+𝑙2𝑝2) = (𝐴oe,𝑝
21 + 𝑥𝐵oe,𝑝

21 )𝑒𝑖(𝑙2𝑝2+(𝑙1+𝐿)𝑝1) ,

(𝐴eo,𝑘
12 + 𝑥𝐵eo,𝑘

12 )𝑒𝑖(𝑙1𝑘1+𝑙2𝑘2) = (𝐴oe,𝑘
21 + 𝑥𝐵oe,𝑘

21 )𝑒𝑖(𝑙2𝑘2+(𝑙1+𝐿)𝑘1) .
(3.117)

Periodicity of the wavefunction hinges on the 𝑥 factor in all of these relations being
the same. Focusing on the even-even sector for now,we can simplify (3.116) as

𝑒𝑖𝐿𝑝1 = −𝑎(𝑝1, 𝑝2) + 𝑥 𝑏(𝑝1, 𝑝2)
𝑎(𝑝2, 𝑝1) + 𝑥 𝑏(𝑝2, 𝑝1)

and 𝑒𝑖𝐿𝑘1 = −𝑎(𝑘1, 𝑘2) + 𝑥 𝑏(𝑘1, 𝑘2)
𝑎(𝑘2, 𝑘1) + 𝑥 𝑏(𝑘2, 𝑘1)

,

(3.118)
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where we have used the explicit expressions of 𝐴12, 𝐴21, 𝐵12, 𝐵21 in terms of the 𝑎
and 𝑏 functions defined in (3.59). We can now solve for 𝑥 in terms of one set of
momenta (the 𝑘’s, for instance), to write

𝑥(𝑘1, 𝑘2) = −𝑎(𝑘1, 𝑘2) + 𝑎(𝑘2, 𝑘1)𝑒𝑖𝐿𝑘1

𝑏(𝑘1, 𝑘2) + 𝑏(𝑘2, 𝑘1)𝑒𝑖𝐿𝑘1
. (3.119)

Substituting this specific solution for 𝑥 (which we call 𝑥) into the 𝑝 periodicity
condition gives us the final form of the 2-magnon Bethe equation for the untwisted
𝑋𝑌 sector

𝑒𝑖𝐿𝑝1 = −𝑎(𝑝1, 𝑝2) + 𝑥(𝑘1, 𝑘2)𝑏(𝑝1, 𝑝2)
𝑎(𝑝2, 𝑝1) + 𝑥(𝑘1, 𝑘2)𝑏(𝑝2, 𝑝1)

. (3.120)

The above was for the even-even part but similar considerations apply to the other
parts of the wavefunction and lead to the same equation. Now recall that the 𝑘
momenta are algebraically defined in terms of the 𝑝 momenta by solving (3.110),
which is a quartic relation between 𝑧(𝑝𝑖) = 𝑒2𝑖𝑝𝑖 and 𝑧(𝑘𝑖) = 𝑒2𝑖𝑘𝑖 and can be
straightforwardly solved. Equation (3.120) can thus be expressed purely in terms of
the 𝑝 momenta, and its roots found numerically for given 𝐿 and 𝜅.

For the twisted sector everything works very similarly, apart from the fact that we
need to impose antiperiodicity. This leads to the ratio between the two wavefunctions
being

𝑥(𝑘1, 𝑘2) = −𝑎(𝑘1, 𝑘2) − 𝑎(𝑘2, 𝑘1)𝑒𝑖𝐿𝑘1

𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑒𝑖𝐿𝑘1
, (3.121)

and the corresponding two magnon Bethe ansatz is now written in terms of this 𝑥 as

𝑒𝑖𝐿𝑝1 =
𝑎(𝑝1, 𝑝2) + 𝑥(𝑘1, 𝑘2)𝑏(𝑝1, 𝑝2)
𝑎(𝑝2, 𝑝1) + 𝑥(𝑘1, 𝑘2)𝑏(𝑝2, 𝑝1)

. (3.122)

This is again a function only of the 𝑝 momenta which can be solved numerically to
obtain the required Bethe momenta.

It is worth noting that since the Z2 operation 𝜅 → 1/𝜅 exchanges the 𝑎 and 𝑏 factors,
it takes 𝑥(𝑘1, 𝑘2) → 1/𝑥(𝑘1, 𝑘2). This is what is required for the full wavefunction
|𝜓 ⟩tot to be invariant under Z2, which should be the case since the Hamiltonian is
also Z2 invariant in the periodic/antiperiodic case19.

In [27], the Bethe ansatz result for short chains are numerically compared to results
from explicit diagonalisation of the Hamiltonian for both the twisted and untwisted
sectors. The results show good agreement with the wavefunctions computed in this

19The 𝜅 → 1/𝜅 operation can be undone by shifting the origin from an even to an odd site, which
does not have an effect for a closed chain.



93

chapter as well as the approach to imposing periodicity discussed in this section. This
provides excellent confirmation that the 𝑋𝑌 sector wavefunctions and the periodic
Bethe ansatz for the twisted/untwisted sectors are indeed correct.
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C h a p t e r 4

SPIN CHAINS IN THE DILUTE XZ SECTOR

In this chapter, we will study the “SU(2)-like” sector composed of the 𝑋 and 𝑍 fields.
Unlike the 𝑋𝑌 sector discussed previously, in the 𝑋𝑍 sector the two fields belong
to different representations of the gauge groups (𝑋 being bifundamental while 𝑍 is
in the adjoint of each of the groups) so we expect the theory to be less symmetric
than the 𝑋𝑌 sector.

From Section 2.4.3, recall the Hamiltonian in this sector is given by (2.170)

H(𝜆) =
©­­­­­«

0 0 0 0
0 𝜅 −1 0
0 −1 1/𝜅 0
0 0 0 0

ª®®®®®¬
, H(𝜆′) =

©­­­­­«
0 0 0 0
0 1/𝜅 −1 0
0 −1 𝜅 0
0 0 0 0

ª®®®®®¬
in the basis

©­­­­­«
𝑋𝑋

𝑋𝑍

𝑍𝑋

𝑍𝑍

ª®®®®®¬
,

(4.1)
where 𝜆, 𝜆′ indicate whether the gauge group immediately to the left of the site
where the Hamiltonian acts is the first or second gauge group respectively. Since
𝑍 does not change the gauge group, the Hamiltonian also does not change when
crossing a 𝑍 field, however it will switch from H(𝜆) to H(𝜆′) and vice versa when
crossing an 𝑋 field (see Figure 4.1 for an illustration).

A consequence of the 𝑋𝑍 sector being less symmetric than the 𝑋𝑌 sector is that
there are two inequivalent vacua, namely, one made up of 𝑋 fields and the other of
𝑍 fields. The 𝑍 vacuum1 belongs to the 1/2-BPS supermultiplet E−𝑟 (0,0) discussed
in Section 2.1.1 with Δ = −𝑟 (see Table 2.1 for the𝑈 (1)𝑟 charges). Spin chains with
the 𝑍 fields as a vacuum were studied in [18]. The dispersion relation, with the 𝑋
fields as excitations, is trigonometric and the 𝑆-matrices arising in the two magnon
problem are similar to those of the XXZ chain. However, the dynamical nature of
the chain becomes evident when considering the three magnon problem, due to the
fact that there are two two-magnon 𝑆-matrices 𝑆 and 𝑆 (mapped to each other by
Z2). This leads to two possible sequences of two-body scatterings (particles 1+2
first, or particles 2+3 first) which lead to incompatible equations

𝑆12𝑆13𝑆23 ≠ 𝑆23𝑆13𝑆12. (4.2)
1Which is really two vacua, depending on 𝜆. That is, either |· · · 𝜙1𝜙1𝜙1 · · · ⟩ or |· · · 𝜙2𝜙2𝜙2 · · · ⟩.
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𝑍 𝑍 𝑋 𝑋 𝑋 𝑍 𝑋 𝑍H𝜆 H𝜆 H𝜆 H𝜆′ H𝜆 H𝜆′ H𝜆′

2𝑠 2𝑠+1 2𝑠+2 2𝑠+3 2𝑠+4 2𝑠+5 2𝑠+6 2𝑠+7

Figure 4.1: A section of the dilute spin chain for the XZ sector, for a specific
configuration of states. We have chosen the gauge group to the left of site 2𝑠 to be
the first one (depicted by a blue solid line). To make it easier to read off the relevant
gauge group for each Hamiltonian, we have also coloured the first of each two sites
on which the Hamiltonian acts the same as the region to the left of that site. Unlike
the alternating chain depicted in (3.1), here the choice of which Hamiltonian acts
on each pair of sites is not related to the even-odd nature of the site but rather to the
number of 𝑍 and 𝑋 fields that have been crossed until that point.

Thus, the standard Yang-Baxter equation is not satisfied. We can therefore think of
excitations around the 𝑍-vacuum as being described by a dynamical XXZ model.

In this thesis, we will consider the alternative 𝑋-vacuum, with the 𝑍 fields as
excitations, which were not considered in [18]. In N = 2 language, they will be
of the type |· · ·𝑄12𝑄21𝜙1𝑄12𝜙2𝑄21 · · · ⟩. Even though the 𝑋𝑍-sector Hamiltonian
(4.1) is rather different to the 𝑋𝑌 -sector Hamiltonian (3.1), it will turn out that
the dispersion relation for 𝑍 excitations on the 𝑋 vacuum is identical to that of
the 𝑋𝑌 sector. Furthermore, even though the details of the wavefunctions (such as
the ratio functions) will be different, the overall approach to solving the one and
two magnon problem and the final form of the solutions will be almost identical as
well. In particular, for the two magnon problem, both the contact-term approach in
the centre-of-mass frame and the more general additional-momenta approach will
apply, as we will show in the following sections.

Finally, it is interesting to rewrite the Hamiltonians slightly to compare to the
alternating-bond model. These Hamiltonians are Temperley-Lieb type, which can
be clearly seen, for instance, by comparing to equation (3.137) in [40]

𝑒ℓ =

©­­­­­«
0 0 0 0
0 𝑞−1 −1 0
0 −1 𝑞 0
0 0 0 0

ª®®®®®¬
, 𝑞 = 𝜅 or 𝑞 = 1/𝜅, (4.3)

where 𝑒ℓ acts on sites (ℓ, ℓ + 1) and satisfies the Temperley-Lieb-Jones algebra

𝑒2
ℓ = 𝑒ℓ, 𝑒ℓ𝑒ℓ±1𝑒ℓ = 𝑒ℓ, 𝑒ℓ1𝑒ℓ2 = 𝑒ℓ2𝑒ℓ1 , |ℓ2 − ℓ1 | ≥ 2. (4.4)
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To compare with the 𝑋𝑌 sector alternating-bond Hamiltonian in equation (3.7), first
note that we can write 𝐻 (𝜆) and 𝐻 (𝜆′) in terms of the permutation matrix 𝑃 and
the 𝜅-deformed identity matrix as 𝐼 (𝜅)

𝐻 (𝜆) = 𝐼 (1/𝜅) − 𝑃, (4.5)

𝐻 (𝜆′) = 𝐼 (𝜅) − 𝑃, (4.6)

where

𝑃 =

©­­­­­«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®®®®¬
, 𝐼 (𝜅) =

©­­­­­«
1 0 0 0
0 1/𝜅 0 0
0 0 𝜅 0
0 0 0 1

ª®®®®®¬
. (4.7)

Note that 𝑃2 = 1, the undeformed identity 𝐼 (1), as it should. Interestingly, 𝐼 (𝜅)2 ≠

𝐼 (1) but rather 𝐼 (𝜅)𝐼 (1/𝜅) = 𝐼 (1) = 1.

Next, we consider the most general XXZ Hamiltonian that preserves the total spin
(see equation (2.2) in [75])

𝐻𝑋𝑋𝑍
ℓ,ℓ+1 = 𝐽01ℓ,ℓ+1 − 𝐽𝜎𝑥ℓ 𝜎

𝑥
ℓ+1 − 𝐽𝜎

𝑦

ℓ
𝜎
𝑦

ℓ+1 − 𝐽𝑧𝜎
𝑧
ℓ
𝜎𝑧
ℓ+1

− ℎ1(𝜎𝑧ℓ ⊗ 1ℓ+1 + 1ℓ ⊗ 𝜎𝑧ℓ+1) − ℎ2(1ℓ ⊗ 𝜎𝑧ℓ+1 − 𝜎
𝑧
ℓ
⊗ 1ℓ+1),

(4.8)

where 1ℓ,ℓ+1 = 1ℓ ⊗ 1ℓ+1 and 1ℓ is the 2 × 2 identity matrix acting at site ℓ on the
lattice. Also, 𝜎𝑖

ℓ
is the 𝑖-th Pauli matrix acting on site ℓ, where 𝑖 = {𝑥, 𝑦, 𝑧}. In

terms of matrices, the above Hamiltonian takes the form

𝐻𝑋𝑋𝑍
ℓ,ℓ+1 =

©­­­­­«
−2ℎ1 + 𝐽0 − 𝐽𝑧 0 0 0

0 2ℎ2 + 𝐽0 + 𝐽𝑧 −2𝐽 0
0 −2𝐽 −2ℎ2 + 𝐽0 + 𝐽𝑧 0
0 0 0 2ℎ1 + 𝐽0 − 𝐽𝑧

ª®®®®®¬
. (4.9)

We can match this matrix to 𝐻 (𝜆), 𝐻 (𝜆′) as follows: first, we clearly must have
𝐽 = 1/2. Furthermore, for 𝐻 (𝜆′), we have the following system of equations

− 2ℎ1 + 𝐽0 − 𝐽𝑧 = 0,

2ℎ2 + 𝐽0 + 𝐽𝑧 = 1/𝜅,
− 2ℎ2 + 𝐽0 + 𝐽𝑧 = 𝜅,
2ℎ1 + 𝐽0 − 𝐽𝑧 = 0.

(4.10)

For 𝐽0 = 𝐽𝑧, we must have ℎ1 = 0. This satisfies the first and fourth equations.
For the second and third equations, we can solve to find 𝐽0 = 1

4 (𝜅 + 𝜅−1) and
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ℎ2 = −1
4 (𝜅 − 𝜅

−1). In a similar fashion, we find for 𝐻 (𝜆): 𝐽0 = 𝐽𝑧 =
1
4 (𝜅 + 𝜅

−1) and
ℎ2 = 1

4 (𝜅 − 𝜅
−1).

Thus, in summary, we can write 𝐻 (𝜆), 𝐻 (𝜆) as XXZ spin chains with the following
couplings:

𝐻 (𝜆) = 1
4
(𝜅 + 𝜅−1)

(
1ℓ,ℓ+1 − 𝜎𝑧ℓ𝜎

𝑧
ℓ+1

)
− 1

2
(
𝜎𝑥ℓ 𝜎

𝑥
ℓ+1 + 𝜎

𝑦

ℓ
𝜎
𝑦

ℓ+1)

− 1
4
(𝜅 − 𝜅−1) (1ℓ ⊗ 𝜎𝑧ℓ+1 − 𝜎

𝑧
ℓ
⊗ 1ℓ+1),

(4.11)

𝐻 (𝜆′) = 1
4
(𝜅 + 𝜅−1)

(
1ℓ,ℓ+1 − 𝜎𝑧ℓ𝜎

𝑧
ℓ+1

)
− 1

2
(
𝜎𝑥ℓ 𝜎

𝑥
ℓ+1 + 𝜎

𝑦

ℓ
𝜎
𝑦

ℓ+1)

+ 1
4
(𝜅 − 𝜅−1) (1ℓ ⊗ 𝜎𝑧ℓ+1 − 𝜎

𝑧
ℓ
⊗ 1ℓ+1).

(4.12)

Comparing these Hamiltonians to the Hamiltonians (3.7) in the 𝑋𝑌 sector, one can
clearly see that the 𝑋𝑍 sector is not an alternating bond spin chain of the form given
in [51, 52].

4.1 One magnon
We start with the one magnon problem 𝐻 |𝑝⟩ = 𝐸1(𝑝) |𝑝⟩, where |𝑝 ⟩ indicates a 𝑍
magnon. Due to the dynamical nature of the spin chain, there will be two equations
to solve, since a 𝑍 excitation on an arbitrary site ℓ can see either the parameter 𝜆 or
𝜆′ to its left. Specifically, we have

2/𝜅 |ℓ ⟩𝜆 − |ℓ − 1⟩𝜆′ − |ℓ + 1⟩𝜆′ = 𝐸1 |ℓ ⟩𝜆 ,
2𝜅 |ℓ ⟩𝜆′ − |ℓ − 1⟩𝜆 − |ℓ + 1⟩𝜆 = 𝐸1 |ℓ ⟩𝜆′ .

(4.13)

Here, we use the fact that if a 𝑍 field at site ℓ sees 𝜆 to its left, the states with a 𝑍
field at site ℓ − 1 and ℓ + 1 necessarily see a 𝜆′ to their left (since one needs to cross
one less or more 𝑋 field to get to that site). The argument is similar for a 𝑍 that sees
𝜆′ at some different site ℓ. Of course, for a single 𝑍 magnon, and given a reference
point with fixed 𝜆, the above equations can also be written in term of even and odd
sites. However this is not general so we will avoid using this notation.

We therefore take for our ansatz a superposition of a single excitation on sites that
see 𝜆 or 𝜆′

|𝑝⟩ =
∑︁
ℓ

𝜓𝜆 (ℓ) |ℓ⟩𝜆 +
∑︁
ℓ

𝜓𝜆′ (ℓ) |ℓ⟩𝜆′ , (4.14)

where
𝜓𝜆 (ℓ) = 𝐴𝜆 (𝑝)𝑒𝑖𝑝ℓ, 𝜓𝜆′ (ℓ) = 𝐴𝜆′ (𝑝)𝑒𝑖𝑝ℓ . (4.15)
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In (4.14) the summations are over the sites corresponding to each value of 𝜆.

Substituting this ansatz in the equations (4.13) we find

2/𝜅𝐴𝜆𝑒𝑖𝑝𝑠 − 𝐴𝜆′𝑒𝑖𝑝(𝑠−1) − 𝐴𝜆′𝑒𝑖𝑝(𝑠+1) = 𝐸1(𝑝)𝐴𝜆𝑒𝑖𝑝𝑠 , (4.16)

and
2𝜅𝐴𝜆′𝑒𝑖𝑝𝑡 − 𝐴𝜆𝑒𝑖𝑝(𝑡−1) − 𝐴𝜆𝑒𝑖𝑝(𝑡+1) = 𝐸1(𝑝)𝐴𝜆′𝑒𝑖𝑝𝑡 . (4.17)

From these equations, we find that the ratio between 𝜆′ and 𝜆 sites is

𝑟 (𝑝; 𝜅) :=
𝐴𝜆′ (𝑝)
𝐴𝜆 (𝑝)

=
1 − 𝜅2 ∓

√︁
𝜅4 + 2𝜅2 cos(2𝑝) + 1
2𝜅 cos(𝑝) , (4.18)

and the eigenvalue is

𝐸1(𝑝; 𝜅) = 𝜅 + 1
𝜅
± 1
𝜅

√︃
𝜅4 + 2𝜅2 cos(2𝑝) + 1 . (4.19)

We see that the dispersion relation is precisely the same as for the 𝑋𝑌 sector, however
the ratio function 𝑟 (𝑝) is different from the ratio between the odd and even sites
defined in equation (3.13).

As in the 𝑋𝑌 sector, the one magnon wavefunction has a Z2 symmetry. First, note
that under 𝜅 ↔ 1/𝜅,

𝐸 (1/𝜅) = 𝐸 (𝜅) and 𝑟 (𝑝; 1/𝜅) = 1/𝑟 (𝑝; 𝜅) , (4.20)

which again implies that the two coefficients 𝐴𝜆, 𝐴𝜆′ in our wavefunction are
exchanged and that

Z2 |𝑝⟩ =
1

𝑟 (𝑝; 𝜅) |𝑝⟩ . (4.21)

4.2 Two magnons
Moving on to two magnons, we will again treat separately the non-interacting
equations (those where the 𝑍 magnons are separated by at least one 𝑋 field) and the
interacting equations (those where the 𝑍 magnons are next to each other). There
will again be four non-interacting equations as each magnon can see either 𝜆 or 𝜆′

4𝜅−1 |ℓ1, ℓ2 ⟩𝜆𝜆−|ℓ1−1, ℓ2 ⟩𝜆′𝜆−|ℓ1 + 1, ℓ2 ⟩𝜆′𝜆−|ℓ1, ℓ2−1 ⟩𝜆𝜆′−|ℓ1, ℓ2 + 1 ⟩𝜆𝜆′ = 𝐸2 |ℓ1, ℓ2 ⟩𝜆𝜆 ,

2(𝜅+𝜅−1) |ℓ1, ℓ2 ⟩𝜆𝜆′−|ℓ1−1, ℓ2 ⟩𝜆′𝜆′−|ℓ1 + 1, ℓ2 ⟩𝜆′𝜆′−|ℓ1, ℓ2−1 ⟩𝜆𝜆−|ℓ1, ℓ2 + 1 ⟩𝜆𝜆 = 𝐸2 |ℓ1, ℓ2 ⟩𝜆𝜆′ ,

2(𝜅+𝜅−1) |ℓ1, ℓ2 ⟩𝜆′𝜆−|ℓ1−1, ℓ2 ⟩𝜆𝜆−|ℓ1 + 1, ℓ2 ⟩𝜆𝜆−|ℓ1, ℓ2−1 ⟩𝜆′𝜆′−|ℓ1, ℓ2 + 1 ⟩𝜆′𝜆′ = 𝐸2 |ℓ1, ℓ2 ⟩𝜆′𝜆 ,

4𝜅 |ℓ1, ℓ2 ⟩𝜆′𝜆′−|ℓ1−1, ℓ2 ⟩𝜆𝜆′−|ℓ1 + 1, ℓ2 ⟩𝜆𝜆′−|ℓ1, ℓ2−1 ⟩𝜆′𝜆−|ℓ1, ℓ2 + 1 ⟩𝜆′𝜆 = 𝐸2 |ℓ1, ℓ2 ⟩𝜆′𝜆′ .
(4.22)
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For the interacting equations, note that two consecutive 𝑍 magnons necessarily
have the same value of 𝜆. We therefore find

2𝜅−1 |ℓ, ℓ + 1⟩𝜆𝜆 − |ℓ − 1, ℓ + 1⟩𝜆′𝜆 − |ℓ, ℓ + 2⟩𝜆𝜆′ = 𝐸2 |ℓ, ℓ + 1⟩𝜆𝜆 ,
2𝜅 |ℓ, ℓ + 1⟩𝜆′𝜆′ − |ℓ − 1, ℓ + 1⟩𝜆𝜆′ − |ℓ, ℓ + 2⟩𝜆′𝜆 = 𝐸2 |ℓ, ℓ + 1⟩𝜆′𝜆′ .

(4.23)

To solve these equations, we will proceed by direct analogy with Chapter 3. The
main difference is that the eigenvalue equations are slightly different, and that we
do not use even-odd notation in the wavefunction, but 𝜆, 𝜆′ notation. We will start
with the following ansatz

|𝑝1, 𝑝2 ⟩ =
∑︁
ℓ1<ℓ2

𝜓𝜆𝜆 (ℓ1, ℓ2) |ℓ1ℓ2⟩ +
∑︁
ℓ1<ℓ2

𝜓𝜆𝜆′ (ℓ1, ℓ2) |ℓ1ℓ2⟩

+
∑︁
ℓ1<ℓ2

𝜓𝜆′𝜆 (ℓ1, ℓ2) |ℓ1ℓ2⟩ +
∑︁
ℓ1<ℓ2

𝜓𝜆′𝜆′ (ℓ1, ℓ2) |ℓ1ℓ2⟩,
(4.24)

where
𝜓𝜆𝜆 (ℓ1, ℓ2) = 𝐴𝜆𝜆 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 ,

𝜓𝜆𝜆′ (ℓ1, ℓ2) = 𝐴𝜆𝜆′ (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 ,

𝜓𝜆′𝜆 (ℓ1, ℓ2) = 𝐴𝜆′𝜆 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 ,

𝜓𝜆′𝜆′ (ℓ1, ℓ2) = 𝐴𝜆′𝜆′ (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 .

(4.25)

Here the sites ℓ1, ℓ2 are assumed to be such that the 𝜆 dependence is correct. For
instance, if ℓ2 = ℓ1 + 3 then the only options are 𝜓𝜆𝜆 (ℓ1, ℓ1 + 3) or 𝜓𝜆′𝜆′ (ℓ1, ℓ1 + 3),
since there are two 𝑋 fields between the 𝑍’s. Fixing 𝜆 at a given site (e.g. ℓ = 1)
will resolve the remaining ambiguity.

Substituting in the non-interacting equations (4.22), we find that the eigenvalue is
additive,

𝐸2(𝑝1, 𝑝2) = 𝐸1(𝑝1) + 𝐸1(𝑝2), (4.26)

with the coefficients having the ratios
𝐴𝜆′𝜆′ (𝑝1, 𝑝2)
𝐴𝜆𝜆 (𝑝1, 𝑝2)

= 𝑟 (𝑝1)𝑟 (𝑝2) ,
𝐴𝜆′𝜆 (𝑝1, 𝑝2)
𝐴𝜆𝜆 (𝑝1, 𝑝2)

= 𝑟 (𝑝1) ,
𝐴𝜆𝜆′ (𝑝1, 𝑝2)
𝐴𝜆𝜆 (𝑝1, 𝑝2)

= 𝑟 (𝑝2).
(4.27)

As in the 𝑋𝑌 sector, the usual Bethe approach of just adding the swapped momenta
{𝑝1, 𝑝2} ↔ {𝑝2, 𝑝1} does not lead to a solution of the interacting equations (4.23).
In the next section we will improve the Bethe ansatz by adding contact terms, which
as we will see, gives a solution in the centre-of-mass frame 𝐾 = 0. To obtain more
general solutions (for 𝐾 ≠ 0) we will need to add a second set of momenta, which
we will do in Section 4.2.2. Since the steps are very similar to that of Chapter 3, we
will provide fewer details in this chapter.
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4.2.1 Centre-of-mass solution
Similar to Section 3.2.1, we will start by improving the ansatz (4.24) by adding the
swapped momenta as well as contact terms

𝜓𝜆𝜆′ (ℓ1, ℓ2) = 𝐴𝜆𝜆′ (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆𝜆′ (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 ,

𝜓𝜆′𝜆 (ℓ1, ℓ2) = 𝐴𝜆′𝜆 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆′𝜆 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 ,
(4.28)

𝜓𝜆𝜆 (ℓ1, ℓ2) = 𝐴𝜆𝜆 (𝑝1, 𝑝2)
(
1 + 𝛿ℓ2,ℓ1+1A(𝑝1, 𝑝2)

)
𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2

+ 𝐴𝜆𝜆 (𝑝2, 𝑝1)
(
1 + 𝛿ℓ2,ℓ1+1A(𝑝2, 𝑝1)

)
𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 ,

𝜓𝜆′𝜆′ (ℓ1, ℓ2) = 𝐴𝜆′𝜆′ (𝑝1, 𝑝2)
(
1 + 𝛿ℓ2,ℓ1+1B(𝑝1, 𝑝2)

)
𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2

+ 𝐴𝜆′𝜆′ (𝑝2, 𝑝1)
(
1 + 𝛿ℓ2,ℓ1+1B(𝑝2, 𝑝1)

)
𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2 .

(4.29)

Note that in this case two neighbouring 𝑍 fields have the same value of 𝜆, so the
contact terms enter in the 𝜓𝜆𝜆 and 𝜓𝜆′𝜆′ parts of the wavefunction. This is unlike the
𝑋𝑌 sector, where two neighbouring𝑌 fields are necessarily at even-odd or odd-even
sites, so in that case we modified the 𝜓𝑒𝑜 and 𝜓𝑜𝑒 terms.

Next-to-nearest neighbour magnons

The first step is to ensure that the contact terms do not spoil the non-interacting
equations. There are two non-interacting equations where the contact terms enter,
the 𝜆𝜆 and 𝜆′𝜆′ equations when ℓ2 = ℓ1 + 2. Cancelling the contact terms in these
equations requires

A(𝑝1, 𝑝2) = −𝑟 (𝑝1)𝑟 (𝑝2)𝑒𝑖(𝑝1+𝑝2)B(𝑝1, 𝑝2)
A(𝑝1, 𝑝2) = −𝑟 (𝑝1)𝑟 (𝑝2)𝑒−𝑖(𝑝1+𝑝2)B(𝑝1, 𝑝2).

(4.30)

and the same relations for the swapped terms. These are only consistent when
𝐾 = 𝑝1 + 𝑝2 = 𝑛𝜋, 𝑛 ∈ Z. We will focus on 𝐾 = 0 since this is in the first Brillouin
zone (−𝜋/2, 𝜋/2]. Thus, in the rest of this section, we will be in the centre-of-mass
frame. Our constraints are

A(𝑝1, 𝑝2) = −𝑟 (𝑝1)𝑟 (𝑝2)B(𝑝1, 𝑝2),
A(𝑝2, 𝑝1) = −𝑟 (𝑝1)𝑟 (𝑝2)B(𝑝2, 𝑝1).

(4.31)

Interacting equations

We will temporarily keep 𝑝2 as a placeholder, since it allows us to clearly show how
the equations below factorise, and then set 𝑝2 = −𝑝1 at the end. Substituting (4.31)
in the (𝜆, 𝜆) and (𝜆′, 𝜆′) interacting equations (4.23), we obtain two 𝑆-matrices,
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defined as 𝑆𝜆𝜆 = 𝐴𝜆𝜆 (𝑝2, 𝑝1)/𝐴𝜆𝜆 (𝑝1, 𝑝2) and 𝑆𝜆′𝜆′ = 𝐴𝜆′𝜆′ (𝑝2, 𝑝1)/𝐴𝜆′𝜆′ (𝑝1, 𝑝2).
Explicitly, they are given by

𝑆𝜆𝜆 = −
𝑒−2𝑖(𝑝1−𝑝2) (

𝜅𝑟 (𝑝1) + 𝑒𝑖𝑝1
(
(A(𝑝1, 𝑝2) + 1) (E2𝜅 − 2) + 𝜅𝑒𝑖𝑝2𝑟 (𝑝2)

) )
(A(𝑝2, 𝑝1) + 1)𝑒𝑖𝑝2 (E2𝜅 − 2) + 𝜅𝑒𝑖(𝑝1+𝑝2)𝑟 (𝑝1) + 𝜅𝑟 (𝑝2)

,

(4.32)
and

𝑆𝜆
′𝜆′ = −

𝑒−2𝑖(𝑝1−𝑝2) (
𝑟 (𝑝2) + 𝑒𝑖𝑝1𝑟 (𝑝1)

(
(B(𝑝1, 𝑝2) + 1) (𝐸2 − 2𝜅) 𝑟 (𝑝2) + 𝑒𝑖𝑝2

) )
𝑟 (𝑝1) (1 + (B(𝑝2, 𝑝1) + 1)𝑒𝑖𝑝2 (𝐸2 − 2𝜅) 𝑟 (𝑝2)) + 𝑒𝑖(𝑝1+𝑝2)𝑟 (𝑝2)

.

(4.33)
Equating these two 𝑆-matrices, we obtain a relation betweenB(𝑝2, 𝑝1) andB(𝑝1, 𝑝2).
It is given by

B(𝑝2, 𝑝1) = 𝐹 (𝑝1, 𝑝2)B(𝑝1, 𝑝2) + G(𝑝1, 𝑝2), (4.34)

where the functions 𝐹 and G factorise as

𝐹 (𝑝1, 𝑝2) = 𝑒𝑖(𝑝1−𝑝2) 𝑓 (𝑝2, 𝑝1)
𝑓 (𝑝1, 𝑝2)

, G(𝑝1, 𝑝2) = − 1
𝑟 (𝑝1)𝑟 (𝑝2)𝑒𝑖𝑝2

𝑔(𝑝1, 𝑝2)
𝑓 (𝑝1, 𝑝2)

,

(4.35)
with

𝑓 (𝑝1, 𝑝2) = 𝜅
(
−𝑒𝑖(𝑝1+𝑝2)

)
(E2 − 2𝜅) 𝑟 (𝑝2) − (E2𝜅 − 2)

(
𝑟 (𝑝2) + 𝑒𝑖𝑝1 (E2 − 2𝜅)

)
+ 𝑟 (𝑝1)

(
𝑒𝑖(𝑝1+𝑝2) (2 − E2𝜅) − (E2 − 2𝜅)

(
𝜅 + 𝑒𝑖𝑝1 (E2𝜅 − 2) 𝑟 (𝑝2)

) )
,

(4.36)
and

𝑔(𝑝1, 𝑝2) = −𝜅𝑟 (𝑝1) 2
(
−𝑒𝑖𝑝2

(
−1 + 𝑒2𝑖𝑝1

)
(E2 − 2𝜅) 𝑟 (𝑝2) − 𝑒2𝑖(𝑝1+𝑝2) + 1

)
− 𝑒𝑖𝑝1

(
−1 + 𝑒2𝑖𝑝2

)
𝑟 (𝑝1)

(
−E2𝜅 + 𝜅 (E2 − 2𝜅) 𝑟 (𝑝2) 2 + 2

)
− 𝑟 (𝑝2)

(
𝑒𝑖𝑝2

(
−1 + 𝑒2𝑖𝑝1

)
(E2𝜅 − 2) + 𝜅

(
−1 + 𝑒2𝑖(𝑝1+𝑝2)

)
𝑟 (𝑝2)

)
.

(4.37)
Substituting these expressions back into one of the equations for the 𝑆-matrix and
setting 𝑝2 = −𝑝1, we find that the contact terms again cancel to give

𝑆CoM(𝑝) = −
4 (𝜅 (E2 − 𝜅) − 1) 𝑟 (𝑝) + 𝑒𝑖𝑝 (E2 − 2𝜅) (E2𝜅 − 2)

(
𝑟 (𝑝)2 + 1

)
𝑒3𝑖𝑝 (E2 − 2𝜅) (E2𝜅 − 2)

(
𝑟 (𝑝)2 + 1

)
+ 4𝑒4𝑖𝑝 (𝜅 (E2 − 𝜅) − 1) 𝑟 (𝑝)

.

(4.38)
This S-matrix obeys unitarity 𝑆CoM(−𝑝)𝑆CoM(𝑝) = 1 and in the orbifold limit
𝜅 → 1, 𝑆CoM(𝑝) = 𝑒−𝑖𝑝 which matches the 𝔰𝔲(2)-sector S-matrix for N = 4 super
Yang-Mills in the CoM case.
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Final form of the contact terms

The last step in finalising our wavefunction is to substitute the solution for B(𝑝2, 𝑝1)
(4.41) into the ansatz (4.29). As in the 𝑋𝑌 sector, we find that it leaves a single
remaining contact term G(𝑝).

First, we note that
𝐹 (𝑝) = −𝑒−2𝑖𝑝𝑆CoM(𝑝,−𝑝)−1 , (4.39)

and that
G(𝑝) = −𝐹 (𝑝)G(𝑝) = 𝑒−2𝑖𝑝𝑆CoM(𝑝,−𝑝)−1G(−𝑝) . (4.40)

Therefore, we can write

B(−𝑝, 𝑝) = −𝑒−2𝑖𝑝𝑆CoM(𝑝,−𝑝)−1B(𝑝,−𝑝) + 𝑒−2𝑖𝑝𝑆CoM(𝑝,−𝑝)−1G(−𝑝).
(4.41)

We see that the B(−𝑝, 𝑝) term in the swapped part of the wavefunctions contains a
B(𝑝,−𝑝) term which cancels the one from the direct part, leaving only G(𝑝) as a
contact term. As we saw in the 𝑋𝑌 sector, we have the option of keeping G(𝑝) in
the swapped part, bringing it to the direct part using (4.41), or distributing it in any
other way. Choosing to move the contact term to the direct part, and factoring out
an overall factor of 𝐴𝜆′𝜆′, we can write our final centre-of-mass wavefunction as

𝜓𝜆𝜆′ (ℓ1, ℓ2) = 𝑟 (𝑝)𝑒𝑖𝑝ℓ1+𝑖(−𝑝)ℓ2 + 𝑟 (𝑝)𝑆CoM(𝑝)𝑒𝑖(−𝑝)ℓ1+𝑖𝑝ℓ2 ,
𝜓𝜆′𝜆 (ℓ1, ℓ2) = 𝑟 (𝑝)𝑒𝑖𝑝1ℓ1+𝑖(−𝑝)ℓ2 + 𝑟 (𝑝)𝑆CoM(𝑝)𝑒𝑖(−𝑝)ℓ1+𝑖𝑝ℓ2 ,

(4.42)

and
𝜓𝜆𝜆 (ℓ1, ℓ2) =

(
1 − 𝑟 (𝑝)2𝛿ℓ2,ℓ1+1G(−𝑝)

)
𝑒𝑖𝑝ℓ1+𝑖(−𝑝)ℓ2

+ 𝑆CoM(𝑝)𝑒𝑖(−𝑝)ℓ1+𝑖𝑝ℓ2 ,
𝜓𝜆′𝜆′ (ℓ1, ℓ2) = 𝑟 (𝑝)2 (1 + 𝛿ℓ2,ℓ1+1G(−𝑝)

)
𝑒𝑖𝑝ℓ1+𝑖(−𝑝)ℓ2

+ 𝑟 (𝑝)2𝑆CoM(𝑝)𝑒𝑖(−𝑝)ℓ1+𝑖𝑝ℓ2 ,

(4.43)

where 𝑆CoM(𝑝) is given by equation (4.38) and G(−𝑝) is given by G(−𝑝, 𝑝) in
equation (4.35). Also, to be clear, the 𝑟 (𝑝)2 factor in front of G(−𝑝) in the 𝜆𝜆
wavefunction comes from equation (4.31).

4.2.2 General solution
Having found the centre-of-mass solution for two 𝑍 excitations in the 𝑋 vacuum,
we now proceed to study the case 𝐾 ≠ 0. As in Section 3.2.2, and still following
the approach of [52, 51], we introduce a second set of momenta {𝑘1, 𝑘2} and its
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permutation

𝜓𝜆𝜆 (ℓ1, ℓ2) = 𝐴𝜆𝜆 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆𝜆 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝜆𝜆 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝜆𝜆 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝜆𝜆′ (ℓ1, ℓ2) = 𝐴𝜆𝜆′ (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆𝜆′ (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝜆𝜆′ (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝜆𝜆′ (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝜆′𝜆 (ℓ1, ℓ2) = 𝐴𝜆′𝜆 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆′𝜆 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝜆′𝜆 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝜆′𝜆 (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 ,

𝜓𝜆′𝜆′ (ℓ1, ℓ2) = 𝐴𝜆′𝜆′ (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆′𝜆′ (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝜆′𝜆′ (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 + 𝐴𝜆′𝜆′ (𝑘2, 𝑘1)𝑒𝑖𝑘2ℓ1+𝑖𝑘1ℓ2 .

(4.44)

The 𝑘 momenta are such that 𝑘1+ 𝑘2 = 𝑝1+ 𝑝2 and 𝐸 (𝑘1) +𝐸 (𝑘2) = 𝐸 (𝑝1) +𝐸 (𝑝2).
Since the dispersion relation in the 𝑋𝑍 sector is the same as that of the 𝑋𝑌 sector,
they are also given in terms of the energy and the 𝑝-momenta by equation (3.51).

Each of the four terms (in other words, the direct 𝑝, swapped 𝑝, direct 𝑘 and swapped
𝑘 terms) are solutions of the non-interacting equations if the appropriate version of
(4.27) holds. Substituting those relations, there will be four remaining coefficients
𝐴𝜆𝜆 (𝑝1, 𝑝2), 𝐴𝜆𝜆 (𝑝2, 𝑝1), 𝐴𝜆𝜆 (𝑘1, 𝑘2) and 𝐴𝜆𝜆 (𝑘2, 𝑘1). Through the interacting
equations, we will fix these coefficients in terms of just 𝐴𝜆𝜆 (𝑝1, 𝑝2) and thus obtain
a solution.

Interacting equations

As before, it is convenient to simplify the interacting equations by combining them
with the non-interacting equations which, although unphysical, are still satisfied for
ℓ2 = ℓ1 + 1. In this way obtain the equations

2/𝜅 𝜓𝜆𝜆 (𝑠, 𝑠 + 1) − 𝜓𝜆′𝜆 (𝑠 + 1, 𝑠 + 1) − 𝜓𝜆𝜆′ (𝑠, 𝑠) = 0, (4.45)

and
2𝜅 𝜓𝜆′𝜆′ (𝑡, 𝑡 + 1) − 𝜓𝜆𝜆′ (𝑡 + 1, 𝑡 + 1) − 𝜓𝜆′𝜆 (𝑡, 𝑡) = 0. (4.46)

Solving these one obtains two Z2-conjugate solutions for the remaining coefficients.
The first one is

𝐴𝜆𝜆 (𝑝1, 𝑝2) =
(
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

)
𝑎(𝑝1, 𝑝2)

𝐴𝜆𝜆 (𝑝2, 𝑝1) = −
(
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

)
𝑎(𝑝2, 𝑝1)

𝐴𝜆𝜆 (𝑘1, 𝑘2) = −
(
𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)

)
𝑎(𝑘1, 𝑘2)

𝐴𝜆𝜆 (𝑘2, 𝑘1) = −
(
𝑎(𝑝1, 𝑝2)𝑏(𝑝2, 𝑝1) − 𝑏(𝑝1, 𝑝2)𝑎(𝑝2, 𝑝1)

)
𝑎(𝑘2, 𝑘1) ,

(4.47)
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and the second solution is given by

𝐵𝜆𝜆 (𝑝1, 𝑝2) =
(
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

)
𝑏(𝑝1, 𝑝2)

𝐵𝜆𝜆 (𝑝2, 𝑝1) = −
(
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

)
𝑏(𝑝2, 𝑝1)

𝐵𝜆𝜆 (𝑘1, 𝑘2) = −
(
𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)

)
𝑏(𝑘1, 𝑘2)

𝐵𝜆𝜆 (𝑘2, 𝑘1) = −
(
𝑎(𝑝1, 𝑝2)𝑏(𝑝2, 𝑝1) − 𝑏(𝑝1, 𝑝2)𝑎(𝑝2, 𝑝1)

)
𝑏(𝑘2, 𝑘1) ,

(4.48)

where 𝑎, 𝑏 are the coefficients

𝑎(𝑝1, 𝑝2, 𝜅) = 𝑒𝑖(𝑝1+𝑝2)𝑟 (𝑝1) − 2𝜅 𝑒𝑖𝑝1𝑟 (𝑝1)𝑟 (𝑝2) + 𝑟 (𝑝2) ,
𝑏(𝑝1, 𝑝2, 𝜅) = 𝜅 𝑒𝑖(𝑝1+𝑝2)𝑟 (𝑝2) − 2𝑒𝑖𝑝1 + 𝜅 𝑟 (𝑝1),

(4.49)

where the ratio 𝑟 (𝑝, 𝜅) is defined in equation (4.18). These coefficients clearly
reduce to the standard XXX form 1 − 2𝑒𝑖𝑝1 + 𝑒𝑖(𝑝1+𝑝2) as 𝜅 → 1. Note, however,
that they are different from the equivalent ones for the 𝑋𝑌 sector in (3.59). To avoid
cluttering the notation we use the same labels as in Chapter 3, it being understood
that all instances of these coefficients in this section refer to (4.49). We will also
drop the explicit dependence on 𝜅 unless required for clarity.

The most general solution will be a linear combination of these two solutions:

𝜓𝜆𝜆 (ℓ1, ℓ2) = 𝛼 𝜓𝐴𝜆𝜆 (ℓ1, ℓ2) + 𝛽 𝜓𝐵𝜆𝜆 (ℓ1, ℓ2), (4.50)

where 𝜓𝐴
𝜆𝜆

and 𝜓𝐵
𝜆𝜆

are of the form in (4.44) with the 𝐴 and 𝐵 coefficients, re-
spectively. The same holds true for the other wavefunctions but with appropriate
placements of 𝑟 (𝑝).

In summary, the total eigenstate that solves the two magnon problem is given by

|𝜓⟩tot = 𝛼 |𝑝1, 𝑝2, 𝑘1, 𝑘2⟩𝐴 + 𝛽 |𝑝1, 𝑝2, 𝑘1, 𝑘2⟩𝐵, (4.51)

where

|𝑝1, 𝑝2, 𝑘1, 𝑘2⟩𝑖 =
∑︁
ℓ1<ℓ2

(
𝜓𝑖𝜆𝜆 (ℓ1, ℓ2) |ℓ1ℓ2⟩ + 𝜓𝑖𝜆𝜆′ (ℓ1, ℓ2) |ℓ1ℓ2⟩

+ 𝜓𝑖𝜆′𝜆 (ℓ1, ℓ2) |ℓ1ℓ2⟩ + 𝜓𝑖𝜆′𝜆′ (ℓ1, ℓ2) |ℓ1ℓ2⟩
)
, 𝑖 = 𝐴, 𝐵.

(4.52)

Finally, similar to the 𝑋𝑌 sector, we note that we can rewrite the wavefunctions as
in equation (3.62) where (the result is similar for the B coefficients)

𝜓𝐴𝑒𝑒 (ℓ1, ℓ2) = Ψ(𝑘1, 𝑘2)Ω𝐴 (𝑝1, 𝑝2; ℓ1, ℓ2) − Ψ(𝑝1, 𝑝2)Ω𝐴 (𝑘1, 𝑘2; ℓ1, ℓ2), (4.53)
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where (here 𝑞𝑖 stands for either 𝑝𝑖 or 𝑘𝑖)

Ψ(𝑞1, 𝑞2) = 𝑎(𝑞2, 𝑞1)𝑏(𝑞1, 𝑞2) − 𝑏(𝑞2, 𝑞1)𝑎(𝑞1, 𝑞2), (4.54)

and

Ω𝐴 (𝑞1, 𝑞2; ℓ1, ℓ2) = 𝑎(𝑞1, 𝑞2)𝑒𝑖𝑞1ℓ1+𝑖𝑞2ℓ2 − 𝑎(𝑞2, 𝑞1)𝑒𝑖𝑞2ℓ1+𝑖𝑞1ℓ2 . (4.55)

Properties of the 𝑆-matrices

Similar to the 𝑋𝑌 sector, since each of the two general solutions contains four Bethe-
like terms, we can again define three 𝑆-matrices. Two of them refer to scattering of
the 𝑝 or 𝑘 momenta among themselves

𝑆𝐴 (𝑝1, 𝑝2, 𝜅) =
𝐴𝜆𝜆 (𝑝2, 𝑝1)
𝐴𝜆𝜆 (𝑝1, 𝑝2)

= −𝑎(𝑝2, 𝑝1)
𝑎(𝑝1, 𝑝2)

,

𝑆𝐴 (𝑘1, 𝑘2, 𝜅) =
𝐴𝜆𝜆 (𝑘2, 𝑘1)
𝐴𝜆𝜆 (𝑘1, 𝑘2)

= −𝑎(𝑘2, 𝑘1)
𝑎(𝑘1, 𝑘2)

.

(4.56)

There is also an 𝑆-matrix scattering the 𝑝 momenta to the 𝑘 momenta, which we
call 𝑇

𝑇 𝐴 (𝑝1, 𝑝2, 𝑘1, 𝑘2, 𝜅) =
𝐴𝜆𝜆 (𝑘1, 𝑘2)
𝐴𝜆𝜆 (𝑝1, 𝑝2)

= −𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2)−𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2)−𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

𝑎(𝑘1, 𝑘2)
𝑎(𝑝1, 𝑝2)

.

(4.57)
Similarly, for the solution with B coefficients,

𝑆𝐵 (𝑝1, 𝑝2, 𝜅) =
𝐵𝜆𝜆 (𝑝2, 𝑝1)
𝐵𝜆𝜆 (𝑝1, 𝑝2)

= −𝑏(𝑝2, 𝑝1)
𝑏(𝑝1, 𝑝2)

,

𝑆𝐵 (𝑘1, 𝑘2, 𝜅) =
𝐵𝜆𝜆 (𝑘2, 𝑘1)
𝐵𝜆𝜆 (𝑘1, 𝑘2)

= −𝑏(𝑘2, 𝑘1)
𝑏(𝑘1, 𝑘2)

,

(4.58)

and

𝑇𝐵 (𝑝1, 𝑝2, 𝑘1, 𝑘2, 𝜅) =
𝐵𝜆𝜆 (𝑘1, 𝑘2)
𝐵𝜆𝜆 (𝑝1, 𝑝2)

= −𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2)−𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)
𝑎(𝑘2, 𝑘1)𝑏(𝑘1, 𝑘2)−𝑏(𝑘2, 𝑘1)𝑎(𝑘1, 𝑘2)

𝑏(𝑘1, 𝑘2)
𝑏(𝑝1, 𝑝2)

.

(4.59)
These two solutions are related by Z2 symmetry. More precisely, recalling that
𝑟 (𝑝, 1/𝜅) = 1/𝑟 (𝑝, 𝜅), one finds

𝑎(𝑝1, 𝑝2, 1/𝜅) =
1
𝜅

1
𝑟 (𝑝1)𝑟 (𝑝2)

𝑏(𝑝1, 𝑝2, 𝜅),

𝑏(𝑝1, 𝑝2, 1/𝜅) =
1
𝜅

1
𝑟 (𝑝1)𝑟 (𝑝2)

𝑎(𝑝1, 𝑝2, 𝜅).
(4.60)
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From this, we find that

𝑆𝐴 (𝑥, 𝑦, 1/𝜅) = 𝑆𝐵 (𝑥, 𝑦, 𝜅),

𝑇 𝐴 (𝑥, 𝑦, 𝑤, 𝑧, 1/𝜅) = 𝑟 (𝑘1)𝑟 (𝑘2)
𝑟 (𝑝1)𝑟 (𝑝2)

𝑇𝐵 (𝑥, 𝑦, 𝑤, 𝑧, 𝜅),
(4.61)

where {𝑥, 𝑦} = {𝑝1, 𝑝2} or {𝑘1, 𝑘2} and similarly for {𝑤, 𝑧}. The 𝑆-matrices satisfy
unitarity and reduce to −1 for equal momenta

𝑆𝐴 (𝑥, 𝑦)𝑆𝐴 (𝑦, 𝑥) = 1 , 𝑆𝐵 (𝑥, 𝑦)𝑆𝐵 (𝑦, 𝑥) = 1 , 𝑆𝐴 (𝑝, 𝑝) = −1 , 𝑆𝐵 (𝑝, 𝑝) = −1 .
(4.62)

They also smoothly reduce to the 𝑋𝑋𝑋 𝑆-matrix as 𝜅 → 1. However, unlike the
𝑋𝑋𝑋 𝑆-matrix and the corresponding 𝑋𝑌 -sector 𝑆-matrices, 𝑆𝐴,𝐵 (0, 𝑝) ≠ 1. Note
that the 𝑇-matrix is again not a phase.

Finally, we note that we have the same relation as given in equation (3.76)

𝑆𝐴 (𝑘1, 𝑘2)𝑇 𝐴 (𝑝1, 𝑝2, 𝑘1, 𝑘2) = 𝑇 𝐴 (𝑝2, 𝑝1, 𝑘2, 𝑘1)𝑆𝐴 (𝑝1, 𝑝2), (4.63)

and similar for the B coefficient solutions.

Symmetries

Since Z2 maps the 𝐴 coefficient solutions to the 𝐵 coefficient solutions and vice
versa, to obtain a Z2-invariant solution we need to combine them as

|𝜓⟩(𝑔𝑒𝑛) = 𝛼 |𝑝1, 𝑝2, 𝑘1, 𝑘2⟩𝐴 + 𝛽 |𝑝1, 𝑝2, 𝑘1, 𝑘2⟩𝐵 , (4.64)

where we must have 𝛼(1/𝜅) = ±𝛽(𝜅). Then we have

Z2 |𝜓⟩(𝑔𝑒𝑛) = ∓ 1
𝜅3

(
𝑟 (𝑝1)𝑟 (𝑝2)𝑟 (𝑘1)𝑟 (𝑘2)

)−2 |𝜓⟩(𝑔𝑒𝑛) . (4.65)

Note that the eigenvalue is slightly different from the one of the 𝑋𝑌 sector (see Table
3.1).

One can also apply the momentum permutation maps (3.81) to the 𝐴 and 𝐵 solutions.
The eigenvalues are exactly the same as those in Table 3.1.

4.2.3 Restricted Solution
Similar to the 𝑋𝑌 case, the presence of additional 𝑘 momenta, which can take
complex values (for real values of the original 𝑝 momenta), is problematic when
considering large distances ℓ2 − ℓ1 ≫ 1 on the spin chain since one of the two 𝑘
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momenta Bethe wavefunctions will diverge. In addition, even for short chains, the 𝑘
momenta diverge as we take the centre-of-mass limit 𝐾 = 0. For these reasons, we
would like to restrict the general solution to remove one of the two 𝑘 wavefunctions.
Expressing 𝑘1 = 𝐾/2+ 𝜋/2− 𝑖𝑣, 𝑘2 = 𝐾/2− 𝜋/2+ 𝑖𝑣, with 𝑣 ≥ 0, the term we need
to remove is the swapped 𝑘-momenta term {𝑝2, 𝑝1}. We make an ansatz simply
consisting of three terms

𝜓
(𝑟)
𝜆𝜆

(ℓ1, ℓ2) = 𝐴𝜆𝜆 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆𝜆 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝜆𝜆 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 ,

𝜓
(𝑟)
𝜆𝜆′ (ℓ1, ℓ2) = 𝐴𝜆𝜆′ (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆𝜆′ (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝜆𝜆′ (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 ,

𝜓
(𝑟)
𝜆′𝜆 (ℓ1, ℓ2) = 𝐴𝜆′𝜆 (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆′𝜆 (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝜆′𝜆 (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 ,

𝜓
(𝑟)
𝜆′𝜆′ (ℓ1, ℓ2) = 𝐴𝜆′𝜆′ (𝑝1, 𝑝2)𝑒𝑖𝑝1ℓ1+𝑖𝑝2ℓ2 + 𝐴𝜆′𝜆′ (𝑝2, 𝑝1)𝑒𝑖𝑝2ℓ1+𝑖𝑝1ℓ2

+ 𝐴𝜆′𝜆′ (𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2ℓ2 .

(4.66)

This is the minimal number of terms needed to solve the interacting equations. We
find the following solution

𝐴𝜆𝜆 (𝑝1, 𝑝2) = 𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2) ,
𝐴𝜆𝜆 (𝑝2, 𝑝1) = −

(
𝑎(𝑘2, 𝑘1)𝑏(𝑝2, 𝑝1) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝2, 𝑝1)

)
,

𝐴𝜆𝜆 (𝑘1, 𝑘2) = −
(
𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)

)
.

(4.67)

with the other coefficients related to these three via (4.27). We observe that the 𝐴’s
here are quadratic in the 𝑎, 𝑏-coefficients unlike the general solution which is cubic.
On the other hand, the 𝑎 and 𝑏 terms with 𝑝 and 𝑘 dependence are mixed in the
restricted solution, while they appear in a more factorised form in the general one.

One can of course also recover this result by suitably combining the 𝐴 and 𝐵

solutions as

|𝜓⟩(𝑟) =
1

𝑎(𝑘1, 𝑘2)
𝑐

1 + 𝑐 |𝜓⟩𝐴 +
1

𝑏(𝑘1, 𝑘2)
1

1 + 𝑐 |𝜓⟩𝐵, (4.68)

where
𝑐 = −𝑏(𝑘2, 𝑘1)

𝑏(𝑘1, 𝑘2)
𝑎(𝑘1, 𝑘2)
𝑎(𝑘2, 𝑘1)

. (4.69)

The details are precisely the same as for the 𝑋𝑌 case (see Section 3.2.3), so we do
not repeat them here.
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The restricted solution (4.67) will be our starting point in Section 4.2.4, where we
will carefully take the 𝑝2 → −𝑝1 limit and show how it leads to the centre-of-mass
solution (4.43).

Symmetries

Factoring out the 𝐴𝜆𝜆 coefficient, we can define two 𝑆-matrices:

𝑆(𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2) =
𝐴𝜆𝜆 (𝑝2, 𝑝1)
𝐴𝜆𝜆 (𝑝1, 𝑝2)

= −𝑎(𝑘2, 𝑘1)𝑏(𝑝2, 𝑝1) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝2, 𝑝1)
𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)

,

(4.70)
and

𝑇 (𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2) =
𝐴𝜆𝜆 (𝑘1, 𝑘2)
𝐴𝜆𝜆 (𝑝1, 𝑝2)

= −𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)
𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)

.

(4.71)
The 𝑆(𝑟) matrix satisfies the unitarity and fermionic property

𝑆(𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑆(𝑟) (𝑝2, 𝑝1, 𝑘1, 𝑘2) = 1 , 𝑆(𝑟) (𝑝1, 𝑝1, 𝑘1, 𝑘2) = −1 , (4.72)

and smoothly reduces to the XXX 𝑆-matrix in the 𝜅 → 1 limit. It is alsoZ2 invariant:

𝑆(𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2, 1/𝜅) = 𝑆(𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2, 𝜅) . (4.73)

As before, the 𝑇 (𝑟) matrix is not a phase.

It can also be shown that |𝜓⟩(𝑟) is a Z2 eigenstate, with a slightly different eigenvalue
to the 𝑋𝑌 sector restricted solution, where

Z2 |𝜓⟩(𝑟) = − 1
𝜅2

(
𝑟 (𝑝1)𝑟 (𝑝2)

)−2 (
𝑟 (𝑘1)𝑟 (𝑘2)

)−1 |𝜓⟩(𝑟) . (4.74)

Apart from this difference, all the transformations for |𝜓⟩(𝑟) tabulated in Table 3.1
apply to the 𝑋𝑍 restricted solution.

4.2.4 Restricted solution in the CoM limit
In our study of the 𝑋 vacuum of the 𝑋𝑍 sector we also applied two, superficially
very different, methods to solve the two magnon problem: A contact-term method
which required the centre-of-mass condition 𝐾 = 0 (Section 4.2.1) and the approach
with additional momenta (sections 4.2.2 and 4.2.3). As in the 𝑋𝑌 sector, in this
section we show how the two methods are related, and in particular that the CoM
𝑆-matrix (4.38) arises as a limit of the restricted 𝑋𝑍-sector 𝑆-matrix (4.70). As
most features are exactly parallel to the 𝑋𝑌 case in Section 3.2.4, we will just show
the main points.
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Recovering the centre-of-mass 𝑆-matrix:

Recall the restricted solution 𝑆-matrix in this sector is

𝑆(𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2) = −𝑎(𝑘2, 𝑘1)𝑏(𝑝2, 𝑝1) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝2, 𝑝1)
𝑎(𝑘2, 𝑘1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑘2, 𝑘1)𝑎(𝑝1, 𝑝2)

= − 𝑓 · 𝑏(𝑝2, 𝑝1) − 𝑎(𝑝2, 𝑝1)
𝑓 · 𝑏(𝑝1, 𝑝2) − 𝑎(𝑝1, 𝑝2)

,

(4.75)

where

𝑓 =
𝑎(𝑘2, 𝑘1)
𝑏(𝑘2, 𝑘1)

=
𝑒𝑖(𝑝1+𝑝2)𝑟 (𝑘2) + 𝑟 (𝑘1)

(
1 − 2𝜅𝑒𝑖𝑘2𝑟 (𝑘2)

)
𝜅𝑒𝑖(𝑝1+𝑝2)𝑟 (𝑘1) + 𝜅𝑟 (𝑘2) − 2𝑒𝑖𝑘2

. (4.76)

Due to the divergence of the 𝑘 momenta as 𝑝2 → −𝑝1, the limit needs to be taken
carefully. We start by simplifying the ratio functions 𝑟 (𝑘1), 𝑟 (𝑘2) by taking the
partial limit in some of their terms

𝑟 (𝑘1) →
𝑒−𝑖𝑘1

(
−𝜅2 +

√
𝜅4 + 𝜅2𝑒2𝑖𝑘1 + 1 + 1

)
𝜅

,

𝑟 (𝑘2) →
𝑒𝑖𝑘2

(
−𝜅2 +

√
𝜅4 + 𝜅2𝑒−2𝑖𝑘2 + 1 + 1

)
𝜅

.

(4.77)

We then substitute these expressions into 𝑓 and set 𝑘1 = 𝑝1 + 𝑝2 − 𝑘2. Next, to
remove the divergent parts from 𝑘2, we set 𝑝2 = −𝑝1 + 𝜖 . After some manipulation,
we find that we can write

𝑒2𝑖𝑘2 =
sin2(𝜖)
𝑥

,where lim
𝜖→0

𝑥 = −
4
(
𝜅4 + 2𝜅2 cos(2𝑝) + 1

)
𝜅2 . (4.78)

Substituting back into 𝑓 and taking the limit 𝜖 → 0, we find that

𝑓 → 𝑓n(𝑝, 𝜅)
𝑓d(𝑝, 𝜅)

, (4.79)

where

𝑓n(𝑝, 𝜅) = 𝜅4 + 2𝜅2 cos(2𝑝) + 𝜅2
(
−
√︃
𝜅4 + 2𝜅2 cos(2𝑝) + 1 − 𝑖

√︃
−𝜅4 − 2𝜅2 cos(2𝑝) − 1

)
+

√︃
𝜅4 + 2𝜅2 cos(2𝑝) + 1 + 2𝑖

√︃
−

(
𝜅4 + 2𝜅2 cos(2𝑝) + 1

)2 + 1,
(4.80)

and
𝑓d(𝑝, 𝜅) = 𝜅5 + 𝜅 + 2𝜅3 cos(2𝑝) − 𝜅3

√︃
𝜅4 + 2𝜅2 cos(2𝑝) + 1. (4.81)

Then, substituting 𝑓 into (4.70) and taking the remaining limits 𝑝2 → −𝑝1, we find
precisely 𝑆𝐶𝑜𝑀 as in (4.38).
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Recovering the contact term

To complete the matching of the solutions, we need to also recover the contact
term G(−𝑝) (where G(−𝑝) = G(−𝑝, 𝑝) in (4.35)). We will focus on the (𝜆, 𝜆) and
(𝜆′, 𝜆′) terms in the restricted wavefunction, as there are no neighbouring 𝑍 magnons
in the 𝜓 (𝑟)

𝜆𝜆′, 𝜓
(𝑟)
𝜆′𝜆 wavefunctions. As in the previous case, we set ℓ2 = ℓ1 + 2𝑚 + 1,

where 𝑚 ≥ 0 (in 𝜓𝜆𝜆, 𝜓𝜆′,𝜆′, for a 𝑍 excitation at site ℓ1, the excitation at ℓ2 is
an odd number of sites away). We will show that for 𝑚 = 0 (in other words, the
nearest-neighbour case), we have a finite non-zero result in the 𝐾 = 0 limit, while
the terms with 𝑚 > 0 vanish. We will thus recover the required contact terms.

Recalling the form of 𝑇 from (4.71), a generic term in 𝜓 (𝑟)
𝜆𝜆

will be

𝑟 (𝑘1)𝑟 (𝑘2)𝑇 (𝑟) (𝑝1, 𝑝2, 𝑘1, 𝑘2)𝑒𝑖𝑘1ℓ1+𝑖𝑘2 (ℓ1+2𝑚+1)

= −𝑟 (𝑘1)𝑟 (𝑘2)
𝑒𝑖𝑘2 (2𝑚+1)

𝑏(𝑘2, 𝑘1)
𝑎(𝑝2, 𝑝1)𝑏(𝑝1, 𝑝2) − 𝑏(𝑝2, 𝑝1)𝑎(𝑝1, 𝑝2)

𝑓 · 𝑏(𝑝1, 𝑝2) − 𝑎(𝑝1, 𝑝2)
𝑒𝑖(𝑘1+𝑘2)ℓ1 .

(4.82)
where we used that 𝑘1 + 𝑘2 = 0 in the limit. We have already determined the limit
for 𝑓 , and 𝑟 (𝑘1)𝑟 (𝑘2) → −1 in the limit, so it just remains to study the behaviour of
the prefactor (for which will use the symbol 𝑡)

𝑡 =
𝑒𝑖𝑘2 (2𝑚+1)

𝑏(𝑘2, 𝑘1)
. (4.83)

Setting 𝑝2 = −𝑝1 + 𝜖 and using equation (4.78), we find that 𝑡 reduces to

𝑡 =

(
sin2 (𝜖)
𝑥

)𝑚
−𝜅2+

√︂
𝜅4+𝜅2

(
sin2 (𝜖 )

𝑥
+𝑥 csc2 (𝜖)

)
+1+1

sin2 (𝜖 )
𝑥

+1
+
𝑒2𝑖 𝜖

(
−𝜅2+

√︂
𝜅4+𝜅2

(
𝑒−2𝑖 𝜖 sin2 (𝜖 )

𝑥
+𝑥𝑒2𝑖 𝜖 csc2 (𝜖)

)
+1+1

)
sin2 (𝜖 )

𝑥
+𝑒2𝑖 𝜖

− 2

.

(4.84)
We then perform a series expansion to find

𝑡 =

©­­­­­«
4−𝑚

2
√︁
𝜅4 + 2 cos(2𝑝)𝜅2 + 1 − 2𝜅2

−
4−𝑚

(
−𝜅4−8 cos(2𝑝) 𝜅2−6𝜅2−1
12
√
−𝜅4−2 cos(2𝑝) 𝜅2−1

+
𝑖

(
11𝜅4+16 cos(2𝑝) 𝜅2−6𝜅2+11

)
12
√
𝜅4+2 cos(2𝑝) 𝜅2+1

)
𝜖(

2
√︁
𝜅4 + 2 cos(2𝑝)𝜅2 + 1 − 2𝜅2

)2 +𝑂

(
𝜖 2

)ª®®®®®¬
×

(
− 𝜅2 sin2 (𝜖 )
𝜅4 + 2𝜅2 cos(2𝑝) + 1

)𝑚 (4.85)

It is straightforward to confirm that for 𝑚 > 0, the above expression vanishes as we
send 𝜖 → 0. However, if 𝑚 = 0 we find

𝑡 =
𝑒𝑖𝑘2

𝑏(𝑘2, 𝑘1)
→ 1

2
√︁
𝜅4 + 2𝜅2 cos(2𝑝) + 1 − 2𝜅2

. (4.86)
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Substituting this (and 𝑓 ) back into (4.82), we find a precise match with the term

− 𝑟 (𝑝)2𝑒−𝑖𝑝G(−𝑝), (4.87)

which arises in the solution (4.43). The case of 𝜓 (𝑟)
𝜆′𝜆′ works similarly. Thus, as in

the 𝑋𝑌 sector, we conclude that the contact term wavefunction (4.43) is a limiting
case of the restricted wavefunction (4.66),(4.67) in the centre-of-mass limit.

4.3 Bethe Ansatz for the XZ Sector
In this section we will consider closed chains in the 𝑋𝑍 sector using the two-𝑍
magnon solution around the 𝑋 vacuum constructed above. It should be noted that
due to the dilute nature of these chains, not all configurations of magnons are
possible. For instance, odd-𝑍-magnon states on an even-length closed chain are not
allowed, as there is no way to match the gauge indices, or alternatively guarantee
that the value of 𝜆 to the left of the first site is the same as that to the right of the last
site. Let us, for example, consider the state |𝑋𝑋𝑍𝑋 ⟩. If the value of the dynamical
parameter is 𝜆 to the left of the first site, making that 𝑋 a 𝑄12, then its value is 𝜆′ to
the right of the last site, making that 𝑋 a𝑄12 again. The gauge indices of these fields
cannot be contracted to create a closed chain. However if we consider a state with
two 𝑍 magnons, such as |𝑋𝑍𝑍𝑋 ⟩, the last field is a𝑄21 and we now can contract the
gauge indices. Therefore, the two-𝑍 magnon problem is restricted to closed chains
of even length.

Another difference to the 𝑋𝑍 sector is that the length-𝐿 Hamiltonian is not just a
direct product of the (alternately) H𝑒𝑜 and H𝑜𝑒 Hamiltonians acting on each pair of
sites, and it is not possible to choose a reference site (e.g. the first one) with a fixed
𝜆, as the action of the Hamiltonian on sites (𝐿, 1) can change that value. Therefore,
we work on the full basis of two-𝑍 excitations, with both possibilities for 𝜆 on the
first site2.

Despite these differences, it is clear that the solution of the two magnon problem in
the 𝑋 vacuum of the 𝑋𝑍 sector is very similar to that of the alternating 𝑋𝑌 sector.
It also requires two sets of momenta, 𝑝𝑖 and 𝑘𝑖, giving the same total momentum 𝐾

and energy 𝐸2. The main differences stem from the fact that the 𝑎 and 𝑏 coefficients
(4.49) entering the 𝑆 matrices are different from (3.59). Also, as we will focus on
even-length chains, there is no one magnon problem, and thus also no “trivial” two

2For example, for the length-6 examples studied in [27], this basis is 30-dimensional
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magnon energies just obtained by periodicity.3

In the CoM frame, we will again have, for the untwisted and twisted sectors respec-
tively:

𝑒𝑖𝑝𝐿 = 1/𝑆(𝑝,−𝑝) and 𝑒𝑖𝑝𝐿 = −1/𝑆(𝑝,−𝑝) , (4.88)

with 𝑆 now as in (4.38). Since 𝑆 → 𝑒−𝑖𝑝 in the limit 𝜅 → 1, the momenta reduce to
those of the standard XXX model as they should.

Periodicity for the general (non-CoM) solution is also easy to impose by suitably
combining the two wavefunctions related by Z2

|𝜓 ⟩tot = 𝐴(𝑝1, 𝑝2, 𝑘1, 𝑘2) + 𝑥𝐵(𝑝1, 𝑝2, 𝑘1, 𝑘2) , (4.89)

where now

(𝐴𝜆𝜆,𝑝12 + 𝑥𝐵𝜆𝜆,𝑝12 )𝑒𝑖(𝑙1𝑝1+𝑙2𝑝2) = (𝐴𝜆𝜆,𝑝21 + 𝑥𝐵𝜆𝜆,𝑝21 )𝑒𝑖(𝑙2𝑝2+(𝑙1+𝐿)𝑝1) ,

(𝐴𝜆𝜆,𝑘12 + 𝑥𝐵𝜆𝜆,𝑘12 )𝑒𝑖(𝑙1𝑘1+𝑙2𝑘2) = (𝐴𝜆𝜆,𝑘21 + 𝑥𝐵𝜆𝜆,𝑘21 )𝑒𝑖(𝑙2𝑘2+(𝑙1+𝐿)𝑘1) ,
(4.90)

and similarly for the 𝜆′𝜆′ parts. For the 𝜆𝜆′ parts we have

(𝐴𝜆𝜆
′,𝑝

12 + 𝑥𝐵𝜆𝜆
′,𝑝

12 )𝑒𝑖(𝑙1𝑝1+𝑙2𝑝2) = (𝐴𝜆
′𝜆,𝑝

21 + 𝑥𝐵𝜆
′𝜆,𝑝

21 )𝑒𝑖(𝑙2𝑝2+(𝑙1+𝐿)𝑝1) ,

(𝐴𝜆𝜆
′,𝑘

12 + 𝑥𝐵𝜆𝜆
′,𝑘

12 )𝑒𝑖(𝑙1𝑘1+𝑙2𝑘2) = (𝐴𝜆
′𝜆,𝑘

21 + 𝑥𝐵𝜆
′𝜆,𝑘

21 )𝑒𝑖(𝑙2𝑘2+(𝑙1+𝐿)𝑘1) ,
(4.91)

which all lead to

𝑥(𝑘1, 𝑘2) = −𝑎(𝑘1, 𝑘2) + 𝑎(𝑘2, 𝑘1)𝑒𝑖𝐿𝑘1

𝑏(𝑘1, 𝑘2) + 𝑏(𝑘2, 𝑘1)𝑒𝑖𝐿𝑘1
, (4.92)

in terms of which the Bethe ansatz is

𝑒𝑖𝐿𝑝1 = −𝑎(𝑝1, 𝑝2) + 𝑥(𝑘1, 𝑘2)𝑏(𝑝1, 𝑝2)
𝑎(𝑝2, 𝑝1) + 𝑥(𝑘1, 𝑘2)𝑏(𝑝2, 𝑝1)

. (4.93)

This is the same expression as for the 𝑋𝑌 sector, however now the 𝑎, 𝑏 functions are
those in (4.49).

Analogously, we can study the twisted sector by imposing antiperiodicity on (4.89).
The Bethe ansatz is now

𝑒𝑖𝐿𝑝1 =
𝑎(𝑝1, 𝑝2) + 𝑥(𝑘1, 𝑘2)𝑏(𝑝1, 𝑝2)
𝑎(𝑝2, 𝑝1) + 𝑥(𝑘1, 𝑘2)𝑏(𝑝2, 𝑝1)

, (4.94)

with 𝑥 defined by

𝑥(𝑘1, 𝑘2) = −𝑎(𝑘1, 𝑘2) − 𝑎(𝑘2, 𝑘1)𝑒𝑖𝐿𝑘1

𝑏(𝑘1, 𝑘2) − 𝑏(𝑘2, 𝑘1)𝑒𝑖𝐿𝑘1
. (4.95)

3Accordingly, the 𝑆-matrices of the 𝑋𝑍 sector general solution (4.56),(4.58) do not reduce to 1
as one of the momenta becomes zero.
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In [27], similar to the 𝑋𝑌 sector, the Bethe ansatz result is numerically compared
to results from explicit diagonalisation of the Hamiltonian for both the twisted and
untwisted sectors and show good agreement. Thus, the numerical results provide
excellent confirmation that the 𝑋𝑍 sector wavefunctions and the periodic Bethe
ansatz for the twisted/untwisted sectors are indeed correct.
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C h a p t e r 5

ELLIPTIC PARAMETRISATION

The motivation of this chapter is to understand the most appropriate parametrisation
for each of our sectors. The dispersion relation appearing in the 𝑋𝑌 sector and the
𝑋-vacuum of the 𝑋𝑍 sector is naturally uniformised by elliptic functions. In this
chapter, we provide more details of this parametrisation and show how it allows us
to uncover an interesting relation between these two sectors.

𝑋𝑌 sector

Let us start with the dispersion relation (3.15) in the upper branch

𝐸 (𝑝) = 𝜅 + 1
𝜅
+ 1
𝜅

√︁
1 + 𝜅2𝑒−2𝑖𝑝

√︁
1 + 𝜅2𝑒2𝑖𝑝 . (5.1)

Recall that the rapidity variable 𝑣 which uniformises the dispersion relation should
be such that

𝜕𝑝(𝑣)
𝜕𝑣

= 𝐸 (𝑝) ⇒ 𝑣(𝑝) =
∫

d𝑝
𝐸 (𝑝) . (5.2)

The solutions of this equation are not very easy to work with, so we shift the energy
temporarily to 𝐸′ = 𝐸 − 1

𝜅
− 𝜅. It should be pointed out that, although this shift is

by a constant, it is not completely harmless since it brings the dispersion relation
to an XY-model/free-fermion form, effectively dropping the contribution from the
𝜎𝑧 ⊗ 𝜎𝑧 terms in the Hamiltonian which are responsible for the 1/𝜅 + 𝜅 term. We
can now follow the treatment in [45], which is in the context of the XY model, to
express this relation using Jacobi elliptic functions with modular parameter 𝑚 = 𝜅4.
We find

𝑒𝑖𝑝 = 𝑖𝜅sn(𝑣/𝜅 |𝑚𝑋𝑌 ) , (5.3)

in terms of which the energy is expressed as

𝐸′(𝑣) = d𝑝
d𝑣

=
𝑖

𝜅

cn(𝑣/𝜅 |𝑚)dn(𝑣/𝜅 |𝑚)
sn(𝑣/𝜅 |𝑚) . (5.4)

We note that in the above parametrisation 𝑝 = 0 corresponds to 𝑣0 = −𝑖𝜅𝐾 (1−𝑚)/2,
with 𝐾 (𝑚) the elliptic integral of the first kind with modular parameter 𝑚. One
could thus have shifted the rapidity as 𝑣 → 𝑣 + 𝑣0 so that 𝑣 = 0 corresponds to
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𝑝 = 0 [45]. Another important quantity entering our wavefunctions in Chapter 3 is
the ratio function, which for this sector is

𝑟𝑋𝑌 (𝑝) =
𝑒𝑖𝑝

√
1 + 𝜅2𝑒−2𝑖𝑝

√
1 + 𝜅2𝑒2𝑖𝑝

→ 𝑟𝑋𝑌 (𝑣) =
𝜅cn(𝑣/𝜅, 𝑚)
dn(𝑣/𝜅, 𝑚) . (5.5)

𝑋𝑍 sector

The dispersion relation of the 𝑋𝑍 sector is the same as the 𝑋𝑌 sector. However, for
reasons to be clear momentarily, for this sector we will choose not to split the square
root and instead write the dispersion relation as (3.14)

𝐸 (𝑝) = 1
𝜅
+ 𝜅 + 1

𝜅

√︃
(1 + 𝜅2)2 − 4𝜅2 sin2 𝑝 . (5.6)

Then the natural modular parameter that presents itself is 𝑚̃ = 4𝜅2

(1+𝜅2)2 . Conse-
quently, we will parametrise equation (5.6) using elliptic functions depending on
this parameter.1 Subtracting the constant and using (5.2) we find

sin(𝑝) = sn((𝜅 + 𝜅−1)𝑣 |𝑚̃) , (5.7)

and the energy is now

𝐸′(𝑣) = (𝜅 + 𝜅−1)dn((𝜅 + 𝜅−1)𝑣 |𝑚̃) . (5.8)

The ratio function for the 𝑋𝑍 sector is expressed as

𝑟𝑋𝑍 (𝑣) =
(𝜅 − 𝜅−1) − (𝜅 + 𝜅−1)dn(−(𝜅 + 𝜅−1)𝑣 |𝑚̃)

2cn(−(𝜅 + 𝜅−1)𝑣 |𝑚̃)
. (5.9)

An interesting relation between the ratio functions arises if we use the Gauss trans-
formation (or descending Landen transformation) (e.g. [76])2

cn
(
(1 +

√
𝑚)𝑣

��� 4
√
𝑚

(1 +
√
𝑚)2

)
=

cn(𝑣 |𝑚)dn(𝑣 |𝑚)
1 +

√
𝑚sn(𝑣 |𝑚)2

,

dn
(
(1 +

√
𝑚)𝑣

��� 4
√
𝑚

(1 +
√
𝑚)2

)
=

1 −
√
𝑚sn(𝑣 |𝑚)2

1 +
√
𝑚sn(𝑣 |𝑚)2

.

(5.10)

It can then be straightforwardly shown that

𝑟𝑋𝑍 ((𝜅 + 𝜅−1)𝑣 |𝑚̃) = 1
𝑟𝑋𝑌 (𝑣/𝜅 |𝑚)

. (5.11)

1This approach is closer to the standard elliptic function parametrisation of the higher-loop
N = 4 dispersion relation, where the elliptic parameter is 𝑚 = −4𝑔2

𝑌𝑀
with 𝑔𝑌𝑀 the Yang-Mills

coupling (see e.g. [8, 9])
2In the N = 4 higher-loop context, Landen transformations were used in [77].
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Thus, despite being quite different functions of the momentum, the ratio functions
of the two sectors can be mapped to each other by a modular identity, for the same
value of the rapidity.3. This mapping hints that there exists a unifying form of the
Bethe ansatz equations in the two sectors, which should become evident with the
correct elliptic uniformisation.

Theta function parametrisation

It is also instructive to switch to a theta function parametrisation. We will only
show this explicitly for the choice of modular parameter 𝑚 = 𝜅4 as in the 𝑋𝑌 sector.
Using standard relations (e.g. [40]), we can write

𝑒𝑖𝑝 = 𝑖
√
𝑘sn(𝑣/𝜅) = 𝑖

√
𝑘

1
√
𝑘

𝜃1(𝑢)
𝜃4(𝑢)

= 𝑖
𝜃1(𝑢)
𝜃4(𝑢)

, (5.12)

where the arguments of the Jacobi and theta functions are related as 𝑣/𝜅 = 2𝐾 (𝑚)𝑢.
For the 𝑋𝑌 sector ratio function we have

𝑟 (𝑢) =
√
𝑘cn(𝑣/𝜅)
dn(𝑣/𝜅) =

√
𝑘

(√︂
𝑘′

𝑘

𝜃2(𝑢)
𝜃4(𝑢)

) (
1

√
𝑘′
𝜃4(𝑢)
𝜃3(𝑢)

)
=
𝜃2(𝑢)
𝜃3(𝑢)

. (5.13)

Here we use the nome

𝑞 = 𝑒𝑖𝜋𝜏 , where 𝜏 = 𝑖
𝐾′(𝑚)
𝐾 (𝑚) , (5.14)

with 𝑚 = 𝜅4, 𝐾′(𝑚) = 𝐾 (1 − 𝑚) and our theta function conventions as in [40, 78].
In particular we have

𝜃1(𝑢 + 1) = −𝜃1(𝑢) , 𝜃1(𝑢 + 𝜏) = −𝑒𝜋𝑖(2𝑢+𝜏)𝜃1(𝑢) . (5.15)

The zeroes of 𝜃1(𝑢) are at 𝑢 = 𝑚 + 𝑛𝜏 with 𝑚, 𝑛 integer. As above, it is usually
convenient to shift the rapidity 𝑢 by 𝜏/4 in order to get that 𝑢 = 0 gives 𝑝 = 0, and
that real rapidities correspond to real momenta.

It is intriguing that 𝑒𝑖𝑝 and the ratio function 𝑟 (𝑝), (which both appear in the
𝑎(𝑝1, 𝑝2) and 𝑏(𝑝1, 𝑝2) terms entering the 𝑆-matrices) can be exchanged by the
simple shift 𝑢 → 𝑢 + 1

2 , given that 𝜃1,3,4(𝑢 + 1
2 ) = 𝜃2,4,3(𝑢) and 𝜃2(𝑢 + 1

2 ) = −𝜃1(𝑢)

𝑒𝑖𝑝
𝑢→𝑢+1/2

−→ 𝑖𝑟 (𝑝; 𝜅)
𝑢→𝑢+1/2

−→ −𝑒𝑖𝑝
𝑢→𝑢+1/2

−→ −𝑖𝑟 (𝑝; 𝜅)
𝑢→𝑢+1/2

−→ 𝑒𝑖𝑝 . (5.16)
3One could of course have redefined the ratio in one of the sectors to be the opposite ratio, so as

to get precise matching.
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Also, under shifts𝑢 → 𝑢+𝜏/2, given the transformations 𝜃1,4(𝑢+𝜏/2) = 𝑖𝑒−𝜋𝑖(𝑢+𝜏/4)𝜃4,1(𝑢)
and 𝜃2,3(𝑢 + 𝜏/2) = 𝑒−𝜋𝑖(𝑢+𝜏/4)𝜃3,2(𝑢), we have

𝑒𝑖𝑝
𝑢→𝑢+𝜏/2

−→ −𝑒−𝑖𝑝 = 𝑒𝑖(𝜋−𝑝) and 𝑟 (𝑝; 𝜅)
𝑢→𝑢+𝜏/2

−→ 1
𝑟 (𝑝; 𝜅) . (5.17)

We can put the above components together to write the one magnon wavefunction
as

|𝑝⟩ =
∑︁
ℓ∈2Z

𝑒𝑖𝑝ℓ |ℓ⟩+
∑︁

ℓ∈2Z+1
𝑟 (𝑝; 𝜅)𝑒𝑖𝑝ℓ |ℓ⟩

=
∑︁
ℓ∈2Z

(
𝑖
𝜃1(𝑢)
𝜃4(𝑢)

)ℓ
|ℓ⟩ +

∑︁
ℓ∈2Z+1

𝜃2(𝑢)
𝜃3(𝑢)

(
𝑖
𝜃1(𝑢)
𝜃4(𝑢)

)ℓ
|ℓ⟩ .

(5.18)

The reduced energy is also rather simple to express in terms of theta functions

𝐸′(𝑢) = −𝑖 𝜃4(0)2

𝜃2(0)𝜃3(0)
𝜃2(𝑢)𝜃3(𝑢)
𝜃1(𝑢)𝜃4(𝑢)

, (5.19)

and given the relation

𝜅2 = 𝑘 =
√
𝑚 =

(
𝜃2(0)
𝜃3(0)

)2
, (5.20)

the energy shift 𝐸 (0)−𝐸′(0) = 𝜅+1/𝜅 of the total energy 𝐸 (𝑢) can also be expressed
in terms of theta functions. Finally, the Z2 eigenvalue of the 1-magnon solution is
(3.18)

Z2 |𝑝 ⟩ =
𝜃3(𝑢)
𝜃2(𝑢)

|𝑝 ⟩. (5.21)

Similarly, for the two magnon eigenproblem, we can express the wavefunctions
(for the CoM, general and restricted solutions) and their energy and Z2 eigenvalues
(summarised in Table 3.1) in terms of theta functions. Even though we derived
these solutions by explicitly solving the coordinate Bethe ansatz, we could have
attempted to guess the wavefunctions simply by knowing their eigenvalues and
modular properties. It is possible that this point of view will be helpful in the
solution of the multi-magnon problem and also in the study of more general quiver
orbifold eigenproblems, which is a future research topic.
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C h a p t e r 6

TOWARDS THE THREE MAGNON SOLUTION

In this chapter, we will discuss the three magnon problem. Even though its solution
has not yet been constructed, we can make several interesting comments that may be
useful towards eventually constructing the wavefunctions. Being able to solve this
problem is one way to answer the question of integrability (see the definition around
equation (2.75)) for the N = 2 scalar sectors that we studied in previous chapters.

Generalising the methods for the two magnon case, one can easily show that the
non-interacting equations for three magnons are solved by 𝐸 (𝑝1, 𝑝2, 𝑝3) = 𝐸 (𝑝1) +
𝐸 (𝑝2) + 𝐸 (𝑝3).

Momenta

In order to construct wavefunctions that solve the system of two magnon equations
for both the 𝑋𝑌 sector and the 𝑋𝑍 sector, we required an extra set of momenta
{𝑘1, 𝑘2} and its permutation. Most importantly, the construction of the two magnon
solution is achievable due to the existence of two conserved charges

𝔐1 = 𝐾, 𝔐2 = 𝐸. (6.1)

In the case of Section 2.2.2 and Section 2.2.3, the quadratic nature of 𝐸2 leads to
the only possible two magnon momenta being {𝑝1, 𝑝2} and {𝑝2, 𝑝1}. In the case
of the 𝑋𝑌 and 𝑋𝑍 sectors of this thesis, the square root nature of 𝐸2 leads to the
momenta described above and permutations: {𝑝1, 𝑝2}, {𝑝2, 𝑝1}, {𝑘1, 𝑘2}, {𝑘2, 𝑘1}.
Importantly, up to periodicities in equation (3.51), these new sets of momenta are
completely specified by an initial set of momenta thanks to the conserved charges
𝔐1,𝔐2. In other words, given an initial set of real momenta {𝑝1, 𝑝2}, we were able
to explicitly determine {𝑘1, 𝑘2} through equation (3.51) such that 𝑘1 = 𝑘1(𝑝1, 𝑝2, 𝜅)
and 𝑘2 = 𝑘2(𝑝1, 𝑝2, 𝜅).

For the three magnon case, things can be more complicated. In the case of the
ferromagnetic Heisenberg model of Section 2.2.2, a higher third charge 𝔐3 exists
(in fact, a tower of higher conserved charges exist due to quantum integrability
(2.75); for an explicit construction see [49]). Together, the three conserved charges
constrain an initial set of incoming momenta {𝑝1, 𝑝2, 𝑝3} to a set of outgoing
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momenta that is only a permutation of the initial set. This solves the system of
equations for the three magnon case. In contrast, the spin-1 model of Section 2.2.3
was not integrable since it exhibits diffractive scattering. Consequently, there is
no higher conserved charge and an initial incoming set of momenta can lead to an
outgoing set of momenta that is not a permutation of the initial set. Most notably,
unlike the description of the extra momenta given in the previous paragraph, this new
set of momenta is not uniquely determined by the initial set of momenta {𝑝1, 𝑝2, 𝑝3}
since it is only constrained by 𝔐1 and 𝔐2.

For our case for the 𝑋𝑌 and 𝑋𝑍 sectors, without knowledge of the existence of
a higher order charge, we cannot determine whether new extra sets of momenta,
unique to the three magnon case (in other words, momenta not determined by two
magnon data), are needed to solve the system of three magnon equations (at least
in terms of using the same approach as in the two magnon case). However, a first
step towards a solution is to try and write down all legal sets of three momenta,
permitted by 𝔐1 and 𝔐2, using two magnon interactions. Then, using the compact
notation 𝑘𝑖 (𝑝 𝑗 , 𝑝𝑘 ) ≡ 𝑘

𝑗 𝑘

𝑖
, 𝑖 = 1, 2, 𝑗 , 𝑘 = 1, 2, 3, the allowed sets of momenta are

(we suppress the 𝜅 dependence of the k-momenta)

1) {𝑝1, 𝑝2, 𝑝3},
2) {𝑘12

1 , 𝑘
12
2 , 𝑝3},

3) {𝑘13
1 , 𝑝2, 𝑘

13
2 },

4) {𝑝1, 𝑘
23
1 , 𝑘

23
2 },

(6.2)

and their permutations, in other words, {𝑘12
1 , 𝑘

12
2 , 𝑝3}, {𝑘12

2 , 𝑘
12
1 , 𝑝3}, {𝑘12

1 , 𝑝3, 𝑘
12
2 }

and so forth. Note that the 𝑘−momenta are symmetric: 𝑘 𝑗 𝑘
𝑖

= 𝑘
𝑘 𝑗

𝑖
. In total, this

brings the number of possible terms in the wavefunctions to 24. Physically, all the
𝑘−momenta can be accounted for by two body scattering processes as shown in
Figure 6.1. Considering the left hand side of the figure which exhibits the sequence
(12) − (13) − (23) for example (see also Figure 2.3), we can scatter {𝑝1, 𝑝2, 𝑝3} to
give the two sets {𝑝2, 𝑝1, 𝑝3} and {𝑘12

1 , 𝑘
12
2 , 𝑝3}. Then, we can scatter {𝑝2, 𝑝1, 𝑝3}

to give the sets {𝑝2, 𝑝3, 𝑝1} and {𝑝1, 𝑘
13
1 , 𝑘

13
2 }. Finally, we can scatter {𝑝2, 𝑝3, 𝑝1}

to give the sets {𝑝3, 𝑝2, 𝑝1} and {𝑘23
1 , 𝑘

23
2 , 𝑝1}. The right hand side of the figure is

similar.

From the process described in the previous paragraph, we still need to consider the
scattering of the 𝑘−momenta with 𝑝3 for the set {𝑘12

1 , 𝑘
12
2 , 𝑝3} (and similar for the

sets {𝑝2, 𝑘
13
1 , 𝑘

13
2 } and {𝑘23

1 , 𝑘
23
2 , 𝑝1}). One may notice that scattering two momenta
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Figure 6.1: A subset of the possible sets of momenta for the three magnon case.
Each set will correspond to a Bethe-term in the wavefunctions. Each scattering of
two momenta produces a complementary set of 𝑘−momenta.

is always complemented with an extra set of momenta. If we consider scattering
𝑘12

2 with 𝑝3, we may write the extra set of momenta as

{𝑘12
1 , 𝑘1(𝑘12

2 , 𝑝3), 𝑘2(𝑘12
2 , 𝑝3)}. (6.3)

If 𝑘12
2 is real-valued (see the discussion in Section 3.2.2), then 𝑘1(𝑘12

2 , 𝑝3) and
𝑘2(𝑘12

2 , 𝑝3) yields momenta that satisfy 𝔐1 and 𝔐2. If 𝑘12
2 is complex-valued,

one finds that 𝐸𝐴 (𝑘12
1 ) + 𝐸𝐴

(
𝑘1(𝑘12

2 , 𝑝3)
)
+ 𝐸𝐴

(
𝑘2(𝑘12

2 , 𝑝3)
)
≠ 𝐸𝐴 (𝑝1) + 𝐸𝐴 (𝑝2) +

𝐸𝐴 (𝑝3) where 𝐴 denotes the acoustic branch. This can be resolved by considering,
instead of the acoustic branch, the optical branch for one of the 𝑘−momenta. One
can then continue iterating this process and checking if the momenta satisfy 𝔐1 and
𝔐2. It is an ongoing research question whether this iteration eventually terminates,
in other words, one starts generating the same sets of momenta and one needs to add
a finite number of Bethe-terms to each wavefunction; or, if it carries on indefinitely
and one has to add a countably infinite number of Bethe-terms to each wavefunction.
Note that this approach will also yield the remaining permutation terms mentioned
above (for example, terms such as {𝑘13

1 , 𝑝2, 𝑘
13
2 }).

Interestingly, there is another approach in terms of generating new momenta for the
three magnon case using two magnon data. Starting with an initial set {𝑝1, 𝑝2, 𝑝3},
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we can generate a new set of 𝑘−momenta as follows

𝑝1 + 𝑝2 + 𝑝3 = 𝑘1(𝑝1 + 𝑝2, 𝑝3) + 𝑘2(𝑝1 + 𝑝2, 𝑝3). (6.4)

We can decompose 𝑘1(𝑝1 + 𝑝2, 𝑝3) into two momenta by forcing energy conserva-
tion. More precisely, for a fixed 𝐸 (𝑝1, 𝑝2, 𝑝3),

𝐸 (𝑝1, 𝑝2, 𝑝3)

= 𝐸 (𝑝1) + 𝐸 (𝑝2) + 𝐸 (𝑝3)

= 𝐸 (𝑘1(𝑝1 + 𝑝2, 𝑝3)) + 𝐸 (𝑘2(𝑝1 + 𝑝2, 𝑝3))

=
[
𝐸 (𝑘+) + 𝐸 (𝑘−)

]
|𝑘++𝑘−=𝑘1 (𝑝1+𝑝2, 𝑝3) + 𝐸 (𝑘2(𝑝1 + 𝑝2, 𝑝3))

⇒
[
𝐸 (𝑘+) + 𝐸 (𝑘−)

]
|𝑘++𝑘−=𝑘1 (𝑝1+𝑝2, 𝑝3) = 𝐸 (𝑝1, 𝑝2, 𝑝3) − 𝐸 (𝑘2(𝑝1 + 𝑝2, 𝑝3)) .

(6.5)

Here, 𝑘+, 𝑘− are the decompositions of 𝑘1(𝑝1 + 𝑝2, 𝑝3), in other words, 𝑘1(𝑝1 +
𝑝2, 𝑝3) = 𝑘+ + 𝑘−. The sum of their energies are constrained by the last line, which
is known for a given {𝑝1, 𝑝2, 𝑝3}. To get 𝑘+, 𝑘−, we can use equation (3.48). We
substitute 𝐾 = 𝑘++𝑘− = 𝑘1(𝑝1+ 𝑝2, 𝑝3) and 𝐸2 = 𝐸 (𝑘+) +𝐸 (𝑘−) = 𝐸 (𝑝1, 𝑝2, 𝑝3)−
𝐸 (𝑘2(𝑝1 + 𝑝2, 𝑝3)). Then, we find 𝑘+ = (1/2)𝐾 + 𝑞 = (1/2)𝑘1(𝑝1 + 𝑝2, 𝑝3) + 𝑞
and 𝑘− = (1/2)𝐾 − 𝑞 = (1/2)𝑘1(𝑝1 + 𝑝2, 𝑝3) − 𝑞. As before, because of the ± in
the equation (3.48), we actually find four solutions for 𝑞. In addition to these new
momenta, one may also permute the 𝑝-momenta to combine 𝑝1 + 𝑝3 with 𝑝2 and
𝑝2 + 𝑝3 with 𝑝1 to generate more 𝑘+, 𝑘−-momenta.

Thus, we have found new sets of new momenta that are given by {𝑘+, 𝑘−, 𝑘3} where
𝑘3 = 𝑘2(𝑝1 + 𝑝2, 𝑝3). Unlike the 𝑘1(𝑝𝑖, 𝑝 𝑗 ) and 𝑘2(𝑝𝑖, 𝑝 𝑗 ) momenta, the 𝑘±, 𝑘3

momenta are functions of all three initial momenta. It is interesting to perform a
numerical comparison of all the momenta: for 𝑝1 = 0.8, 𝑝2 = 0.6, 𝑝3 = 0.3, 𝜅 = 0.7,
we find

𝑝1 = 0.800000, 𝑝2 = 0.600000, 𝑝3 = 0.300000,

𝑘12
1 = 2.2708 − 0.652047𝑖, 𝑘12

2 = −0.870796 + 0.652047𝑖, 𝑝3 = 0.300000,

𝑘13
1 = 2.1208 − 1.10513𝑖, 𝑘13

2 = −1.0208 + 1.10513𝑖, 𝑝2 = 0.600000,

𝑘23
1 = 2.0208 − 1.4125𝑖, 𝑘23

2 = −1.1208 + 1.4125𝑖, 𝑝1 = 0.800000,

𝑘𝑎+ = 2.36896 − 0.28928𝑖, 𝑘𝑎− = −0.772636 + 0.28928𝑖, 𝑘𝑎3 = 0.103679,

𝑘𝑏+ = 0.798161 + 0.38501𝑖, 𝑘𝑏− = 0.798161 − 0.38501𝑖, 𝑘𝑏3 = 0.103679.

All the above numbers satisfy momentum and energy conservation in the acoustic-
acoustic-acoustic continuum (in other words, we used the lower branch of the three
magnon energy dispersion relation to compute these results). The new momenta
are given by the sets {𝑘𝑎+, 𝑘𝑎−, 𝑘𝑎3}, {𝑘

𝑏
+, 𝑘

𝑏
−, 𝑘

𝑏
3 }. Observe that the set {𝑘𝑏+, 𝑘𝑏−, 𝑘𝑏3 }
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appears as a bound state between 𝑘𝑏+ and 𝑘𝑏− (with the momentum 𝑘𝑏3 being a magnon)
since it has the same real parts (unlike the resonant states whose real parts differ by
𝜋). The appearance of a bound state in the continuum (BIC) [79, 80, 81, 82, 83] is
fascinating and warrants further investigation 1. The above numerical results clearly
show that {𝑘𝑎+, 𝑘𝑎−, 𝑘𝑎3} and {𝑘𝑏+, 𝑘𝑏−, 𝑘𝑏3 } are new sets of momenta.

It is clear that, apart from the 24 sets of momenta listed above, one may generate a
large amount of new sets of momenta that satisfy 𝔐1 and 𝔐2. As mentioned, one
would need to determine if these extra sets of momenta terminate after iterations by
returning to an already generated set of momenta. This leads to technical difficulties
when trying to solve the two-particle scattering sector (which is the sector consisting
of scattering two particles with the third particle being free) of the three magnon
system.

Quantum Integrability

In Section 2.2.2 following [46], we presented the definition of quantum integrability
through equation (2.75). The definition is a statement made at the three spin
deviation level. We presented two examples of spin chain models in Sections 2.2.2,
2.2.3 that are, respectively, integrable and non-integrable, by solving their three
spin deviation problem. In particular, the spin-1 model of Section 2.2.3 exhibited
diffractive scattering where the incoming set of momenta {𝑝1, 𝑝2, 𝑝3} is scattered
to an outgoing set of momenta {𝑘1, 𝑘2, 𝑘3} that is not a permutation of the original
set.

In the 𝑋𝑌 and 𝑋𝑍 sectors studied in this thesis, we already have diffractive terms
appearing at the two spin deviation level. As mentioned in the discussion around
equation (2.75), the two spin deviation problem is insensitive to integrability as it
can always be solved. The three magnon wavefunctions, as discussed in the previous
paragraphs, already have many different sets of diffractive momenta coming from
the two magnon data and not from true three-particle diffractive scattering. This
makes it more difficult to use Sutherland’s definition [46] for integrability which is
a statement about three-particle diffraction.

Due to the interesting similarities in equations (3.62), (4.53) and the non-integrable
spin-1 model of [47] studied in Section 2.2.3, one may hope to generalise the method

1It is also interesting to note that for the Hubbard model studied in [80, 81, 82], it is found that the
model’s Hilbert space decomposes into two sectors, with one sector constructed out of Bethe-terms
and the other sector constructed out of diffractive terms. The two sectors are related by Z2 symmetry.
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used in [47] to our three magnon case. However, there is evidence that associativity
is lost for spin chains that appear in our N = 2 interpolating theory. For the spin
chains studied in [18], using the 𝑍 fields as the vacua with 𝑋 fields as excitations,
it was found that the Yang-Baxter equation was not satisfied for the interpolating
theory due to the existence of two XXZ S-matrices 𝑆 and 𝑆 (related byZ2 symmetry).
More precisely, the scattering sequence (12) − (13) − (23) and (23) − (13) − (12)
leads to a violation of the Yang-Baxter equation for the interpolating N = 2 theory

𝑆𝑆𝑆 ≠ 𝑆𝑆𝑆. (6.6)

This is indicative of broken associativity since the scattering order matters. Conse-
quently, this leads to the two-particle scattering sector of the three magnon system
already not being satisfied (for example, a solution of the first scattering sequence
will not be a solution for the second scattering sequence and vice versa). In con-
trast, in the case of [47], the two-particle scattering sector of the three magnon case
was already solved by the Bethe-terms in equation (2.100) and only failed when
considering the three-particle equations (which is where three-particle diffractive
scattering is needed). Thus, the method of [47] is difficult to generalise to our case
until we can find a solution for our two-particle/one-free scattering sector.

Now, in terms of Sutherland’s definition for integrability given by equation (2.75),
an important fact to note is that the three spin deviation solution (and the general
spin deviation solution) can be solved completely in terms of the data (such as the
S-matrices) from the two spin deviation solution. For a non-integrable system, the
three spin deviation problem needs to be solved on its own merit. Adding more
spin deviations would mean one has to solve the system again to compute the new
diffractive terms. The fact that, for integrable spin chains, one can solve the general
spin deviation problem by two spin deviation data is a strong sign of integrability and
it has the benefit that it momentarily avoids the discussion of diffractive scattering.

Therefore, despite the subtleties discussed in the previous paragraphs for our spin
chains concerning diffractive scattering and loss of associativity, a first step for
checking evidence of integrability in our system using the coordinate Bethe ansatz,
is to check whether the three spin deviation solution can be solved completely in
terms of two spin deviation data (which would include different factorised products
of the two S-matrices and the application of equation (3.48)). More precisely, if a
complete solution of the two-particle/one-free scattering sector can be found which
is also a solution of the three-particle scattering sector, then this will provide some
positive evidence of integrability.
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Supposing a solution of this form can be found (if not, the system would be non-
integrable), one can then compare the solution to the definition given by equation
(2.75) in terms of diffractive scattering. In this chapter, we have shown that one can
generate valid Bethe terms with sets of three momenta that are different from an
initial set of three momenta using equation (3.48)). If one considers three-particle
diffraction to be the case where an incoming set of three momenta is scattered to an
outgoing set of different three momenta (in other words, not a permutation of the
original set), then the solution would violate Sutherland’s definition and the system
would not be integrable (despite the three spin deviation system hypothetically being
solved by the two spin deviation data). Alternatively, if one considers diffraction
as a true three-particle process (and similar for higher spin deviations), in the sense
that the diffractive term in equation (2.75) cannot be decomposed to a process of
two-particle interactions (which in our case would include two-particle diffraction)
and that scatters an incoming set of three momenta to an outgoing set of different
three momenta, then the system would be integrable under Sutherland’s definition.

For the problem of associativity, it is also possible that the three spin deviation wave-
functions will need to include extra terms, which may be additive or multiplicative,
to account for the loss of associativity and that these terms are unique to the three
spin deviation case (in other words, it is not information from the two spin deviation
solution). These terms will be non-local information about the three spin deviation
scattering and are of course different from the scattering condition in Sutherland’s
definition. Thus, if these terms are needed, it is an interesting research question as
to how these terms affect Sutherland’s definition for integrability.

For further checks of integrability for our spin chains, it also worth mentioning the
techniques used in [84, 85]. The construction of higher conserved charges provides
good evidence of integrability. In [84, 85], one can start with a Hamiltonian,
which is the sum of nearest-neighbour interactions, and use a boosting procedure
to try to generate a conserved charge with next-to-nearest neighbour interaction
range. In particular, their procedure has the benefit of using the Hamiltonian instead
of the R-matrix (which may or may not be known) to generate higher conserved
charges. This approach is particularly attractive for the 𝑋𝑌 sector which has a simple
alternating-bond structure. Another possible approach is given in [86], in which
integrable models with longer range interactions are studied. There is some early
tentative evidence that the 𝑋𝑍 sector’s dynamical Hamiltonian may be written as a
non-dynamical next-to-nearest neighbour Hamiltonian. It may therefore be possible
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to apply the conjecture given in [86] to check for evidence of integrability.

Finally, a very promising approach using the algebraic Bethe ansatz is discussed
in [27]. In particular, there is some evidence that a special class of elliptic R-
matrices, that satisfies a dynamical Yang-Baxter equation (see (4.11) in [27] as well
as [24, 25]), have an important role to play in our system. These structures, and
more broadly quasitriangular quasi-Hopf algebras, are well-suited to deal with spin
chain models that have lost associativity by using an algebraic structure called a
coassociator (see the review [87] as well as [21, 22, 23]) that relaxes associativity
in a controlled manner. Constructing the correct elliptic R-matrix that yields the
Hamiltonians for our sectors in the quantum plane limit may shed light on the
technical issues concerning the construction of the three magnon wavefunctions for
the coordinate Bethe ansatz.
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C h a p t e r 7

CONCLUSION

As shown in this thesis, the scalar sector of orbifold N = 2 quiver theories yields
spin chain models that exhibits rich physics through the coordinate Bethe ansatz.
We have studied two scalar sectors constructed out of fields from the N = 2 vector
multiplet and the N = 2 hypermultiplet. Unlike the 𝔰𝔲(2) subsector in N = 4 SYM,
their is no symmetry that rotates the fields from one multiplet to another multiplet
as they are in different representations of the quiver gauge groups.

The 𝑋𝑌 sector, constructed out of scalar fields in the bifundamental of each gauge
sector, can be mapped to an alternating-bond spin chain with Heisenberg-type
Hamiltonian. This is due to the fact that it is considered dense, since the dynamical
parameter is shifted as one moves from one site to the next. The one magnon
problem is easily solved using a superposition of even and odd site wavefunctions.
The dispersion relation has the interesting form given by equation (3.14). In addition,
the XY sector is characterized by its ratio function which is given by equation (3.13).

The two magnon problem was first solved for the CoM case using contact terms for
nearest-neighbour sites. When solving the interacting equations, the contact terms
vanish from the CoM S-matrix, which is given in equation (3.36). However, to be
able to ultimately construct three magnon wavefunctions, one needs the two magnon
solution for general values of the total momenta. In addition, the origin of the contact
terms needed to solve the interacting equations was mysterious. In order to solve
the two magnon problem for the general case, we made use of the techniques used
in [52, 67, 68]. Using equation (3.50), we are able to show that, given an initial set
of momenta {𝑝1, 𝑝2}, there exists another set of momenta {𝑘1, 𝑘2} that satisfies the
same momentum and energy conserved charges (6.1). This enhanced the usual two
magnon Bethe wavefunction from two terms to four terms, which was sufficient to
solve the system of equations for the two magnon problem. Since these new momenta
are not a permutation of the original set of momenta, the two magnon system
already exhibits diffractive scattering. Furthermore, the wavefunctions contains two
S-matrices, namely, 𝑆 for scattering inside the 𝑝-momenta sector or the 𝑘-momenta
sector and 𝑇 for scattering a set of 𝑝−momenta to a set of 𝑘−momenta. The
properties and the limits of the 𝑆−matrices were studied in detail. Due to the extra
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set of momenta, the wavefunctions was also shown to have extra symmetry as stated
in Table 3.1. The general wavefunctions have to be restricted when imposing the
infinite length spin chain boundary condition or when considering the CoM case.
This is due to the fact that the 𝑘−momenta are generically complex-valued. This
resulted in the restricted solution given in Section 3.2.3, which is also the minimal
number of terms needed to solve the two magnon system of equations. The restricted
wavefunctions was shown to reduce precisely to the contact term solutions for the
CoM case we originally found, thus, clarifying the origin of the contact terms.
Finally, we stated the Bethe ansatz for a closed spin chain for the untwisted sector
given in equation (3.120) and the twisted sector given in equation (3.122).

We then studied the 𝑋𝑍 sector which is constructed out of scalar fields in the adjoint
of one of the gauge groups and scalar fields in the bifundamental of each gauge group.
The resulting Hamiltonians are of Temperley-Lieb type. In contrast to the 𝑋𝑌 sector,
the 𝑋𝑍 sector is dilute since crossing a 𝑍 field does not shift the dynamical parameter
and, thus, the sector cannot be mapped to an alternating-bond spin chain model.
Remarkably, despite the difference, the dispersion relation is exactly the same as the
𝑋𝑌 sector’s dispersion relation. The ratio function, given in equation (4.18), is also
different to the analogous ratio function of the 𝑋𝑌 sector. However, we showed in
equation (5.11) that these functions are related by a modular transformation. The
fact that the two sectors share the same dispersion relation and have ratio functions
related by a modular transformation warrants further investigation. Furthermore,
given these facts, we were able to solve the two magnon problem for the 𝑋𝑍 sector
in exactly the same manner as the 𝑋𝑌 sector.

The shifted dispersion relation 𝐸′ in Chapter 5, shared by the two scalar sectors,
can be naturally parametrised using elliptic functions. There are two choices for the
modular parameter. For the 𝑋𝑌 sector, a natural choice is given by 𝑚 = 𝜅4. For the
𝑋𝑍 sector, a natural choice is given by 𝑚̃ = 4𝜅2/(1 + 𝜅2)2. Using these modular
parameters, we showed how the ratios and the dispersion relations simplified when
using Jacobi functions as well as theta functions. However, it should be noted
that the parametrisation we used was more appropriate for an XX-model [45] since
we considered the shifted dispersion relation 𝐸′. We expect better simplification,
especially when considering the elliptic version of the S-matrices, once we compute
the appropriate parametrisation for 𝐸 .

The three magnon wavefunction was discussed in Chapter 6. Using the two magnon
solution, we argued that the amount of possible terms one could add to the three
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magnon wavefunctions can in principle grow very large. We also showed that we
can generate a three magnon set of 𝑘−momenta {𝑘+, 𝑘−, 𝑘3}, using only two magnon
data from equation (3.50), that contributes a new solution. In its spectrum, we also
find a bound state in the continuum which warrants deeper investigation.

Finally, we provided a discussion around the notion of quantum integrability for
these sectors. Constructing the correct three magnon wavefunctions is a possible
approach to determining if quantum integrability is present for these theories, despite
the appearance of diffractive scattering terms already at the two magnon level.

A promising alternative is the algebraic Bethe ansatz approach discussed in [27],
where it is argued that an elliptic quantum group captures the symmetry behaviour of
the interpolating theory and that the quantum Yang-Baxter equation is enhanced to
a dynamical Yang-Baxter equation. More precisely, the 𝑆𝑈 (3) scalar holomorphic
sector can be mapped to a dynamical 15 vertex model which can also be written as
a class of restricted solid-on-solid (RSOS) type statistical models. This fact hints
at a general link between quiver theories and statistical models which, regardless
of any integrable/solvable structures, is worth understanding in more detail since it
may provide deeper insights into SCFTs. Furthermore, through the algebraic Bethe
ansatz, the R-matrix must lead to the same eigenvectors and eigenvalues that were
determined through the coordinate Bethe ansatz in this thesis. Thus, the results
in this thesis provides some of the groundwork and guidance for constructing the
correct R-matrix for the algebraic Bethe ansatz.

From a more general perspective, since we have only studied scalar fields in two
closed subsectors of the theory, it would be interesting to attempt to extend our
results to larger subsectors and even to the full scalar sector. Similar to the 𝑆𝑈 (2|3)
subsector of N = 4 SYM [43], for example, the Cartan charges for larger subsectors
could involve the addition of fermionic fields. Furthermore, a fascinating avenue of
research is to continue beyond the Z2 quiver theory and study the spin chains that
appear in more general Z𝑘 orbifolds. In terms of extending our spin chain results, an
interesting topic would be to determine how much additional momenta are needed
for the analogous spin chains. For example, the Z3 orbifold will, of course, have
three gauge couplings 𝑔1, 𝑔2, 𝑔3 (see Section 2.4). In this case, for a 𝑍 excitation in
the 𝑋 vacuum, the dispersion relation is cubic
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1 + 𝑔
2
2 + 𝑔

2
3
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+ 3𝐸

(
𝑔2

1𝑔
2
2 + 𝑔

2
1𝑔

2
3 + 𝑔

2
2𝑔

2
3

)
+ 2𝑔2

1𝑔
2
2𝑔

2
3 (cos(3𝑝) − 1) = 0,

(7.1)
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compared to equation (4.19) which is the solution of a quadratic equation. Finally,
since the work in this thesis is at one-loop, it would also be interesting to study
the resulting spin chains at higher loops which would lead to longer range (such as
next-to-nearest neighbour) Hamiltonians.

Ultimately, we hope that, by unraveling some of the structures that appear in our
study of the spin chain models that arise in N = 2 quiver theories, our results could
be a stepping stone towards a better understanding of the spectral problem in a much
larger class of theories than N = 4 super Yang-Mills theory.
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A p p e n d i x A

SUPERCONFORMAL ALGEBRA

In this appendix, we state the superconformal algebra in (1+3)-dimensions following
the conventions in [33]. The Minkowski metric has signature 𝜂𝜇𝜈 = diag(-1,1,1,1)
where 𝜇, 𝜈 = 0, 1, 2, 3. The conformal algebra is generated by the Poincare gener-
ators {𝑃𝜇, 𝑀𝜇𝜈} (where 𝑃𝜇 generates spacetime translations and the antisymmetric
Lorentz generator 𝑀𝜇𝜈 generates rotations and boosts) enhanced with the conformal
generators {𝐾𝜇, 𝐷}. The 𝐾𝜇, called the special conformal generator, generates a
spacetime translation, preceded and followed by an inversion (see [56]). The genera-
tor 𝐷, called the dilatation generator, generates scalings. Together, these generators
form the following algebra [33]

[𝑀𝜇𝜈, 𝑃𝜌] = 𝑖𝜂𝜇𝜌𝑃𝜈 − 𝑖𝜂𝜈𝜌𝑃𝜇, [𝑀𝜇𝜈, 𝐾𝜌] = 𝑖𝜂𝜇𝜌𝐾𝜈 − 𝑖𝜂𝜈𝜌𝐾𝜇,
[𝑀𝜇𝜈, 𝑀𝜌𝜎] = 𝑖𝜂𝜇𝜌𝑀𝜈𝜎 − 𝑖𝜂𝜈𝜌𝑀𝜇𝜎 + 𝑖𝜂𝜈𝜎𝑀𝜇𝜌 − 𝑖𝜂𝜇𝜎𝑀𝜈𝜌,

[𝐷, 𝑃𝜇] = 𝑖𝑃𝜇, [𝐷, 𝐾𝜇] = −𝑖𝐾𝜇, [𝐾𝜇, 𝑃𝜈] = −2𝑖𝑀𝜇𝜈 − 2𝑖𝜂𝜇𝜈𝐷.

(A.1)

By increasing the spacetime dimension to (2+3)-dimensions (in other words, adding
another time dimension), we can write the conformal algebra more compactly. The
metric becomes 𝜂IJ = diag(−1, 1, 1, 1,−1) where I,J = 0, 1, 2, 3, 4. Defining
the antisymmetric generator 𝐿IJ by

𝐿𝜇𝜈 = 𝑀𝜇𝜈, 𝐿𝜇𝑑 = −1
2

(
𝑃𝜇 − 𝐾𝜇

)
, 𝐿𝜇𝑑+1 = −1

2
(
𝑃𝜇 + 𝐾𝜇

)
, 𝐿𝑑𝑑+1 = 𝐷,

(A.2)
or in matrix form,

𝐿IJ =
©­­«

𝑀𝜇𝜈 −1
2
(
𝑃𝜇 − 𝐾𝜇

)
−1

2
(
𝑃𝜇 + 𝐾𝜇

)
1
2 (𝑃𝜈 − 𝐾𝜈) 0 𝐷

1
2 (𝑃𝜈 + 𝐾𝜈) −𝐷 0

ª®®¬ . (A.3)

This mapping satisfies the algebra

[𝐿IJ , 𝐿MN ] = 𝑖𝜂IM𝑀JN − 𝑖𝜂JM𝑀IN + 𝑖𝜂JN𝑀IM − 𝑖𝜂IN𝑀JM , (A.4)

which implies that the conformal algebra corresponds to 𝔰𝔬(3, 2) [33][56].

The conformal algebra is enhanced with a set of fermionic supergenerators

{Q𝐴
𝛼, Q̄𝐴 ¤𝛼,S 𝛼

𝐵 , S̄
𝐵 ¤𝛼}, (A.5)
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where 𝐴, 𝐵 = 1, ..,N and spinor indices 𝛼, ¤𝛼 take values 𝛼, ¤𝛼 = ±. The supercon-
formal algebra 𝔰𝔲(2, 2|N) is given by[
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(A.6)

where we have used the bispinorial basis which maps objects with spacetime indices
to 𝔰𝔩(2) matrices [88]

𝑃𝛼 ¤𝛼 = 𝜎
𝜇

𝛼 ¤𝛼𝑃𝜇, 𝐾 ¤𝛼𝛼 = 𝜎̄𝜇 ¤𝛼𝛼𝐾𝜇,

𝑀
𝛽
𝛼 = − 𝑖

4
(𝜎𝜇𝜎̄𝜈) 𝛽𝛼 𝑀𝜇𝜈, 𝑀̄ ¤𝛼

¤𝛽 = − 𝑖
4
(𝜎̄𝜇𝜎𝜈) ¤𝛼¤𝛽𝑀𝜇𝜈 .

(A.7)

Explicitly, the basis is given by

𝜎
𝜇

𝛼 ¤𝛼 =
(
−1, 𝜎𝑖

)
,

𝜎̄𝜇 ¤𝛼𝛼 := 𝜖 ¤𝛼 ¤𝛽𝜖𝛼𝛽𝜎𝜇
𝛽 ¤𝛽 =

(
−1,−𝜎𝑖

)
, 𝑖 = 1, 2, 3,

(A.8)

where 𝜖𝛼𝛽 and 𝜖 ¤𝛼 ¤𝛽 are the totally antisymmetric tensors with 𝜖21 = 𝜖12 = 1 and
𝜖 ¤2¤1 = 𝜖

¤1¤2 = 1.

In addition, we have the𝑈 (N) R-symmetry[
𝑅𝐴𝐵, 𝑅

𝐶
𝐷

]
= 𝛿𝐶𝐵𝑅

𝐴
𝐷 − 𝛿𝐴𝐷𝑅𝐶𝐵, (A.9)

which rotates the supergenerators into each other[
𝑅𝐴𝐵,Q𝐶

𝛼

]
= 𝛿𝐶𝐵Q

𝐴
𝛼 −

1
4
𝛿𝐴𝐵Q𝐶

𝛼,
[
𝑅𝐴𝐵, Q̄𝐶 ¤𝛼

]
= −𝛿𝐴𝐶 Q̄𝐵 ¤𝛼 +

1
4
𝛿𝐴𝐵Q̄𝐶 ¤𝛼[

𝑅𝐴𝐵,S 𝛼
𝐶

]
= −𝛿𝐴𝐶S

𝛼
𝐵 + 1

4
𝛿𝐴𝐵S 𝛼

𝐶 ,
[
𝑅𝐴𝐵, S̄𝐶 ¤𝛼] = 𝛿𝐶𝐵S̄𝐴 ¤𝛼 − 1

4
𝛿𝐴𝐵S̄𝐶 ¤𝛼 .

(A.10)
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For the N = 4 case, one can clearly see that the 𝔲(1)𝑟 (where 𝔰𝔲(N)𝑅 ⊕ 𝔲(1)𝑟 ⊂
𝔲(N)) generator 𝑅𝐴

𝐴
commutes with all other generators (in other words, it is

central). We can thus quotient this 𝔲(1)𝑟 out to give the algebra 𝔭𝔰𝔲(2, 2|4) �
𝔰𝔲(2, 2|4)/𝔲(1)𝑟 [33][35][89]. The resulting R-symmetry is therefore given by
𝔰𝔲(4)𝑅.

The supergenerators Q, Q̄ have conformal dimension 1/2 and the supergenerators
S, S̄ have conformal dimension −1/2. Descendent states are generated by acting
with Q and/or Q̄ on the highest weight state |Δ, 𝑅, 𝑟⟩ℎ𝑤( 𝑗 , 𝑗) . Using the shorthand
notation 𝑅( 𝑗 , 𝑗) , for N = 2, the supergenerators have the following charges [33]

Q1
𝛼 ∼ 1

2 (± 1
2 ,0)
, Q2

𝛼 ∼ (−1
2
)(± 1

2 ,0)
, Q̄1 ¤𝛼 ∼ 1

2 (0,± 1
2 )
, Q̄2 ¤𝛼 ∼ (−1

2
)(0,± 1

2 )
.

(A.11)
The charges of descendent states are determined by adding the charges of the above
supergenerators to the highest weight state.
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A p p e n d i x B

HAMILTONIAN OF THE INTERPOLATING N = 2 QUIVER
THEORY

In this section, we will calculate the Hamiltonian for the N = 2 interpolating theory
at one-loop order. We will work in the “downstairs” N = 2 picture using the fields
shown in Table 2.1. The “upstairs” N = 4 picture (using the projected chiral fields)
is discussed in Section 2.4. We will use the conventions of [18].

The computation is very similar to theN = 4 case discussed in Section 2.3. Thus, we
will only derive the Hamiltonian itself. An apparent difference, however, is the fact
that we now have two gauge groups. This leads to a truncated basis when considering
single trace operators since we cannot color contract indices from different gauge
groups. Furthermore, for the same reason, interaction vertices can only be contracted
in accordance with the gauge structure of the single trace operator.

The N = 2 quiver Lagrangian was computed in [18]. As in the case for N = 4
SYM, we will only consider scalar fields. The scalar interaction Lagrangian is given
by

L(𝑔1, 𝑔2) = 𝑔2
1 Tr

[
1
2

[
𝜙, 𝜙

]2 +M I
I

(
𝜙𝜙 + 𝜙𝜙

)
+M J

I M I
J − 1

2
M I

I M J
J

]
+ 𝑔2

2 Tr
[
1
2

[
¯̌𝜙, 𝜙

]2
+ M̌I

I

(
𝜙 ¯̌𝜙 + ¯̌𝜙𝜙

)
+ M̌I

JM̌
J
I − 1

2
M̌I

IM̌
J
J

]
+ 𝑔1𝑔2 Tr

[
−2𝑄IÎ𝜙𝑄̄

ÎI𝜙 + h.c
]
− 1
𝑁
Ld.t.,

(B.1)
where the mesonic operators are given by

M I𝑎
J 𝑏

=
1
√

2
𝑄𝑎

JĴ 𝑎̌𝑄̄
ĴI𝑎̌

𝑏
, M̌I𝑎̌

J 𝑏̌ =
1
√

2
𝑄̄ĴI𝑎̌

𝑎𝑄
𝑎

JĴ 𝑏̌ . (B.2)

The double-trace terms are given by

Ld.t. = 𝑔
2
1

(
Tr

[
M J

I

]
Tr

[
M I

J

]
− 1

2
Tr

[
M I

I

]
Tr

[
M J

J

] )
+ 𝑔2

2

(
Tr

[
M̌I

J

]
Tr

[
M̌J

I

]
− 1

2
Tr

[
M̌I

I

]
Tr

[
M̌J

J

] )
.

(B.3)
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However, since we are working in the planar limit, the double-trace terms are
subleading and therefore do not contribute for spin chains with length 𝐿 > 2 1. In
this thesis, we only consider length 𝐿 > 2 spin chains and thus we will not use
the double-trace terms. Furthermore, additional identity pieces will be contributed
by similar Feynman diagrams as shown in Figure 2.8; however, we can again use
matching arguments to determine these contributions without explicitly computing
them.

Single trace scalar operators are constructed from the set

𝑉 scalar
N=2 = {𝜙, 𝜙, 𝜙, ¯̌𝜙,𝑄IÎ , 𝑄̄

ĴJ }, J ,I = ±, Î, Ĵ = ±̂, (B.4)

and we may act on the fields with covariant derivatives. However, as previously
mentioned, one needs to consider a truncated tensor product due to gauge structure.
As in Section 2.3, we will consider subcorrelators at sites ℓ, ℓ + 1. We will also
use the ket notation |VV′⟩ to mean any V,V′ ∈ 𝑉 scalar

N=2 (with appropriate index
contraction) at sites ℓ, ℓ + 1 of the single trace operator. We will use the analogous
Feynman graphs used in Section 2.3. Since we have two gauge groups, we will
represent the index 𝑎 (of gauge group 𝑆𝑈 (𝑁1)) with a solid blue line and the index
𝑎̌ (of gauge group 𝑆𝑈 (𝑁2)) with a dashed red line.

Finally, we will work in the large 𝑁1 ≡ 𝑁2 (planar) limit while keeping fixed the ’t
Hooft couplings

𝜆 = 𝑔2
1𝑁1, 𝜆̌ = 𝑔2

2𝑁2. (B.5)

We will also use the deformation parameter 𝜅 = 𝑔2/𝑔1 defined in Section 2.4.

𝜙4 and 𝜙4 Vertex

Following [18], we will make use the following definitions 𝜙𝔭,𝔭 = ±, where

𝜙+ ≡ 𝜙, 𝜙− ≡ 𝜙, 𝑔𝔭𝔮 = 𝑔
𝔭𝔮 =

(
0 1
1 0

)
. (B.6)

In particular, note that 𝑔𝔭𝔮𝑔𝔮𝔯 = 𝛿𝔯𝔭. Thus 𝔭 labels the 𝑈 (1)𝑟 charge of 𝜙, 𝜙 (see
Table 2.1).

We consider ⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝜙𝔭𝜙𝔮⟩𝜙4 . The relevant part of the interaction Lagrangian
comes from the scalar potential term

L𝜙4 = 𝑔2
1Tr[1

2
[
𝜙, 𝜙]2] . (B.7)

1For the case 𝐿 = 2, the double-trace terms do contribute and are needed for the protection of
certain special operators. See the discussion in [18].
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Now, using the cyclicity of the trace,

L𝜙4 = 𝑔2
1Tr[1

2
[
𝜙, 𝜙]2]

=
𝑔2

1
2

Tr
[
𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙 − 𝜙𝜙𝜙𝜙 + 𝜙𝜙𝜙𝜙

]
=
𝑔2

1
2

Tr
[
2𝜙+𝜙−𝜙+𝜙− − 2𝜙+𝜙−𝜙−𝜙+

]
=
𝑔2

1
2

Tr
[
𝑔𝔭𝔮𝑔𝔞𝔟𝜙

𝔭𝜙𝔮𝜙𝔞𝜙𝔟 − 𝑔𝔭𝔮𝑔𝔞𝔟𝜙𝔭𝜙𝔞𝜙𝔮𝜙𝔟
]
.

(B.8)

We thus have two vertices, which is analogous to equation (2.126) in Section 2.3.
Figure B.1 shows the first vertex used in the subcorrelator (the diagram for the
second vertex is similar). Note that we have assumed that the overall trace of the
operator closes over gauge group 1 but we could also have chosen gauge group 2 (in
which case, we would have red dashed lines at the top and bottom of the diagram
instead).

Figure B.1: The 𝜙4 vertex. The solid blue line denotes the first gauge group. Note,
we have assumed that the overall trace of the operator closes over gauge group 1.

With incoming (𝜙𝔭𝜙𝔮)𝑎𝑐 to outgoing (𝜙𝔮′𝜙𝔭′)𝑐′
𝑎′, the first vertex contributes four

terms
𝑁2

2
𝛿𝑎𝑎′𝛿

𝑐′
𝑐

(
2𝛿𝔭

𝔭′𝛿
𝔮

𝔮′ + 2𝑔𝔭𝔮𝑔𝔭′𝔮′
)
, (B.9)

and the second vertex also contributes four terms

𝑁2

2
𝛿𝑎𝑎′𝛿

𝑐′
𝑐

(
4𝛿𝔭

𝔮′𝛿
𝔮

𝔭′
)
. (B.10)

Combining these results, we find that L𝜙4 contributes (factoring out 𝑔2
1)

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝜙𝔭𝜙𝔮⟩𝜙4 = 𝛿
𝔭

𝔭′𝛿
𝔮

𝔮′ + 𝑔
𝔭𝔮𝑔𝔭′𝔮′ − 2𝛿𝔭

𝔮′𝛿
𝔮

𝔭′, (B.11)
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In exactly the same manner, for ⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝜙𝔭𝜙𝔮⟩𝜙4 , we find that

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝜙𝔭𝜙𝔮⟩𝜙4 = 𝜅
2 (𝛿𝔭

𝔭′𝛿
𝔮

𝔮′ + 𝑔
𝔭𝔮𝑔𝔭′𝔮′ − 2𝛿𝔭

𝔮′𝛿
𝔮

𝔭′
)
. (B.12)

𝑄4 Vertex

We next consider ⟨𝑄̄L̂L𝑄KK̂ |𝐻 |𝑄IÎ𝑄̄
ĴJ ⟩𝑄4 . The relevant potential terms are

L𝑄4 = 𝑔2
1Tr

[
M J

I M I
J − 1

2
M I

I M J
J

]
+ 𝑔̌2

2Tr
[
M̌I

JM̌
J
I − 1

2
M̌I

IM̌
J
J
]
.

(B.13)
The incoming and outgoing terms in the subcorrelator is given by (𝑄IÎ𝑄̄

ĴJ )𝑎𝑐 and
(𝑄KK̂𝑄̄

L̂L)𝑐′
𝑎′, respectively.

Consider the first term in L𝑄4

𝑔2
1Tr

[
M J

I M I
J − 1

2
M I

I M J
J

]
∼ 𝑔2

1
(
𝑄𝑎

IĴ 𝑎̌𝑄̄
ĴJ 𝑎̌

𝑏
𝑄𝑏

JÎ 𝑏̌𝑄̄
ÎI 𝑏̌

𝑎

− 1
2
𝑄𝑎

IÎ𝑎̌𝑄̄
ÎI𝑎̌

𝑏
𝑄𝑏

JĴ 𝑏̌𝑄̄
ĴJ 𝑏̌

𝑎

)
.

(B.14)

Thus, this term contributes two vertices. The first term is shown in Figure B.2 (the
second term is similar). Notice, due to the gauge indices, there are only two ways
we can contract the vertex with the incoming and outgoing legs of the diagram.

Figure B.2: The 𝑄4 vertex. The solid blue line denotes the first gauge group and the
red dashed line denotes the second gauge group. Note, we have assumed that the
overall trace of the operator closes over gauge group 1.

The first vertex thus contributes

𝑁2𝛿𝑎𝑎′𝛿
𝑐′
𝑐

(
2𝛿LI 𝛿

Ĵ
Î
𝛿
J
K 𝛿

L̂
K̂

)
. (B.15)
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Similarly, for the second vertex, we find

− 𝑁2

2
𝛿𝑎𝑎′𝛿

𝑐′
𝑐

(
2𝛿JI 𝛿

Ĵ
Î
𝛿LK𝛿

L̂
K̂

)
. (B.16)

For the analogous interaction term in L𝑄4 with the check notation, the procedure is
identical with an overall factor of 𝜅2.

Combining these results, we find the total contribution to be

⟨𝑄̄L̂L𝑄KK̂ |𝐻 |𝑄IÎ𝑄̄
ĴJ ⟩𝑄4 = 2𝛿LI 𝛿

Ĵ
Î
𝛿
J
K 𝛿

L̂
K̂
− 𝛿JI 𝛿

Ĵ
Î
𝛿LK𝛿

L̂
K̂

+ 𝜅2 (2𝛿JI 𝛿L̂Î 𝛿LK𝛿ĴK̂ − 𝛿LI 𝛿
Ĵ
K̂
𝛿
J
K 𝛿

L̂
Î

)
.

(B.17)

In the same manner, but with the opposite gauge indices (in other words, exchanging
the blue solid line with the red dashed line in Figure B.2, with the vertex appropriately
contracted with the incoming and outgoing legs), we find the contribution

⟨𝑄IÎ𝑄̄
ĴJ |𝐻 |𝑄̄L̂L𝑄KK̂⟩𝑄4 = 𝜅2 (2𝛿LI 𝛿ĴÎ 𝛿JK 𝛿L̂K̂ − 𝛿JI 𝛿

Ĵ
Î
𝛿LK𝛿

L̂
K̂

)
+ 2𝛿JI 𝛿

L̂
Î
𝛿LK𝛿

Ĵ
K̂
− 𝛿LI 𝛿

Ĵ
K̂
𝛿
J
K 𝛿

L̂
Î
.

(B.18)

𝑄2𝜙2 and 𝑄2𝜙2 Vertex

Finally, we consider ⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝑄IÎ𝑄̄
ĴJ ⟩𝑄2𝜙2 .

The relevant interaction is given by

L𝑄2𝜙2 = 𝑔2
1Tr

[
M I

I (𝜙𝜙 + 𝜙𝜙)
]

∼ 𝑔2
1𝑔𝔭𝔮 𝑄

𝑒

IÎ𝑒𝑄̄
ÎI𝑒

𝑓
𝜙
𝔭 𝑓
𝑔𝜙

𝔮𝑔
𝑒 .

(B.19)

Inserting the vertex into the subcorrelator, we find the Feynman graph in Figure B.3.
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Figure B.3: The 𝑄2𝜙2 vertex. The solid blue line denotes the first gauge group and
the red dashed line denotes the second gauge group. Note, we have assumed that
the overall trace of the operator closes over gauge group 1.

Clearly, due to the gauge structure, there is only one way to attach the vertex to the
incoming and outgoing legs. The resulting contribution is therefore given by

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝑄IÎ𝑄̄
ĴJ ⟩𝑄2𝜙2 = 𝛿

J
I 𝛿

Ĵ
Î
𝑔𝔭′𝔮′ . (B.20)

In precisely the same manner, we find the result

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝑄IÎ𝑄̄
ĴJ ⟩𝑄2𝜙2 = 𝜅

2𝛿JI 𝛿
Ĵ
Î
𝑔𝔭′𝔮′ . (B.21)

Finally, equation (B.19) also acts on ⟨𝜙𝔮𝑄̄ĴJ |𝐻 |𝜙𝔭𝑄IÎ⟩𝜙𝑄𝜙𝑄̄ to give

⟨𝜙𝔮𝑄̄ĴJ |𝐻 |𝜙𝔭𝑄IÎ⟩𝜙𝑄𝜙𝑄̄ = 2 𝛿JI 𝛿
Ĵ
Î
𝛿
𝔭
𝔮 , (B.22)

and, analogously, on ⟨𝑄̄ĴJ𝜙𝔮 |𝐻 |𝑄IÎ𝜙
𝔭⟩𝜙𝑄𝜙𝑄̄ to give

⟨𝑄̄ĴJ𝜙𝔮 |𝐻 |𝑄IÎ𝜙
𝔭⟩𝜙𝑄𝜙𝑄̄ = 2𝜅2 𝛿JI 𝛿

Ĵ
Î
𝛿
𝔭
𝔮 . (B.23)

𝜙𝑄𝜙𝑄̄ Vertex

We next determine ⟨𝑄̄ĴJ𝜙𝔮 |𝐻 |𝜙𝔭𝑄IÎ⟩𝜙𝑄𝜙𝑄̄ and ⟨𝜙𝔭𝑄̄ĴJ |𝐻 |𝑄IÎ𝜙𝔮⟩𝜙𝑄𝜙𝑄̄ .

Consider ⟨𝑄̄ĴJ𝜙𝔮 |𝐻 |𝜙𝔭𝑄IÎ⟩𝜙𝑄𝜙𝑄̄ . Our index structure is (𝜙𝔭𝑄IÎ)𝑎𝑐. For the bra
term, note that 𝑄𝑎

IÎ𝑎̌
𝜙
𝔭𝑎̌

𝑐
conjugated gives 𝑄ÎI𝑎̌

𝑎 𝜙 𝑐
𝔭𝑎̌

. The relevant interaction term
is

L𝜙𝑄𝜙𝑄̄ = 𝑔1𝑔2Tr
[
− 2𝑄IÎ𝜙𝑄̄

ÎI𝜙 + h.c
]
. (B.24)
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The hermitian conjugate term (h.c.) is given by(
𝑄𝑎

IÎ𝑎̌𝜙
𝑎̌

𝑏̌
𝑄̄ÎI 𝑏̌

𝑐𝜙
𝑐
𝑎

)†
=

(
𝜙𝑐𝑎

)† (
𝑄̄ÎI 𝑏̌

𝑐

)† (
𝜙𝑎̌
𝑏̌

)† (
𝑄𝑎

IÎ𝑎̌
)†

= 𝜙𝑎𝑐𝑄
𝑐

IÎ 𝑏̌
¯̌𝜙𝑏̌𝑎̌𝑄̄

ÎI𝑎̌
𝑎 .

(B.25)
Using this expression, and the cyclicity of the trace, L𝜙𝑄𝜙𝑄̄ becomes (with 𝑔2 = 𝜅𝑔1)

L𝜙𝑄𝜙𝑄̄ = −2𝜅 𝑔2
1𝑔𝔭𝔮 Tr

[
𝜙𝔭𝑄IÎ𝜙

𝔮𝑄̄ÎI ]
. (B.26)

Figure B.4 shows the vertex inserted into the subcorrelator.

Figure B.4: The 𝜙𝑄𝜙𝑄 vertex. The solid blue line denotes the first gauge group and
the red dashed line denotes the second gauge group. Note, we have assumed that
the overall trace of the operator closes over gauge group 1.

As in the previous case, notice that there is again only one possible way to insert the
vertex. This gives

− 2𝜅 𝑁2𝛿𝑎𝑎′𝛿
𝑐′

𝑐 𝛿
J
I 𝛿

Ĵ
Î
𝑔𝔭𝔞𝛿𝔟𝔮𝑔𝔞𝔟 = −2𝜅 𝑁2𝛿𝑎𝑎′𝛿

𝑐′

𝑐 𝛿
J
I 𝛿

Ĵ
Î
𝛿
𝔭
𝔮 . (B.27)

Thus, we find that

⟨𝑄̄ĴJ𝜙𝔮 |𝐻 |𝜙𝔭𝑄IÎ⟩𝜙𝑄𝜙𝑄̄ = −2𝜅 𝛿JI 𝛿
Ĵ
Î
𝛿
𝔭
𝔮 . (B.28)

In precisely the same manner,

⟨𝜙𝔭𝑄̄ĴJ |𝐻 |𝑄IÎ𝜙𝔮⟩𝜙𝑄𝜙𝑄̄ = −2𝜅 𝛿JI 𝛿
Ĵ
Î
𝛿
𝔭
𝔮 . (B.29)
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Identity Terms

In summary, we find a match in terms of the equations given in Appendix A.2 of
[18]

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝜙𝔭𝜙𝔮⟩𝜙4 = 𝛿
𝔭

𝔭′𝛿
𝔮

𝔮′ + 𝑔
𝔭𝔮𝑔𝔭′𝔮′ − 2𝛿𝔭

𝔮′𝛿
𝔮

𝔭′, (B.30)

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝜙𝔭𝜙𝔮⟩𝜙̌4 = 𝜅
2 (𝛿𝔭

𝔭′𝛿
𝔮

𝔮′ + 𝑔
𝔭𝔮𝑔𝔭′𝔮′ − 2𝛿𝔭

𝔮′𝛿
𝔮

𝔭′
)
, (B.31)

⟨𝑄̄ L̂L𝑄KK̂ |𝐻 |𝑄IÎ𝑄̄
ĴJ⟩𝑄4 = 2𝛿LI 𝛿

Ĵ
Î
𝛿
J
K𝛿

L̂
K̂
− 𝛿JI 𝛿

Ĵ
Î
𝛿LK𝛿

L̂
K̂

+ 𝜅2 (2𝛿JI 𝛿 L̂Î 𝛿LK𝛿 ĴK̂ − 𝛿LI 𝛿
Ĵ
K̂
𝛿
J
K𝛿

L̂
Î

)
,

(B.32)

⟨𝑄IÎ𝑄̄
ĴJ |𝐻 |𝑄̄ L̂L𝑄KK̂⟩𝑄4 = 𝜅2 (2𝛿LI 𝛿 ĴÎ 𝛿JK𝛿 L̂K̂ − 𝛿JI 𝛿

Ĵ
Î
𝛿LK𝛿

L̂
K̂

)
+ 2𝛿JI 𝛿

L̂
Î
𝛿LK𝛿

Ĵ
K̂
− 𝛿LI 𝛿

Ĵ
K̂
𝛿
J
K𝛿

L̂
Î
,

(B.33)

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝑄IÎ𝑄̄
ĴJ⟩𝑄2𝜙2 = 𝛿

J
I 𝛿

Ĵ
Î
𝑔𝔭′𝔮′, ⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝑄̄ ĴJ𝑄IÎ⟩𝑄2 𝜙̌2 = 𝜅

2𝛿JI 𝛿
Ĵ
Î
𝑔𝔭′𝔮′,

(B.34)
⟨𝑄̄ ĴJ𝜙𝔮 |𝐻 |𝜙𝔭𝑄IÎ⟩𝜙𝑄𝜙̌𝑄̄ = −2𝜅 𝛿JI 𝛿

Ĵ
Î
𝛿
𝔭
𝔮 , ⟨𝜙𝔭𝑄̄ ĴJ |𝐻 |𝑄IÎ𝜙𝔮⟩𝜙𝑄𝜙̌𝑄̄ = −2𝜅 𝛿JI 𝛿

Ĵ
Î
𝛿
𝔭
𝔮 ,

(B.35)
⟨𝜙𝔮𝑄̄ ĴJ |𝐻 |𝜙𝔭𝑄IÎ⟩𝜙𝑄𝜙̌𝑄̄ = 2 𝛿JI 𝛿

Ĵ
Î
𝛿
𝔭
𝔮 , ⟨𝑄̄ ĴJ𝜙𝔮 |𝐻 |𝑄IÎ𝜙

𝔭⟩𝜙𝑄𝜙̌𝑄̄ = 2𝜅2 𝛿JI 𝛿
Ĵ
Î
𝛿
𝔭
𝔮 .

(B.36)

The first four equations will pick up identity terms from diagrams analogous to
the diagrams shown in Figure 2.8. Similar to Section 2.3, we can use an indirect
matching argument to determine their contributions without computing these terms
directly.

For the interpolating N = 2 quiver theory, the procedure is outlined in Appendix
A.2 of [18] (see also A.1). We will use the Z2 symmetry which sends 𝜅 ↔ 1/𝜅
(equivalently, 𝑔1 ↔ 𝑔2) and exchanges fields with their Z2 conjugate 𝑄 ↔ 𝑄̄, 𝜙 ↔
𝜙. In addition, we will also match to terms in the Hamiltonian for N = 2 SCQCD
(computed in [18] in equation (3.3)) by taking the limit 𝜅 → 0. Only the first four
terms above receive contributions.

For the first two terms, we add

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝜙𝔭𝜙𝔮⟩𝜙4 = 𝛼𝛿
𝔭

𝔭′𝛿
𝔮

𝔮′ + 𝑔
𝔭𝔮𝑔𝔭′𝔮′ − 2𝛿𝔭

𝔮′𝛿
𝔮

𝔭′, (B.37)

⟨𝜙𝔭′𝜙𝔮′ |𝐻 |𝜙𝔭𝜙𝔮⟩𝜙4 = 𝜅
2 (𝛽𝛿𝔭

𝔭′𝛿
𝔮

𝔮′ + 𝑔
𝔭𝔮𝑔𝔭′𝔮′ − 2𝛿𝔭

𝔮′𝛿
𝔮

𝔭′
)
, (B.38)

Performing Z2 conjugation, the two terms match provided that 𝛼 = 𝛽. Taking the
𝜅 → 0 limit, the second term of course uncouples from the theory. Then, to match
with equation (3.3) in [18], we clearly need to take 𝛼 = 2.
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For the remaining two terms, it is convenient to use the identity, trace and permutation
operators 1,K, P defined in [18] which can be determined by looking at the indices
in the previous equation. We can then compactly write

⟨𝑄̄L̂L𝑄KK̂ |𝐻 |𝑄IÎ𝑄̄
ĴJ ⟩𝑄4 = 2𝛼1K̂ −KK̂

+ 𝜅2 (2𝛽K1̂ − 𝛾11̂) , (B.39)

⟨𝑄IÎ𝑄̄
ĴJ |𝐻 |𝑄̄L̂L𝑄KK̂⟩𝑄4 = 𝜅2 (2𝛼1K̂ −KK̂

)
+ 2𝛽K1̂ − 𝛾11̂,

(B.40)

where the unhatted operators act on 𝑆𝑈 (2)𝑅 indices and the hatted operators act on
the 𝑆𝑈 (2)𝐿 indices. As in the previous case, Z2 symmetry implies that they have
the same identity coefficients. Taking the 𝜅 → 0 limit and comparing with equation
(3.4) in A.2 of [18], we clearly need

𝛼 = 𝛽 = 1, 𝛾 = 0. (B.41)

Combining these results, we find the one-loop Hamiltonian for the interpolating
N = 2 quiver theory2

𝐻ℓ,ℓ+1 =

𝜙𝔭𝜙𝔮 𝑄IÎ𝑄̄
ĴJ( )

𝜙𝔭′𝜙𝔮′ 2𝛿𝔭
𝔭′𝛿

𝔮

𝔮′ + 𝑔𝔭𝔮𝑔𝔭′𝔮′ − 2𝛿𝔭
𝔮′𝛿

𝔮

𝔭′ 𝛿
J
I 𝛿

Ĵ
Î
𝑔𝔭′𝔮′

𝑄̄ L̂L𝑄KK̂ 𝛿LK𝛿
L̂
K̂
𝑔𝔭𝔮 (2𝛿LI 𝛿

J
K − 𝛿JI 𝛿

L
K)𝛿

Ĵ
Î
𝛿 L̂
K̂
+ 2𝜅2𝛿JI 𝛿

L̂
Î
𝛿LK𝛿

Ĵ
K̂

⊕

𝜙𝔭𝜙𝔮 𝑄̄ ĴJ𝑄IÎ( )
𝜙𝔭′𝜙𝔮′ 𝜅2(2𝛿𝔭

𝔭′𝛿
𝔮

𝔮′ + 𝑔𝔭𝔮𝑔𝔭′𝔮′ − 2𝛿𝔭
𝔮′𝛿

𝔮

𝔭′) 𝜅2𝛿JI 𝛿
Ĵ
Î
𝑔𝔭′𝔮′

𝑄KK̂𝑄̄
L̂L 𝜅2𝛿LK𝛿

L̂
K̂
𝑔𝔭𝔮 𝜅2(2𝛿LI 𝛿

J
K − 𝛿JI 𝛿

L
K)𝛿

Ĵ
Î
𝛿 L̂
K̂
+ 2𝛿JI 𝛿

L̂
Î
𝛿LK𝛿

Ĵ
K̂

⊕

𝜙𝔭𝑄IÎ 𝑄IÎ𝜙
𝔭( )

𝜙𝔭′𝑄̄
L̂L 2 𝛿LI 𝛿

L̂
Î
𝛿
𝔭

𝔭′ −2𝜅 𝛿LI 𝛿
L̂
Î
𝛿
𝔭

𝔭′

𝑄̄ L̂L𝜙𝔭′ −2𝜅 𝛿LI 𝛿
L̂
Î
𝛿
𝔭

𝔭′ 2𝜅2 𝛿LI 𝛿
L̂
Î
𝛿
𝔭

𝔭′

⊕

𝜙𝔭𝑄̄ ĴJ 𝑄̄ ĴJ𝜙𝔭( )
𝜙𝔭′𝑄KK̂ 2𝜅2 𝛿JK𝛿

Ĵ
K̂
𝛿
𝔭

𝔭′ −2𝜅 𝛿JK𝛿
Ĵ
K̂
𝛿
𝔭

𝔭′

𝑄KK̂𝜙𝔭′ −2𝜅 𝛿JK𝛿
Ĵ
K̂
𝛿
𝔭

𝔭′ 2 𝛿JK𝛿
Ĵ
K̂
𝛿
𝔭

𝔭′

, (B.42)

2Here, we use the basis specified in [18] which is different to the basis we use in Section 2.4.
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or, more compactly in terms of the permutation and trace operators (as in [18], we
suppress the identity operator),

Hℓ,ℓ+1 =

𝜙𝜙 𝑄𝑄̄ 𝜙̌ 𝜙̌ 𝑄̄𝑄 𝜙𝑄 𝑄𝜙̌ 𝜙̌𝑄̄ 𝑄̄ 𝜙̌

©­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®¬

𝜙𝜙 2 +K − 2P K 0 0 0 0 0 0
𝑄̄𝑄 K (2 −K)K̂ + 2𝜅2

K 0 0 0 0 0 0
𝜙̌ 𝜙̌ 0 0 𝜅2 (2 +K − 2P) 𝜅2

K 0 0 0 0
𝑄𝑄̄ 0 0 𝜅2

K 𝜅2 (2 −K)K̂ + 2K 0 0 0 0
𝜙𝑄 0 0 0 0 2 −2𝜅 0 0
𝑄𝜙̌ 0 0 0 0 −2𝜅 2𝜅2 0 0
𝜙̌𝑄̄ 0 0 0 0 0 0 2𝜅2 −2𝜅
𝑄̄𝜙 0 0 0 0 0 0 −2𝜅 2

.

(B.43)

We can, of course, recover our Hamiltonians from equation (B.42) for the 𝑋𝑌 and
𝑋𝑍 sectors used in Section 2.4.

𝑋𝑌 Sector

For the 𝑋𝑌 sector, first note that (see Section 2.4)

𝑋 = 𝜒++̂ =

(
0 𝑄++̂

−𝑄̄−̂− 0

)
, 𝑌 = 𝜒+−̂ =

(
0 𝑄+−̂

−𝑄̄+̂− 0

)
, (B.44)

and, therefore,
𝑋† = (𝜒++̂)† = −𝜖+−𝜖 +̂−̂𝜒−−̂ = −𝜒−−̂, (B.45)

where

𝜒−−̂ =

(
0 𝑄−−̂

−𝑄̄+̂+ 0

)
, (B.46)

and
𝑌† = (𝜒+−̂)† = −𝜖+−𝜖 −̂+̂𝜒−+̂ = 𝜒−+̂, (B.47)

where

𝜒−+̂ =

(
0 𝑄−+̂

−𝑄̄−̂+ 0

)
. (B.48)

For 𝑋𝑋 → (𝑋𝑋)†, which in matrix form is given by,(
−𝑄++̂𝑄̄

−̂− 0
0 −𝑄̄−̂−𝑄++̂

)
→

(
−𝑄̄+̂+𝑄−−̂ 0

0 −𝑄−−̂𝑄̄+̂+

)
(B.49)

and in particular looking at the term 𝑄̄−̂−𝑄++̂ → 𝑄−−̂𝑄̄+̂+, we have from equation
(B.42)

𝑄̄−̂−𝑄++̂ ↦→
[
𝜅2(2𝛿++𝛿−− − 𝛿−+𝛿+−)𝛿−̂+̂𝛿

+̂
−̂ + 2𝛿−+𝛿

+̂
+̂𝛿

+
−𝛿

−̂
−̂
]
𝑄−−̂𝑄̄

+̂+ = 0. (B.50)
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In a similar manner, 𝑄++̂𝑄̄
−̂− ↦→ 0.

For 𝑋𝑌 → (𝑋𝑌 + 𝑌𝑋)† = −𝜒−−̂𝜒−+̂ − 𝜒−+̂𝜒−−̂, we have in matrix form(
𝑄++̂𝑄̄

+̂− 0
0 −𝑄̄−̂−𝑄+−̂

)
→ −

(
−𝑄̄+̂+𝑄−+̂ 0

0 𝑄−−̂𝑄̄−̂+

)
−

(
𝑄̄−̂+𝑄−−̂ 0

0 −𝑄−+̂𝑄̄
+̂+

)
.

(B.51)
Looking, in particular, at the term 𝑄̄−̂−𝑄+−̂ → 𝑄−−̂𝑄̄−̂+, we find from equation B.42

𝑄̄−̂−𝑄+−̂ ↦→
[
𝜅2(2𝛿++𝛿−− − 𝛿−+𝛿+−)𝛿−̂−̂𝛿

−̂
−̂ + 2𝛿−+𝛿

−̂
−̂𝛿

+
−𝛿

−̂
−̂
]
𝑄−−̂𝑄̄

−̂+ = 2𝜅2 𝑄−−̂𝑄̄
−̂+.

(B.52)
Similarly, for 𝑄++̂𝑄̄

+̂− → 𝑄̄+̂+𝑄−+̂ we find

𝑄++̂𝑄̄
+̂− ↦→

[
(2𝛿++𝛿−− − 𝛿−+𝛿+−)𝛿+̂+̂𝛿

+̂
+̂ + 2𝜅2𝛿−+𝛿

+̂
+̂𝛿

+
−𝛿

+̂
+̂
]
𝑄̄+̂+𝑄−+̂ = 2 𝑄̄+̂+𝑄−+̂. (B.53)

Finally, for 𝑄̄−̂−𝑄+−̂ → 𝑄−+̂𝑄̄
+̂+, we find

𝑄̄−̂−𝑄+−̂ ↦→ −
[
𝜅2(2𝛿++𝛿−− − 𝛿−+𝛿+−)𝛿−̂−̂𝛿

+̂
+̂ + 2𝛿−+𝛿

+̂
−̂𝛿

+
−𝛿

−̂
+̂
]
𝑄−+̂𝑄̄

+̂+ = −2𝜅2 𝑄−+̂𝑄̄
+̂+,

(B.54)
and for 𝑄++̂𝑄̄

+̂− → 𝑄̄−̂+𝑄−−̂, we find

𝑄++̂𝑄̄
+̂− ↦→ −

[
(2𝛿++𝛿−− − 𝛿−+𝛿+−)𝛿+̂+̂𝛿

−̂
−̂ + 2𝜅2𝛿−+𝛿

−̂
+̂𝛿

+
−𝛿

+̂
−̂
]
𝑄̄−̂+𝑄−−̂ = −2 𝑄̄−̂+𝑄−−̂.

(B.55)
A similar computation holds for the case when 𝑌𝑋 → (𝑌𝑋 + 𝑋𝑌 )†.

For the case 𝑌𝑌 → (𝑌𝑌 )†, we find the same results as for the 𝑋𝑋 case: 𝑌𝑌 ↦→ 0.
All other possible terms in equation (B.42) are zero.

We therefore, up to a rescaling of 2𝜅 and ordering of basis, find the 𝑋𝑌 sector
Hamiltonian.

𝑋𝑍 Sector

For the 𝑋𝑍 sector, we follow a similar computation. For 𝑍 , we have

𝑍 =

(
𝜙− 0
0 𝜙−

)
, (B.56)

and

𝑍† =

(
𝜙− 0
0 𝜙−

)
. (B.57)
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We consider the term 𝑋𝑍 → (𝑋𝑍 + 𝑍𝑋)† = −𝑍†𝜒−−̂ − 𝜒−−̂𝑍†. In matrix form, this
is given by(

0 𝑄++̂𝜙
−

−𝑄̄−̂−𝜙− 0

)
→ −

(
0 −𝑄̄+̂+𝜙−

𝑄−−̂𝜙− 0

)
−

(
0 −𝜙−𝑄̄+̂+

𝜙−𝑄−−̂ 0

)
. (B.58)

For the term 𝑄++̂𝜙
− → 𝑄̄+̂+𝜙−, equation (B.42) gives

𝑄++̂𝜙
− ↦→ 2𝜅2 𝛿++𝛿

+̂
+̂𝛿

−
− 𝑄̄+̂+𝜙− = 2𝜅2 𝑄̄+̂+𝜙−, (B.59)

where the 𝛿−− comes from the 𝑈 (1)𝑟 labels 𝜙− = 𝜙 (see equation (B.6)). Similarly,
for the term 𝑄++̂𝜙

− → 𝜙−𝑄̄+̂+, we find from equation (B.42)

𝑄++̂𝜙
− ↦→ −2𝜅 𝛿++𝛿

+̂
+̂𝛿

−
− 𝜙−𝑄̄

+̂+ = −2𝜅 𝜙−𝑄̄+̂+. (B.60)

The other term is similar, with 𝑄̄−̂−𝜙 ↦→ 2 𝑄−−̂𝜙 and 𝑄̄−̂−𝜙 ↦→ −2𝜅 𝜙𝑄−−̂. Further-
more, one finds similar results for the case 𝑍𝑋 → (𝑍𝑋 + 𝑋𝑍)†.

Finally, we consider the term 𝑍𝑍 → (𝑍𝑍)†. These terms are

𝜙−𝜙− ↦→
[
2𝛿−−𝛿

−
− + 𝑔−−𝑔−− − 2𝛿−−𝛿

−
−
]
𝜙−𝜙− = 0, (B.61)

and similarly 𝜙−𝜙− ↦→ 0.

In a similar manner, all remaining terms in equation (B.42) give zero. The resulting
Hamiltonian can be written in the compact form

Hℓ,ℓ+1 =

𝜙𝜙 𝑄𝑄̄ 𝜙𝜙 𝑄̄𝑄 𝜙𝑄 𝑄𝜙 𝜙𝑄̄ 𝑄̄𝜙©­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®¬

𝜙𝜙 0 0 0 0 0 0 0 0
𝑄̄𝑄 0 0 0 0 0 0 0 0
𝜙𝜙 0 0 0 0 0 0 0 0
𝑄𝑄̄ 0 0 0 0 0 0 0 0
𝜙𝑄 0 0 0 0 2 −2𝜅 0 0
𝑄𝜙 0 0 0 0 −2𝜅 2𝜅2 0 0
𝜙𝑄̄ 0 0 0 0 0 0 2𝜅2 −2𝜅
𝑄̄𝜙 0 0 0 0 0 0 −2𝜅 2

, (B.62)

which is our 𝑋𝑍 Hamiltonian, up to a rescaling of 2𝜅 and basis ordering.
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A p p e n d i x C

DERIVATION OF TWO MAGNON CONTINUUM BOUNDARIES

In this appendix, we derive the two magnon boundaries that define the scattering
continua shown in Figure 3.3 in Section 3.2.2. We follow the procedure outlined in
[53].

First, we recall the cos(2𝑞) formula derived in 3.2.2:

cos(2𝑞) = 𝑇1

32𝜅4 ±
√
𝑇2

32𝜅4 ,
(C.1)

where

𝑇1 = −8𝜅2 cot(𝐾)csc(𝐾) Ω2,

𝑇2 = 64𝜅4 sin2(𝐾) (−4𝜅4Ω2 +Ω4 − 4Ω2 + 16𝜅4sin2(𝐾)) + 64𝜅4Ω4cos2(𝐾).
(C.2)

and Ω = 𝜅𝐸2 − 2𝜅(𝜅 + 1/𝜅).

The boundaries and the continua they enclose can be determined by the following
constraints [53]

Constraint 1: cos(2𝑞) = ±1,

Constraint 2: 𝑇2 = 0 and |cos(2𝑞) | ≤ 1.
(C.3)

As discussed in Section 3.2.2, there are two types of solutions for 𝑞: the continua
solutions where two 𝑞’s are real-valued and two 𝑞’s are generically complex-valued
(but in certain special regions, can also be real), and the bound state solutions where
all four 𝑞’s are complex-valued. Of course, the boundary is where these two types
of solutions are separated; in other words, the boundary is the “saturation" curve at
which the four solutions of 𝑞, consisting of two real and two complex solutions, is
just about to switch over to all complex-valued. This saturation clearly occurs when
the first constraint is satisfied (since |cos(2𝑞) | > 1 ⇒ 𝑞 ∈ C). The second constraint
comes from analysis of the square root since

√
𝑇2 for 𝑇2 < 0 implies a complex-

valued 𝑞. Thus, the saturation condition is when 𝑇2 = 0. However, although this is
necessary, this is not sufficient since we can still have the remaining term involving
𝑇1 (in the cos(2𝑞) formula above) have magnitude greater than 1. Thus, we need
the additional condition |cos(2𝑞) | ≤ 1 which guarantees sufficiency for constraint 2.
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Constraint 1: To derive the curves for constraint 1, we set

𝑇1

32𝜅4 + 𝛾
√
𝑇2

32𝜅4 = 𝜆, (C.4)

where 𝛾 = ±1, 𝜆 = ±1 keeps track of the signs. By rearranging to get the square root
on one side, squaring and then solving for 𝐸 (upon substituting Ω = 𝜅𝐸 (𝑝1, 𝑝2) −
2𝜅(𝜅 + 1/𝜅)), we find the following four curves 𝐸2 = 𝑊𝑖 given by

𝑊𝑎 =

2
(
𝜅2 −

√︁
𝜅4 + 2𝜅2cos(𝐾) + 1 + 1

)
𝜅

,

𝑊𝑏 =

2
(
𝜅2 −

√︁
𝜅4 − 2𝜅2cos(𝐾) + 1 + 1

)
𝜅

,

𝑊𝑐 =

2
(
𝜅2 +

√︁
𝜅4 − 2𝜅2cos(𝐾) + 1 + 1

)
𝜅

,

𝑊𝑑 =

2
(
𝜅2 +

√︁
𝜅4 + 2𝜅2cos(𝐾) + 1 + 1

)
𝜅

,

(C.5)

which are arranged in increasing value for energy as in [53].

Constraint 2: First, we solve 𝑇2 = 0 to get the following four curves 𝐸2 = 𝑍𝑖

𝑍𝑎 =
2
(
𝜅2 − sin(𝐾) + 1

)
𝜅

,

𝑍𝑏 =
2
(
𝜅2 − 𝜅2 sin(𝐾) + 1

)
𝜅

,

𝑍𝑐 =
2
(
𝜅2 + 𝜅2 sin(𝐾) + 1

)
𝜅

,

𝑍𝑑 =
2
(
𝜅2 + sin(𝐾) + 1

)
𝜅

,

(C.6)

again arranged in increasing energy. To satisfy the second condition of constraint 2,
we substitute these results back into the cos(2𝑞) formula (of course the square root
vanishes) to find four expressions for cos(2𝑞) corresponding to the four 𝑍’s above

cos(2𝑞) = −cos(𝐾)
𝜅2 , (from 𝑍𝑎),

cos(2𝑞) = −cos(𝐾)
𝜅2 , (from 𝑍𝑑),

cos(2𝑞) = −𝜅2 cos(𝐾), (from 𝑍𝑏),

cos(2𝑞) = −𝜅2 cos(𝐾), (from 𝑍𝑐),

(C.7)

We observe that there are only two equations. For 0 ≤ 𝜅 ≤ 1, we clearly have
| − 𝜅2 cos(𝐾) | ≤ 1 since 𝐾 is always real-valued. However, for the other equation,
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we can see that for 𝐾 = 0 and 𝜅 < 1 we clearly have | − cos(𝐾)/𝜅2 | > 1, thus
violating the second condition. However, we can find a critical 𝐾𝑐 such that for
𝐾 > 𝐾𝑐, | − cos(𝐾)/𝜅2 | ≤ 1. We choose 𝐾𝑐 to saturate the inequality for the second
condition which we set to −1 (since cos(𝐾) is positive for 0 ≤ 𝐾 ≤ 𝜋/2 so that
− cos(𝐾) is negative) and solve to find

−cos(𝐾𝑐)
𝜅2 = −1 ⇒ 𝐾𝑐 = cos−1(𝜅2). (C.8)

To summarize, the curves 𝑍𝑏, 𝑍𝑐 are boundaries for all values of 𝐾 . The curves
𝑍𝑎, 𝑍𝑑 are boundaries only for 𝐾 > 𝐾𝑐.

As discussed in [53], an interesting observation can also be made about the critical
point 𝐾𝑐. Here, we have 𝑊𝑏 = 𝑍𝑎 and 𝑊𝑐 = 𝑍𝑑 . For 𝐾 > 𝐾𝑐, 𝑍𝑎 is a continuum
boundary and 𝑍𝑎 > 𝑊𝑏 which means that𝑊𝑏 is no longer a boundary as it is inside
the continuum. The same situation occurs for 𝑊𝑐 and 𝑍𝑑 for 𝐾 > 𝐾𝑐 where 𝑊𝑐 is
a curve inside the continuum and 𝑍𝑑 < 𝑊𝑐 is the boundary. The curves 𝐸 = 𝑊𝑏

and 𝐸 = 𝑊𝑐 are called internal van Hove singularities. Crossing these van Hove
singularities in the continuum changes the nature of the 𝑞’s.

In summary, we have [53]

1. AA Lower Boundary: 𝐸 = 𝑊𝑎

2. AA Upper Boundary:

𝐸 =


𝑊𝑏, 𝐾 < 𝐾𝑐

𝑊𝑏 = 𝑍𝑎, 𝐾 = 𝐾𝑐

𝑍𝑎, 𝐾 > 𝐾𝑐

3. AO or Mixed-Mode Lower Boundary: 𝐸 = 𝑍𝑏

4. AO or Mixed-Mode Upper Boundary: 𝐸 = 𝑍𝑐

5. OO Lower Boundary:

𝐸 =


𝑊𝑐, 𝐾 < 𝐾𝑐

𝑊𝑐 = 𝑍𝑑 , 𝐾 = 𝐾𝑐

𝑍𝑑 , 𝐾 > 𝐾𝑐

6. OO Upper Boundary: 𝐸 = 𝑊𝑑

These curves are plotted in Figure 3.3 and further discussed in Section 3.2.2.
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