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ABSTRACT 

There is an enormous global public health burden due to antimicrobial-resistant (AMR) 
Klebsiella pneumoniae high-risk clones. K. pneumoniae ST307 and ST147 are recent 
additions to the family of successful clones in the species. Both clones likely emerged in 
Europe during the early to mid-1990s and, in a relatively short time, became prominent 
global pathogens, spreading to all continents (with the exception of Antarctica). ST307 and 
ST147 consist of multiple clades/clusters and are associated with various carbapenemases 
(i.e., KPCs, NDMs, OXA-48-like, and VIMs). ST307 is endemic in Italy, Colombia, the 
United States (Texas), and South Africa, while ST147 is endemic in India, Italy, Greece, and 
certain North African countries. Both clones have been introduced into regions of 
nonendemicity, leading to worldwide nosocomial outbreaks. Genomic studies showed ST307 
and ST147 contain identical gyrA and parC mutations and likely obtained plasmids with 
blaCTX-M-15 during the early to mid-2000s, which aided in their global distribution. ST307 and 
ST147 then acquired plasmids with various carbapenemases during the late 2000s, 
establishing themselves as important AMR pathogens in certain regions. Both clones are 
likely underreported due to restricted detection methodologies. ST307 and ST147 have the 
ability to become major threats to public health due to their worldwide distribution, ability to 
cause serious infections, and association with AMR, including panresistance. The medical 
community at large, especially those concerned with antimicrobial resistance, should be 
aware of the looming threat posed by emerging AMR high-risk clones such as K. 
pneumoniae ST307 and ST147. 
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Antimicrobial resistance (AMR) is recognized by the scientific community, society at 
large, and policymakers as one of the greatest threats to human health. Several fields of 
modern medicine will not be able to function properly without the availability of effective 
antibiotics. 

Biological evolution is defined as “descent with modification within a defined 
population” with the sole purpose of adaptation to environmental changes (1). Evolution 
provides the means for members of a population to adapt, survive, and reproduce in an 
effective manner. For evolution to progress in an orderly fashion, a process selecting for 
desirable traits is required. Natural selection is due to the interaction of a population with the 
environment, while artificial selection mostly occurs due to human intervention. The use of 
antimicrobial agents, with the subsequent selection of beneficial AMR mutations within 
bacteria, is one of the most efficient artificial selection pressures introduced by humans. 
Thus, it should not be surprising that the use of antibiotics has selected for certain successful 
bacterial clones with the ability to adapt and survive in challenging environments that contain 
antibiotics. 

The major burden of AMR is due to the global spread of certain successful AMR 
clones (referred to as high-risk, epidemic, eminent, or problem clones) and/or the movement 
of AMR genes between diverse clones (2). In this article, we refer to these successful clones 
as high-risk clones. The term “clone” in this context refers to any bacteria propagated from a 
single colony and isolated at a specific time and place that show common phylogenetic 
origins (3). Such isolates/strains have similar phenotypic and genotypic traits, indicating they 
belong to the same lineage originating from a common ancestor. The terms “clone” and 
“clonal relatedness” are useful in the field of molecular epidemiology, particularly when 
studying the possible relationships between isolates or strains obtained from different 
geographical areas over various time periods. 

For a clone to qualify as a global AMR high-risk clone, isolates must have similar or 
identical phenotypic and genotypic characteristics and share the following characteristics (3): 
(i) they must have been obtained from different geographical locations across the world, (ii) 
they must possess various AMR determinants, (iii) they must be able to colonize and persist 
in hosts for long time intervals (at least 6 months), (iv) they must be transferred effectively 
between different hosts, (v) they must show enhanced pathogenicity and/or fitness, and (vi) 
they must have the ability to cause severe and/or recurrent infections. It is important to 
remember that standard definitions of “global” (i.e., how many countries across how many 
continents), “various AMR determinants” (i.e., the number representing different antibiotic 
classes), “effective transmission,” “enhanced virulence/pathogenicity/fitness,” and “severe 
and/or recurrent infections” (i.e., how many over what time periods) are currently lacking. 

High-risk clones likely possess certain beneficial biological factors that lead to 
increased “fitness,” providing the strains with Darwinian survival skills and edging out other 
isolates of the same species (1). Such skills provide them with the ability to outcompete other 
bacteria and to become the principal part of the bacterial population, initially as colonizers 
that subsequently lead to infections. 

AMR high-risk clones outcompete other, non-AMR clones in an environment 
containing antibiotics (1). These clones provide formidable platforms for the dissemination of 
AMR genetic components (2, 3). AMR determinants are provided to the offspring of high-
risk clones in a vertical fashion. High-risk clones can also transfer these determinants to other 
bacteria in a horizontal fashion. AMR high-risk clones have been instrumental in the recent 
global emergence of AMR among several bacterial species, especially within the 
Enterobacterales. Examples of established global AMR high-risk clones among the 
Enterobacterales are Escherichia coli ST131 and Klebsiella pneumoniae clonal group 258 
(CG258) (i.e., ST258, ST11, and ST512) and CG14 (i.e., ST14 and ST15) (4, 5). Recent 
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reports have indicated that certain clones (e.g., K. pneumoniae ST307 and ST147; E. coli 
ST410 and ST1193) are emerging globally as important vehicles for the dissemination of 
AMR determinants (1, 6, 7). 

K. pneumoniae is the most clinically relevant Klebsiella species and is responsible for 
the majority of human infections due to members of the genus. During the 1960s and 1970s, 
K. pneumoniae established itself as one of the most important causes of global AMR 
nosocomial infections, especially urinary tract infections (UTIs), respiratory tract infections 
(RTIs), and bloodstream-associated infections (BSIs), and today, these bacteria often rank 
among the top five most common global nosocomial pathogens (5). The World Health 
Organization has recently identified extended-spectrum β-lactamase (ESBL)- and 
carbapenem-resistant K. pneumoniae isolates as critical public health threats (8). Since 
reports describing K. pneumoniae ST307 and ST147 are increasing globally and both clones 
are associated with ESBLs and carbapenemases (the most important causes of carbapenem 
resistance), the aim of this article is to review the published literature pertaining to ST307 and 
ST147 and to determine if they qualify as AMR high-risk clones. 

KLEBSIELLA PNEUMONIAE ST307 

K. pneumoniae ST307 appeared during 2008 in the multilocus sequence typing (MLST) 
database submitted from the Netherlands (https://bigsdb.pasteur.fr/klebsiella/klebsiella.html). 
The first published reports occurred in 2013 from the United States (9) and Pakistan (10); the 
U.S. isolates contained blaKPC-2 and were obtained in 2010 from different hospitals in Texas, 
while the Pakistani isolates contained blaCTX-M-15 and were obtained during 2009. This was 
followed by publications during 2014 and 2015 from Italy (11, 12) and Colombia (13) of 
isolates with blaKPCs and from South Korea (14) and Tunisia (15) of isolates with blaCTX-M-15 
and qnrB. During 2016, the worldwide appearance of the clone became more apparent, with 
reports from Spain (16) of isolates with blaOXA-48 and from Russia (17), Brazil (18), and 
Japan (19) of isolates with blaCTX-M-15. 

ST307 isolates shared the same K and O loci (i.e., KL102, associated with wzi allele 
173, and O2v2) and contained the second capsule 2 cluster (similar to the capsular cluster of 
Klebsiella quasipneumoniae and Enterobacter spp.), π-fimbrial cluster (similar to that of 
uropathogenic E. coli), and type VI secretion system (T6SS) (20). 

Molecular epidemiology 

Wyres and colleagues performed whole-genome sequencing on a collection of ST307 
isolates (n = 95) with blaCTX-M-15 and blaKPCs obtained from 11 countries (21). Their results 
indicated that ST307 emerged around 1994 and consisted of two deep-branching lineages; 
one lineage contained the gyrA S83I and parC S80I mutations in the quinolone resistance 
determinant regions (QRDR) and showed global distribution (i.e., Australia, Cambodia, 
Nepal, Thailand, Iran, Italy, Norway, Netherlands, United Kingdom, United States, and 
Colombia); the other lineage (which contained an additional gyrA D87N mutation) was 
present only in the United States (Texas). There was genomic evidence of intercountry 
movement of patients infected or colonized with ST307 isolates that belonged to the “global” 
lineage. The blaCTX-M-15 gene was present among 99% of ST307 isolates and was situated 
adjacent to ISEcp1, harbored within FIB-like plasmids, which were highly similar within the 
different isolates irrespective of the time period and the geographical location. A closely 
related FIB-like plasmid, named pKPN3-307_type A, with blaCTX-M-15 was previously 
reported from ST307 isolates obtained in Italy, Colombia, and the United Kingdom (20). 
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A recent study investigated large country-wide nosocomial outbreaks of ST307 with 
blaCTX-M-15 and blaOXA-181 within several South African provinces (22). Sequences obtained 
from that study and GenBank (n = 708) divided ST307 isolates into six clades: clades I, II, 
III, and IV were limited to Texas and contained the gyrA S83I, gyrA D87N, and parC S80I 
QRDR mutations; clade V showed a global distribution; and clade VI was restricted to South 
Africa (22). Clades V and VI contained the gyrA S83I and parC S80I QRDR mutations. The 
Wyres “global” lineage correlated with clade V, and the Wyres “Texas” lineage correlated 
with clades I to IV (21). ST307 clade VI emerged around March 2013 and then evolved 
during 2014 into two distinct lineages, which spread over a 15-month period across 23 cities 
and towns within six South African provinces (22). 

Global distribution and prevalence 

K. pneumoniae ST307 has true global distribution and has been reported from all 
continents except Antarctica (Fig. 1). The clone has been responsible for several global 
nosocomial (23–26) and long-term care center (27, 28) outbreaks. ST307 isolates have been 
obtained from a variety of human clinical specimens, including urine, blood, respiratory 
secretions, fluids, and pus (22, 26), as well as from other sources, e.g., human rectal samples 
(11, 16), companion animals (19), domestic animals (29), wildlife (30), and environmental 
and sewage water samples (18). Infection was associated with recent travel when a patient 
returning from Puerto Rico imported ST307 into a hospital in the Dominican Republic (31). 

 

 
 
FIG 1 Global distribution of K. pneumoniae ST307. 
 

Reports from the United States (Texas) (32), Colombia (13) Italy (11), and Argentina 
(33) have shown that the overall prevalence of ST307 is increasing over time among AMR 
carbapenemase-producing K. pneumoniae isolates, even replacing other AMR high-risk 
clones, like ST258, in certain regions, such as Italy and Colombia. A South African study 
showed that ST307 was present among 350/574 (61%) carbapenemase-producing K. 
pneumoniae isolates obtained from several hospitals from 2014 to 2016, illustrating that the 
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clone can dominate the population structure of carbapenemase-producing K. pneumoniae 
during outbreak situations (22). 

Association with antimicrobial resistance determinants 

K. pneumoniae ST307 is associated with various AMR determinants, including the 
following ESBLs and carbapenemases: CTX-M-15 (21, 22), KPC-2 and -3 (20, 21), OXA-48 
(34), NDM-1 (35), OXA-181 (22), and VIM-1 (36). Carbapenemase genes in ST307 had 
been found on various plasmid backbone types, e.g., KPCs on pKpQIL and IncN (20), OXA-
48 on IncL (22), NDMs on various Inc replicon types, OXA-181 on IncX3 (22), and VIMs on 
IncFII (26). 

The majority of global ST307 isolates reported in the literature contained blaCTX-M-15 
harbored on highly similar FIB-like plasmids (20–22). These plasmids carried two replicons 
(FIIK7 and FIB) and contained several additional AMR determinants responsible for 
resistance to the aminoglycosides [strA, strB, aac(3)-IIa, and aac(6′)Ib-cr], quinolones 
(qnrB1 and oqxAB), and other agents (sul2, dfrA14, catB3, and fosA) (20–22). Resistance to 
colistin (due to mcr-1) (37) and ceftazidime-avibactam (due to a point mutation in blaKPC-2) 
(38) have also been described among ST307 isolates. 

Ability to colonize human hosts 

Gut-colonizing isolates are the most common source for K. pneumoniae infections 
(39). Several studies have shown that symptomatic and asymptomatic patients in the health 
care setting are colonized with ST307 (11, 16, 26). Prevalence studies of human rectal 
colonization are currently lacking, and it is unknown whether the prevalence or duration of 
ST307 intestinal colonization in humans is different from that of other K. pneumoniae clones 
or isolates. 

Effective transmission among hosts 

Two South African studies have used genomics to document the transmission of 
ST307 between patients in the same hospital and between patients who were admitted to 
various hospitals in different cities and provinces. Genomics combined with admission, 
discharge, and transfer data showed evidence of intrahospital, interhospital, and 
interprovincial spread of ST307 due to the movement of patients across 42 hospitals within 
Gauteng, Mpumalanga, North West, Limpopo, Free State, and Eastern Cape Provinces (22). 

ST307 was introduced into a South African public health tertiary-care institution after 
a patient with ST307 was transferred from a different hospital (26). The clone then spread 
rapidly to different wards and units despite infection prevention and control measures. The 
initial ST307 isolate contained an OXA-181 IncX3-harboring plasmid that was subsequently 
transferred to non-ST307 K. pneumoniae sequence types (STs) (i.e., ST17 and ST29), E. coli, 
and Enterobacter spp. The study highlighted the dual threat associated with high-risk clones 
containing promiscuous plasmids: ST307 initially spread rapidly to different wards and units 
and then donated the OXA-181 plasmid to E. coli, Enterobacter spp., and other K. 
pneumoniae clones that were subsequently responsible for separate nosocomial outbreaks 
(26). 
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Enhanced pathogenicity and fitness 

ST307 isolates are negative for the K. pneumoniae virulence plasmid that encodes 
salmochelin, aerobactin siderophores, and RmpA/RmpA2. Some isolates are positive for the 
yersiniabactin siderophore locus and the following virulence factor genes: fhuA to -D, fimA-I, 
mrkA to -J, sitA to -D, and wabG (21). 

Villa and colleagues postulated that the pKPN-307 IncF plasmids (there are four 
types, namely, A, B, C, and D) were likely crucial for the evolution of ST307 (20). The 
largest version of the plasmid, pKPN-307_type A, carried five putative virulence clusters, 
namely, the lacZYI operon, the Fec-like iron(III) dicitrate, the glutathione ABC transport 
systems, the urea transport system, and the cluster for glycogen synthesis. They suggested 
that certain characteristics of ST307 present on pKPN-307 IncF plasmids may lead to 
increased fitness, persistence, and adaptation to the hospital environment and the human host. 

Evidence for increased virulence and fitness of ST307 compared to other K. 
pneumoniae clones or isolates is currently lacking. 

Cause of severe or recurrent infections 

Information about clinical infections due to ST307 are mostly limited to case reports 
of nosocomially acquired UTIs, RTIs, and BSIs, often in patients with underlying comorbid 
conditions. Strydom and colleagues reviewed the clinical data of 59 patients infected or 
colonized with ST307 (26). In 23 (39%) patients, the isolation of ST307 was considered to 
represent colonization (as opposed to infection). The most common clinical feature was 
primary bloodstream infection (54%), followed by urinary tract infection (23%) and 
pneumonia (23%). The overall crude mortality rate for patients infected with ST307 was 
19%. This was a description of cases, and controls were not included. 

Summary 

K. pneumoniae ST307 is emerging as an important AMR clone and clearly possesses 
most of the essential characteristics that define a global AMR high-risk clone. Studies 
regarding pathogenicity, virulence, fitness of ST307 isolates, and the clinical features of 
patients infected with ST307 are currently limited. The global prevalence of ST307 among 
AMR and non-AMR K. pneumoniae isolates, as well as rates of human rectal colonization 
among the hospital and community populations, are absent or scarce in the literature. 

KLEBSIELLA PNEUMONIAE ST147 

The first published records of K. pneumoniae ST147 appeared in 2008 and 2009, 
when investigators from Hungary (40) and Spain (41) characterized CTX-M-15-producing 
isolates and identified a novel clone named ST147. The Hungarian isolates (n = 46) were 
submitted to the local ESBL reference laboratory during 2005 and appeared in the MLST 
database during 2007 (https://bigsdb.pasteur.fr/klebsiella/klebsiella.html). The ST147 isolates 
were resistant to the fluoroquinolones due to gyrA S83I and parC S80I QRDR mutations, and 
blaCTX-M-15 was associated with ISEcp1 (40). This was followed by publications from 2011 to 
2013 of isolates with blaVIMs and blaKPC-2 from Greece (42, 43) and Italy (44, 45); of isolates 
with blaVIMs from Sweden and Denmark (46); of isolates with blaNDM-1 from Canada (47), the 
United Kingdom (48), and Finland (49); of isolates with blaOXA-181 and blaNDM-1 from India 
(44); and of isolates with blaOXA-48 from Libya (50). The patients from Finland and Canada 
had recently traveled to India (51), and those from Sweden and Denmark had recently visited 
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Greece (46). During 2014, the worldwide appearance of this clone escalated, with reports 
from China (52), Australia (53), Yemen (54), the United States (55) (of isolates with 
blaNDMs), andFrance (of isolates with blaOXA-48) (56), as well as Cuba (57), Portugal (58), and 
Brazil (59) (of isolates with blaCTX-M-15). 

ST147 isolates have K loci associated with different wzi alleles, namely, 64 (the most 
common, K14 and K64), 12, 14, 23, 56, 99, 420, and 448, and contain conservative arrays in 
CRISPR region 1 common to all members of ST147 (60). 

Molecular epidemiology 

Limited information is currently available about the molecular epidemiology of K. 
pneumoniae ST147. Chen and colleagues performed the largest genomic study to date (61). 
They defined the evolution and global epidemiology of ST147 isolates (n = 61) obtained from 
23 countries (United Kingdom, Norway, China, Philippines, Canada, Germany, Italy, Turkey, 
Argentina, Greece, France, Israel, Romania, Russia, Belgium, India, Switzerland, Iraq, 
Kenya, United States, United Arab Emirates, Singapore, and Australia) across five continents 
collected from 2002 to 2015. All ST147 isolates contained the gyrA S83I and parC S80I 
QRDR mutations, and phylogenetic analysis separated them into six different clades, which 
correlated strongly with geographic locations and types of carbapenemase genes (i.e., ST147 
isolates with blaNDMs, blaKPCs, blaOXA-48, blaOXA-181, and blaVIMs formed separate clusters). 
The study also showed intercountry movement of patients (e.g., isolates with blaNDMs 
obtained from India, Canada, the United States, and the United Kingdom were highly 
similar). 

ST147 emerged around the early 1990s, and its global dispersion occurred during the 
late 1990s and early 2000s, primarily driven by QRDR mutations and the acquisition of 
blaCTX-M-15 located on IncF or IncR plasmids (61). Further global spread of ST147 then 
occurred in the mid- to late 2000s and was associated with the acquisition of various 
carbapenemase genes at different geographic locations, e.g., blaVIM and blaKPC were likely 
acquired in Greece and then spread to Italy, Sweden, and Denmark (46); blaOXA-48 was likely 
acquired in Libya and Tunisia and then spread to various countries in Europe, while blaNDM 
and blaOXA-181 were likely acquired in India and then spread to the United Arab Emirates, 
Canada, and the United States (61–64). 

Global distribution and prevalence 

K. pneumoniae ST147 has true global distribution and has been reported from all the 
continents except Antarctica (Fig. 2). The clone has been responsible for several global 
nosocomial outbreaks (65–68), including endoscopy-associated transmission (69)] and long-
term care center outbreaks (70). ST147 isolates have been obtained from a variety of human 
clinical specimens, including urine, blood, respiratory secretions, fluids, and pus (65–68), as 
well as from other sources, e.g., human rectal samples (71), companion animals (72, 73), 
domestic animals (74), and environmental samples (75). Infections have also been associated 
with recent travel to certain regions of endemicity. For example, patients returning from 
Tunisia imported ST147 to hospitals in Poland (76), and patients with recent travel to India 
and Greece introduced ST147 to Canada (51), the United States (63), Sweden, and Denmark 
(46). 
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FIG 2 Global distribution of K. pneumoniae ST147. 
 

Studies addressing the prevalence of ST147 among K. pneumoniae isolates are 
relatively rare. Studies from Hungary have shown that over 20% of ESBL-producing K. 
pneumoniae isolates belong to ST147 (40). A Canadian longitudinal study investigating 
bloodstream infections due to ESBL-producing K. pneumoniae over a 10-year period (2000 
to 2009) found ST147 to be rare in that collection (77). Global molecular surveillance data 
showed that ST147 in general is the most common clone among VIM-producing K. 
pneumoniae (78) and the second most common clone among KPC-producing K. pneumoniae 
isolates (behind CG258) (42, 62). 

Association with antimicrobial resistance determinants 

K. pneumoniae ST147 is especially successful in acquiring various types of AMR 
determinants, including the following ESBLs and carbapenemases: SHV-2 (79), SHV-5 (78), 
SHV-36 (64), CTX-M-15 (40), KPCs (62), NDMs (47), VIMs (46), OXA-48 (56), OXA-181 
(44), and OXA-204 (69). Carbapenemase genes in ST147 have been found on various 
plasmid incompatibility types, including the following: blaKPCs on pKpQIL (42) and IncN 
(70); blaVIMs on IncN and IncFIIK; (46), blaNDMs on various platforms, including IncFIIA 
(47), IncA/C (48), and IncX3 (52); blaOXA-48 on IncL (56); and blaOXA-204 on IncA/C (69). 
Studies have shown integration of blaOXA-181 into the chromosome of ST147 (63, 64). 

Similar to ST307, the majority of ST147 isolates reported in the literature contained 
blaCTX-M-15. However, limited information is currently available on the plasmid structure 
harboring blaCTX-M-15 in ST147; a study from Germany using long-read sequencing 
characterized a 61-kb IncR plasmid containing blaCTX-M-15 with several additional AMR 
determinants responsible for resistance to the aminoglycosides (strA and strB), quinolones 
(qnrS1), and other agents [tet(A) and dfrA1] (80). 

Various AMR determinants have been identified in ST147, including aph(3″)-Ib, 
aph(6)-Id, aadA1, aac(3)-II, aac(6′)-Ib-cr, aacA4, aacA7, aadA1, armA rmtF, rmtC qnrA1, 
qnrB1-2, oqxAB rmtB, rmtF, qacΔE, cepA, arr-2, dfrA14, sul1, sul2, fosA6, and heavy metal 
resistance genes, namely, ars and sil. 

Of special concern are panresistant isolates (including resistance to colistin and 
tigecycline) that have been described in the United Arab Emirates (64) and Greece (81). 
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Ability to colonize human hosts 

Studies have shown that symptomatic and asymptomatic patients in the health care 
setting are rectally colonized with ST147, especially during outbreak situations (71, 82). 
Prevalence studies of human rectal colonization are currently lacking, and it is unknown 
whether the prevalence or duration of intestinal colonization in humans is different for ST147 
than for other K. pneumoniae clones or isolates. 

Effective transmission among hosts 

Several studies have described the efficient transmission of K. pneumoniae ST147 
between patients in the hospital setting. Studies from Greece (67), China (82), and Slovenia 
(83) described the successful spread of ST147 throughout different health care institutions 
after the introduction of an index patient colonized or infected with ST147. The clone quickly 
spread within the same intensive care unit (ICU) or ward and then to different ICUs/wards 
within the same hospital. The greatest interhospital spread occurred in Singapore (84). 

Enhanced pathogenicity and fitness 

As noted for ST307, most ST147 isolates are negative for the Kp virulence plasmid 
(encoding the salmochelin and aerobactin siderophores plus RmpA/RmpA2). Some isolates 
are positive for the yersiniabactin siderophore locus and the plasmid-mediated virulence gene 
rmpA. Overall, ST147 isolates are often positive for the following virulence factor genes: 
iutABCD-iucABCD, mrkABCDF, fimH, wabG, uge, fyuA, ybtS, kfuB, ureA, and alls (44, 64, 
85). 

Toth and colleagues investigated the fitness of high-risk clones (i.e., ST11, ST15, and 
ST147) using a propagation assay and showed significantly less fitness cost associated with 
fluoroquinolone-resistant ST11, ST15, and ST147 due to gyrA and parC QRDR mutations 
than with fluoroquinolone-resistant non-high-risk K. pneumoniae clones (86). 

A French study showed similar biofilm production and environmental survival of 
ST147 and the non-high-risk clone ST395 (87). 

Cause of severe or recurrent infections 

Information about clinical infections due to ST147 is mostly limited to case reports of 
nosocomially acquired UTIs, RTIs, and BSIs, and often in patients with underlying comorbid 
conditions. A study from Northern Greece reviewed the clinical characteristics of patients 
infected with ST147 admitted to different ICUs (67). Of the 25 patients with positive cultures 
for ST147, 17 (68%) developed BSIs, with a crude mortality rate of 59% among the patients. 
The overall mortality of the patients during the outbreak with ST147 was 48% (67). Another 
Greek study, from Piraeus, described BSIs involving 4 patients with panresistant ST147 
isolates who had undergone surgery prior to their transfer to the ICU (60). One of the 4 
patients died due to the BSI. 

Summary 

K. pneumoniae ST147 is emerging as an important AMR clone and clearly possesses 
most of the essential characteristics that define a global AMR high-risk clone. Studies 
regarding the molecular epidemiology, pathogenicity, virulence, and fitness of ST147 isolates 
and the clinical features of patients infected with ST147 are currently limited. Reports of the 
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global prevalences of ST147 among AMR and non-AMR K. pneumoniae isolates, as well as 
rates of human rectal colonization among the hospital and community population, are absent 
or rare in the literature. 

CONCLUSIONS 

The presence of AMR isolates among “classic/nonhypervirulent” K. pneumoniae 
isolates is relatively common, but only limited clones (especially those that belong to CG258 
and CG14) have the necessary attributes to qualify as high-risk clones (88). However, sparse 
information is available about which specific features of high-risk clones have enabled them 
to become such successful global pathogens in relatively short times (3). There is an 
enormous public health burden due to K. pneumoniae AMR high-risk clones, and they have 
played pivotal roles in the global spread of AMR (5). The basic biological mechanisms 
responsible for the overall success of high-risk clones remain poorly understood. This lack of 
information has limited the ability of the medical community to develop strategies for 
curbing the dissemination of such clones (3). 

Genomic studies have suggested that certain AMR determinants, virulence factors, 
and fitness might be important factors for the success of AMR high-risk clones (2). It is also 
likely that mobile genetic elements, such as plasmids, contributed to the diversification and 
“clonalization” of the K. pneumoniae population in general (88). 

The roles of virulence factors in the global dominance of certain high-risk AMR 
clones among classic/nonhypervirulent K. pneumoniae infections are murky at best. It is 
plausible that fitness is pivotal for the continued success of AMR high-risk clones, even in 
antibiotic-free environments. Fuzi and colleagues recently proposed that the roles of multiple 
stepwise mutations in gyrA and parC were central to favorable fitness (defined as “greater 
speed of replication”) for successful clones among Staphylococcus aureus, K. pneumoniae 
(i.e., CC15), E. coli, and Clostridioides difficile (89). Low levels of fluoroquinolones, likely 
in the environment, played an important role in the initial selection of certain stepwise QRDR 
mutations with subsequent minimal effects on the burden and fitness normally associated 
with AMR (89). 

Global surveillance data regarding the prevalence of high-risk clones among K. 
pneumoniae populations are biased toward certain regions and countries with the financial 
capacity and the necessary expertise to perform large-scale genomic surveillance studies that 
are able to identify AMR high-risk clones. Low- and middle-income countries (LMICs), in 
general, lack the necessary funds and capability to perform such genomic surveillance 
studies. This has hampered the medical community’s understanding of the true prevalence 
and global distribution of such clones. 

K. pneumoniae ST307 and ST147 are recent additions to the family of successful 
clones in the species (Table 1). Both clones appeared in the K. pneumoniae MLST database 
in the late 2000s and in a relatively short time became prominent global pathogens, spreading 
to all the continents (with the exception of Antarctica) (Fig. 1 and 2). ST307 and ST147 are 
associated with various carbapenemases (KPCs, NDMs, OXA-48-like, and VIMs). ST307 is 
endemic in Italy, Colombia, Texas, and South Africa, while ST147 is endemic in India, Italy, 
Greece, and certain North African countries. Both clones have been introduced into regions 
of nonendemicity, leading to various worldwide nosocomial outbreaks. 
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TABLE 1 Characteristics of K. pneumoniae ST307 and ST147 

Characteristic 
Descriptiona 

ST307 ST147 

Country of 
isolation 

Netherlands Hungary 

Yr of isolation 2008 2005

Regions of 
endemicity 

Italy, Colombia, South Africa 
Italy, Greece, Algeria, Tunisia, Libya, 
India, United Arab Emirates 

Countries with 
hospital outbreaks 

USA (Texas), Argentina, Portugal, Spain, 
France, UK, Germany Netherlands, Slovenia, 
Iran, Romania, Pakistan, China, Nepal, 
Thailand, Taiwan, South Korea, Mexico, 
Cambodia 

Brazil, Argentina, Portugal, Spain, France, 
UK, Germany, Poland, Bulgaria, Hungary, 
Iran, Oman, Yemen, Pakistan, Nepal, 
China, Australia, South Korea 

Countries with 
case reports 

Brazil, Guinea, Austria, Saudi Arabia, Oman, 
Yemen, Japan, Australia 

Canada, USA, Ecuador, Venezuela, 
Denmark, Sweden, Norway, Finland, 
Switzerland, Czech Republic, Saudi 
Arabia, Lebanon, Japan, Thailand, 
Cambodia

AMR 
determinants 

    

    β-
Lactamases 

Various; most prominent are CTX-M-15, 
KPCs, NDMs, OXA-48, OXA-181, VIMs 

Various; most prominent are SHVs 
ESBLs, CTX-M-15, KPCs, NDMs, OXA-
48, OXA-181, OXA-204, VIMs 

    Others gyrA 83I, parC 80I, multiple others gyrA S83I, parC S80I, multiple others

Molecular 
epidemiology 

Emerged in early 1990s; associated with 
blaCTX-M-15 

Emerged in early 1990; associated with 
blaCTX-M-15

  
Six clades: I–IV (USA [Texas]), V (global), VI 
(South Africa) 

Limited information about clades; six 
identified that correlated with location

  
Various genetic environments and plasmid 
platforms 

Various genetic environments and plasmid 
platforms

Acquisition 
Nosocomial with intra- and interhospital spread 
between cities and provinces, LTCFs

Nosocomial with intra and inter hospital 
spread, LTCFs

Types of infection Colonization, BSIs, UTIs, RTIs BSIs, UTIs, RTIs, Colonization 

Mortality Limited information; 19% Limited information; 48–59% 

AMR high-risk 
clone 

Yes Yes 

aLTCFs; long-term care facilities. 
 

ST307 and ST147 share strikingly similar features (Table 1). Both clones likely 
emerged in Europe during the early to mid-1990s, following the introduction of ciprofloxacin 
into clinical medicine. Genomic studies have shown that they contained identical gyrA and 
parC mutations and likely obtained IncF or IncR plasmids with blaCTX-M-15 in the early to 
mid-2000s, which aided in the global spread of both clones (Fig. 3). In certain regions, they 
also acquired plasmids with various carbapenemases, likely during the late 2000s and early 
2010s (e.g., blaNDM and blaOXA-181 were likely acquired in India; blaKPCs was likely acquired 
in Greece, Italy, Texas, and Colombia, while blaOXA-48 was likely acquired in North Africa 
[Fig. 3]). These additional carbapenem resistance determinants enabled ST307 and ST147 to 
establish themselves as important endemic pathogens in certain regions of Greece, Italy, 
Colombia, India, and South Africa. 
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FIG 3 Stepwise progression of K. pneumoniae ST307 and ST147 toward carbapenem resistance. (A) K. 
pneumoniae ST307 likely emerged during the mid-1990s, and its global dispersion occurred during the early 
2000s, driven primarily by the acquisition of blaCTX-M-15 located on highly similar FIB-like plasmids, which 
aided in the global spread. In certain regions, ST307 also acquired plasmids with various carbapenemases 
(especially KPCs) during the late 2000s and early 2010s (e.g., blaKPC-2 was likely acquired in Greece, Italy, 
Texas, and Colombia). (B) K. pneumoniae ST147 likely emerged around the early 1990s, and its global 
dispersion occurred during the late 1990s and early 2000s, primarily driven by the acquisition of blaCTX-M-15 
located on IncF or IncR plasmids. Further global spread of ST147 then occurred in the mid- to late 2000s and 
was associated with the acquisition of various carbapenemases at different geographic locations (e.g., blaNDM-1 
was likely acquired in India). 
 

This brings up some intriguing issues regarding the stepwise progression of high-risk 
clones toward carbapenem resistance. Previous studies have shown that fluoroquinolone 
resistance due to QRDR mutations, combined with the acquisition of IncF plasmids 
containing blaCTX-M-15, was pivotal in the global dominance of E. coli ST131 clade C (1). It 
seems that a similar scenario unfolded with K. pneumoniae ST307 and ST147, namely, the 
initial selection of fluoroquinolone resistance due to stepwise QRDR mutations followed by 
acquisition of plasmids containing blaCTX-M-15 (Fig. 3). Carbapenemases are currently 
relatively rare among E. coli ST131 isolates (90). K. pneumoniae ST307 and ST147, though, 
took the additional step toward panresistance and established themselves as important vectors 
and reservoirs of AMR determinants in certain regions of Greece, Italy, Colombia, and South 
Africa (Fig. 1 to 3). 

Basic mechanistic, evolutionary, surveillance, and clinical studies are urgently 
required to investigate the reasons for the success and high transmission rates of these high-
risk clones. K. pneumoniae ST307 clade VI spread rapidly and seemingly effortlessly 
between various hospitals across South Africa, despite infection and prevention measures 
(22). A PCR for the detection of ST307 clade VI has been published and was used to track 
the clade throughout northeastern South Africa (22, 26). The medical community needs 
similar approaches for the rapid and cost-effective detection of K. pneumoniae high-risk 
clones, including all ST307 clades and ST147. Such approaches will provide essential 
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information on the global prevalence and distribution of K. pneumoniae high-risk clones, 
including LMICs. 

The use of antimicrobial agents will continue to create selection pressure that 
enhances the risk for the selection of AMR high-risk clones and provides opportunities for 
them to cause infections, especially in immunocompromised patients. Research projects 
addressing which features are important for the success of such clones are currently lacking 
and need to be funded. Such projects will serve as models to predict what can possibly 
happen in the future with the continuing emergence of successful clones among clinically 
relevant bacteria. 
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