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ON SOME PROJECTIVE TRIPLY-EVEN BINARY CODES INVARIANT UNDER

THE CONWAY GROUP Co1

BERNARDO G. RODRIGUES

Abstract. A binary triply-even [98280, 25, 47104]2 code invariant under the sporadic simple group Co1

is constructed by adjoining the all-ones vector to the faithful and absolutely irreducible 24-dimensional

code of length 98280. Using the action of Co1 on the code we give a description of the nature of the

codewords of any non-zero weight relating these to vectors of types 2, 3 and 4, respectively of the Leech

lattice. We show that the stabilizer of any non-zero weight codeword in the code is a maximal subgroup

of Co1. Moreover, we give a partial description of the nature of the codewords of minimum weight of the

dual code.

1. Introduction

A triply-even binary code is a linear code in which the weight of every codeword is divisible by 8; such

codes have previously been classified up to length 48 by Betsumiya and Munemasa [3]. Recent interest

is growing in regards to the study of ∆-divisible codes of large lengths, of which triply-even codes are

a special case. A linear code C over Fq is said to be ∆-divisible if the Hamming weight w(c) of every

codeword c ∈ C is divisible by ∆ > 1, and C is said to be a projective code if d(C⊥) ≥ 3. In particular,

binary ∆-divisible codes have been studied in [7] and applications of these have been given therein.

More recently a study of the lengths for which triply-even binary codes are known to exist was done in

[8]. The authors prove the non-existence of a projective triply-even binary linear code of length 59. In

addition, the authors remark that the distinction between the existence of a projective/non-projective
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qr-divisible code of a certain length matters for the determination of upper bounds on the maximum

possible cardinality of partial t-spreads. They also give references of an example of non-existence of a

projective 23-divisible code of length 52 while non-projective codes of this length exist. It follows from

[8, Fact 1] that triply-even binary codes exist for length n ≥ 60.

In the present note we answer a question posed by Wolfgang Knapp on the combinatorial properties

of a 25-dimensional submodule of the permutation module of length 98280 invariant under Co1 which

contains the unique irreducible faithful 24-dimensional code as a subcode of codimension 1. Given the

relevance of the study of triply-even binary codes, we present the binary codes examined in this paper

as examples of triply-even projective binary codes of large length admitting a sporadic simple group

as a permutation group of automorphisms. We also examine the properties of some point- and block-

primitive 1-designs obtained as support 1-designs of the non-zero codewords of this triply-even binary

25-dimensional code of length 98280.

In the theorem given below, we summarize our results; the specific results relating to the codes are

given as propositions in the following sections.

Theorem 1.1. Let G be the simple group Co1 of Conway. Let V be the Leech lattice modulo 2, and Ω

be the orbit of length 98280 obtained by the action of G on V and F2Ω the corresponding permutation

module over F2 invariant under G. Then the following hold:

(a) F2Ω contains a unique submodule of dimension 25. Let C25 denote this submodule. Then

C25 = ⟨C24,1⟩, where C24 is the unique faithful and irreducible Co1-invariant F2-module of

dimension 24;

(b) C25 is a projective triply-even code;

(c) C25 is not spanned by its minimum-weight codewords;

(d) Aut(C25) ∼= Co1;

(e) the codewords of non-zero weight in C25 are stabilized by maximal subgroups of G.

The paper is organized as follows: in Section 2 we outline the background and notation and in

Section 3 we give a brief overview on the Co1 group. In Section 4 we describe the construction method

used, and give our results on the 25-dimensional binary code invariant under Co1 in the ensuing sections.

2. Terminology

In this section, we state some useful facts in coding theory, design theory and finite group theory.

Our notation for designs and groups will be standard, and it is as in [2] and ATLAS [6].

Let F be a finite field of order q = pt, where p is a prime and t ∈ N; and G a finite group. Let Ω be

a finite G-set, i.e. Ω is a finite set and there is a G-action on Ω, namely, a map · :G×Ω −→ Ω given by

(g, ω) 7→ g · ω, satisfying (g · h) · ω = g · (h · ω) for all g, h ∈ G and all ω ∈ Ω, and that 1 · ω = ω for all

ω ∈ Ω.

Then FΩ = {
∑

ω∈Ω gωω | gω ∈ F} is a vector space over F with basis Ω. Extending the G-action on Ω

linearly, FΩ becomes an FG-module, called an FG-permutation module with permutation basis Ω, (we

remark that the permutation module FΩ need not be semisimple in general). The F-vector space FΩ is
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equipped with a non-degenerate symmetric bilinear form

⟨
∑
ω∈Ω

gωω,
∑
ω∈Ω

hωω⟩ =
∑
ω∈Ω

gωhω, ∀g =
∑
ω∈Ω

gωω and h =
∑
ω∈Ω

hωω ∈ FΩ

called the standard inner product on FΩ. For any a ∈ G and any g =
∑

ω∈Ω gωω and h =
∑

ω∈Ω hωω ∈
FΩ, we have

⟨a(g), a(h)⟩ = ⟨a(
∑
ω∈Ω

gωω), a(
∑
ω∈Ω

hωω)⟩

= ⟨
∑
ω∈Ω

gωaω,
∑
ω∈Ω

hωaω⟩ =
∑
ω∈Ω

gωhω

= ⟨g,h⟩.

So, the standard inner product on the vector space FΩ is G-invariant in the following sense:

⟨a(g), a(h)⟩ = ⟨g,h⟩, ∀a ∈ G,∀g,h ∈ FΩ.

Moreover, for any U ⊆ FΩ denote U⊥ = {v ∈ FΩ | ⟨u,v⟩ = 0, ∀u ∈ U}. If C is an FG-submodule of

FΩ, then for any a ∈ G and c′ ∈ C⊥, and for any c ∈ C, by the G-invariance of the inner-product we

have that

⟨ac′, c⟩ = ⟨ac′, aa−1c⟩ = ⟨c′, a−1c⟩ = 0,

so ac′ ∈ C⊥, i.e., C⊥ is G-invariant. Hence, C⊥ is an FG-submodule.

We say that C is an FG-permutation code of FΩ, denoted by C ⊆ FΩ, if C is an FG-submodule

of the FG-permutation module FΩ; and a permutation code C is said to be irreducible if C is an

irreducible FG-submodule of FΩ. Two linear codes are isomorphic if they can be obtained from one

another by permuting the coordinate positions. For a linear code C of length n over F, a permutation

of the components of a codeword of length n is said to be a permutation automorphism of C if the

permutation maps codewords to codewords. By Aut(C) we denote the automorphism group of C

consisting of all the permutation automorphisms of C. With this we have that G acts on C and thus

G ≤ Aut(C) so that the code C becomes a FG-submodule of the permutation module FΩ. In this note

we consider only binary linear codes, so we restrict our attention to permutation automorphisms. It is

easy to see that C is an FG-permutation code of a G-permutation set Ω of cardinality n if and only if

there is a group homomorphism of G to Aut(C).

A code C is self-orthogonal if C ⊆ C⊥. The hull of C is Hull(C) = C ∩ C⊥. The all-one vector will

be denoted by 1, and is the constant vector of weight the length of the code, and whose coordinate

entries consist entirely of 1’s. A binary code C is doubly-even if all its non-zero codewords have weight

divisible by four, and triply-even if all its non-zero codewords have weight divisible 8. Let C be a code

of length n. The weight distribution of a code C is the sequence {Ai|i = 0, 1, . . . , n}, where Ai is the

number of codewords of weight i and the homogeneous polynomial WC(x, y) =
∑n

i=0Aix
iyn−i of degree

n is called the weight enumerator of C. The weight enumerator of a code C and its dual C⊥ are related

via MacWilliams’ identity.
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An incidence structure D = (P,B, I), with point set P, block set B and incidence I is a t-(v, k, λ)

design, if |P| = v, every block B ∈ B is incident with precisely k points, and every t distinct points are

together incident with precisely λ blocks. The complement of D is the structure D̃ = (P,B, Ĩ), where
Ĩ = P × B − I. The dual structure of D is Dt = (B,P, It), where (B, p) ∈ It if and only if (P,B) ∈ I.
Thus, the transpose of an incidence matrix for D is an incidence matrix for Dt. We will say that the

design is symmetric if it has the same number of points and blocks, and self dual if it is isomorphic to

its dual.

The support of a nonzero vector x := (x1, . . . , xn), xi ∈ Fq is the set of indices of its nonzero coordi-

nates: supp(x) = {i|xi ̸= 0}. The support design of a code of length n for a given nonzero weight w is

the design with n points of coordinate indices and blocks the supports of all codewords of weight w.

3. The Conway group Co1

The Leech lattice is a certain 24-dimensional Z-submodule of the 24-dimensional Euclidean space R24

discovered by John Leech. John Conway showed that the automorphism group of the Leech lattice is

a quasisimple group. Its central factor group is the Conway group Co1. The Conway groups Co2 and

Co3 are stabilizers of sublattices of the Leech lattice. We give a brief description of the construction of

these groups, omitting detail. The content of this section is mostly drawn from [1]. A more recent and

comprehensive account is given in [13], see also [5, 11, 12].

Let H = M24 and (Ω, C) be the Steiner system S(24, 8, 5) for H. Let V be the permutation module

over F2 of H with basis Ω and VC the Golay code submodule. Let R24 be the permutation module

over the reals for H with basis Ω and let ⟨ , ⟩ be the symmetric bilinear form on R24 for which Ω is an

orthogonal basis. Then R24 together with ⟨ , ⟩ is simply the 24-dimensional Euclidean space admitting

the action of H, and for
∑

ω αωω and
∑

ω βωω in R24,⟨∑
ω

αωω,
∑
ω

βωω

⟩
=

∑
ω

αωβω.

For v ∈ R24 define q(v) = ⟨v, v⟩/16. Thus q is a positive definite quadratic form on R24. Given Y ⊆ Ω,

define eY =
∑

y∈Y y ∈ R24. For ω ∈ Ω let λω = eΩ − 4ω.

The Leech lattice is the set Λ of vectors v =
∑

ω αωω ∈ R24 such that:

: (Λ1) αω ∈ Z for all ω ∈ Ω.

: (Λ2) m(v) = (
∑

ω αω)/4 ∈ Z.
: (Λ3) αω ≡ m(v) (mod 2) for all ω ∈ Ω.

: (Λ4) C(v) = {ω ∈ Ω | αω ̸≡ m(v) (mod 4)} ∈ VC .

The Leech lattice Λ is a Z-submodule of R24. Let Λ0 denote the set of vectors v ∈ Λ such that

m(v) ≡ 0 (mod 4). Then Λ0 is a Z-submodule spanned by the set {2eB | B ⊂ C}. Further, Λ as a Z-
submodule is generated by Λ0 and λω0 , for ω0 ∈ Ω. Write O(R24) for the subgroup of GL(R24) preserving

the bilinear form ⟨ , ⟩, or equivalently preserving the quadratic form q. Let G be the subgroup of O(R24)

acting on Λ. The group G is the automorphism group of the Leech lattice. For Y ⊂ Ω, write ϵY for the

http://dx.doi.org/10.22108/ijgt.2021.123705.1632
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element of GL(R24) such that

ϵY (ω) =


−ω , if ω ∈ Y,

ω , if ω ̸∈ Y.

Let Q = {ϵY | Y ∈ VC}. Then K = H·Q ≤ G. Given any positive integer l, write Λl for the set of all

vectors v in Λ with q(v) = l. Then Λ = ∪lΛl. For v =
∑

ω αωω ∈ Λ and i a non-negative integer, let

Si(v) = {ω ∈ Ω : |αω| = i} ,

and define the shape of v to be (0l0 , 1l1 , . . .), where li = |Si(v)|. Let Λ2
2 be the set of all vectors in Λ of

shape (28, 016), Λ3
2 the vectors in Λ of shape (3, 123), and Λ4

2 the vectors in Λ of shape (42, 022). Then Λi
2,

2 ≤ i ≤ 4, are the orbits of K on Λ2, with |Λ2
2| = 27·759, |Λ3

2| = 212·24 and |Λ4
2| = 22·

 24

2

. Moreover,

|Λ2| = 24·33·5·7·13 and K = NG(Λ
4
2). Using this information it can be shown that G acts transitively

on Λ2, Λ3, and Λ4. Also K is a maximal subgroup of G and |G| = 222·39·54·72·11·13·23. Notice that ϵΩ

is the scalar map on R24 determined by −1, and hence is in the center of G. Denote by Co1 the factor

group G/⟨ϵΩ⟩. Denote by Co2 the stabilizer of a vector in Λ2 and denote by Co3 the stabilizer of a

vector in Λ3. The groups Co1, Co2 and Co3 are the Conway groups, with |Co1| = 221·39·54·72·11·13·23,
|Co2| = 218·36·53·7·11·23 and |Co3| = 210·37·53·7·11·23. Recall that Co1, Co2 and Co3 are finite simple

groups.

In Table 1 we give the primitive representations of Co1 of degree ≤ 8386560. The first column gives

the ordering of the primitive representations as given by the ATLAS [6] and as used in our computations;

the second gives the degrees (the number of cosets of the point stabilizer), the third the number of orbits,

and the remaining columns give the size of the non-trivial orbits of the respective point stabilizers.

No. Max. sub. Deg. # length

1 Co2 98280 4 4600 46575 47104

2 3·Suz:2 1545600 5 5346 22880 405405 11119682

3 211:M24 8292375 6 3542 48576 1457280 2637824 4145152

4 Co3 8386560 7 11178 37950 257600 1536975 2608200 3934656

Table 1. Maximal subgroups of Co1 of degree ≤ 8386560

4. The construction of codes

Our approach is representation theoretic and based on Theorem 4.1.

Theorem 4.1. Let G be a finite group and let V be an FG-module over a finite field F and let Ω be a

G-invariant subset of V. Let FΩ be the (formal) permutation module with basis Ω = {α |α ∈ Ω} where
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α = (δβα)β∈Ω where δβα denotes the Kronecker δ function.

Then

ρ :
∑
α∈Ω

rαα 7→
∑
α∈Ω

rαα

is an FG-homomorphism of FΩ into V with kernel of ρ = M = {
∑

α∈Ω rαα |
∑

α∈Ω rαα = 0 in V } and

image U where U is the submodule of V generated by Ω. Hence, we have

FΩ/M ∼= U (by the homomorphism theorem) and

M⊥ ∼= U∗ (by orthogonality)

where M⊥ denotes the submodule of FΩ orthogonal to M with respect to the canonical bilinear form on

FΩ and U∗ = Hom(U,F) denotes the FG-module dual to U in the sense of representation theory.

Proof. The action of G on Ω is given by restricting the action of G(⊆ FG) on V. So the theorem is

basically just a restatement of the universal property of the permutation module as a free structure over

Ω using in addition some elementary facts of representation theory and linear algebra. We leave to the

reader to complete the details of the proof. □

Remark 4.2. Usually α is identified with α and Ω is identified with Ω, but for the purposes of Theo-

rem 4.1 we keep them distinct.

Corollary 4.3. With the same assumptions of Theorem 4.1 the following hold:

(i) Let V be irreducible. Then FΩ has an irreducible submodule W isomorphic to V ∗, if Ω ̸= ∅.

(ii) Let V ∼= V ∗ be irreducible and self-dual (in the sense of representation theory). Then FΩ has an

irreducible submodule W isomorphic to V.

Remark 4.4. Theorem 4.1 is useful in other situations, for instance if V has a unique maximal

submodule V0 and ∅ ̸= Ω ⊆ V \ V0. Then necessarily U = V.

Theorem 4.1, Corollary 4.3 and Remark 4.4 above have been suggested by Wolfgang Knapp [9] as

means of construction of codes.

5. Binary codes of small dimension invariant under Co1 of degree 98280

With the notation established in Section 3, for v ∈ Λ let Λl(v, i) denote the set of u ∈ Λl for which

⟨v, u⟩ = 8i. Let 2Λ = {2v : v ∈ Λ}. Then 2Λ is a 2·Co1-invariant Z-module, and 2·Co1 acts on the

quotient module Λ̃ = Λ/2Λ. The module Λ̃ is the reduction modulo 2 of the Leech lattice. For v ∈ Λ, let

ṽ = v+2Λ and for S ⊆ Λ let S̃ = {s̃ : s ∈ S}. Then 2ṽ = 0 for all v ∈ Λ, and Λ̃ is an elementary abelian

2-group which may be viewed as a F22
·Co1-module. Recall from Section 3 that Co1 ∼= 2·Co1/⟨ϵΩ⟩.

Since ⟨ϵΩ⟩ acts trivially on Λ̃ it follows that Λ̃ is a F2Co1-module. In [1, Lemma 23.2 (4), Lemma 23.3]

Aschbacher showed that Λ̃ is a 24-dimensional, faithful and irreducible F2Co1-submodule. Using these

and other properties of Λ̃ ∼= F24
2 in [10] we denoted this module C24 and examined its combinatorial

properties. We state the pertinent result below

http://dx.doi.org/10.22108/ijgt.2021.123705.1632
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Result 5.1. Let G be the simple Conway group Co1 in its rank 5 primitive permutation action of degree

98280 and let C24 denote a submodule of dimension 24 of the permutation module of degree 98280 over

F2. Then

(i) C24 is a self-orthogonal doubly-even projective two-weight [98280, 24, 47104]2 code with weight enu-

merator x0y98280 + 98280x47104y51176 + 16678935x49152y49128;

(ii) The dual code C24
⊥ of C24 is a [98280, 98256, 3]2 uniformly packed code with 75348000 codewords

of weight 3;

(iii) 1 ∈ C24
⊥ and C24 is the unique submodule of its dimension on which Co1 acts absolutely irre-

ducibly;

(iv) Aut(C24) ∼= Co1.

Remark 5.2. (i) The code C24 can be constructed as an application of Theorem 4.1.

(ii) Observe that C24 is a ∆-divisible code with ∆ = 212 : for every c ̸= 0 in C24, where 0 represents the

zero vector in C24 we have wt(c) | 2048.

As stated in Remark 5.2 (ii) one can apply Theorem 4.1 to the situation given in Result 5.1 by

identifying V = Λ̃ and Ω = Λ2 = Λ2 + Λ/2Λ with F = F2, i.e., the reduction image of Λ2 modulo 2Λ,

and G = Co1. Notice that V ∼= V ∗ follows since G acts as an orthogonal group on V and C24 can be

identified with the submodule U of F2Ω given by Theorem 4.1. Notice also that C24
⊥ is the module

denoted M in Theorem 4.1.

5.1. The [98280, 25, 47104]2 code. Observe that C24 does not contain the all-ones vector 1. Below, we

construct a binary linear code of dimension 25, denoted C25 which results by adjoining the all ones

vector to C24. In fact, C25 \ C24 consists of the codewords complementary to those of C24.

In Figure 1 below we give a partial description of the submodule structure (the composition factors

can be derived from this) of the permutation module F2Ω of degree 98280. The vector space dimension

is given in parentheses.

Figure 1. Partial submodule lattice for F2Ω

..

F2Ω

.C⊥
24

. ⟨1⟩⊥.

C⊥
25

.

C25

.

...

...

C24

.

⟨1⟩

.

{0}

.

(98280)

.(98256) . (98279).

(98255)

.

(25)

.

(24)

.

(1)

.

(0)

Naturally, one can ask: what are the combinatorial properties of the code C25
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In Proposition 5.3 we examine the combinatorial properties of C25 and give its main parameters. In

addition, in Proposition 6.1 we determine the orbits of the action of Co1 on the non-zero codewords of

C25 and describe the corresponding geometric subgroups, i.e., stabilizers of points or blocks, and finally

in Remark 6.3 we give a geometric significance of the nature of the complementary pairs of non-zero

codewords, in particular those of minimum weight. Notice that the notation ⟨ , ⟩ used in Proposition 5.3

parts (i) and (v) and their proofs differs from that used for the bilinear form. Here we mean subspace

generation.

Proposition 5.3. Let G be the simple group Co1 of Conway and let F2Ω denote the permutation module

of degree 98280 over F2 obtained by the action of G on the Leech lattice modulo 2. Then the following

occur:

(i) There exists a unique submodule of F2Ω of dimension 25 invariant under Co1. Let C25 denote this

submodule. Then C25 = ⟨C24,1⟩, where C24 is the smallest non-trivial faithful Co1-invariant irreducible

F2-module of dimension 24 of Result 5.1;

(ii) C25 is a triply-even projective [98280, 25, 47104]2 code, 1 ∈ C25
⊥ and in C25;

(iii) C25 is not spanned by its minimum-weight codewords;

(iv) The dual code C25
⊥ of C25 is a [98280, 98255, 4]2 code with 297601053750 codewords of weight 4;

(v) Aut(C25) ∼= Co1.

Proof. (i) By construction C25 = ⟨C24,1⟩. Since C24 and ⟨1⟩ are Co1-invariant subspaces, we deduce

that C25 is a decomposable 25-dimensional F2-module of Co1 containing the 24-dimensional F2-module

C24. Thus C25 = C24 + ⟨1⟩. Moreover, the uniqueness of C25 follows from Result 5.1(iii). See also, [1,

Lemma 23.2 (4), Lemma 23.3].

(ii) Since C25 ⊆ C25
⊥, if w ∈ C25 it follows that w ∈ C25

⊥ and so (w,w) = 0. Write w = w1w2 . . . w98280.

Then
∑98280

i=1 w2
i = 0. Furthermore, since w2

i = wi for all wi ∈ F2 then
∑98280

i=1 wi = wi1. Hence

1 ∈ C25
⊥. That 1 ∈ C25 follows by construction. Now, we have A98280−i(C25) = |{wi + 1 : wi ∈

C25}| = |{wi : wi ∈ C25}| = Ai. Form the latter and Result 5.1(ii) we deduce the weight enumerator

x0y98280+98280x47104y51176+98280x51176y47104+16678935x49128y49152+16678935x49152y49128+x98280y0

for C25, from which we deduce that C25 is triply-even and hence self-orthogonal.

(iii) By Result 5.1(i) we deduce that the codewords of weight 47104 generate the code C24. We verified

through computations with Magma that the codewords of weight 49128 span C25. Hence the result.

(iv) Using MacWilliams’ identities and Pless’ power moment identities the weight distribution of the dual

can be obtained. In fact, we used computations with Magma [4] to confirm the full weight distribution.

From this we deduce that C25 is projective since d(C25
⊥) = 4, i.e., C25

⊥ satisfies d(C25
⊥) ≥ 3.1

(v) We show here that Aut(C25) ∼= Co1. Obviously, Co1 ⊆ Aut(C24). Now, suppose that α ∈ Aut(C24).

Since α(1) = 1 and C25 = ⟨C24,1⟩, we have α ∈ Aut(C25). So that Aut(C24) ⊆ Aut(C25). Since by

Result 5.1(iv) we have Aut(C24) ∼= Co1, order considerations show Aut(C25) ∼= Co1. □

1The entire weight distribution can be obtained on request from the author.
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Remark 5.4. In Remark 5.2(iii) we observed that C24 is a 212-divisible code. However, in Proposi-

tion 5.3 we show that C25 is ∆ = 23-divisible. This gives an example of a smaller ∆-divisible code

containing a larger ∆-divisible subcode. Thus, in general, if C is a ∆-divisible code and C ′ is a ∆′-

divisible with C ′ ⊃ C then C ′ need not be a ∆-divisible code where ∆ = ∆′.

6. Geometric subgroups of Co1 as stabilizers of vectors of the codes

By [12, Theorem A1], we know that there are just three orbits of Co1 on 1-dimensional spaces in Λ/2Λ

and these orbits have lengths 98280, 8292375 and 8386560, respectively. In Proposition 6.1, we use these

facts and the fact that 1 ∈ C25 by part (ii) of Proposition 5.3 to show how Co1 acts on the non-zero

codewords of C25. The reader will notice that since 1 ∈ C25 the weight distribution of C25 is symmetric

and the codewords of C25 occur in complementary pairs. Thus we determine the structure of (Co1)wi

where i is in W with W = {47104, 49152} and the structure of (Co1)wi where i is in W, the complement

of W , i.e., W = {51176, 49128}. For i ∈ W (respectively for i ∈ W ) we define Wi (respectively W i) to be

Wi = {wi ∈ C25 | wt(wi) = i} (respectively W i = {wi ∈ C25 | wt(wi) = i}). We show in Proposition 6.1

that (Co1)wi (respectively (Co1)wi) is a maximal subgroup of Co1, for all i. Taking the support of wi

(respectively wi) and orbiting that under Co1 we form the blocks of the 1-(98280, i, ki) support designs

D = Dwi (respectively D = Dwi) where ki = |(wi)
Co1 | × i

98280 (respectively ki = |(wi)
Co1 | × i

98280). We

show that Co1 acts point primitively on D. For economy we prove the result for the codewords in W .

The proof for the codewords in W follows by replacing the relevant complementary pairs.

Proposition 6.1. Let i ∈ W and wi ∈ Wi. Then (Co1)wi is a maximal subgroup of Co1. Furthermore

Co1 is primitive on Dwi .

Proof. The proof follows from the two cases discussed below.

Case 1. Consider W47104 = {wi ∈ W | wt(wi) = 47104}. Since W47104 is invariant under the action of

Aut(C25) for all wi ∈ W47104, it follows from the weight enumerator of C25 above, that wi
Co1 = W47104.

Therefore W47104 forms an orbit under the action of Co1 and thus Co1 is transitive on W47104. Now

let x = w(47104). Then (Co1)x is a subgroup of order 218·36·53·7·11·23 we deduce that thus maximal in

Co1. Using the weight enumerator of C25 once again, and the orbit stabilizer theorem we deduce that

[Co1:(Co1)x] = 98280 and by order considerations and Table 1 we have (Co1)x ∼= Co2.

Case 2. Let W49152 = {wi ∈ W | wt(wi) = 49152}. It can be deduced from [12, Theorem A1] that under

the action of Co1 the set W49152 splits into two orbits of lengths 8292375 and 8386560, say W(49152)1

and W(49152)2 . Let y = w(49152)1 ∈ W(49152)1 and z = w(49152)2 ∈ W(49152)2. Then (Co1)y is a subgroup

of order 501397585920 and thus maximal in Co1. Moreover, (Co1)y ∼= 211:M24. (Note that there is a

misprint in [6, p. 183] for the index [Co1:(2
11:M24)].) Similarly, |(Co1)z| = 210·37·53·7·11·23, so that

(Co1)z ∼= Co3.

By the transitivity of Co1 on the code coordinate positions, the codewords of Wi form a 1-design Dwi

with Ai blocks. This implies that Co1 is transitive on the blocks of Dwi for each wi and since (Co1)wi

is a maximal subgroup of Co1, we deduce that Co1 acts primitively on Dwi for each i. This still holds

if we replace wi with wi in each case discussed.
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In Table 2 we depict the structure of the vector stabilizer for all the codewords of C25.

i (Co1)w Maximality i (Co1)w Maximality

0 Co1 No 98280 Co1 No

47104 Co2 Yes 51176 Co2 Yes

(49152)1 Co3 Yes (49128)1 Co3 Yes

(49152)2 211:M24 Yes (49128)2 211:M24 Yes

Table 2. Stabilizer in Co1 of a codeword w (=wi or wi)

In Table 3 the first column represents the codewords of weight i and the second column gives the

parameters of the designs Dw, where w = wi( or wi) accordingly. In the third column we list the number

of blocks of Dw. We test the primitivity for the action of Co1 on Dw in the final column. □

i Dw No. of blocks Primitivity

47104 1-(98280, 47104, 47104) 98280 Yes

51176 1-(98280, 51176, 51176) 98280 Yes

(49152)1 1-(98280, 49152, 4194304) 8386560 Yes

(49152)2 1-(98280, 49152, 4147200) 8292375 Yes

(49128)1 1-(98280, 49128, 4192256) 8386560 Yes

(49128)2 1-(98280, 49128, 4145175) 8292375 Yes

Table 3. Non-trivial point- and block-primitive 1-designs Dw on 98280 points invariant

under Co1

In what follows our main interest is in determining the orbits of Co1 on the set of codewords of

minimum weight in the dual code C25
⊥. While this is of independent interest our investigation was

motivated by a question of Wolfgang Knapp [9] since it would be of help in the classification of these

types of codewords. We are able to trace some of these codewords to vectors of the Leech lattice and

provide a partial description of the geometric nature of this class of codewords.
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Proposition 6.2. Co1 has 3 orbits on the set of minimum weight codewords of C25
⊥, the orbit lengths

being 88114776750, 159134976000 and 50351301000, respectively.

Proof. Let W4(C25
⊥) = {w ∈ C25

⊥ | wt(w) = 4} denote the set of weight 4 vectors in C25
⊥. Then by

Proposition 5.3 (iv), we have |W4(C25
⊥)| = 297601053750 and thus Co1 acts intransitively on W4(C25

⊥).

Under the action of Co1 we have that W4(C25
⊥) splits into the orbits W4(C25

⊥)i with 1 ≤ i ≤ 3. In

particular, |W4(C25
⊥)1| = 88114776750, |W4(C25

⊥)2| = 159134976000 and |W4(C25
⊥)3| = 50351301000,

respectively. Let a ∈ W4(C25
⊥)1, b ∈ W4(C25

⊥)2 and c ∈ W4(C25
⊥)3. Then (Co1)a is a subgroup of

order 47185920 and follows from the list of maximal subgroups of Co1, see ATLAS [6, p. 183], that

(Co1)a is not maximal in Co1. Notice that |(Co1)b| = 26127360 and |(Co1)c| = 82575360, and as in the

preceding case, these groups are not maximal in Co1.

By order considerations and examining the structure of the maximal subgroups of Co1 we notice that

(Co1)a is possibly a maximal subgroup of 21+12:(A8 × S3) or 24+12:(S3 × 3S6) with index 42 and 18,

respectively. By computations with Magma [4] we obtained the maximal subgroups of 21+12:(A8 × S3)

and 24+12:(S3 × 3S6), and since neither of these subgroups possesses a maximal subgroup of the given

index we conclude that (Co1)a is not a second maximal subgroup. We determine the chief factors and

deduce that (Co1)a ∼= (3× 217):S5, since the soluble radical quotient 3× 217 has degree 6.

Next we consider the group (Co1)b. Inspecting the list of maximal subgroups of Co2 we deduce that

(Co1)b is a maximal subgroup of Co2 isomorphic to U4(3) · D8. Furthermore, (Co1)b is the setwise

stabilizer in Λ of an S-lattice of type 21+4:32, and point stabilizer isomorphic to U4(3), see ATLAS [6,

pp. 52].

Arguing as above we note that (Co1)c is possibly a maximal subgroup of 21+12:(A8× S3) of index 24.

However, it can be proven by inspecting the list of maximal subgroups of this group computed using

Magma that this possibility does not occur. Now, direct calculations of the chief factors shows that

(Co1)c ∼= 211:L3(4) · 2, since the soluble radical quotient 211 has degree 280. □

The preceding propositions and theorems give the proof of Theorem 1.1 stated in Section 1.

Remark 6.3. The geometric significance and the nature of the codewords of C25 can be described

using the Leech lattice as it was the case for the codewords of C24, see [10]. The description that is

presented below follows directly by using [12, Theorem A1] and [12, Theorem A2].

(1). The minimum words of C25 are the 98280 pairs consisting of a type 2 vector and its negative in

the Leech lattice [11, p. 156]. The stabilizer of such a pair has just three non-trivial orbits on the other

pairs, where the orbit in which a particular vector lies depends only on the angles its vectors form with

the fixed vector. The permutation character of this action is χ1+χ3+χ6+χ10, of degrees 1, 299, 17250,

80730 respectively, see [6, p. 183].

(2). Observe (from Table 2) that the codewords of weight 49152 in C25 split into two classes, namely a

class of codewords whose stabilizer is isomorphic to 211:M24, and another with stabilizer of a codeword

isomorphic to Co3. The class of codewords with stabilizer isomorphic to 211:M24 consists of the type 4

base (or A24
1 -hole) vectors, while those vectors with stabilizer Co3 are known to be type 3 vectors in the

Leech lattice, see [6, p. 183] or [11, p. 156].
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(3). A result along the lines of [10, Proposition 5.2] can be obtained for the 1-(98280, 51176, 51176)

design D invariant under Co1.

(4). Observe that in Proposition 6.2 we show that the set W4(C25
⊥) of minimum weight codewords of

C25
⊥ is not an orbit of Co1. In particular, we give a geometric description of the nature of W4(C25

⊥)2,

tracing it to the Leech lattice, and showed that the stabilizer of a codeword in W4(C25
⊥)2 is a second

maximal subgroup of Co1. It would be of interest to give a geometric description of the nature of the

codewords of W4(C25
⊥)1 and W4(C25

⊥)3, respectively.
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