Genetic Programming-based Regression for Temporal Data
Cry Kuranga (kurangacry@agmail.com) and Nelishia Pillay (npillay@cs.up.ac.za)
Department of Computer Science University of Pretoria, Lynnwood Road, Hillcrest, Pretoria,
South Africa, 0002 (Phone 012 420 5242)

Abstract - Various machine learning techniques exist to perform regression on temporal data
with concept drift occurring. However, there are numerous nonstationary environments where
these techniques may fail to either track or detect the changes. This study develops a genetic
programming-based predictive model for temporal data with a numerical target that tracks
changes in a dataset due to concept drift. When an environmental change is evident, the
proposed algorithm reacts to the change by clustering the data and then induce nonlinear
models that describe generated clusters. Nonlinear models become terminal nodes of genetic
programming model trees. Experiments were carried out using seven nonstationary datasets
and the obtained results suggest that the proposed model yields high adaptation rates and
accuracy to several types of concept drifts. Future work will consider strengthening the
adaptation to concept drift and the fast implementation of genetic programming on GPUs to
provide fast learning for high-speed temporal data.

Keywords: temporal data, concept drift, model induction, nonlinear model, predictive model,
genetic programming.

1. Introduction

Numerous data analytics approaches exist for stationary data, where a static prediction model
is constructed once, on the stationary data, and used to predict for instances not used during
training, and extract knowledge from the underlying data. However, concepts in real-world are
nonstationary, thus, their underlying phenomena change over time [1]. As such, non-adaptive
models induced under the false stationarity assumption usually become obsolete as changes
occur in the data and may fail terribly at worst or perform sub-optimally at best [1].

Temporal data is a series of events over a period that may be time-stamped at regular
or irregular time intervals [2]. Examples of such concepts include weather prediction rules that
may change with seasons, patterns of customers’ buying preferences that may vary with time
(such as holidays, weekend or month-end), the inflation rate or availability of alternatives,
among many others [3]. Data streams are a continuous flow of data such as sensor data and
network traffic where order and time are unnecessarily the fundamental elements that are
central to the meaning of the data [4]. However, a data stream may consist of temporal data or
non-temporal data. This work focuses on temporal data.

Temporal data is usually made up of different underlying data generating processes that
are produced incrementally and characterized by a high amount of dependency among itself in
which appropriate treatment of these dependencies or relationships is essential. Differing
underlying data generating processes result in concept drift. As such, what happens in the future
cannot be predicted with certainty. Also, the properties of temporal data may be subject to
concept drift which may be meant to be discovered by the learning system [5] [6] [7]. Therefore,
the learned model should be continuously adapted. Thus, special approaches are sought that
treat the most recent historical occurrences as equally significant contributors to the final
concept. As such, algorithms that can evolve or adapt models are ideal to track and monitor the
underlying changes to adapt the model accordingly.

mailto:kurangacry:@gmail.com
mailto:npillay:@cs.up.ac.za

Adaptation algorithms use either a passive or an active approach to learning in the
concept drift occurring environment [8] [9]. A passive approach updates the model whenever
the new data is made available whereas an active approach needs to detect a change in the data
to adapt the model.

This work develops genetic programming (GP)-based predictive model that is designed
for temporal data with a numerical target that dynamically adapts when concept drift occurs
and can also be used to extract knowledge from historical data. The proposed approach
implements a piecewise approach to predict a target, nonlinear model. The obtained results
suggest that the proposed model yields high adaptation rates and accuracy to several types of
concept drifts. Also, it was evident that the proposed model can automatically adapt to different
types of concept drifts and quickly improve its performance without the use of an explicit drift
detector.

The main contributions of this work are to:

e Hybridize a dynamic clustering algorithm, nonlinear regression model and a GP to
perform regression on temporal data with concept drift occurring.

e Implement a dynamic GP terminal set that consist of recent and past learned nonlinear
regression models. The goal is to induce a predictive model using both the recent
occurrences and the past learned knowledge.

e Perform a thorough experimental study on the temporal datasets that exhibit different
characteristics of concept drift, namely progressive, recurrent, abrupt and random
changes to compare with the state-of-the-art machine learning algorithms to ascertain
the performance of the proposed model.

This paper is organized as follows: Section 2 review related work, whereas Section 3 discusses
the proposed model. Section 4 discusses the experimental setup and Section 5 presents the
obtained results and discussion. Section 6 concludes the paper.

2. Learning in Nonstationary Environments

Temporal data can be categorized into temporal sequences, semantic temporal data, and time
series. The temporal sequence is a series of events over time whereas semantic temporal data
is described within the perspective of human existence ontology, i.e., male or female [2]. The
time series is defined as a progression of successive real-valued data points collected at regular
intervals in time.

Nonstationarity in real-world data may be caused by concept drift. Concept drift, in
machine learning, is a phenomenon where statistical properties of the concept (target variable),
being predicted, change as time passes unexpectedly due to changes in underlying data patterns
[11]. Thus, the relations and patterns in such data changes over time (systematic variation in
the underlying process) [12]. As a result, the prediction accuracy of a model built to predict
such data deteriorates over time.

The two broad categories commonly used to learn in concept drift occurring
environments are generally referred to as passive and active approaches [8]. Generally, the
active approach copes quite well in environments where drift is abrupt whereas a passive
approach is ideal for gradual drifts and recurring concepts [8] [9].

In this section, Section 2.1 discusses the data generating process. Section 2.2 discusses
active learning approach whereas passive learning approach is discussed in Section 2.3.
Genetic programming for dynamic environments is discussed in Section 2.4

2.1 The Data Generating Process
Considering 2 to be a data generating process that provides a sequence of tuples(x;,y;), in
time t, sampled from a joint probability distribution p,(x,,y,), evidence distributions to be
p:(x) and prior probabilities to be p,(y|x) [13]. Also, considering what is changing, drifts can
be classified as [1]:

e Real drift, where p,(y|x) changes, independently from variations in the p,(x), over

time. Real drift is also referred to as conditional change or concept shift [7];

e Virtual drift, where a change in the p,(x) does not affect p,(y|x). Virtual drift is also

referred to as feature changes, sampling shifts or temporary drifts [7]

Some literature defines virtual drift as a change that does not affect p,(x), though the source
and the interpretation of such changes vary [1] [12] [14]. If p.(x) and the decision boundaries
in the data remain the same, then it becomes insignificant to rebuild the model. However, the
detection of virtual drift is still crucial since if it is incorrectly interpreted then they are a high
likelihood of making an incorrect decision of retraining the regressor.

The change in probability distributions can further be classified according to the rate
at which the drift is happening such as abrupt drifts (concept changes) which results in sudden
drifts and gradual drifts, results in slowly evolving distributions over time [15] [16]. These
drifts: abrupt and gradual can also be classified as recurrent or cyclical variations. Recurrent or
cyclical variations happen to be a desirable and valuable quality sought in adaptive algorithms
to promote the retrieval of previously acquired knowledge.

In inductive learning, transfer-learning allows the target task’s inductive bias to be
affected by source-task knowledge in anticipation of performance improvements in terms of
learning speed and generalization capability [10]. Consequently, an inductive bias promotes
the prioritization of a single solution (or interpretation) by a learning algorithm. Also, in a
regression ensemble, inductive bias plays a pivotal role in diversity maintenance [18][58].

2.2 An Active Approach to Learning in Nonstationary Environments

An active approach to learning in the nonstationary environment with concept drift occurring
is based on a change detection concept. An adaptation technique is triggered that aims to react
to a detected change by adapting an existing model or inducing a new one. As such, adaptive
techniques are commonly referred to as “detect and react” approaches [15]. The goal of the
change detector is to assert if there exists a change in the process P (discussed in Section 2.1)
through an inspection of features extracted, to monitor the stationarity of an estimated p;(x),
from the data-generating process and /or analyzing the prediction error to determine variations
in the estimated p,(y|x) [17]. Thus, obsolete knowledge is discarded and the regressor adapts
to a new environment when an environmental change is detected. However, the major
challenge of this approach is to distinguish effectively between up-to-date and obsolete data
patterns.

2.3 A Passive Approach to Learning in Nonstationary Environments

Unlike an active approach, a passive approach continuously adapts the model parameters
whenever new data patterns arrive to cope with uncertainty in the presence of change.
Therefore, a passive approach maintains an updated model at all times and avoids the common
pitfalls in an active approach which are either falsely detecting non-existent change or failing
to detect a change [1].

Passive approaches can be classified as those that adapt/remove/add members of an
ensemble-based system and those that adapt a single-regressor. An ensemble-based approach
has a higher computational cost than a single-regressor. However, the ensemble-based
approach provides a natural fit to learning in nonstationary environments and offers distinct
advantages which include: striking a delicate balance along the stability-plasticity spectrum
[18] [19]. Thus, it provides a flexible way to incorporate new data, when it is available, into a
regression model by simply inserting new members into the ensemble and provide a natural
technique to forget irrelevant knowledge by removing irrelevant members from the ensemble.
Also, an ensemble approach tends to reduce the variance of error, therefore, become more
accurate than single regressor-based approaches. As such, ensemble systems provide a good fit
for learning in nonstationary environments, especially, if the drift impacts some parts of the
existing knowledge base leaving the other parts relevant.

2.4 Genetic Programming for Dynamic Environments

Genetic programming is an evolutionary computation technique that has been applied by
several authors to evolve predictive models with favourable results [20] [21] [22]. Individuals
in a GP can be generated using grammars, commonly referred to as grammar-guided GP and
has been applied extensively to data mining [23] [24].

GP modifies its population as it converges towards optimality. However, it becomes
difficult to re-diversify a converged population once an environment change has occurred. As
a result, the population lacks diversity necessary to locate a new optimum. Therefore, a
standard GP algorithm may be ineffective in dynamic environments.

Numerous techniques were proposed in the literature to make GP cope with dynamic
environments [25] [26]. This section reviews GP variants designed for dynamic environments
which are classified as parametric and memory-based approaches. Also, regression analysis is
discussed in this section.

2.4.1 Parametric Approach

A dynamic GP that implements an adaptive parametric approach was proposed in [27].
Adaptive control parameters enable the GP algorithm to dynamically adjust as a change in
environment is evident. When a change in environment is evident, GP reacts to the change by
triggering exploration through adaptive control parameters to locate a new optimum. The
following adaptive control parameters were implemented in [27]:

e Elitist proportion
Whenever the fitness (training accuracy) deteriorated, the percentage of elitist
individuals is reduced by 0.1 with a lower bound of 0.1, to promote exploration and
increased by 0.1 with an upper bound of 1 when the fitness improves. The decrease in

elitist proportion facilitates the addition of more newly generated material into a
population in the hope of locating a new optimum.
e Crossover rate
Similarly, to elitist proportion, if the fitness deteriorates, the crossover probability is
linear decreased, by 0.1 with a lower bound of 0.1 and when the fitness improves, the
crossover rate increased by 0.1 with an upper bound of 0.9, to spare the computational
effort of generating more offspring to be mutated.
e Mutational rate
For gradual changes in the environment, a low mutation rate is required to promote
exploitation whereas abrupt changes in the environment require high mutation rates to
promote exploration. The mutation rates were set to be cyclic using the following
probabilities: mutating each node of the tree, applying an operator and mutating an
individual. Whenever an environment change is evident, a random number in the range
[0; 1] is added to the mutational probability. If the rate exceeds the value of 1, then the
value is scaled to the range [O; 1].
e Culling
Culling facilitates exploration in a GP algorithm. A portion of the worst individuals in a
population are replaced by randomly generated individuals. A randomly generated
individual consists only of a terminal node as a root node that is mutated before being
added into the population.
The adaptive GP (DynGP) was compared to the gradient descend-artificial neural network and
standard GP and the adaptive GP outperformed all other training algorithms in all severity of
changes in environment modifications [27].

2.4.2 Memory Approach
Numerous variants of memory-based GP exist in the literature which includes dynamic
forecasting GP [28][59][60]. The dynamic forecasting GP (DyFor GP) aims at time series
forecasting in nonstationary environments that automatically adapts to a changing environment
and retains knowledge (implicit memory) from past environments through introns [28]. The
DyFor GP implemented a sliding window of analysis to model a natural adaptation for a
nonstationary environment. Two sliding windows are defined at the beginning of historical
data and slides after a given number of iterations (dynamic generation). Consequently,
discovers optimal analysis window dynamically. For each dynamic generation, two runs are
executed, one for each analysis window. The prediction accuracy for each analysis window
after a dynamic generation is used to adjust the window size. The window that yields the best
prediction accuracy is maintained whereas the other window either shrink, if the best window
is smaller, or expand. Also, DyFor GP makes use of explicit memory in the form of dormant
solution. A dormant solution is an existing solution (inactive) that becomes active only if the
applicable conditions arise. Dormant solutions usually speed up the convergence of the
algorithm, therefore, when a change in the environment is detected, dormant solutions are
injected into the population.

The DyFor GP was compared to the auto-regressive and real-time forecasting system
on real-world time series and it outperformed all other training algorithms [28].

2.4.3 Regression Analysis
Regression analysis is a statistical-based model induction technique that models a relationship
between variables (quantitative), ideal to predict a selected variable from one or more other
variables [29]. Regression analysis use equations to describe the given dataset whereby a
regression model consists of the following components [30]:

e Aresponse variable(s), i.e., a real-world output, y

e A vector of predictor variables, i.e., an input vector x = x,;x,; ... ; x,

e Anunknown parameter, 6, which can be a vector or scalar.
Given that x is an input vector and y is a real-world output, a nonlinear model between x and
y is of the form:

y = f(x;0) +¢ (1)

where 6 is the parameter vector and & a random error. A process of fitting the best
approximation to a dataset of n = |N| data points {(x;,v,), ..., (X,)} is commonly referred
to as least-squares approximation [31] [32]. Nonlinear systems identification can be defined as
a least-squares problem using Equation (1) where 6 is n x 1, y is m x 1 real-world output, x
IS m % n regressor matrix and a white noise residue, ¢.

A GP can perform symbolic regression on raw data and variables that show nonlinear
correlations [33] [34] [35] [36]. In this regard, GP automatically evolves both the parameters
and the structure of the mathematical model. Thus, a GP tree is induced from a function set
that contains mathematical functions and the input set that consists of historical data and (or)
explanatory variable. Therefore, a GP is an adaptable model for regression analysis of nonlinear
data.

3. Proposed Model

The proposed genetic programming-based regression model for temporal data (GP-REG)
implements a piecewise approach to predict a target, nonlinear model. The GP-REG consists
of three components: a dynamic clustering algorithm (KCDCDynDE) to extract clusters that
resemble different data generating processes present in the dataset; a dynamic QPSO-based
model induction technique to induce nonlinear models for each generated cluster which
approximate mapping between inputs and the target variable; and a GP that evolves model trees
that implement piecewise nonlinear predictive models which define the boundaries of nonlinear
models expressed as terminal nodes. Algorithm 1 summarized the proposed GP-REG.

3.1 Dynamic Data Clustering

Clustering is performed as the first step to the non-linear model induction. Since nonstationary
data is usually made up of different underlying data generating processes, clustering is
performed to extract data patterns that resemble different data generating processes present in
the dataset. Each cluster can be considered as generated by the same data generating process.
A model is then fit on each generated cluster.

A change in the environment may cause cluster centroids to move, data points to
migrate between clusters and the number of clusters to increase or decrease. A KCDCDynDE
can cluster in a dynamic environment, therefore, it is adopted in this work to cluster
nonstationary data [37]. Whenever a change in an environment is evident, KCDCDynDE
automatically determines the optimal number of clusters.

Algorithm 1 GP-REG

Set the size of the sliding window of analysis to Ws data patterns

Perform nonlinear model induction initialization process using Algorithm 2
Nonlinear models constitute the terminal set of GP algorithm

Initialize Pop(0);

BEGIN
Slide a data window of analysis
Perform Environmental change update process using Algorithm 3
Let t=0;
WHILE termination condition(s) not satisfied DO
Select individuals from Pop(t) to use in reproduction process;
Perform crossover using selected individuals to create offspring;
Perform mutation on the offspring;
Compute fitness for each offspring;
Select individuals to constitute a new population, Pop(t+ 1)
t=t+1;
END WHILE
REPEAT until no further data to analyze.
END

3.2 Nonlinear Regression Models

A dynamic QPSO-based nonlinear model induction technique (DynQPSO) is adopted in this
work to induce non-linear models which approximate mapping between inputs and the target
variable [38]. A DynQPSO induces optimal nonlinear models that describe each cluster. To
induce a nonlinear model using a DynQPSO, firstly, the value of the coefficients of the model
are determined by a QR decomposition technique [32]. Given the value of the coefficients, a
charged-PSO determines a structurally optimal nonlinear model which symbolizes the
functional mapping between input and output space.

Algorithm 2 builds a dynamic GP terminal set, which consists of nonlinear models, A4,,
by performing multiple piecewise approximations of problem space. Each nonlinear model,
A, , 1s assigned a lifetime which expires if it exceeds the upper-bound to avoid the size of the
terminal set to become unnecessarily large which tend to affect the convergence properties of
the genetic programming. The lifetime (rr,,) is a user-defined parameter which is initialized to
zero and increments by a unit on each generation. However, the parameter is reset whenever a
model is deemed useful.

Algorithm 2 Nonlinear Model Induction Initialization Process

BEGIN
Perform data clustering using KCDCDynDE to obtain k clusters
FOR each cluster
Perform nonlinear regression using DynQPSO to obtain a model, A,
Insert the induced model, A4,, into the terminal set
END
END

3.3 Genetic Programming
Each individual (model tree) in the GP population represents a piecewise nonlinear predictive
model. Thus, a GP evolves model trees with its terminal nodes expressed as nonlinear models.
An example of GP-REG individual is graphically illustrated in Figure 1. Considering
Figure 1, nodes are recursively added within a maximum tree depth to a root node (x, < v,).
A consequent, y;,i€{1,2,...,n}, whereby y = f(x) + ¢, is a nonlinear model (4,), x; is a
discrete- or continuous-valued attribute and v; is a possible value of x;. The operator, Op € {<
>, =, #}

[%2 < va |

Figure 1: An example of a GP-REG Individual

3.3.1 Reproduction

GP operators are meant to reproduce new individuals with better features and properties over
their parents. Commonly used GP operators are reproduction, crossover and mutation [39] [40].
Reproduction passes selected individuals, usually the elite, onto the next population. Crossover
is considered as a local search operator that promotes convergence through combining existing
genetic material from two selected parents whereas mutation introduces new genetic material
to a selected individual [41] [39]. Mutation promotes population diversity, as such, mutation is
considered as a global search operator. The parameter, mutation depth, controls the size of a
subtree created by mutation to conform to the given offspring depth.

The population size of a GP is fixed. As such, application rates parameters commonly
referred to as crossover, mutation and reproduction rate determines the total number of
individuals to be reproduced by the crossover, mutation and reproduction respectively [41]. A
tournament selection technique is adopted in this work.

The crossover operator picks a crossover point (it disallows extreme point) from two
selected model trees and then swaps sub-trees to construct a new offspring. The crossover
operator also curtails offspring longer than the maximum allowed number of genes. A direct

reproduction operator reproduces an individual by simply copying an elitist parent to the new
population.

Mutation operators enable the GP to adapt to concept drift by introducing a new branch
on an individual to model the new area covered by terminal nodes [42]. Different mutation
operators were adopted to enable the GP to adapt to concept drift. A mutation point is not
randomly chosen, instead, the mean square error is calculated for each node (on the target
individual), at the selected depth and each terminal node. The calculated mean squared error,
Eys, 1S used to determine the relative error of a subtree or terminal node (Ar). A nonterminal
node, at the given depth, with a higher E, (the worst nonterminal node) is altered. This
operation enables the optimization of partitions of a model tree described by the nonterminal
nodes. Also, a terminal node with a higher E, is altered. This operation enables optimization
of nonlinear approximation described by the path to a terminal node by replacing the current
model with a randomly selected model. A node altering operator includes changing: relational
operators; or terminal nodes.

Environment Change Detection

To simulate dynamic environments, a sliding window of analysis technique is used [43]. The
size of the sliding window and the sampling factor are both user-parameterized. The sliding
window of analysis technique dismisses the oldest instances as new ones arrive, thereby
providing up-to-date data to the predictor.

As the analysis window slides, the easiest way to detect environmental change is to
keep track of the best fitness found [27]. Considering an elitist individual in the current
population, the best fitness should never deteriorate as long as the environment is static, with
no new data that changes the underlying target distribution. A significant decrease (> n,%) in
fitness implies an environmental change or new data that change the underlying target
distribution is encountered. The parameter, n, is a user-defined parameter.

If an environmental change is detected, KCDCDynDE dynamically clusters the data.
For the dataset that changes, a DynQPSO adapts nonlinear models or induce new models to
create an updated GP terminal set. Algorithm 3 summarized the GP-REG coping with concept
drift occurring.

Algorithm 3 Environmental Change Update Process
BEGIN
IF an environmental change is detected
Dynamically cluster data using KCDCDynDE
IF the data clusters changes,
Adapt the nonlinear model or induce new models using DynQPSO
Insert new models into a terminal set to replace the worst models

END
END
END

As the population moves toward the desired goal, the degree of the model trees’ dispersion
decreases. It becomes difficult to re-diversify a converged population. As a result, the
population lacks diversity necessary to locate a new optimum when a new data generating
process is encountered. Therefore, to enhance population diversity whenever new data
generating process is detected, the GP-REG implements a culling technique. Thus, a portion

9

of the worst population (model trees with higher RMSE) are replaced by new model trees that
are randomly evolved using an updated GP terminal set.

Fitness Function
Concept drift affects fitness either by increasing or decreasing it. An increase in fitness implies
that the new environments follow the previously encountered trends whereas a decrease implies
that the new environments describe new trends. Thus, a decrease in fitness requires less
exploitation while promoting more of exploration.

The root mean square error (RMSE), which is the square root of E,,, calculated over
the dataset on each iteration is used to evaluate the fitness of each individual. RMSE calculates
the misfit of the regression estimate to its expected output. RMSE is defined as:

1 n
RMSE = |2) 0= fO))? 1

where y; is the outcome ofan i data point, f(y;) is the evaluated outcome using i data point
and n is a data-points counter in the dataset.

4 Experimental Setup

All the experiments conducted in this work were implemented in a MATLAB programming
environment [44] on an Intel Core i7 processor (3.1 GHz) desktop with 16 GB of memory on
a Linux Centos 7 system. The DynGP and DyFor GP described in Section 2 were used to
benchmark the GP-REG to evolve predictive nonlinear regression model. The training
algorithms traverse the complete dataset for every scenario under consideration. The GP
function set, function set e {+, —,+,%,V,sin, cos, exp, In} was implemented.

A collective mean fitness performance measure was implemented in this work. A
collective mean fitness is a representative performance measure in which the algorithm
performance is reflected across the dynamic range of search space. Thus, a collective mean
fitness performance measure provides a clue on the algorithm adaptive properties which depict
the entire performance linking of the algorithm and is independent of any extra knowledge
about the search space such as global optimum location. A collective mean fitness was
computed as [45]

i=1 f (D)

n

F(n) =

where n is the maximum number of generations and £ (i) is the fitness value (RMSE)
at generation i.

For each algorithm, a total of 30 independent runs were executed on each given dataset.
Firstly, a Kruskal-Wallis test was performed to establish if there exists a statistically significant
difference between the mean fitness values (F) of the algorithms for a given problem. If there
exists a statistical difference between the algorithm’s performances, a Mann-Whitney U test
was performed at a significance level of 0.05. These tests were performed for every pair of
algorithms and all problems. The obtained Mann-Whitney U-values were used to determine

10

the winning and losing algorithm. A test was performed for the algorithms’ mean fitness values,
u, and p, , whereby Hy : u; = u,, and H, : pu, # u,. The overall performances were ranked
based on the difference between wins and losses of each algorithm.

4.1 Test Environments

Several dynamic test problems were designed to evaluate the performance of evolutionary
algorithms in nonstationary environments such as the DF1 generator [46], the "moving peaks"
benchmark [47], the single and multi-objective dynamic test problem generator [48], the
dynamic multi-knapsack problem and the traveling salesman problem [49], and the generalized
dynamic benchmark generator [50]. However, the mentioned benchmarks were not favorable
for the present study. This work aims to assess the ability of GP to track and adapt dynamically,
induced structurally optimal nonlinear regression models as the environment changes. As such,
a new set of benchmark problems tailored to assess the ability of GP's ability to track and adapts
dynamically the induced structurally optimal nonlinear regression models in nonstationary
environments were defined.

In this work, four artificially generated, and three real-world nonstationary test
environments were used in the experiments. These seven test environments differ in the total
number of underlying data generating processes, the chance of having conflicting decision
boundaries within a data window, and the dimensionality of the problem. A data pattern
consists of inputs and a target output for the given dataset (a tuple).

The commonly used forgetting technique to cater for outdated instances removal; the
sliding windows is adopted in this work [51]. A sliding window of analysis technique enables
the regressor to reflect and adapt concept drifts in the temporal data. A sliding window of
analysis was set to wsdata patterns. For each sliding window, the order of the data points was
preserved and the dataset was split into training and generalization subsets using a ratio 4:1
respectively i.e., if the dataset consists of 10 data points, the first 8 data points are used for
training and the last 2 data points for generalization.

Changes in the search space are characterized by two major changes: spatial and
temporal severities [61]. Temporal severity refers to the frequency at which environmental
changes can occur on any timescale. The environmental change can occur periodically, at
irregular time intervals or continuously spread over time. Spatial severity refers to the
magnitude of change. Change can be in the context of location and/or the objective value of
the position where the change occurred. Temporal and spatial severities are indicators of the
complexity of the problem caused by concept drift. For temporal severity, the rate at which the
concept changes have an impact on the rate at which the decision boundaries change. The
severity of concept changes has an impact on the magnitude by which the decision boundaries
disappear, appear or shift. For a more severe change, typically, it is harder for the metaheuristic
to recover from the change.

Each test environment was characterized by two variables: wgy; ., to ascertain the
degree of spatial severity and the frequency of change, f (the number of iterations), to ascertain
the degree of temporal severity. In each experiment, the frequencies (f) of 25;50;100; 250
iterations were implemented. The spatial severities (w,,r) 0f 50;100;250;500;1000 to
simulate different dynamic environments from gradual changes to most abrupt were
implemented on artificially generated datasets. The effect of parameter values was expected to
be stronger for smaller values, therefore, temporal and spatial severity increases nonlinearly.
The wgp; . introduces new decision boundaries in the analysis window as illustrated in Figure
2.

11

@ Dynamic Change
< Ws >

P14 | Pl2 | Plg | P14 | P15 | P21 | P22 | P23 | P24 | P25

A J

Wshift > Ws

Figure 2: Introducing new decision boundaries by window shifts

a) Progressive

A gradual test environment was simulated by using the nonlinear benchmark function,
Bennett5, to generate a dataset of 10 000 data patterns with 10 timesteps. The Bennett5
function is computed as [52]:

F(.0) = 6, + (6, +x) 55 @

To simulate an environmental change, a drift (§) was added to each parameter 8, = 6; + 6§
which was computed as:

f(8) =0.66%2+0.025 +0.01

The impact of the drift increased as the number of timesteps increased. A sliding window of
size of 1000 patterns slides from one timestep, which consists of 1000 patterns, to the next.
The change period occurs at each timestep.

b) Abrupt

This test environment consists of a dataset of 8000 data patterns generated by four different
target functions, each generating 2000 data patterns. Data patterns were recorded in a
sequential order, block by block to form a dataset. A sliding window of analysis was set to
2000 data patterns which is the size of the block. The following artificially generated functions
were used to simulate an abrupt test environment [53]:

i f3(xoxq, x5, x5) = x§ — 5x + 4x, + 5x§ — 5x + 4xy With x4 21, %5, x5 € [-2,2];
i, fi(xox1, x5 x5) = exp(2x, sin(mx;)) — sin(xyx,) With x xq, x5, x5 € [-1,1] ;
. f5(xox1, x5, x5) = x§ +5x3 + 4x, — 5x§ — 5x3 + 4y With xg x;, x5, x5 € [-2,2] ;
V. fo(x0.x1, X2, %3) = exp(2x, sin(mxs)) + sin(xyx,) With xoxq, x5, %5 € [-1,1] ;

c¢) Random

A random test environment dataset was generated using Equation (2) and consists of 10 000
patterns with 10 timesteps. There was a 50% chance of modifying the environment in the
current moment whereby each operator had an equal chance of being inverted. Thus, a negative
member becomes positive and vice versa. As such, the environment was randomly modified.

d) Recurrent

Modification to the environment is realized by alternating two target functions. The target
functions differ from each other in only one operator. The dataset consists of 10 000 data
patterns. Each target function generated 5 000 data patterns. The data patterns were recorded

12

in sequential order, alternating as a block of 1 000 patterns, into a single dataset, block by
block. The target functions were generated using:

i fi(xg,x1) = x5 — 5x3 + 4xy + 5x) —5x3 + 4x; with xo,x; €[-2,2];

ii. fo(xg,x1) = x5 —5x3 +4x, — 5x — 5x3 + 4x; with xg,x; € [-2,2];

The size of the analysis window (ws), was set to the size of the concept block which was 1000
data patterns.

e) Electricity Pricing

Electricity pricing is a real-world dataset built on the electricity market in the Australian state
of New South Wales [54]. Schedules for electricity prices and market prices are frequently
updated for each power station. Pricing is determined by demand and supply forces. The
demand is affected by the density population of the central business, time of the day, weather,
and season. Also, the number of active generators affect the supply. The electricity pricing test
environment exhibits both short-term irregular changes due to weather fluctuations and long-
term regular changes due to seasonal changes [54].

To determine the electricity price, the current electricity demand is matched with the
combination of all available power stations with the least expensive electricity. The task is to
induce a predictive model to determine the electricity price given electricity demand estimates,
time of the day, the day of the week, and transfer. Parameters were recorded every half an hour,
for the period 7 May 1996 to 5 December 1998 to create a data set of 27552 data patterns. An
analysis window size of 2500 data patterns and wyy,; ¢, 0f 125,250;500; 1250; and 2500 were
implemented in this experiment.

f) Trend

Trend variation is a regular long-term change in the level of data which can be linear or non-
linear. Trend variation tends to oscillate in a logically predictable pattern. A real-world data
set, historical US Treasury bill contracts, for the period January 1984 to March 1986 was
selected to depict trend variation [55]. The task is to induce a predictive model to determine
the next day value given the current day value. An analysis window size of 111 data patterns
and wgp;re 0f 20;42; and 111 were implemented in this experiment.

g) Stock Market

The real-world stock market dataset, the Gross Domestic Product (GDP)(US) back-dating to
1951’s third quarter was used to generate predictions for the first quarter of 1995 and right
through to 2003’s first quarter. All 30 economic indicators were used as explanatory variables
[56]. The induced model is used to predict the quarterly GDP whenever historical data for at
least one month of that quarter is available. The GDP dataset used in this experiment was
normalized. An analysis window size of 50 data patterns and wg;r, 0f 10;20; and 50 were
implemented in this experiment.

Parameter Optimization

For each artificially generated dataset, a 10% relative (normal distributed) noise was added to
the target output. The optimal values for each parameter of each algorithm implemented in
these experiments were obtained using the F-race algorithm [57]. The optimized parameter
values listed in Table 1 were used where culling, tournament and elitist were expressed as the
percentage of the PopSize. The sizes of the two sliding windows of the DyFor GP were

13

initialized to 20% and 80% of sliding window size (ws), the minimum window size was set to
5% of ws and a minimum difference of two sliding windows was set to 2% of ws. The sliding
window size (ws) was set either to 10% of the dataset size or the block size.

5 Result and Discussion

This section reports the results of applying the GP-REG to seven nonstationary datasets. The
training algorithms’ training and generalization performance for all test environments were
reported in the subsequent tables. The p-values corresponding to the comparison of the training
algorithms on E,sT (training) and E,sG (generalization) for 30 independent runs, only for
scenarios that include a value of p > 0.05, were reported in Appendix 1.

Table 1 Parameter VValues

GP P. 0.8
P, 0.1
P, 0.1
PopSize 100
Elitist 5%
Culling 50%
Tournament 20%
T, 50
ng 10%
QPSO =0y 1.496180
) 0.729844
(La Tcloud 2
ad swarm_size 50
& KCDCDynDE PopSize 80
Pe 0.2
[ﬁmimﬁmax] [011 09]

Table 2 summarized the obtained average spatial severities for each test environment
on EysT, EysG and computation time (z) in mins, for each algorithm where wg,;,,=1 was the
least wy; .. The following were observed for the results presented in Table 2.

As spatial severity increased: the performance of the GP-REG, on training, for all
datasets deteriorated except for the most abrupt scenario, wg,;r, =5 where the performance
improved whereas, on generalization, the performance of the GP-REG generally improved as
spatial severity increased.

Inthe Scenario, wg,;re = 5, there were no conflicting boundaries in the sliding window
of analysis. The performance of the DynGP was consistent on training and was reduced on
generalization as spatial severity increased. As observed for the GP-REG, the DyFor GP
performance was consistent on training and generalization, the performance generally
improved as spatial severity increased.

The GP-REG obtained the least values of both E,,sT and E,sG in all scenarios under
consideration whereas the DynGP and the DyFor GP obtained competitive performance on
E,;sG for the following datasets: Progressive, Abrupt, and Electricity.

14

Table 2 Average Spatial Severities (wgy;s,) for each Test Environment

DynGP GP-REG DyFor
Features 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Prog E,sT 284 271 256 238 165 0006 0002 26e-8 81le-4 0012 004 027 002 008 001
EysG 451 536 505 230 232 0012 0015 85e-4 3.le4 0.009 4.82 427 425 249 245

t 0.015 0.015 0.017 0.017 0.011 1415 7.732 2947 1036 0493 295 148 037 020 0.11

Abrp E, T 0.6040.604 0.583 0.582 0.543 0.1064 0.097 0.089 0.074 0.120 0.230 0.232 0.231 0.231 0.232
EysG 1.052 1.49 0.874 0.732 0.603 0.1689 0.242 0.155 0.164 0.035 0.759 0.757 0.747 0.717 0.605

t 0.019 0.016 0.013 0.014 0.013 14.83 7.287 1.841 1.092 0542 2932 1517 0.383 0.202 0.103

Recur E, T 0.0310.023 0.072 0.095 0.084 0.008 0.004 3.1e-6 4.7e-3 0.012 0.024 0.353 0.353 0.353 3.54e-1
EysG 7.73247.517 6.866 5.044 51555 0.009 0.022 4.7e-3 24e-3 0.027 7.448 4.809 5.257 2.688 3.460

t 0117 0.113 0.116 0.128 0.105 49.81 2541 8.499 3.663 1.872 27.67 1412 4.722 2035 1.04

Rand E, T 291 285 290 297 289 0.098 0.098 0.098 0.114 0.088 0.327 0.318 0.294 0.261 0.248
EysG 311 3.09 311 303 3.09 0178 0225 0.245 0353 0149 247 247 245 241 2330

t 0.143 0.145 0.134 0.106 0.12 79.68 43.18 7.835 4.246 2.208 24.77 12.87 2.447 1325 0.69

Elect E, T 0.017 0.017 0.017 0.017 0.018 1.9e-4 1.8e-4 2.3e-4 25e-4 2le-4 0.013 0.013 0.013 0.014 0.014
EysG 0.017 0.019 0.019 0.022 0.027 1.7e-4 1.8e-4 2.0e-4 1.9e-4 1.7e-4 0017 0019 0.021 0.023 0.029

t 0.190 0.11 0.106 0.096 0.108 96.32 48.16 16.73 7.27 324 602 30.1 10.02 4.657 2.122

Tred E,gT 0.071 0.071 0.070 0.072 2.7e-5 2.7e-5 2.4e-5 3.2e-5 0.005 0.005 0.006 0.006
EysG 0.078 0.075 0.079 0.119 l.1e-7 4.8e-6 4.1e-6 2.9e-5 0.006 0.007 0.007 0.007
t 0.091 0.0830.089 0.115 9.57 4.89 2.95 1.42 4265 291 1.457 0.7125
GDP E,T 0.024 0.021 0.019 0.005 0.011 1.7e-4 0.004 0.001 0.001
EysG 0.041 0.045 0.074 0.035 0.018 0.012 0.100 0.075 0.171
t 0.099 0.131 0.090 15.859 8.361 2.795 3.687 1.945 0.65

The DyFor GP outperformed the DynGP on Random and Trend test environments
whereas the DynGP outperformed the DyFor GP on GDP test environment. The DynGP
obtained the least average computational time in all scenarios under consideration whereas the
GP-REG obtained the highest average computational time in all scenarios. The computational
time of GP-REG was significantly reduced for the following datasets: Recurrent, Trend, and
Electricity. The reduction in computational time could have been attributed to the recurrent or
cyclical variations happening in these datasets that promoted the retrieval of previously
acquired knowledge.

Table 3 summarized the obtained average temporal severities for each test environment
on training and generalization for each algorithm where frequency, f =1 was the least
frequency. The following were observed for the results presented in Table 3. As temporal
severity increased: the performance of all training algorithms improved, on both training and
generalization. The GP-REG exhibit the greatest improvement for both training and
generalization to outperform all training algorithms. The DyFor GP exhibit superior
performance to the DynGP. For GDP test environment, all training algorithm exhibit
comparable performance on generalization. The DynGP obtained the least average
computational time in all scenarios under consideration whereas the GP-REG obtained the
highest average computational time in all scenarios.

Table 4 summarized the overall averages (both spatial and temporal severities) on each
test environment for each algorithm. As reported in Table 4, GP-REG obtained the least values
on both E,T and E, G for all test environments under consideration whereas the DynGP
outperformed the DyFor GP on generalization on the following test environments: Progressive,
Electricity and GDP. The reported results suggest the capability of the GP-REG to adapt a
predictive model in a changing environment with concept drift occurring to yield improved
performance.

15

Table 3 Average Temporal Severities (frequency) for each Test Environment

DynGP GP-REG DyFor

Features 1 2 3 4 1 2 3 4 1 2 3 4
EysT 242 2.38 2.35 162 0.005 9.3e-4 6.8e-3 6.1e-3 0.09 0.08 0.08 0.06

Prog EysG 276 241 231 187 0.002 29e-2 524 47e4 249 2.49 2.76 2.35
t 0.007 0.006 0.012 0.033 0.726 2.845 4963 1214 0149 0531 0.992 2428

EysT 0550 0576 0.583 0.550 0.191 0.097 0.089 0.13 0310 0.227 0.231 0.211
Abrp EysG 0740 0.735 0.734 0.734 0261 0119 0.155 0.04 0.718 0719 0.747 0.72
t 0.002 0.007 0.014 0.037 0.701 2361 4977 1226 0.147 0518 0994 2452

EysT 0.087 0.040 0.095 0.117 0.006 8.le-4 7.3e-3 8.4e-3 4601 0.353 0.353 0.353
Recur EusG 0353 4364 5.044 4905 0.004 6.2e-2 85e-4 7.3e-4 2200 2306 2.688 3.630
t 0.018 0.063 0.107 0.276 2376 7454 20.13 39.06 1.32 4306 1235 21.70

EysT 289 2.90 2.78 215 0.097 0.097 0.064 0.114 0.330 1.32 1.05 0.248
Rand EysG 312 3.11 271 259 0324 0.248 0.248 0.219 2.39 2.30 2.16 213
t 0.021 0.059 0.127 0312 3467 11.23 2081 7129 1.082 351 6.818 22.28

EysT 0017 0017 0.017 0.018 6.6e-4 1.7e-4 25e-4 21le-4 0.014 0.014 0.014 0.014
Elect EysG 0024 0.022 0.022 0.021 5.6e-4 2le-4 1.9e-4 17e-4 0.023 0.023 0.023 0.021
t 0.018 0.043 0.122 0306 5.004 17.08 29.85 8521 3.128 10.63 18.66 53.26

EysT 0072 0071 0.072 0.072 3.1le-5 2.2e-5 2le-5 19-5 0.006 0.005 0.005 0.005

Tred EysG 0081 0.079 0.078 0.078 2.8e-5 4.5e-6 1.0e-7 1.1e-34 0.007 0.007 0.007 0.007
t 0.013 0.046 0.084 0.235 1.077 2.751 5531 1129 0405 1365 2281 5.375

EysT 0026 0.024 0.023 0.023 0.010 0.001 1.9e-4 15e-4 0.001 52e-4 4.0e4 27e4

GDP EysG 0052 0.046 0.041 0.014 0.051 0.043 0.034 0.014 0.054 0.051 0.049 0.047
t 0.013 0.043 0.114 0.256 0.567 4.809 8.317 23.74 0.132 1.03 1.98 5.233

The DyFor GP outperformed the DynGP on both training and generalization on the following
test environments: Abrupt, Random and Trend. The DynGP obtained comparable performance
to the GP-REG on generalization for GDP test environment. The reduced performance of the
GP-REG could have been attributed to the reduced size of the analysis window which suggests

that the GP-REG requires a sufficiently large size of data patterns to induce optimal models.

Table 4 Averages and Standard Deviation for each Test Environment

Features DynGP GPREG DyFor

EysT 2.3233+£0.4791 0.0041+0.0038 1.1177+2.7200

Progressive EysG 3.2100+1.3586 0.0077+0.0097 3.4855+1.6788
t 0.0154 5.1869 1.0253

EysT 0.5783+0.0207 0.1103+0.0346 0.2397+0.0263

Abrupt EysG 0.8704+0.2649 0.1488+0.0771 0.7210+0.0468
t 0.0155 5.4397 1.0278

EysT 0.0718+0.0327 0.0056+0.0037 0.7890+1.4339

Recurrent EysG 5.2205+2.2044 0.0147+0.0200 3.8328+1.7264
t 0.1164 17.8956 9.9195

EysT 2.8144+0.2513 0.1114+0.0325 0.4884+0.4019

Random EysG 3.0511+0.1306 0.1916+0.0911 2.3788+0.0973
t 0.1299 26.1932 8.4225

EysT 0.0172+0.0004 0.0002+0.0001 0.0136+0.0005

Electricity EysG 0.0217+0.0034 0.0002+0.0001 0.0230+0.0040
t 0.1223 34.2736 21.421

EysT 0.0714+0.0007 2.48e-5+4.62E-6 0.0054+0.0005

Trend EysG 0.0833+0.0135 8.34e-6+1.16E-5 0.0068+0.0003
t 0.0948 7.9424 2.336

EysT 0.0230+0.0020 0.0055+0.0072 0.0009+0.0011

GDP EysG 0.0467+0.0154 0.0464+0.0775 0.0920+0.0397
t 0.1071 9.7542 2.094

16

Figures 2 is a graphical illustration as observed under spatial severities for all test environments
on generalization. For Progressive test environment, the GP-REG detects a change in the
environment and adapts the model as spatial severity increased, evident with reduced E,;sG.
As a result, the GP-REG consistently and significantly outperformed both the DynGP and the
DyFor GP. Also, the performance of both the DynGP and the DyFor GP greatly improved as
spatial severity increased to yield comparable results for higher values of spatial severity. The
abrupt changes happening in the scenario, wsy;r, = 5 made this scenario much easier to adapt
because the sliding window discarded all patterns from the past data generating processes.
Hence, all training algorithms yielded improved performance.

For Abrupt test environment, as observed for Progressive test environment, the GP-
REG outperformed both the DynGP and the DyFor GP. However, the GP-REG exhibit
performance deterioration for wg,;r, =2 and wgp;r, = 4. Generally, the performance of the
DyFor GP was consistent as spatial severity increased.

The performance of the DynGP and the DyFor GP was consistent for all cases of spatial
severity illustrated in Figure 2 for the Random test environment. The DynGP exhibit the worst
performed whereas the GP-REG exhibit superior performance. There was a slight performance
deterioration on wygy;;, = 4 for the GPREG. The DynGP exhibit significant worst performance
for all cases on Trend test environment whereas the DyFor GP and the GP-REG exhibit
consistent performance as spatial severity increased. Thus, the DynGP predictive models failed
to effectively exploit, as the other training algorithms, fruitful areas of the search space. The
DyFor GP yielded an improved performance which was competitive to the GP-REG.

Both GDP and Electricity test environment, the performance of the DynGP and the
DyFor GP deteriorated as spatial severity increased. However, the performance of the GP-REG
improved as spatial severity increased on GDP test environment and exhibit superior
performance which was maintained as spatial severity increased.

Figures 3 is a graphical illustration as observed under temporal severities for all test
environments on generalization. For Progressive test environment, as temporal severity
increased, the performance of GP-REG was consistent which suggest the capability of GP-
REG to detect a change in the environment and adapts the model even for lower frequencies.
As a result, GP-REG consistently and significantly outperformed both the DynGP and the
DyFor GP. The performance of both the DynGP and DyFor GP improved as temporal severity
increased since there were sufficient iterations for each algorithm to converge toward the
optimal solution. For both Abrupt and Random test environment, the performance of the
DynGP and the DyFor GP improved as temporal severity increased. The GP-REG exhibit
superior performance to outperform all training algorithm as temporal severity increased
whereas the DyFor GP outperformed the DynGP.

As observed under spatial severity, the DynGP exhibit significant worst performance
for all cases on Trend test environment whereas the DyFor GP and the GP-REG exhibit
consistent performance as temporal severity increased. The performance of the GP-REG
greatly deteriorated on GDP test environment whereas the DynGP improved to yield
outstanding performance to outperform all training algorithm as temporary severity increased.

17

§ ; ; Generlallzatlclln P‘n:lgrlesm : ; Gener.aﬁ:?l:ﬂ Hj:uq:it

15 . - . r
y! dymae ——
7 Py \\ o ——— EPREG
o L ——— DVFOR - OVEIR
\\

5 5
= %
=4 =
e o
3l
2r -
1F J
0 | |) I ; ; |
1 15 2 25 3 a5 4 45 5
Severity
Generalization Random
3.5 T T L] T T T T
ST SN I
E 1 ok
25k = — —]
T o
w 2 — iy w — iy
E —GPREG E [l o ——ERREG
.l OYEQR I - DYFOR
oM
il
ot
05 .
|:| i i i i i i i a i i i
1 15 2 25 3 a5 £ L3 3 -] 2 15 3 is 4 45 5
Seventy Sy
Generalizaion GOP Generalization Bect
|: -E‘ T L] T T T T T I:U:G T T T T T T T
—dyEE ¥ [o f,»"’f
i ——GPREG e

wn
o

15 2 2.5- 3 w:- 4 +I 1 15 2 25 3 a5 4 45 5
Severdy Severiy
Figure 2. Averages for RMSE on Generalization per Spatial Severity

18

Generalization Progress Generalization Abrupt
(W] T T T T T s T T T 1 '
————— e = — -—= —
G 1 of T
a5 4 as b
05 0s A
L iy [T}
2 os ——ceaza({ Zo4f
i —DYFOR ki
0 i L i i i n : L i
1 15 2 25 3 a5 4 15 2 25 3 15 4
Frequancy Frequancy
45 Generalization Random Generalization Trend
T T T T T [slE=] T T T T T
—ymeE
aF —— GPAEG| | mmr—
—FR
7 b ;
25F
[—— o b
—]
% % Qs r TR
= = — GPAES
= 15t 1l =amt ——OYFOR
oes r
ik 3
Q2
oo
: 3 15 2 25 3 35 4
Freguency
Generalization Elect
0025 T T T T T
S \ﬂ
ooz r 1
M5
1] dymisP
£ ——CPREG
x —DYFOR
oM r ¥
005
=-DYFOR
) M I L A i 0 ——
] 2 25 2 15 4 1 15 2 25 3 a5 4
Frequency Frequency

Figure 3. Averages for RMSE on Generalization per Temporal Severity

19

For Electricity test environment, the performance of the DyFor GP deteriorated as temporal
severity increased whereas the DynGP improved to outperform the DYFOR for all cases. The
performance of the GP-REG slightly improved as temporal severity increased to exhibit
superior performance which was maintained as temporal severity increased.

Table 5 summarized the predictive accuracy of the GP-REG to the state-of-the-art
techniques: autoregressive (AR), real-time forecasting system (RTFS), and DyFor GP on the
real-world dataset GDP and CPI inflation reported in [28]. The experiments for GP-REG were
implemented as described in [28]. As observed in resulted presented in Table 5, GP-REG
yielded outperformed other training algorithms.

Table 5: RMSE on a GDP and CPI inflation datasets for the state-of-art techniques

Dataset AR RTFS DyFor GP GP-REG CPC
GDP 2.46 1.85 1.57 0.88
CPI 2.40 2.05 2.30

The state-of-the-art techniques: random vector functional link network (RVFL) and
incremental DWT-EMD-RVFL were implemented on the Australian Energy Market Operator,
New South Wales (NSW), 2015 electric load dataset for the following months: January, April,
July and October, to perform forecasting for each of the 24 hours of next day using the load
value at the same hour of last day [62]. Also, support vector regression (SVR) and the hybrid,
support vector regression-ARIMA (SVRARIMA) techniques were implemented to the
California electricity market to perform next-week prices forecasting [63]. The experiments for
GP-REG were implemented as described in [62] and [63].

Table 6 presents the obtained results of the state-of-the-art techniques and the GP-REG
for NSW, 2015 load dataset and the California electricity market dataset. The GP-REG
exhibited an outstanding performance to outperform all models under consideration except for
DWT-EMD-RVFL in which it performed in the same error range to obtain comparable
performance.

Table 6. Forecasting results for Electricity Data

Dataset Metric RVFL DWT-EMD-RVFL GP-REG SVR SVRARIMA
Jan MAPE (%) 3.87 1.86 1.72
RMSE 428.908 193.80 189.07
April MAPE (%) 3.94 2.03 2.02
RMSE 425.23 212.70 197.43
Jul MAPE (%) 5.09 2.96 2.98
RMSE 493.06 296.74 299.57
Oct MAPE (%) 8.86 5.93 591
RMSE 1004.39 659.41 596.48
1st Week MAPE (%) 258.72 758.69 348.81
RMSE 0.57 1.44 0.75
2rd\Week MAPE (%) 460.46 969.37 514.29
RMSE 0.87 2.05 1.07
6 Conclusion

The three training algorithms have a different level of precision and computational load.
Generally, the GP-REG exhibit outstanding performance for all test environment to yield
reduced E, <G as the temporal and spatial severity increased. The superior performance of the
GP-REG was attributed to the algorithm’s ability to detect an environmental change, track
changing decision boundaries, and adapt a predictive model using the prevailing patterns even
in increased temporal and spatial severities. However, GP-REG suffers from computational

20

load due to the embedded clustering and the nonlinear model induction. Consequently, the
DynGP had the least precision with the best computational performance whereas the DyFor
GP provides a balance between precision and computation performance.

Future will consider improving the computational load of the GP-REG and also, to
strengthen the adaptation to concept drift and the fast implementation of GP on GPUs to
provide fast learning for high-speed temporal data. Also, a comparative study of the GP-REG
to expand the benchmarks evaluated with many more combinations of types and speeds of
concept drift (recurrent, incremental, gradual, mixed, including generators).

Acknowledgements
The authors would like to thank reviewers for their valuable comments which immensely
improved the structure of this work.

References

[1] A. Tsymbal, "The Problem of Concept Drift: Definitions and Related Work," Computer
Science Department, Trinity College Dublin, 106(2), pp.58, 2004.

[2] T. Mitsa, Temporal Data Mining, Chapman&Hall / CRC Data Mining and Knowledge
Discovery Series, 2010.

[3] J. Brownlee, "A Gentle Introduction to Concept Drift in Machine Learning,” Machine
Learning Mastery, 2018.

[4] L. Khan, and W. Fan, "In International Conference on Database Systems for Advanced
Applications,” In Tutorial: Data stream mining and its applications, Berlin, Heidelberg,
Springer, 2012, pp. 328-329.

[5] E. Lughofer, "On-line active learning: A new paradigm to improve practical useability of
datastream modeling methods," Information Sciences, vol. 415, pp. 356-376, 2017.

[6] Z. Zhang, and J. Zhou, "Transfer estimation of evolving class priors in data stream
classification," Pattern Recognition, vol. 43, no. 9, pp. 3151-3161, 2010.

[7] J. Gama, I. Zliobaite, * A. Bifet, M. Pechenizkiy, A. Bouchachia, "A survey on concept
drift adaptation,” ACM Comput. Surv., vol. 46, no. 4, pp. 44:1-44:37, 2014.

[8] R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary
environments,” IEEE Trans. Neural Netw, vol. 22, no. 10, pp. 1517-1531, 2011.

[9] C. Alippi, G. Boracchi, and M. Roveri, "Just in time classifiers: Managing the slow drift
case," Proc. Int. Joint Conf. Neural Networks, pp. 114-120, 20009.

[10] L. Torrey, and J. Shavlik, "Transfer Learning," In Handbook of Research on Machine
Learning Applications, J. M. R. M. M. M. a. A. S. E. Soria, Ed., IGI Global, 2009.

[11] J.C. Schlimmer and R.H. Granger, "Incremental learning from noisy data.,”" Machine
Learning, vol. 1, no. 3, pp. 317-354, 1986.

[12] G. Widmer and, M. Kubat, "Learning in the presence of concept drift and hidden
contexts.," Machine learning, vol. 23, no. 1, pp. 69-101, 1996.

[13] G. Ditzler, M. Roveri, and C. Alippi, "Learning in Nonstationary Environments: A
survey," IEEE Computational Intelligence Magazine, pp. 12-25, November 2015.

21

[14] S. Delany, P. Cunningham, A. Tsymbal, and L. Coyle, " A case-based technique for
tracking concept drift in spam filtering,” Knowl. Based Syst, vol. 18, no. 4-5, pp. 187-
195, 2005.

[15] C. Alippi, Intelligence for Embedded Systems., Berlin, Germany: Springer-Verlag, 2014.

[16] J. Sarnelle, A. Sanchez, R. Capo, J. Haas, and R. Polikar, "Quantifying the limited and
gradual concept drift assumption,” In 2015 International Joint Conference on Neural
Networks (IJCNN), pp. 1-8, IEEE, 2015.

[17] M. Basseville and 1.V. Nikiforov, Detection of Abrupt Changes: Theory and Application,
vol. 104, Englewood Cliffs, NJ: Prentice-Hall, 1993.

[18] L.I. Kuncheva, "Classifier ensembles for changing environments,” Proc. 5th Int
Workshop of Multiple Classifier Systems, Vols., pp. 1-15, 2004.

[19] A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, "Dynamic integration of
classifiers for handling concept drift," Inform. Fusion, vol. 9, no. 1, pp. 56-68, 2008.

[20] J. R. Koza, "Genetic Programming: A Paradigm for Genetically Breeding Populations of
Computer Programs to Solve Problems,” Stanford University Computer Science
Department Technical Report STAN-CS-90-1314, 1990.

[21] S. Massimo, and A. Tettamanzi, "Genetic programming for financial time series
prediction,” Genetic Programming, Springer, pp. 361-370, 2001.

[22] M. KTucik, J. Juriova, and M. KTacik, "Time Series Modeling with Genetic Programming
Relative to ARIMA Models," In Conferences on New Techniques and Technologies for
Statistics, pp. 17-27, 20009.

[23] P.G. Espejo, S. Ventura, and F. Herrera, "A Survey on the Application of Genetic
Programming to Classification," IEEE Trans. on Systems, Man, and Cybernetics, Part C,
Applications and Reviews, vol. 40, no. 2, pp. 121-144, 2010.

[24] K. Nag, and N. Pal, "A Multiobjective Genetic Programming-Based Ensemble for
Simultaneous Feature Selection and Classification,” IEEE Trans. on Cybernetics, vol. 46,
no. 2, pp. 499-510, 2016.

[25] L. Vanneschi and G. Cuccu, "A study of genetic programming variable population size
for dynamic optimization problems,” In 1JCCI, pp. 119-126, 2009.

[26] Z. Yin, A. Brabazon, C. O’Sullivan, and M. O’Neill, "Genetic programming for dynamic
environments," In 2" International Symposium Advances in Artificial Intelligence and
Applications, vol. 2, pp. 437 - 446.

[27] M. Rieket, K. M. Malan, and A. P. Engelbrecht, "Adaptive Genetic Programming for
Dynamic Classification Problems,” 1In2009 IEEE Congress on Evolutionary
Computation, pp. 674-681, 2009.

[28] N. Wagner, Z. Michalewicz, M. Khouja, and R. McGregor, "Time Series Forecasting for
Dynamic Environments: the DyFor Genetic Program Model," IEEE Transactions on
Evolutionary Computation, 11(4), pp.433-452, 2007.

[29] N.R. Draper, and H. Smith, Applied regression analysis, vol. 326, John Wiley & Sons,
1998.

22

[30] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2" ed., Springer Series in Statistics, Springer, 2009.

[31] J.B. Fraleigh, and R.A. Beauregard, Linear Algebra, 3. edition, Ed., Upper Saddle River,
NJ: Addison-Wesley Publishing Company, 1995.

[32] S. M. Stigler, "Gauss and the Invention of Least Squares,” Ann. Stat., vol. 9, no. 3, pp.
465-474, 1981.

[33] A. Kordon, "Future Trends in Soft Computing Industrial Applications,” Proceedings of
the 2006 IEEE Congress on Evolutionary Computation, pp. 7854-7861, 2006.

[34] E. Alfaro-Cid, A.l. Esparcia-Alcazar, P. Moya, B. Femenia-Ferrer, K. Sharman and J.J.
Merelo, "Modeling pheromone dispensers using genetic programming,” In Lecture Notes
in Computer Science, SpringerBerlin / Heidelberg, vol. 5484, pp. 635-644, 2009.

[35] D.P. Searson, D.E. Leahy, and M.J. Willis, "GPTIPS: an open-source genetic
programming toolbox for multigene symbolic regression,” In Proceedings of the
International multiconference of engineers and computer scientists, Citeseer, vol. 1, pp.
77-80, 2010.

[36] N.Q. Uy, N.X. Hoai, M. O’NEeill, R.l. McKay, and E. Galvan-Lopez, "Semantically-
based crossover in genetic programming: application to real-valued symbolic
regression,” Genetic Programming and Evolvable Machines, vol. 12, no. 2, pp. 91-119,
2011.

[37] K. Georgieva and A.P. Engelbrecht, "Dynamic Differential Evolution Algorithm for
Clustering Temporal Data,” Large Scale Scientific Computing, Lecture Notes in
Computer Science, vol. 8353, pp. 240-247, 2014.

[38] C. Kuranga, Genetic Programming Approach for Nonstationary Data Analytics, PhD
Thesis, University of Pretoria, Pretoria, South Africa, 2020.

[39] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic Programming, Lulu
Enterprise, UK Ltd: http://lulu. com, 2008.

[40] L. Vanneschi and R. Poli, "Genetic Programming: Introduction, Application, Theory and
Open Issues,” in Handbook of Natural Computing: Theory, Experiments and
Applications, Springer Verlag ed., T. B. a. J. K. Grzegorz Rosenberg, Ed., Springer
Verlag, 2010.

[41] W. Banzhaf, P. Nordin, R. E. Keller and F. D. Francone, Genetic Programming: An
Introduction, vol. volume 1, Morgan Kaufmann San Francisco, 1998.

[42] A. Canoa, and B. Krawczyk, "Evolving Rule-Based Classifiers with Genetic
Programming on GPUs for Drifting Data Streams," Pattern Recognition, pp.248-268,
2019.

[43] A. Soundarrajan, S. Sumathi, and G. Sivamurugan, "Voltage and frequency control in
power generating system using hybrid evolutionary algorithms,” Journal of Vibration
and Control, 18(2), pp.214-227, 2012.

[44] "Mathworks," MATLAB, [Online]. Available: www.mathworks.com.

23

http://www.mathworks.com./

[45] RW. Morrison, "Performance Measure in Dynamic Environments,” In GECCO
workshop on evolutionary algorithms for dynamic optimization problems (No. 5-8),
2003.

[46] R.W. Morrison and K.A. De Jong "A test problem generator for non-stationary
environments," Proc. of the 1999 Congr. on Evol. Comput., pp. 2047-2053, 1999.

[47] J. Branke, "Memory enhanced evolutionary algorithms for changing optimization
problems,” Proc. of the 1999 Congr. on Evol. Comput, pp. 1875-1882, 1999.

[48] Y. Jin, and B. Sendhoff, "Constructing dynamic optimization test problems using the
multiobjective optimization concept,” EvoWorkshop 2004, LNCS 3005, pp. 526-536,
2004.

[49] C. Li, M. Yang, and L. Kang, "A new approach to solving dynamic TSP," Proc of the 6"
Int. Conf. on Simulated Evolution and Learning, pp. 236-243, 2006.

[50] C. Li and S. Yang "A Generalized Approach to Construct Benchmark Problems for
Dynamic Optimization,” Proc. of the 7" Int. Conf. on Simulated Evolution and Learning,
pp. 391-400, Springer, Berlin, Heidelberg, 2008.

[51] L. Zhang, J. Lin, and R. Karim, "Sliding Window-Based Fault Detection From High-
Dimensional Data Streams," IEEE Trans. Systems, Man, and Cybernetics: Systems, vol.
47, no. 2, pp. 289-303, 2017.

[52] L. Bennett, L. Swartzendruber, and H. Brown, "Superconductivity Magnetization
Modeling," National Institute of Standards and Technology (NIST), US Department of
Commerce, USA, 1994.

[53] V. Cherkassky, D. Gehring, and F. Mulier, ", Comparison of adaptive methods for
function estimation from samples,” IEEE Transactions on Neural Networks, vol. 7, no.
4, pp. 969- 984, 1996.

[54] M. Harries, "Splice-2 comparative evaluation: Electricity pricing. Technical Report
UNSW-CSE-TR-9905," Artificial Intelligence Group, School of Computer Science and
Engineering, The University of New South Wales, Sydney 2052, Australia, 1999.

[55] R.J. Shiller, "Stock Market Data used in Irrational Exuberance,” Princeton University
Press, 2005.

[56] J. Kitchen and R. Monaco, "Real-time Forecasting in Practice," Business Economics: The
Journal of the National Association of Business Economists, vol. 38, pp. 10-19, 2003.

[57] M. Lopez-lbafez, J. Dubois-Lacoste, L. Pérez Caceres, T. Stiitzle, and M. Birattari, "The
irace package: Iterated Racing for Automatic Algorithm Configuration,” Operations
Research Perspectives, vol. 3, pp. 43-58, 2016.

[58] G. Brown, J.L. Wyatt and P. Tino, "Managing diversity in regression ensembles,"
Journal of Machine Learning Research, 6(Sep), pp. 1621-1650, 2005.

[59] S. Kelly, J. Newsted, W. Banzhaf, and C. Gondro. "A modular memory framework for
time series prediction,” In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, pp. 949-957, June 2020.

24

[60] A.J. Turner, and J.F. Miller, "Recurrent cartesian genetic programming of artificial neural
networks, " Genetic Programming and Evolvable Machines, 18(2), 185-212, 2017

[61] A.S. Rakitianskaia, and A.P. Engelbrecht, "Training Feedforward Neural Network with
Dynamic Particle Swarm Optimisation,” Computer Science Department, University of
Pretoria, 2011.

[62] Qiu, X., Suganthan, P. N., & Amaratunga, G. A. (2018). Ensemble incremental learning
random vector functional link network for short-term electric load
forecasting. Knowledge-Based Systems, 145, 182-196.

[63] Che, J., & Wang, J. (2010). Short-term electricity prices forecasting based on support
vector regression and auto-regressive integrated moving average modeling. Energy
Conversion and Management, 51(10), 1911-1917.

25

Appendix 1: The p-values for the Test Environment

DynGP vs. DyFor GP - Progressive

DynGP vs. DyFor GP - Abrupt

1 2 3 4 1 2 3 4 5
EysT 0.0001 0.0001 0.0001 0.0001 0.0001
EysG 0.0001 0.0001 0.0001 0.0001 0.0648
EysT ~ 0.0001 0.2825 0.0038 0.0024 0.0001 0.0001 0.0001 0.0001 0.0001
EysG 0.0001 0.0105 0.0163 0.0001 0.0001 0.0001 0.0001 0.0001 0.0718
EysT 0.0001 0.0001 0.0001 0.0001 0.0001
EysG 0.0001 0.0001 0.0001 0.0001 0.1068
EysT 0.0001 0.0001 0.0001 0.0001 0.0001
EysG 0.0001 0.0001 0.0001 0.0001 0.2413
DynGP vs. DyFor GP - Chaotic DynGP vs. DyFor GP - Elect
1 2 3 4 1 2 3 4
EysT ~ 0.0001 0.0001 0.0001 0.0001 0.0511 0.2175 0.1217 0.2458 0.0351
EysG 0.0853 0.0001 0.0001 0.0001 0.1094 0.3445 0.0362 0.0023 0.0014
EysT 0.0001 0.0001 0.0001 0.0001 0.6284 0.9582 0.0412 0.0481 0.0007
EysG 0.3610 0.7731 0.0001 0.0001 0.0396 0.0264 0.0415 0.0893 0.0719
EysT 0.0250 0.0374 0.0116 0.0317 0.0428
EysG 0.4475 0.2856 0.0386 0.0432 0.3822
EysT 0.0001 0.0001 0.0001 0.0379 0.0411
EysG 0.0001 0.0001 0.0001 0.5140 0.3947

26

