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In this thesis mathematical models for vibrating elastic structures are derived
and analysed using finite element approximations where necessary.

The most important contribution in this thesis is the development of the
Local Linear Timoshenko (LLT) model and its applications. Using the well-
known equations of motion for a one-dimensional solid or rod, these equa-
tions are rigorously simplified for planar motion. To complete the model,
the constitutive equations for shear and bending is adapted from the linear
Timoshenko theory.

A significant property of the model is that existing linear and nonlinear
models can be derived from it. This promotes insight into the LLT model
itself as well as existing models. In particular, by making the appropriate
assumptions for small vibrations, a number of models published by other
authors, were derived. Of importance is an adapted version of the linear
Timoshenko model which allows for longitudinal vibration and a special case
for transverse vibration of a Timoshenko beam with an axial force.

The variational equations of motion for the LLT model was easy to derive
but the constitutive equations could not simply be substituted into them.
Nevertheless, in the thesis a well defined variational form for the Local Li-
near Timoshenko model is derived. Using the variational form, finite element
approximations of problems can be formulated. A rigorously defined algo-
rithm was developed which is a substantial contribution. Through numerical
experiments, convergence was demonstrated. While solutions of LLT and
linear models compared well for small vibrations, it was shown that the LLT
model can be applied to cases where the solutions of linear beam models are
not realistic.

A model for earthquake induced oscillations in vertical structures, based on
the Timoshenko model, was derived. The model was transformed to that
for a cantilever beam with homogeneous boundary conditions. This made
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it possible to compare beam models using modal analysis. This adapted
Timoshenko model was compared to the Twin-beam model of E Miranda.
The models compared poorly and both predicted the measured fundamental
period completely wrong. This is due to the lack of reliable information on
additional mass not contributing to stiffness.

As an alternative, a building was modelled as a series of beams connected
by rigid bodies to represent floors. Correct modelling of interface conditions
made it possible to derive the variational form, which is a significant contri-
bution. An adapted Mixed Finite Element approximation was thus possible
and a system of ordinary differential equations was derived which can be
used for simulations.

Finally, new interface and boundary conditions for a hybrid Timoshenko
beam model with a tip body were derived. This model is an improvement on
previous versions since elasticity at the interfaces is taken into account. The
derivation of the estimates required to apply the general theory for existence
needed to be done with care and the proofs were by no means trivial. The
new model can also be used to evaluate cases where “rigid” boundary and
interface conditions may not be realistic.

The numerical experiments in this thesis had limited scope. It was mainly
used to complement the theory, for convergence experiments (e.g. LLT
model) or to examine the feasibility of a model (e.g. vertical structure and
Hybrid model).
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Chapter 1

Vibrating elastic solids and
structures

1.1 Introduction

The research for this doctoral degree is part of an ongoing project on vibration
analysis. Although wide ranging, the research thus far was restricted to linear
problems. For the present study the idea was to continue on linear problems,
including structures consisting of beams and plates, but also to venture into
nonlinear beam theory. It soon became clear that the identified research
problems on beams alone were already too ambitious. Therefore the focus of
this thesis is on beam models.

There is a vast literature on beams and their applications. For example,
beams can be part of an elastic multi-structure (as in [CDKP87]), used to
manipulate an object (as in [LM88]), model a slender vertical structure (as
in [LVV05]) or even nanotubes (as in [ASD16]). It is noticeable that authors
are often rather vague about assumptions such as “thick”, “thin”, “small
vibrations”, “large motion”, etc. when considering various linear and non-
linear beam models. The choice between linear and nonlinear models, and
in the linear case, between Timoshenko and Euler-Bernoulli theory is rarely
motivated in precise terms. There are countless examples where mathemati-
cal models are simplified by making additional assumptions, e.g. neglecting
terms which are considered to be small. However, there are few examples
where solutions are compared to see if the additional assumptions are actually
justified.
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The research for the doctoral degree started with linear problems involving
beams. From previous publications we concluded that the Timoshenko the-
ory is the best linear theory for small planar transverse vibrations of beams.
(More detail is provided in Section 1.2.)

Concerning linear vibration models involving beams, three research problems
were identified where the Timoshenko theory can be employed:

A vertical structure, e.g. a high rise building or industrial chimney
which is modelled as a beam. In the initial searches we found it curious
that beam models for vertical structures did not include a Timoshenko
or other shear models. In Chapter 4 wind and earthquake induced
oscillations in vertical structures are investigated.

A structure modelled as a series of connected beams with rigid bodies
between the beams. Such a model with Timoshenko beams to model
a high-rise structure is considered. The feasibility of this model is
investigated in Chapter 5.

A hybrid model where a rigid body is fixed to one end of the beam.
The validity of the interface (and boundary conditions) considered in
previous articles can be questioned. In Chapter 6 new interface and
boundary conditions which model elastic interfaces are derived.

In the three applications mentioned above the focus is on the modelling. For
a mathematical model to be useful, it must be well posed. This will be the
case for the linear model problems above if it can be proved that they are
special cases of the general linear vibration problem in [VV02]. An example
is provided in Section 1.3. To evaluate models and investigate properties
of solutions it is desirable that representations of solutions are available. If
not, one has to rely on numerical approximations. In this thesis the Finite
Element Method is used and wherever possible and relevant convergence
results and error estimates are presented or at least references provided.

As mentioned, Timoshenko’s theory is realistic, but it is linear and may only
be used for small vibrations. The question may well be asked whether a
nonlinear Euler-Bernoulli model may not be better if the deflection is not
sufficiently small. It is therefore necessary to consider the motion of beams
where displacements are too large for the linear theory. In the ongoing project
on vibration analysis the idea came up to consider a nonlinear Timoshenko
beam. This idea lead to the unpublished technical report [Van15]. The next

7
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year an improved technical report [VDB16] was written but not published.
(The new model was named the Local Linear Timoshenko beam.) Further im-
provement was necessary and it became part of the research for the doctoral
degree.

Chapter 2 of the thesis is the improvement on [VDB16], see Section 2.1 for
a detailed account of the changes. As mentioned, we consider it important
that a mathematical model be well posed. But existence theory for nonlin-
ear vibration problems is a research field in its own right and we considered
even a literature study as beyond the scope of the thesis. An obvious strat-
egy is to assume that a solution for a model problem exists and compute
approximations.

It was decided to develop an algorithm based on a finite element approxima-
tion. It proved to be quite a challenge. Preliminary calculations were carried
out by me for the report [VDB16] to see if the model would yield acceptable
results, which it did. For the doctoral study, the algorithm was formulated
rigorously (and presented in Chapter 3) so that it could be analyzed at some
stage. More numerical experiments were done to test for convergence of ap-
proximations and to compare the new model to the linear Timoshenko beam.
The results are presented in Chapter 3.

In the rest of this chapter the classical linear beam models are revisited
and used as an introduction to the more complex models discussed in the
following chapters.

Note As stated in the declaration, this thesis is my own work. I will however
use the pronoun ’we’ in the thesis due to the valuable advice and guidance
provided by my supervisors.

1.2 Classical linear beam models

As mentioned, the research started with the application of linear beam mo-
dels. To facilitate the discussion on beams in this thesis, it was decided to
revisit the classical models.

In this section the Timoshenko and other simplified beam models are pre-
sented in dimensionless form. The merits of the Timoshenko model are dis-
cussed and the other beam models are evaluated using natural frequencies.
In Subsection 1.2.2 it is briefly explained how the Euler-Bernoulli theory can
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be derived from the Timoshenko theory by making additional assumptions.

1.2.1 Timoshenko model

A convincing derivation is found in [Cow66] and solutions compare well to
solutions of multi-dimensional models, see e.g. [SP06] and [LVV09]. On the
other hand, the Euler-Bernoulli model does not always compare well to the
Timoshenko model as shown in [VV06] and [LVV09].

In [Tim21] and [Tim22] Timoshenko made an improvement to beam theory
by introducing shear deformation into the model. The rigorous derivation of
the Timoshenko theory in [Cow66] provides a convincing argument in favour
of this theory. In the articles [SP06] and [LVV09] it is demonstrated how
the Timoshenko theory captures multi-dimensional effects with surprising
accuracy. In particular, in [LVV09] the authors showed that the Timoshenko
model adequately accounts for the warping of a cross-section. (The angle of
rotation φ of a cross-section matches the average rotation of a cross-section
of a two-dimensional model.)

Remark In Chapter 2 it is shown how the linear Timoshenko theory can be
derived from the nonlinear theory.

It is advantageous to consider the equations of motion and constitutive equa-
tions separately. Equations of motion:

ρA∂2
tw = ∂xV +Q, (1.2.1)

ρI∂2
t φ = V + ∂xM, (1.2.2)

where w is the deflection, φ is the angle of rotation of the cross-section, V is
the shear force, M is the bending moment and Q is an external force density
(load). Also, ρ is the density, A the cross-sectional area and I the area
moment of inertia of the beam. The constitutive equations for the moment
M and the shear force V are

M = EI∂xφ, (1.2.3)

V = AGκ2
(
∂xw − φ

)
. (1.2.4)

In these equations, E and G are elastic constants and κ2 the shear coeffi-
cient or shear correction factor. The reader is referred to [Tim37, p 337-338],
[Fun65, p 323-324], [Cow66] and [Inm94, p 337-338] for standard derivations.

9
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Next, the equations of motion and constitutive equations are written in di-
mensionless form. Set

τ =
t

t0
, ξ =

x

`
, w∗(ξ, τ) =

w(x, t)

`
and φ∗(ξ, τ) = φ(x, t).

The forces and moments in dimensionless form are

Q∗(ξ, τ) =
`Q(x, t)

Gκ2A
, V ∗(ξ, τ) =

V (x, t)

Gκ2A
and M∗(ξ, τ) =

M(x, t)

`Gκ2A
.

The following dimensionless parameters are introduced

α =
A`2

I
, β =

AGκ2`2

EI
and γ =

β

α
=
Gκ2

E
.

The parameters α and β are subject to huge variations but γ range between
1

6
and

1

2
, see e.g. [VV06], [LVV09] and the references there in.

A convenient choice for t0 is

t0 = `

√
ρ

Gκ2
.

Returning to the original notation, the dimensionless form of the Timo-
shenko model is presented:

∂2
tw = ∂xV +Q, (1.2.5)

1

α
∂2
t φ = V + ∂xM, (1.2.6)

M =
1

β
∂xφ, (1.2.7)

V = ∂xw − φ. (1.2.8)

Boundary conditions for a cantilever beam

The boundary conditions are

w(0, t) = φ(0, t) = 0

at the clamped end and

M(1, t) = 0 and V (1, t) = 0

10
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at the free end.

Boundary conditions for a pinned-pinned beam

The boundary conditions are

w(0, t) = w(1, t) = 0

and

M(0, t) = M(1, t) = 0

1.2.2 Simplified models

Rayleigh model

For the Rayleigh model it is assumed that the cross section remains perpen-
dicular to the neutral plane. This implies that ∂xw = φ. The model can
be derived from the Timoshenko theory. First eliminate V from (1.2.5) and
(1.2.6) to obtain

∂2
tw =

1

α
∂2
t ∂xφ− ∂2

xM +Q. (1.2.9)

Now substitute φ by ∂xw to obtain the model:

∂2
tw =

1

α
∂2
t ∂

2
xw − ∂2

xM +Q, (1.2.10)

M =
1

β
∂2
xw. (1.2.11)

The constitutive equation for the shear force V is now redundant.

The boundary conditions are the same as for the Timoshenko beam except
that ∂xw = 0 replaces φ = 0 at a clamped end.

Euler-Bernoulli model

The rotary inertia term
1

α
∂2
t ∂

2
xw is omitted from the Rayleigh model to obtain

the Euler-Bernoulli model. The boundary conditions are the same.

Shear model

11
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In the Rayleigh theory, shear is not taken into account. However, it is well
known that the correction to the Euler-Bernoulli model by including rotary
inertia is not sufficient, see e.g. [Inm94], [SP06] and [LVV09].

In [HBW99] the authors consider four linear beam theories: the three models
presented above and one where shear is taken into account but not rotary
inertia. To obtain this last mentioned model, simply omit the rotary inertia
term in the Timoshenko beam model. From a mathematical point of view it
means that α is extremely large but β not. This does not agree with the fact
that γ > 1

6
, but the model yields better results than the Rayleigh model in

some applications. We do have our reservations about the model but results
can be obtained using separation of variables.

The shear model consists of Equations (1.2.5), (1.2.7), (1.2.8) and instead of
(1.2.6), the equation

V + ∂xM = 0.

1.2.3 Comparison of natural frequencies and modes

In this subsection the natural frequencies of vibration are considered in order
to compare the beam models. Using this approach, the Timoshenko theory is
compared to a multi-dimensional model in [SP06] and [LVV09] where as the
Timoshenko, Rayleigh and Euler-Bernoulli models are compared in [VV06]
and [LVV09].

The results in [VV06] and [LVV09] are acceptable where it is assumed that
α = 4β. The authors conclude that the Rayleigh and Euler-Bernoulli models
are useful for large β. For β approximately 300 the fundamental frequency
for these models is acceptable but not the higher frequencies. Consequently
it is risky to use these models for β < 300.

The shear model was not considered in [VV06] or [LVV09] and I considered
it necessary to compare.

Timoshenko model

For the modal analysis of the system in Subsection 1.2.1, [VV06] is followed.
A pair of functions w(x, t) = T (t)u(x) and φ(x, t) = T (t)ψ(x) is consid-
ered as a possible solution. This requires consideration of the corresponding

12
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eigenvalue problem.

−u′′ + ψ′ = λu, (1.2.12)

− 1

β
ψ′′ − u′ + ψ =

λ

α
ψ, (1.2.13)

with the boundary conditions for a cantilever beam given by

u(0) = ψ(0) = u′(1)− ψ(1) = ψ′(1) = 0. (1.2.14)

For a pinned-pinned beam the boundary conditions are

u(0) = ψ′(0) = u(1) = ψ′(1) = 0.

Note that the eigenfunctions are vector valued. The function T satisfies
T ′′ = −λT and hence the natural angular frequencies are equal to

√
λ.

To calculate the eigenvalues for a cantilever beam, use [VV06, Equation (25)](
λ+ µ2

λ− ω2
+
λ− ω2

λ+ µ2

)
coshµ cosω +

(
ω

µ
− µ

ω

)
sinhµ sinω = 2, (1.2.15)

with

∆ =
4γ

(1 + γ)2

α

λ
+

(1− γ)2

(1 + γ)2
, (1.2.16)

ω2 =
λ

2
(1 + γ)

(√
∆ + 1

)
and (1.2.17)

µ2 =
λ

2
(1 + γ)

(√
∆− 1

)
. (1.2.18)

By making use of interval division the values of λ can be obtained from
Equation (1.2.15).

Shear model

The method in [VV06] can be adapted for the new problem. To calculate ei-
genvalues, use the eigenvalue problem for Timoshenko with λ = 0 in equation

(1.2.13) but not in (1.2.12). To justify this, replace
1

α
by

γ

β
and let γ = 0. (It

is clear that λ depends continuously on γ.) Using this substitution the work
in [VV06, Section 4] can be adapted to show that the frequency Equation
(1.2.15) is still valid. To calculate the eigenvalues let γ = 0 in Equations
(1.2.17) and (1.2.18) and γα = β in (1.2.16) to obtain

ω2 =
λ

2

(√
1 +

4β

λ
+ 1

)
and µ2 =

λ

2

(√
1 +

4β

λ
− 1

)
.
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The Shear model approximates the Timoshenko model more accurately than
the Rayleigh model for β < 300.

Example Cantilever

Consider β = 75 (β may be small for some applications) and β = 300.

β = 75 β = 300
Timoshenko Shear Timoshenko Shear

k λk λk λk λk
1 0.1530 0.1551 1.4266 1.4602
2 4.2191 4.5131 9.6570 10.0936
3 23.057 25.295 31.0573 33.0646
4 61.802 68.757 70.5052 75.9940

Table 1.1: Eigenvalues for Timoshenko and Shear models

Even though these compare reasonably well, the procedure for obtaining the
eigenvalues are identical, so there is no gain in using the Shear model.

In conclusion, from this comparison of standard or classical beam models it
is clear that the Timoshenko model is the best option.

1.3 Variational forms and existence of

solutions for the Timoshenko model

As mentioned, it is desirable that mathematical models should be well posed.
For linear vibration problems, the theory in [VV02] or [VS19] can be applied.
To illustrate, consider the Timoshenko model problem for a cantilever beam
presented in Section 1.2. First the problem is written in variational form
(in Subsection 1.3.1). In Subsection 1.3.2 the weak variational form of the
problem is presented while in Subsection 1.3.3 the existence theory of solu-
tions for general second order hyperbolic problems is discussed. The general
theory is applied to the present problem in Subsection 1.3.4.

New problems are introduced in later chapters.

The variational form of the different model problems can also be used for
finite element approximations. The formulation of the problem and the prop-
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erties of the relevant spaces are also useful to prove convergence of the finite
element approximations and for the derivation of error estimates. General
results such as those in [BV13] and [BSV17] can then be applied.

1.3.1 Variational form

The variational form for the Cantilever beam is derived below. It is derived
in the usual way starting with the equations of motion (1.2.5) and (1.2.6).
These equations are multiplied by test functions v and ψ respectively and
integrated. The forced boundary conditions for the test functions are v(0) =
ψ(0) = 0 and therefore a space of test functions is defined as

T [0, 1] = {g ∈ C1[0, 1] | g(0) = 0}.

Performing integration by parts and using the boundary conditions, yields
the variational form.

Model problem in variational form

Find the functions w and φ such that w(·, t) and φ(·, t) are in T [0, 1] for all
t > 0 and the following hold∫ 1

0

∂2
tw(·, t)v = −

∫ 1

0

V (·, t)v′ +
∫ 1

0

Q(·, t)v, (1.3.1)∫ 1

0

1

α
∂2
t φ(·, t)ψ =

∫ 1

0

V (·, t)ψ −
∫ 1

0

M(·, t)ψ′ (1.3.2)

for all 〈v, ψ〉 ∈ T [0, 1]× T [0, 1].

Equations (1.3.1) and (1.3.2) are the variational equations of motion.
This together with Equations (1.2.7) and (1.2.8), produces the system in
variational form. For the model problem one must prescribe initial values for
w, φ, ∂tw and ∂tφ. Denote these by w0, φ0, wd and φd respectively.

Remark For other problems, e.g. a pinned-pinned beam, it is only necessary
to change the space of test functions.
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1.3.2 Weak variational form

The weak variational form is used to establish the existence of weak solutions.
It is also used to prove convergence of the finite element approximation.

Adding Equations (1.3.1) and (1.3.2) yields∫ 1

0

∂2
tw(·, t)v +

1

α

∫ 1

0

∂2
t φ(·, t)ψ =

∫ 1

0

V (·, t)(ψ − v′)−
∫ 1

0

M(·, t)ψ′

+

∫ 1

0

Q(·, t)v. (1.3.3)

Using new notation, the variational form can be written in a compact form.
Let u denote the pair 〈w, φ〉.

The following bilinear forms are introduced.

For ui and vi in L2(0, 1),

c(u, v) =

∫ 1

0

u1v1 +

∫ 1

0

1

α
u2v2.

For ui and vi in T [0, 1],

b(u, v) =

∫ 1

0

1

β
u′2v

′
2 +

∫ 1

0

(u′1 − u2)(v′1 − v2), (1.3.4)

Using the bilinear forms the variational form (1.3.3) can be written as

c(∂2
t u(·, t), v) + b(u(·, t), v) = (Q(·, t), v1), (1.3.5)

where (f, g) denote
∫ 1

0
fg.

Let J be any interval. Instead of considering functions w and φ defined on
[0, 1]×J , consider functions ui : J → L2(0, 1). (If the problem has a classical
solution, then u1(t)(x) = w(x, t) and u2(t)(x) = φ(x, t)).

Definition Derivative of a function with values in Banach space Y

Let t be any interior point of J . Suppose there exists a v ∈ Y such that

lim
h→0

∥∥h−1
(
u(t+ h)− u(t)

)
− v
∥∥
Y

= 0,

then v is the derivative of u at t. Write u′(t) for the derivative and u′(t) ∈ Y to
show that the derivative exists with respect to the norm of Y . The derivative
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(function) u′ is defined in the usual way as u′(t) for every t ∈ J , with u′′

defined by (u′)′.

Instead of the problem in (1.3.5), consider a problem of the form

c(u′′(t), v) + b(u(t), v) = (Q(·, t), v1). (1.3.6)

Care should be taken to ensure that the function u has the necessary differen-
tiability and continuity properties for the above problem to make sense. To
write the model problem in weak variational form, suitable function spaces
are needed.

The Hilbert space L2(Ω) and Sobolev spaceHm(Ω) are defined in Appendix A.
The necessary product spaces are now defined:

X = L2(0, 1)× L2(0, 1) ,

H1 = H1(0, 1)×H1(0, 1).

An element y ∈ X is written as y = 〈y1, y2〉.

The inner product for L2(0, 1) is denoted by (·, ·).

A natural inner product for X is

(x, y)X = (x1, y1) + (x2, y2),

and the corresponding norm is denoted by ‖ · ‖X .

The natural inner product for the product space H1 is

(x, y)H1 = (x1, y1)1 + (x2, y2)1

and the corresponding norm is denoted by ‖ · ‖H1 .

The following propositions can be proved for the Timoshenko beam problem
but proofs for similar problems appear in various publications and will there-
fore not be repeated here. (See also Chapter 6.)

Proposition 1.3.1. The bilinear form c is an inner product for X.

Definition Inertia space W

The vector space X equipped with the inner product c is referred to as the
space W . The norm ‖ · ‖W is defined by ‖u‖W =

√
c(u, u).
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Proposition 1.3.2. The norms ‖ · ‖W and ‖ · ‖X are equivalent.

Let V (0, 1) be the closure of T [0, 1] in H1(0, 1) and define the product space
V as

V = V (0, 1)× V (0, 1).

Proposition 1.3.3. The bilinear form b is an inner product for V .

Definition Energy space V

The space V equipped with the inner product b is referred to as the energy
space. The norm ‖ · ‖V is defined by ‖u‖V =

√
b(u, u).

Proposition 1.3.4. V is a dense subset of W .

Proposition 1.3.5. The norms ‖ · ‖V and ‖ · ‖H1 are equivalent on V .

Notation Let qX be the mapping t→ 〈Q(·, t), 0〉.

From the definition of the bilinear form b it is now possible to define the weak
variational form for the Timoshenko beam problem.

Problem in weak variational form Find u such that for each t > 0,
u(t) ∈ V , u′(t) ∈ V , u′′(t) ∈ W and

c(u′′(t), v) + b(u(t), v) = (qX(t), v)X for each v ∈ V, (1.3.7)

with u(0) = u0 = 〈w0, φ0〉 and u′(0) = ud = 〈wd, φd〉.

1.3.3 Existence of solutions for general second order
hyperbolic problems

The weak variational form of the Timoshenko model problem in Subsection
1.3.2 is a special case of the problem in [VV02]. The general theory from that
article includes damping which is represented by the bilinear form a below:

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (qX(t), v)X .

The following assumptions are made in the article: V , W and X are real
Hilbert spaces with V ⊂ W ⊂ X and b(·, ·), c(·, ·) and (·, ·)X are the inner
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products for V , W and X respectively. The corresponding norms are ‖ · ‖V ,
‖ · ‖W and ‖ · ‖X .

Assumptions

The following assumptions are made for the theory in [VV02].

E1 V is dense in W and W is dense in X.

E2 There exist a positive constant κ1 such that ‖v‖W ≤ κ1‖v‖V for each
v ∈ V .

E3 There exist a positive constant κ2 such that ‖w‖X ≤ κ2‖w‖W for each
w ∈ W .

E4 The bilinear form a is non-negative, symmetric and bounded on V .

For the case of weak damping, Assumption E4 is replaced by the next as-
sumption.

Assumption E4W The bilinear form a is non-negative, symmetric and
bounded on W , i.e.

|a(u, v)| ≤ Ka‖u‖W‖v‖W .

Definition The space Eb

Eb = {x ∈ V | there exists a y ∈ W such that c(y, v) = b(x, v) for all v ∈ V }.

Theorem 1.3.1. [VV02, Theorem 1] Suppose Assumptions E1 to E4 hold.
If, for u0 ∈ V and u1 ∈ V , there exists some y ∈ W such that

b
(
u0, v

)
+ a
(
u1, v

)
= c
(
y, v
)

for all v ∈ V, (1.3.8)

then, for each f ∈ C1
(
[0,∞);X

)
, there exists a unique solution

u ∈ C1
(
[0,∞);V

)
∩ C2

(
[0,∞);W

)
for the general linear vibration problem.

Note that there is a typing error in [VV02, Theorem 1], where the condition
in the theorem states that u1 ∈ W . An inspection of the proof reveals that
it should be u1 ∈ V as it is corrected above. (This was also noted in [VS19].)
The result is obtained from semigroup theory and it is proved in [VV02] that
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condition (1.3.8) is equivalent to the statement that the pair 〈u0, u1〉 is in
the domain of the infinitesimal generator. Condition (1.3.8) is therefore also
necessary for existence.

In the case of weak damping the next theorem from the same article should
be used.

Theorem 1.3.2. [VV02, Theorem 2] If a is bounded with respect to the
norm in W , then there exists a unique solution u ∈ C1((−∞,∞);V ) ∩
C2((−∞,∞);W ) for the general linear vibration problem for each u0 ∈ Eb,
each u1 ∈ V and each f ∈ C1((−∞,∞);X).

Remark Other existence results are available in the literature, e.g. [Sho77]
and [LM72]. The result from [VV02] is convenient for our problem, since it
is given in terms of bilinear forms.

1.3.4 Existence of solutions for the Timoshenko beam
problem

It is not difficult to apply the theory in the previous subsection to establish
the existence of a unique solution for the Timoshenko beam problem in Sub-
section 1.3.2. It is a special case of the general problem. In our case damping
is neglected, hence the bilinear form a = 0. From the results in Subsection
1.3.2, it is clear that Assumptions E1 to E3 and E4W hold. Using the exis-
tence result for weak damping in [VV02] with a = 0 a solution exists with
the properties as stated in the following theorem.

Theorem 1.3.3. Let J be an open interval containing zero. If qX ∈ C1(J,X),
then there exists a unique solution

u ∈ C1(J, V ) ∩ C2(J,W )

for the Timoshenko beam problem for each u0 ∈ Eb and u1 ∈ V . If qX = 0
then u ∈ C1((−∞,∞), V ) ∩ ((−∞,∞),W ).

The theory is applied to a more complex problem in Chapter 6. It is also
shown in Chapter 6 how the general theory on convergence can be applied
to a model problem.
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Chapter 2

Local linear Timoshenko beam

2.1 Introduction

As explained in Section 1.1, the technical reports [Van15] and [VDB16] pre-
ceded the research for the doctoral degree regarding nonlinear beam the-
ory. As preparation for the work in [VDB16] the articles [SVQ86], [SVQ87],
[Ant76] and [Ant96] were consulted.

J C Simo and L Vu-Quoc published a number of articles on large motion
of beams and plates. In the paper [SVQ87] they treat the role of nonlinear
theories in the analysis. They mention that large motion of beams and plates
has been studied since 1958. They proceed to report on 12 other publications
up to 1986, discussing shortcomings and even wrong results. They conclude
that: “Fully nonlinear (geometrically exact) structural theories, such as in
[SVQ86] exactly account for all inertial effects; ...”. (Of course all the other
relevant effects are also accounted for.) The one-dimensional theory is de-
veloped for a three-dimensional beam considering “Fully nonlinear strain
measures ....”. The article includes numerical aspects and the results are
directly applicable.

It is clear from [Ant76] that Antman is a researcher specializing in rigorous
mathematical theories where the emphasis is on deriving properties from
precisely formulated definitions and assumptions. In 1996 Antman published
a survey article [Ant96] concerning “..... recent results and open problems
for the equations of motion for geometrically exact theories on nonlinearly
viscoelastic and elastic rods.” (The term rod here refers to a one-dimensional
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continuum and it includes beams, bars and columns.) He states that “....
only recently have the equations of rods attained a form readily accessible to
analysis.” He referred to six papers published between 1985 and 1991, all by
J C Simo and L Vu-Quoc.

While the articles in the “two streams” mentioned above contain impressive
results, the main objective of this study must not be forgotten: comparison
of different models for the same real world situation. And, even in the case of
planar motion, there is already a lot of uncertainty. A logical first step is to
consider the planar motion of a beam where the material is linearly elastic.
Since the Timoshenko theory provides an excellent approximation for three-
dimensional elastic behaviour with plane stress, it was decided to adapt the
constitutive equations of the Timoshenko theory for large displacements (in
[VDB16]). The model was named the Local Linear Timoshenko beam model
(from now on referred to as LLT model).

For this doctoral research the aim was to improve and extend the work in
[VDB16]. The improved version is Chapter 2 of the thesis. Every section was
rewritten and new sections created. Changes vary from slight to significant.
Some duplication was unavoidable.

First, we had another look at the relevant articles, especially [SVQ87]. The
nonlinear model in [SVQ87] was compared to the LLT model in [VDB16].

In [SVQ86] and [SVQ87] a model is derived for the planar motion of a non-
linear elastic beam. The authors used Hamilton’s principle and derived the
so called inertia operator in the inertial frame. The inertia terms are rather
involved but in this approach the stiffness operator takes a simple form.

In our approach no use is made of a moving reference system. The model
derived in this chapter appears completely different from the one in [SVQ86]
and [SVQ87]. The inertia terms are simple but the constitutive equations
appear complex. No use is made of sketches to define displacements or an-
gles. Instead, the use of elementary differential geometry enables one to
give unambiguous definitions and absolute clarity. The model appears more
complicated but is not really, as explained in Subsection 2.4.2.

The article [LA12] is interesting for more than one reason. The authors
motivate their work by mentioning “numerous applications in engineering”.
Regarding the mathematical models for large motion the authors also refer to
articles by Antman and Simo and Vu-Quoc and state that modelling is still
a challenging problem. According to them, obtaining “efficient numerical
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solution(s)” is another challenge.

First, in the next section, equations of motion for a one-dimensional model are
derived from the conservation laws for momentum and angular momentum.
The result is also in [VDB16] and is not new. It was however necessary
to include the derivation to explain the assumptions for the model. The
equations of motion for planar motion follows easily.

To obtain the LLT model, we adapt the constitutive equations of the Timo-
shenko theory.

In Section 2.6 approximations of the LLT model for small vibrations are
investigated. Linear and nonlinear models are derived. The derivation of the
models in [SR79] and [LL91], from the LLT model, is new. Two adapted
versions of the linear Timoshenko model, with axial force, are also derived
from the LLT model instead of merely inserting the force in the linear model.

It is also shown in this section that the so called “nonlinear Timoshenko”
models in [SR79] and [Aro01] are almost linear. These models can be derived
from the linearized equations of motion of the LLT model using the consti-
tutive equations for shear and bending but a nonlinear constitutive equation
for the axial force.

Section 2.6 is a significant improvement on the corresponding part of [VDB16].

In Section 2.8 the variational form for the linear and nonlinear Timoshenko
models are derived and existence of a solution for the Adapted Timoshenko
model is discussed.

Possible “derivation” of the constitutive equations is considered in Section
2.9. It must be emphasized that the use of the constitutive equations adapted
from the Timoshenko theory, is an assumption and any attempt to derive
them will involve additional assumptions. However, it is instructive to inves-
tigate the connection between the constitutive equations for the shear force
and bending moment and three-dimensional elasticity. It shows why warp-
ing of a cross-section is inevitable. Although Section 2.9 differs from the
derivation of the linear Timoshenko theory in [Cow66] there are interesting
similarities.
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2.2 Dynamics of a rod

2.2.1 Conservation laws

Using the material description of motion, consider a solid with reference
configuration the region B and any point X in B. Suppose the position of
the point at time t is R̄(X, t). The velocity of the point at time t is then
v̄(X, t) = ∂tR̄(X, t). One may consult for example [Ant76] and [Fun65].

The conservation laws for momentum and angular momentum act as the
basic assumptions of the theory. Suppose R is an arbitrary part of B with
boundary Σ. Let ρ denote the density, and b̄ the body force (density).

Conservation of momentum

d

dt

∫
R
ρv̄ dV = FΣ +

∫
R
b̄ dV, (2.2.1)

where FΣ denotes the resultant force due to traction on Σ.

Conservation of angular momentum

d

dt

∫
R

(R̄− p̄)× ρv̄ dV = MΣ +

∫
R

(R̄− p̄)× b̄ dV, (2.2.2)

where p̄ is any fixed point. The contribution to the moment due to traction
is denoted by MΣ.

The term rod in this section is used in the sense of [Ant76] and [Ant96]. A
rigorous (and general) description can be found in these publications. In this
chapter the solid B is a special case of a rod and it is assumed that it has
the following property in the undeformed state: there exists a straight line
segment in B such that every cross-section perpendicular to this line has its
centroid on the line. (This straight line is referred to as the axis.) Use the
undeformed state as reference configuration and choose coordinates for the
reference configuration in such a way that the axis is the line y = z = 0.

Initially it is assumed that every cross-section executes a rigid motion (as
is commonly done, see e.g. [SVQ87], [LL91] and [LA12]). To be specific,
assume that the position of a point X = (x, y, z) in B at time t is given by

R̄(X, t) = r̄0(x, t) + yēy(x, t) + zēz(x, t), (2.2.3)

where ēy and ēz are mutually orthogonal unit vectors. This implies that
ēy and ēz “move with the cross-section” and a cross-section remains plane
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during the motion. Clearly r̄0(x, t) is the position of the centroid (x, 0, 0)
of a cross section at time t and the position of X relative to the centroid is
r̄(X, t) = yēy(x, t) + zēz(x, t). The normal vector ēy × ēz is denoted by ēx.

Remark The warping of cross-sections is discussed in Section 2.9.

2.2.2 Momentum, angular momentum and body force

In the conservation laws formulated above, R ⊂ B may be arbitrary. Now,
consider a special case where R is the part of the solid between x = a and
x = b, i.e.

R =
{
X ∈ B

∣∣ a ≤ x ≤ b
}
.

The velocity of the point (x, y, z) at time t is

v̄ = ∂tr̄0 + ∂tr̄ = ∂tr̄0 + y∂tēy + z∂tēz.

Due to the constraints on the motion, the expressions for momentum and
angular momentum simplify.

Momentum If the density ρ is constant, then the momentum of R is∫
R
ρv̄(·, t) dV = ρ

∫ b

a

A(x)∂tr̄0(x, t) dx, (2.2.4)

where A(x) is the area of the cross-section.

Angular momentum If the density ρ is constant, then the angular mo-
mentum of R about 0̄ is∫

R
R̄× ρv̄dV = ρ

∫ b

a

A(x)r̄0(x, t)× ∂tr̄0(x, t) dx

+ ρ

∫ b

a

∫
D
r̄(X, t)× ∂tr̄(X, t) dAdx, (2.2.5)

where D = D(x) denotes the relevant cross-section. The derivation is easy if
one first show that∫

D
r̄(X, t) dA = 0 and

∫
D
∂tr̄(X, t) dA = 0.
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Body force For many applications (e.g. gravity or magnetism) it is realistic
to assume that ∫

R
b̄ dV =

∫ b

a

b̄1(x, t) A(x) dx. (2.2.6)

Assuming that b̄ is approximately constant over a cross-section it may be
replaced by the force density b̄1 without an additional couple. To consider
the possibility of a distributed moment density is beyond the scope of this
thesis.

2.2.3 Forces and couples due to traction

The boundary Σ of R consists of three parts: the cross-sections D(a) and
D(b) and part of the outer surface of the solid between the cross-sections.

The traction on a cross-section D(xc) is equivalent to a force F̄ (xc, t) acting
at the centroid r̄0(xc, t) and a couple M̄(xc, t). The following function con-
vention is used: F̄ (xc, t) and M̄(xc, t) are the force and couple acting on the
part of the solid where x ≤ xc. Consequently the forces exerted on R are
F̄ (b, t) and −F̄ (a, t) and the couples are M̄(b, t) and −M̄(a, t). Justification
for this is discussed in Section 2.9.

For a slender solid it is assumed that the traction on the outer surface results
in a distributed load t̄S so that the force on R is∫ b

a

t̄S(x, t) dx. (2.2.7)

(An example of this is viscous damping.)

The formulas for the forces and couples on R are

FΣ = F̄ (b, t)− F̄ (a, t) +

∫ b

a

t̄S(x, t) dx (2.2.8)

and

MΣ = r̄0(b, t)× F̄ (b, t)− r̄0(a, t)× F̄ (a, t) + M̄(b, t)− M̄(a, t). (2.2.9)
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2.2.4 Equations of motion for a
one-dimensional model

From a mathematical point of view we now have a one-dimensional model
for a slender solid, often referred to as a rod (or Cosserat rod). The reference
configuration is [0, `] where ` is the length of the axis.

Due to Equations (2.2.1), (2.2.4), (2.2.6), and (2.2.8), the conservation law
for momentum may be reformulated for a one-dimensional model.

Conservation of momentum

d

dt

∫ b

a

ρA∂tr̄0(x, t) dx = F̄ (b, t)− F̄ (a, t) +

∫ b

a

(b(x, t) + t̄s(x, t))dx.

Adding b̄1 and t̄S the resultant load density is P̄ = b̄1 + t̄S.

It is useful to introduce the following notation (recalling that ρ is constant)

H̄(x, t) = ρ

∫
D
r̄ × ∂tr̄dA.

The quantity H̄(x, t) is referred to as the angular momentum density (about
the centroid).

Combining Equations (2.2.2) (2.2.5) and (2.2.9) yields the conservation law
for angular momentum for a one-dimensional model.

Conservation of angular momentum

d

dt

∫ b

a

ρAr̄0(x, t)× ∂tr̄0(x, t)dx+
d

dt

∫ b

a

H̄(x, t) dx

= r̄0(b, t)× F̄ (b, t)− r̄0(a, t)× F̄ (a, t) + M̄(b, t)− M̄(a, t)

+

∫ b

a

r̄0(x, t)× P̄ (x, t) dx.

The equations of motion follow from the conservation laws. From the con-
servation law for momentum:∫ b

a

ρA∂2
t r̄0(x, t) dx =

∫ b

a

∂xF̄ (x, t) dx+

∫ b

a

P̄ (x, t) dx.

The first equation of motion follows from the fact that [a, b] is arbitrary.
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Equations of motion

ρA∂2
t r̄0 = ∂xF̄ + P̄ , (2.2.10)

∂tH̄ = ∂xr̄0 × F̄ + ∂xM̄. (2.2.11)

To derive the second equation of motion first prove, using the standard ar-
gument above, that

ρAr̄0 × ∂2
t r̄0 + ∂tH̄ = ∂x(r̄0 × F̄ ) + ∂xM̄ + r̄0 × P̄ .

Now, ∂x(r̄0 × F̄ ) = ∂xr̄0 × F̄ + r̄0 × ∂xF̄ and hence the result follows by
combining this result with Equation (2.2.10).

Equations (2.2.10) and (2.2.11) correspond to Equations (2.11) and (2.12) in
[Ant96] where they are referred to as the classical forms of the equations of
motion. The system is given by Equations (8) in [LA12], where references
are provided regarding the derivation.

More detail on the angular momentum density is provided in [Ant96] and
[LA12] but it is not required for the rest of this chapter.

2.3 Planar motion

Recall (from Equation (2.2.3)) that the position of a point (x, y, z) at time t
is given by

R̄(x, y, z, t) = r̄0(x, t) + yēy(x, t) + zēz(x, t),

where ēx, ēy and ēz “move with the cross-section”. Let {ē1, ē2, ē3} denote an
orthonormal set “fixed” in space forming a right-handed triad. For planar
motion assume that

r̄0(x, t) = u(x, t)ē1 + w(x, t)ē2

and ēz(t) = ē3 for each t. Note that the motion of each point is in a plane
perpendicular to ē3.

Since the tangent vector is

∂xr̄0(x, t) = ∂xu(x, t)ē1 + ∂xw(x, t)ē2,

it follows that the angle θ(x, t) of the tangent vector with the direction of ē1

satisfies

cos θ = ‖∂xr̄0‖−1∂xu, (2.3.1)

sin θ = ‖∂xr̄0‖−1∂xw. (2.3.2)
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The unit tangent vector is given by

ēT (x, t) = cos θ(x, t)ē1 + sin θ(x, t)ē2.

It is clear that cross-sections rotate about the z−axis. The angle of rotation
φ is defined by

cosφ = ēx · ē1 and sinφ = ēy · ē2.

Consequently,

ēy(x, t) = − sinφ(x, t)ē1 + cosφ(x, t)ē2,

ēx(x, t) = cosφ(x, t)ē1 + sinφ(x, t)ē2.

Since ēy × ēx = −ē3 = −ēz, it follows that ēy × ēz = ēx, the unit normal to
the cross-section, as required. Also, φ is equal to the angle between a cross
section and ē2 and the angle between the normal vector and ē1. It follows
from elementary trigonometry that θ − φ is the angle between the normal
vector to the cross-section and tangent vector.

For planar motion it is necessary that the angular momentum density H̄ =
Hēz. If D is symmetric with respect to the y−axis, then an elementary
calculation shows that the angular momentum density is

H̄(x, t) = ρI ∂tφ(x, t)ē3, (2.3.3)

where I is the area moment of inertia about the z−axis.

To derive the equations of motion for planar motion, use Equations (2.2.10)
and (2.2.11) together with

∂2
t r̄0 = ∂2

t uē1 + ∂2
twē2 and ∂tH̄ = ρI ∂2

t φē3.

Equations of motion for planar motion

ρA∂2
t u = ∂xF1 + P1, (2.3.4)

ρA∂2
tw = ∂xF2 + P2, (2.3.5)

ρI∂2
t φ = ∂xuF2 − ∂xwF1 + ∂xM3. (2.3.6)

2.4 Local linear approximation

2.4.1 Constitutive equations

To obtain a mathematical model, the equations of motion (2.3.4), (2.3.5) and
(2.3.6), must be supplemented with constitutive equations. If it is assumed
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that the motion is locally linear, then a natural choice for shear and bend-
ing are the constitutive equations of the Timoshenko theory (see Subsection
1.2.1). For the longitudinal strain Hooke’s law in its simplest form is used.
However, the axial force is not equal to F1 and the shear force is not equal
to F2 due to the rotation of the tangent vector. In fact

F1 = S cos θ − V sin θ, (2.4.1)

F2 = S sin θ + V cos θ, (2.4.2)

where S denotes the axial force and V the shear force.

In the Timoshenko theory the angle between the tangent vector and the
normal to the cross-section is considered to be the “average” shear strain. If
it is assumed that the shear θ − φ is small and the product of the thickness
and ∂xφ is small, then the following constitutive equations may be used.

M = M3 = EI∂xφ, (2.4.3)

V = κ2AG(θ − φ). (2.4.4)

Remark Consider the constitutive equation for the moment M above and
let h denote the diameter of the cross-section in the direction of ēy. For the
model to be realistic, h∂xφ must be small. (Note that h∂xφ is dimensionless.)

To define the mean axial strain εs, note that

(∂xs)
2 = ‖∂xr0‖2 = (∂xu)2 + (∂xw)2, (2.4.5)

where s is the arc length function. The mean axial strain is defined to be

εs = ∂xs− 1. (2.4.6)

Assume that

S = AEεs, (2.4.7)

the simplest form of Hooke’s law. (The actual strain ε is discussed at the
end of Subsection 2.4.2). If the constitutive equations above are substituted
into the equations of motion, (2.3.4), (2.3.5) and (2.3.6), the model problem
is in general nonlinear.

Next, we write the problem in dimensionless form. To some extent this is
a repetition of work done in Chapter 1 but because of some differences it is
repeated for convenience.
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Dimensionless form

Set

τ =
t

t0
, ξ =

x

`
, u∗(ξ, τ) =

u(x, t)

`
and w∗(ξ, τ) =

w(x, t)

`

where t0 needs to be specified. Since φ is dimensionless, it follows that

φ∗(ξ, τ) = φ(x, t).

Next, the forces, force densities and moments are scaled by AGκ2, AGκ2`−1

and AGκ2` respectively. For example

F ∗i (ξ, τ) =
Fi(x, t)

AGκ2
, P ∗i (ξ, τ) =

`Pi(x, t)

AGκ2
, and M∗(ξ, τ) =

M(x, t)

AGκ2`
.

The dimensionless form of the equations of motion are

ρ`2

Gκ2T 2
∂2
τu
∗ = ∂ξF

∗
1 + P ∗1 ,

ρ`2

Gκ2T 2
∂2
τw
∗ = ∂ξF

∗
2 + P ∗2 ,

ρI

AGκ2T 2
∂2
τφ
∗ = ∂ξu

∗F ∗2 − ∂ξw∗F ∗1 + ∂ξM
∗
3 .

A convenient choice for the quantity T is

t0 = `

√
ρ

Gκ2
.

With α =
A`2

I
, the equations of motion now read

∂2
τu
∗ = ∂ξF

∗
1 + P ∗1 ,

∂2
τw
∗ = ∂ξF

∗
2 + P ∗2 ,

1

α
∂2
τφ
∗ = ∂ξs

∗V ∗ + ∂ξM
∗
3 .

The constitutive equations in dimensionless form are

AGκ2V ∗ = AGκ2(θ∗ − φ∗),
AGκ2S∗ = AEεs,

AGκ2`M∗ =
EI

`
∂ξφ

∗.
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V ∗ = θ∗ − φ∗,

S∗ =
E

Gκ2
εs,

M∗ =
EI

AGκ2`2
∂ξφ

∗.

Equations (2.4.1) and (2.4.2) converts trivially to dimensionless form and the
other equations for the model, (2.3.1) (2.3.2) and (2.4.5), are effectively in
dimensionless form.

The complete model problem is presented in Subsection 2.4.2, using the ori-
ginal notation, with dimensionless constants

α =
A`2

I
, β =

AGκ2`2

EI
and γ =

β

α
=
Gκ2

E
.

2.4.2 Local linear Timoshenko beam model

Equations of motion

∂2
t u = ∂xF1 + P1, (2.4.8)

∂2
tw = ∂xF2 + P2, (2.4.9)

1

α
∂2
t φ = ∂xuF2 − ∂xwF1 + ∂xM, (2.4.10)

with

F1 = S cos θ − V sin θ, (2.4.11)

F2 = S sin θ + V cos θ (2.4.12)

and ∂xs and θ defined by

(∂xs)
2 = (∂xu)2 + (∂xw)2, (2.4.13)

cos θ = (∂xs)
−1∂xu, (2.4.14)

sin θ = (∂xs)
−1∂xw. (2.4.15)

The constitutive equations are

M =
1

β
∂xφ, (2.4.16)

V = θ − φ, (2.4.17)

S =
1

γ
(∂xs− 1). (2.4.18)
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In our opinion, the model above is equivalent to the model in [SVQ87]. The
two models differ in appearance due to the fact that Simo and Vu-Quoc use
a moving reference frame for the velocity and acceleration terms. For the
same reason comparison will be difficult and time consuming. In the mean
time, it is interesting that two models derived through completely different
methods could possibly be equivalent.

Boundary conditions The modelling assumptions are as follows. The
shear force F and the moment M are both zero at a free end. M = 0 at a
pinned end where u and w are fixed, while at a clamped end, u, w and φ are
fixed. (Note that F = 0 implies that S = V = 0.)

Usually constitutive equations are substituted into equations of motion to
yield partial differential equations. Following the usual approach, one would
attempt to substitute F1, F2 and M into Equations (2.4.8), (2.4.9) and
(2.4.10). This is not advisable and fortunately not necessary. Inspection
of Equations (2.4.11) to (2.4.18) leads to the conclusion that F1, F2 and M
are well defined in terms of u, w and φ. This model is referred to as “well for-
mulated”. A Finite element approximation is presented in Chapter 3 where
simulations for this model are done and the results presented in Chapter 3.
Three configurations are considered for which the boundary conditions are
stated below.

Cantilever beam At the clamped end

u(0, t) = w(0, t) = φ(0, t) = 0. (2.4.19)

At the free end the boundary conditions are

F1(t) = F2(t) = M(1, t) = 0. (2.4.20)

Pinned-pinned beam At both endpoints u, w and M are zero, i.e.

u(0, t) = w(0, t) = u(1, t) = w(1, t) = 0 (2.4.21)

M(0, t) = M(1, t) = 0. (2.4.22)

Pivoted beam The boundary conditions are the same as for the Cantilever
beam except that φ(0, t) = 0 is replaced by M(0, t) = 0.

For each model problem the initial values for u, w, φ, ∂tu, ∂tw and ∂tφ must
be prescribed. Denote this by u0, w0, φ0, ud, wd and φd respectively.
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Small strains

Recall that small strains are required for linear elasticity. In our model, plane
stress is assumed and the resultant strains of importance are the axial strain
ε and the shear strain θ − φ. The strain ε can be split:

ε = εs + εB,

where εs is the mean strain defined in (2.4.6) and εB the strain due to bending.
From the well known formula

σ

y
=
M

I

and the constitutive equation (2.4.3), the maximum strain is found to be

εB = ∂xφ ymax,

which is dimensionless regardless of ∂xφ and ymax. More detail can be found
in Section 2.9.

It is important to bear in mind that the strains θ − φ and ∂xs − 1 must be
small but the rod strain ∂xφ may be an order larger if h/` ≈ 1/10. Consider
for example a beam where I = 1

12
bh3, then(

h

`

)2

= 12/α = 1/100 for α = 1200.

Since I is determined by the dimensions and shape of the cross-section of a
beam, different values of h∗ will be obtained for different structures.

Remark Due to the scaling, dimensionless forces larger than 10−2 should be
considered large.

2.5 Simplified models

Whether the assumptions that are made are realistic, depend on the nature
of forcing, the boundary conditions and initial displacements.

Pivoted beam with constant angular velocity

Consider a beam pivoted at 0. The boundary conditions are

u(0, t) = w(0, t) = 0,

M(0, t) = F1(1, t) = F2(1, t) = M(1, t) = 0.
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Suppose the force P is equal to zero, i.e. P = 0, and it is rotating with
constant angular velocity ω. Let R̄(x, y, z, t) = g(x)(cos(ωt)ē1 + sin(ωt)ē2)
with ω constant. Consequently u(x, t) = g(x) cos(ωt), w(x, t) = g(x) sin(ωt)
and θ(t) = ωt.

Now, suppose the expressions for u, w and θ are substituted into (2.4.8) to
(2.4.12). From Equations (2.4.8) and (2.4.9) it follows that V ′ = 0 and both
equations reduce to

−ω2g(x) = S ′(x).

The shear force V is equal to zero due to the boundary condition at the free
end. This implies that θ = φ and since ∂xφ = 0, it follows that M = 0.
Substituting the results into (2.4.10) shows that the equation is satisfied.
The left hand side of the equation is clearly zero as well as the last term. For
the other terms note that

∂x(g(x) cosωt)S sinωt− ∂x(g(x) sinωt)S cosωt = 0.

It follows from Equation (2.4.13) that ∂xs = g′. Note that Equations (2.4.14)
and (2.4.15) are satisfied. It follows from Equation (2.4.18) and the results
for s and S above that

g′′ = ∂2
xs = γS ′ = −γω2g.

From the boundary condition for u(0, t) and since S(1) = 0, the boundary
conditions for g are g(0) = 0 and g′(1) = 1.

We then solve for g and a solution for the original problem is obtained.

Nonlinear Euler-Bernoulli models

If shear strain is ignored, a Cosserat beam is referred to as an extensible
Kirchoff beam which one may think of as a “nonlinear Euler-Bernoulli beam”.

Using Equations (2.4.11) and (2.4.12), a different form of Equation (2.4.10)
is obtained; Equation (2.4.10) may be replaced by

1

α
∂2
t φ = ∂xsV + ∂xM. (2.5.1)

The equations of motion are now given by Equations (2.4.8), (2.4.9) and
(2.5.1), where φ must be replaced by θ. The constitutive equation (2.4.17) is
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no longer valid. The new model can be seen as a nonlinear Euler-Bernoulli
model where φ is replaced by θ in (2.5.1) and (2.4.16) becomes

M =
1

β
∂xθ. (2.5.2)

Since (2.4.17) cannot be used, the shear force V is not known. The model
is not “well formulated” in the way the LLT model is. In the linear case V
was eliminated before φ was replaced by ∂xw but this is not possible here.
The shear force is implicitly defined and there is no easy way to deal with
it. Since the LLT model is our concern, this model is not considered any
further.

Negligible axial force

If the axial force is negligible (for example when the beam rotates slowly),
the axial strain is approximately zero and the modelling assumption is S = 0
(which implies that ∂xs = 1). As a consequence the model is simplified. For
the Timoshenko model the equations of motion remain the same but

F1 = −V sin θ, (2.5.3)

F2 = V cos θ, (2.5.4)

and θ is now defined by

cos θ = ∂xu, (2.5.5)

sin θ = ∂xw. (2.5.6)

The constitutive equations (2.4.16) and (2.4.17) remain the same but (2.4.18)
is redundant. The assumption that S = 0 does not affect the boundary
conditions but note that now F = 0 if and only if V = 0.

Now consider the inextensible Kirchoff beam where the axial force is ne-
glected. The assumption S = 0 does make the model substantially simpler
than before but the complication with the shear force V remains.

2.6 Small vibrations

It is convenient when dealing with small displacements to replace u(x, t) by
x+u(x, t) with the result that ∂xu is replaced by 1+∂xu. For small vibrations
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it is usually assumed that ∂xu and ∂xw are small or θ is small. It is necessary
to be careful since such assumptions may lead to contradictions.

First, just assume that θ is sufficiently small to justify the assumptions
cos θ ≈ 1 and sin θ ≈ θ. Then (2.4.14) implies that ∂xs = 1 + ∂xu. Next,
assume that ∂xu and ∂xw are sufficiently small for (∂xu)2 and (∂xw)2 to be
neglected. Then,

∂xs =
√

(1 + ∂xu)2 + (∂xw)2

=
√

1 + 2∂xu+ (∂xu)2 + (∂xw)2

≈ 1 + ∂xu+
1

2
(∂xu)2 +

1

2
(∂xw)2.

It follows that

∂xs ≈ 1 + ∂xu (2.6.1)

and the result is the same as when the assumption θ small was used.

In many publications (e.g. [LL91] and [WFH01]) it is assumed that the
effect of ∂xw in the elongation of the beam is significant. This leads to the
constitutive equation

∂xs = 1 + ∂xu+
1

2
(∂xw)2. (2.6.2)

The arguments advanced thus far are not conclusive since a lot depends on
a particular application, see e.g. Subsection 2.6.3.

2.6.1 Linear and possible nonlinear models

To proceed, assume then that sin θ and cos θ may be replaced by θ and 1
respectively. Then Equations (2.4.11) and (2.4.12) reduce to

F1 = S − V θ, (2.6.3)

F2 = Sθ + V. (2.6.4)

Only one constitutive equation changes (due to Equation (2.6.1)):

S =
1

γ
∂xu. (2.6.5)
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Note that the system is still nonlinear. Even if one makes a further approxi-
mation θ ≈ tan θ = ∂xw the system will still be nonlinear.

To obtain a linear model more assumptions must be made. Let F1 = S
and F2 = V in (2.4.8) to (2.4.10). Two additional models are obtained. To
facilitate the discussion, the different models are numbered.

Model 1 The equations of motion are

∂2
t u = ∂xS + P1, (2.6.6)

∂2
tw = ∂xV + P2, (2.6.7)

1

α
∂2
t φ = (1 + ∂xu)V − ∂xwS + ∂xM. (2.6.8)

The constitutive equations are

M =
1

β
∂xφ, (2.6.9)

V = ∂xw − φ, (2.6.10)

S =
1

γ
∂xu. (2.6.11)

The boundary conditions are the same as for the LLT beam model in Sub-
section 2.4.2.

It appears as if the system is still nonlinear but if the boundary conditions
for u and S does not involve the other variables, the system decouples and
(2.6.6) can be solved. For example, if u(0, t) = ∂xu(1, t) = 0 for (2.6.6), we
have a well posed problem.

Once u and S are known, Equations (2.6.7) and (2.6.8) constitutes a linear
system. We have forced vibrations due to the time dependent coefficients
∂xu and S.

2.6.2 Adapted linear Timoshenko model

In some realistic applications, ∂tP1 = 0 and then ∂tS = 0 if there is no
boundary forcing. Since S and ∂xu are then determined by the boundary
conditions, (2.6.1) and

0 = ∂xS + P1, , (2.6.12)

Model 1 above becomes a model for transverse vibration.
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Model 2 Adapted Timoshenko model

The resulting model is given by (2.6.12) and

∂2
tw = ∂xV + P2, (2.6.13)

1

α
∂2
t φ = (1 + ∂xu)V − S∂xw + ∂xM. (2.6.14)

It is a variation on the well-known Timoshenko beam model in Section 1.2.
The model is used for a vertical structure in Chapters 4 and 5.

Due to the scaling the forces and force densities are small but to neglect
the term ∂xw(·, t)S altogether may not be wise. However u′ = γS ≈ 1

4
S is

another matter and the approximation

(1 + γS)V ≈ V (2.6.15)

may be considered. This approximation is used in Section 4.2.

2.6.3 Nonlinear Timoshenko model of Sapir and Reiss

In [SR79] the authors derive a nonlinear Timoshenko beam model similar to
Model 2, however the nonlinearity arises due to the fact that they use (2.6.2)
as a constitutive equation.

Their aim was to study the transient motion of a buckled column using non-
linear Timoshenko beam theory. The authors provide a derivation for their
model in an appendix. They start with nonlinear plane strain displacement
relations and then make simplifying assumptions eventually leading to a non-
linear Timoshenko model.

In terms of the notation of this section they assume that ∂2
t umay be neglected

and that ∂xS = 0. Then they use the Hamiltonian to derive Equations
(A.15b) and (A.15c):

∂2
tw = S∂2

xw + ∂xV, (2.6.16)
1

α
∂2
t φ = V + ∂xM. (2.6.17)

Note that this model is linear if ∂xS = 0 and (2.6.5) is used. This is to be
expected from the way that the shear strain displacements are linearized in
the derivation of the model in [SR79]. However, in [SR79] it is assumed that

S =
1

γ
(∂xs− 1) =

1

γ

(
∂xu+

1

2
(∂xw)2

)
. (2.6.18)
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Since ∂xS = 0, it follows that

S =
1

γ
(u(1)− u(0)) +

1

2γ

∫ 1

0

(∂xw(·, t))2. (2.6.19)

The boundary conditions for the pinned-pinned case (or hinged ends) are

w(0, t) = ∂xφ(0, t) = w(1, t) = ∂xφ(1, t) = 0.

Remark The system of equations (2.6.16) and (2.6.17) follows from the local
linear Timoshenko model if the external transverse body force is zero, and
∂xS = 0. The derivation is based on the same assumptions as in Subsec-
tions 2.6.1 and 2.6.2 except that F2 is replaced by ∂xS + V .

Nonlinear fourth order Timoshenko beam equation

In [SR79] the authors preferred a single partial differential equation formu-
lation for the model, which they derived by eliminating V and φ. First,
eliminating the angular acceleration in (2.6.17) yields

∂4
tw − ∂2

t (S∂
2
xw)− ∂2

t ∂
2
xw + α∂xV + α∂2

xM = 0.

Now α∂xM = γ∂2
xφ = γ∂3

xw− γ∂2
xV so that V and its partial derivatives can

be eliminated using (2.6.16)

∂4
tw − ∂2

t (S∂
2
xw)− ∂2

t ∂
2
xw − γ∂2

x∂
2
tw + α∂2

tw

+γ(1 + S)∂4
xw − αS∂2

xw = 0. (2.6.20)

A nonlinear fourth order Timoshenko beam equation is also derived in [Aro01].
The author claims that the partial differential equation above is a special case
of his model.

Remark The nonlinear Timoshenko system is not equivalent to Equation
(2.6.20). If the pair (w, φ) is a solution of the system (2.6.16)-(2.6.17) and
sufficiently smooth, then w is a solution of (2.6.20). But, having a solution
of this partial differential equation does not enable one to compute the shear
force V or angle φ. The fourth order equation is not considered any further.

2.6.4 Beam models without shear

In this subsection, it is shown how a number of published models for beams
can be obtained from Models 1 and 2 by eliminating shear. Consider Model 1

40

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



and recall that dimensionless forces are small. Using the approximation
(2.6.15) in (2.6.8) yields

1

α
∂2
t φ = V + ∂xM − ∂xS. (2.6.21)

Combining this equation with (2.6.7) to eliminate V yields

∂2
tw −

1

α
∂2
t ∂xφ = ∂x(∂xwS)− ∂2

xM + P2. (2.6.22)

Now assume that φ = ∂xw, then M = 1
β
∂2
xw and substitution of both into

Equation (2.6.22) yields the nonlinear partial differential equation

∂2
tw −

1

α
∂2
t ∂

2
xw = ∂x(∂xwS)− 1

β
∂4
xw + P2, (2.6.23)

where the constitutive equation for S is (2.6.18).

This equation together with (2.6.6) (in Model 1) is the same as the system
in [LL91] to model longitudinal and transverse vibrations. The authors use
the nonlinear constitutive equation (2.6.18) for S.

A special case of the model in [LL91] is when ∂tP1 = 0 (as in Subsec-
tion 2.6.2). This is the case in [WFH01] where the transverse vibration
of a vertical structure is modelled and P1 is due to gravity.

2.7 Variational forms and existence of

solutions

As mentioned in the introduction, existence of solutions is considered in a
serious light. However, it is unknown whether an initial boundary value
problem for the LLT model is well-posed. To investigate the literature on ex-
istence theory for nonlinear partial differential equations of hyperbolic type,
is a project in its own right and beyond the scope of this thesis. For the
linear system existence and uniqueness of solutions of model problems are
considered in Section 2.8.

In this section the different model problems presented in Subsection 2.4.1 are
written in variational form. The variational form can be used for theory and
for finite element approximations.
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2.7.1 Local linear Timoshenko model

The variational form for the Local linear Timoshenko model is derived below.
It is derived as in Subsection 1.3.1 starting with the equations of motion.
There are three cases, formulated in Subsection 2.4.2.

Cantilever beam The forced boundary conditions for the test functions are
v(0) = z(0) = ψ(0) = 0 and the space of test functions is defined as

T1[0, 1] = {y ∈ C1 | y(0) = 0}.
The problem is to find the functions u, w and φ such that u(·, t), w(·, t) and
φ(·, t) are in T1[0, 1] for all t > 0 and the following hold∫ 1

0

∂2
t u(·, t)v = −

∫ 1

0

F1(·, t)v′ +
∫ 1

0

P1(·, t)v, (2.7.1)∫ 1

0

∂2
tw(·, t)z = −

∫ 1

0

F2(·, t)z′ +
∫ 1

0

P2(·, t)z, (2.7.2)∫ 1

0

1

α
∂2
t φ(·, t)ψ =

∫ 1

0

(1 + ∂xu(·, t))F2(·, t)ψ −
∫ 1

0

∂xw(·, t)F1(·, t)ψ

−
∫ 1

0

M(·, t)ψ′ (2.7.3)

for all 〈v, z, ψ〉 ∈ T1[0, 1]× T1[0, 1]× T1[0, 1].

Equations (2.7.1), (2.7.2) and (2.7.3) are the variational equations of mo-
tion. This together with Equations (2.4.11) to (2.4.18), produces the system
in variational form. For the model problem one must prescribe initial values
for u, w, φ, ∂tu, ∂tw and ∂tφ. Denote these by u0, w0, φ0, ud, wd and φd
respectively.

Pinned-pinned beam A space of test functions for a pinned-pinned beam
is defined as

T2[0, 1] = {y ∈ C1 | y(0) = y(1) = 0}.
The problem is to find the functions u, w and φ such that u(·, t), w(·, t) ∈
T2[0, 1] and φ(·, t) ∈ C1[0, 1] for all t > 0 and Equations (2.7.1), (2.7.2) and
(2.7.3) hold for all 〈v, z, ψ〉 ∈ T2[0, 1]× T2[0, 1]× C1[0, 1].

Pivoted beam

The problem is to find the functions u, w and φ such that u(·, t), w(·, t) ∈
T1[0, 1] and φ(·, t) ∈ C1[0, 1] for all t > 0 and Equations (2.7.1), (2.7.2) and
(2.7.3) hold for all 〈v, z, ψ〉 ∈ T1[0, 1]× T1[0, 1]× C1[0, 1].
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2.7.2 Linear approximation of the Local linear model

Again, for Model 1 the variational form for the Cantilever beam is derived.
The space of test functions is the same, T1[0, 1] = {v ∈ C1[0, 1] | v(0) = 0}.

Model problem 1 in variational form

Find the functions u, w and φ such that u(·, t), w(·, t) and φ(·, t) are all in
T1[0, 1] for all t > 0 and the following hold∫ 1

0

∂2
t u(·, t)v = −

∫ 1

0

S(·, t)v′ +
∫ 1

0

P1(·, t)v, (2.7.4)∫ 1

0

∂2
tw(·, t)z = −

∫ 1

0

V (·, t)z′ +
∫ 1

0

P2(·, t)z, (2.7.5)∫ 1

0

1

α
∂2
t φ(·, t)ψ =

∫ 1

0

(1 + ∂xu(·, t))V (·, t)ψ −
∫ 1

0

∂xw(·, t)S(·, t)ψ

−
∫ 1

0

M(·, t)ψ′ (2.7.6)

for all 〈v, z, ψ〉 ∈ T1[0, 1]× T1[0, 1]× T1[0, 1].

Equations (2.7.4), (2.7.5) and (2.7.6) are the variational equations of motion.
This together with the constitutive equations (2.4.16), (2.4.17) and (2.6.5)
produces the system in variational form.

For the model problem initial states must be prescribed as before.

2.7.3 Adapted Timoshenko model

The force S is uniquely determined by S ′ = −P1, with S(1) = 0. Since
u′ = γS and u(0) = 0, u is also known. This is now a linear model for
transverse vibration which is similar to the (standard) Timoshenko model in
Section 1.3. The space of test functions T1[0, 1] is the same as before.

Model problem 2 in variational form

Find the functions w and φ such that w(·, t) and φ(·, t) are in T1[0, 1] for all
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t > 0 and the following hold∫ 1

0

∂2
tw(·, t)v = −

∫ 1

0

V (·, t)v′ +
∫ 1

0

Q(·, t)v, (2.7.7)∫ 1

0

1

α
∂2
t φ(·, t)ψ =

∫ 1

0

(1 + γS)V (·, t)ψ −
∫ 1

0

∂xw(·, t)Sψ

−
∫ 1

0

M(·, t)ψ′ (2.7.8)

for all 〈v, ψ〉 ∈ T1[0, 1]× T1[0, 1].

Recall that the approximation (1 + γS)V ≈ V may be considered.

2.8 Weak variational form and existence for

the adapted Timoshenko model

The weak variational form for the adapted Timoshenko model is almost the
same as for the (standard) Timoshenko model.

Adding Equations (2.7.7) and (2.7.8) and using the approximation (2.6.15)
yields∫ 1

0

∂2
tw(·, t)v +

1

α

∫ 1

0

∂2
t φ(·, t)ψ =

∫ 1

0

V (·, t)(ψ − v′)−
∫ 1

0

S∂xw(·, t)ψ

−
∫ 1

0

M(·, t)ψ′ +
∫ 1

0

Q(·, t)v. (2.8.1)

Note the additional term containing the force S.

As in Subsection 1.3.2, let u denote the pair 〈w, φ〉 and define the following
bilinear forms.

For ui and vi in L2(0, 1),

c(u, v) =

∫ 1

0

u1v1 +

∫ 1

0

1

α
u2v2.
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For ui and vi in T1[0, 1],

b1(u, v) =

∫ 1

0

1

β
u′2v

′
2 +

∫ 1

0

(u′1 − u2)(v′1 − v2), (2.8.2)

b2(u, v) =

∫ 1

0

Su′2v2, (2.8.3)

b = b1 + b2.

Using the bilinear forms the variational Equation (2.8.1) can be written as

c(∂2
t u(·, t), v) + b(u(·, t), v) = (Q(·, t), v1), (2.8.4)

where (f, g) denote
∫ 1

0
fg.

To write the model problem in weak variational form, suitable function spaces
are needed, defined in Subsection 1.3.2. Recall the spaces X, W and V with
their properties.

Note that in this subsection the inner product for the space V is b1 instead
of b. The norm ‖ · ‖V is defined by ‖u‖V =

√
b1(u, u).

Notation Let qX be the mapping t→ 〈Q(·, t), 0〉.

Problem in weak variational form Find u such that for each t > 0,
u(t) ∈ V , u′(t) ∈ V , u′′(t) ∈ W and

c(u′′(t), v) + b(u(t), v) = (qX(t), v)X for each v ∈ V, (2.8.5)

with u(0) = u0 = 〈w0, φ0〉 and u′(0) = ud = 〈wd, φd〉.

Existence of a unique weak solution for the problem

For the adapted Timoshenko beam problem the bilinear form b is not neces-
sarily symmetric. Therefore the theory in [VV02] cannot be applied to the
problem. However, it became known recently that the problem is solvable
under certain conditions.

An improvement on the work in [VV02] has been accepted for publication in
2018. In this article, [VS19], it is shown that the symmetry of b is not nec-
essary provided that |b2(u, v)| ≤ k‖u‖V ‖v‖W . As an application the authors
used a mathematical model that is referred to as the adapted Timoshenko
model in this thesis.
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2.9 Connection between the constitutive equa-

tions and three-dimensional elasticity

The constitutive equations for the LLT model are (2.4.3), (2.4.4) and (2.4.7)
in Subsection 2.4.1. Recall that Equation (2.4.7) is Hooke’s law in its simplest
form. In this section the aim is to provide some justification for (2.4.3) and
(2.4.4).

2.9.1 Equilibrium problem

Recall the set R of arbitrary thickness b− a used to derive the conservation
laws for the one-dimensional model in Subsection 2.2.4. Now suppose that
the thickness δ = b − a is extremely small and refer to it as the disc ∆. It
will be shown that for δ small and small strain, a solution of the equations
of motion satisfies the equilibrium equations.

Recall that FΣ denotes the resultant force due to traction on Σ, the boundary
of ∆. It is easy to show that there exists a positive constant K such that
‖FΣ‖ ≤ Kδ. The proof is the same as the proof of the action reaction
principle in the theory of Continuum Mechanics. It follows that∥∥∥∥∫

R
divT dV

∥∥∥∥ ≤ Kδ, (2.9.1)

where T denotes the stress tensor in the current configuration. Consequently,
in the limit

divT = 0. (2.9.2)

The constitutive equations can be “derived” by “solving” the Equilibrium
problem (2.9.2) with suitable boundary conditions.

Recall that (by assumption) every cross-section executes a rigid rotation
where the normal vector ēx is rotated through the angle φ(x, t). The dis-
placement of ∆ can be broken up into three stages. First the centroid of Σa

is moved to r̄0(a, t), then ∆ is rigidly rotated through the angle φ(a, t) and
lastly it is allowed to undergo deformation. Consider bending and shear of
the disc ∆ where a couple and shear force is applied at the surfaces (cross-
sections) Σa (where x = a) and Σb (where x = b).
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To formulate the equilibrium problem the local reference system determined
by the cross-section Σa is used. The coordinates are determined by the unit
vectors

ê1 = ex(a, t) = cosφ(a, t)ē1 + sinφ(a, t)ē2,

ê2 = ey(a, t) = − sinφ(a, t)ē1 + cosφ(a, t)ē2,

ê3 = ēz = ē3.

The reference configuration ∆ is the set of points (x1, x2, x3) where

0 ≤ x1 ≤ δ

and (x2, x3) in the corresponding cross-section. Assume that ∆ is prismatic,
i.e. the cross-sections through ∆ orthogonal to ê1 are all the same. Let h
denote the diameter of the cross-section in the direction of ê2.

The assumption is made that the strains are sufficiently small to justify the
application of the infinitesimal theory of linear elasticity. As a consequence,
the stress tensor T in the current configuration is approximately the same as
in the reference configuration ∆.

The equilibrium equations are

∂1σ11 + ∂2σ12 + ∂3σ13 = 0,

∂1σ21 + ∂2σ22 + ∂3σ23 = 0, (2.9.3)

∂1σ31 + ∂2σ32 + ∂3σ33 = 0.

By Hooke’s law the infinitesimal strain is

E =
1 + ν

E
T − ν

E
tr(T ) I.

A displacement field ū must satisfy in the interior of ∆: the equilibrium
equations, Hooke’s law and the definition of infinitesimal strain.

Recall that the boundary of ∆ is divided into three parts: the cross-sections
Σa, Σb and the outer surface Σab where the normal n̄ is orthogonal to ê1.
The boundary conditions are

ū = 0̄ on Σa

T ê1 6= 0 on Σb,

T n̄ = 0 on Σab.
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For a unique solution T ê1 must be specified at each point of Σb. However,
there is not enough information. T ê1 must result in a shear force and a
couple with moment Mê3 to comply with the assumptions made for the one-
dimensional model.

2.9.2 Trial solution

Recall that the axial strain is split: ε = εs + εB. In the analysis that follows
the only concern is with the bending stress EεB which is simply denoted by
σ. For a trial solution, assume plane stress

T =

 σ τ 0
τ 0 0
0 0 0

 . (2.9.4)

Using Hooke’s law

E =
1 + ν

T
S − ν

E
tr(T ) I,

we obtain the strain components:

ε11 =
σ

E
,

ε12 =
(1 + ν)τ

E
, (2.9.5)

ε22 = −νε11.

(Note that ε11 = εB.)

Recall the assumption that the cross-sections remain plain. For a trial solu-
tion, assume the following displacement in terms of functions d and ψ:

u1(x̄) = −x2 sinψ(x1),

u2(x̄) = d(x1) + x2 cosψ(x1)− x2, (2.9.6)

u3(x̄) = 0.

Note that ū(0̄) = 0̄ if d(0) = 0 and ψ(0) = 0 and hence the boundary
condition on Σa is satisfied.

The linear approximation of the displacement is

U =

 −x2(cosψ) ψ′ − sinψ 0
d′ − x2(sinψ) ψ′ cosψ − 1 0

0 0 0

 .
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Assume that ψ is sufficiently small so that cosψ ≈ 1 and sinψ ≈ ψ, then

U =

 −x2 ψ
′ −ψ 0

d′ − x2 ψψ
′ 0 0

0 0 0

 .
Since hψ′ and hence x2ψ

′ are small, it may be assumed that

U =

 −x2 ψ
′ −ψ 0

d′ 0 0
0 0 0

 .
By the definition of infinitesimal strain

E =
1

2
(U + U t),

=
1

2

 −2x2 ψ
′ d′ − ψ 0

d′ − ψ 0 0
0 0 0

 (2.9.7)

and consequently

ε11 = −x2 ψ
′,

ε12 =
1

2
(d′ − ψ)). (2.9.8)

A problem is that the trial solution does not satisfy Hooke’s law: there is a
discrepancy regarding ε22. Using the supposed displacement (trial solution),
ε22 = 0 in (2.9.7) contradicting Equation (2.9.5).

A minor change to the trial solution (in (2.9.6)) is made:

u2(x̄) = d(x1) + x2 cosψ(x1)− x2 −
ν

2
x2

2ψ
′(x1). (2.9.9)

It is assumed that ψ′′(x1) = 0. The result is that ε22 = −νε11 (as required)
while ε12 does not change.

Combining Equations (2.9.5) and (2.9.8) yields

σ(x1, x2) = − Ex2 ψ
′(x1), (2.9.10)

τ(x1, x2) =
E

2(1 + ν)
(d′(x1)− ψ(x1)) = G(d′(x1)− ψ(x1)). (2.9.11)

49

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The solution must satisfy the equilibrium equations, i.e. it is necessary to
prove that (2.9.3) holds. Now,

∂1σ + ∂2τ = −Ex2ψ
′′ (2.9.12)

and

∂1τ = G(d′′ − ψ′). (2.9.13)

Therefore, ∆ is in equilibrium if

d′′ − ψ′ = 0 and ψ′′ = 0. (2.9.14)

It is now necessary to relate d′, ψ and ψ′ to θ, φ and φ′. Recall that (by
assumption) the displacement of ∆ can be broken up into three stages. First
the centroid of Σa is moved to r̄0(a, t), then ∆ is rigidly rotated through the
angle φ(a, t). At this stage ēτ (a, t) = ēx(a, t), i.e. φ(a, t) = θ(a, t).

Now consider the deformation of ∆. It follows from (2.9.14) that d′(x)−ψ(x)
and ψ′(x) are constant. The contribution d′(x) to the strain is due to the
additional rotation θ(b, t)− θ(a, t) of the neutral plane: d′(x) = tan(θ(b, t)−
θ(a, t)) ≈ θ(b, t)− θ(a, t).

The angle ψ(b) is easily seen to be φ(b, t) − φ(a, t). It follows that d′(x) −
ψ(x) = θ(b, t)−θ(a, t)−φ(b, t)+φ(a, t) = θ(b, t)−φ(b, t). Clearly ∂xφ(x, t) =
ψ′(x).

As mentioned, the boundary condition on Σa is satisfied. On Σb it is only
required that the traction be equivalent to a couple and a shear force. By
(2.9.4) the traction on Σb is t̄ = σê1 + τ ê2. It is the same for every cross-
section. Therefore, for any cross-section D of ∆,∫

D
σ dA = 0

and hence it results in a couple:∫
D

(x1ê1 + x2ê2)× σê1 dA = Eφ′(x1)

∫
D
x2

2e3 dA.

Consequently, the constitutive equation (2.4.3) becomes:

M = M3 = EIφ′. (2.9.15)
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Remark It follows from (2.9.10) and (2.9.15) that

M

EI
= φ′ =

σ

−Ex2

.

Compare this to the “well known formula” presented in Subsection 2.4.2.

For the shear force V ê2,

V =

∫
D
τ dA = AG(θ − φ).

This is constitutive equation (2.4.4) except for the correction factor κ2. To
understand this, it is necessary to reconsider the rotation of the cross-sections.
It follows from (2.9.4) that the traction on Σab is τn2ê1 and
τ(x̄) = G(d′(x1) − ψ(x1)). This contradicts the prescribed boundary con-
dition on Σab, i.e. T n̄ = 0̄. To fix this, it is necessary to allow warping of the
cross-sections.

2.9.3 Warping of a cross-section

A correction term must be super-imposed on the displacement ū (defined in
(2.9.6) and (2.9.9)). Recall that

u1(x̄) = −x2 sinψ(x1),

u2(x̄) = d(x1) + x2 cosψ(x1)− x2 −
ν

2
x2

2ψ
′(x1),

u3(x̄) = 0.

To allow for the warping of a cross-section the displacement w̄ is introduced
where

w1(x̄) = u1(x̄) + χ(x2, x3)

but w2 = u2 and w3 = u3.

As a result the linear approximation U changes to

U =

 −x2(cosψ) ψ′ − sinψ + ∂2χ ∂3χ
d′ − x2(sinψ) ψ′ cosψ − 1 0

0 0 0

 .
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The strain tensor is now given by

E =
1

2

 −2x2 ψ
′ d′ − ψ + ∂2χ ∂3χ

d′ − ψ + ∂2χ 0 0
∂3χ 0 0

 (2.9.16)

and the stress tensor changes to

Tw = T + Tχ =

 σ τ 0
τ 0 0
0 0 0

+
G

2

 0 ∂2χ ∂3χ
∂2χ 0 0
∂3χ 0 0

 . (2.9.17)

Since σ and τ satisfy (2.9.12) and (2.9.13), it follows that χ satisfies Laplace’s
equation,

∂2
2χ+ ∂2

3χ = 0.

The boundary condition for χ is n2(τ + ∂2χ) + n3∂3χ = 0.

Unfortunately the boundary value problem does not have a unique solution
(as is well known). Consequently another assumption, maybe more, must be
made. The theory in [Cow66] is similar but not the same. He also reduced the
problem at hand to a three-dimensional static problem but in a completely
different way. (For one, he did not consider an infinitesimally thin disc.)
To obtain a solution, more assumptions were introduced. As stated at the
end of Section 2.1, the constitutive equations adapted from the Timoshenko
theory is the modelling assumption for the LLT model and in Section 2.9 the
aim is merely to investigate the connection between this theory and three-
dimensional elasticity. Interestingly, it is mentioned in [LA12] that after
solving a beam model problem, “three-dimensional displacement, stress and
strain distributions can be conveniently carried out in a post processing by
the use of ‘warping functions’”.
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Chapter 3

Finite element analysis of the
Local Linear Timoshenko beam
model

3.1 Scope of the study

In this chapter the aim is to determine the applicability of the Local Linear
Timoshenko beam model (LLT model). The equations of motion and the
constitutive equations are given in Section 2.4 by equations (2.4.8) to (2.4.10)
and (2.4.16) to (2.4.18) respectively. For the model to be useful, it must be
possible to formulate the well-posed problems.

Model problems

Using the linear theory as a guide, three “well formulated” problems were
posed in Subsection 2.4.2. Recall that the problems were for a cantilever
beam, a pinned-pinned beam and a pivoted beam. There is reason to believe
that these problems are well-posed.

Existence and uniqueness

As mentioned, we are not aware of any results regarding the well-posedness
of the relevant problems or closely related problems. For the present we have
to rely on numerical experiments to see if the model yields acceptable results.
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Using a finite element approach, a semi-discrete problem is formulated in
Section 3.2. To solve this problem an algorithm was developed to simulate
oscillations. This was quite challenging since the dynamics is determined by
11 equations and not the usual system of partial differential equations.

The first experiments, in Section 3.3, are to show that the finite element
approximations converge. The approximations obtained for small vibrations
in the nonlinear model are compared to the exact solution of the linear model
when available. Convergence experiments for large oscillations were also
conducted.

The experiments thereafter are to compare the approximate solutions for
the LLT model to that of the classical Timoshenko model. This is done in
Subsection 3.4.1. In Subsection 3.4.2 a model problem is investigated where
the linear theory is not applicable but the LLT model is. The beam was
set in motion through forcing. A range of situations were found where the
strains remained small but the nonlinear model differed significantly from
the linear one.

The theory is incomplete at this stage; however, a numerical method based on
finite elements has been developed and the results are more than satisfactory.

3.2 Finite element approximation

In this section it is assumed that the initial boundary value problems which
originate from the LLT model are well-posed and hence we proceed to derive
an algorithm to compute approximate solutions for each of the three model
problems. Recall that the problems are presented in variational form in
Subsection 2.7.1. The Galerkin approximation is formulated in Subsections
3.2.1 and 3.2.2 and lastly the problem is presented as a system of ordinary
differential equations in Subsection 3.2.3.

3.2.1 Formulation of the semi-discrete problem

Equations (2.7.1), (2.7.2) and (2.7.3) are the variational equations of mo-
tion. This, together with Equations (2.4.11) to (2.4.18) present the system
in variational form.
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Let Sh denote a finite dimensional subspace of H1(0, 1) ∩ C[0, 1]. Also, let
Sh1 and Sh2 be subspaces of Sh where f ∈ Sh1 implies f(0) = 0 and f ∈ Sh2
implies f(0) = f(1) = 0. Denote the approximations of u, w and φ by uh,
wh and φh respectively.

Cantilever beam Note that the ranges of the functions uh, wh and φh are
in Sh1 , while the ranges of the functions F h

1 , F h
2 and Mh are in Sh.

The Galerkin approximation of the problem is given by∫ 1

0

∂2
t uhv = −

∫ 1

0

F h
1 v
′ +

∫ 1

0

P1v, (3.2.1)∫ 1

0

∂2
twhz = −

∫ 1

0

F h
2 z
′ +

∫ 1

0

P2z, (3.2.2)∫ 1

0

1

α
∂2
t φhψ =

∫ 1

0

(1 + ∂xuh)F
h
2 ψ −

∫ 1

0

∂xwhF
h
1 ψ

−
∫ 1

0

Mhψ′, (3.2.3)

for arbitrary functions v, z and ψ in Sh1 .

For each of the other cases the variational form of the Cantilever beam model
is referred to and the differences due to the boundary conditions are stated.

Pinned-pinned beam The ranges of the functions uh and wh are in Sh2
while the range of φh is in Sh. Equations (3.2.1), (3.2.2) and (3.2.3) hold for
arbitrary v and z in Sh2 and ψ in Sh.

Pivoted beam The functions uh and wh have their ranges in Sh1 and φh
its range in Sh. In this case Equations (3.2.1), (3.2.2) and (3.2.3) hold for
arbitrary v and z in Sh1 and ψ in Sh.

In theory Equations (2.4.11) to (2.4.18) may be used to calculate F h
1 and F h

2

but in actual practice many difficulties arise. Consider for example Equation
(2.4.13). For the finite dimensional approximation it becomes

(∂xsh)
2 = (1 + ∂xuh)

2 + (∂xwh)
2. (3.2.4)

If Sh consists of piecewise polynomial functions, then ∂xs
h will not be a

piecewise polynomial at all. One possibility is to use the equation only at the
nodes. These and other difficulties will be dealt with in the next subsection.
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3.2.2 Piecewise linear basis functions

For the rest of this section Sh is assumed to be the space of C0 piecewise linear
functions. The interval [0, 1] is divided into n elements of equal length and
the nodes are numbered from 0 to n. Let Sh be the span of the continuous
piecewise linear basis functions δi, for i = 0, 1, ..., n. Sh1 denotes the span
of the same basis functions but without δ0 while Sh2 spans the same basis
functions but without δ0 and δn. (See e.g. [SF73, Section 1.5] or [OR76,
Section 6.5].)

Cantilever∫ 1

0

∂2
t uhδi = −

∫ 1

0

F h
1 δ
′
i +

∫ 1

0

P1δi for i = 1 to n, (3.2.5)∫ 1

0

∂2
twhδi = −

∫ 1

0

F h
2 δ
′
i +

∫ 1

0

P2δi, for i = 1 to n, (3.2.6)∫ 1

0

1

α
∂2
t φhδi =

∫ 1

0

(1 + ∂xuh)F
h
2 δi −

∫ 1

0

∂xwhF
h
1 δi

− 1

β

∫ 1

0

∂xφhδ
′
i, for i = 1 to n. (3.2.7)

The moment Mh was replaced by 1
β
∂xφh but a different approach is required

for the force F h as is explained in the next subsection.

A problem with Equation (3.2.4) is that ∂xuh(·, t) and ∂xwh(·, t) are discon-
tinuous at the nodes. We define functions ghu(t) and ghw(t) in C([0, T ];Sh) to
approximate ∂xu(·, t) and ∂xw(·, t): for uh(·, t) and wh(·, t) in Sh1∫ 1

0

ghu(t)δi =

∫ 1

0

∂xuh(·, t)δi for i = 0 to n, (3.2.8)∫ 1

0

ghw(t)δi =

∫ 1

0

∂xwh(·, t)δi for i = 0 to n. (3.2.9)

Note that ghu(t) and ghw(t) are C0 piecewise linear functions for each t. It
follows from (3.2.4) that an approximation for the derivative of the arc length
function is dhs ∈ C([0, T ];Sh) where

(dhs )
2 = (1 + ghu)2 + (ghw)2. (3.2.10)

For computational purposes the interpretation is that

dhs (xi, t) =
√

(1 + ghu(xi, t))2 + (ghw(xi, t))2;
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the equality holds only at the nodes. The same interpretation is made for
Equations (3.2.11) to (3.2.14) below.

Next, it is necessary to define θh, an approximation for θ. First, define
functions shθ and chθ :

shθ (t) =
ghw(t)

dhs (t)
, (3.2.11)

chθ (t) =
ghu(t)

dhs (t)
. (3.2.12)

Next, use both the functions shθ and chθ to define θh in C([0, T ];Sh) uniquely:

sin(θh) = shθ and (3.2.13)

cos(θh) = chθ . (3.2.14)

The constitutive equations for Vh and Sh in
(
[0, T ], Sh

)
are obviously

Vh = θh − φh and (3.2.15)

Sh =
1

γ
(dhs − 1), (3.2.16)

from (2.4.17) and (2.4.18).

Finally, in theory, F h
1 and F h

2 are defined by (using (2.4.11) and (2.4.12))

F h
1 = Sh cosφh − Vh sinφh and (3.2.17)

F h
2 = Sh sinφh + Vh cosφh. (3.2.18)

The right hand sides of (3.2.17) and (3.2.18) are substituted into the integrals
in (3.2.5) and (3.2.6).

Recall that initial conditions u0, w0, φ0, ud, wd and φd are given for the model
problem and need not be in the subspace. The initial conditions uh0 , wh0 , φh0 ,
uhd , w

h
d and φhd in the subspace must be chosen. For the simulations in this

chapter interpolants are used. For example uh0 is the interpolant of u0.

3.2.3 System of Ordinary differential equations

It is important to note that uh may be considered as a mapping from the
real line into Sh1 or as a function of two variables.
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From the finite element approximation in the previous subsection a system
of ordinary differential equations is derived.

As before, consider the cantilever beam first. Recall that Sh is the span of
the set of basis functions {δ0, δ1, · · · , δn} and Sh1 is the span of the set of
basis functions {δ1, δ2, · · · , δn}. It is convenient to introduce the following
transformations. For any x̄ ∈ Rn+1, let

T hx̄ =
n∑
i=0

xiδi ∈ Sh

and for any x̄ ∈ Rn, let

T h1 x̄ =
n∑
i=1

xiδi ∈ Sh1 .

The mappings Th and T h1 are obviously linear bijections. Consequently, cor-
responding to a function w with values in Sh, define a function w̄ with values
in Rn+1 by

w̄(t) = (T h)−1w(t).

Note that w is differentiable if and only if wj is differentiable for each j and

d

dt

(
n∑
j=0

wj(t)δi

)
=

n∑
j=0

w′j(t)δi.

The same is true for the second order derivative.

Similarly, for a function w with values in Sh1 , define a function w̄ with values
in Rn by

w̄(t) = (T h1 )−1w(t).

Now, consider Equation (3.2.1). Define the function ū ∈ C([0, τ ];Rn) as

ū(t) = (T h1 )−1uh(t).

An ordinary differential equation for ū is then derived from Equation (3.2.1).
The following matrices will be used. For i = 0, · · · , n and j = 0, · · · , n:

Mij = (δj, δi), Kij = (δ′j, δ
′
i) and Lij = (δj, δ

′
i), (3.2.19)

Let A be a matrix representing M , K or L. The following notation is intro-
duced:

A = Aij, i = 0, · · · , n and j = 0, · · · , n,
A0 = Aij, i = 1, · · · , n and j = 1, · · · , n,
Ar = Aij, i = 1, · · · , n and j = 0, · · · , n,
Ac = Aij, i = 0, · · · , n and j = 1, · · · , n. (3.2.20)
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Consider for example Equation (3.2.1). It is obvious how to treat the term
on the left and the last term. For the first term on the right, one may define
a function Ḡ1 by[

Ḡ1

]
i
(t) =

∫ 1

0

F h
1 (·, t)δ′i, i = 1, 2, · · · , n, (3.2.21)

where F h
1 is defined by (3.2.17) (in theory but not in practice). Therefore it

is necessary to compute an approximation for F h
1 .

Equation (3.2.2) is treated similarly.

Calculation of approximations for forces

First, ghu and ghw are defined by (3.2.8) and (3.2.9) respectively. Therefore
ḡu(t) = (T h)−1ghu(t) and ḡw(t) = (T h)−1ghw(t) are given by

Mḡu(t) = Lcū(t), (3.2.22)

Mḡw(t) = Lcw̄(t). (3.2.23)

Next, the approximation for the derivative of the arc length function dhs is
defined by (3.2.10). Rather interpolate, using the components of d̄s, ḡu and
ḡw. Bear in mind that the components of ḡu and ḡw are the nodal values of
ghu and ghw. Thus d̄s is defined by

ds,i(t) =
√

(1 + gu,i(t))2 + (gw,i(t))2. (3.2.24)

Note that T hd̄s(t) 6= dhs (t) but it will be an approximation.

Next, the functions s̄θ, c̄θ and θ̄ are defined. Recall that the finite element
approximations for the composite functions cos(θh) and sin(θh) are denoted
by chθ and shθ and defined by Equations (3.2.11) and (3.2.12). Again, use

interpolation so that: sθ,i(t) =
gw,i(t)

ds,i(t)
and cθ,i(t) =

gu,i(t)

ds,i(t)
. (T hs̄θ 6= shθ but

it is an approximation.)

To θh(t) corresponds θ̄(t). Use sin(θi(t)) = sθ,i(t) and cos(θi(t)) = cθ,i(t) to
define θi(t) uniquely.

It is now possible to consider the constitutive equations (3.2.15) and (3.2.16).
Instead of calculating V h and Sh, calculate V̄ and S̄ with the idea that T hS̄
and T hV̄ can be used. Consequently, the following is used:

V̄ (t) = θ̄(t)− φ̄(t),

S̄(t) =
1

γ
(d̄s(t)− 1).
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Note that φ̄ ∈ Rn but θ̄ ∈ Rn+1 and θh(0) is not necessarily zero. Therefore,
add a first component to φ̄ which is zero to ensure that the dimensions of θ̄
and φ̄ correspond.

The approximations

F h
1 = (T hS̄)(T hc̄θ)− (T hV̄ )(T hs̄θ) and (3.2.25)

F h
2 = (T hV̄ )(T hc̄θ) + (T hS̄)(T hs̄θ) (3.2.26)

are used in (3.2.1), (3.2.2) and (3.2.3) to derive a system of ordinary differ-
ential equations for ū, w̄ and φ̄. Recall that a function Ḡ1 is defined by

[
Ḡ1

]
i
(t) =

∫ 1

0

F h
1 (·, t)δ′i, i = 1, 2, · · · , n,

where F h
1 is defined by (3.2.25). Define a function P̄1 by

P1,i(t) =

∫ 1

0

P1(·, t)δi, i = 1, 2, · · · , n.

Similarly, the differential equations for w̄ and φ̄ may be derived. The follo-
wing system is to be solved:

M0ū
′′ = Ḡ1 + P̄1, (3.2.27)

M0w̄
′′ = Ḡ2 + P̄2, (3.2.28)

1

α
M0φ̄

′′ = Ḡu − Ḡw −
1

β
Kφ̄, (3.2.29)

where Ḡu and Ḡw are defined by

[
Ḡu

]
i
(t) =

∫ 1

0

F h
2 g

h
uδi, (3.2.30)

[
Ḡw

]
i
(t) =

∫ 1

0

F h
1 g

h
wδi, (3.2.31)

for i = 1, 2, · · · , n.

Finally, T hū, T hw̄ and T hφ̄ are considered to be the approximations for u,
w, and φ. To be precise, define uh(·, t) = T hū(t) and similarly for wh and φh.

Finite differences

To solve the system of ordinary differential equations we make use of central
difference approximations for Equations (3.2.27), (3.2.28) and (3.2.29). At
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each time step the procedure in this section is used. The known values for
ūk and w̄k are used in (3.2.22) and (3.2.23) and s̄k, c̄k and θ̄k are computed.
Note that V̄k = θ̄k − φ̄k. The discrete version of (3.2.27) to (3.2.29) is used
to compute ūk+1, w̄k+1 and θ̄k+1.

For the first step we use a predictor corrector procedure.

3.3 Numerical experiments for convergence

After some consideration of the algorithm we concluded that it may be a
formidable task to derive error estimates and prove convergence of an ap-
proximation; certainly beyond the scope of this preliminary investigation.

Due to the absence of convergence theory, numerical experiments are used
to show convergence. For a fixed number of elements the finite difference
approximations behaved as expected. Care was taken with each experiment
to ensure that the number of time steps were sufficient to ensure that the
errors generated through finite difference approximations are negligible. The
same procedure is followed for all the experiments in this section.

For the convergence experiments the system of differential equations in Sub-
section 3.2.3 is considered for small and large motions regardless of whether
the strains are small.

The algorithm is not compared to other algorithms and there is no numerical
theory that we wish to vindicate by these numerical experiments. Inspection
of the graphs for deflection and angle of rotation for different number of
elements is considered sufficient.

3.3.1 Small vibrations

For small displacements it is possible to compare the approximations ob-
tained by this model to those for the linear Timoshenko model. The focus
will be on the transverse motion of the beam. As such, results are mainly
shown for w.

Consider the free vibration of a pinned-pinned beam. Note that for free
vibration P1 = P2 = 0. In the first experiment a pinned-pinned beam with
an initial displacement is considered. The exact solution of the linear model
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is known. It is reasonable to expect that the linear and nonlinear models
will compare well if the initial disturbance is sufficiently small. The exact
solution is used to establish whether the numerical results obtained for the
non-linear model agree with our expectation as well as to show convergence.

In Subsection 1.2.3 the use of separation of variables for the Timoshenko
beam is discussed and the eigenvalues and eigenfunctions for a cantilever
beam are calculated. Any natural mode of vibration is a classical solution of
the model problem with natural angular frequency

√
λk = ωk.

For the pinned-pinned beam the eigenvalues are the solutions of Equations
(21) and (22) on page 63 in [VV06]. The system consists of a linear and a
quadratic equation which is easy to solve. For each eigenvalue λk there is a
corresponding real number Ak and the eigenfunctions that correspond to λk
are 〈sin kπx,Ak cos kπx〉. An exact solution of the linear model is

wE(x, t) = c cos(ωkt) sin(kπx),

φE(x, t) = c cos(ωkt)Ak cos(kπx).

Experiment 1: Comparison to the exact solution of the linear model

Consider the first mode of the linear Timoshenko beam model. For the case
α = 1200, the first mode consists of the eigenvalue λ = 0.3119 (correct to
4 decimals) with corresponding eigenfunction 〈sin πx,A cos πx〉, where A =
π2 − λ
π

. The period of the solution is 2π/
√
λ which is approximately 4π. We

anticipate that the corresponding solution of the non-linear problem will be
approximately periodic with a period close to the linear model.

The initial condition must be chosen appropriately and therefore a multiple
of the eigenfunction is used. (Initially the boundary conditions will be sa-
tisfied automatically.) The same initial condition is used for the non-linear
problem. The beam is started from rest. For the linear model there is no
axial displacement u, therefore we choose u(x, 0) = 0. The initial conditions
are

w(x, 0) = c sin(πx),

φ(x, 0) = cA cos(πx),

u(x, 0) = ∂tw(x, 0) = ∂tφ(x, 0) = ∂tu(x, 0) = 0,

where the constant c has to be specified. Note that c determines the magni-
tude of the initial displacement. It must be sufficiently small for the strains
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to be small, so we choose c = 0.001. The strains are calculated in the initial
shape of the beam to verify that they are small. (Recall the discussion in
Subsection 2.4.2.) Since φ′(x) = −πcA sin πx it follows that

max |φ′(x)| = |c(π2 − λ)| ≤ π2 × 10−3.

From the initial condition it follows that w′(x) = πc cos πx and
φ(x) = cA cos πx and hence

max |w′ − φ| = |c(π − A)| = cλ

π
< 10−4.

Finally, since u′ = 0, it follows that (s′)2 = (w′)2 + 1 and

max |s′ − 1| =
√

1 + (πc)2 − 1 ≤ 1

2
(π × 10−3)2.

From these calculations it is clear that the initial strains are sufficiently small.
For the modal solution the stresses cannot be larger at any given time.

The experiment consists of two parts. First, convergence is shown - both
the deflection and angle of rotation curves for 8, 16, 32 and 64 elements were
compared. The results obtained for the deflection of the beam are displayed
in Figure 3.1.

Relative differences at x = 0.5 were calculated and the results are given
below. (Take note of the scale on the vertical axis.) The approximations
with n elements are denoted by wn and the following is calculated:

w4n(0.5)− w2n(0.5)

w2n(0.5)− wn(0.5)
,

where wk(0.5) denotes the value of w at x = 0.5 for T = 2π. The results are

w32(0.5)− w16(0.5)

w16(0.5)− w8(0.5)
= 0.25,

w64(0.5)− w32(0.5)

w32(0.5)− w16(0.5)
= 0.333.

Note that the ratios of the differences are less than
1

2
. These results are

sufficient to suggest convergence for the pinned-pinned model. (One may
conjecture that the order of convergence could be better than order h.)
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Figure 3.1: Deflection w for T = 2π, α = 1200

Remark Different final times were considered but only T = 2π (approx-
imately half a period) is displayed. In Figure 3.2 a part of Figure 3.1 is
enlarged to see the results more clearly.

Figure 3.2: Deflection w for T = 2π, α = 1200 (Enlarged)

Next, the approximation of the solution of the nonlinear problem and the
exact solution of the linear model are compared. The values α = 1200,
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T = 2π, n = 32 and c = 0.001 are used. The results for the deflection of the
beam are shown in Figure 3.3.

Figure 3.3: Linear v.s. Nonlinear deflection w: T = 2π, α = 1200

Remark The “difference” at the endpoints of the deflection curves (as seen
in Figure 3.3) is due to zero boundary values not being present in numerical
computations.

Again, the part of the graph where the most significant difference can be
observed is enlarged and the result is shown in Figure 3.4. From this figure
one can see that the difference between the numerical approximation for 32
elements and the exact solution of the linear problem is less than 0.2× 10−4.
(Take note of the scale on the vertical axis in Figure 3.4.)

If one assumes that the linear model is valid, then it is clear from the exper-
iment that the numerical approximations for the nonlinear model converge.
On the other hand, if one assumes that the non-linear model is valid because
it has less assumptions and is derived rigorously, then the results show that
the linear model gives a good approximation for small disturbances.
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Figure 3.4: Linear v.s. Nonlinear deflection w (Enlarged)

3.3.2 Forced vibration

Consider a Cantilever beam with α = 1200, set in motion by the load P2 =
c sin(ωt)x with ω = 1 and c = 0.1 while P1 = 0. The initial conditions
u(x, 0), w(x, 0), φ(x, 0) and their time derivatives are all zero.

Experiment 2: Convergence for a Cantilever beam with load

Since the load is large it causes very large oscillations. The results are not
realistic from a modelling perspective but the objective was to study conver-
gence for large solutions. The results displayed are for T = 2π. (The final
time T is chosen such that it is the period of the load.)

Approximations were obtained for 8, 16, 32 and 64 elements. The results for
the deflection of the beam and the angle of rotation can be seen in Figure
3.5 and Figure 3.6 respectively.
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Figure 3.5: Forced vibration: Deflection w for T = 2π, α = 1200

Figure 3.6: Forced vibration: Angle of rotation φ for T = 2π, α = 1200

To better see the results, a part of Figure 3.5 was enlarged, this can be seen
in Figure 3.7. Similarly, the part of Figure 3.6 where the largest differences
were observed (i.e. 0.84 < x < 0.94) was also enlarged and the results are
shown in Figure 3.8. (Note the scale on the axes.)
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Figure 3.7: Forced vibration: Deflection w (Enlarged)

Figure 3.8: Forced vibration: Angle of rotation φ (Enlarged)

A notable improvement is observed when using 16 elements instead of 8.
Thereafter the results changes slightly. The difference between the results
using 32 elements and 64 elements is more or less 0.003 at both the left and
right end-points of the subinterval. This gives an error of less than 0.3%.

Consider the same experiment but with a final time T = 11π. The following
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results were obtained.

Figure 3.9: Forced vibration: Deflection w for T = 11π

A part of Figure 3.9 is enlarged in Figure 3.10 for closer inspection.

Figure 3.10: Forced vibration: Deflection w for T = 11π (Enlarged)

Considering the scale on the vertical axis it is clear that the approxima-
tions obtained using 8 and 64 elements respectively, are surprisingly close
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to one another. Doing similar calculations as in the previous subsection, it
was found that the ratios of differences are less than 1/2. Repeating this
experiment for the different values of ω, c and final times T produces similar
results.

Considering the outcome of the preliminary experiment it is reasonable to
assume that the approximations converge. More comprehensive experiments
are part of future work.

3.4 Applicability of the Local Linear Timo-

shenko model

In this section the aim is to show that there exists situations where the
LLT model is applicable but the linear model not. To establish this we first
determine when solutions for these models differ significantly. However, it
is required that the beam strains remain acceptable, i.e. the strains θ − φ,
∂xs − 1 and ∂xφ are required to be small as discussed in Section 2.4.2 and
briefly in the previous section. (Recall that ∂xφ may be an order larger than
other strains, depending on the value of α.)

Two experiments are considered in this section. In Subsection 3.4.1 the LLT
model for a pinned-pinned beam is compared with the exact solution of the
linear model and in Subsection 3.4.2 the forced vibration of a cantilever beam
is simulated and the oscillations of nonlinear and linear models are compared.

All experiments are carried out with a sufficient number of elements and
time steps to ensure four significant digits can be guaranteed. The results
are displayed visually for convenience.

3.4.1 Comparison to classical linear Timoshenko model

In Experiment 1 “periodic-like” motion was observed. The “period” of the
nonlinear problem cannot be determined exactly, but the oscillations closely
resemble periodic motion. Obviously, oscillation of the beam does not imply
that that the solution is periodic.

Experiment 3: Free vibration of a pinned-pinned beam
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In this experiment a pinned-pinned beam with non-zero initial displacement
is considered. The situation is the same as for Experiment 1, but now we
choose α = 4800 (hence the beam is more flexible) and the initial deflection
is a scalar multiple of the deflection from Experiment 1.

Although there is some duplication between this subsection and Subsec-
tion 3.3.1 the aim is different and experiments are performed with larger
values of c. From the previous experiment it is clear that for c = 0.001 and
smaller the nonlinear model behaves like the linear model. Again, there is no
forcing on the beam, i.e. P1 = P2 = 0. As in Subsection 3.3.1 the first mode
is used as an exact solution. Since α is different the mode will be different
with λ = 0.0804, A = (π2 − λ)/π and ω =

√
λ. The dimensionless period

is 2π/ω = 22.16 correct to four significant digits. Recall that the initial
condition is given by

w(x, 0) = c sin(πx),

φ(x, 0) = cA cos(πx),

u(x, 0) = 0.

A larger value of c, c = 0.01, is now considered to obtain larger oscillations.

The initial strains are calculated as follows:

max |φ′| = | − cAπ| < c(π2 − λ) < π2 × 10−2,

max |w′ − φ| = |(π − A)c| < cλ

π
<

0.0804

π
× 10−2 < 3× 10−4,

max |s′ − 1| = |
√

1 + (πc)2 − 1| < 1

2
π2 × 10−4.

Although the maximum of w(x, 0) is ten times the value in Experiment 1,
the strains are still acceptable. (See the discussion in Subsection 2.4.2 and
note that in this experiment α = 4800.)

The expectation is that the nonlinear model will differ significantly from the
exact solution of the linear model. Different final times were considered but
specifically, the results close to the period of the exact solution are displayed.

The deflection curves w are shown in Figures 3.11 and 3.12 for final times
T = 21 and T = 22 respectively, using 32 elements. In Figure 3.11 it is clear
that the deflection for the nonlinear case is approximately the same as the
initial deflection but this is not the case for the linear problem. The deflection
curve for the linear problem “reaches” this “position” at time T = 22 (see
Figure 3.12). This is in agreement with the fact that the period is 22.16.
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Figure 3.11: Deflection w at T = 21 with α = 4800

In Figure 3.12 it can also be seen that the deflection curve for the nonlinear
beam is “moving down” already.

For more information, consider Figure 3.13. Here a final time of T = 25 is
used and the difference between the deflection curves is significant. It is also
clear that the nonlinear beam is “moving down fast” while the linear beam
has “hardly started”. Considering Figure 3.13 together with Figures 3.11
and 3.12 it is clear that the solution of the nonlinear model is approximately
periodic and has a significantly shorter “period” than the solution of the
linear model.

For c = 0.01 the nonlinear model behaves similar to the linear model, but
significant differences can be observed. Simulations were also done with
c = 0.005 and similar results were obtained except at larger end times such
as T = 43 and T = 45.

Values for c as large as 0.1 were used and solutions for the nonlinear model
differed to the extent that they could not be compared to solutions of the
linear model. Unfortunately, large deflections resulted in large strains and
hence the nonlinear model was not valid. Since the beam is fixed at both
ends, it must stretch, leading to these unacceptable strains. Consequently, a
cantilever beam is considered in the next experiment.
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Figure 3.12: Deflection w at T = 22 with α = 4800

Figure 3.13: Deflection w at T = 25 with α = 4800
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3.4.2 Nonlinear oscillations of the Local Linear Timo-
shenko beam model

In this subsection forced vibration of a cantilever beam is considered. Recall
that the aim is to find a situation where the LLT model differs significantly
from the linear model, while the rod strains are sufficiently small to ensure
that the model is locally linear.

Experiment 4: Forced vibration of a cantilever beam

In this experiment the models for a cantilever beam with α = 4800, set in
motion by a periodic load, are compared. The load is concentrated toward
the endpoint of the beam. To be precise

P1 = 0,

P2 = c sin(ωt)q(x),

where c = 0.001, ω = 1 and

q(x) =

{
x− 0.9 for x > 0.9

0 for x ≤ 0.9.

To interpret the results, note that the fundamental period for the beam is
approximately 20π while the period of P2 is much smaller (2π).

Solutions were approximated on the time interval [0, 12π] using n = 32 ele-
ments. The beam is initially at rest with ω = φ = 0. As before, a sufficient
number of time steps are used to guarantee four significant digits to be reli-
able. The results are shown in Figure 3.14.

It is clear that the linear and nonlinear model behave differently and yield
significantly different solutions. (Note that the scale on the vertical axis
varies between 10−4 and 10−5.)

The shape of the deflection curve for the nonlinear problem changes dramat-
ically in each of the intervals [8π, 9π] and [9π, 10π].

As mentioned before, it is necessary to monitor the strains for the nonlinear
beam to confirm that they remain small. Since the largest changes in the
deflection were observed for 8π < t < 10π, the strains were calculated at
time t = 9π. The following results were obtained:

|θ − φ| < 9.278× 10−6, |∂xφ| < 1.1× 10−3 and |∂xs− 1| < 10−6.
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Considering the results above, it is reasonable to assume that the strains
remain small during the motion.

Remark For the numerical approximation of the solution of the linear beam
model the Mixed Finite Element Method (MFEM) was used.

(a) T = 4π (b) T = 5π (c) T = 6π

(d) T = 7π (e) T = 8π (f) T = 9π

(g) T = 10π (h) T = 11π (i) T = 12π

Figure 3.14: Forced vibration for T = 2π to T = 12π with α = 4800
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3.4.3 Conclusion

Bear in mind that the numerical experiments in this section are of an ex-
ploratory nature. Nevertheless, the results are interesting and induce a degree
of confidence in the LLT model. We also believe that there are situations
where the LLT model is a very good choice - when the strains are small
enough so that the assumptions hold, but the range of the motion and ro-
tation does not allow for the classical Timoshenko model to be used. More
experiments are needed and some future work is discussed in Section 7.3.
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Chapter 4

Wind and earthquake induced
oscillations of vertical
structures

4.1 Introduction

The effect of wind and earthquake induced oscillations on high-rise structures
such as buildings, masts and chimneys is of considerable interest to structural
engineers. Obviously, the relevant structure should be able to withstand
these oscillations. In [RM05] the authors draw attention to the following,
not so obvious, considerations. First of all there is a large investment in
non-structural components which may be damaged. Also, “...localized dam-
age in certain non-structural systems can affect the functionality of large
portions of the building.” “Recent earthquakes have shown that damage in
non-structural components and in building contents can have large economic
consequences as well as safety and egress concerns.” In many cases there are
serious consequences even when buildings suffer no structural damage. See
also [Mir99], [WFH01], [MT05] and the references provided in these articles.

It is mentioned in [RM05] that research and recovered data is used to de-
termine the safety specifications and recommendations of buildings. The
authors provide a brief account of how ongoing research influences these
specifications and recommendations.

Clearly, reliable mathematical models are needed to determine the effect of
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oscillations on buildings. In [RM05] the authors state that: “Modelling of
the building is by far the most time-consuming task associated with obtain-
ing its dynamic characteristics.” Damage to non-structural components is
caused by acceleration demands on these components. To estimate accelera-
tion demands simplified beam models have been used for a long time; many
references are given in the articles mentioned above. Simplified models can
also be used to design damping mechanisms.

In this chapter the focus is on high-rise buildings subjected to earthquake
induced oscillations. However, the models of such structures and the mathe-
matical analysis thereof are also relevant for wind induced oscillations.

In [WFH01] the Euler-Bernoulli beam is used to model a high-rise building
with a tuned mass damper. The effect of gravity is included as well as a
non-linear term for compression. The model is used to simulate the motion
of the building. In a subsequent article, [WL07], they proceeded to use this
model to find a method to control the vibration.

In this Chapter the adapted Timoshenko beam model for a high-rise structure
is presented (as derived in Chapter 2). A motivation for the use of the
Timoshenko model as well as a comparison to other models was done in
Chapter 1. As further justification for the use of the Timoshenko model
consider the tube model of Takabatake. In the 1996 article by Takabatake
[Tak96] he investigated a model for high-rise structures. A doubly symmetric
tube structure is considered, in which a frame-tube structure is replaced with
an equivalent rod (or beam) which includes the effects of bending, transverse
shear deformation and shear-lag.

In [Mir99], [RM05] and [MT05] shear is introduced into the model. The
authors present a twin-beam model: a shear beam connected to a flexural
beam. The acceleration demands are estimated using the first six modes of
vibration.

As a consequence of these works, we consider the twin-beam model since
it provides another way to introduce shear. Modal analysis is done on this
model. Furthermore the natural frequencies of the Timoshenko model are
compared to those of the twin-beam model. We also explain why the pa-
rameters given in [RM05] (see the application in Subsection 4.3.1) are not
enough for the purpose of comparing models.

The variational form and finite element semi-discrete approximation for the
models are discussed. Finally, results for the simulation of the transient

78

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



response of a building to an earthquake are presented in Section 4.5.

4.2 Two beam models for high-rise structures

In this section we consider the application of the adapted Timoshenko model
to vertical structures and introduce the twin-beam model. A given vertical
structure is modelled as a beam with vertical axis when at rest. The “beam”
is clamped at ground level.

4.2.1 Adapted Timoshenko model

Recall that in Chapter 2 a model (Model 1, Section 2.6) was derived from
the planar motion of a one-dimensional continuum, using the constitutive
equations of the Timoshenko theory. It is presented here for convenience:

∂2
t u = ∂xS + P, (4.2.1)

∂2
tw = ∂xV +Q, (4.2.2)

1

α
∂2
t φ = (1 + ∂xu)V + ∂xM − S∂xw, (4.2.3)

M =
1

β
∂xφ, (4.2.4)

V = ∂xw − φ, (4.2.5)

S =
1

γ
∂xu (4.2.6)

Longitudinal vibration and gravity

In (4.2.1) and (4.2.2) u and w denote the vertical (axial) and horizontal
(transverse) displacements respectively. Equation (4.2.1) makes provision
for longitudinal vibration. The force density due to gravitation is denoted
by P . In (4.2.3) the term S∂xw is due to longitudinal vibration and gravity.

In this chapter only the transverse vibration is considered as in [RM05].
Then S = µ(x − 1) in dimensionless form with the dimensionless constant

µ =
ρg`

Gκ2
. (This force density is not considered in [RM05] but in [WFH01].)

Simplifying assumption
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Consider the Adapted Timoshenko model (Model 2) in Subsection 2.6.2.
The term (1 + ∂xu)V in Equation (4.2.3) may be approximated by V since
∂xuV = γSV = γµ(x − 1)V and µ is small. Using this approximation the
equations of motion now read

∂2
tw = ∂xV +Q, (4.2.7)

1

α
∂2
t φ = V + ∂xM − S∂xw. (4.2.8)

Assuming a linear model with small dimensionless displacements one may
use the superposition principle and decompose the oscillations as in [RM05]
into East-West and North-South oscillations.

Boundary conditions

At the top (regardless of earthquake or wind induced oscillations) and for all
the models

M(1, t) = 0 and V (1, t) = 0. (4.2.9)

Earthquake induced oscillations

The force density Q = 0 since the motion is due to forcing by the earthquake.
At ground level x = 0, the boundary conditions are

w(0, t) = wE(t), φ(0, t) = 0. (4.2.10)

In the relevant literature an earthquake is considered to be the superposition
of a number of harmonic functions, i.e. wE(t) =

∑
ck sin(pkt). To simplify

the analysis, one component at a time is often used.

In the case where longitudinal vibration is considered the boundary condition
is u(0, t) = uE(t) 6= 0. The assumption uE(t) = 0 is made in [MT05] and
[RM05], where the authors draw attention to the fact that damage to non-
structural components is caused primarily by lateral displacements.

Equivalent problem

The boundary conditions must be homogeneous for modal analysis. The
earthquake model problem is equivalent to an artificial “wind problem” for
a cantilever beam. The boundary condition w(0, t) = wE(t) can be homoge-
nized: Let w̃(x, t) = w(x, t)−wE(t)y(x) and Ṽ = ∂xw̃−φ. Equations (4.2.7)
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and (4.2.8) are transformed as follows

∂2
t w̃ = ∂xṼ − wE(t)− ẅE(t)y(x), (4.2.11)

γ

β
∂2
t φ = Ṽ + wE(t)y′(x) + ∂xM − ∂xwS, (4.2.12)

where the function y satisfies y(0) = 1 and y′(1) = 0. (An example is

y(x) = 1+x− 1

2
x2.) Consider the boundary conditions for w̃. Since y(0) = 1,

w̃(0, t) = wE(t)− wE(t)y(0) = 0.

At the top

Ṽ (1, t) = V (1, t)− wE(t)y′(1) = V (1, t) = 0.

The other boundary conditions remain unchanged, i.e.

M(1, t) = 0 and φ(0, t) = 0.

Remarks The function y may be replaced by another function that satisfies
the same boundary conditions. However, this should not be a cause for
concern since y(x)wE(t) must be added to obtain the final solution.

We now have a model problem for a cantilever beam where the forces at
ground level are replaced by a distributed load. This equivalent problem
provides justification for modal analysis of a cantilever beam. In [RM05] the
authors do not explain this procedure, see the next subsection.

Existence

The general existence theory in [VS19] cannot be applied to the model pro-
blem for earthquake induced oscillations due to the nonhomogeneous boun-
dary condition w(0, t) = wE(t). However, the theory can be applied to the
equivalent problem (as was done in [VS19]).

4.2.2 Twin-beam model of Miranda and Taghavi

A twin-beam model for a building is used in [RM05]. It is the partial dif-
ferential equation [RM05, Equation (5)]. It can be derived from a model
in [Mir99] for a building in equilibrium subjected to a distributed load. A
shear beam is combined with an Euler-Bernoulli (flexural) beam. The idea
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is discussed in more detail in [Mir99]. It is a simplification of the interaction
of shear walls and frames. (Credit is given to [KS64] and [HS73].)

The derivation of the partial differential equation for vibration is not shown
in [RM05] or the preceding article [MT05]. For completeness we present
a derivation using the equations in [RM05, Section 2]. Note that a single
beam is partitioned into two beams. The partial differential equation for the
Euler-Bernoulli beam is

dE∂
2
tw = − 1

βE
∂4
xw + F,

where dE = ρEAE

ρA
. The subscripts E denote parameters for the flexural beam.

For shear, use Equation (5) with V = σ∂xw:

dS∂
2
tw = σ∂2

xw − F,

where dS = ρsAS

ρA
and σ = GSAS

GAκ2
. The subscript S denotes parameters for

the shear beam. The force density F represents the interaction between the
beams. Adding the two partial differential equations yields

(dS + dE)∂2
tw = σ∂2

xw −
1

βE
∂4
xw, (4.2.13)

which is equivalent to [RM05, Equation (5)]. Note that gravity is neglected
in this model.

In [RM05, Equation (6)] a parameter α0, referred to as the lateral stiffness
ratio, is introduced. It is clear that α2

0 is the product of βE and σ. To avoid
confusion we will use αM for α2

0, hence

αM = βEσ. (4.2.14)

Boundary conditions for an earthquake are discussed in the previous subsec-
tion. At ground level

w(0, t) = wE(t) and ∂xw(0, t) = 0.

The boundary conditions at the top are the same as for the Timoshenko
model, i.e. (4.2.9). For this model it translates to

∂2
xw(1, t) = 0 and ∂xw(1, t)− 1

αM
∂3
xw(1, t) = 0. (4.2.15)

The boundary conditions can be verified using the variational form, see Sec-
tion 4.4.

Remark The boundary conditions for the partial differential equation are
not discussed in [RM05] and it is necessary to read [MT05].
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Equivalent problem

The equivalent model is again a cantilever beam with artificial load. The
procedure below is implicit in the analysis done in [MT05].

Let w̃(x, t) = w(x, t)−wE(t). The new partial differential equation is of the
form

d

σ
∂2
t w̃ = ∂2

xw̃ −
1

αM
∂4
xw̃ −

d

σ
ẅE(t), (4.2.16)

with d = dS + dE. The boundary conditions remain the same except that
now w̃(0, t) = 0.

Modal analysis of the model is done in Section 4.3.

4.2.3 Damping

In this subsection our concern is modelling of the structure. With the ex-
ception of [MT05], none of the relevant studies indicate how damping is
modelled. Terms reflecting damping are not in the partial differential equa-
tions or the boundary conditions. Yet damping is considered in the modal
analysis. To avoid confusion, note that we are not referring to active or
passive damping devices such as the “Tuned mass damper” in [WFH01].

In [MT05] a viscous damping term is in the partial differential equation,
which results in constant modal damping ratios. The authors acknowledge
that “... better estimates can be obtained by using different modal damping
for each mode.”

The importance of damping in the structure is stressed in [TMF+11]. The
damping is due to hard rubber dampers inserted in the frame. No mathe-
matical model is provided.

Recall that our concern is to determine reliable yet simplified models for
structures. To design damping devices, one must first know the dynamic
properties of the structure. The challenge is to model internal friction in
building material (material damping). In the Timoshenko model damping
in (4.2.7) shear or (4.2.8) flexure or both are possible. For the Rayleigh
and Euler-Bernoulli models damping due to bending can be built into the
partial differential equation. The Twin-beam model (Equation (4.2.13)) can
accommodate damping due to shear as well as bending.
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Since it is difficult to determine the parameters, even without damping, we
consider it beyond the scope of this chapter to model damping.

4.2.4 Wind-induced oscillations

Modelling the effect of wind is discussed in [FL10] and [HV07]. The load
caused by vortex shedding leads to the oscillation of the structure. In recent
years, more and more super tall constructions have been built and these are
also affected by the wind. In [WFH01] the authors refer to earlier studies
where it is recommended that “ ... for increasing the levels of structural
safety, integrity and occupant comfort, it is necessary to reduce the levels of
earthquake- or wind-induced displacements and accelerations in tall build-
ings.”

From a mathematical perspective, a problem modelling wind-induced oscil-
lations are not any different from a so called artificial wind problem, referred
to in Subsection 4.2.1.

For wind induced oscillations Q 6= 0 in Equation (4.2.2), and is a force density
due to the wind. At ground level the boundary conditions are

u(0, t) = w(0, t) = φ(0, t) = 0.

In [FL10] a forcing function simulating the wind is applied only to a part
of the beam, e.g. between x = 0.4 and x = 0.5. To be precise, the wind is
modelled by q(x, t) = g(x)f(t) where

g(x) =

{
1 if 0.4 ≤ x ≤ 0.5,

0 otherwise

and f(t) = A sinωt.

4.3 Modal analysis and parameters

In this section we consider the modal analysis of the Timoshenko and Twin-
beam models. Modal analysis to compare standard beam models is done in
Subsection 1.2.3 and is also done in [RM05]. Since the model in [RM05] does
not include a gravitational force term we will also omit it in the eigenvalue
problem for the Timoshenko model.
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The derivation of natural frequencies and modes are done in [MT05] and only
results presented in [RM05]. Also, boundary conditions for the eigenvalue
problem is provided in [MT05] but not in [RM05].

4.3.1 Natural frequencies of the Twin-beam model

Separation of variables for equation (4.2.16) leads to the eigenvalue problem

u(4) − αMu′′ − λαMu = 0 (4.3.1)

with

u(0) = u′(0) = 0,
1

αM
u′′′(1)− u′(1) = 0,

u′′(1) = 0.

The solutions of dT ′′ + σλT = 0 yield the natural angular frequencies.

The general solution of the differential equation (4.3.1) is given by

u(x) = A sinhµx+B coshµx+ C sinωx+D cosωx, (4.3.2)

where

µ2 =
αM
2

(
1 +

√
1 +

4λ

αM

)
and ω2 =

αM
2

(
−1 +

√
1 +

4λ

αM

)
. (4.3.3)

Using the boundary conditions we obtain

C = −µ
ω
A, −D = B =

−µ2 sinhµ− µω sinω

µ2 coshµ+ ω2 cosω
,

by choosing A = 1. It follows from Equation (4.3.3) that

µ2 − ω2 = αM , (4.3.4)

an identity also used in [RM05].

From the boundary conditions and (4.3.4) we also obtain the following fre-
quency equation(

2 +
α2
M

µ2ω2

)
coshµ cosω+

αM
µω

sinhµ sinω + 2 = 0. (4.3.5)
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Combining (4.3.3) and (4.3.5) in an elementary numerical procedure yields

the eigenvalues. The natural angular frequency corresponding to λi is
√

λiσ
d

.

Application

It is problematic to compare the Twin-beam model with the other models.
As mentioned, only the parameter αM = σβE is given in [RM05]. To compare
them we need βE and σ separately. Assumptions would have to be made to
attempt a comparison.

The first assumption is that G = GE = GS. Since β is defined as AGκ2`2

EI
,

we obtain β
βE

= AIE
AEI

. Now, if we assume that the area moment of inertia is

I = kA2, then β
βE

= AE

A
and therefore βE = β A

AE
. Substituting this into αM ,

αM = β
A

AE
σ = β

A

AE

(
GSAS
GAκ2

)
= β

AS
AEκ2

. (4.3.6)

This gives us a relation between αM used in [RM05] and β for the one beam
model.

If we assume that ρS = ρE, we have d = 1. Also, as a result of the assump-
tions σ = AS

Aκ2
. (The parameter κ2 varies between 3/5 and 5/6.) Using all

these assumptions the partial differential equation (4.2.16) becomes

1

σ
∂2
t w̃ = ∂2

xw̃ −
1

αM
∂4
xw̃ −

1

σ
ẅE(t).

The possibility that there is excess mass that does not contribute to structural
stiffness must be considered. In that case the coefficient for the acceleration
term in (4.2.16) will not be d

σ
.

4.3.2 Stiffness parameters

The choice of parameters and determination thereof is problematic. In
[RM05] we see that three parameters, the fundamental period (τ = τ1), the
damping ratio (ξ) and stiffness ratio (αM), are used. As mentioned before,
αM = βEσ is known but as can be seen from the previous section, we need
to know both βE and σ.

The value for βE should be related to the dimensions of the frame of the

building:

(
height

width

)2

should be in line with the value of βE. Note that
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reference to steel frames and shear walls is made in [RM05] and [MT05] to
motivate their mathematical model.

If sufficient information is not available, the only option is to determine the
parameters using the data on accelerations and displacements. This approach
has the drawback that the parameters are dependent on the mathematical
model used which we are trying to evaluate indepently and compare to our
model (both cases for which we need accurate and reliable data).

4.3.3 Natural frequencies and the fundamental period

Calculation of the natural angular frequencies of the two models is discussed
in Subsections 1.2.3 and 4.3.1 respectively. Due to the assumption in Subsec-
tion 4.2.2, the natural angular frequencies for the Twin-beam model is

√
λiσ.

For a selected Timoshenko beam β = βT is known. To compare, choose a
ratio r = AS

A
, and calculate βE = β

1−r , σ = r
κ2

and αM = r
r−1

β
κ2

.

To determine if a model is realistic, one may calculate the fundamental pe-
riod and compare it to the measured value. We calculated the fundamental
periods for the two buildings in Table 4.1 below and converted it from di-

mensionless time to real time. Recall that t0 = `

√
ρ

Gκ2
and if ρ and G for

a steel frame with length 200m is used, we have t0 = 0.079. The calculated
periods were way off the mark for both models; the Timoshenko model being
closer for r ≤ 1/2. (The fundamental period varied between 0.30 and 0.34
seconds for the Twin-beam model.) Clearly a 5% damping ratio will not
fix the problem. A possible explanation for the huge difference is additional
mass not contributing to stiffness.

Remark The parameter ρ in [RM05] and [MT05] denotes mass per unit
length. This parameter is not dimensionless and no information is given on
the magnitude or influence of the parameter. Note that it is not relevant
when the ratios of frequencies are used as in [RM05].

4.3.4 Comparison of two buildings

Using data from [RM05] we do a comparison of two Los Angeles buildings,
referred to as LA-52 and LA-54 in [RM05], both hit by Northridge earthquake
and both ±30km from the epicentre of the earthquake. It is interesting to
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note the huge difference in the values for αM . But the dimensions of the
buildings are comparable: the height is the same (around 200m) and the
floor dimensions of LA-52 is 48m× 48m and that of LA-54 is 60m× 37m.

Below is a summary of the relevant information given in [RM05] regarding
the buildings and their response to the Northridge earthquake.

LA-52 LA-54
NS EW NS EW

Stiffness parameter αM 60.8 43.6 756 912
Fundamental period (s) 5.8 6 6.2 5.2

Peak ground acceleration (cm/s2) 165 109 165 98
Peak roof acceleration (cm/s2) 389 220 177 139

Table 4.1: Information on LA-52 and LA-54

Even though the beam stiffness parameters for LA-52 are much smaller than
those for LA-54 (indicating that LA-52 is a more rigid beam) we see that LA-
52 had much greater peak roof accelerations. Also note that the fundamental
periods for East-West motion differ by less than 20%, but αM is 20 times
greater for LA-54. We opine that these “discrepancies” could possibly be
explained if βE and σ are known, instead of only αM = βEσ.

4.3.5 Remarks on modal analysis

There are limits to the value of modal analysis. In [RM05] only the ratios of
the first 6 modes to the fundamental mode is given (we obtained the same
ratios). The authors in [RM05] mention the fact that for a specific building
the fourth mode is close to the predominant period of ground motion (recall
that an earthquake is given by a combination of harmonic functions). Since
the number of modes involved is not obvious in general, simulation of the
transient response is necessary (see Section 4.5).

In Section 4.2 one boundary condition of the earthquake model was homog-
enized using a function y. In a remark it was mentioned that this function is
not uniquely determined. (Another function satisfying the boundary condi-
tions is for example ỹ(x) = −x3 + 3x+ 1.) Note that the participation factor
(defined in [Mir99]) changes when the function used is altered.
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4.4 Semi-discrete finite element approxima-

tion

In this section we derive a system of ordinary differential equations for the
adapted Timoshenko model to be used for simulation.

It is well known that shear locking is a problem. To get past this there are
two options: Polynomials of higher degree can be used as basis functions
(e.g. Hermite cubics) or the Mixed Finite Element Method can be used.
For more information on simulation with Hermite cubics, see [VVR10] and
for information regarding the Mixed Finite Element Method, see [Sem94] or
[HKO11]. In this section we use the Mixed Finite Element Method (MFEM)
with piecewise linear basis functions.

Similar to (2.7.7) and (2.7.8), we start with the variational equations of
motion ∫ 1

0

∂2
tw(·, t)v =−

∫ 1

0

V (·, t)v′ +
∫ 1

0

Q(·, t)v

+ V (1, t)v(1) − V (0, t)v(0), (4.4.1)∫ 1

0

1

α
∂2
t φ(·, t)ψ = +

∫ 1

0

V (·, t)ψ −
∫ 1

0

M(·, t)ψ′ −
∫ 1

0

S∂xwψ

+M(1, t)ψ(1)−M(0, t)ψ(0). (4.4.2)

Denote the space of test functions T [0, 1] = {v ∈ C1[0, 1] | v(0) = 0}, use the
boundary conditions in Equation (4.2.9) and substitute M and S to obtain
the following variational equations of motion∫ 1

0

∂2
tw(·, t)v =−

∫ 1

0

V (·, t)v′ +
∫ 1

0

Q(·, t)v (4.4.3)

and∫ 1

0

1

α
∂2
t φ(·, t)ψ =− 1

β

∫ 1

0

∂xφ(·, t)ψ′ +
∫ 1

0

V (·, t)ψ −
∫ 1

0

µ(x− 1)∂xwψ,

(4.4.4)

for all v and ψ ∈ T [0, 1].

Note that w is not a test function in the case of the earthquake problem; it
must satisfy the prescribed boundary conditions at x = 0: w(0, t) = wE(t).
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Since we make use of MFEM the constitutive equation for V is not substi-
tuted. Multiply Equation (4.2.4) by an arbitrary function ξ in C1[0, 1] and
integrate to obtain ∫ 1

0

V ξ =

∫ 1

0

∂xwξ −
∫ 1

0

φξ. (4.4.5)

Model problem in variational form Find the functions w, φ and V such
that w(·, t), V (·, t) ∈ C1[0, 1] and φ(·, t) ∈ T [0, 1] for all t > 0, w(0, t) = wE(t)
and Equations (4.4.3), (4.4.4) and (4.4.5) hold for all v, ψ ∈ T [0, 1] and
ξ ∈ C1[0, 1] respectively.

The initial conditions are w(·, 0) = w0 and φ(·, 0) = φ0.

To obtain the Galerkin approximation of the problem we refer the reader
to Subsections 3.2.2 and 3.2.3. The M , K and L matrices are defined in
(3.2.19). An additional matrix is needed for this problem and is defined as
follows:

Nij = µ((1− xi)δ′j, δi), (4.4.6)

where δi are the C0 piecewise linear basis functions.

System of ODE’s for Timoshenko model

M ¨̄w = LV̄
1

α
M ¨̄φ = MV̄ − 1

β
Kφ̄+Nw̄

MV̄ = LT w̄ −Mφ̄.

Similarly, a system of ODE’s for the Twin-beam model can be derived.

System of ODE’s for Twin-beam model

d

σ
M ¨̄w = −K1w̄ −

1

αM
K2w̄,

where K1 = K is the stiffness matrix and K2 the bending matrix, see [SF73]
or [LVV05] for more details. Note that the matrices are not square due to
the fact that w is not a test function.
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4.5 Finite element simulations

As mentioned, modal analysis is in our view not sufficient and simulations of
the actual motion should also be used to determine accelerations at different
points of the structure. As mentioned before, the Timoshenko and Twin-
beam models do not compare well, for reasons mentioned. Nevertheless,
simulations for the Timoshenko model are illuminating.

In this section we simulate the transient response of a structure modelled
as a Timoshenko beam. Simulation will also be used to demonstrate the
significance of a given parameter. Finally we compare the motion of the top
of the structure (free end of the structure) for two different values of the
parameter β.

In these simulations we consider the boundary conditions for the earthquake
as given in Equation (4.2.10), not the equivalent problem. We chose w(0, t) =
wE(t) = D sin(Pt) with D and P constants, which are the amplitude and
frequency of the ground motion respectively. Note that displacement and
time are in dimensionless units. In the experiments enough elements and
time steps were used to guarantee the results for at least 3 significant digits.

Motion of the structure

We first demonstrate the transient response of a vertical structure due to
an earthquake using the Timoshenko model. We show a full period of the
ground disturbance (τg = 8) with β = 500 in Figure 4.1. Note that this
period is in dimensionless time.
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Figure 4.1: Transient response for Timoshenko model

Note the “whiplash” effect of the top of the building between 5
8
τg and 7

8
τg.

Influence of the parameter β

To illustrate the influence of this parameter we chose the values β = 50
(rather thick) and β = 800 (slender). We show the movement for β = 50
(dashed) and β = 800 (solid) for the Timoshenko model in Figure 4.2.
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Figure 4.2: Illustration of the influence of the parameter β (β = 50 (dashed)
and β = 800 (solid)).

Note that the structure is less slender when β = 50 and therefore the dis-
placement of the top of the structure is smaller than for β = 800. Also note
the significant difference in the middle of the structure.

Motion of the free end of the structure

Since the fundamental periods are different for the Timoshenko and Twin-
beam model, there is no purpose in comparing the motion of the top for
the two models. From the observations in Figures 4.1 and 4.2 it may be
worthwhile however to study the motion of the top of the structure for the
different values of the parameter β.
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Figure 4.3: Motion of the top of a building for Timoshenko model

From Figure 4.3 we see that it takes 1 dimensionless time unit for the top
of the structure to start moving, regardless of the value of β. It can also be
observed from the figure that there are significant (possibly severe) accelera-
tions for both cases at that instant as well as at other times (for example at
about t = 1.8 and t = 5.7 for β = 50).

4.6 Conclusion

It is clear from the literature that beam models are a serious consideration
for the modelling of buildings. It may sound strange to some to model a
building as a beam, but consider the variation of possible cross-sections for
a beam in [Cow66]. In this chapter we created a theoretical framework for
the comparison of beam models for a building, either by modal analysis or
by finite element simulation.

The main conclusion is that the Timoshenko model can provide meaningful
insights to the effect of oscillations on high rise buildings. We not only pre-
sented such a model for earthquake induced oscillations, but provided an al-
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ternative formulation for modal analysis of a cantilever beam. To supplement
this, results from finite element simulations are provided. It is unfortunate
that a proper comparison could not be made to data for real buildings due
to a lack of information in the articles considered. A preliminary study of
the articles [Mir99], [WFH01], [JLK04], [MT05], [RM05] and [TMF+11] lead
to the erroneous conclusion that such a comparison should be possible.

For buildings a realistic value of β is not that large, and for these values of β
the Rayleigh (or Euler-Bernoulli) model does not compare well to the Timo-
shenko model. We consider reference to moment-resisting steel frames sig-
nificant. Especially the “framed tube” in LA-54 ([RM05, Subsection 3.1.6]).

If parts of the building can be modelled as different beams, the Twin-beam
model is realistic. The authors in [RM05] compared acceleration results.
The computed results compare well to recorded accelerations, but the three
parameters were determined from the recorded motion using the same ma-
thematical model.
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Chapter 5

Multiple beam model

5.1 Introduction

From the results in the previous chapter as well as the literature it is clear
that beam models are considered seriously for when it comes to the modelling
of buildings. One such article is [WFH01] in which the authors study the
dynamic behaviour of a building. In the article a building is modelled as
a beam with several lumped masses. The author used Hamiltons principle
to derive the partial differential equation for the Euler Bernoulli theory and
used the Finite Element Method to analyse the dynamic behaviour.

In this chapter the possibility of a multiple beam model for a building is
investigated. An alternative model to [WFH01] is considered, which is more
realistic in several ways. First of all an Euler Bernoulli or Rayleigh model
should not be used for a building; a Timoshenko model should be used instead
(see motivation given in Chapters 1, 2 and 3). Secondly, rather than one
beam, a number of beams in series linked by rigid bodies (or concentrated
masses) to represent floors are used. Figure 5.1 illustrates the setup.

To develop an algorithm, obtain data and implement the algorithm will most
likely be a project in its own right. The objective in this thesis is to determine
the feasibility of doing so.
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Figure 5.1: Illustration of linked beams

5.2 Model problem

In this section a model consisting of a number of serially connected beams
connected by thin plates is derived. The adapted Timoshenko model from
Chapters 2 and 4 is used for the beams.

Each dimensionless beam has the interval [0, 1] as reference configuration.

Recall the equations of motion and constitutive equations:

∂2
tw = ∂xV + q, (5.2.1)

1

α
∂2
t φ = V + ∂xm− S∂xw, (5.2.2)

m =
1

β
∂xφ, (5.2.3)

V = ∂xw − φ, (5.2.4)

where S denotes the axial force.

Remark The normal notation for moment (M) was changed to m as above
in order to avoid confusion in Section 5.4.3.

Boundary conditions and interface conditions

For the first beam (at ground level) the boundary conditions are

w1(0, t) = wE(t) and φ1(0, t) = 0, (5.2.5)

where wE(t) is a function modelling the movement at ground level due to an
earthquake.

For the last beam (at the top of the building)

VN(1, t) = mN(1, t) = 0. (5.2.6)
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The other boundary conditions for the beams are referred to as interface
conditions. Note that the displacement at the bottom of each beam (except
the first) must be the same as the displacement at the top of the previous
beam i.e. wk(1, t) = wk+1(0, t). The same is true for the angles.

For the body (the floor) between beam k and k + 1 we have the interface
conditions

µk∂
2
twk(1, t) = Vk+1(0, t)− Vk(1, t) (5.2.7)

Ik∂
2
t φk(1, t) = mk+1(0, t)−mk(1, t), (5.2.8)

where µk is the mass of the floor and Ik is the moment of inertia.

We assume that the building is at rest before the earthquake hits. The initial
conditions are therefore wk(·, 0) = φk(·, 0) = ∂twk(·, 0) = ∂tφk(·, 0) = 0.
The initial conditions for mk and Vk are determined by (5.2.3) and (5.2.4)
respectively.

Dimensionless form

First, Equations (5.2.7) and (5.2.8) should also be rewritten in dimensionless
form using the same scaling as before. The dimensionless mass and moment
of inertia are

µ∗k =
µk
ρA`

and I∗k =
Ik
ρA`3

.

The interface conditions remain (5.2.7) and (5.2.8) but now all the physical
quantities are dimensionless.

The multiple beam system above is referred to as Problem MT-beam.

5.3 Variational form

Due to the appearance of the shear force and bending moment in the inter-
face conditions it is preferable to use a variant of the Mixed Finite Element
Method (MFEM) (see Section 4.4). (It is well known that the MFEM is
more accurate than the standard method, see [Arn81] and [Sem94].)

To derive the variational form, the same procedure is followed as in Sec-
tion 2.7. Multiplying Equations (5.2.1) and (5.2.2) with arbitrary functions
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v and ψ in C1[0, 1] respectively, integrating and using integration by parts
yields ∫ 1

0

∂2
tw(·, t)v = −

∫ 1

0

V (·, t)v′ + [V (x, t)v(x)]10

+

∫ 1

0

q(·, t)v, (5.3.1)∫ 1

0

1

α
∂2
t φ(·, t)ψ =

∫ 1

0

V (·, t)ψ −
∫ 1

0

m(·, t)ψ′

+[m(x, t)ψ(x)]10 −
∫ 1

0

S∂xwψ. (5.3.2)

The constitutive equations are not substituted into the equations of motion.
Multiplying Equations (5.2.3) and (5.2.4) with arbitrary functions ζ and ξ
in C1[0, 1] and integrating we obtain∫ 1

0

m(·, t)ζ =

∫ 1

0

1

β
∂xφ(·, t)ζ, (5.3.3)∫ 1

0

V (·, t)ξ =

∫ 1

0

∂xw(·, t)ξ −
∫ 1

0

φ(·, t)ξ. (5.3.4)

Depending on the beam under consideration, the boundary terms in (5.3.1)
and (5.3.2) are handled differently. Therefore the test functions are not the
same for all beams.

The variational forms of the first and last beam will be slightly different. For
the first beam w is not a test function since w1(0, t) = wE(t) 6= 0. For the
first beam the test functions are chosen as v1(0) = ψ1(0) = 0, so a term will
fall away in each of the first two equations. For the other beams there are no
restrictions and for the last beam we enforce VN(1, t) = mN(1, t) = 0 which
are natural boundary conditions.

Test functions Denote the space of test functions by T [0, 1] = {f ∈
C1[0, 1] | f(0) = 0}.

Consider the variational form for the kth beam where k > 1. The problem
is to find functions (wk, φk,mk, Vk) such that wk(·, t), φk(·, t), Vk(·, t) and
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mk(·, t) are in C1[0, 1] and∫ 1

0

∂2
twk(·, t)vk = −

∫ 1

0

Vk(·, t)v′k + Vk(1, t)vk(1)− Vk(0, t)vk(0)

+

∫ 1

0

q(·, t)vk, (5.3.5)∫ 1

0

1

α
∂2
t φk(·, t)ψk =

∫ 1

0

Vk(·, t)ψk −
∫ 1

0

mk(·, t)ψ′k + mk(1, t)ψk(1)

−mk(0, t)ψk(0)−
∫ 1

0

Sk∂xwk(·, t)ψk (5.3.6)

for all vk and ψk in C1[0, 1] and with axial force

Sk = µk(1− x) + µk(N − k). (5.3.7)

In addition, for k = 1 to N ,∫ 1

0

mk(·, t)ζk =

∫ 1

0

1

β
∂xφk(·, t)ζk, (5.3.8)∫ 1

0

Vk(·, t)ξk =

∫ 1

0

(
∂xwk(·, t)− φk(·, t)

)
ξk (5.3.9)

for each (ζk, ξk) ∈ C1[0, 1]×C1[0, 1]. Note that for the last beam, VN(1, t) =
mN(1, t) = 0.

Now, consider the first beam, i.e. k = 1: w(·, t) ∈ C1[0, 1], φ(·, t) ∈ T [0, 1]
and w1(0, t) = wE(t)∫ 1

0

∂2
tw1(·, t)v1 =−

∫ 1

0

V1(·, t)v′1 + V1(1, t)v1(1) +

∫ 1

0

q(·, t)v1, (5.3.10)∫ 1

0

1

α
∂2
t φ1(·, t)ψ1 =

∫ 1

0

V1(·, t)ψ1 −
∫ 1

0

m1(·, t)ψ′1

+ m1(1, t)ψ1(1)−
∫ 1

0

S1∂xw1(·, t)ψ1. (5.3.11)

In the equations above v1 ∈ T [0, 1] and ψ1 ∈ T [0, 1] are arbitrary.

Test space TN We define the test space for the beam as follows:
v is in TN if v1 is in T [0, 1], vk is in C1[0, 1] for k > 1 and vk(1) = vk+1(0).

From Equations (5.2.7) and (5.2.8) the following constraints for the interface
between beam k and k + 1 are obtained

Vk+1(0, t)vk(1)− Vk(1, t)vk(1) = µk∂
2
twk(1, t)vk(1) (5.3.12)

mk+1(0, t)ψk(1)−mk(1, t)ψk(1) = Ik∂
2
t φk(1, t)ψk(1). (5.3.13)
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These interface conditions hold for k = 1, · · · , N − 1.

To obtain the variational form one must add all the equations. Summing
Equations (5.3.5) and (5.3.6) over k and using (5.3.12) and (5.3.13) yields

N∑
k=1

∫ 1

0

∂2
twk(·, t)vk = −

N∑
k=1

∫ 1

0

Vk(·, t)v′k −
N−1∑
k=1

µk∂
2
twk(1, t)vk(1)

+
N∑
k=1

∫ 1

0

q(·, t)vk, (5.3.14)

N∑
k=1

∫ 1

0

1

α
∂2
t φk(·, t)ψk =

N∑
k=1

∫ 1

0

Vk(·, t)ψk −
N∑
k=1

∫ 1

0

mk(·, t)ψ′k

−
N−1∑
k=1

Ik∂
2
t φk(1, t)ψk(1)−

N∑
k=1

∫ 1

0

Sk∂xwk(·, t)ψk, (5.3.15)

for v, ψ ∈ TN .

The variational form of the problem can now be formulated.

Problem MT-beam-V

Find functions w, φ, m and V such that w(·, t), φ(·, t) ∈ TN and mk,
Vk ∈ C1[0, 1] for all t > 0 and the following hold: Equations (5.3.14) and
(5.3.15), together with the constitutive equations given in Equations (5.3.8)
and (5.3.9) for all v, ψ ∈ TN and ζk, ξk ∈ C1[0, 1], with the boundary condi-
tions w0(0, t) = wE(t), φ(0, t) = 0.

The variational form for the problem can be used for the theory, e.g. existence
of a solution.

5.4 Semi-discrete approximation

5.4.1 Variational form in a finite dimensional subspace

Recall that we use a variant of the Mixed Finite Element Method in this
chapter (see Section 5.3). In this case piecewise linear basis functions can be
used. However, if the standard Finite Element Method is used, Equations
(5.3.8) and (5.3.9) are substituted into Equations (5.3.14) and (5.3.15) and
cubic basis functions are then required because of the derivatives.
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The variational form of the problem is for the whole system of N beams.
To obtain the approximate solutions the variational forms of the beams are
treated separately.

Due to the complexity of the multiple beam model and interface conditions
the Galerkin approximation is explained in detail in this subsection.

The following notation is used for the finite dimensional subspaces:

Sh is the space of piecewise polynomial functions in C1[0, 1];

Sh0 is the space of piecewise polynomial functions in T [0, 1], i.e.
f(0) = 0;

ShT is a finite dimensional subspace of TN ;

ShN is the cartesian product of N subspaces: ShN = Sh × · · · × Sh.

Let wh, φh, mh and V h be approximations of w, φ, m and V respectively, in
the finite dimensional subspace.

Consider the equations of motion for the kth beam (excluding k = 1) in the
finite dimensional subspace Sh.∫ 1

0

∂2
tw

h
k(·, t)vk = −

∫ 1

0

V h
k (·, t)v′k + V h

k (1, t)vk(1)− V h
k (0, t)vk(0)

+

∫ 1

0

q(·, t)vk, (5.4.1)∫ 1

0

1

α
∂2
t φ

h
k(·, t)ψk =

∫ 1

0

V h
k (·, t)ψk −

∫ 1

0

mh
k(·, t)ψ′k + mh

k(1, t)ψk(1)

−mh
k(0, t)ψk(0)−

∫ 1

0

Sk∂xw
h
k(·, t)ψk (5.4.2)

for all vk and ψk in Sh. Recall that for k = 1, v1(0) = ψ1(0) = 0. The
following constitutive equations must also hold for every k:∫ 1

0

mh
k(·, t)ζk =

∫ 1

0

1

β
∂xφ

h
k(·, t)ζk, (5.4.3)∫ 1

0

V h
k (·, t)ξk =

∫ 1

0

(
∂xw

h
k(·, t)− φhk(·, t)

)
ξk (5.4.4)

for each (ζk, ξk) ∈ Sh × Sh.
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The constraints, interface conditions and boundary conditions can all be
written in terms of functions in the finite dimensional subspaces.

For each pair of consecutive beams the following constraints must hold:

whk(1, t) = whk+1(0, t),

φhk(1, t) = φhk+1(0, t).

From Equations (5.3.12) and (5.3.13) the interface conditions become

V h
k+1(0, t)vk(1)− V h

k (1, t)vk(1) = µk∂
2
tw

h
k(1, t)vk(1), (5.4.5)

mh
k+1(0, t)ψk(1)−mh

k(1, t)ψk(1) = Ik∂
2
t φ

h
k(1, t)ψk(1), (5.4.6)

for all vhk and ψhk in Sh and the boundary conditions are given by

wh1 (0, t) = wE(t),

φh1(0, t) = 0.

As mentioned before, the boundary conditions at k = N are natural boun-
dary conditions and are not enforced.

As in Section 5.3 it is necessary to sum over Equations (5.4.1) and (5.4.2)
from k = 1 to N . This yields the problem given below.

Problem MT-beam-Vh

Find functions (wh, φh,mh, V h) such that wh(·, t) ∈ ShN , φh(·, t) ∈ ShT and
V h(·, t) and mh(·, t) are in ShN and

N∑
k=1

∫ 1

0

∂2
tw

h
kvk +

N−1∑
k=1

µk∂
2
tw

h
k(1, t)vk(1) = −

N∑
k=1

∫ 1

0

V h
k v
′
k

+
N∑
k=1

∫ 1

0

qvk, (5.4.7)

1

α

N∑
k=1

∫ 1

0

∂2
t φ

h
kψk +

N−1∑
k=1

Ik∂
2
t φ

h
k(1, t)ψk(1) =

N∑
k=1

∫ 1

0

V h
k ψk

−
N∑
k=1

∫ 1

0

mh
kψ
′
k −

N∑
k=1

∫ 1

0

Sk∂xw
h
kψk, (5.4.8)

with v, ψ ∈ ShT . The constitutive equations (5.4.3) and (5.4.4), interface
conditions and boundary conditions must also hold for every k.
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5.4.2 Basis functions

Another advantage of MFEM as used in this chapter is the following. The
shear force and bending moment values are immediately available and since
the problem under consideration is already complex, the use of C0 piecewise
linear basis functions is a considerable advantage.

Consider one beam: The interval [0, 1] is divided into n elements of equal
length and the nodes are numbered from 0 to n. Let Sh be the span of the
continuous piecewise linear basis functions δi, for i = 0, 1, ..., n and Sh0 the
span of the same basis functions but without δ0.

It is convenient and much simpler to inspect the beams separately. In order
to decouple the beams the following substitutions are made. For any beam k,
replace vk by δi where i = 1, · · · , n−1 (avoiding the interfaces and boundary
points) and vj = 0 for j 6= k. It is also valid to replace vk by δn provided
that vk+1 is replaced by δ0. For k = 1, δ0 is not a test function and therefore
not used. These substitutions are valid since the equations must hold for all
functions in the space.

By making these substitutions the multiple beam model is decoupled and
the beams can be considered separately. Consider an arbitrary beam k with
wh, φh ∈ Sh, then∫ 1

0

∂2
tw

h
k(·, t)δi = −

∫ 1

0

V h
k (·, t)δ′i +

∫ 1

0

q(·, t)δi, i = 1, · · · , n− 1,

(5.4.9)∫ 1

0

1

α
∂2
t φ

h
k(·, t)δi =

∫ 1

0

V h
k (·, t)δi −

∫ 1

0

mh
k(·, t)δ′i −

∫ 1

0

Sk∂xw
h
k(·, t)δi,

i = 1, · · · , n− 1. (5.4.10)

The interface conditions are given by

V h
k+1(0, t)δn − V h

k (1, t)δn = µk∂
2
tw

h
k(1, t)δn, (5.4.11)

mh
k+1(0, t)δn −mh

k(1, t)δn = Ik∂
2
t φ

h
k(1, t)δn. (5.4.12)

Note that δi(1) is zero everywhere except when i = n.

The constitutive equations are given by∫ 1

0

mh
k(·, t)δi =

∫ 1

0

1

β
∂xφ

h
k(·, t)δi, (5.4.13)∫ 1

0

V h
k (·, t)δi =

∫ 1

0

(
∂xw

h
k(·, t)− φhk(·, t)

)
δi, (5.4.14)
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for i = 0, · · · , n.

In the case where k = 1, the equations remain the same except that φ1 ∈ Sh0 .

In order to write the problem as an ordinary differential equation, the relevant
matrices must be derived. Before this can be done, write wh, φh, mh and V h

in terms of the basis functions:

whk(x, t) =
n∑
j=0

wkj(t)δj(x), for all k,

φhk(x, t) =
n∑
j=0

φkj(t)δj(x) for k > 1 and φh1(x, t) =
n∑
j=1

φ1j(t)δj(x),

mh
k(x, t) =

n∑
j=0

mkj(t)δj(x) for all k,

V h
k (x, t) =

n∑
j=0

Vkj(t)δj(x) for all k,

where n is the number of subintervals on [0, 1].

Notation

At this point it is convenient to introduce notation to distinguish be-
tween time and spatial derivatives. Dots will now be used to denote
time derivatives while primes will be used to denote spatial derivatives.

The subscript notation previously used to indicate the kth beam will
be suppressed from this point onward, i.e. wkj will be replaced by wj.
The subscript notation will only be used in special cases where it is
necessary to indicate a specific beam.

Equations (5.4.9) and (5.4.10) are now written in terms of the basis functions.

n∑
j=0

ẅj

∫ 1

0

δjδi = −
n∑
j=0

Vj

∫ 1

0

δjδ
′
i +

∫ 1

0

qδi, i = 1, · · · , n− 1, (5.4.15)

1

α

n∑
j=0

φ̈j

∫ 1

0

δjδi =
n∑
j=0

Vj

∫ 1

0

δjδi −
n∑
j=0

mj

∫ 1

0

δjδ
′
i −

n∑
j=0

wj

∫ 1

0

Skδ
′
jδi,

i = 1, · · · , n− 1. (5.4.16)
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Note that these equations hold for beam N with i = 1, · · · , n.

Now examine the interface from beam k to k + 1. Recall that if vk(1) 6= 0,
then vk+1(0) is not allowed to be 0, i.e. if vk is replaced by δn, vk+1 must
be replaced by δ0. When using the constraints it is necessary to indicate the
relevant beam, therefore the subscript notation is used.

Consider beam k + 1 for i = 0, and beam k for i = n. It is necessary to
add these two equations in order for the interface conditions to hold. The
following is obtained:

n∑
j=0

ẅj,k

∫ 1

0

δjδn +
n∑
j=0

ẅj,k+1

∫ 1

0

δjδ0 + µkẅn,kδn = −
n∑
j=0

Vj,k

∫ 1

0

δjδ
′
n

−
n∑
j=0

Vj,k+1

∫ 1

0

δjδ
′
0 +

∫ 1

0

qδ0 +

∫ 1

0

qδn, (5.4.17)

1

α

n∑
j=0

φ̈j,k

∫ 1

0

δjδn +
1

α

n∑
j=0

φ̈j,k+1

∫ 1

0

δjδ0 + Ikφ̈n,kδn =
n∑
j=0

Vj,k

∫ 1

0

δjδn

+
n∑
j=0

Vj,k+1

∫ 1

0

δjδ0 −
n∑
j=0

mj,k

∫ 1

0

δjδ
′
n −

n∑
j=0

mj,k+1

∫ 1

0

δjδ
′
0

−
n∑
j=0

wj,k

∫ 1

0

Skδ
′
jδn −

n∑
j=0

wj,k+1

∫ 1

0

Sk+1δ
′
jδ0. (5.4.18)

Recall that δi(1) = 0 for all i 6= n.

Boundary conditions

φh1(0) = 0 and wh1 (0) = wE(t).

For the last beam recall that the boundary conditions are natural boundary
conditions.

Now consider the constitutive equations. Following the same procedure as
before, the test functions ζk and ξk are replaced by the basis function δi.∫ 1

0

mh
j (·, t)δi =

∫ 1

0

1

β
∂xφ

h
j (·, t)δi, i = 0, 1, · · · , n, (5.4.19)∫ 1

0

V h
j (·, t)δi =

∫ 1

0

(
∂xw

h
j (·, t)− φhj (·, t)

)
δi, i = 0, 1, · · · , n. (5.4.20)
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Rewrite mk and Vk in terms of the basis functions, then constitutive equations
are written as:∫ 1

0

n∑
j=0

mjδjδi =

∫ 1

0

n∑
j=0

1

β
φjδ

′
jδi, i = 0, 1, · · · , n, (5.4.21)

∫ 1

0

n∑
j=0

Vjδjδi =

∫ 1

0

n∑
j=0

(
wjδ

′
j − φjδj

)
δi, i = 0, 1, · · · , n. (5.4.22)

Note that if k = 1, the terms on the right hand side will only hold for
j = 1, · · · , n.

5.4.3 Matrices and systems of ordinary differential
equations

The aim is to write Problem MT-beam-Vh as a system of ordinary differ-
ential equations. Using Equations (5.4.15), (5.4.16), (5.4.21) and (5.4.22)
the matrices are set up for the problem. Recall that piecewise linear basis
functions are used.

Notation The following notation will be used in this subsection:

Xi,j denotes the components of the matrix X; (f, g) =
∫ 1

0
fg.

The M , K and L matrices are defined in Section 4.4 in Equation (3.2.19).
The R matrix is defined as

Ri,j = (Sδ′j, δi),

with S denoting the axial force.

Let A be a matrix representing M , K, L or R. Follow the notation as
introduced in (3.2.20) in Section 3.2.3, i.e.

A is a complete matrix, i.e. no rows or columns are deleted.

A0 has its first row and column deleted.

Ar has its first row deleted.

Ac has its first column deleted.
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More notation is needed and introduced here:

Arr has its first and last rows deleted.

Acrr has its first and last rows deleted as well as the first column.

Let w̄r indicate that the first entry of w̄ has been deleted.

Definition q̄I and qi

Define q̄I as the interpolant of q(xi). Define the load at a point as follows:

qi =
∫ 1

0
qδi for i = 0, · · · , n.

Ordinary differential equations

Firstly, the equations for w are considered and written as ordinary differential
equations. We use Equation (5.4.15) (for 1 < k < N and avoiding the
interfaces) and follow standard procedure to find

Mrr ¨̄w = −LrrV̄ +Mrrq̄I . (5.4.23)

The ordinary differential equation for the first beam is

M c
rr

¨̄wr = −LrrV̄ +Mrrq̄I , (5.4.24)

and for the last beam

Mr ¨̄w = −LrV̄ +Mrq̄I . (5.4.25)

Equation (5.4.17) (for the interface) is written as

(M0,0 +Mn,n + µk)ẅn,k +M0,1ẅ1,k+1 +Mn,n−1ẅn−1,k = −L0,0V0,k+1

−L0,1V1,k+1 − Ln,n−1Vn−1,k − Ln,n+1Vn+1,k + qn + q0. (5.4.26)

Recall that wn,k = w0,k+1.

Write the equations for φ as ordinary differential equations. Use Equation
(5.4.16) (for 1 < k < N and avoiding the interfaces) to obtain

1

α
Mrr

¨̄φ = MrrV̄ − Lrrm̄−Rrrw̄. (5.4.27)

The first and last beams are given by

1

α
M c

rr
¨̄φr = MrrV̄ − Lrrm̄−Rc

rrw̄r (5.4.28)
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and

1

α
Mr

¨̄φ = MrV̄ − Lrm̄−Rrw̄ (5.4.29)

respectively. By making use of the fact that wn,k = w0,k+1 and φn,k = φ0,k+1,
Equation (5.4.18) (for the interface) is written as

1

α
(M0,0 +Mn,n + Ik) φ̈n,k +

1

α
(M0,1 φ̈1,k+1 +Mn,n−1φ̈n−1,k) =

M0,0V0,k+1 +M0,1V1,k+1 +Mn,n−1Vn−1,k +Mn,nVn,k − L0,0m0,k+1

− L0,1m1,k+1 − Ln,n−1mn−1,k − Ln,nmn,k −R0,1w1,k+1

−Rn,n−1wn−1,k − (R0,0 +Rn,n)wn,k. (5.4.30)

The constitutive equations (5.4.21) and (5.4.22) are written as

Mm =
1

β
Lφ, (5.4.31)

MV = LTw −Mφ. (5.4.32)

Note that for k > 1 no rows or columns are deleted from these matrices. If
k = 1 the constitutive equations become

Mm =
1

β
Lcφ, (5.4.33)

MV = (LT )cw −M cφ. (5.4.34)

Problem MT-beam ODE

The system of ordinary differential equations for the model is given by Equa-
tions (5.4.23) to (5.4.25) for w and (5.4.27) to (5.4.29) for φ, Equations
(5.4.26) and (5.4.30) for the interfaces of w and φ respectively as well as the
constitutive equations given in (5.4.31) to (5.4.34).

5.5 Conclusion

The aim of this chapter was to see if it is theoretically possible to implement
a multiple beam model for a slender structure such as a high-rise building.
To correctly apply the interface conditions in the variational form proved
to be a challenge. In order to deal with the additional terms due to the
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interface conditions a variant of the Mixed Finite Element Method was used
where neither of the constitutive equations are substituted into the equations
of motion. Finally, a system of ordinary differential equations was derived
and Problem MT-beam ODE was presented. It is clear that it is feasible to
use this model for this application.

The simulation of this problem will be a part of future research. Possible
obstacles to consider include obtaining realistic data for, amongst others,
the mass of the floors, the dimensions of the buildings and the various other
parameters involved.
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Chapter 6

Cantilever Timoshenko beam
and tip body with elastic
behaviour at the interfaces

6.1 Introduction

As mentioned in Chapter 1, beam models have a lot of applications, for ex-
ample it can be part of an elastic multi-structure (as in [LZ14]) or a model for
a slender vertical structure (as in [LVV05]). It can also be used to manipulate
an object (as in [LM88]), i.e. the beam has a body attached to it.

Although important, [LM88] is but one of many publications on structures
containing tip bodies. In these publications, analysis of vibration modes,
stabilization and optimal control of the vibration are topics considered, see
e.g. [Gro10] for references up to 2008. Successful manipulation of objects
by robotic arms depends on damping of unwanted vibration and natural
damping in a beam is often insufficient. The possibility of using a tip body
in order to stabilize a system is considered in [AS02] and [RA15].

Recall that the Timoshenko model is more realistic than the Euler-Bernoulli
model, see Section 1.2.1. According to [Gro10] hybrid models for a Timo-
shenko beam has attracted more attention since the late eighties, but it
appears as if a Timoshenko beam model with tip body where rotary inertia
is taken into account, was not considered before 2004.
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In the article [ZVV04] the Finite Element Method is used to compute natural
frequencies and modes of vibration for a Timoshenko beam with tip body.
Rotary inertia of the tip body is taken into account. The stabilization of
such a Timoshenko beam is considered in [Gro10] and [RA15]. (The model
problem in these articles is the same as in [ZVV04].) In [RA15] the authors
mention that the position of the center of mass of the tip body need not be
at the endpoint of the beam but then neglect a resulting additional term in
their linear approximation. They proceed to prove an existence result and a
stability result for the linear case.

With few exceptions the publications mentioned above were concerned with
the stabilization of different configurations rather than modelling the config-
uration.

In this chapter our main concern is to develop a realistic way of modelling
the interface between the endpoint of the beam and the attached body. The
study is motivated by a comparison of the two articles [AS02] and [ZVV04].
In the first an Euler-Bernoulli beam with a damping tip body is considered
and in the second a Timoshenko beam with a tip body and boundary dam-
ping is investigated. The model in [AS02] is more realistic than models in
preceding articles due to the fact that the distance between the endpoint of
the beam and the position of the center of mass of the tip body is taken
into account. The Timoshenko theory provides a better model for the beam
but there is a complication at the interface with the tip body. In [AS02]
the angle of rotation of the tip body is assumed to be the same as that for
the endpoint of the beam, which appears to be realistic. However, making
this assumption for a Timoshenko beam leads to an inadmissable interface
condition. The interface condition in [ZVV04] is admissible in the variational
form but appears less realistic than the alternative.

In [BCLS08] and [LZ14] Euler-Bernoulli beams were connected to “legs”
using the same geometry as in [AS02]. In [Gro10] and [RA15] the connection
between the Timoshenko beam and tip body is the same as in [ZVV04].
This is also the case in [FES17] where a rigid body is fitted between two
Timoshenko beams.

We propose that both models discussed above, can be questioned and that an
elastic interface must be considered. Exactly how to model this is explained
in Subsection 6.2.3. It is important to note that the main issue here is the
interface conditions when fixing a body to the beam, not damping.

After the derivation of the equations of motion for the tip body, we present
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the interface conditions in [AS02], [ZVV04] and our proposed alternative,
highlighting the different assumptions. A comparison can thus be made. At
the so called clamped end we model an elastic interface that resists rotation.

Concerning an analysis of the new hybrid model, we prove existence and
uniqueness of a solution for the initial boundary value problem. We derive
the variational form to obtain the weak variational form for existence theory.
The variational form is also used to prove dissipation of energy and to formu-
late the Galerkin approximation which in turn yields the system of ordinary
differential equations for the dynamic simulation.

Using an abstract general result for convergence of the Galerkin approxima-
tion [BSV17], we derive error estimates for the finite element approximation.

To complement the theory, we present results of numerical experiments. Var-
ious values of the elastic constants for interfaces were considered.

6.2 The model problems

6.2.1 Equations of motion

Firstly, the Timoshenko beam model (see Section 1.2) with the addition of
possible damping terms is presented. The equations of motion and constitu-
tive equations (in dimensionless form) are given by:

∂2
tw = ∂xV − c1∂tw + q, (6.2.1)

1

α
∂2
t φ = V + ∂xM, (6.2.2)

M =
1

β
∂xφ+ c2∂t∂xφ, (6.2.3)

V = ∂xw − φ, (6.2.4)

where c1 and c2 denote dimensionless damping parameters.

The term containing c1 models viscous damping. Material damping (also
strain rate or Kelvin-Voigt damping) is modelled in Equation (6.2.3) by the
term containing c2. For the Euler-Bernoulli model it becomes c2∂t∂

2
xw, see

Equation (6.2.6) below as well as [Inm94]. In this chapter however, our main
concern is a realistic way to model the interface between the endpoint of the
beam and the attached body.
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For the dimensionless scaling see Subsection 1.2.1. For convenience the origi-
nal notation was retained in Equations (6.2.1) - (6.2.4). Damping coefficients
cv (for viscous damping) and csr (for strain rate damping) can be recovered
as cv = AGκ2t0`

−2c1 and csr = AGκ2`2t0c2.

Elimination of the shear force V from (6.2.1) and (6.2.2) and replacement of
φ by ∂xw, lead to the Rayleigh model

∂2
tw −

1

α
∂2
t ∂

2
xw = −∂2

xM − c1∂tw + q (6.2.5)

with constitutive equation

M =
1

β
∂2
xw + c2∂t∂

2
xw. (6.2.6)

The constitutive equation (6.2.4) is now redundant. The Euler-Bernoulli
model (used in [AS02]) can be obtained by discarding the rotary inertia
term − 1

α
∂2
t ∂

2
xw (which is considered to be insignificant in the Euler-Bernoulli

theory) in Equation (6.2.5).

6.2.2 Boundary and interface conditions

In order to formulate the boundary and interface conditions, it is necessary
to examine the dynamics of the tip body. The interface conditions consid-
ered in the two articles that motivated this study are also explained in this
subsection.

Dynamics of the tip body

The interface conditions are determined by the interaction between the beam
and the rigid body illustrated in Figure 6.1. The angle of the tip body relative
to the beam is exaggerated in Figure 6.2 for clarity. Although the dynamics
are elementary, it is necessary to consider the equations of motion for the
rigid body carefully when deriving these conditions. The position of the
center of mass C of the tip body relative to the endpoint of the beam (see
Figure 6.1) is

d cos θ(t) i + d sin θ(t) j,
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Figure 6.1: Tip body Figure 6.2: Relevant angles

where i is in the direction of the axis of the undeformed beam. Clearly, the
velocity vC and acceleration aC of the center of mass are given by

vC = ∂tw(`, t) j− dθ̇(t) sin θ(t) i + dθ̇(t) cos θ(t) j,

aC = ∂2
tw(`, t) j− dθ̈(t) sin θ(t) i + dθ̈(t) cos θ(t) j− dθ̇2(t) cos θ(t) i

− dθ̇2(t) sin θ(t) j.

For the linear approximation it is assumed that the term −dθ̇2(t) sin θ(t) j in
the acceleration may be neglected and cos θ(t) ≈ 1. (Apart from θ(t) small,
the frequency of oscillations should be moderate.) Using these approxima-
tions, we have the following expressions for the transverse components of the
velocity and acceleration:

∂tw(`, t) + dθ̇(t) and ∂2
tw(`, t) + dθ̈(t).

Using Newton’s second law for the motion of the center of mass we have

m∂2
tw(`, t) +md θ̈(t) = FB(t)− k1∂tw(`, t)− k1dθ̇(t), (6.2.7)

where m is the mass of the tip body and FB is the force on the body. The last
two terms are effectively the damping suggested in [AS02]. Taking moments
about the center of mass we have

Jθ̈(t) = MB(t)− dFB(t)− dk2θ̇(t), (6.2.8)

where FB is the force on the tip body, MB is the couple on the rigid body
and J is the moment of inertia about the center of mass. Here, the last term
with damping parameter k2 is a damping term proposed by [AS02].

We have reached a point where the differences between [AS02], [ZVV04] and
the present work can be explained.
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The model problem in [AS02]

The authors in [AS02] used the Euler-Bernoulli theory (as mentioned) with
Kelvin-Voigt damping. For the interface conditions they assume that the
angle of deflection curve at the endpoint is equal to θ(t). As a consequence
θ(t) ≈ ∂xw(`, t) in the linear approximation and hence θ̇(t) ≈ ∂t∂xw(`, t) and
θ̈(t) ≈ ∂2

t ∂xw(`, t). Using these approximations, the transverse components
of the velocity and acceleration become

∂tw(`, t) + d∂t∂xw(`, t) and ∂2
tw(`, t) + d∂2

t ∂xw(`, t).

The term d∂t∂xw(`, t) in the transverse component of the velocity is also
neglected in [AS02]. Doing the necessary substitutions, one obtains the in-
terface conditions in [AS02]:

m∂2
tw(`, t) +md ∂2

t ∂xw(`, t) + k1∂tw(`, t) = −V (`, t),

J∂2
t ∂xw(`, t) + dk2∂t∂xw(`, t) = −M(`, t) + dV (`, t).

Standard boundary conditions are used at the clamped end.

The model problem in [ZVV04]

In [ZVV04] the distance between the endpoint of the Timoshenko beam and
the center of mass is neglected, i.e. d = 0. For the interface it is assumed that
θ(t) = φ(`, t). As mentioned, boundary damping (or control) is considered
in [ZVV04]. The authors proposed the following interface conditions:

m∂2
tw(`, t) = −V (`, t)− k1∂tw(`, t),

J∂2
t φ(`, t) = −M(`, t)− k2∂tφ(`, t),

The left endpoint of the beam is clamped and the boundary conditions are
the usual; w(0, t) = φ(0, t) = 0.

6.2.3 Proposed new model

Alternative boundary conditions for the clamped end

Suppose for example that a beam is clamped at the end x = 0. The usual
boundary conditions are ∂xw = 0 for the Euler-Bernoulli beam and φ = 0 for
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the Timoshenko beam. Note that φ is the angle of rotation of the normal of
the cross section, measured from the direction of i. Since φ = 0, ∂xw 6= 0 for
the Timoshenko beam or we are lead to the absurd conclusion that V = 0 at
the clamped end. This anomaly was pointed out in [Van01] and [Bha09].

However, considering the variational form, we see that both boundary con-
ditions are mathematically convenient. Consider the Timoshenko model for
example. Multiplying Equation (6.2.2) by a test function ψ and employing
integration by parts yields∫ `

0

1

α
∂2
t φψ =

∫ `

0

V ψ +

∫ `

0

Mψ′ +M(`, t)ψ(`)−M(0, t)ψ(0).

Relevant to the discussion are the terms M(`, t)ψ(`) and−M(0, t)ψ(0). Since
M 6= 0 at a clamped end, the variational formulation requires that ψ = 0.
By a similar argument, ∂xw = 0 for the Euler-Bernoulli model.

In [Van01] the author suggested as an alternative the condition M(0, t) =
µφ(0, t), with the dimensionless elastic constant µ > 1. The idea is that
the deviation from the standard condition (φ = 0) is resisted elastically. No
definite conclusion was reached regarding the value of µ but it should be large
to ensure that φ(0, t) is small. For the mathematical model in this chapter,
the boundary conditions at the clamped end are

w(0, t) = 0, (6.2.9)

M(0, t) = µφ(0, t) (6.2.10)

with µ > 0. It follows from the scaling for moments that the real elastic
coefficient is AGκ2`µ.

Interface conditions between the beam and tip body

In this chapter we question the interface conditions in both [AS02] and
[ZVV04] and model an elastic interface. The assumption θ(t) = ∂xw(`, t)
in [AS02] appears to be a natural choice but there must be some deforma-
tion in either the end of the beam or the “rigid” body. We claim that the
gradient of the deflection curve at ` will differ from θ(t). Likewise we also
propose that θ(t) 6= φ(`, t) due to warping of the cross-section. (Warping of a
cross section is well known, see e.g. [LVV09] where this effect can be seen in
Figure 5. A two-dimensional beam model is also compared to a Timoshenko
beam.)
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First, Equations (6.2.7) and (6.2.8) should also be rewritten in dimensionless
form using the same scaling as before. The dimensionless constants are

m∗ =
m

ρA`
, J∗ =

JGk

`ρEI
, k∗1 =

k1`

AGkT
, k∗2 =

k2`

EIT

M∗
B =

MB

AGκ2`
and F ∗B =

FB
AGκ2

.

Rewriting the interface conditions in dimensionless form, returning to the
original notation and substituting MB(t) = −M(1, t) and FB(t) = −V (1, t),
we have

m∂2
tw(1, t) +mdθ̈(t) + k1∂tw(1, t) + k1dθ̇(t) = −V (1, t) (6.2.11)

and

Jθ̈(t) + dk2θ̇(t) = −M(1, t) + dV (1, t). (6.2.12)

For this study we model the interaction by

M(1, t) = γ(θ(t)− φ(1, t)), (6.2.13)

where the dimensionless parameter γ is positive, reasoning that the deviation
of θ − φ from zero is resisted elastically. As above, the elastic coefficient is
AGκ2`γ.

Results of numerical experiments are provided in Section 6.9. Various values
for µ and γ were considered.

Mathematical model

The model consists of the equations of motion

∂2
tw = ∂xV − c1∂tw + q, (6.2.14)

1

α
∂2
t φ = V + ∂xM ; (6.2.15)

and the constitutive equations

M =
1

β
∂xφ+ c2∂t∂xφ, (6.2.16)

V = ∂xw − φ; (6.2.17)
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with boundary conditions

w(0, t) = 0, (6.2.18)

M(0, t) = µφ(0, t); (6.2.19)

and the interface conditions

m∂2
tw(1, t) +mdθ̈(t) + k1∂tw(1, t) + k1dθ̇(t) = −V (1, t) (6.2.20)

Jθ̈(t) + dk2θ̇(t) = −M(1, t) + dV (1, t). (6.2.21)

The initial conditions are w(·, 0) = w0, φ(·, 0) = φ0, θ(0) = θ0, ∂tw(·, 0) = wd,
∂tφ(·, 0) = φd and θ̇(0) = θd.

6.3 Variational form

As usual we start by multiplying Equations (6.2.1) and (6.2.2) by arbitrary
functions v and ψ respectively, then integrating both sides and using inte-
gration by parts to obtain∫ 1

0

∂2
tw(·, t)v =−

∫ 1

0

V (·, t)v′ − c1

∫ 1

0

∂tw(·, t)v +

∫ 1

0

q(·, t)v

+ V (1, t)v(1) − V (0, t)v(0), (6.3.1)∫ 1

0

1

α
∂2
t φ(·, t)ψ =−

∫ 1

0

M(·, t)ψ′ +
∫ 1

0

V (·, t)ψ

+M(1, t)ψ(1)−M(0, t)ψ(0). (6.3.2)

To eliminate V (1, t) in Equation (6.2.12), we multiply Equation (6.2.11) by
d and add the resulting equation to Equation (6.2.12). Then, we substitute
Equation (6.2.13) to obtain

Jθ̈(t) + dk2θ̇(t) + dm∂2
tw(1, t) +md2θ̈(t) + dk1∂tw(1, t) + k1d

2θ̇(t)

= −γ
(
θ(t)− φ(1, t)

)
. (6.3.3)

Denote the space of test functions by T [0, 1] = {v ∈ C1[0, 1] | v(0) = 0}.
Using the boundary and interface conditions (6.2.10), (6.2.11), (6.2.13) and
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(6.3.3), Equations (6.3.1) and (6.3.2) become∫ 1

0

∂2
tw(·, t)v =−

∫ 1

0

V (·, t)v′ − c1

∫ 1

0

∂tw(·, t)v +

∫ 1

0

q(·, t)v

−
(
m∂2

tw(1, t) +mdθ̈(t) + k1∂tw(1, t) + k1dθ̇(t)
)
v(1)

(6.3.4)

and∫ 1

0

1

α
∂2
t φ(·, t)ψ =−

∫ 1

0

M(·, t)ψ′ +
∫ 1

0

V (·, t)ψ + γ
(
θ(t)− φ(1, t)

)
ψ(1)

− µφ(0, t)ψ(0), (6.3.5)

for all v ∈ T [0, 1] and ψ ∈ C1[0, 1].

The model problem is now written in variational form.

Problem TT-beam-V

Find the functions w, φ and θ such that w(·, t) ∈ T [0, 1], φ(·, t) ∈ C1[0, 1]
and θ(t) ∈ R for all t > 0 and the following equations hold for all v ∈ T [0, 1]
and ψ ∈ C1[0, 1]:∫ 1

0

∂2
tw(·, t)v =

∫ 1

0

(−∂xw(·, t) + φ(·, t))v′ − c1

∫ 1

0

∂tw(·, t)v +

∫ 1

0

q(·, t)v

−
(
m∂2

tw(1, t) +mdθ̈(t) + k1∂tw(1, t) + k1dθ̇(t)
)
v(1),

(6.3.6)∫ 1

0

1

α
∂2
t φ(·, t)ψ =−

∫ 1

0

1

β
∂xφ(·, t)ψ′ − c2

∫ 1

0

∂t∂xφ(·, t)ψ′ +
∫ 1

0

∂xw(·, t)ψ

−
∫ 1

0

φ(·, t)ψ + γ
(
θ(t)− φ(1, t)

)
ψ(1)− µφ(0, t)ψ(0),

(6.3.7)

(J +md2)θ̈(t) + (k1d
2 + dk2)θ̇(t) + dm∂2

tw(1, t) + dk1∂tw(1, t)

=− γ
(
θ(t)− φ(1, t)

)
. (6.3.8)

It is instructive to consider the decay of energy for the model in the absence
of forcing. The kinetic energy is given by

T (t) =
1

2

[∫ 1

0

(
∂tw(·, t)

)2
+

∫ 1

0

1

α

(
∂tφ(·, t)

)2

+m
(
∂tw(1, t) + dθ̇(t)

)2

+ J
(
θ̇(t)

)2
]
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and the elastic potential energy by

V (t) =
1

2

[∫ 1

0

1

β

(
∂xφ(·, t)

)2
+

∫ 1

0

(
∂xw(·, t)− φ(·, t)

)2

+µ
(
φ(0, t)

)2
+ γ
(
θ(t)− φ(1, t)

)2
]
.

If E(t) = T (t) + V (t), then it follows from the time derivatives of T (t) and
V (t) and Equations (6.3.6), (6.3.7) and (6.3.8) that

Ė(t) =− c1

∫ 1

0

(
∂tw(·, t)

)2 − c2

∫ 1

0

(
∂t∂xφ(·, t)

)2

− k1

[
∂tw(1, t) + dθ̇(t)

]2 − k2d
[
θ̇(t)

]2

.

Since all the parameters are positive it follows that Ė(t) ≤ 0 for a solution
of the model problem. This result should be expected from Physics (and is
therefore reassuring).

Equations (6.3.6), (6.3.7) and (6.3.8) are used for the application of the Finite
Element Method. For the theory we need a single variational equation. First,
we multiply Equation (6.3.8) by an arbitrary real number z and then add
the three equations to obtain∫ 1

0

∂2
tw(·, t)v +

∫ 1

0

1

α
∂2
t φ(·, t)ψ

+
(
m∂2

tw(1, t) +mdθ̈(t) + k1∂tw(1, t) + k1dθ̇(t)
)
v(1)

+
(
Jθ̈(t) + dk2θ̇(t) + dm∂2

tw(1, t) +md2θ̈(t) + dk1∂tw(1, t) + k1d
2θ̇(t)

)
z

=−
∫ 1

0

1

β
∂xφ(·, t)ψ′ − c2

∫ 1

0

∂t∂xφ(·, t)ψ′ −
∫ 1

0

(
∂xw(·, t)− φ(·, t)

)
(v′ − ψ)

− c1

∫ 1

0

∂tw(·, t)v +

∫ 1

0

q(·, t)v − γ
(
θ(t)− φ(1, t)

)
(z − ψ(1))− µφ(0)ψ(0).

(6.3.9)

The problem is to find a function 〈w, φ, θ〉 such that for all t > 0, w(·, t) ∈
T [0, 1], φ(·, t) ∈ C1[0, 1], θ(t) ∈ R and (6.3.9) holds for all (v, ψ, z) in T [0, 1]×
C1[0, 1]× R. The initial conditions are w(·, 0) = w0, φ(·, 0) = φ0, θ(0) = θ0,
∂tw(·, 0) = wd, ∂tφ(·, 0) = φd and θ̇(0) = θd.
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6.4 Weak variational form

Let H1(0, 1) denote the Sobolev space with weak first order derivatives in
L2(0, 1). The inner product for H1(0, 1) is denoted by (f, g)1 and the corres-
ponding norm by ||f ||1. Let V (0, 1) be the closure of T [0, 1] in H1(0, 1).

Instead of considering functions w and φ defined on [0, 1] × [0, T1], consider
functions ui : [0, T1] → H1(0, 1), i = 1, 2. (If the problem has a classical
solution, then u1(t)(x) = w(x, t) and u2(t)(x) = φ(x, t)).

We need to define a value f(p) of a function f ∈ H1(0, 1). The trace operator
may be used, see [OR76], but the one-dimensional case is quite simple. An
elementary inequality is required. If f ∈ C1[0, 1] and f has a zero in [0, 1],
it is easy to prove that |f(x)| ≤ ‖f ′‖ for each x ∈ [0, 1]. If f does not have a
zero, then

|f(x)| ≤ 2‖f‖1 for each x ∈ [0, 1]. (6.4.1)

By taking limits, it follows that these inequalities hold for any f ∈ H1(0, 1).
Now, for any point p a linear functional γp is defined on C[0, 1] by γp(f) =
f(p). The inequality above implies that it is bounded on C1[0, 1] with respect
to the norm of H1(0, 1) and hence it can be extended to H1(0, 1). We will
write f(p) for γp(f).

In this section and the next, Poincaré type inequalities will be used frequently.
First, for f ∈ C1[0, 1] and any points p and q in [0, 1]

|f(p)| ≤ ‖f ′‖+ |f(q)|. (6.4.2)

By taking limits, it follows that (6.4.2) holds for any f ∈ H1(0, 1).

To write the model problem in weak variational form, we need the following
product spaces and use the notation in Table 6.1 such that:

X = L2(0, 1)× L2(0, 1)× R2,

H1 = H1(0, 1)×H1(0, 1)× R2,

VP = V (0, 1)×H1(0, 1)× R2,

V = {u = 〈u1, u2, u3, u4〉 ∈ VP | u4 = u1(1)}.
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Table 6.1: Notation for inner products and norms

Space Inner product Norm
L2(0, 1) (·, ·) ‖ · ‖
X (x, y)X = (x1, y1) + (x2, y2) + x3y3 + x4y4 ‖ · ‖X
H1 (x, y)H1 = (x1, y1)1 + (x2, y2)1 + x3y3 + x4y4 ‖ · ‖H1

Now, for the weak variational form, we define the following bilinear forms on
the product spaces. For f and g in X and u and v in H1,

c(f, g) =

∫ 1

0

f1g1 +

∫ 1

0

1

α
f2g2 +mf4g4 +md

(
f3g4 + f4g3

)
+ (J +md2)u3v3,

b(u, v) =

∫ 1

0

1

β
u′2v

′
2 +

∫ 1

0

(u′1 − u2)(v′1 − v2) + γ(u3 − u2(1))(v3 − v2(1))

+ µu2(0)v2(0),

a(u, v) =k1u1(1)v1(1) + k1d
(
u3v1(1) + u1(1)v3

)
+ (k1d

2 + dk2)u3v3

+ c1

∫ 1

0

u1v1 + c2

∫ 1

0

u′2v
′
2,

where the derivatives are weak derivatives.

Using the bilinear forms, Equation (6.3.9) can be written as

c(∂2
t u(·, t), v) + a(∂tu(·, t), v) + b(u(·, t), v) =

∫ 1

0

q(·, t)v1,

where u = 〈w, φ, θ, w(1)〉.

In the rest of this section we derive the properties of the bilinear forms.
First note that the bilinear forms a, b and c are symmetric. For the weak
variational form, we need to show that the bilinear forms c and b are inner
products for X and V respectively.

Proposition 6.4.1. The bilinear form c is an inner product for the space X.

Proof. Since c is a symmetric bilinear form, it is an inner product if c(u, u) =
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0 implies u = 0. Now,

c(u, u) =

∫ 1

0

u2
1 +

1

α

∫ 1

0

u2
2 +m(u4 + du3)2 + Ju2

3

≥ Kc

(
‖u1‖2 + ‖u2‖2 + u2

3

)
(since m > 0) (6.4.3)

where Kc = min{1, 1
α
, J}. Consequently, u1, u2, u3 and u4 + du3 are zero if

c(u, u) = 0. It follows that u4 = 0 and we are done.

Definition Inertia space W
We refer to the vector space X equipped with the inner product c as the
space W . The norm ‖ · ‖W is defined by ‖u‖W =

√
c(u, u).

The next result is crucial. Due to (6.4.2) the result is easy to derive when
w(0, t) = φ(0, t) = 0. In the literature on Timoshenko theory which we
engage with, w and φ had zeros at one or both endpoints. In our case we do
not have a zero for the function φ, which complicates the proof.

Remark In some proofs it is convenient to denote u ∈ X by 〈w, φ, θ, r〉
instead of 〈u1, u2, u3, u4〉.

Proposition 6.4.2. There exists a constant Kb such that b(u, u) ≥ Kb‖u‖2
X

for each u ∈ V .

Proof. Assume that the result is not true. Then there exists a sequence
(un) =
(〈wn, φn, θn, wn(1)〉) such that

‖wn‖2 + ‖φn‖2 + θ2
n + (wn(1))2 = 1,while (6.4.4)

1

β
‖φ′n‖+ ‖w′n − φn‖2 + γ(θn − φn(1))2 + µφn(0)2 → 0. (6.4.5)

From (6.4.5), ‖φ′n‖ → 0, ‖w′n − φn‖ → 0 and φn(0) → 0. It follows from
(6.4.2) that |φn(1)| ≤ ‖φ′n‖ + |φn(0)|, hence φn(1) → 0. We also have that
(θn − φn(1))→ 0 and therefore θn → 0.

For n sufficiently large,

‖wn‖ ≤ ‖w′n − φn‖+ ‖φn‖ <
1

4
+ ‖φn‖,

|wn(1)| ≤ ‖w′n − φn‖+ ‖φn‖ <
1

4
+ ‖φn‖
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and |θn| < 1
4
. This implies that 2( 1

16
+ 1

2
‖φn‖+ ‖φn‖2) + ‖φn‖2 + 1

16
> 1, and

hence ‖φn‖ > 1
2
.

Since ‖φ′n‖ → 0 and φn(0)→ 0, it follows from (6.4.2) that

|φn(x)| ≤ ‖φ′n‖+ |φn(0)| < 1
4

for each x ∈ [0, 1]

for n sufficiently large. Consequently ‖φn‖2 =
∫ 1

0
φ2
n ≤ 1

16
which contradicts

the previous inequality.

Corollary 6.4.1. The bilinear form b is an inner product for the space V .

Definition Energy space V
We refer to the space V equipped with the inner product b as the energy
space. The norm ‖ · ‖V is defined by ‖u‖V =

√
b(u, u).

In the weak variational form of the model problem we consider a function u
with domain an interval and range in X. The derivatives u′(t) and u′′(t) are
defined pointwise as limits. We write u′(t) ∈ Z for some space Z if the limit
is with respect to the norm of Z.

Model problem in weak variational form Let q̃ be the mapping t →
q(·, t) and qX = 〈q̃, 0, 0, 0〉. Find u such that for each t > 0, u(t) ∈ V ,
u′(t) ∈ V , u′′(t) ∈ W and

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (qX(t), v)X for each v ∈ V,

while u(0) = u0 = 〈w0, φ0, θ0, w0(1)〉 and u′(0) = ud = 〈wd, φd, θd, wd(1)〉.

6.5 Equivalent norms and inequalities

The results in this section are necessary for existence theory and to derive
error estimates for the finite element approximation.

Proposition 6.5.1. The norms ‖ · ‖W and ‖ · ‖X are equivalent.

Proof. First we prove that ‖u‖X ≤ K1‖u‖W for some K1 > 0. From
|u4| ≤ |u4 + du3|+ d|u3| we have

u2
4 ≤ 2(u4 + du3)2 + 2d2u2

3.
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Combining this inequality with (6.4.3) yields the desired inequality. Next,
from the definition of c(u, v),

c(u, u) ≤
∫ 1

0

u2
1 +

1

α

∫ 1

0

u2
2 + (J +md2)u2

3 + 2mu2
4 + 2md2u2

3.

(We used the elementary inequality |2ab| ≤ a2 + b2.) It follows that

‖u‖2
W ≤ ‖u1‖2 +

1

α
‖u2‖2 + (J + 3md2)u2

3 + 2mu2
4 ≤ K2‖u‖2

X .

Corollary 6.5.1. The space W is complete.

Proposition 6.5.2. There exists a constant Cb such that

b(u, u) ≥ Cb‖u‖2
W for each u ∈ V.

Proof. The result follows from Propositions 6.4.2 and 6.5.1.

Proposition 6.5.3. V is a dense subset of W .

Proof. We have that V (0, 1) is dense in L2(0, 1), since C∞0 (0, 1) is dense in
L2(0, 1) and C∞0 (0, 1) ⊂ V (0, 1). For any u = (w, φ, θ, r) ∈ X there exists a
sequence (yn) = (wn, φn, θn, wn(1)) in V , such that ‖wn−w‖2 + ‖φn− φ‖2 +
(θn − θ)2 → 0. But wn(1) need not converge to r.

It is not difficult to construct a sequence (ηn) in H1(0, 1) with the following
properties:

ηn(0) = 0, ηn(1) = 1 and ‖ηn‖ → 0.

Let w̃n = wn + (r − wn(1))ηn, then w̃n(1) = wn(1) + ηn(1)(r − wn(1)) = r.
Also, define ỹn = (w̃n, φn, θn, w̃n(1)), then ‖u − ỹn‖2

X = ‖w − w̃n‖2 + ‖φ −
φn‖2 + (θ − θn)2. Now, ‖w − w̃n‖ ≤ ‖w − wn‖ + |r − wn(1)|‖ηn‖ → 0, and
hence ‖u− ỹn‖2

X → 0.

Therefore V is a dense subset of X. Using Proposition 6.5.1 the result follows.

Proposition 6.5.4. The norms ‖ · ‖V and ‖ · ‖H1 are equivalent on V .
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Proof. First we prove that b(u, u) ≤ K‖u‖2
H1 . It is easy to see that∫ 1

0

1

β

(
φ′
)2

+

∫ 1

0

(
w′ − φ

)2 ≤ K‖u‖2
H1 .

Now, (θ − φ(1))2 ≤ 2θ2 + 2
(
φ(1)

)2 ≤ 2θ2 + 8‖φ‖2
1 by (6.4.1). Also, |φ(0)| ≤

2‖φ‖1 by (6.4.1). The required inequality follows from the three inequalities
above.

Next we prove that b(u, u) ≥ k‖u‖2
H1 . Clearly,

‖w′‖2 ≤ 2‖w′ − φ‖2 + 2‖φ‖2.

Consequently, using ‖w‖ ≤ ‖w′‖ and |w(1)| ≤ ‖w′‖,

‖w‖2
1 + ‖φ‖2

1 + (w(1))2 ≤ 3‖w′‖2 + ‖φ′‖2 + ‖φ‖2

≤ 6‖w′ − φ‖2 + ‖φ′‖2 + 7‖φ‖2

≤ Kβb(u, u) + 7‖φ‖2.

As a result

‖w‖2
1 + ‖φ‖2

1 + (w(1))2 + θ2 ≤ Kβb(u, u) + 7‖φ‖2 + θ2

≤ Kβb(u, u) + 7‖u‖2
X .

The required inequality follows from Proposition 6.4.2.

Corollary 6.5.2. The space V is complete.

Proposition 6.5.5. There exists a constant K such that, for all u and
v in V ,

| a(u, v)| ≤ K‖u‖V ‖v‖V .

Proof. Since a is symmetric and nonnegative, |a(u, v)| ≤ a(u, u)a(v, v).
Now, using the definition of ‖ · ‖1 and an elementary inequality,

a(u, u) = k1u1(1)2 + 2k1du1(1)u3 + (k1d
2 + dk2)u2

3 + c1

∫ 1

0

u2
1 + c2

∫ 1

0

(u′2)2

≤ 2k1u1(1)2 + (2k1d
2 + dk2)u2

3 + c1‖u1‖2
1 + c2‖u2‖2

1.

By (6.4.1), it can be obtained that u1(1)2 ≤ 4‖u1‖2
1. Therefore

|a(u, u)| ≤K‖u‖2
H1 ,

for some constant K. Since the norms ‖ · ‖V and ‖ · ‖H1 are equivalent, the
result follows.
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6.6 Existence

The weak variational form of the model problem in this section is a special
case of the general linear vibration problem considered in [VV02] (given here
for convenience): Find u ∈ C1([0,∞), X) such that, for all t > 0, u(t) ∈ V ,
and u′′(t) ∈ W , and

c(u′′(t), v) + a(u′(t), v) + b(u(t), v) = (f(t), v)X

for all v ∈ V , u(0) = u0, u′(0) = u1.

Assumptions E1 to E4 (necessary to obtain existence) as well as the existence
result from the article [VV02] were presented in Subsection 1.3.3.

It is clear that Assumptions E1 to E4 are satisfied for our problem from
Propositions 6.5.3, 6.5.2, 6.5.1 and 6.5.5 respectively. The existence of a
unique solution for the weak variational form follows, provided that qX is
continuously differentiable w.r.t. the norm of X, which requires q̃ to be
continuously differentiable with respect to the norm of L2(0, 1). If that con-
dition is satisfied, Theorem 1.3.1 holds for the weak variational problem in
Section 6.4.

Remark As stated in Chapter 1, other existence results are available in
the literature, e.g. [Sho77]. The result from [VV02] is convenient for our
problem, since it is given in terms of bilinear forms.

6.7 Semi-discrete finite element approxima-

tion

6.7.1 Semi-discrete problem

Suppose the space Sh(0, 1) is the span of piecewise Hermite cubic basis func-
tions and Sh0 (0, 1) the subspace of Sh(0, 1) where the basis functions are zero
at x = 0. Let V h denote the subspace of V in Sh0 (0, 1)× Sh(0, 1)× R2.

Consider the Galerkin approximation of the weak variational form:
Find a function uh such that for each t > 0, uh(t) ∈ V h and

c(u′′h(t), v) + a(u′h(t), v) + b(uh(t), v) = (qX , v)X , (6.7.1)
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for each v ∈ V h, while uh(0) = uh0 = 〈wh0 , φh0 , θ0, w
h
0 (1)〉 and u′h(0) = uhd =

〈whd , φhd , θd, whd(1)〉. We use the interpolants (defined below) for the initial
conditions. Some authors use L2 projections for theoretical results instead
of interpolants.

For the implementation we use a different form of the Galerkin approxima-
tion, we use Equations (6.3.6), (6.3.7) and (6.3.8). In the implementation
we omit all the damping terms, except for the boundary damping, since our
main concern is the influence of the tip body on the motion. The problem is
to find wh(t) ∈ Sh0 (0, 1), φh(t) ∈ Sh(0, 1) and θh(t) ∈ R for each t > 0 such
that∫ 1

0

∂2
tw

h(·, t)v =−
∫ 1

0

∂xw
h(·, t)v′ +

∫ 1

0

φh(·, t)v′ +
∫ 1

0

q(·, t)v

−
(
m∂2

tw
h(1, t) +mdθ̈h(t) + k1∂tw

h(1, t) + k1dθ̇
h(t)
)
v(1)

(6.7.2)

∫ 1

0

1

α
∂2
t φ

h(·, t)ψ = −
∫ 1

0

1

β
∂xφ

h(·, t)ψ′ +
∫ 1

0

∂xw
h(·, t)ψ −

∫ 1

0

φh(·, t)ψ

+ γ
(
θh(t)− φh(1, t)

)
ψ(1)− µφh(0, t)ψ(0) (6.7.3)

(J +md2)θ̈h(t) + (k1d
2 + dk2)θ̇h(t) + dm∂2

tw
h(1, t) + dk1∂tw

h(1, t)

= −γ
(
θh(t)− φh(1, t)

)
, (6.7.4)

for all v ∈ Sh0 (0, 1) and ψ ∈ Sh(0, 1).

6.7.2 Convergence and error estimates

To prove convergence and obtain error estimates we use theory in [BSV17].
Our model problem is a special case of the general second order hyperbolic
problem with general damping considered there. It is necessary to establish
that the assumptions made in that article can be met. Assumptions E1 -
E4 required for existence (see Section 1.3.2) are also required in [BSV17].
As mentioned in Section 6.6, these assumptions are all true for our model
problem. They are not sufficient though.

Error estimates in the article were obtained by first considering a projection
of the solution and then applying interpolation error estimates. In [BSV17] a
generalized interpolation operator is defined. We need to use an interpolation
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operator that fits into the theory. We define the interpolation operator Π on
the product space H1 by

Πu = 〈Πc u1, Πc u2, u3, u4〉 for u ∈ H1,

where Πc is the usual interpolation operator for piecewise Hermite cubic basis
functions. Error estimates for Πc are well known in the literature, and can
be found in [OR76] for example.

Error estimates depend on the smoothness of the solution. To apply the
results from [BSV17], the minimum requirements are that u ∈ C2((0, T );V )
and that u(t), u′(t) and u′′(t) are in H2.

Error estimate Let uh0 = Πu0 and uhd = Πud. Then, for any t ∈ [0, T ],

‖u(t)− uh(t)‖V + ‖u′(t)− u′h(t)‖W ≤ Ch,

where h is the maximum length of an interval.

If the solution is smooth, the error will be of order h3.

Remark In theory, piecewise linear basis functions are suitable for the
Timoshenko beam. However, due to the phenomenon of “locking”, the rate of
convergence in practice is not as predicted by the theory. For the Timoshenko
beam locking can be avoided by using Hermite cubic basis functions according
to [Bra01, p.302]. Our experiments confirmed this.

6.8 System of ordinary differential equations

As mentioned, we use piecewise Hermite cubic basis functions. To derive the
differential equations for functions w̄ (corresponding to wh), φ̄ (corresponding
to φh) and θ is standard procedure, [ZVV04]. Note that in this section we use
dots for time derivatives and primes for spacial derivatives to avoid confusion.

The relevant matrices are defined in (3.2.19) in Section 3.2.3.

For w̄ we obtain

M ¨̄w +Kw̄ − Lφ̄ = −
(
mẅn+1(t) + k1ẇn+1(t)

)
δi(1) +Mq̄(t) + F̃θ, (6.8.1)

where qi(t) = q(xi, t) for i = 1, 2, ..., n + 1 and qi(t) = q′(xi−n−1, t) for i =
n + 2, ..., 2n + 2, and F̃θ is a vector with a value only in the nth element,
containing the θ terms.
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For φ̄ the system is

1

α
M ¨̄φ +

1

β
Kφ̄ − LT w̄ + Mφ̄ = G̃, (6.8.2)

where the vector G̃ only has a value in the 1st and (n + 1)th elements.
The matrices in (6.8.2) are complete except for LT where the first column is
deleted.

Lastly, Equation (6.7.4) can be rewritten as follows

(J +md2)θ̈h(t) + (dk2 + d2k1)θ̇h(t) + dmẅn+1(t) + dk1ẇn+1(t)

=− γ
(
θh(t)− φn+1(t)

)
. (6.8.3)

The system of ordinary differential equations is used to simulate the motion
of the beam (see the next section). A finite difference scheme is applied to
the system, using enough timesteps to ensure accuracy.

6.9 Numerical results and conclusion

One important objective was to obtain numerical results to show that the
model provides realistic results. We are particularly interested in the influ-
ence of the tip body and the “additional” elasticity built into the endpoints
of the beam. For this reason the damping parameters were kept small so
that information is not damped out.

The main parameter we were interested in investigating for this study, was γ.
It was found that different values of the parameter γ larger than 1 has no
significant influence on the solution. Therefore we compared results for γ =
0.1 and γ = 1. Note that different values for µ were also considered. Similar
to what was found for γ, different values of µ > 1 had no significant influence.
In the numerical experiments the damping parameters are zero, µ = 1 and
β = 300. All results obtained below are accurate to at least 5 significant
digits.

With regards to the motion of the beam, it is at rest (horizontal) initially and
then a periodic force is applied to it to set it into motion. The force used is
of the form q(x, t) = q0 sin(π

4
t)g(x) with g(x) = x(1−x). (The exact solution

is sufficiently smooth to justify the use of cubics.) In Figure 6.3 we show the
deflection of the beam at different dimensionless times for one period of the
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applied force with q0 = 0.1 and γ = 1. (The function φ was also computed,
but the shape of the solution curve given by the graph of w is of importance
here.)

Figure 6.3: Motion of the beam (w(·, t)) for γ = 1

As expected there is a lag at the endpoint of the beam due to the body
attached there. At t = 4 the maximum displacement is at about x = 0.8, at
t = 6 the maximum is closer to the endpoint. Of particular interest is the
difference between θ and φ(1). In the tables below these values are compared
for different times and for two different values of γ.

As can be seen from Table 2, for γ = 1 the values of θ and φ are close. For
γ = 0.1 there is a notable difference.

Note that the additional elasticity in the interface creates an opportunity to
evaluate the standard models by comparing it to the present model. If γ is
large the interface condition in [ZVV04] and [RA15] could be used.

Conclusion

The new interface conditions required new theoretical results regarding ex-
istence and convergence of the finite element approximation. The general
results in [VV02] and [BSV17] are convenient but the construction of Hilbert
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Table 6.2: Comparing θ and φ(1) for different values of γ

γ = 0.1
t θ φ(1)
2 -0,0032 -0,0107
4 -0,0231 -0,0196
6 -0,003 0,0224
8 0,0432 0,0455
10 0,0435 0,0296
12 0,0137 0,008
14 0,0126 0,028
16 0,0415 0,0396

γ = 1
t θ φ(1) θ − φ(1)
2 -0,0037 -0,0045 0,0008
4 -0,0241 -0,0236 -0,0005
6 -8,85 ×10−4 0,0017 -0,0026
8 0,0456 0,0459 -0,0003
10 0,0464 0,0448 0,0016
12 0,0131 0,0126 0,0005
14 0,0131 0,0146 -0,0015
16 0,0411 0,0409 0,0002

spaces V , W and X needed to be done with care and the proofs of their
properties are by no means trivial.

The numerical experiments had limited scope and were intended to comple-
ment the theory. The results obtained does however give us confidence in
the model. Clearly, more experiments should be done but that would be a
different investigation with different objectives. For example, numerical ex-
periments to establish conditions where it is necessary to use the new model
rather than the simpler models used previously.

Future work could also include stability analysis and implementation of the
Mixed Finite Element Method.
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Chapter 7

Conclusion

7.1 Overview

Linear beam models

The research started with a review of classical beam models. The Timo-
shenko model was presented in dimensionless form and it was shown that
the Rayleigh, Euler-Bernoulli, and Shear models can be derived from it by
making additional assumptions. These models can be compared using natu-
ral frequencies. References regarding such comparisons were provided, except
where the Timoshenko and Shear models were compared. The comparison
between the Timoshenko and Shear models was done and included in the
thesis.

Local Linear Timoshenko beam model

An important part of the thesis is the derivation of a nonlinear model which
we call the Local Linear Timoshenko model (or LLT model). First the equa-
tions of motion are derived for a one-dimensional solid (called a rod). The
result is well-known but the method in this thesis is different. From this
model the equations of motion for planar motion are derived. Together with
Timoshenko’s constitutive equations for shear and bending and a constitutive
equation for extension, the LLT model is obtained.

Note that the constitutive equations mentioned above are modelling assump-
tions and cannot be derived. (This fact was mentioned before.) However, in
Section 2.9 an attempt was made to provide some justification for these as-
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sumed constitutive equations and it is instructive to observe the connection
between the assumed constitutive equations and three-dimensional elastic-
ity. It also transpires that warping of a cross-section is essential to satisfy
the three-dimensional problem.

An important contribution related to the LLT model is the connection to
existing linear and nonlinear models. It promotes insight into the LLT model
itself as well as existing models.

First, a beam pivoted around one endpoint was considered. A trial solution
where the beam rotated with constant angular velocity satisfied all eleven
equations of the LLT model. As expected, the beam stretched but no other
deformation occurred. Making simplifying assumptions, possible Kirchoff
(nonlinear Euler-Bernoulli) models were derived from the LLT model.These
models do not appear promising due to a complication with the shear force
V which arises.

By making the appropriate assumptions for small vibrations, interesting li-
near and nonlinear models were derived from the LLT model. Short deriva-
tions for models in previous publications by other authors were obtained.
Also, an adapted version of the linear Timoshenko model which allows for
longitudinal vibration, was derived. A special case of this model is a model
for transverse vibration of a Timoshenko beam with an axial force. It is of
interest that the equations are derived from the LLT model instead of merely
through inserting the axial force in the linear Timoshenko model.

Recall that for linear vibration problems, the variational form is used for the-
oretical purposes as well as to implement a finite element approximation. As
a consequence we explored this avenue and derived the variational equations
of motion for the LLT model as well as the Adapted (linear) Timoshenko
model. For the last mentioned model problem, existence of a weak solution
was proved in a recent article.

Since the variational form of the LLT model is available, finite element ap-
proximations of problems can be formulated. Furthermore, an algorithm was
developed for the LLT model which we consider a substantial contribution.
Through experiments convergence was demonstrated and properties of solu-
tions of the model problems examined. The solution of the nonlinear model
was compared to the solution of the linear Timoshenko model. For small
vibrations the LLT and linear models compared well. Model problems were
formulated where the linear Timoshenko beam yielded solutions that gave
poor approximations to the corresponding solutions of the LLT model. For
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these problems it was verified that the strains were sufficiently small to sa-
tisfy necessary conditions for the LLT model. Therefore the LLT model can
be applied for cases where linear beam models are not realistic.

Vertical structure applications

From the literature it is clear that beam models are often considered to
model vertical slender structures. Some authors even used Euler-Bernoulli
beam models. Others, e.g. E Miranda, stressed the necessity to include shear
in the mathematical model (mentioning shear walls). This idea resulted in
the Twin-beam model in two articles by Miranda and Taghavi, and Reinoso
and Miranda (both in 2005). Particular attention was paid to these articles
in the thesis since they provide a convincing way to introduce shear. Also,
a wealth of information on various aspects is provided in these articles, for
example why the relatively simple model of a beam can be useful when
complex models for buildings are possible.

It was interesting that, at the time of this study, the Timoshenko model was
not considered in the literature we considered. (As far as could be established
most of these articles were written by experts in the field.)

Two chapters were dedicated to high-rise buildings subjected to earthquake
induced oscillations. In the first the Timoshenko beam model was adapted
for a high-rise structure by including the force due to gravity.

The earthquake model problem was rewritten as an artificial “wind problem”
for a cantilever beam. (Consequently the model and the mathematical anal-
ysis thereof are also relevant for wind induced oscillations.) This ‘new’ model
was referred to as the Equivalent problem which has homogenous boundary
conditions. Consequently, the Timoshenko model could be compared to the
Twin-beam model since modal analysis became applicable.

In our view, modal analysis was not sufficient (since the number of modes
involved is not obvious in general) and as a consequence simulations of the
actual motion were also performed which could be used to determine ac-
celerations at different points of the structure. The transient response of a
high-rise structure due to earthquake induced oscillations was also simulated,
using the Timoshenko model. These simulations were used to investigate the
effect of the dimensionless parameter β which relates to the stiffness of the
beam.

It was worth investigating whether a multiple beam model might not render
more accurate results than a single beam model, especially when dealing
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with high-rise structures. In order to do so, we first aimed to determine
the feasibility of such a model. The structure was modelled as a series of
beams connected by rigid bodies to represent the floors. To correctly apply
the interface conditions in the variational form proved to be a challenge. In
order to deal with the additional terms due to the interface conditions a
variant of the Mixed Finite Element Method was used where neither of the
constitutive equations are substituted into the equations of motion. Finally,
a system of ordinary differential equations was derived from which any finite
difference numerical method will yield an algorithm.

Hybrid model with elastic interfaces

A new hybrid Timoshenko beam model with a tip body was introduced
with improved boundary and interface conditions that include the effect of
elasticity. The study was motivated by two approaches to the problem in
the literature. The one approach is to use an Euler-Bernoulli beam and
the other a Timoshenko beam, each with a different way of defining the
normal vector at the end of the beam. Both these interface conditions can
be questioned and a more realistic elastic interface was applied. In order to
do this a dimensionless parameter was introduced to formulate an equation
for the elasticity in the interface. At the so called clamped end an elastic
interface was also introduced.

In order to apply the general theory to prove the existence of a solution for
this model, certain estimates were needed. It proved to be a serious challenge,
but these estimates were derived and the existence of a solution was proved.
Error estimates for the convergence of the finite element approximation were
also provided.

Finally, the model problem was presented as a system of ordinary differential
equations and numerical results were obtained. The results show that the
new model will approximate the “standard” Timoshenko hybrid model when
the dimensionless parameters for elasticity tends to infinity. This creates
the opportunity to evaluate the “standard rigid” boundary and interface
conditions.

7.2 Results

In retrospect, the most important contribution in this thesis is the develop-
ment of the Local Linear Timoshenko model and its applications. Built on a
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technical report ([VDB16]) a detailed derivation is presented. Using the well-
known equations of motion for a one-dimensional solid (often called a rod),
these equations are rigorously simplified for planar motion. To complete the
model, the constitutive equations for shear and bending is adapted from the
linear Timoshenko theory for a beam and a simple constitutive equation for
extension is used.

It is important to bear in mind that the constitutive equations mentioned
above, cannot be derived unless other assumptions are made. However, the
connection between the assumed constitutive equations and three-dimensional
elasticity was studied and it was shown that warping of a cross-section is in-
evitable.

A significant property of the model is that existing linear and nonlinear
models can be derived from it. This promotes insight into the LLT model
itself as well as existing models. In particular, by making the appropriate
assumptions for small vibrations, a number of linear and nonlinear models
published by other authors, were derived. Of importance for this thesis is
that an adapted version of the linear Timoshenko model which allows for
longitudinal vibration, was derived. A special case of this linear model is a
model for transverse vibration of a Timoshenko beam with an axial force.
This last mentioned model is referred to as the Adapted Timoshenko model
in this thesis and is used for vertical structures modelled as beams.

For linear vibration problems, the variational form can be used for existence
theory as well as finite element approximation. The variational equations of
motion for the LLT model were easy to derive but the constitutive equations
could not simply be substituted into them. In the thesis it is explained why
the problem should be considered “well defined”.

Using the variational form of the LLT model, finite element approximations
of problems can be formulated. For the approximations a rigorously de-
fined algorithm was developed which we consider a substantial contribution.
Through experiments where the Finite Element Method grid was refined,
convergence was demonstrated. We also demonstrated that for small vibra-
tions, solutions of the LLT and linear models compared well. Finally, it was
shown that the LLT model can be applied to cases where the solutions of
linear beam models are not realistic.

A model for earthquake induced oscillations in vertical structures, based on
the Timoshenko model, was derived. The model was transformed to that
for a cantilever beam with homogeneous boundary conditions. This made it
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possible to compare beam models using modal analysis.

The adapted Timoshenko model was compared to the Twin-beam model
of E Miranda (presented in two articles in 2005). The models compared
poorly and both predicted the measured fundamental period completely
wrong. This is due to the lack of reliable information on additional mass
not contributing to stiffness.

To supplement the modal analysis, finite element simulations were done.
From the results valuable information can be obtained such as acceleration
demands at different levels of the structure.

As an alternative, a building was modelled as a series of beams connected
by rigid bodies to represent floors. Correct modelling of interface conditions
made it possible to derive the variational form for the model which is a
significant contribution. An adapted mixed finite element approximation
was thus possible and a system of ordinary differential equations derived
which can be used for simulations.

New interface and boundary conditions for a hybrid Timoshenko beam model
with a tip body were derived. This model is an improvement on previous ver-
sions since elasticity at the interfaces is taken into account. The derivation
of the estimates required to apply the general theory for existence needed to
be done with care and the proofs were by no means trivial. Numerical ex-
periments on this model had limited scope and were intended to complement
the theory. The results obtained do however give us confidence in the model.
The new model can be used to evaluate cases where “rigid” boundary and
interface conditions may not be realistic.

7.3 Ongoing and future research

It should be clear that the results in this thesis indicate that there are various
possibilities for future research. It is equally clear that not all the possibilities
can be considered – at least not in the immediate future.

A priority at present is work related to the Local Linear Timoshenko model.
It was shown in Section 2.6 that some linear and nonlinear models for small
deflections can be derived from the LLT model. This work is in progress and
some of it is presented in Subsection 7.3.1 below.
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The results of the numerical experiments in Chapter 3 are promising and
must therefore be followed up - see Subsection 7.3.2.

7.3.1 Adapted Timoshenko beam model

As mentioned, a couple of linear and nonlinear models for small deflections
were derived from the LLT model. In Subsection 2.6.1 Model 1 was derived
using the approximations F1 = S and F2 = V . Another possibility is to
assume that

F1 = S, (7.3.1)

F2 = S∂xw + V. (7.3.2)

To start, substitute (7.3.2) into the Equation of motion (2.4.9):

1

α
∂2
t φ = (1 + ∂xu)(S∂xw + V )− ∂xwS + ∂xM.

= (1 + ∂xu)V + S∂xu∂xw + ∂xM.

Neglecting the term S∂xu∂xw, we obtain an alternative to Model 1 in Sub-
section 2.6.1. Instead of (2.6.7) and (2.6.8), we have

∂2
tw = ∂x(S∂xw + V ) + P2,

1

α
∂2
t φ = (1 + ∂xu)V + ∂xM.

As explained in Subsection 2.6.1, the system decouples and the following
system for transverse vibration is obtained.

Model 3 Equations of motion

∂2
tw = ∂x(S∂xw) + ∂xV + P2,

1

α
∂2
t φ = (1 + ∂xu)V + ∂xM

with u and S known. The constitutive equations are the same as before:

M =
1

β
∂xφ,

V = ∂xw − φ.

The model above is then another linear adaptation of the Timoshenko theory.
Using the approximation (2.6.5) and assuming that ∂xS = 0, yields the
system of equations (2.6.16) and (2.6.17) that is used in [SR79].
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The equations of motion in Models 2 and 3 appear quite different and this
calls for an investigation. (Especially since the constitutive equations are
the same.) For simplicity we use the approximation (2.6.5) and assume that
∂xS = 0. The simplified models are displayed for completeness.

Model 2S Equations of motion

∂2
tw = ∂xV,

1

α
∂2
t φ = V − S∂xw + ∂xM

Model 3S Equations of motion

∂2
tw = ∂x(S∂xw) + ∂xV,

1

α
∂2
t φ = V + ∂xM

To compare the models we consider the relevant eigenvalue problems (as in
Subsection 1.2.3) for the pinned-pinned case. The boundary conditions are
the same for both models:

w(0) = w(1) = φ′(0) = φ′(1) = 0.

Eigenvalue problems

Eigenvalues are calculated for different choices of the axial force S.

Model 2S

−w′′ + φ′ = λw, (7.3.3)

− 1

β
φ′′ + Sw′ − w′ + φ =

λ

α
φ. (7.3.4)

Model 3S

−Sw′′ − w′′ + φ′ = λw, (7.3.5)

− 1

β
φ′′ − w′ + φ =

λ

α
φ. (7.3.6)

Eigenvalues

The variational forms of the two eigenvalue problems can be obtained by follo-
wing the same procedure as in Subsection 1.3.1 or 2.7.3. Using the variational
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forms, the following Galerkin approximations are obtained. As in Subsection
3.2.1, let Sh denote a finite dimensional subspace of
H1(0, 1) ∩ C[0, 1] and Sh2 a subspace of Sh where f ∈ Sh2 implies
f(0) = f(1) = 0.

Let wh and φh be approximations for w and φ in the finite dimensional
subspace.

Model 2S Galerkin

Find functions (wh, φh) such that wh ∈ Sh2 , φh ∈ Sh and

(w′h, v
′)− (φh, v

′) = λ(wh, v), (7.3.7)

1

β
(φ′h, ψ

′) + S(w′h, ψ)− (w′h, ψ) + (φh, ψ) =
λ

α
(φh, ψ), (7.3.8)

for all v ∈ Sh2 , ψ ∈ Sh.

Model 3S Galerkin

Find functions (wh, φh) such that wh ∈ Sh2 , φh ∈ Sh and

S(w′h, v
′) + (w′h, v

′)− (φh, v
′) = λ(wh, v), (7.3.9)

1

β
(φ′h, ψ

′)− (w′h, ψ) + (φh, ψ) =
λ

α
(φh, ψ), (7.3.10)

for all v ∈ Sh2 , ψ ∈ Sh.

It is now possible to write these problems as matrix eigenvalue problems and
calculate the eigenvalues. Tables 7.1 and 7.2 display the values obtained for
Models 2S and 3S respectively. The results were verified independently by
K Hohls [Hoh19] in another project.

Table 7.1: Eigenvalues for Model 2: α = 1200

Eigenvalue S = −10−2 S = −10−3 S = 0 S = 10−3 S = 10−2

λ1 0.2171 0.3024 0.3120 0.3214 0.4068
λ2 4.135 4.442 4.476 4.510 4.817
λ3 18.76 19.36 19.43 19.49 20.09
λ4 50.46 51.37 51.47 51.57 52.47
λ5 103.2 104.4 104.6 104.7 105.9
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Table 7.2: Eigenvalues for Model 3: α = 1200

Eigenvalue S = −10−2 S = −10−3 S = 0 S = 10−3 S = 10−2

λ1 0.2140 0.3022 0.3120 0.3217 0.4099
λ2 4.091 4.437 4.476 4.514 4.860
λ3 18.58 19.34 19.43 19.51 20.28
λ4 49.98 51.32 51.47 51.62 52.96
λ5 102.24 104.3 104.6 104.8 106.9

Considering the difference between the problems, it is surprising to see that
the eigenvalues are virtually the same. The small differences in the cases
where S = −10−2 and S = −10−3 can be attributed to possible buckling
of the beam should the compressive force S be increased. Similarly, when
considering S = 10−2 and S = 10−3 the differences may be due to the beam
stiffening because of the tensile force S stretching it.

Further analysis and experiments are part of ongoing and future research.

7.3.2 Finite element analysis of the Local Linear Ti-
moshenko model

The results of the numerical experiments in Chapter 3 are satisfactory mea-
sured against the limited objectives, however the results are only valid if
the model satisfies the assumptions made initially, throughout the time of
motion. First we suspect that this depends on the configuration; whether
the beam is fixed at one end or both. Secondly excitation of the beam by
forcing may have an effect different from an initial disturbance. Thirdly, the
frequency of forcing may also influence the validity of results.

Consequently, a comprehensive array of numerical experiments are to be
conducted.

7.3.3 Other possibilities for future work

Regarding the oscillations of vertical structures, the articles [MT05] and
[RM05] clearly show the value of simplified models and the need for reli-
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able parameter values. We conclude that there is scope for further research
by engineers as well as applied mathematicians.

An interesting article [HH19] appeared late in 2019. It featured the Twin-
beam model in [MT05] and [RM05] but with one boundary condition adapted
to allow for “soil-structure interaction”. Also notable, was that the authors
cite two recent articles (2016 and 2017) where the Timoshenko beam theory
was used for a building. Consequently, the work in this article should also
be considered.

Regarding the multiple beam model for buildings, an algorithm should be
developed from the system of ordinary differential equations in Section 5.3.
From the general linear theory in [BV13], one can expect that approximations
will converge, but experiments should be carried out. Thereafter, numerical
experiments should be carried out using realistic data for buildings to verify
the applicability of the model.
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Appendix A

Sobolev Spaces

The space L2(Ω)

Consider an open subset Ω of IRn. The space L2(Ω) consists of functions f
such that f 2 is Lebesgue integrable on Ω. The first result is well known.

Theorem A.1. The space L2(Ω) is a Hilbert space with inner product

(f, g) =

∫
Ω

fg =

∫
Ω

fg dµ

where µ is the n-dimensional Lebesgue measure.

Theorem A.2. The space L2(Ω) is separable. (See [Ada75, Th 2.15, p 28]).

Theorem A.3. C∞0 (Ω) is dense in L2(Ω). (See [Ada75, Th 2.13, p 28]).

Suppose Ω is a bounded open interval in IR (bounded open subset of IRn

when higher dimensions are required). The Sobolev spaces Hm(Ω) are
subspaces of functions in L2(Ω) with weak derivatives up to order m in
L2(Ω).

Definition

For f and g in Hm(Ω),

[f, g]m = (f (m), g(m)) for m = 0, 1, . . .

For m ≥ 1, the bilinear form [·, ·]m has all the properties of an inner product
except that there exist functions f 6= 0 such that [f, f ]m = 0.
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Definition

For f in Hm(Ω),

|f |m =
√

[f, f ]m for m = 0, 1, . . .

The function | · |m is a semi-norm for m ≥ 1.

Suppose Ω is a bounded open convex subset of IR2. The Sobolev spaces
Hm(Ω) are subspaces of functions in L2(Ω) with weak partial derivatives up
to order m in L2(Ω).

Remark

It is not necessary to require that Ω be convex, but it is sufficient for our
purpose. In the theory it is usually assumed that Ω is star shaped or has the
cone property.

Definition

For f and g in Hm(Ω),

[f, g]m =
∑
i+j=m

(∂i1∂
j
2f, ∂

i
1∂

j
2g) for m = 0, 1, . . .

For m ≥ 1 the bilinear form [·, ·]m has all the properties of an inner product
except that there exist functions f 6= 0 such that [f, f ]m = 0.

Definition

For f in Hm(Ω),

|f |m =
√

[f, f ]m for m = 0, 1, . . .

The function | · |m is a semi-norm for m ≥ 1.

The boundary

Recall that a curve is called smooth if its parametrization has a continuous
derivative. The boundary of Ω is called piecewise smooth if it consists of
a finite number of smooth curves.

For a vector valued function r such that ri ∈ C1[a, b] for i = 1, 2, the range
C of r defines a smooth curve in the plane.
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Suppose that C is a part of the boundary of Ω. A function f is Lebesgue
integrable on C if f ◦r

√
(r′1)2 + (r′2)2 is Lebesgue integrable on the interval

[a, b].

A function f is in L2(C) if f 2 is Lebesgue integrable over C. The inner
product for L2(C) is defined by

(f, g)C =

∫
C

fg ds =

∫ b

a

(f ◦ r) (g ◦ r)
√

(r′1)2 + (r′2)2 .

When necessary, we use the notation (f, g)Ω and (f, g)Γ to avoid confusion.

Vector valued functions

Definition

u ∈ L2(Ω)2 if ui ∈ L2(Ω) for i = 1, 2.

u ∈ L2(Γ)2 if ui ∈ L2(Γ) for i = 1, 2.

u ∈ HkΩ)2 if ui ∈ Hk(Ω) for i = 1, 2.

[u, v]m,2 = [u1, v1]m + [u2, v2]m for u ∈ L2(Ω)2 and v ∈ L2(Ω)2 .

|u|m,2 =
√

[u, u]m,2 for u ∈ L2(Ω)2 .

The function | · |m,2 is a semi-norm for m ≥ 1.

When we need to distinguish between domains, we will use superscripts Ω
and Γ in the cases of a double subscript, e.g. ‖ · ‖Ω

m,2 and ‖ · ‖Γ
m,2 .

Definitions

Suppose Ω is a bounded open interval or a bounded open convex subset
of IR2.

Notation

H0(Ω) = L2(Ω) and H0(Ω)2 = L2(Ω)2.

Definition

The inner product for Hm(Ω) is defined by

(f, g)m =
m∑
k=0

[f, g]k for m = 0, 1, . . .
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Definition

The norm for Hm(Ω) is defined by

‖f‖m =
√

(f, g)m for m = 0, 1, . . .

Definition

The inner product for Hm(Ω)2 is defined by

(f, g)m,2 =
m∑
k=0

[f, g]k,2 for m = 0, 1, . . .

Definition

The norm for Hm(Ω)2 is defined by

‖f‖m,2 =
√

(f, g)m,2 for m = 0, 1, . . .

Theorem A.4. The space Hm(Ω) is complete (See [Ada75, Th 3.2, p 45]).

Theorem A.5. Cm(Ω̄) is dense in Hm(Ω) with respect to the norm of
Hm(Ω).
(See [OR76, Th 2.10, p 53].)

Trace

Definition (Trace operator Γ)

For u ∈ C(Ω̄), the function Γu is the restriction of the function u to Γ.

Theorem A.6. The trace operator Γ can be extended to a bounded linear
operator mapping H1(Ω) onto L2(∂Ω) and ‖Γu‖∂Ω ≤ K‖u‖Ω

1 .

Proof. This result is a special case of results in [OR76, p 141-142].

Definition

For u ∈ H1(Ω)2, we define Γu by

Γu = 〈Γu1,Γu2〉.
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