\qquad

Count	V12: Receptive language domain * V1RC: Age of the child Crosstab			
		V1RC: Age of the chilk		
		0-6 months	7-12 months	13-18 months
V12: Receptive language domain	No delay present	5	8 a	5 a
	Delay present	$0{ }_{\text {a }}$	$0{ }_{\text {a }}$	$1{ }_{\text {a }}$
Total		5	8	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$4.138^{\text {a }}$	4	0,388	0,733
Likelihood Ratio	3,362	4	0,499	0,733
Fisher's Exact Test	4,127			0,733
Linear-by-Linear Association	. $002{ }^{\text {b }}$	1	0,960	1,000
N of Valid Cases	30			

a. 7 cells (70.0%) have expected count less than 5 . The minimum expected count is .17 .
b. The standardized statistic is .050 .

V13: Expressive language domain * V1RC: Age of the child Crosstal

 Count| | | 0-6 months | V1RC: Age of the chilk | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 7-12 months | 13-18 months |
| V13: Expressive language domain | No delay present | 5 a | 8 a | 5 a |
| | Delay present | 0 a | 0 a | 1 a |
| Total | | 5 | 8 | 6 |

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

Chi-Square Tests

Exact Sig. (2sided)

Pearson Chi-Square	3.214^{a}	4	0,523	0,595
Likelihood Ratio	3,882	4	0,422	0,595
Fisher's Exact Test	3,260			0,595
Linear-by-Linear Association	$.370^{\mathrm{b}}$	1	0,543	0,618
N of Valid Cases	30			

a. 7 cells (70.0%) have expected count less than 5 . The minimum expected count is .33 .
b. The standardized statistic is 609 .

V20: Coping skills domain * V1RC: Age of the child Crosstabulation

Count

		V1RC: Age of the child		Total
		19-24 months	25 months or more	
V20: Coping skills domain	No delay present	$0_{\text {a }}$	5 b	5
	Delay present	1_{a}	$0{ }_{\text {b }}$	1
Total		1	5	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$6.000^{\text {a }}$	1	0,014	0,167
Continuity Correction ${ }^{\text {b }}$	0,960	1	0,327	
Likelihood Ratio	5,407	1	0,020	0,167
Fisher's Exact Test				0,167
Linear-by-Linear Association	$5.000^{\text {c }}$	1	0,025	0,167
N of Valid Cases	6			

a. 4 cells (100.0\%) have expected count less than 5 . The minimum expected count is .17 .
b. Computed only for a 2×2 table
c. The standardized statistic is -2.236 .

V29: I was able to communicate with the interviewer with clarity * V1RC: Age of the
Count

		V1RC: Age of the chils		
		0-6 months	7-12 months	13-18 months
V29: I was able to communicate with the interviewer with clarity	Strongly disagree	0_{a}	1_{a}	O_{a}
	Neutral	$0{ }_{\text {a }}$	0 a	0 a
	Agree	2 a	0 a	$1_{\text {a }}$
	Strongly agree	3 a	7 a	5 a
Total		5	8	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square		df	0,246	0,211
Likelihood Ratio	14.914^{a}	14,896	12	0,247
Fisher's Exact Test	12,546	12	0,309	
Linear-by-Linear Association	3.286^{b}		1	0,248
N of Valid Cases	30			0,077

a. 19 cells (95.0%) have expected count less than 5 . The minimum expected count is .17 .
b. The standardized statistic is -1.813 .

V30: I experienced no technical difficulties * V1RC: Age of the child Cros

Count

		0-6 months	V1RC: Age of the chils	
			7-12 months	13-18 months
V30: I experienced no technical difficulties	True	4 a , b	8 b	$5 \mathrm{a}, \mathrm{b}$
	Neutral	0 a	0 a	1 a
	False (please specify)	$1_{\text {a, b, c, d }}$	$0_{c, ~ d}$	$0_{b, d}$
Total		5	8	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$11.483^{\text {a }}$	8	0,176	0,134
Likelihood Ratio	11,698	8	0,165	0,123
Fisher's Exact Test	10,159			0,112
Linear-by-Linear Association	$1.439^{\text {b }}$	1	0,230	0,257
N of Valid Cases	30			

a. 14 cells (93.3%) have expected count less than 5 . The minimum expected count is .17 .
b. The standardized statistic is 1.199 .

V31: Experienced Google Meet as user-friendly * V1RC: Age of the child C

Count

		0-6 months	V1RC: Age of the chils	
			7-12 months	13-18 months
V31: Experienced Google	Yes	4 a	8 a	6 a
Meet as user-friendly	Neutral	1_{a}	0 a	0 a
Total		5	8	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

Chi-Square Tests
Asymptotic
Significance (2-
Exact Sig. (2sided)

Pearson Chi-Square	5.172^{a}	4	0,270	0,333
Likelihood Ratio	3,765	4	0,439	0,333
Fisher's Exact Test	4,492			0,333
Linear-by-Linear Association	2.082^{b}	1	0,149	0,333
N of Valid Cases	30			

a. 7 cells (70.0%) have expected count less than 5 . The minimum expected count is .17.
b. The standardized statistic is -1.443 .

V32: Perceived tele-assessment as natural as if in person * V1RC: Age of the ch

Count

		0-6 months	V1RC: Age of the chilk	
			7-12 months	13-18 months
V32: Perceived teleassessment as natural as if in person	Yes	4 a	7 a	5 a
	Neutral	$1{ }_{\text {a }}$	1 a	1 a
	No	$0{ }_{\text {a }}$	$0{ }_{\text {a }}$	0 a
Total		5	8	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$5.473^{\text {a }}$	8	0,706	0,870
Likelihood Ratio	4,082	8	0,850	0,966
Fisher's Exact Test	5,636			0,949
Linear-by-Linear Association	$1.458{ }^{\text {b }}$	1	0,227	0,293
N of Valid Cases	30			

a. 14 cells (93.3%) have expected count less than 5 . The minimum expected count is .17 .
b. The standardized statistic is 1.207 .

V33: Clarify why/why not you perceived tele-assessment as natural as if in person *

 Count| | | | | : Age of the chilk |
| :---: | :---: | :---: | :---: | :---: |
| | | 0-6 months | 7-12 months | 13-18 months |
| V33: Clarify why/why not you perceived tele-assessment as | Preference for conducting interviews in person | 1_{a} | 2 a | $1{ }_{\mathrm{a}}$ |
| natural as if in person | Felt the online interview was as natural as if it were in person | 2 a | 6 a | 1 a |
| | Familiar with the platform/video conferencing | $1_{\text {a, b, }}$ | $0_{\text {c }}$ | 3 b |
| Total | | 4 | 8 | 5 |

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$11.027^{\text {a }}$	8	0,200	0,204
Likelihood Ratio	11,350	8	0,183	0,372
Fisher's Exact Test	8,700			0,316
Linear-by-Linear Association	. $546{ }^{\text {b }}$	1	0,460	0,519
N of Valid Cases	25			

a. 15 cells (100.0\%) have expected count less than 5 . The minimum expected count is .48 .
b. The standardized statistic is -.739 .

V34: Consider tele-assessment as something to use again in future * V1RC: Age of t

 Count| | | 0-6 months | V1RC: Age of the chils | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 7-12 months | 13-18 months |
| V34: Consider tele- | Yes | 4 a | 7 a | 5 a |
| assessment as something to | Neutral | $1_{\text {a }}$ | $1{ }_{\text {a }}$ | 1_{a} |
| Total | | 5 | 8 | 6 |

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.130^{\text {a }}$	4	0,712	0,929
Likelihood Ratio	3,066	4	0,547	0,929
Fisher's Exact Test	2,456			0,929
Linear-by-Linear Association	$1.563{ }^{\text {b }}$	1	0,211	0,279
N of Valid Cases	30			

a. 7 cells (70.0%) have expected count less than 5 . The minimum expected count is .50 .
b. The standardized statistic is -1.250 .

V35: Elaborate on why/why not you would use tele-assessment again * V1RC: Age of Count

				C: Age of the chil
		0-6 months	7-12 months	13-18 months
V35: Elaborate on why/why not you would use tele-	Found tele-assessment to be practical and informative	0_{a}	2 a	2 a
	Tele-assessment is convenient and saves resources e.g. transport	3 a	4 a	1_{a}
	Considered tele-assessment safe with regards to the COVID-19 pandemic	0_{a}	0 a	1_{a}

Unsure about tele-assessment as a viable assessment format	1_{a}	1_{a}	1_{a}	
Total		4	7	5

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$8.680^{\text {a }}$	12	0,730	0,822
Likelihood Ratio	12,058	12	0,441	0,792
Fisher's Exact Test	9,158			0,804
Linear-by-Linear Association	. $185^{\text {b }}$	1	0,667	0,697
N of Valid Cases	24			

a. 20 cells (100.0\%) have expected count less than 5 . The minimum expected count is .38 .
b. The standardized statistic is -.430 .

V36: Tele-assessment viable for the assessment of children 0-36 months * V1RC: Age c

 Count| | | 0-6 months | V1RC: Age of the chils | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 7-12 months | 13-18 months |
| V36: Tele-assessment viable | Yes | 2 a | 5 a | 5 a |
| for the assessment of children | Neutral | 3 a | 2 a | 1_{a} |
| | No | 0 | 1 a | 0 a |
| Total | | 5 | 8 | 6 |

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$5.938{ }^{\text {a }}$	8	0,654	0,737
Likelihood Ratio	6,243	8	0,620	0,776
Fisher's Exact Test	5,669			0,786
Linear-by-Linear Association	. $848{ }^{\text {b }}$	1	0,357	0,392
N of Valid Cases	30			

a. 14 cells (93.3%) have expected count less than 5 . The minimum expected count is .33 .
b. The standardized statistic is -.921 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V1RC: Age ।

 Count| | | | | C : Age of the chil |
| :---: | :---: | :---: | :---: | :---: |
| | | 0-6 months | 7-12 months | 13-18 months |
| V37: Please elaborate on why/why not you think tele- | Preference for direct assessment of child | 3 a | 4 a | 3 a |

assessment is viable	Caregiver confident enough to report on their child's development	1_{a}	2 a	3 a
	Tele-assessment is convenient and saves resources e.g. transport	0 a	1 a	$\mathrm{O}_{\text {a }}$
Total		4	7	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,492
Likelihood Ratio	7.425^{a}	8,875	8	0,555
Fisher's Exact Test	6,370	8	0,353	0,613
Linear-by-Linear Association	1.646^{b}		1	0,200
N of Valid Cases	26			0,213

a. 15 cells (100.0%) have expected count less than 5 . The minimum expected count is .62 .
b. The standardized statistic is 1.283 .

V38: Downsides/concerns with assessment format * V1RC: Age of the child

Count

		0-6 months	V1RC: Age of the chilr	
			7-12 months	13-18 months
V38: Downsides/concerns with assessment format	Yes	0 a	0 a	0_{a}
	Neutral	1 a	1_{a}	0 a
	No	$4 \mathrm{a}, \mathrm{b}$	7 a , b	$6{ }_{6}$
Total		5	8	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$10.210^{\text {a }}$	8	0,251	0,248
Likelihood Ratio	12,258	8	0,140	0,203
Fisher's Exact Test	8,660			0,183
Linear-by-Linear Association	$4.144^{\text {b }}$	1	0,042	0,044
N of Valid Cases	30			

a. 14 cells (93.3%) have expected count less than 5 . The minimum expected count is .50 .
b. The standardized statistic is -2.036 .

V39: What you might change about the assessment format * V1RC: Age of the cl
Count

		0-6 months	7-12 months	13-18 months
V39: What you might change about the assessment format	No changes	$2 \mathrm{a}_{\text {, }}$	6 b	$3{ }_{\text {a, b }}$
	Would prefer to feel more prepared before assessment e.g. sending questions beforehand	1_{a}	0 a	0_{a}
	Did not want to be recorded	$0_{\text {a }}$	$0_{\text {a }}$	$0_{\text {a }}$
	Wanted child present	$0{ }_{\text {a }}$	0 a	1 a
Total		3	6	4

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$14.941^{\text {a }}$	12	0,245	0,199
Likelihood Ratio	13,688	12	0,321	0,232
Fisher's Exact Test	13,073			0,168
Linear-by-Linear Association	. $520{ }^{\text {b }}$	1	0,471	0,494
N of Valid Cases	21			

a. 20 cells (100.0\%) have expected count less than 5 . The minimum expected count is .14 .
b. The standardized statistic is .721 .

V40: Upsides/benefits of assessment format * V1RC: Age of the child Crc

Count

		0-6 months	V1RC: Age of the chilr	
			7-12 months	13-18 months
V40: Upsides/benefits of assessment format	Yes	2 a	6 a	5 a
	Neutral	2 a	1 a	1_{a}
	No	0 a	$1_{\text {a }}$	0 a
Total		4	8	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square		df		0,610	0,698
Likelihood Ratio	6.334^{a}	7,298	8	0,505	0,766
Fisher's Exact Test	6,138	8		0,739	
Linear-by-Linear Association	$.494^{\mathrm{b}}$		1	0,482	0,571
N of Valid Cases	29				

a. 14 cells (93.3%) have expected count less than 5 . The minimum expected count is .28 .
b. The standardized statistic is -.703 .

V41: What you liked about the assessment format * V1RC: Age of the child (
Count

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$8.682^{\text {a }}$	8	0,370	0,393
Likelihood Ratio	8,126	8	0,421	0,490
Fisher's Exact Test	7,858			0,512
Linear-by-Linear Association	. $004{ }^{\text {b }}$	1	0,949	1,000
N of Valid Cases	25			

a. 15 cells (100.0%) have expected count less than 5. The minimum expected count is .16 .
b. The standardized statistic is -.064 .

V42: Overall experience of tele-assessment format * V1RC: Age of the child

Count

			C: Age of the chil
	0-6 months	7-12 months	13-18 months
V42: Overall experience of tele- Neutral	O_{a}	$0_{\text {a }}$	0_{a}
assessment format Agree	3 a	4 a	1 a
Strongly agree	2 a	4 a	5 a
Total	5	8	6

Each subscript letter denotes a subset of V1RC: Age of the child categories whose column proportions do not differ sig

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$7.626^{\text {a }}$	8	0,471	0,528
Likelihood Ratio	6,897	8	0,548	0,551
Fisher's Exact Test	7,425			0,577
Linear-by-Linear Association	. $564{ }^{\text {b }}$	1	0,453	0,483
N of Valid Cases	30			

a. 15 cells (100.0%) have expected count less than 5 . The minimum expected count is . 17 .
b. The standardized statistic is .751 .

V12: Receptive language domain * V2: Gender of the child Crosstabulation

Count

	V2: Gender of the child			
		Male	Female	Total
V12: Receptive language	No delay present	12_{a}	17_{a}	29
domain	Delay present	0_{a}	1_{a}	1
Total		12	18	30

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $690^{\text {a }}$	1	0,406	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	1,045	1	0,307	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $667^{\text {c }}$	1	0,414	1,000
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5. The minimum expected count is .40 .
b. Computed only for a 2×2 table
c. The standardized statistic is .816 .

V13: Expressive language domain * V2: Gender of the child Crosstabulation

Count

	V2: Gender of the child			
		Male	Female	Total
V13: Expressive language	No delay present	11_{a}	17_{a}	28
domain	Delay present	1_{a}	1_{a}	2
Total		12	18	30

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $089{ }^{\text {a }}$	1	0,765	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,088	1	0,767	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $086{ }^{\text {c }}$	1	0,769	1,000
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5. The minimum expected count is .80 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.294.

V20: Coping skills domain * V2: Gender of the child Crosstabulation

Count

	V2: Gender of the child			
		Male	Female	Total
V20: Coping skills domain	No delay present	2_{a}	3_{a}	
	Delay present	1_{a}	0_{a}	5
Total	3	3	1	

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.200^{\text {a }}$	1	0,273	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	1,588	1	0,208	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	$1.000^{\text {c }}$	1	0,317	1,000
N of Valid Cases	6			

a. 4 cells (100.0\%) have expected count less than 5 . The minimum expected count is .50 .
b. Computed only for a 2×2 table
c. The standardized statistic is -1.000 .

V29: I was able to communicate with the interviewer with clarity * V2: Gender of the child

 Count| | V2: Gender of the child | | | |
| :--- | :--- | ---: | ---: | ---: |
| | | Male | Female | Total |
| V29: I was able to | | | | |
| communicate with the | | | | |
| interviewer with clarity | Strongly disagree | 1_{a} | 3_{a} | 4 |
| | Neutral | 0_{a} | 1_{a} | 1 |
| | Agree | 1_{a} | 3_{a} | 4 |
| | Strongly agree | 10_{a} | 11_{a} | 21 |
| Total | | 12 | 18 | 30 |

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$1.925^{\text {a }}$	3	0,588	0,752
Likelihood Ratio	2,319	3	0,509	0,752
Fisher's Exact Test	1,811			0,752
Linear-by-Linear Association	$1.041^{\text {b }}$	1	0,308	0,357
N of Valid Cases	30			

a. 6 cells (75.0%) have expected count less than 5 . The minimum expected count is .40 .
b. The standardized statistic is -1.020 .

V30: I experienced no technical difficulties * V2: Gender of the child Crosstabulation

 Count

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.778{ }^{\text {a }}$	2	0,249	0,213
Likelihood Ratio	3,098	2	0,212	0,213
Fisher's Exact Test	2,722			0,213
Linear-by-Linear Association	$1.605^{\text {b }}$	1	0,205	0,213
N of Valid Cases	30			

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is .40 .
b. The standardized statistic is -1.267 .

V31: Experienced Google Meet as user-friendly * V2: Gender of the child Crosstabulation

Count

	V2: Gender of the child			
		Male	Female	Total
V31: Experienced Google	Yes	11_{a}	18_{a}	29
Meet as user-friendly	Neutral	1_{a}	0_{a}	1
Total		12	18	30

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.552^{\text {a }}$	1	0,213	0,400
Continuity Correction ${ }^{\text {b }}$	0,043	1	0,836	
Likelihood Ratio	1,885	1	0,170	0,400
Fisher's Exact Test				0,400
Linear-by-Linear Association	$1.500^{\text {c }}$	1	0,221	0,400
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5. The minimum expected count is .40 .
b. Computed only for a 2×2 table
c. The standardized statistic is -1.225 .

V32: Perceived tele-assessment as natural as if in person * V2: Gender of the child Count

		V2: Gender of the child		Total
		Male	Female	
V32: Perceived teleassessment as natural as if in person	Yes	12 a	$12_{\text {b }}$	24
	Neutral	0 a	5 b	5
	No	0 a	1 a	1
Total		12	18	30

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,082
Likelihood Ratio	5.000^{a}	2	0,086	
Fisher's Exact Test	7,110	2	0,029	0,066
Linear-by-Linear Association	4,723			0,086
N of Valid Cases	4.287^{b}	1	0,038	0,053

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is .40 .
b. The standardized statistic is 2.070 .

V33: Clarify why/why not you perceived tele-assessment as natural as if in person * V2: Gender of the child Crosstabulation

Count

		V2: Gender of the child		Total
		Male	Female	
V33: Clarify why/why not you perceived tele-assessment as natural as if in person	Preference for conducting interviews in person	0 a	7a	7
	Felt the online interview was as natural as if it were in person	7 a	7 b	14
	Familiar with the platform/video conferencing	0 a	4 a	4
Total		7	18	25

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ
Chi-Square Tests
$\left.\begin{array}{lr|r|r|r} \\ & \text { Value } & & & \begin{array}{c}\text { Asymptotic } \\ \text { Significance (2- } \\ \text { sided) }\end{array} \\ \hline \text { Exact Sig. (2- } \\ \text { sided) }\end{array}\right]$
a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is 1.12 .
b. The standardized statistic is -.562.

V34: Consider tele-assessment as something to use again in future * V2: Gender of the

Count

		V2: Gender of the child		Total
		Male	Female	
V34: Consider tele-	Yes	12 a	15 a	27
assessment as something to	Neutral	0 a	3 a	3
Total		12	18	30

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.222^{\text {a }}$	1	0,136	0,255
Continuity Correction ${ }^{\text {b }}$	0,756	1	0,385	
Likelihood Ratio	3,285	1	0,070	0,255
Fisher's Exact Test				0,255
Linear-by-Linear Association	$2.148^{\text {c }}$	1	0,143	0,255
N of Valid Cases	30			

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.20 .
b. Computed only for a 2×2 table
c. The standardized statistic is 1.466 .

V35: Elaborate on why/why not you would use tele-assessment again * V2: Gender of the

 Count| | | V2: Gender of the child | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Male | Female | |
| V35: Elaborate on why/why not you would use teleassessment again | Found tele-assessment to be practical and informative | 3 a | 2 a | 5 |
| | Tele-assessment is convenient and saves resources e.g. transport | 4 a | 9 a | 13 |
| | Considered tele-assessment safe with regards to the COVID-19 pandemic | 0 a | 3 a | 3 |
| | Unsure about tele-assessment as a viable assessment format | 0 a | 3 a | 3 |
| Total | | 7 | 17 | 24 |

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ
Chi-Square Tests

| | | | Asymptotic
 Significance (2-
 sided) | Exact Sig. (2-
 sided) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Vearson Chi-Square | Value | df | 0,188 | 0,168 |

Likelihood Ratio	6,196	3	0,102	0,158
Fisher's Exact Test	3,783			0,266
Linear-by-Linear Association	4.165^{b}	1	0,041	0,047
N of Valid Cases	24			

a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is .88 .
b. The standardized statistic is 2.041 .

V36: Tele-assessment viable for the assessment of children 0-36 months * V2: Gender of

Count

	V2: Gender of the child			
		Male	Female	

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $625^{\text {a }}$	2	0,732	0,837
Likelihood Ratio	0,620	2	0,733	0,837
Fisher's Exact Test	0,963			0,837
Linear-by-Linear Association	. $518^{\text {b }}$	1	0,472	0,558
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .80 .
b. The standardized statistic is -.720 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V2: Gender of Count

		V2: Gender of the child		Total
		Male	Female	
V37: Please elaborate on why/why not you think teleassessment is viable	Preference for direct assessment of child	5 a	9 a	14
	Caregiver confident enough to report on their child's development	3 a	5 a	8
	Tele-assessment is convenient and saves resources e.g. transport	$1_{\text {a }}$	3 a	4
Total		9	17	26

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

Chi-Square Tests

Asymptotic
Significance (2- Exact Sig. (2sided) sided)

Pearson Chi-Square	$.200^{\mathrm{a}}$	2	0,905	1,000
Likelihood Ratio	0,209	2	0,901	1,000
Fisher's Exact Test	0,332			1,000
Linear-by-Linear Association	$.087^{\mathrm{b}}$	1	0,768	0,796
N of Valid Cases	26			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is 1.38 .
b. The standardized statistic is . 295 .

V38: Downsides/concerns with assessment format * V2: Gender of the child

Count

	V2: Gender of the child			
		Male	Female	Total
V38: Downsides/concerns with	Yes	1_{a}	3_{a}	4
assessment format	Neutral	0_{a}	3_{a}	3
	No	11_{a}	12_{a}	23
Total	12	18	30	

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$2.962^{\text {a }}$	2	0,227	0,308
Likelihood Ratio	4,041	2	0,133	0,274
Fisher's Exact Test	2,504			0,308
Linear-by-Linear Association	$1.550^{\text {b }}$	1	0,213	0,307
N of Valid Cases	30			

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is 1.20 .
b. The standardized statistic is -1.245 .

V39: What you might change about the assessment format * V2: Gender of the child

 Count

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,794
Likelihood Ratio	1.031^{a}	1,314	3	0,726
Fisher's Exact Test	1,675	3		1,000
Linear-by-Linear Association	$.099^{\mathrm{b}}$		1	0,753
N of Valid Cases	21			0,787

a. 6 cells (75.0%) have expected count less than 5 . The minimum expected count is .33 .
b. The standardized statistic is -.315 .

V40: Upsides/benefits of assessment format * V2: Gender of the child Crosstabulation

 Count| | | V2: Gender of the child | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Male | Female | |
| V40: Upsides/benefits of assessment format | Yes | 7 a | 15 a | 22 |
| | Neutral | 2 a | 3 a | 5 |
| | No | 2 a | $0{ }_{\text {a }}$ | 2 |
| Total | | 11 | 18 | 29 |

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square		df		0,163	0,243
Likelihood Ratio	3.631^{a}	4,244	2	0,120	0,243
Fisher's Exact Test	3,210	2		0,243	
Linear-by-Linear Association	2.687^{b}		1	0,101	0,118
N of Valid Cases	29				

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .76 .
b. The standardized statistic is -1.639 .

V41: What you liked about the assessment format * V2: Gender of the child

Count

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	. $709^{\text {a }}$	2	0,702	1,000
Likelihood Ratio	1,036	2	0,596	1,000
Fisher's Exact Test	0,802			1,000
Linear-by-Linear Association	. 075	1	0,784	0,873
N of Valid Cases	25			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .36 .
b. The standardized statistic is -.274 .

V42: Overall experience of tele-assessment format * V2: Gender of the child

Count

	V2: Gender of the child		Total
	Male	Female	
V42: Overall experience of tele- Neutral	1 a	0 a	1
assessment format Agree	4 a	7 a	11
Strongly agree	7 a	$11_{\text {a }}$	18
Total	12	18	30

Each subscript letter denotes a subset of V2: Gender of the child categories whose column proportions do not differ
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.570^{\text {a }}$	2	0,456	0,663
Likelihood Ratio	1,903	2	0,386	0,663
Fisher's Exact Test	1,508			0,663
Linear-by-Linear Association	. $275{ }^{\text {b }}$	1	0,600	0,747
N of Valid Cases	30			

a. 3 cells $(50.0 \%$) have expected count less than 5 . The minimum expected count is .40 .
b. The standardized statistic is . 525 .

V12: Receptive language domain * V4: Primary caregiver Crosstabulation
Count

		V4: Primary caregiver		Total
		Mother	Both parents	
V12: Receptive language domain	No delay present	19 a	10 a	29
	Delay present	0 a	1_{a}	1
Total		19	11	30

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Pearson Chi-Square	Value		df	0,181	0,367

Continuity Correction ${ }^{\text {b }}$	0,079	1	0,778	
Likelihood Ratio	2,067	1	0,151	0,367
Fisher's Exact Test				0,367
Linear-by-Linear Association	1.727°	1	0,189	0,367
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5. The minimum expected count is .37 .
b. Computed only for a 2×2 table
c. The standardized statistic is 1.314 .

V13: Expressive language domain * V4: Primary caregiver Crosstabulation

Count

	V4: Primary caregiver			
		Mother	Both parents	Total
V13: Expressive language	No delay present	18_{a}	10_{a}	28
domain	Delay present	1_{a}	1_{a}	2
Total		19	11	30

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $164^{\text {a }}$	1	0,685	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,159	1	0,691	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $159^{\text {c }}$	1	0,690	1,000
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5. The minimum expected count is .73.
b. Computed only for a 2×2 table
c. The standardized statistic is .398 .

V20: Coping skills domain * V4: Primary caregiver Crosstabulation
Count

| | | V4: Primary
 caregiver
 Mother | Total |
| :--- | :--- | :--- | :--- | :--- |

V29: I was able to communicate with the interviewer with clarity * V4: Primary caregiver Count

		V4: Primary caregiver		Total
		Mother	Both parents	
V29: I was able to communicate with the interviewer with clarity	Strongly disagree	3 a	1_{a}	4
	Neutral	1_{a}	0 a	1
	Agree	2 a	2 a	4
	Strongly agree	13 a	8 a	21
Total		19	11	30

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square		df		0,768	1,000
Likelihood Ratio	1.138^{a}	1,475	3	0,688	1,000
Fisher's Exact Test	1,280	3		1,000	
Linear-by-Linear Association	$.318^{\mathrm{b}}$		1	0,573	0,613
N of Valid Cases	30				

a. 6 cells (75.0%) have expected count less than 5 . The minimum expected count is .37 .
b. The standardized statistic is .564 .

V30: I experienced no technical difficulties * V4: Primary caregiver Crosstabulation Count

		V4: Primary caregiver		Total
		Mother	Both parents	
V30: I experienced no technical difficulties	True	14a	10 a	24
	Neutral	1_{a}	$0{ }_{\text {a }}$	1
	False (please specify)	4 a	1_{a}	5
Total		19	11	30

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

Chi-Square Tests

$\left.\begin{array}{lr|r|r|r} \\ & \text { Value } & & & \begin{array}{c}\text { Asymptotic } \\ \text { Significance (2- } \\ \text { sided) }\end{array} \\ \hline \text { Exact Sig. (2- } \\ \text { sided) }\end{array}\right]$
a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is .37 .
b. The standardized statistic is -1.007 .

V31: Experienced Google Meet as user-friendly * V4: Primary caregiver Crosstabulation Count

	V4: Primary caregiver							
		Mother	Both parents	Total				
V31: Experienced Google	Yes	18_{a}	11_{a}	29				
Meet as user-friendly	Neutral	1_{a}	0_{a}	1				
Total		19	11	30				

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Pearson Chi-Square	Value		df		1,000
Continuity Correction ${ }^{\text {b }}$	$.599^{\mathrm{a}}$		1	0,439	
Likelihood Ratio	0,000	1	1,000		
Fisher's Exact Test	0,933		1	0,334	1,000
Linear-by-Linear Association					1,000
N of Valid Cases	$.579^{\text {c }}$		1	0,447	1,000

a. 2 cells (50.0\%) have expected count less than 5 . The minimum expected count is .37 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.761 .

V32: Perceived tele-assessment as natural as if in person * V4: Primary caregiver Count

		V4: Primary caregiver		Total
		Mother	Both parents	
V32: Perceived teleassessment as natural as if in person	Yes	15 a	9 a	24
	Neutral	3 a	2 a	5
	No	1_{a}	0 a	1
Total		19	11	30

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $610^{\text {a }}$	2	0,737	1,000
Likelihood Ratio	0,944	2	0,624	1,000
Fisher's Exact Test	0,718			1,000
Linear-by-Linear Association	. $181{ }^{\text {b }}$	1	0,670	0,746
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .37 .
b. The standardized statistic is -.426 .

V33: Clarify why/why not you perceived tele-assessment as natural as if in person * V4:

Count

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $939{ }^{\text {a }}$	2	0,625	0,751
Likelihood Ratio	0,967	2	0,616	0,656
Fisher's Exact Test	1,039			0,751
Linear-by-Linear Association	. $638{ }^{\text {b }}$	1	0,424	0,550
N of Valid Cases	25			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is 1.76 .
b. The standardized statistic is .799.

V34: Consider tele-assessment as something to use again in future * V4: Primary

Count

		V4: Primary caregiver		Total
		Mother	Both parents	
V34: Consider tele-	Yes	$17{ }_{\text {a }}$	$10_{\text {a }}$	27
assessment as something to	Neutral	2 a	1_{a}	3
Total		19	11	30

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	$\begin{gathered} \text { Exact Sig. (2- } \\ \text { sided) } \end{gathered}$
Pearson Chi-Square	. $016^{\text {a }}$	1	0,900	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,016	1	0,899	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $015^{\text {c }}$	1	0,901	1,000
N of Valid Cases	30			

a. 2 cells (50.0%) have expected count less than 5 . The minimum expected count is 1.10 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.124 .

V35: Elaborate on why/why not you would use tele-assessment again * V4: Primary Count

		V4: Primary caregiver		Total
		Mother	Both parents	
V35: Elaborate on why/why not you would use teleassessment again	Found tele-assessment to be practical and informative	3 a	2 a	5
	Tele-assessment is convenient and saves resources e.g. transport	8 a	5 a	13
	Considered tele-assessment safe with regards to the COVID-19 pandemic	$1_{\text {a }}$	2 a	3
	Unsure about tele-assessment as a viable assessment format	2 a	1_{a}	3
Total		14	10	24

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square		df	0,821	0,921	
Likelihood Ratio	$.918^{\mathrm{a}}$		3	0,823	0,921
Fisher's Exact Test	0,910	1,195	3	0,921	
Linear-by-Linear Association	$.023^{\mathrm{b}}$		1	0,880	1,000
N of Valid Cases	24				

a. 6 cells (75.0%) have expected count less than 5 . The minimum expected count is 1.25 .
b. The standardized statistic is .151 .

V36: Tele-assessment viable for the assessment of children 0-36 months * V4: Primary

 Count| | | V4: Primary caregiver | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Mother | Both parents | |
| V36: Tele-assessment viable for the assessment of children 0-36 months | Yes | $12_{\text {a }}$ | 8 a | 20 |
| | Neutral | 5 a | 3 a | 8 |
| | No | 2 a | 0 a | 2 |
| Total | | 19 | 11 | 30 |

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square	Value		df	0,534	0,613
Likelihood Ratio	1.256^{a}	1,924	2	0,382	0,613
Fisher's Exact Test	0,971				0,841

Linear-by-Linear Association	$.728^{\text {b }}$	1	0,393	0,551
N of Valid Cases	30			

a. 3 cells (50.0%) have expected count less than 5 . The minimum expected count is .73 .
b. The standardized statistic is -.854 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V4: Primary

Count

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Pearson Chi-Square	Value		df	0,242
Likelihood Ratio	2.838^{a}	2,811	2	0,395
Fisher's Exact Test	2,690		0,245	0,395
Linear-by-Linear Association	2.325^{b}		1	0,127
N of Valid Cases	26			0,180

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is 1.54 .
b. The standardized statistic is 1.525 .

V38: Downsides/concerns with assessment format * V4: Primary caregiver

Count

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.432^{\text {a }}$	2	0,489	0,659
Likelihood Ratio	1,392	2	0,499	0,659

Fisher's Exact Test	1,482	1	0,659	
Linear-by-Linear Association	$.000^{\mathrm{b}}$	0,986	1,000	
N of Valid Cases	30			

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is 1.10.
b. The standardized statistic is .018 .

V39: What you might change about the assessment format * V4: Primary caregiver

 Count

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.880^{\text {a }}$	3	0,410	0,560
Likelihood Ratio	3,979	3	0,264	0,560
Fisher's Exact Test	2,699			0,560
Linear-by-Linear Association	. $103{ }^{\text {b }}$	1	0,748	0,817
N of Valid Cases	21			

a. 6 cells (75.0\%) have expected count less than 5 . The minimum expected count is .43 .
b. The standardized statistic is .321 .

V40: Upsides/benefits of assessment format * V4: Primary caregiver Crosstabulation

 Count| | | V4: Primary caregiver | | |
| :--- | :--- | :--- | ---: | ---: |
| | | Mother | Both parents | Total |
| V40: Upsides/benefits of | Yes | 12_{a} | 10_{a} | 22 |
| assessment format | Neutral | 4_{a} | 1_{a} | 5 |
| | No | 2 a | 0_{a} | 2 |
| Total | | 18 | 11 | 29 |

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$2.434^{\text {a }}$	2	0,296	0,337

Likelihood Ratio	3,176	2	0,204	0,337
Fisher's Exact Test	1,931			0,429
Linear-by-Linear Association	2.341^{b}	1	0,126	0,212
N of Valid Cases	29			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .76 .
b. The standardized statistic is -1.530 .

V41: What you liked about the assessment format * V4: Primary caregiver Crosstabulation Count

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square		df		0,389
Likelihood Ratio	1.891^{a}	2	0,371	
Fisher's Exact Test	2,240	2	0,326	0,371
Linear-by-Linear Association	1,778			0,371
N of Valid Cases	$.200^{\mathrm{b}}$	1	0,655	0,792

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .40 .
b. The standardized statistic is -.447 .

V42: Overall experience of tele-assessment format * V4: Primary caregiver

Count

	V4: Primary caregiver		Total
	Mother	Both parents	
V42: Overall experience of tele- Neutral	1 a	$0{ }_{\text {a }}$	1
assessment format Agree	7 a	4 a	11
Strongly agree	$11_{\text {a }}$	7 a	18
Total	19	11	30

Each subscript letter denotes a subset of V4: Primary caregiver categories whose column proportions do not differ

Chi-Square Tests

| | | | Asymptotic
 Significance (2-
 sided) | Exact Sig. (2-
 sided) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pearson Chi-Square | Value | df | 0,734 | 1,000 |

Likelihood Ratio	0,952	2	0,621	1,000
Fisher's Exact Test	0,655			1,000
Linear-by-Linear Association	$.261^{\mathrm{b}}$	1	0,609	0,747
N of Valid Cases	30			

a. 3 cells (50.0%) have expected count less than 5 . The minimum expected count is .37 .
b. The standardized statistic is .511 .

V12: Receptive language domain * V5RC: Number of language spoken Crosstabulation

 Count| | | V5RC: Number of language spoken | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Unilingual | Bilingual | |
| V12: Receptive language domain | No delay present | 19_{a} | 10_{a} | 29 |
| | Delay present | $0{ }_{\text {a }}$ | 1_{a} | 1 |
| Total | | 19 | 11 | 30 |

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.787^{\text {a }}$	1	0,181	0,367
Continuity Correction ${ }^{\text {b }}$	0,079	1	0,778	
Likelihood Ratio	2,067	1	0,151	0,367
Fisher's Exact Test				0,367
Linear-by-Linear Association	$1.727^{\text {c }}$	1	0,189	0,367
N of Valid Cases	30			

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .37 .
b. Computed only for a 2×2 table
c. The standardized statistic is 1.314 .

V13: Expressive language domain * V5RC: Number of language spoken Crosstabulation

Count

		V5RC: Number of language spoken		Total
		Unilingual	Bilingual	
V13: Expressive language domain	No delay present	19_{a}	9 a	28
	Delay present	$0{ }_{\text {a }}$	2 a	2
Total		19	11	30

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Value		df		0,126	
Cearson Chi-Square	$3.701^{\text {a }}$		1	0,054	
Continuity Correction $^{\text {b }}$	1,356	1	0,244		
Likelihood Ratio	4,265	1	0,039	0,126	

Fisher's Exact Test			0,126	
Linear-by-Linear Association	3.578^{C}	1	0,059	0,126
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5 . The minimum expected count is .73 .
b. Computed only for a 2×2 table
c. The standardized statistic is 1.892 .

V20: Coping skills domain * V5RC: Number of language spoken Crosstabulation Count

		V5RC: Number of language spoken		Total
		Unilingual	Bilingual	
V20: Coping skills domain	No delay present	4 a	1 a	5
	Delay present	$0{ }_{\text {a }}$	1 a	1
Total		4	2	6

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.400^{\text {a }}$	1	0,121	0,333
Continuity Correction ${ }^{\text {b }}$	0,150	1	0,699	
Likelihood Ratio	2,634	1	0,105	0,333
Fisher's Exact Test				0,333
Linear-by-Linear Association	$2.000^{\text {c }}$	1	0,157	0,333
N of Valid Cases	6			

a. 4 cells (100.0\%) have expected count less than 5. The minimum expected count is .33 .
b. Computed only for a 2×2 table
c. The standardized statistic is 1.414 .

V29: I was able to communicate with the interviewer with clarity * V5RC: Number of

 Count| | | V5RC: Number of language spoken | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Unilingual | Bilingual | |
| V29: I was able to communicate with the interviewer with clarity | Strongly disagree | 3 a | 1 a | 4 |
| | Neutral | 1 a | 0 a | 1 |
| | Agree | 2 a | 2 a | 4 |
| | Strongly agree | $13_{\text {a }}$ | 8 a | 21 |
| Total | | 19 | 11 | 30 |

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions
Chi-Square Tests

| | | | Asymptotic
 Significance (2-
 sided) | Exact Sig. (2-
 sided) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Vearson Chi-Square | | df | 0,768 | 1,000 |

Likelihood Ratio	1,475	3	0,688	1,000
Fisher's Exact Test	1,280			1,000
Linear-by-Linear Association	$.318^{\mathrm{b}}$	1	0,573	0,613
N of Valid Cases	30			

a. 6 cells (75.0\%) have expected count less than 5 . The minimum expected count is .37 .
b. The standardized statistic is .564 .

V30: I experienced no technical difficulties * V5RC: Number of language spoken

 Count| | V5RC: Number of language spoken | | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Unilingual | Bilingual | |
| V30: I experienced no technical difficulties | True | $17_{\text {a }}$ | 7 a | 24 |
| | Neutral | $0{ }_{\text {a }}$ | 1 a | 1 |
| | False (please specify) | 2 a | 3 a | 5 |
| Total | | 19 | 11 | 30 |

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square		df		0,175	0,192
Likelihood Ratio	3.481^{a}	3,725	2	0,155	0,192
Fisher's Exact Test	3,376			0,192	
Linear-by-Linear Association	2.159^{b}	1	0,142	0,192	
N of Valid Cases	30				

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .37 .
b. The standardized statistic is 1.469 .

V31: Experienced Google Meet as user-friendly * V5RC: Number of language spoken Count

		V5RC: Number of language spoken		Total
		Unilingual	Bilingual	
V31: Experienced Google	Yes	18 a	11_{a}	29
Meet as user-friendly	Neutral	1 a	0 a	1
Total		19	11	30

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	.599 ${ }^{\text {a }}$	1	0,439	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,933	1	0,334	1,000
Fisher's Exact Test				1,000

Linear-by-Linear Association	$.579^{c}$	1	0,447	1,000
N of Valid Cases	30			

a. 2 cells (50.0%) have expected count less than 5 . The minimum expected count is .37 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.761 .

V32: Perceived tele-assessment as natural as if in person * V5RC: Number of language

 Count| | | V5RC: Number of language spoken | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Unilingual | Bilingual | |
| V32: Perceived teleassessment as natural as if in person | Yes | 15 a | 9 a | 24 |
| | Neutral | 3 a | 2 a | 5 |
| | No | $1{ }_{\text {a }}$ | 0 a | 1 |
| Total | | 19 | 11 | 30 |

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $610^{\text {a }}$	2	0,737	1,000
Likelihood Ratio	0,944	2	0,624	1,000
Fisher's Exact Test	0,718			1,000
Linear-by-Linear Association	$.181^{\text {b }}$	1	0,670	0,746
N of Valid Cases	30			

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is .37 .
b. The standardized statistic is -.426 .

V33: Clarify why/why not you perceived tele-assessment as natural as if in person *

 Count

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square	Value		df	0,718	0,739

Likelihood Ratio	0,675	2	0,714	0,739
Fisher's Exact Test	0,691			0,863
Linear-by-Linear Association	$.003^{\mathrm{b}}$	1	0,960	1,000
N of Valid Cases	25			

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is 1.44 .
b. The standardized statistic is .050 .

V34: Consider tele-assessment as something to use again in future * V5RC: Number of

Count

		V5RC: Number of language spoken		Total
		Unilingual	Bilingual	
V34: Consider tele-	Yes	17 a	$10^{\text {a }}$	27
assessment as something to	Neutral	2 a	1_{a}	3
Total		19	11	30

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $016^{\text {a }}$	1	0,900	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,016	1	0,899	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $015^{\text {c }}$	1	0,901	1,000
N of Valid Cases	30			

a. 2 cells (50.0%) have expected count less than 5 . The minimum expected count is 1.10 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.124 .

V35: Elaborate on why/why not you would use tele-assessment again * V5RC: Number of

 Count| V5RC: Number of language spoken | | | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Unilingual | Bilingual | |
| V35: Elaborate on why/why not you would use teleassessment again | Found tele-assessment to be practical and informative | 2 a | 3 a | 5 |
| | Tele-assessment is convenient and saves resources e.g. transport | 9 a | 4 a | 13 |
| | Considered tele-assessment safe with regards to the COVID-19 pandemic | 2 a | 1_{a} | 3 |
| | Unsure about tele-assessment as a viable assessment format | 2 a | 1_{a} | 3 |
| Total | | 15 | 9 | 24 |

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Pearson Chi-Square	Value		df	0,711
Likelihood Ratio	1.376^{a}	1,338	3	0,852
Fisher's Exact Test	1,668	3	0,720	0,852
Linear-by-Linear Association	$.476^{\mathrm{b}}$		1	0,490
N of Valid Cases	24			0,852

a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is 1.13 .
b. The standardized statistic is -.690.

V36: Tele-assessment viable for the assessment of children 0-36 months * V5RC: Number Count

		V5RC: Number of language spoken		Total
		Unilingual	Bilingual	
V36: Tele-assessment viable for the assessment of children 0-36 months	Yes	12 a	8 a	20
	Neutral	6 a	2 a	8
	No	1 a	$1{ }_{\text {a }}$	2
Total		19	11	30

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $718^{\text {a }}$	2	0,698	0,841
Likelihood Ratio	0,739	2	0,691	0,841
Fisher's Exact Test	0,971			0,841
Linear-by-Linear Association	. $059{ }^{\text {b }}$	1	0,807	1,000
N of Valid Cases	30			

a. 3 cells (50.0%) have expected count less than 5 . The minimum expected count is .73 .
b. The standardized statistic is -.244 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V5RC:

Count

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$6.535^{\text {a }}$	2	0,038	0,046
Likelihood Ratio	6,602	2	0,037	0,046
Fisher's Exact Test	6,099			0,046
Linear-by-Linear Association	. $978{ }^{\text {b }}$	1	0,323	0,425
N of Valid Cases	26			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is 1.54 .
b. The standardized statistic is .989 .

V38: Downsides/concerns with assessment format * V5RC: Number of language spoken

 Count

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,297
Likelihood Ratio	2.431^{a}	2,438	2	0,381
Fisher's Exact Test	1,984		0,179	0,327
Linear-by-Linear Association	1.150^{b}	1	0,284	0,461
N of Valid Cases		30		

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is 1.10 .
b. The standardized statistic is 1.072 .

V39: What you might change about the assessment format * V5RC: Number of language

Count

		V5RC: Number of language spoken		Total
		Unilingual	Bilingual	
V39: What you might change about the assessment format	No changes	11_{a}	5 a	16
	Would prefer to feel more prepared before assessment e.g. sending questions beforehand	1_{a}	1_{a}	2
	Did not want to be recorded	0 a	$1_{\text {a }}$	1

| | Wanted child present | 2_{a} | 0_{a} | 2 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Total | 14 | 7 | 21 | |

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	
Likelihood Ratio	3.281^{a}	4,086	3	0,350
Fisher's Exact Test	3,061	3	0,252	0,512
Linear-by-Linear Association	$.025^{\mathrm{b}}$		1	0,512
N of Valid Cases	21		0,875	1,000

a. 6 cells (75.0%) have expected count less than 5 . The minimum expected count is .33 .
b. The standardized statistic is -. 157 .

V40: Upsides/benefits of assessment format * V5RC: Number of language spoken

 Count

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $889{ }^{\text {a }}$	2	0,641	0,815
Likelihood Ratio	0,952	2	0,621	0,815
Fisher's Exact Test	1,070			0,815
Linear-by-Linear Association	. $069{ }^{\text {b }}$	1	0,793	1,000
N of Valid Cases	29			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .76 .
b. The standardized statistic is -. 262 .

V41: What you liked about the assessment format * V5RC: Number of language spoken

 Count

	User-friendly format that is informative and practical	$4 a$	3_{a}

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.241^{\text {a }}$	2	0,326	0,461
Likelihood Ratio	2,513	2	0,285	0,461
Fisher's Exact Test	2,188			0,461
Linear-by-Linear Association	. $533{ }^{\text {b }}$	1	0,465	0,461
N of Valid Cases	25			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .36 .
b. The standardized statistic is .730 .

V42: Overall experience of tele-assessment format * V5RC: Number of language spoken

Count

	V5RC: Number of language spoken		Total
	Unilingual	Bilingual	
V42: Overall experience of tele- Neutral	1_{a}	0 a	1
assessment format Agree	8 a	3 a	11
Strongly agree	$10_{\text {a }}$	8 a	18
Total	19	11	30

Each subscript letter denotes a subset of V5RC: Number of language spoken categories whose column proportions
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.466^{\text {a }}$	2	0,481	0,651
Likelihood Ratio	1,808	2	0,405	0,651
Fisher's Exact Test	1,405			0,651
Linear-by-Linear Association	$1.387^{\text {b }}$	1	0,239	0,326
N of Valid Cases	30			

a. 3 cells (50.0%) have expected count less than 5 . The minimum expected count is .37 .
b. The standardized statistic is 1.178 .

V12: Receptive language domain * V6RC: Population group Crosstabulation

Count

		V6RC: Pop Other (Black, Coloured, Indian)	group White	Total
V12: Receptive language	No delay present	4 a	25 a	29
domain	Delay present	0 a	1_{a}	1

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $159^{\text {a }}$	1	0,690	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,291	1	0,589	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $154^{\text {c }}$	1	0,695	1,000
N of Valid Cases	30			

a. 3 cells (75.0\%) have expected count less than 5. The minimum expected count is .13 .
b. Computed only for a 2×2 table
c. The standardized statistic is .392 .

V13: Expressive language domain * V6RC: Population group Crosstabulation

Count

		V6RC: Pop Other (Black, Coloured, Indian)	group White	Total
V13: Expressive language domain	No delay present	4 a	24 a	28
	Delay present	$0{ }_{\text {a }}$	2 a	2
Total		4	26	30

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $330{ }^{\text {a }}$	1	0,566	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,594	1	0,441	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	$.319^{\text {c }}$	1	0,572	1,000
N of Valid Cases	30			

a. 3 cells (75.0\%) have expected count less than 5. The minimum expected count is .27 .
b. Computed only for a 2×2 table
c. The standardized statistic is .565 .

V20: Coping skills domain * V6RC: Population group Crosstabulation

Count

V6RC: Population group				
Other (Black,				
Coloured,				
Indian)			\quad White \quad Total	When
:---				

V20: Coping skills domain	No delay present	2_{a}	3_{a}	5
	Delay present	0_{a}	1_{a}	1
Total	2	4	6	

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $600{ }^{\text {a }}$	1	0,439	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,908	1	0,341	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $500^{\text {c }}$	1	0,480	1,000
N of Valid Cases	6			

a. 4 cells (100.0\%) have expected count less than 5 . The minimum expected count is .33 .
b. Computed only for a 2×2 table
c. The standardized statistic is .707.

V29: I was able to communicate with the interviewer with clarity * V6RC: Population

 Count| | | V6RC: Pop
 Other (Black, Coloured, Indian) | group
 White | Total |
| :---: | :---: | :---: | :---: | :---: |
| V29: I was able to communicate with the interviewer with clarity | Strongly disagree | 2 a | 2 b | 4 |
| | Neutral | 0 a | 1_{a} | 1 |
| | Agree | $0{ }_{\text {a }}$ | 4 a | 4 |
| | Strongly agree | 2 a | 19 a | 21 |
| Total | | 4 | 26 | 30 |

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	
Likelihood Ratio	5.687^{a}	4,807	3	0,128
Fisher's Exact Test	4,704	3	0,187	0,271
Linear-by-Linear Association	3.844^{b}		1	0,271
N of Valid Cases		30		0,050

a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is .13 .
b. The standardized statistic is 1.961 .

V30: I experienced no technical difficulties * V6RC: Population group Crosstabulation Count

V6RC: Population group

		Other (Black, Coloured, Indian)	White	Total
V30: I experienced no technical difficulties	True	4 a	20_{a}	24
	Neutral	0 a	1 a	1
	False (please specify)	$0{ }_{\text {a }}$	5 a	5
Total		4	26	30

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.154^{\text {a }}$	2	0,562	0,631
Likelihood Ratio	1,934	2	0,380	0,631
Fisher's Exact Test	1,149			1,000
Linear-by-Linear Association	$1.061^{\text {b }}$	1	0,303	0,557
N of Valid Cases	30			

a. 5 cells (83.3%) have expected count less than 5 . The minimum expected count is .13 .
b. The standardized statistic is 1.030 .

V31: Experienced Google Meet as user-friendly * V6RC: Population group

Count

		V6RC: Popula Other (Black, Coloured, Indian)	group White	Total
V31: Experienced Google	Yes	3 a	$26_{\text {b }}$	29
Meet as user-friendly	Neutral	1 a	$0_{\text {b }}$	1
Total		4	26	30

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$6.724^{\text {a }}$	1	0,010	0,133
Continuity Correction ${ }^{\text {b }}$	1,204	1	0,273	
Likelihood Ratio	4,270	1	0,039	0,133
Fisher's Exact Test				0,133
Linear-by-Linear Association	6.500°	1	0,011	0,133
N of Valid Cases	30			

a. 3 cells (75.0\%) have expected count less than 5 . The minimum expected count is .13 .
b. Computed only for a 2×2 table
c. The standardized statistic is -2.550 .

V32: Perceived tele-assessment as natural as if in person * V6RC: Population group Count

		V6RC: Population group		Total
		Other (Black, Coloured, Indian)	White	
V32: Perceived teleassessment as natural as if in person	Yes	3 a	$21_{\text {a }}$	24
	Neutral	$1{ }_{\text {a }}$	4 a	5
	No	0 a	1_{a}	1
Total		4	26	30

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square	df		0,835	1,000	
Likelihood Ratio	$.361^{\mathrm{a}}$	0,471	2	0,790	1,000
Fisher's Exact Test	1,246	2		0,612	
Linear-by-Linear Association	$.005^{\mathrm{b}}$	1	0,943	1,000	
N of Valid Cases	30				

a. 5 cells (83.3%) have expected count less than 5. The minimum expected count is .13 .
b. The standardized statistic is -.071 .

V33: Clarify why/why not you perceived tele-assessment as natural as if in person *

 Count| | | V6RC: Pop Other (Black, Coloured, Indian) | group
 White | Total |
| :---: | :---: | :---: | :---: | :---: |
| V33: Clarify why/why not you perceived tele-assessment as natural as if in person | Preference for conducting interviews in person | $1_{\text {a }}$ | 6 a | 7 |
| | Felt the online interview was as natural as if it were in person | 2 a | 12 a | 14 |
| | Familiar with the platform/video conferencing | $0_{\text {a }}$ | 4 a | 4 |
| Total | | 3 | 22 | 25 |

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $649^{\text {a }}$	2	0,723	1,000
Likelihood Ratio	1,121	2	0,571	0,830
Fisher's Exact Test	0,636			1,000
Linear-by-Linear Association	. $350{ }^{\text {b }}$	1	0,554	0,671
N of Valid Cases	25			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .48 .
b. The standardized statistic is . 592 .

V34: Consider tele-assessment as something to use again in future * V6RC: Population

Count

		V6RC: Pop Other (Black, Coloured, Indian)	group White	Total
V34: Consider tele-	Yes	4 a	23 a	27
assessment as something to	Neutral	0 a	3 a	3
Total		4	26	30

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $513^{\text {a }}$	1	0,474	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,908	1	0,341	0,680
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $496{ }^{\text {c }}$	1	0,481	1,000
N of Valid Cases	30			

a. 3 cells (75.0\%) have expected count less than 5 . The minimum expected count is .40 .
b. Computed only for a 2×2 table
c. The standardized statistic is .704.

V35: Elaborate on why/why not you would use tele-assessment again * V6RC: Population

Count

		V6RC: Popu Other (Black, Coloured, Indian)	group White	Total
V35: Elaborate on why/why not you would use teleassessment again	Found tele-assessment to be practical and informative	1 a	4 a	5
	Tele-assessment is convenient and saves resources e.g. transport	1 a	12 a	13
	Considered tele-assessment safe with regards to the COVID-19 pandemic	1_{a}	2 a	3
	Unsure about tele-assessment as a viable assessment format	0 a	3 a	3
Total		3	21	24

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,542
Likelihood Ratio	2.151^{a}	2,211	3	0,807
Fisher's Exact Test	2,611	3	0,530	0,807
Linear-by-Linear Association	$.113^{\mathrm{b}}$		1	0,435
N of Valid Cases	24			1,000

a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is .38 .
b. The standardized statistic is .337 .

V36: Tele-assessment viable for the assessment of children 0-36 months * V6RC:

Count

		V6RC: Population group		Total
		Other (Black, Coloured, Indian)	White	
V36: Tele-assessment viable for the assessment of children 0-36 months	Yes	3 a	17 a	20
	Neutral	1 a	7 a	8
	No	0 a	2 a	2
Total		4	26	30

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square	Value		df	0,835	1,000
Likelihood Ratio	$.361^{\mathrm{a}}$	0,624	2	0,732	1,000
Fisher's Exact Test	0,474	2		1,000	
Linear-by-Linear Association	$.269^{\mathrm{b}}$		1	0,604	0,723
N of Valid Cases	30				

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is .27 .
b. The standardized statistic is .519 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V6RC:

 Count| | | V6RC: Po
 Other (Black, Coloured, Indian) | group
 White | Total |
| :---: | :---: | :---: | :---: | :---: |
| V37: Please elaborate on why/why not you think teleassessment is viable | Preference for direct assessment of child | 1_{a} | $13_{\text {a }}$ | 14 |
| | Caregiver confident enough to report on their child's development | 2 a | 6 a | 8 |
| | Tele-assessment is convenient and saves resources e.g. transport | 0 a | 4 a | 4 |

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.207^{\text {a }}$	2	0,332	0,408
Likelihood Ratio	2,394	2	0,302	0,548
Fisher's Exact Test	1,826			0,548
Linear-by-Linear Association	. $016{ }^{\text {b }}$	1	0,900	1,000
N of Valid Cases	26			

a. 4 cells (66.7\%) have expected count less than 5. The minimum expected count is . 46 .
b. The standardized statistic is -.126 .

V38: Downsides/concerns with assessment format * V6RC: Population group
 Count

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $934{ }^{\text {a }}$	2	0,627	1,000
Likelihood Ratio	1,250	2	0,535	1,000
Fisher's Exact Test	1,127			0,677
Linear-by-Linear Association	. $159{ }^{\text {b }}$	1	0,690	0,806
N of Valid Cases	30			

a. 5 cells (83.3\%) have expected count less than 5 . The minimum expected count is .40 .
b. The standardized statistic is .399 .

V39: What you might change about the assessment format * V6RC: Population group

 Count| | V6RC: Population group
 Other (Black,
 Coloured,
 Indian) | | | | | | | | White | |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |

about the assessment tormat	Would prefer to feel more prepared before assessment e.g. sending questions beforehand	$0{ }_{\text {a }}$	2 a	2
	Did not want to be recorded	0 a	1_{a}	1
	Wanted child present	0 a	2 a	2
Total		3	18	21

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.094^{\text {a }}$	3	0,779	1,000
Likelihood Ratio	1,782	3	0,619	1,000
Fisher's Exact Test	1,402			1,000
Linear-by-Linear Association	. $825^{\text {b }}$	1	0,364	0,717
N of Valid Cases	21			

a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is .14 .
b. The standardized statistic is .908 .

V40: Upsides/benefits of assessment format * V6RC: Population group Crosstabulation

Count

		V6RC: Population group		Total
		Other (Black, Coloured, Indian)	White	
V40: Upsides/benefits of assessment format	Yes	3 a	19 a	22
	Neutral	0 a	5 a	5
	No	0 a	2 a	2
Total		3	26	29

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.065^{\text {a }}$	2	0,587	0,684
Likelihood Ratio	1,765	2	0,414	0,684
Fisher's Exact Test	0,782			1,000
Linear-by-Linear Association	. $884{ }^{\text {b }}$	1	0,347	0,684
N of Valid Cases	29			

a. 5 cells (83.3%) have expected count less than 5 . The minimum expected count is .21 .
b. The standardized statistic is .940 .

V41: What you liked about the assessment format * V6RC: Population group

Count

		V6RC: Pop Other (Black, Coloured, Indian)	group White	Total
V41: What you liked about the assessment format	Overall convienient and saves resources e.g. transport	3 a	14 a	17
	Safe with regards to the COVID-19 pandemic	$0_{\text {a }}$	$1_{\text {a }}$	1
	User-friendly format that is informative and practical	$1_{\text {a }}$	6 a	7
Total		4	21	25

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $240{ }^{\text {a }}$	2	0,887	1,000
Likelihood Ratio	0,398	2	0,820	1,000
Fisher's Exact Test	0,733			1,000
Linear-by-Linear Association	. $057^{\text {b }}$	1	0,811	1,000
N of Valid Cases	25			

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is . 16 .
b. The standardized statistic is .239 .

V42: Overall experience of tele-assessment format * V6RC: Population group
 Count

	V6RC: Popu Other (Black, Coloured, Indian)	group White	Total
V42: Overall experience of tele- Neutral	0 a	1 a	1
assessment format Agree	2 a	9 a	11
Strongly agree	2 a	16 a	18
Total	4	26	30

Each subscript letter denotes a subset of V6RC: Population group categories whose column proportions do not differ

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $455^{\text {a }}$	2	0,797	1,000
Likelihood Ratio	0,571	2	0,751	1,000
Fisher's Exact Test	1,115			0,672
Linear-by-Linear Association	. $064{ }^{\text {b }}$	1	0,801	1,000
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .13 .
b. The standardized statistic is . 252 .

Count caregiver				
		Grade 11 to Grade 12	Diploma/Degree	Postgraduate
V12: Receptive language domain	No delay present	5 a	17 a	7 a
	Delay present	$0{ }_{\text {a }}$	$0{ }_{\text {a }}$	1 a
Total		5	17	8

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.845^{\text {a }}$	2	0,241	0,433
Likelihood Ratio	2,740	2	0,254	0,433
Fisher's Exact Test	2,717			0,433
Linear-by-Linear Association	$1.913^{\text {b }}$	1	0,167	0,433
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .17 .
b. The standardized statistic is 1.383 .

V13: Expressive language domain * V7: Highest educational qualification of primary c

 Count

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$5.893^{\text {a }}$	2	0,053	0,087
Likelihood Ratio	5,698	2	0,058	0,087
Fisher's Exact Test	4,244			0,087
Linear-by-Linear Association	$3.963{ }^{\text {b }}$	1	0,046	0,087
N of Valid Cases	30			

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is .33 .
b. The standardized statistic is 1.991 .

V20: Coping skills domain * V7: Highest educational qualification of primary caregiver Cro Count

		-	caregiver	
		Grade 11 to Grade 12	Diploma/Degree	Postgraduate
V20: Coping skills domain	No delay present	$2 \mathrm{a}_{\text {, }}$	3 b	0_{a}
	Delay present	$0_{a, b}$	$0{ }_{\text {b }}$	1 a
Total		2	3	1

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$6.000^{\text {a }}$	2	0,050	0,167
Likelihood Ratio	5,407	2	0,067	0,167
Fisher's Exact Test	3,856			0,167
Linear-by-Linear Association	$2.882^{\text {b }}$	1	0,090	0,167
N of Valid Cases	6			

a. 6 cells (100.0\%) have expected count less than 5. The minimum expected count is . 17 .
b. The standardized statistic is 1.698 .

V29: I was able to communicate with the interviewer with clarity * V7: Highest educational

 Count| | | caregiver | | |
| :---: | :---: | :---: | :---: | :---: |
| | | Grade 11 to Grade 12 | Diploma/Degree | Postgraduate |
| V29: I was able to communicate with the interviewer with clarity | Strongly disagree | 0_{a} | 3 a | 1_{a} |
| | Neutral | 1 a | $0{ }_{\text {a }}$ | 0 a |
| | Agree | 1 a | 3 a | 0 a |
| | Strongly agree | 3 a | $11_{\text {a }}$ | 7 a |
| Total | | 5 | 17 | 8 |

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$7.868^{\text {a }}$	6	0,248	0,233
Likelihood Ratio	8,098	6	0,231	0,329
Fisher's Exact Test	6,041			0,375
Linear-by-Linear Association	. $059{ }^{\text {b }}$	1	0,808	0,846
N of Valid Cases	30			

a. 10 cells (83.3%) have expected count less than 5 . The minimum expected count is .17 .
b. The standardized statistic is .243.

V30: I experienced no technical difficulties * V7: Highest educational qualification of prima

 Count| | | Grade 11 to Grade 12 | Diploma/Degree | Postgraduate |
| :---: | :---: | :---: | :---: | :---: |
| V30: I experienced no technical difficulties | True | 4 a | 14a | 6 a |
| | Neutral | $0{ }_{\text {a }}$ | 1_{a} | $0{ }_{\text {a }}$ |
| | False (please specify) | 1 a | 2 a | 2 a |
| Total | | 5 | 17 | 8 |

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square		df			
Likelihood Ratio	1.413^{a}		4	0,842	0,893
Fisher's Exact Test	1,766	4	0,779	0,893	
Linear-by-Linear Association	2,286			0,893	
N of Valid Cases	$.109^{\mathrm{b}}$	1	0,741	0,876	

a. 7 cells (77.8\%) have expected count less than 5. The minimum expected count is .17.
b. The standardized statistic is .330 .

V31: Experienced Google Meet as user-friendly * V7: Highest educational qualification , Count

		caregiver		
		Grade 11 to Grade 12	Diploma/Degree	Postgraduate
V31: Experienced Google	Yes	4 a	17 a	8 a
Meet as user-friendly	Neutral	$1_{\text {a }}$	$0{ }_{\text {a }}$	$0{ }_{\text {a }}$
Total		5	17	8

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

Chi-Square Tests

$\left.\begin{array}{lr|r|r|r} \\ & \text { Value } & & & \begin{array}{c}\text { Asymptotic } \\ \text { Significance (2- } \\ \text { sided) }\end{array} \\ \hline \text { Exact Sig. (2- } \\ \text { sided) }\end{array}\right]$
a. 4 cells (66.7\%) have expected count less than 5. The minimum expected count is .17.
b. The standardized statistic is -1.691 .

V32: Perceived tele-assessment as natural as if in person * V7: Highest educational qual Count

assessment as natural as it in person	Neutral	O_{a}	4 a	1_{a}
	No	1 a	0	0 a
Total		5	17	8

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$6.480^{\text {a }}$	4	0,166	0,160
Likelihood Ratio	5,848	4	0,211	0,223
Fisher's Exact Test	4,483			0,362
Linear-by-Linear Association	. $896{ }^{\text {b }}$	1	0,344	0,416
N of Valid Cases	30			

a. 7 cells (77.8\%) have expected count less than 5. The minimum expected count is .17.
b. The standardized statistic is -.946

V33: Clarify why/why not you perceived tele-assessment as natural as if in person * V7 Count

		Grade 11 to Grade 12	caregiver Diploma/Degree	Postgraduate
V33: Clarify why/why not you perceived tele-assessment as natural as if in person	Preference for conducting interviews in person	1_{a}	4 a	2 a
	Felt the online interview was as natural as if it were in person	3 a	9 a	2 a
	Familiar with the platform/video conferencing	$0_{\text {a }}$	2 a	2 a
Total		4	15	6

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.768^{\text {a }}$	4	0,597	0,678
Likelihood Ratio	3,207	4	0,524	0,667
Fisher's Exact Test	2,678			0,740
Linear-by-Linear Association	. $352^{\text {b }}$	1	0,553	0,641
N of Valid Cases	25			

a. 8 cells (88.9%) have expected count less than 5 . The minimum expected count is .64 .
b. The standardized statistic is .594 .

V34: Consider tele-assessment as something to use again in future * V7: Highest edu Count

		Grade 11 to Grade 12	Diploma/Degree	Postgraduate
V34: Consider tele-	Yes	5 a	16 a	6 a
assessment as something to	Neutral	$0{ }_{\text {a }}$	1_{a}	2 a
Total		5	17	8

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.876^{\text {a }}$	2	0,237	0,230
Likelihood Ratio	2,901	2	0,234	0,397
Fisher's Exact Test	2,306			0,230
Linear-by-Linear Association	$2.444^{\text {b }}$	1	0,118	0,175
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .50 .
b. The standardized statistic is 1.563 .

V35: Elaborate on why/why not you would use tele-assessment again * V7: Highest ed। Count

		Grade 11 to Grade 12	caregiver Diploma/Degree	Postgraduate
V35: Elaborate on why/why not you would use teleassessment again	Found tele-assessment to be practical and informative	0_{a}	4 a	1_{a}
	Tele-assessment is convenient and saves resources e.g. transport	3 a	8 a	2 a
	Considered tele-assessment safe with regards to the COVID-19 pandemic	$0_{\text {a }}$	2 a	$1_{\text {a }}$
	Unsure about tele-assessment as a viable assessment format	$0_{\text {a }}$	1_{a}	2 a
Total		3	15	6

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$5.899^{\text {a }}$	6	0,435	0,446
Likelihood Ratio	6,517	6	0,368	0,577
Fisher's Exact Test	4,883			0,596
Linear-by-Linear Association	$1.690^{\text {b }}$	1	0,194	0,272
N of Valid Cases	24			

a. 11 cells (91.7%) have expected count less than 5 . The minimum expected count is .38 .
b. The standardized statistic is 1.300 .

V36: Tele-assessment viable for the assessment of children 0-36 months * V7: Highest e Count

		caregiver		
		$\begin{gathered} \text { Grade } 11 \text { to } \\ \text { Grade } 12 \end{gathered}$	Diploma/Degree	Postgraduate
V36: Tele-assessment viable for the assessment of children 0-36 months	Yes	4 a	$11_{\text {a }}$	5 a
	Neutral	1_{a}	6 a	1_{a}
	No	$00_{\text {a b }}$	$0_{\text {b }}$	2 a
Total		5	17	8

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$6.824^{\text {a }}$	4	0,145	0,130
Likelihood Ratio	6,716	4	0,152	0,205
Fisher's Exact Test	5,013			0,234
Linear-by-Linear Association	$1.598{ }^{\text {b }}$	1	0,206	0,265
N of Valid Cases	30			

a. 7 cells (77.8\%) have expected count less than 5 . The minimum expected count is .33 .
b. The standardized statistic is 1.264 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V7: Highest є

 Count| | | Grade 11 to Grade 12 | caregiver Diploma/Degree | Postgraduate |
| :---: | :---: | :---: | :---: | :---: |
| V37: Please elaborate on why/why not you think teleassessment is viable | Preference for direct assessment of child | 2 a | 8 a | 4 a |
| | Caregiver confident enough to report on their child's development | 0 a | 6 a | 2 a |
| | Tele-assessment is convenient and saves resources e.g. transport | $1_{\text {a }}$ | 2 a | 1 a |
| Total | | 3 | 16 | 7 |

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square	Value		df	0,728	0,833
Likelihood Ratio	2.040^{a}	4	0,788		
Fisher's Exact Test	2,789	4	0,594	0,802	
Linear-by-Linear Association	2,350				1,000

N of Valid Cases
a. 8 cells (88.9%) have expected count less than 5 . The minimum expected count is .46 .
b. The standardized statistic is -. 200 .

V38: Downsides/concerns with assessment format * V7: Highest educational qualificatior Count

		caregiver		
		Grade 11 to Grade 12	Diploma/Degree	Postgraduate
V38: Downsides/concerns with assessment format	Yes	1 a	2 a	1 a
	Neutral	0	2 a	1 a
	No	4 a	$13_{\text {a }}$	6 a
Total		5	17	8

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $815^{\text {a }}$	4	0,936	1,000
Likelihood Ratio	1,288	4	0,863	0,968
Fisher's Exact Test	1,334			1,000
Linear-by-Linear Association	. $002{ }^{\text {b }}$	1	0,969	1,000
N of Valid Cases	30			

a. 7 cells (77.8%) have expected count less than 5 . The minimum expected count is .50 .
b. The standardized statistic is .039 .

V39: What you might change about the assessment format * V7: Highest educational qua

 Count| | | Grade 11 to Grade 12 | caregiver Diploma/Degree | Postgraduate |
| :---: | :---: | :---: | :---: | :---: |
| V39: What you might change about the assessment format | No changes | 2 a | 12 a | 2 a |
| | Would prefer to feel more prepared before assessment e.g. sending questions beforehand | 1_{a} | 1 a | $0{ }_{\text {a }}$ |
| | Did not want to be recorded | 0 a | 1_{a} | 0 a |
| | Wanted child present | $0_{a, b}$ | $0_{\text {b }}$ | 2 a |
| Total | | 3 | 14 | 4 |

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$11.813^{\text {a }}$	6	0,066	0,080
Likelihood Ratio	9,982	6	0,125	0,096

Fisher's Exact Test	9,228		0,096	
Linear-by-Linear Association	3.060^{b}	1	0,080	0,084
N of Valid Cases	21			

a. 11 cells (91.7%) have expected count less than 5 . The minimum expected count is .14 .
b. The standardized statistic is 1.749 .

V40: Upsides/benefits of assessment format * V7: Highest educational qualification of Count

		caregiver		
		Grade 11 to Grade 12	Diploma/Degree	Postgraduate
V40: Upsides/benefits of assessment format	Yes	2 a	$12 \mathrm{a}, \mathrm{b}$	8 b
	Neutral	2 a	$3{ }_{\text {a, }}$	$0{ }_{\text {b }}$
	No	0 a	2 a	0 a
Total		4	17	8

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,177
Likelihood Ratio	6.312^{a}	7,558	4	0,163
Fisher's Exact Test	5,163	4	0,109	0,132
Linear-by-Linear Association	2.518^{b}		1	0,113
N of Valid Cases	29			0,144

a. 7 cells (77.8%) have expected count less than 5. The minimum expected count is .28 .
b. The standardized statistic is -1.587 .

V41: What you liked about the assessment format * V7: Highest educational qualification Count

		Grade 11 to Grade 12	caregiver Diploma/Degree	Postgraduate
V41: What you liked about the assessment format	Overall convienient and saves resources e.g. transport	O_{a}	$11_{\text {b }}$	6 b
	Safe with regards to the COVID-19 pandemic	0 a	$1_{\text {a }}$	$0_{\text {a }}$
	User-friendly format that is informative and practical	4 a	2 b	1_{b}
Total		4	14	7

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c
Chi-Square Tests

| | | | Asymptotic
 Significance (2-
 sided) | Exact Sig. (2-
 sided) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Vearson Chi-Square | Value | 0,012 | 0,007 | |

Likelihood Ratio	13,263	4	0,010	0,007
Fisher's Exact Test	10,962			0,008
Linear-by-Linear Association	6.862^{b}	1	0,009	0,010
N of Valid Cases	25			

a. 8 cells (88.9%) have expected count less than 5 . The minimum expected count is .16.
b. The standardized statistic is -2.619 .

V42: Overall experience of tele-assessment format * V7: Highest educational qualificatioı

 Count| | | caregiver | | |
| :---: | :---: | :---: | :---: | :---: |
| | | $\begin{gathered} \text { Grade } 11 \text { to } \\ \text { Grade } 12 \end{gathered}$ | Diploma/Degree | Postgraduate |
| V42: Overall experience of tele- Neutral | | $0{ }_{\text {a }}$ | 0_{a} | $1_{\text {a }}$ |
| assessment format | Agree | 2 a | 6 a | $3{ }^{\text {a }}$ |
| | Strongly agree | 3 a | 11a | 4 a |
| Total | | 5 | 17 | 8 |

Each subscript letter denotes a subset of V7: Highest educational qualification of primary caregiver categories whose c

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.971{ }^{\text {a }}$	4	0,563	0,649
Likelihood Ratio	2,871	4	0,580	0,649
Fisher's Exact Test	3,037			0,649
Linear-by-Linear Association	. $705^{\text {b }}$	1	0,401	0,469
N of Valid Cases	30			

a. 7 cells (77.8\%) have expected count less than 5 . The minimum expected count is . 17 .
b. The standardized statistic is -.839 .

V12: Receptive language domain * V10RC: Birth order of child Crosstabulation

 Count| | | V10RC: Birth order of child | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | 1st | 2nd, 3rd or 4th | |
| V12: Receptive language domain | No delay present | 16 a | $13_{\text {a }}$ | 29 |
| | Delay present | 1_{a} | 0 a | 1 |
| Total | | 17 | 13 | 30 |

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

Chi-Square Tests

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	$\begin{aligned} & \text { Exact Sig. (2- } \\ & \text { sided) } \end{aligned}$
Pearson Chi-Square	$.791{ }^{\text {a }}$	1	0,374	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	1,162	1	0,281	1,000
Fisher's Exact Test				1,000

Linear-by-Linear Association	$.765^{\text {c }}$	1	0,382	1,000
N of Valid Cases	30			

a. 2 cells $(50.0 \%$) have expected count less than 5 . The minimum expected count is .43 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.874 .

Count				
		V10RC: Birth order of child		Total
		1st	2nd, 3rd or 4th	
V13: Expressive language domain	No delay present	16 a	$12_{\text {a }}$	28
	Delay present	1_{a}	1_{a}	2
Total		17	13	30

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $039^{\text {a }}$	1	0,844	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,038	1	0,845	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $037{ }^{\text {c }}$	1	0,846	1,000
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5 . The minimum expected count is .87 .
b. Computed only for a 2×2 table
c. The standardized statistic is . 194 .

V20: Coping skills domain * V10RC: Birth order of child Crosstabulation

Count

		V10RC: Birth order of child		Total
		1st	2nd, 3rd or 4th	
V20: Coping skills domain	No delay present	3 a	2 a	5
	Delay present	0 a	1 a	1
Total		3	3	6

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not
Chi-Square Tests
$\left.\begin{array}{lr|r|r|r|r|} \\ & \text { Value } & & & & \begin{array}{c}\text { Asymptotic } \\ \text { Significance (2- } \\ \text { sided) }\end{array} \\ \hline \text { Exact Sig. (2- } \\ \text { sided) }\end{array}\right]$

Linear-by-Linear Association	1.000°	1	0,317	1,000
N of Valid Cases	6			

a. 4 cells (100.0%) have expected count less than 5 . The minimum expected count is .50 .
b. Computed only for a 2×2 table
c. The standardized statistic is 1.000 .

V29: I was able to communicate with the interviewer with clarity * V10RC: Birth order of
Count

		V10RC: Birth order of child		Total
		1st	2nd, 3rd or 4th	
V29: I was able to communicate with the interviewer with clarity	Strongly disagree	3 a	1_{a}	4
	Neutral	0 a	1 a	1
	Agree	3 a	1_{a}	4
	Strongly agree	11_{a}	$10_{\text {a }}$	21
Total		17	13	30

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square		df		0,465	0,591
Likelihood Ratio	2.560^{a}	2,992	3	0,393	0,591
Fisher's Exact Test	2,393			0,591	
Linear-by-Linear Association	$.452^{\mathrm{b}}$	1	0,501	0,530	
N of Valid Cases	30				

a. 6 cells (75.0%) have expected count less than 5 . The minimum expected count is .43 .
b. The standardized statistic is . 672.

V30: I experienced no technical difficulties * V10RC: Birth order of child Crosstabulation

 Count| | | V10RC: Birth order of child | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | 1st | 2nd, 3rd or 4th | |
| V30: I experienced no technical difficulties | True | 15a | 9 a | 24 |
| | Neutral | 0 a | 1 a | 1 |
| | False (please specify) | 2 a | 3 a | 5 |
| Total | | 17 | 13 | 30 |

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

Chi-Square Tests

$\left.\begin{array}{lr|r|r|r|} \\ & \text { Value } & & & \begin{array}{c}\text { Asymptotic } \\ \text { Significance (2- } \\ \text { sided) }\end{array} \\ \hline \text { Exact Sig. (2- } \\ \text { sided) }\end{array}\right]$

Linear-by-Linear Association	1.157^{b}	1	0,282	0,360
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .43 .
b. The standardized statistic is 1.076 .

V31: Experienced Google Meet as user-friendly * V10RC: Birth order of child

Count

		V10RC: Birth order of child		Total
		1st	2nd, 3rd or 4th	
V31: Experienced Google	Yes	17a	12a	29
Meet as user-friendly	Neutral	$0{ }_{\text {a }}$	1 a	1
Total		17	13	30

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	$\begin{aligned} & \text { Exact Sig. (2- } \\ & \text { sided) } \end{aligned}$
Pearson Chi-Square	$1.353^{\text {a }}$	1	0,245	0,433
Continuity Correction ${ }^{\text {b }}$	0,019	1	0,891	
Likelihood Ratio	1,718	1	0,190	0,433
Fisher's Exact Test				0,433
Linear-by-Linear Association	$1.308^{\text {c }}$	1	0,253	0,433
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5 . The minimum expected count is .43 .
b. Computed only for a 2×2 table
c. The standardized statistic is 1.144 .

V32: Perceived tele-assessment as natural as if in person * V10RC: Birth order of child

 Count| | | V10RC: Birth order of child | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | 1st | 2nd, 3rd or 4th | |
| V32: Perceived tele- | Yes | 15 a | 9 a | 24 |
| assessment as natural as if in | Neutral | 2 a | 3 a | 5 |
| person | No | 0 a | 1 a | 1 |
| Total | | 17 | 13 | 30 |

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided) sided)
Pearson Chi-Square	$2.206{ }^{\text {a }}$	2	0,332	0,464
Likelihood Ratio	2,569	2	0,277	0,464
Fisher's Exact Test	2,176			0,351
Linear-by-Linear Association	$2.067^{\text {b }}$	1	0,151	0,283

N of Valid Cases
a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is .43 .
b. The standardized statistic is 1.438 .

V33: Clarify why/why not you perceived tele-assessment as natural as if in person * Count

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.843^{\text {a }}$	2	0,241	0,249
Likelihood Ratio	2,736	2	0,255	0,372
Fisher's Exact Test	2,732			0,249
Linear-by-Linear Association	$1.726^{\text {b }}$	1	0,189	0,216
N of Valid Cases	25			

a. 5 cells (83.3%) have expected count less than 5 . The minimum expected count is 1.28 .
b. The standardized statistic is -1.314 .

V34: Consider tele-assessment as something to use again in future * V10RC: Birth order

 Count| | | V10RC: Birth order of child | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | 1st | 2nd, 3rd or 4th | |
| V34: Consider tele- | Yes | 15 a | 12 a | 27 |
| assessment as something to uco anain in futuro | Neutral | 2 a | $1_{\text {a }}$ | 3 |
| Total | | 17 | 13 | 30 |

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $136{ }^{\text {a }}$	1	0,713	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,139	1	0,709	1,000
Fisher's Exact Test				1,000

Linear-by-Linear Association	$.131^{\text {c }}$	1	0,717	1,000
N of Valid Cases	30			

a. 2 cells (50.0%) have expected count less than 5 . The minimum expected count is 1.30 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.362 .

V35: Elaborate on why/why not you would use tele-assessment again * V10RC: Birth

 Count

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not
Chi-Square Tests
Asymptotic
Significance (2- Exact Sig. (2-
df
df sided) sided)

0,913

Pearson Chi-Square	$.554^{\mathrm{a}}$	3	0,907	0,913
Likelihood Ratio	0,587	3	0,899	0,913
Fisher's Exact Test	0,888			0,913
Linear-by-Linear Association	$.099^{\mathrm{b}}$	1	0,753	0,818
N of Valid Cases	24			

a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is 1.00 .
b. The standardized statistic is .315 .

V36: Tele-assessment viable for the assessment of children 0-36 months * V10RC: Birth

 Count

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,919
Likelihood Ratio	$.170^{\mathrm{a}}$	0,171	2	0,918
Fisher's Exact Test	0,468	2		1,000
Linear-by-Linear Association	$.014^{\mathrm{b}}$		1	0,906
N of Valid Cases	30			1,000

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .87 .
b. The standardized statistic is -.119 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V10RC: Birth

 Count

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $952^{\text {a }}$	2	0,621	0,641
Likelihood Ratio	0,983	2	0,612	0,641
Fisher's Exact Test	1,068			0,641
Linear-by-Linear Association	. $007{ }^{\text {b }}$	1	0,934	1,000
N of Valid Cases	26			

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is 1.54 .
b. The standardized statistic is -.082 .

V38: Downsides/concerns with assessment format * V10RC: Birth order of child

 Count| | | V10RC: Birth order of child | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | 1st | 2nd, 3rd or 4th | |
| V38: Downsides/concerns with assessment format | | 1 a | 3 a | 4 |
| | Neutral | 3 a | 0 a | 3 |
| | No | 13_{a} | $10_{\text {a }}$ | 23 |
| Total | | 17 | 13 | 30 |

[^0]Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,140
Likelihood Ratio	3.928^{a}	2	0,143	
Fisher's Exact Test	5,063	2	0,080	0,211
Linear-by-Linear Association	3,443			0,211
N of Valid Cases	$.400^{\mathrm{b}}$	1	0,527	0,618

a. 4 cells (66.7\%) have expected count less than 5. The minimum expected count is 1.30 .
b. The standardized statistic is -.633 .

V39: What you might change about the assessment format * V10RC: Birth order of child

 Count

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square		df		0,392
Likelihood Ratio	3.000^{a}	3	0,574	
Fisher's Exact Test	3,194	3	0,363	0,574
Linear-by-Linear Association	3,426			0,257
N of Valid Cases	1.584^{b}	1	0,208	0,271

a. 6 cells (75.0%) have expected count less than 5 . The minimum expected count is .33 .
b. The standardized statistic is 1.259 .

V40: Upsides/benefits of assessment format * V10RC: Birth order of child Crosstabulation

Count

		V10RC: Birth order of child		Total
		1st	2nd, 3rd or 4th	
V40: Upsides/benefits of assessment format	Yes	15 a	7 a	22
	Neutral	2 a	3 a	5
	No	0 a	2 a	2
Total		17	12	29

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Pearson Chi-Square	Value		df	0,112
Likelihood Ratio	4.377^{a}	5,084	2	0,102
Fisher's Exact Test	3,962	2	0,079	0,130
Linear-by-Linear Association	4.185^{b}		1	0,041
N of Valid Cases	29			0,056

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .83 .
b. The standardized statistic is 2.046 .

V41: What you liked about the assessment format * V10RC: Birth order of child Count

Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$6.303^{\text {a }}$	2	0,043	0,035
Likelihood Ratio	6,725	2	0,035	0,035
Fisher's Exact Test	5,979			0,035
Linear-by-Linear Association	$5.000^{\text {b }}$	1	0,025	0,035
N of Valid Cases	25			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .40 .
b. The standardized statistic is 2.236 .

V42: Overall experience of tele-assessment format * V10RC: Birth order of child

 Count| | V10RC: Birth order of child | | Total |
| :---: | :---: | :---: | :---: |
| | 1st | 2nd, 3rd or 4th | |
| V42: Overall experience of tele- Neutral | 0 a | 1_{a} | 1 |
| assessment format Agree | 7 a | 4 a | 11 |
| Strongly agree | $10^{\text {a }}$ | 8 a | 18 |
| Total | 17 | 13 | 30 |

[^1]
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Pearson Chi-Square	Value		df	0,464
Likelihood Ratio	1.534^{a}	1,903	2	0,452
Fisher's Exact Test	1,477	2	0,386	0,452
Linear-by-Linear Association	$.057^{\mathrm{b}}$		1	0,812
N of Valid Cases		30		

a. 3 cells (50.0%) have expected count less than 5 . The minimum expected count is .43 .
b. The standardized statistic is -. 238 .

V12: Receptive language domain * V11: Does the child attend day-care Crosstabulation Count

		V11: Does the child attend day-care		Total
		Yes	No	
V12: Receptive language domain	No delay present	8 a	$21_{\text {a }}$	29
	Delay present	0 a	1_{a}	1
Total		8	22	30

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $376{ }^{\text {a }}$	1	0,540	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,633	1	0,426	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $364{ }^{\text {c }}$	1	0,546	1,000
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5. The minimum expected count is . 27 .
b. Computed only for a 2×2 table
c. The standardized statistic is . 603 .

V13: Expressive language domain * V11: Does the child attend day-care Crosstabulation

 Count| | | V11: Does the child attend day-care | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Yes | No | |
| V13: Expressive language domain | No delay present | 7 a | $21_{\text {a }}$ | 28 |
| | Delay present | $1_{\text {a }}$ | 1_{a} | 2 |
| Total | | 8 | 22 | 30 |

[^2]
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $597{ }^{\text {a }}$	1	0,440	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,532	1	0,466	1,000
Fisher's Exact Test				0,469
Linear-by-Linear Association	. $577{ }^{\text {c }}$	1	0,448	1,000
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5. The minimum expected count is .53 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.759 .

V20: Coping skills domain * V11: Does the child attend day-care Crosstabulation

 Count| | | V11: Does the child attend day-care | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Yes | No | |
| V20: Coping skills domain | No delay present | 4 a | 1 a | 5 |
| | Delay present | $1_{\text {a }}$ | $0{ }_{\text {a }}$ | 1 |
| Total | | 5 | 1 | 6 |

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $240{ }^{\text {a }}$	1	0,624	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,403	1	0,526	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $200^{\text {c }}$	1	0,655	1,000
N of Valid Cases	6			

a. 4 cells (100.0\%) have expected count less than 5 . The minimum expected count is .17 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.447 .

V29: I was able to communicate with the interviewer with clarity * V11: Does the child

 Count| | | V11: Does the child attend day-care | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Yes | No | |
| V29: I was able to communicate with the interviewer with clarity | Strongly disagree | 1 a | 3 a | 4 |
| | Neutral | 1_{a} | $0{ }_{\text {a }}$ | 1 |
| | Agree | 1_{a} | 3 a | 4 |
| | Strongly agree | 5 a | 16 a | 21 |
| Total | | 8 | 22 | 30 |

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Pearson Chi-Square	Value		df	0,415
Likelihood Ratio	2.849^{a}	2,745	3	0,526
Fisher's Exact Test	2,744	3	0,433	0,685
Linear-by-Linear Association	$.114^{\mathrm{b}}$		1	0,736
N of Valid Cases	30			0,526

a. 6 cells (75.0\%) have expected count less than 5 . The minimum expected count is .27 .
b. The standardized statistic is .337 .

V30: I experienced no technical difficulties * V11: Does the child attend day-care

 Count| | | V11: Does the child attend day-care | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Yes | No | |
| V30: I experienced no technical difficulties | True | 5 a | $19_{\text {a }}$ | 24 |
| | Neutral | 0 a | 1 a | 1 |
| | False (please specify) | 3 a | 2 a | 5 |
| Total | | 8 | 22 | 30 |

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	$3.622^{\text {a }}$	2	0,163	0,234
Likelihood Ratio	3,501	2	0,174	0,359
Fisher's Exact Test	3,447			0,234
Linear-by-Linear Association	$2.740^{\text {b }}$	1	0,098	0,102
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .27 .
b. The standardized statistic is -1.655 .

V31: Experienced Google Meet as user-friendly * V11: Does the child attend day-care

Count

		V11: Does the child attend day-care		Total
		Yes	No	
V31: Experienced Google	Yes	8 a	$21_{\text {a }}$	29
Meet as user-friendly	Neutral	0 a	1_{a}	1
Total		8	22	30

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $376{ }^{\text {a }}$	1	0,540	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,633	1	0,426	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $364{ }^{\text {c }}$	1	0,546	1,000
N of Valid Cases	30			

a. 2 cells (50.0\%) have expected count less than 5. The minimum expected count is .27 .
b. Computed only for a 2×2 table
c. The standardized statistic is . 603 .

V32: Perceived tele-assessment as natural as if in person * V11: Does the child attend dayCount

		V11: Does the child attend day-care		Total
		Yes	No	
V32: Perceived teleassessment as natural as if in person	Yes	6 a	18 a	24
	Neutral	1 a	4 a	5
	No	1 a	0 a	1
Total		8	22	30

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$2.898{ }^{\text {a }}$	2	0,235	0,349
Likelihood Ratio	2,799	2	0,247	0,474
Fisher's Exact Test	2,528			0,349
Linear-by-Linear Association	. $862{ }^{\text {b }}$	1	0,353	0,415
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .27 .
b. The standardized statistic is -.928 .

V33: Clarify why/why not you perceived tele-assessment as natural as if in person * V11:

Count

V11: Does the child attend day-care				Total
		Yes	No	
V33: Clarify why/why not you perceived tele-assessment as natural as if in person	Preference for conducting interviews in person	2 a	5 a	7
	Felt the online interview was as natural as if it were in person	4 a	10_{a}	14
	Familiar with the platform/video conferencing	$0_{\text {a }}$	4 a	4
Total		6	19	25

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.504^{\text {a }}$	2	0,471	0,669
Likelihood Ratio	2,427	2	0,297	0,446
Fisher's Exact Test	1,237			0,669
Linear-by-Linear Association	. $810^{\text {b }}$	1	0,368	0,491
N of Valid Cases	25			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .96 .
b. The standardized statistic is .900 .

V34: Consider tele-assessment as something to use again in future * V11: Does the child

Count

		V11: Does the child attend day-care		Total
		Yes	No	
V34: Consider tele-	Yes	7 a	$20_{\text {a }}$	27
assessment as something to	Neutral	$1{ }_{\text {a }}$	2 a	3
Total		8	22	30

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2- sided)
Pearson Chi-Square	. $076{ }^{\text {a }}$	1	0,783	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,073	1	0,787	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $073{ }^{\text {c }}$	1	0,787	1,000
N of Valid Cases	30			

a. 2 cells (50.0%) have expected count less than 5 . The minimum expected count is .80 .
b. Computed only for a 2×2 table
c. The standardized statistic is -.271 .

V35: Elaborate on why/why not you would use tele-assessment again * V11: Does the Count

V11: Does the child attend day-care				Total
		Yes	No	
V35: Elaborate on why/why not you would use teleassessment again	Found tele-assessment to be practical and informative	1 a	4 a	5
	Tele-assessment is convenient and saves resources e.g. transport	4 a	9 a	13

Considered tele-assessment safe with regards to the COVID-19 pandemic	0_{a}	3_{a}		
Unsure about tele-assessment as a viable assessment format	1_{a}	2_{a}		
Total		6	18	3

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,704
Likelihood Ratio	1.409^{a}	2,121	3	0,904
Fisher's Exact Test	1,374	3	0,548	0,852
Linear-by-Linear Association	$.000^{\mathrm{b}}$			0,904
N of Valid Cases	24	1	1,000	1,000

a. 7 cells (87.5\%) have expected count less than 5. The minimum expected count is .75 .
b. The standardized statistic is .000 .

V36: Tele-assessment viable for the assessment of children 0-36 months * V11: Does the

 Count| | | V11: Does the child attend day-care | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Yes | No | |
| V36: Tele-assessment viable for the assessment of children 0-36 months | Yes | 5 a | 15 a | 20 |
| | Neutral | 2 a | 6 a | 8 |
| | No | 1 a | 1 a | 2 |
| Total | | 8 | 22 | 30 |

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

Chi-Square Tests

$\left.\begin{array}{lr|r|r|r} \\ & \text { Value } & & & \begin{array}{c}\text { Asymptotic } \\ \text { Significance (2- } \\ \text { sided) }\end{array} \\ \hline \text { Exact Sig. (2- } \\ \text { sided) }\end{array}\right]$
a. 3 cells (50.0\%) have expected count less than 5 . The minimum expected count is .53 .
b. The standardized statistic is -.531 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V11: Does the Count

V11: Does the child attend day-care

V37: Please elaborate on why/why not you think teleassessment is viable	Preference for direct assessment of child	4 a	10 a	14
	Caregiver confident enough to report on their child's development	1 a	7 a	8
	Tele-assessment is convenient and saves resources e.g. transport	1_{a}	3 a	4
Total		6	20	26

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions
Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$.751^{\text {a }}$	2	0,687	0,823
Likelihood Ratio	0,812	2	0,666	0,823
Fisher's Exact Test	0,880			0,823
Linear-by-Linear Association	. $183{ }^{\text {b }}$	1	0,668	0,769
N of Valid Cases	26			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .92 .
b. The standardized statistic is .428 .

V38: Downsides/concerns with assessment format * V11: Does the child attend day-care

Count

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Pearson Chi-Square	Value		df	0,962	1,000
Likelihood Ratio	$.078^{\mathrm{a}}$	0,075	2	0,963	1,000
Fisher's Exact Test	0,519	2		1,000	
Linear-by-Linear Association	$.001^{\mathrm{b}}$		1	0,969	1,000
N of Valid Cases	30				

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .80 .
b. The standardized statistic is .038 .

V39: What you might change about the assessment format * V11: Does the child attend Count

		Yes	No	Total
V39: What you might change about the assessment format	No changes	3 a	$13_{\text {a }}$	16
	Would prefer to feel more prepared before assessment e.g. sending questions beforehand	1_{a}	1_{a}	2
	Did not want to be recorded	$0_{\text {a }}$	1_{a}	1
	Wanted child present	$0{ }_{\text {a }}$	2 a	2
Total		4	17	21

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,583
Likelihood Ratio	1.949^{a}	2,235	3	0,696
Fisher's Exact Test	2,332	3	0,525	1,000
Linear-by-Linear Association	$.263^{\mathrm{b}}$		1	0,696
N of Valid Cases	21			0,886

a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is .19 .
b. The standardized statistic is .513 .

V40: Upsides/benefits of assessment format * V11: Does the child attend day-care Count

		V11: Does the child attend day-care		Total
		Yes	No	
V40: Upsides/benefits of assessment format	Yes	5 a	17a	22
	Neutral	2 a	3 a	5
	No	1 a	1 a	2
Total		8	21	29

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.149^{\text {a }}$	2	0,563	0,627
Likelihood Ratio	1,077	2	0,584	0,826
Fisher's Exact Test	1,715			0,454
Linear-by-Linear Association	$1.090^{\text {b }}$	1	0,296	0,313
N of Valid Cases	29			

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is .55 .
b. The standardized statistic is -1.044 .

V41: What you liked about the assessment format * V11: Does the child attend day-care Count

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $630{ }^{\text {a }}$	2	0,730	0,686
Likelihood Ratio	0,800	2	0,670	0,686
Fisher's Exact Test	1,057			0,686
Linear-by-Linear Association	. $300{ }^{\text {b }}$	1	0,584	0,910
N of Valid Cases	25			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .20 .
b. The standardized statistic is -.548 .

V42: Overall experience of tele-assessment format * V11: Does the child attend day-care

 Count| V11: Does the child attend day-care | | | Total |
| :---: | :---: | :---: | :---: |
| | Yes | No | |
| V42: Overall experience of tele- Neutral | 0 a | 1_{a} | 1 |
| assessment format Agree | 2 a | 9 a | 11 |
| Strongly agree | 6 a | 12 a | 18 |
| Total | 8 | 22 | 30 |

Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.178{ }^{\text {a }}$	2	0,555	0,586
Likelihood Ratio	1,449	2	0,484	0,586
Fisher's Exact Test	1,193			0,758
Linear-by-Linear Association	$1.135^{\text {b }}$	1	0,287	0,471
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .27 .
b. The standardized statistic is -1.065 .

V12: Receptive language domain * V23: Has the child been developmentally assessed Count

	developmentally assessed before			
		Yes	No	Total
V12: Receptive language	No delay present	4_{a}	25_{a}	29
domain	Delay present	0_{a}	1_{a}	1
Total		4	26	30

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $159^{\text {a }}$	1	0,690	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,291	1	0,589	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $154^{\text {c }}$	1	0,695	1,000
N of Valid Cases	30			

a. 3 cells (75.0\%) have expected count less than 5. The minimum expected count is . 13 .
b. Computed only for a 2×2 table
c. The standardized statistic is .392 .

V13: Expressive language domain * V23: Has the child been developmentally assessed Count

		developmentally assessed before		
		Yes	No	Total
V13: Expressive language	No delay present	4_{a}	24_{a}	28
domain	Delay present	0_{a}	2_{a}	2
Total		4	26	30

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $330{ }^{\text {a }}$	1	0,566	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,594	1	0,441	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	$.319^{\text {c }}$	1	0,572	1,000
N of Valid Cases	30			

a. 3 cells (75.0\%) have expected count less than 5. The minimum expected count is .27 .
b. Computed only for a 2×2 table
c. The standardized statistic is .565 .

V20: Coping skills domain * V23: Has the child been developmentally assessed before

 Count| | | developmentally assessed before | | |
| :--- | :--- | ---: | ---: | ---: |
| | | Yes | No | Total |
| V20: Coping skills domain | No delay present | 1_{a} | 4_{a} | |
| | Delay present | 0_{a} | 1_{a} | 5 |
| Total | 1 | 5 | 1 | |

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $240{ }^{\text {a }}$	1	0,624	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,403	1	0,526	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $200^{\text {c }}$	1	0,655	1,000
N of Valid Cases	6			

a. 4 cells (100.0\%) have expected count less than 5. The minimum expected count is .17 .
b. Computed only for a 2×2 table
c. The standardized statistic is .447 .

V29: I was able to communicate with the interviewer with clarity * V23: Has the child been Count

		developmentally assessed before		Total
		Yes	No	
V29: I was able to communicate with the interviewer with clarity	Strongly disagree	$0{ }_{\text {a }}$	4 a	4
	Neutral	1 a	$0{ }_{\text {b }}$	1
	Agree	$0{ }_{\text {a }}$	4 a	4
	Strongly agree	3 a	18a	21
Total		4	26	30

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$7.747^{\text {a }}$	3	0,052	0,142
Likelihood Ratio	6,336	3	0,096	0,081
Fisher's Exact Test	4,596			0,271
Linear-by-Linear Association	. $130^{\text {b }}$	1	0,718	0,966
N of Valid Cases	30			

a. 7 cells (87.5\%) have expected count less than 5 . The minimum expected count is .13 .
b. The standardized statistic is -.361 .

V30: I experienced no technical difficulties * V23: Has the child been developmentally

 Count| | | developmentally assessed before | | Total |
| :---: | :---: | :---: | :---: | :---: |
| | | Yes | No | |
| V30: I experienced no technical difficulties | True | 3 a | $21_{\text {a }}$ | 24 |
| | Neutral | $0{ }_{\text {a }}$ | $1{ }_{\text {a }}$ | 1 |
| | False (please specify) | 1_{a} | 4 a | 5 |
| Total | | 4 | 26 | 30 |

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$.361{ }^{\text {a }}$	2	0,835	1,000
Likelihood Ratio	0,471	2	0,790	1,000
Fisher's Exact Test	1,246			0,612
Linear-by-Linear Association	. $140^{\text {b }}$	1	0,708	0,926
N of Valid Cases	30			

a. 5 cells (83.3%) have expected count less than 5 . The minimum expected count is .13 .
b. The standardized statistic is -.374 .

V31: Experienced Google Meet as user-friendly * V23: Has the child been

Count

	developmentally assessed before			
		Yes	No	Total
V31: Experienced Google	Yes	4_{a}	25_{a}	29
Meet as user-friendly	Neutral	0_{a}	1_{a}	1
Total		4	26	30

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $159^{\text {a }}$	1	0,690	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,291	1	0,589	1,000
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $154{ }^{\text {c }}$	1	0,695	1,000
N of Valid Cases	30			

a. 3 cells (75.0%) have expected count less than 5 . The minimum expected count is .13 .
b. Computed only for a 2×2 table
c. The standardized statistic is 392 .

V32: Perceived tele-assessment as natural as if in person * V23: Has the child been Count

		Yes	No	Total
V32: Perceived tele-	Yes	3_{a}	21_{a}	24
assessment as natural as if in person Neutral 0_{a}	5_{a}	5		
	No	1_{a}	0_{b}	1
Total	4	26	30	

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square	Value		df	0,026
Likelihood Ratio	7.284^{a}	5,476	2	0,092
Fisher's Exact Test	4,465	2	0,065	0,092
Linear-by-Linear Association	1.292^{b}		1	0,142
N of Valid Cases		30		

a. 5 cells (83.3%) have expected count less than 5 . The minimum expected count is .13 .
b. The standardized statistic is -1.137 .

V33: Clarify why/why not you perceived tele-assessment as natural as if in person * V23:

Count

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square		df		0,866
Likelihood Ratio	$.287^{\mathrm{a}}$		2	0,000
Fisher's Exact Test	0,260	2	0,878	1,000
Linear-by-Linear Association	0,790			1,000
N of Valid Cases	$.155^{\mathrm{b}}$	1	0,694	1,000

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .64 .
b. The standardized statistic is -.393 .

V34: Consider tele-assessment as something to use again in future * V23: Has the child
Count

		developmentally assessed before		Total
		Yes	No	
V34: Consider tele-	Yes	4 a	23 a	27
assessment as something to	Neutral	$0{ }_{\text {a }}$	3 a	3
Total		4	26	30

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

	Value	df	Asymptotic Significance (2sided)	$\begin{aligned} & \text { Exact Sig. (2- } \\ & \text { sided) } \end{aligned}$
Pearson Chi-Square	.513 ${ }^{\text {a }}$	1	0,474	1,000
Continuity Correction ${ }^{\text {b }}$	0,000	1	1,000	
Likelihood Ratio	0,908	1	0,341	0,680
Fisher's Exact Test				1,000
Linear-by-Linear Association	. $496{ }^{\text {c }}$	1	0,481	1,000
N of Valid Cases	30			

a. 3 cells (75.0\%) have expected count less than 5 . The minimum expected count is .40 .
b. Computed only for a 2×2 table
c. The standardized statistic is .704.

V35: Elaborate on why/why not you would use tele-assessment again * V23: Has the child Count

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Vearson Chi-Square	Value		df		0,740
Likelihood Ratio	1.255^{a}	1,641	3	3	0,650
Fisher's Exact Test	1,628			1,000	
Linear-by-Linear Association	$.159^{\mathrm{b}}$		1	0,690	0,865

N of Valid Cases
a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is .50 .
b. The standardized statistic is .398 .

V36: Tele-assessment viable for the assessment of children 0-36 months * V23: Has the Count

		developmentally assessed before		Total
		Yes	No	
V36: Tele-assessment viable for the assessment of children 0-36 months	Yes	3 a	17 a	20
	Neutral	1 a	7 a	8
	No	$0{ }_{\text {a }}$	2 a	2
Total		4	26	30

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$.361{ }^{\text {a }}$	2	0,835	1,000
Likelihood Ratio	0,624	2	0,732	1,000
Fisher's Exact Test	0,474			1,000
Linear-by-Linear Association	. $269{ }^{\text {b }}$	1	0,604	0,723
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is . 27 .
b. The standardized statistic is .519 .

V37: Please elaborate on why/why not you think tele-assessment is viable * V23: Has the Count

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories
Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Value		df	0,344	0,335	
Likelihood Ratio	2.131^{2}		2	0,194	0,335
Fisher's Exact Test	3,278		2		0,335

Linear-by-Linear Association	$.111^{\mathrm{b}}$	1	0,739	1,000
N of Valid Cases	26			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .62 .
b. The standardized statistic is .333 .

V38: Downsides/concerns with assessment format * V23: Has the child been

Count

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)
Vearson Chi-Square		df		0,380
Likelihood Ratio	1.938^{a}		2	0,225
Fisher's Exact Test	1,652	2	0,438	0,742
Linear-by-Linear Association	2,821			0,225
N of Valid Cases	1.314^{b}	1	0,252	0,197

a. 5 cells (83.3%) have expected count less than 5 . The minimum expected count is .40 .
b. The standardized statistic is 1.146 .

V39: What you might change about the assessment format * V23: Has the child been

 Count

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

			Asymptotic Significance (2- sided)	Exact Sig. (2- sided)	
Value		df	0,367	0,322	
Likelihood Ratio	$3.165^{\text {a }}$	3	3	0,416	0,322

Fisher's Exact Test	4,027	1		0,228
Linear-by-Linear Association	1.409^{b}	1	0,235	0,168
N of Valid Cases	21			

a. 7 cells (87.5%) have expected count less than 5 . The minimum expected count is .19 .
b. The standardized statistic is -1.187 .

V40: Upsides/benefits of assessment format * V23: Has the child been developmentally
 Count

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	$1.476{ }^{\text {a }}$	2	0,478	0,676
Likelihood Ratio	2,407	2	0,300	0,579
Fisher's Exact Test	0,912			0,676
Linear-by-Linear Association	$1.226^{\text {b }}$	1	0,268	0,449
N of Valid Cases	29			

a. 5 cells (83.3%) have expected count less than 5 . The minimum expected count is .28 .
b. The standardized statistic is 1.107 .

V41: What you liked about the assessment format * V23: Has the child been

Count

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

Chi-Square Tests

$\left.\begin{array}{lr|r|r|r|} \\ & \text { Value } & & & \begin{array}{c}\text { Asymptotic } \\ \text { Significance (2- } \\ \text { sided) }\end{array} \\ \hline \text { Exact Sig. (2- } \\ \text { sided) }\end{array}\right]$

Fisher's Exact Test	0,733	1		1,000
Linear-by-Linear Association	$.057^{\mathrm{b}}$	1,000		
N of Valid Cases	25		0,811	1,000

a. 4 cells (66.7\%) have expected count less than 5 . The minimum expected count is . 16 .
b. The standardized statistic is .239.

V42: Overall experience of tele-assessment format * V23: Has the child been

Count

		developmentally assessed before		Total
		Yes	No	
V42: Overall experience of tele- Neutral		0 a	1_{a}	1
assessment format	Agree	2 a	9 a	11
	Strongly agree	2 a	16 a	18
Total		4	26	30

Each subscript letter denotes a subset of V23: Has the child been developmentally assessed before categories

	Chi-Square Tests			
	Value	df	Asymptotic Significance (2sided)	Exact Sig. (2sided)
Pearson Chi-Square	. $455^{\text {a }}$	2	0,797	1,000
Likelihood Ratio	0,571	2	0,751	1,000
Fisher's Exact Test	1,115			0,672
Linear-by-Linear Association	. $064{ }^{\text {b }}$	1	0,801	1,000
N of Valid Cases	30			

a. 4 cells (66.7%) have expected count less than 5 . The minimum expected count is .13 .
b. The standardized statistic is . 252 .
\square

ulation

19-24 months	25 months or more	Total
6 a	5 a	29
0 a	$0{ }_{\text {a }}$	1
6	5	30

nificantly from each other at the .05

Exact Sig. (1- sided)	Point Probability
0,567	0,200

bulation
d

d
25 months or more
59 months
---:
5_{a}

nificantly from each other at the . 05

0,370	0,175

Exact Sig. (1- sided)	Point Probability
0,167	
0,167	
0,167	
0,167	0,167

? child Crosstabulation

19-24 months	25 months or more	Total
1_{a}	2 a	4
$0{ }_{\text {a }}$	1_{a}	1
1 a	$0{ }_{\text {a }}$	4
4 a	2 a	21
6	5	30

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,040	0,008

sstabulation

19-24 months	25 months or more	Total
3 a	$4_{a, b}$	24
0 a	O_{a}	1
3 a	$1_{\text {a, b, c, d }}$	5
6	5	30

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
	0,139

rosstabulation

d		
$19-24$ months	25 months or more	Total
6_{a}	5 a	29
0_{a}	0_{a}	1
6	5	30

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability

	0,167
	0,167

iild Crosstabulation

d		
$19-24$ months	25 months or more	Total
$5{ }_{\mathrm{a}}$	3_{a}	24
1_{a}	1_{a}	5
0_{a}	1_{a}	1
6	5	30

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,149	0,055

V1RC: Age of the child

19-24 months	25 months or more	Total
1_{a}	2 a	7
2 a	3 a	14
$0{ }_{\text {a, b, c }}$	$0_{a, ~ c}$	4
3	5	25

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,270	0,067

he child Crosstabulation

d		
$19-24$ months	25 months or more	Total
$6 \mathrm{a}_{\mathrm{a}}$	5_{a}	27
0_{a}	0_{a}	3
6	5	30

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,159	0,088

the child Crosstabulation

19-24 months	25 months or more	Total
0_{a}	1 a	5
2 a	3 a	13
$1_{\text {a }}$	$1_{\text {a }}$	3

0_{a}	0_{a}	3
3	5	24

nificantly from each other at the .05

Exact Sig. (1- sided)	Point Probability
0,370	0,058

of the child Crosstabulation

19-24 months	25 months or more	Total
4 a	4 a	20
1_{a}	1_{a}	8
1_{a}	0 a	2
6	5	30

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,214	0,059

of the child Crosstabulation

d		
19-24 months	25 months or more	Total
2_{a}		2_{a}

0_{a}	2_{a}	8
2_{a}	1_{a}	4
4		

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,121	0,035

Crosstabulation

19-24 months	25 months or more	Total
2 a	2 a	4
1 a	0 a	3
3 a	$3 \mathrm{a,b}$	23
6	5	30

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,026	0,010

hild Crosstabulation
d

$19-24$ months	25 months or more	Total
1_{a}	$4_{a, b}$	16
0_{a}		1_{a}
		2
1_{a}		
1_{a}		1
3	0	2

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,268	0,048

isstabulation

19-24 months	25 months or more	Total
5 a	4 a	22
$0{ }_{\text {a }}$	$1{ }_{\text {a }}$	5
1_{a}	$0{ }_{\text {a }}$	2
6	5	29

nificantly from each other at the .05

Exact Sig. (1- sided)	Point Probability
0,287	0,073

Crosstabulation

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,504	0,054

Crosstabulation

a

19-24 months	25 months or more	Total
1_{a}	0_{a}	1
2_{a}	1_{a}	11
3_{a}	4_{a}	18
6	5	30

nificantly from each other at the . 05

Exact Sig. (1- sided)	Point Probability
0,269	0,073

Exact Sig. (1- sided)	Point Probability
0,600	
0,600	
0,600	
0,600	0,600

Exact Sig. (1- sided)	Point Probability
0,648	
0,648	
0,648	
0,648	0,497

Exact Sig. (1- sided)	Point Probability
0,500	
0,500	
0,500	
0,500	0,500

Exact Sig. (1- sided)	Point Probability
0,192	0,075

Exact Sig. (1- sided)	Point Probability
0,153	0,085

Exact Sig. (1- sided)	Point Probability
0,400	
0,400	
0,400	
0,400	0,400

Exact Sig. (1- sided)	Point Probability
0,031	0,031

Exact Sig. (1- sided)	Point Probability
0,409	0,223

Exact Sig. (1- sided)	Point Probability
0,201	
0,201	
0,201	
0,201	0,201

Exact Sig. (1- sided)	Point Probability

0,029	0,024

Exact Sig. (1- sided)	Point Probability
0,335	0,179

0,499	0,208

Exact Sig. (1- sided)	Point Probability
0,165	0,102

Exact Sig. (1- sided)	Point Probability
0,445	0,166

Exact Sig. (1- sided)	Point Probability
0,098	0,071

Exact Sig. (1- sided)	Point Probability
0,499	0,212

Exact Sig. (1- sided)	Point Probability
0,418	0,221

Exact Sig. (1- sided)	Point Probability
0,367	

0,367	
0,367	
0,367	0,367

Exact Sig. (1- sided)	Point Probability
0,607	
0,607	
0,607	
0,607	0,480

Exact Sig. (1- sided)	Point Probability
0,364	0,112

Exact Sig. (1- sided)	Point Probability
	0,261
	0,180

Exact Sig. (1- sided)	Point Probability
0,633	
0,633	
0,633	
0,633	0,633

Exact Sig. (1- sided)	Point Probability
0,500	0,275

Exact Sig. (1- sided)	Point Probability
0,311	0,175

Exact Sig. (1- sided)	Point Probability
0,702	
0,702	
0,702	
0,702	0,463

Exact Sig. (1- sided)	Point Probability
0,526	0,172

Exact Sig. (1- sided)	Point Probability

0,301	0,178

Exact Sig. (1- sided)	Point Probability
0,106	0,069

Exact Sig. (1- sided)	Point Probability

0,602	0,197

Exact Sig. (1- sided)	Point Probability
0,442	0,132

Exact Sig. (1- sided)	Point Probability

0,114	0,093

Exact Sig. (1- sided)	Point Probability
0,399	0,125

Exact Sig. (1- sided)	Point Probability

0,437	0,236

Exact Sig. (1- sided)	Point Probability
0,367	
0,367	
0,367	
0,367	0,367

Exact Sig. (1- sided)	Point Probability
0,126	
0,126	

0,126	
0,126	0,126

Exact Sig. (1- sided)	Point Probability
0,333	
0,333	
0,333	
0,333	0,333

Exact Sig. (1- sided)	Point Probability

0,364	0,112

Exact Sig. (1- sided)	Point Probability
0,111	0,063

Exact Sig. (1- sided)	Point Probability
0,633	
0,633	
0,633	

0,633	0,633

Exact Sig. (1- sided)	Point Probability
0,500	0,275

Exact Sig. (1- sided)	Point Probability

0,601	0,243

Exact Sig. (1- sided)	Point Probability
0,702	
0,702	
0,702	
0,702	0,463

Exact Sig. (1- sided)	Point Probability
0,330	0,147

Exact Sig. (1- sided)	Point Probability
0,533	0,232

Exact Sig. (1- sided)	Point Probability
0,235	0,130

Exact Sig. (1- sided)	Point Probability
0,216	0,129

Exact Sig. (1- sided)	Point Probability
0,555	0,213

Exact Sig. (1- sided)	Point Probability
0,531	0,236

Exact Sig. (1- sided)	Point Probability
0,287	0,106

Exact Sig. (1- sided)	Point Probability
0,201	0,142

Exact Sig. (1- sided)	Point Probability
0,867	
0,867	
0,867	
0,867	0,867

Exact Sig. (1- sided)	Point Probability
0,747	
0,747	
0,747	
0,747	0,747

Exact Sig. (1- sided)	Point Probability
0,667	
0,667	
0,667	
0,667	0,667

Exact Sig. (1- sided)	Point Probability
0,076	0,047

Exact Sig. (1- sided)	Point Probability
0,388	0,388

Exact Sig. (1- sided)	Point Probability
0,133	
0,133	
0,133	
0,133	0,133

Exact Sig. (1- sided)	Point Probability
0,612	0,369

Exact Sig. (1- sided)	Point Probability
0,457	0,313

Exact Sig. (1- sided)	Point Probability
0,640	
0,640	
0,640	
0,640	0,640

Exact Sig. (1- sided)	Point Probability
0,529	0,252

Exact Sig. (1- sided)	Point Probability
0,510	0,333

Exact Sig. (1- sided)	Point Probability
0,580	0,291

Exact Sig. (1- sided)	Point Probability
0,483	0,286

Exact Sig. (1- sided)	Point Probability
0,421	0,421

Exact Sig. (1- sided)	Point Probability
0,421	0,421

Exact Sig. (1- sided)	Point Probability
0,618	0,376

Exact Sig. (1- sided)	Point Probability
0,561	0,337

aregiver

Total
28

olumn

Exact Sig. (1- sided)	Point Probability
0,064	0,064

isstabulation

Total	
5	
1	
6	
olumn	
Exact Sig. (1sided)	Point Probability
0,167	0,167

qualification

Total

Total
4
4
21
30

olumn

Exact Sig. (1- sided)	Point Probability
0,444	0,077

ary caregiver

Total	
24	
1	
5	
30	
olumn	
Exact Sig. (1sided)	Point Probability
0,454	0,152
0,454	0,152

of primary

Total

29
1
30

olumn

Exact Sig. (1- sided)	Point Probability
0,167	0,167

ification of

Total

: Highest

Total
7
14
4
25

Exact Sig. (1- sided)	Point Probability
0,364	0,158

cational

Total	
27	
3	
30	
olumn	
Exact Sig. (1sided)	Point Probability
0,131	0,117

ucational

| Total | |
| ---: | :--- | ---: |

ducational

Total

20
8
2

Exact Sig. (1- sided)	Point Probability
0,152	0,085

эducational

1 of primary

Total	
4	
3	
23	
30	
olumn	
Exact Sig. (1sided)	Point Probability
0,559	0,153

lification of

Total	
16	
2	
1	
2	
21	
olumn	
Exact Sig. (1sided)	Point Probability

0,059	0,033

' primary

Total

Total
22
5
2
29

olumn

Exact Sig. (1- sided)	Point Probability
0,092	0,059

of primary

Total
17

1
7

25
olumn

Exact Sig. (1- sided)	Point Probability

0,007	0,006

n of primary

Total	
	1
11	
18	
	30

olumn

Exact Sig. (1- sided)	Point Probability
0,280	0,140

Exact Sig. (1- sided)	Point Probability
0,567	
0,567	
0,567	

0,567	0,567

Exact Sig. (1- sided)	Point Probability
0,687	
0,687	
0,687	
0,687	0,508

Exact Sig. (1- sided)	Point Probability
0,500	
0,500	
0,500	

0,500	0,500

Exact Sig. (1- sided)	Point Probability
0,313	0,086

Exact Sig. (1- sided)	Point Probability

0,204	0,109

Exact Sig. (1- sided)	Point Probability
0,433	
0,433	
0,433	
0,433	0,433

Exact Sig. (1- sided)	Point Probability
0,149	0,115

Exact Sig. (1- sided)	Point Probability
0,161	0,114

Exact Sig. (1- sided)	Point Probability
0,603	
0,603	
0,603	

0,603	0,435

Exact Sig. (1- sided)	Point Probability
0,462	0,172

Exact Sig. (1- sided)	Point Probability
0,574	0,228

Exact Sig. (1- sided)	Point Probability
0,577	0,208

Exact Sig. (1- sided)	Point Probability
0,351	0,161

Exact Sig. (1- sided)	Point Probability
0,172	0,100

Exact Sig. (1- sided)	Point Probability
0,043	0,036

Exact Sig. (1- sided)	Point Probability
0,022	0,015

Exact Sig. (1- sided)	Point Probability
0,530	0,243

Exact Sig. (1- sided)	Point Probability
0,733	
0,733	
0,733	
0,733	0,733

Exact Sig. (1- sided)	Point Probability
0,469	
0,469	
0,469	
0,469	0,405

Exact Sig. (1- sided)	Point Probability
0,833	
0,833	
0,833	
0,833	0,833

Exact Sig. (1- sided)	Point Probability
0,385	0,072

Exact Sig. (1- sided)	Point Probability
0,102	0,073

Exact Sig. (1- sided)	Point Probability
0,733	
0,733	
0,733	
0,733	0,733

Exact Sig. (1- sided)	Point Probability
0,290	0,188

Exact Sig. (1- sided)	Point Probability
0,295	0,192

Exact Sig. (1- sided)	Point Probability
0,621	
0,621	
0,621	
0,621	0,455

Exact Sig. (1- sided)	Point Probability
0,588	0,197

Exact Sig. (1- sided)	Point Probability
0,406	0,213

Exact Sig. (1- sided)	Point Probability
0,467	0,228

Exact Sig. (1- sided)	Point Probability
0,571	0,213

Exact Sig. (1- sided)	Point Probability
0,491	0,187

Exact Sig. (1- sided)	Point Probability
0,238	0,149

Exact Sig. (1- sided)	Point Probability
0,436	0,269

Exact Sig. (1- sided)	Point Probability
0,247	0,180

Exact Sig. (1- sided)	Point Probability
0,867	
0,867	
0,867	
0,867	0,867

Exact Sig. (1- sided)	Point Probability
0,747	
0,747	
0,747	
0,747	0,747

Exact Sig. (1- sided)	Point Probability
0,833	
0,833	
0,833	
0,833	0,833

Exact Sig. (1- sided)	Point Probability
0,507	0,095

Exact Sig. (1- sided)	Point Probability
0,538	0,369

Exact Sig. (1- sided)	Point Probability
0,867	
0,867	
0,867	
0,867	0,867

Exact Sig. (1- sided)	Point Probability
0,243	0,175

Exact Sig. (1- sided)	Point Probability
0,502	0,291

Exact Sig. (1- sided)	Point Probability
0,640	
0,640	
0,640	
0,640	0,640

Exact Sig. (1- sided)	Point Probability
0,480	0,217

Exact Sig. (1- sided)	Point Probability

0,530	0,268

Exact Sig. (1- sided)	Point Probability
0,197	0,112

Exact Sig. (1- sided)	Point Probability

0,168	0,083

Exact Sig. (1- sided)	Point Probability
0,308	0,308

Exact Sig. (1- sided)	Point Probability

0,618	0,376

Exact Sig. (1- sided)	Point Probability
0,561	0,337

\square

\longrightarrow

[^0]: Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

[^1]: Each subscript letter denotes a subset of V10RC: Birth order of child categories whose column proportions do not

[^2]: Each subscript letter denotes a subset of V11: Does the child attend day-care categories whose column proportions

