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Abstract 

Context: Data obtained from camera traps are increasingly used to inform various 
population-level models. Although acknowledged, imperfect detection probabilities within 
camera-trap detection zones are rarely taken into account when modelling animal densities. 

Aims: We aimed to identify parameters influencing camera-trap detection probabilities, and 
quantify their relative impacts, as well as explore the downstream implications of imperfect 
detection probabilities on population-density modelling. 

Methods: We modelled the relationships between the detection probabilities of a standard 
camera-trap model (n = 35) on a remotely operated animal-shaped soft toy and a series of 
parameters likely to influence it. These included the distance of animals from camera traps, 
animal speed, camera-trap deployment height, ambient temperature (as a proxy for 
background surface temperatures) and animal surface temperature. We then used this 
detection-probability model to quantify the likely influence of imperfect detection rates on 
subsequent population-level models, being, in this case, estimates from random encounter 
density models on a known density simulation. 

Key results: Detection probabilities mostly varied predictably in relation to measured 
parameters, and decreased with an increasing distance from the camera traps and speeds of 
movement, as well as heights of camera-trap deployments. Increased differences between 
ambient temperature and animal surface temperature were associated with increased detection 
probabilities. Importantly, our results showed substantial inter-camera (of the same model) 
variability in detection probabilities. Resulting model outputs suggested consistent and 
systematic underestimation of true population densities when not taking imperfect detection 
probabilities into account. 

Conclusions: Imperfect, and individually variable, detection probabilities inside the detection 
zones of camera traps can compromise resulting population-density estimates. 
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Implications: We propose a simple calibration approach for individual camera traps before 
field deployment and encourage researchers to actively estimate individual camera-trap 
detection performance for inclusion in subsequent modelling approaches. 

Additional keywords: detectability, mark–recapture, performance, random encounter model. 

 

Introduction 

Camera traps are now an essential tool in ecology and conservation, and are widely used in 
ecological studies designed to assess animal diversity, species occupancy, densities and even 
animal behaviours (see reviews by Trolliet et al. 2014; Burton et al. 2015; Marvin et al. 
2016; Caravaggi 2017). They are robust, economical and relatively non-intrusive, and can 
produce otherwise unobtainable datasets so large that deep learning approaches are needed to 
aid automated image identification (Norouzzadeh et al. 2018; Tabak et al. 2018). 
Accordingly, there has been huge growth in the deployment of camera traps in terrestrial field 
studies, but accompanying this there has been increased scrutiny of study designs and their 
inherent assumptions (Foster et al. 2012; Hamel et al. 2013; Hofmeester et al. 2019). 
Inappropriate design may result in poor detectability and, so, camera-trap sampling designs 
must be rigorously tested to optimise detection of the target species (Stokeld et al. 2015; 
Apps and McNutt 2018). Arising from this need for improved rigour is the need to account 
for imperfect detection probabilities of study organisms. These detection probabilities can 
occur at two levels, namely (1) where individuals or species present are not detected because 
of them not entering the small camera-trap detection zone, and (2) where individuals do pass 
through the camera-trap detection zones, but are not detected (Burton et al. 2015). Some 
modelling approaches, particularly occupancy models, explicitly model the overall detection 
probabilities of study animals (i.e. the likelihood of detecting a species if present in the study 
area; O’Connell and Bailey 2011; Lewis et al. 2015). However, many study designs 
implicitly assume that the probability of detecting study animals within the detection zones of 
camera traps is perfect (i.e. that any study animal passing within the detection zone of an 
individual camera trap will be detected), or at least nearly so (e.g. Neilson Avgar Burton 
Broadley and Boutin 2018). Whereas this assumption is more often than not, not met 
(Rowcliffe et al. 2011; Burton et al. 2015; Jacobs and Ausband 2018), it has largely been 
dealt with only conceptually (Hofmeester et al. 2019), and we are not aware of any field 
studies that have explicitly taken this into account when using camera-trap data for estimating 
population densities. 

Variables known to influence detection probabilities of animals in camera-trap data include 
animal size (Rowcliffe et al. 2011; Anile and Devillard 2016) and the distances of study 
animals from camera traps within their detection zones (Randler and Kalb 2018). Moreover, 
the behaviour of animals when they detect camera traps is likely to influence repeat 
detections (Meek et al. 2014, 2016a). High ambient temperatures are generally considered to 
have a negative influence on detections, as lower background surface temperatures tend to 
create a bigger infrared-light contrast with animals (typically endothermic) characterised by 
higher surface temperatures (Swann et al. 2004). Although not a measure of camera-trap 
performance, warmer ambient conditions may also lead to increased activity levels of study 
organisms, thereby leading to increased detection numbers (Randler and Kalb 2018). Another 
variable likely to influence detection probabilities in camera-trap data is the variability in 
probabilities associated with differences in camera-trap models (Meek et al. 2015; Driessen 
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et al. 2017). Last, higher average movement speeds of study animals may generate potentially 
lower detection probabilities (Rowcliffe et al. 2011). 

Here, we investigated detection probabilities associated with standard, mid-range camera 
traps, and aimed to quantify the influences of several parameters. These included animal-
movement speed, distance from camera traps, camera-trap deployment heights and 
differences between the surface temperatures of animals and the background surface 
temperatures. We expected detection probabilities to be influenced by all the above-
mentioned parameters and further aimed to explore the likely impacts that imperfect 
detections have on population-level model outputs. Using random encounter models, we 
specifically assessed the impacts of modelled detection probabilities on population-level 
density estimates obtained for known population densities. 

 

Materials and methods 

Camera-trap detectability trials 

We used 35 Primos ProofCam 3 camera-traps (Primos Hunting, Flora, MS, USA) set on a 
homogenous environment (LC de Villiers sports field, University of Pretoria) to assess 
variation in camera-trap detection rates. The trialled camera traps incorporate wide angle, 
multi-zone Fresnel lenses over the passive infrared sensors and have general specifications 
typical for mid-range camera-trap models (Table 1). 

 
Table 1.  Specifications of the camera-trap model used 

Specifications are from the owner’s manual, whereas the detection angle and field of view are reported from 
reviews conducted on ‘Trailcampro.com’ (https://trailcampro.com, accessed 15 January 2019) 

 

 
Camera traps were set at various heights from the ground, such that the centre of each motion 
sensor was between 20 cm and 80 cm from the ground, and aimed parallel with the ground 
surface (i.e. no dip or tilt). Camera traps were randomly assigned a setup height of ~20, 40, 
60 or 80 cm and placed in position accordingly (the height of the passive infrared sensor 
(PIR) from the ground was then measured after setup). Camera traps were programmed to 
take bursts of two images when triggered and to the minimum trigger interval (3 s). We then 
ran a series of controlled trials (46 trials, resulting in 1988 data points) by using an animal-
shaped soft toy (shaped after a Californian sea lion, Zalophus californianus) mounted on a 
radio-controlled vehicle and fitted with a hot water bottle (capacity of 1.5 L, but filled to ~1 L 
to limit weight on the underlying vehicle) to simulate higher, but heterogenous, animal 
surface temperatures (Fig. 1). The overall dimensions of this target were 50 cm 
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(length) × 30 cm (width) × 30 cm (height). Distances of 2, 4, 6, 8 and 10 m in front of the 
camera traps were marked out with tennis balls. The target was then driven in a straight line 
parallel to the camera traps and as close as possible to the series of distance markers. Each 
trial consisted of a single pass of the target at a set distance from the camera traps (between 
2 m and 10 m) and travelling at measured speeds and recorded directions (either left to right 
or right to left). We conducted trials at various times of day, starting at sunrise until midday 
over two separate days during winter in the Highveld region of South Africa. Daily 
temperature fluctuations are high during this time of year, when minimum night-time 
temperatures are regularly below 3°C, rising to maximum temperatures above 20°C during 
the day. For each of the trials, we measured the ambient temperature, as well as the surface 
temperature of the hot water bottle mounted on the model by using a Eutech EcoScan Temp 6 
thermoprobe (Thermo Fisher Scientific Inc., Franklin, MA, USA) and a Sentry ST642 hybrid 
infrared thermometer (Sentry Optronics Corp., New Taipei City, Taiwanoration) respectively. 
Ambient temperature was assumed to represent the background surface temperature, given 
that background surfaces were too distant (>25 m) to measure conveniently. 
 
Fig. 1.  Experimental setup, illustrating the animal model used (a); and the array of mounted camera traps (b).

 

We measured or calculated the following predictor variables for each of the camera-trap 
trials:  

 distance from camera trap (hereafter ‘distance’): 2-m intervals including 2, 4, 6, 8 and 
10 m; 
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 speed of the animal model (hereafter ‘speed’): time (in s) to travel set distances for 
each trial was measured using a hand-held stopwatch, with a recording resolution of 
two decimals. Speed was subsequently expressed in m s−1; 

 height of camera-trap deployment (hereafter ‘height’): the height of the passive 
infrared sensor from the ground; 

 the difference between the animal model surface temperature and the ambient 
temperature (hereafter ‘ΔTemp’). Given the homogenous nature of the study area 
(sports field), we assumed the ambient temperature to be a suitable proxy of the 
background surface temperature, which is important for functioning of the passive 
infrared sensor (Welbourne et al. 2016). 

A positive detection was defined as, at least, one image (in the burst of two images when a 
camera trap was triggered) recording more than a third of the body length of the model 
animal. 

We used a binomial generalised linear mixed-effects model (GLMM), implemented using the 
‘lme4’ package (Bates, Maechler, Bolker and Walker 2015) in the R programming 
environment (R Core Team 2019) to explore the influences of predictor variables on 
detection rates, and including individual camera traps as random effects. Our binomial 
GLMM included ‘height’, ‘distance’, ‘speed’ and ‘ΔTemp’ as predictor variables, such that 

 

Model outputs were visualised using the ‘sjPlot’ interface package (Lüdecke 2018) for 
generating plots with ‘ggplot2’ (Wickham 2016). 

Simulated detections 

We applied the resulting GLMM outputs to predict the likelihood of cameras detecting 
animals of a size similar to our target passing in front of modelled populations of animals. 
For this, we generated correlated random-walk movements of 12 animals across a 
hypothetical environment. Individual tracks were generated in the adehabitatLT package 
(Calenge 2006), given a scaling parameter (h) of 1 and a default concentration (r) parameter, 
and allowed to run for a total of 540 000 steps each. Each step was, subsequently, assumed to 
represent a single movement per second, thereby representing activity periods of 5 h per day 
over a period of 30 days. Tracks were then projected onto a surface with a pre-placed array of 
25 equally spaced locations representing camera traps. 

To extract individual positions within the assumed detection ranges of the camera traps, we 
first retained all track positions that were closer than 11 m from any camera trap (so as to 
retain positions within a similar distance from camera traps as used in the detection-
probability trials), and calculated the radian angle (i.e. bearing where 90° = direct east and 
−90° = direct west) between the camera trap and track location by using the geosphere and 
maptools packages (Lewin-Koh et al. 2011; Hijmans Williams and Vennes 2017). We then 
visually inspected the distributions of all radian angles, identifying the camera trap/track 
angles with the highest frequency for each camera trap. We used these values as the centre of 
a defined 50° arc and retained track positions within these arcs. This simulated a more 
realistic field situation where camera traps are usually placed to face directions that assume 
some likelihood of study organisms passing (e.g. camera traps are not placed such that they 
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face directly towards visual barriers, even when deploying camera traps at randomised 
locations; Cusack et al. 2015a). We further filtered the track locations to retain only the first 
track positions in a sequence of locations within the detection range (i.e. within the defined 
50° arc and closer than 11 m) that were separated by intervals of 60 s or less. 

Next, we used Model 1 to predict the probability of individual locations being detected in two 
thermal scenarios (ΔTemp = 20°C and ΔTemp = 10°C), on the basis of their distance from the 
camera traps and speed of movement, and assuming a camera-trap height of 40 cm (chosen as 
the rounded value from the mean height, 42 cm, of the camera traps used in the detection-
probability trials). We then fitted these probabilities to a binomial density distribution for 
each record, thus identifying each record as either a ‘detected presence’ or a ‘non-detected 
presence’. 

Assessing influence of imperfect detection rates on density estimates 

To explore the influence of varying detection rates on subsequent model outputs, we fitted a 
series of random encounter models to varying densities and three detection scenarios (perfect 
detection, Δtemp = 25°C detections and Δtemp = 10°C detections) on the basis of the 
simulated dataset. We fitted these to the full simulated dataset (n = 12 tracks), as well as five 
subsets of this dataset, sequentially removing two tracks each time up to a minimum of two. 
Random encounter models are an approach to obtaining population-density estimates for 
animals that are not individually identifiable (Rowcliffe et al. 2008), and have been applied to 
estimate densities of several mammal populations (e.g. Manzo et al. 2012; Cusack et al. 
2015b; Lucas et al. 2015; Caravaggi et al. 2016; Pfeffer et al. 2018). Models were fit using 
the remBoot package (Caravaggi 2017) and assuming daily travel distances of 0.17 km 
(calculated as average total straight-line distance travelled per day by all simulated tracks) 
and a 100% functionality of simulated camera traps for a sampling period of 30 days 
(therefore equalling 18 000 h). We used a bootstrapping approach (1000 iterations with 
replacement) to estimate standard deviations of density estimates. All statistical analyses 
were performed in the R programming environment (R Core Team 2019). 

 

Results 

Detection probabilities 

Animal model travel speeds averaged 1.04 ± 0.58 m s−1 (range: 0.08–3.66 m s−1) during the 
detection-probability trials. Ambient temperatures averaged 19.3 ± 7°C (range: 0.3–24.8°C) 
and animal-model surface temperatures averaged 31.2 ± 4.8°C (range: 16–38°C). This 
resulted in ΔTemp values averaging 11.3 ± 3.3°C (range: 5.42–22.9°C). Overall detection 
success rate in our trials was 58.2%. 

The GLMM outputs illustrated significant relationships between all predictors (distance, 
speed, height and ΔTemp) and detection success rates (Table 2, Fig. 2). Speed had a strong 
influence on detection rate, with increasing speeds associated with a decreased detection 
success. Similarly, increased distance from camera traps was associated with decreased 
detection rates. Detection rates were positively related to ΔTemp values, increasing with 
greater differences between the model surface temperature and the ambient temperature. 
Estimated between-camera trap deviation was 1.1 (Table 2), suggesting (relative to other 
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effect sizes, which ranged between −0.96 and 0.13) that there was substantial variation in 
detection probabilities among individual camera traps (Fig. 3). Predicted detection 
probabilities for individual camera traps in relation to fixed effects are presented as Figs S1–
S3, available as Supplementary material to this paper. 

 
Table 2.  Coefficient estimates and Wald χ2 test outputs from generalised linear mixed-effects model 

(GLMM) assessing parameter influences on camera-trap detection success rates 
Standard errors are reported for all parameters, except for the random effect where the standard deviation is 

reported

 
Fig. 2.  Predicted detection probabilities (model 1) illustrating decreased detection probabilities at higher travel 
speeds and increased distances from camera traps (by colour) for three thermal scenarios (Δtemp = 8°C, 11°C 

and 14°C).
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Fig. 3.  Random effects plot generated from model 1 (GLMM) illustrating the heterogeneity in performance 
between individual camera traps.

 

Simulation 

Simulated animal trajectories are presented in Fig. 4. Random encounter model density 
estimates (±s.d.) under a perfect detection scenario included the true density for three of the 
simulated densities (Fig. 5), but slightly overestimated the density for scenarios of 12 
(estimated as 13.2 ± 0.5), four (estimated as 4.8 ± 0.2) and two (estimated as 2.3 ± 01) animals 
respectively. Estimated densities under the two alternative modelled scenarios 
(ΔTemp = 25°C and ΔTemp = 10°C) were mostly lower than the true densities (Fig. 5), 
except the estimated density for a true density of four animals in the ΔTemp = 25°C scenario 
when the predicted density of 4.1 ± 0.2 included the true density. On average, density 
estimates for the ΔTemp = 25°C scenario were 14.4% lower than was the true simulated 
density, whereas density estimates for the ΔTemp = 10°C scenario were 52.6% lower than 
were the true simulated densities (Fig. 5). 
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Fig. 4.  Simulated animal trajectories for six animal-density estimate scenarios. Animal trajectories (indicated 
in grey) were obtained using a correlated random-walk simulation. Each individual track consists of 540 000 
steps, generated using a scaling parameter (h) of assumed here to represent a single movement per second. 

Triangles illustrate the positions, but not the detection zones, of equally spaced (250 m apart) camera traps in 
the simulated environment.

 
Fig. 5.  Random encounter model density estimates under three scenarios for each of the six true densities 

represented in Fig. 4. Initial detections were defined as track presences (spaced more than 60 s apart) within a 
defined detection zone (see Materials and methods). Predicted detections were generated using Model 1 and 
fitting a binomial model to resulting detection probabilities under the two thermal scenarios (ΔTemp = 25°C 
and ΔTemp = 10°C). ΔTemp = the difference between ambient temperature and the modelled animal surface 

temperatures (surface temperature – ambient temperature).
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Discussion 

Detection probabilities for our model sea lion within the overall detection ranges of the 
camera traps were smaller than one, as has been found in other studies (Rowcliffe et al. 2011; 
Hamel et al. 2013; Burton et al. 2015; Jacobs and Ausband 2018). Detection probabilities are 
sensitive to camera-trap deployment height and negatively associated with distance from the 
camera traps, as well as speed of animal movement and differences between the surface 
temperature of animals and background surface temperatures. Although many of these 
relationships are not unexpected and have been reported on and discussed by others (Hamel 
et al. 2013; Randler and Kalb 2018; Hofmeester et al. 2019), some are less well understood. 
For example, the influence of camera-trap deployment height on detections is inconclusive in 
the literature, with some studies reporting negative associations (Meek et al. 2016b), and 
more recent studies reporting no influence on detections (Jacobs and Ausband 2018). 
Although we did not assess detection from the heights (up to 3 m) used in other studies (our 
camera traps were deployed at maximum heights of 80 cm), our results did suggest a general 
decrease in detection rates with an increased deployment height. This may be compensated 
for if camera traps are carefully tilted with an appropriate angle of coverage, although such 
tilting results in further restriction to detectible heights and angles (Apps and McNutt 2018). 

The need to account for imperfect detection probabilities when using camera-trap data for 
subsequent population-level modelling exercises is an important finding of the present study. 
We specifically used a random encounter model framework to establish whether imperfect 
detection probabilities (within the detection ranges of camera traps) are likely to result in 
substantial influences on outputs obtained from modelling exercises that assume perfect or 
near-perfect detection probabilities within the detection ranges (e.g. distance sampling 
approaches that assume certain detection at close distance; Howe et al. 2017). Although 
occupancy models and mark–recapture modelling approaches do account for site detection 
probabilities that are smaller than one (i.e. an organism being present on a site, but not 
detected, MacKenzie et al. 2002), it is useful to understand the scope of bias specifically 
associated with imperfect detection probabilities inside of camera-trap detection ranges. The 
random encounter models under a perfect detection scenario did not capture the true densities 
for three of the modelled densities (two, four and 12 animals). However, the errors of these 
estimates ranged between 0.2 animals per km2 (for a true density of 2 animals per km2) and 
0.7 animals per km2 (for a true density of 12 animals per km2) from the true values, and we, 
therefore, consider the estimates rendered to be sufficiently accurate for most field 
applications. Importantly, when computing random encounter model estimates based on 
likely detections for two different temperature scenarios, we demonstrated systematic under-
estimation of true densities because of imperfect detection probabilities within the detection 
ranges of camera traps. 

Differences in performance among different models of camera trap are well known (e.g. 
Driessen et al. 2017; Apps and McNutt 2018). Importantly, our results showed marked 
differences in performance also among individual camera traps of the same model and 
specifications. This supports the outcomes of Hughson et al. (2010), who suggested there 
may be such performance differences on the basis of a comparison of animals captured 
visiting a water source monitored by up to 10 camera traps consisting of six different models. 
Therefore, accounting for performance variability of the camera traps themselves could have 
a major influence on the precision of population and other estimates. Our study design did not 
include moving individual camera traps among mounting locations in the array that we used, 
and it is, therefore, possible that some correlation exists between the individual mounting 
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locations and the performance of individual camera traps. However, we consider the 
environment in which the trials were conducted to be sufficiently homogenous and, therefore, 
unlikely to be influenced by substantial differences in microsite characteristics (such as e.g. 
influences of camera trap-specific temperatures) for this to have played an important role in 
explaining the inter-camera-trap variation in performance. Performance differences among 
camera trap models can be substantial (Driessen et al. 2017) and it is possible that some 
camera-trap models are sufficiently similar in overall performance so that individual-level 
camera-trap performance does not influence resulting outputs. However, our results suggest 
that best practice in camera-trap study design should incorporate calibrating individual 
camera traps before field deployment to enable correction for differences in detection 
performance among traps post hoc. At the very least, an assessment of individual variability 
in detection would enable subsequent model building to include a realistic estimate of camera 
trap-performance variability as a covariate (Fig. 6). 

 
Fig. 6.  Best-practice guidelines for quantifying individual camera-trap detection errors. The steps indicated are 

recommended to generate meaningful detection error terms that can be incorporated into further population-
modelling exercises. AAnimal movement speeds can likely either take the form of direct speed estimates from 
multiple camera -trap images in sequence (or video sequences), or alternatively from tracking/telemetry data if 

available for the study species. BDistances and angles from camera traps should ideally be marked out (e.g. 
Hofmeester et al. 2017), or at least estimated using measured distances to identifiable landmarks in the camera-
trap field of view. CMany camera-trap models incorporate a built-in temperature sensor providing an estimate 
of the ambient temperature. While this may not always be reflective of overall ambient conditions, depending 

on camera trap placement (e.g. in direct sunlight vs in the shade), overall agreement with ambient temperatures 
seem reasonable (see Fig. S4). 

 

In summary, our results illustrated the influence of several factors on camera-trap detection 
probabilities inside camera-trap detection zones. Researchers should be aware of the 
limitations imposed by imperfect detections within the detection zones of camera traps, and 
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we recommend adequate individual camera-trap calibration and field measures to quantify 
likely effects on resulting research outcomes (Fig. 6). 
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