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ABSTRACT 

Maximum likelihood estimation when modelling 

in terms of constraints 

by 

G. B. Matthews 

Supervisor: Professor N .A.S. Crowther 

Department of Statistics 

University of Pretoria 

Pretoria 

IV 

A maximum likelihood (ML) estimation procedure is developed to find the 

mean of the exponential family subject to the constraints g(µ) = 0, where 

g is a vector valued function of the mean µ, satisfying the usual regularity 

constraints. This result forms the basis of an iterative procedure whereby 

the ML estimates of the mean values of a particular model are found. The 

constraints on the mean vector may be linear or non-linear. The application 

of the procedure provides a very :flexible method for modelling data either 

directly in terms of certain constraints or in terms of the implied constraints 

of the appropriate model. The approach accommodates any choice of model 

assuming any predetermined distribution of the error terms, provided that the 

covariance matrix of the error terms can be computed. 
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This estimation procedure is implemented in estimating the expected frequen­

cies for models suitable for cross-classified data. Models included are the log­

linear model, models of marginal homogeneity, symmetry quasi-symmetry and 

quasi-independence. The estimation procedure also proves useful when for­

mulating certain models in terms of the cross-product ratios instead of the 

standard parametric versions. Contingency tables containing structural ze­

ros are also investigated and models for such tables are expressed in terms of 

constraints so that the estimation procedure is once again successfully imple­

mented. 

Estimation is also carried out for the class of models called generalized linear 

models, where the error terms may have a Poisson, binomial, multinomial, 

normal, gamma or inverse Gaussian distribution. In most cases these models 

are written in terms of the implied constraints and the ML estimates for the 

mean values and the model parameters are found. Models considered here are 

the logit type models, logistic regression, the proportional hazards model as 

well as other ordinal models. 

The problem of estimating a covariance matrix for the multivariate normal 

distribution, in the presence of certain constraints on the elements, is also 

solved by implementing the proposed estimation procedure. 

From the applications, it is evident that this estimation procedure provides a 

very natural and flexible method for finding the ML estimates of the parame­

ters for a wide variety of statistical models. 
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VI 

'n Maksimumaanneemlikheid beramingsprosedure word ontwikkel om die ver­

wagte waarde van die eksponensiaal familie onder die beperkings g(µ) = 0, 

waar g 'n vektorwaardige funksie van die gemiddelde µ is, wat die gewone 

reelmatigheids voorwaardes bevredig. Hierdie resultaat vorm die basis van 

'n iteratiewe prosedure wat gebruik word om die maksimumaanneemlikheids­

beramers (MAB's) van die verwagte waardes van 'n bepaalde model te vind. 

Die beperkings op die vektor van verwagte waardes kan lineer of nie-lineer 

wees. Die prosedure is 'n baie soepel metode om data te modelleer in terme 

van die spesifieke beperkings of in terme van die ge1mpliseerde beperkings 

van die betrokke model. Die prosedure omvat enige modelkeuse met enige 

voorafbepaalde verdeling van die foutterme, mits die kovariansiematriks van 

die foutterme bepaal kan word. 
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Vll 

Die beramingsprosedure word geimplementeer om die verwagte frekwensies te 

beraam vir modelle wat geskik is vir kruisgeklassifiseerde data. Modelle hierby 

ingesluit is die loglineere model, modelle van marginale homogeniteit, simme­

trie, kwasi-simmetrie en kwasi-onafhanklikheid. Die prosedure is ook nuttig 

wanneer modelle in terme van kruisprodukverhoudings geformuleer word en nie 

in terme van die gebruiklike parametriese variasies nie. Gebeurlikheidstabelle 

met strukturele nulle word ook ondersoek en modelle vir sulke tabelle word in 

terme van beperkings uitgedruk sodat die beramingsprosedure weereens suk­

sesvol toegepas word. 

Beraming word ook uitgevoer vu die sogenaamde klas van veralgemeende 

lineere modelle, waar die foutterme 'n Poisson-, binomiaal-, mutinomiaal-, 

normaal-, gamma- of inverse normaalverdeling kan besit. In die meeste gevalle 

word hierdie modelle in terme van die geimpliseerde beperkings geskryf en die 

MAB's vir die verwagte waardes en die parameters in die model word clan 

gevind. Modelle wat hier beskou word, is die tipe logitmodelle, logistiese re­

gressie, die "proportional hazards" -model sowel as ordinale modelle. 

Die probleem van beraming van 'n kovariansiematriks van die meerverander­

like normaalverdeling wanneer daar sekere beperkings op die elemente van die 

matriks is, word ook opgelos met behulp van die voorgestelde beramingsprose­

dure. 

Uit die toepassings is dit duidelik dat die beramingsprosedure 'n natuurlike en 

soepel metode is vir die bepaling van die parameters vir 'n wye verskeidenheid 

van statistiese modelle. 
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Chapter 1 

INTRODUCTION 

Statistical modelling is an important aspect in the analysis of many types of 

data. In formulating a suitable model for a data set, it is important to es­

timate the parameters in the model. R.A. Fisher was the first to study and 

establish optimum properties of the estimates found by maximizing the likeli­

hood function, giving rise to the class of maximum likelihood (ML) estimates. 

The ML estimates are generally preferred because they possess the attractive 

properties of consistency, efficiency and asymptotic normality. 

Alternative estimates of the parameters have been proposed. Grizzle, Starmer 

and Koch (1969) present the non-iterative weighted least squares (WLS) pro­

cedure to obtain the WLS estimates. The ML estimates can be obtained by 

an iterative use of the WLS estimate, where the weight matrix changes at each 

cycle. This procedure is called the iterative reweighted least squares (IRLS) 

procedure. 

Neyman (1949) introduced a class of estimators called minimum chi-squared 

estimates (MMCS) and showed that they are best asymptotically normal es­

timators. Neyman shows that when the model holds, the MMCS estimators 

are asymptotically, as n -t oo, equivalent to the ML estimators. 

The iterative proportional fitting (IPF) algorithm, originally introduced by 

1 
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Deming and Stephan (1940) has been widely used by Haberman (1974, 1978, 

1979) and Bishop, Fienberg and Holland (1975) for parameter estimation in 

loglinear modelling. The method converges to the ML estimates and makes 

use of the so called sufficient configurations. 

A popular method used to find the ML estimates is the Newton-Raphson 

(NR) procedure, which is employed for solving non-linear equations. The NR 

algorithm is an iterative procedure which converges to the ML estimates and 

makes use of a vector of first order partial derivatives and a matrix of second 

order partial derivatives with respect to the parameters in the model. The 

broad class of models referred to as generalized linear models, introduced by 

Nelder and Wedderburn (1972) has become a popular and well used method for 

modelling data. In this framework the observations Yi are independent, come 

from an exponential family and a function of their expectation is written as a 

linear model using an appropriate link function. Agresti (1990) and McCullagh 

and Nelder (1989) show that when the canonical link is used, the NR method 

and the Fisher scoring method, which uses the expected value of the second 

derivative matrix, are identical. 

Maximum likelihood estimation subject to constraints is considered by Aitchi­

son and Silvey (1958), in the context of a random variable X, whose distri­

bution function F depends on s parameters 01 , · · ·, 0s, which are not mathe­

matically independent but satisfy r functional relationships, hi( 01 , · · ·, 0s) = 
0, i = 1, • • •, r; r < s. The Lagrangian multiplier method is used to find the 

ML estimates of the parameters, which are found numerically by a process of 

iteration. The estimates are shown to have an asymptotic normal distribution. 

Silvey (1959) further discusses the Lagrangian method and the mathematical 

conditions for the existence of the ML estimates. Wedderburn (1974) consid­

ers generalized linear models where the systematic component of the model is 

defined by a set of linear constraints. A least squares solution is presented and 

an application to the problem of marginal homogeneity in a contingency table 

is discussed. 
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Haber and Brown (1986) consider a maximum likelihood method for estimating 

the expected frequencies in a contingency table, when the expected frequencies 

are subject to certain linear constraints. A multinomial sampling procedure is 

used and an algorithm involving an iterative procedure is implemented to find 

the ML estimates for the expected frequencies. 

In this thesis we present a maximum likelihood estimation procedure for the 

mean of the exponential family subject to the constraints g(µ) = 0, where g is 
a vector valued function ofµ, satisfying the usual regularity conditions. This 

result is then applied to find the ML estimates of the mean values expressed in 

terms of a suitable model. The proposed estimation procedure can be applied 

to a wide variety of modelling problems. In certain cases, such as in modelling 

frequency data, under the assumptions of symmetry or marginal homogeneity 

for a contingency table, the model may be naturally expressed in terms of 

constraints imposed on the expected frequencies. The proposed estimation 

procedure provides an appropriate approach for finding the ML estimates of the 

expected frequencies. In other cases the method can be employed by writing 

the model to be considered in terms of the implied constraints, which in turn 

can be written in the form g(µ) = 0. The major advantage of this method is 

that it is very flexible for modelling data from different distributions in terms 

of constraints on the mean vector. These constraints may be linear or non­

linear and can be easily formulated either directly or in terms of the implied 

constraints, as will be illustrated in the applications. Another advantage is 

that the estimation procedure can be easily implemented numerically using a 

matrix algebra package. 

It is also necessary to emphasize the fact that the proposed estimation pro­

cedure provides the exact ML estimates on convergence. These estimates are 

thus numerically identical to those obtained by the NR and IRLS procedures. 

Some well known examples are used to show that the estimation procedure 

gives ML estimates which agree with the ML estimates obtained by standard 

statistical packages such as GLIM and SAS. 
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It should also be noted that although statistical packages such as GLIM and 

SAS provide the ML estimates for the parameters of models fitting into the 

class of generalized linear models, we show that the proposed estimation proce­

dure can easily be implemented by using the implied constraints for the model. 

Additional constraints may be added to these models and this enhances the 

implementation of the proposed ML estimation procedure. 

In Chapter 2 the exponential family is introduced and the maximum likelihood 

estimation procedure is formulated and proved in Proposition 1. In Proposition 

2 we find the asymptotic covariance matrix for the ML estimator. Examples 

are presented to illustrate the procedure for Poisson sampling, multinomial 

sampling, negative multinomial sampling and the multivariate normal distri­

bution. The Wishart distribution is also considered and an application is that 

of estimating a covariance matrix in the presence of constraints on some of the 

elements. 

In Chapter 3 we consider the estimation procedure for models for data which 

are arranged in a contingency table. Measures of goodness of fit are sum­

marized and estimation in the linear and loglinear model is discussed. An 

approach of using the constraints implied by the odds ratios provides an inter­

esting alternative for estimation in the loglinear model. Models for ordinal data 

are also reviewed and the estimation procedure for these models is presented. 

In Chapter 4 models for square tables are considered and the estimation pro­

cedure is also implemented for tables which have structural zeros and for the 

quasi-independence model. In the case of square tables, the ML estimates are 

found for the expected frequencies for the models of marginal homogeneity, 

conditional symmetry, diagonal-parameter-symmetry, and for mobility tables 

and models for rater agreement. 

Chapter 5 presents the estimation procedure for logit models and the variations 

such as the cumulative logit model, which is used for an ordinal response 
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variable. The proportional hazards model is also discussed and illustrated by 

means of an example. The estimation procedure for logistic regression and the 

extreme value distribution is also presented. 

Finally in Chapter 6 we consider regression models where the observations 

may have a Poisson, gamma, normal or inverse Gaussian distribution and the 

estimation procedure is once more successfully implemented to provide the ML 

estimates for the parameters. 

Programs implementing the estimation procedure for the examples considered 

in this work, have been written and make use of SAS /IML, which is a procedure 

of the statistical package SAS. This procedure provides a powerful and flexible 

interactive matrix language. The IML programs for the examples are included 

in the Appendix. The example number in the Appendix corresponds to the 

example number as it appears in the relevant chapter. 
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Chapter 2 

A MAXIMUM LIKELIHOOD 

ESTIMATION PROCEDURE 

The aim of this chapter is to introduce the exponential family and formulate an 

ML estimation procedure for the mean of the exponential family subject to the 

constraints g(µ) = 0. The result is then applied to the Poisson, multinomial, 

negative multinomial, Normal and Wishart distribution. 

2.1 THE EXPONENTIAL FAMILY 

The exponential family occupies a central position in the theory of the general­

ized linear model. Earlier work on the exponential family was done by Tweedie 

(194 7) and more recent work has been presented by Barndorff-Nielsen (1978), 

Brown (1986) and Jorgensen (1986, 1987, 1992). Because of the importance of 

the exponential family in the work that follows, the probability function and 

some of the properties of the exponential family will be presented. 

Let X be a p x 1 random vector and 0 be a p x 1 vector of parameters. Jorgensen 

(1987) defines the exponential dispersion model in the multivariate form as 

p(x,\0) = a(A,x)exp{,\(x'0 - K(0))}, x E JRP, (2.1) 

where a and Kare given functions, 0 E 0, where 0 = {0 E JRP: K(0) < oo }. 

Furthermore ,\ > 0 and a 2 = f is called the dispersion parameter. 

6 
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Barndorff-Nielsen (1978) defines the exponential family by 

p(x, 8) = a(8)b(x) exp(x'8), x E IRP, 8 EN 

b(x) exp(x'8 - K-(0)) , (2.2) 

where K( 0) = - ln a( 0) and is referred to as the "cumulant generating func­

tion" or the "log Laplace transform" , and N is the natural parameter space 

for the canonical parameter 0. 

We shall use the definition of the exponential family which is given in (2.2), 

which reduces to (2.1) when A = 1. 

Suppose X is a continuous random vector, with probability density function 

(p.d.f.) belonging to the exponential family. The moment generating function 

of the exponential family is given by 

J · · · J b(x) exp[x'( 8 + t) - K( 0)]dx 

exp[-K( 0)] J · · · J b(x) exp[x'( 0 + t )]dx 

since from the property of the p.d.f. we have 

j · · · j b(x) exp[x'8]dx = exp[K-(8)]. 

Now 

lnMx(t) 
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. r(t) 
where j~ TitW = 0. (Magnus and Neudecker (1991) p.101). 

Hence the mean vector and covariance matrix of X are given by 

8 8 
E(X) = 

88
"-(8) and Cov(X) = 

8888
,"-(8) = V. 

The mean value of X, can also be written as E(X) = µ = r(8) and r(8) is 

called the mean value mapping. Barndorff-Nielsen (1978, p.121) shows that T 

is a one-to-one both ways continuously differentiable mapping of int ( 0) onto 

n = r(int(0)). Since T is one-to-one, the variance covariance matrix V is 

positive definite for any µ in n, cf. Barndorff-Nielsen (1978, p.114). 

The ML estimate of µ without any constraints can be found as follows. The 

log-likelihood function is 

lnp(x, 8) = ln b(x) + x'8 - K-(8). 

Hence 
8 8 

88 
lnp(x, 8) = x -

88 
K-(8) , 

which when set equal to zero, gives solution jl = x, where x 1s a vector 

observation of X. This is a maximum since 

82 
8888' In p( x, 8) = 

and the matrix Cov(X) is positive definite. 

Silvey (1959) gives seven assumptions containing the mathematical conditions 

required to ensure the existence of an ML estimator 8 of 8, the vector of 

unknown parameters appearing in the probability function, when there are 

certain constraints of the form h(8) = 0 imposed on 8. Brown (1986) provides 

a comprehensive discussion of the analytic properties of the exponential family. 

The properties of the exponential family satisfy the assumptions of Silvey and 

this ensures the existence of the ML estimate of the mean of the exponential 

distribution when there are constraints of the form g(µ) = 0. 
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2.2 A MAXIMUM LIKELIHOOD ESTIMATION 

PROCEDURE 

9 

An ML estimation procedure for the mean of the exponential distribution sub­

ject to constraints, is formulated and proved in Proposition I and the asymp­

totic covariance matrix for the estimator is given in Proposition 2. 

Proposition 1 

Consider a random vector X, with probability function belonging to the expo­

nential family. Let g(µ) be a continuous vector valued function ofµ, for which 

the first order partial derivatives exist. Let Gµ = a~~) be the derivative of 

g(µ) with respect toµ and Gx = a~(µ) I 
µ µ=re 

The ML estimate ofµ subject to the constraints g(µ) = 0, is given by 

This result implies that the ML estimate must, in general, be obtained itera­

tively. 

Proof: 

Let 1 be a vector of Lagrange multipliers. To find the ML estimate of µ 

subject to the constraints g(µ) = 0, we maximize 

w(x; 0; ,) = ln b(x) + x' 0 - ,,;(0) + 1
1

9(µ(0)). 

Hence we find 
8 8 [80] 

8
µ w(x; 0; 1 ) = 

80 
w(x; 0; 1 ) 

8
µ . 

Since we set :µ w( x; 0; 1) = 0 for a maximum, and since [ ;: ] is invertible 

8 
for a regular exponential family, we need further only consider 

80 
w(x; 0; ,). 
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Thus 

[
aµ]/ I 

= x-µ+ 80 Gµ,· 

Setting ! w(x; 8; -y) = 0, we get 

(2.4) 

Using the linear Taylor expansion of g(µ) about x, we get 

Setting g(µ) = 0 and solving for,, gives 

Substituting , in (2.4) we get 

Now 
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Hence 

and 

8µ 
88 

[
8µ]' = [8

2
K(8)] =V 

88 8Bi80j ' 

11 

from the fact that K( 8) is twice differentiable at an interior point 80 E N, 
(Brown (1986) Theorem 2.2), and the Hessian matrix HK(8),with ij-th element !::~:] is symmetric (Magnus and Neudecker (1991) p.105). Therefore 

which is the required result. 

Remark 

We shall assume without loss of generality, that Gµ and Gx haver ::; p linearly 

independent rows, so that Gµ VGx is non-singular and (Gµ VGx)-1 therefore 

exists uniquely. If G µ VGx is singular, then this implies that there are linearly 

dependent rows. In this case a generalized inverse of Gµ VGx may be used and 

ji,c is an ML estimator. 

Estimation 

The variance covariance matrix V could be known, or it could be some function 

of µ, say V µ- The iterative use of the estimation procedure thus depends on 

the form of Gµ and V w Consider, for example, the estimation procedure for 

the following cases: 

(i) Let µ = (µ 1 , ... , µp)' and Dµ be a diagonal matrix with the elements of 

µ on the principal diagonal. Suppose g(µ) = Aln(µ) and V = Dµ, then 

Gµ = a:Aln(µ) = AD;1 and Gx = AD;:-1
. 
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Thus 

Let µ(r) denote the rth approximation for the ML estimate itc• At step 

r in the iterative process ( r = 0, 1, 2, ... ) , 

where for r = 0, µ(0
) = x, the vector of data. The process then converges 

to the ML estimate itc• 

(ii) If g is a linear function ofµ, say g(µ) = Aµ and V = Dµ, then 

and (2.3) yields 

Using the notation of (i), the iterative process at step r ( r = 0, 1, 2, ... ) , 

becomes 

(2.6) 

where, as in (i), µ(0
) = x. The process then converges to the ML estimate 

µc. 

(iii) In some cases, as in this simple illustration, the procedure implies a 

double iteration, namely over x andµ. Suppose the elements of X : 3 x 1 

are independent Poisson random variables with parameter vector µ and 

that the observed vector x' = (80 , 15 , 5). The model to be fitted is 

µi = af3i-l . The model implies the restriction 
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In this case 

and 

GxDµG~ = (x1 + X3)µ1µ3 + 4x2µ; . 

In this example the ML estimate of µ must be found iteratively from 

Iteration takes place over x and µ and the procedure runs as follows: 

1. Both x and µ are initially estimated by the data. Now iterate over 

x until convergence is attained. The values for ji,c during this stage 

of iteration, are 

( 

78.5263 ) 
16.6579 

3.5263 
( 

78.5311 ) 
and 16.6525 . 

3.5311 

2. The last value ( :::::~~ ) now becomes the second estimate of 

3.5311 
µ in Gµ and Dµ and once again we iterate over x with initial 

X = ( ~n-
The values for P,c during this set of iterations are 

( 

78. 7931 ) ( 78.8218 ) 
17.4138 and 17.3564 . 

3. 7931 3.8218 
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3. The vector ( ;~:!!!! ) now becomes the third estimate ofµ and 

3.8218 
is replaced in Gµ and Dµ and iteration begins again over x, with 

initial x = P:l, as in 2. 

4. The values for ji,c, in the next set of iterations over x, with the new 

estimate for µ and initial x used in steps 2 and 3, are 

( 

78. 7931 ) ( 78.8218 ) 
17.4138 and 17.3564 . 

3. 7931 3.8218 

The last vector is the same as that in 3 and we have attained con­

vergence. Hence 

( 

78.8218 ) 
ji,c = 17.3564 • 

3.8218 

The same ML estimate may be obtained if the function g(µ) is replaced 

by some other equivalent restriction, for example 

In the last instance, ji,c does not depend on µ and iteration is only over 

x. The same ML estimate is obtained in the case of multinomial sam­

pling. The only difference is that V is now replaced by the multinomial 

covariance matrix. 
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Proposition 2 

The asymptotic covariance matrix of ftc is given by 

Proof: 

Now since x .!.+µand Gx .!.+ Gµ, ftc ~ (I U) ( x ) , where 
g(x) 

15 

(2.7) 

U = -(Gµ V µ)'(Gµ V µG~t 1
. Making use of the "delta method" (Bishop, 

Fienberg and Holland (1975)), the asymptotic covariance matrix of ( x ) is 
g(x) 

given by 

[ !(gtx))lxJ Vµ [ :xCtJlx=J 
= [ I l V µ [I G' µ] = [ V µ ( G µ V µ )' ] 

Gµ Gµ V µ Gµ V µG'µ 

Thus ftc has asymptotic covariance matrix 

Useful applications of the result in Proposition 1 are considered in the following 

examples. The results in these examples can be used to find the ML estimates 

of the parameters in models assuming the appropriate underlying distribution 

of the observations. 
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Example 2.1: The Poisson Distribution. 

Let Xi, i = 1, ... ,P be independent Poisson variables with E(Xi) = µi. The 

likelihood function is 

p p p 

l = exp(- L µi) IT µr I II Xi! . 
i=l i=l i=l 

Thus the log-likelihood function is given by 

p p p 

L = ln(l) = - L µi + L Xi ln(µi) - ln IT Xi! . 
i=l i=l i=l 

Hence 0i = ln(µi) and 

i = 1, ... ,p. 

Thus 
1 

0 
/11 

1 
88 µ2 
8µ 

0 
1 

and 

(aor--Dµ 
8µ 

where Dµ is a diagonal matrix with the elements ofµ = (µ 1 , ... , µP)' on the 

principal diagonal. Thus from (2.3) the MLE of µ = E(X) subject to some 

constraints, g(µ) = 0 is 

This result will be used in Chapter 3 for modelling cross-classified data when 

assuming a Poisson sampling scheme and for the Poisson regression problem 

in Chapter 6. 
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Example 2.2: The Multinomial Distribution. 

Let X = (X1 , ... , Xk) have the multinomial distribution with 

' P(X = x) = 
1 

~-
1
1rf2 1r;2 · ·. 1r?, 

X1.X2, · · · Xk, 

k k 
where Xi ~ 0 ; i = 1, ... , k ; L Xi = n and Z::: 7ri = 1. Then 

i=l i=l 

P(X = x) = exp[x'O - K(B)] 

where 

0 i = In ( 1r i) , i = 1, ... , k 

and 

K(0) = nin (t e6
•). 

Brown (1986) points out this exponential family is not full and can be reduced 

to a minimal family by considering X* = (X1 , ... , Xk_i) with parameter 

Bi = B; - Bk = In( 7r;) - In( 11'k) =In(;:) 

The kernel of the log-likelihood function is given by 

k 

I<(1r) = l:xdn(1ri) = x'ln(1r). 
i=l 

Consider the constraints g( 1r) = 0, which do not include the constraint 
k 

Z::: 7ri = l'1r = 1. Let 8 and , be Lagrange multipliers, then to find the ML 
i=l 
estimate of 1r subject to the constraints above, we need to maximize 

with respect to 1r. Thus 

a ( ) -1 , 81r w x, 1r = D7r x + 81 + G7r, = o. (2.9) 

Now premultiply equation (2.9) by 1r' and get 

l'x + 8 + 1r'G~, = 0 
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I.e. 

n + 8 + 1r'G~, = 0 . 

Thus 

8 = -(n + 1r'G~,). 

Premultiply equation (2.9) by D1r and get 

Substitute 8 found in (2.10), in the latter equation and get 

I.e. 

Dividing by n gives 

1 ( ') ' p - 1r + - D1r - 1r1r G , = 0 n 11" 

or 

Thus 

g( 11-) = g (P + ~(D,, - n)'G~ I') 
Use a Taylor series expansion about p and get 

Setting g( 1r) = 0, from the set of constraints and solving for , we get 

,' = - ( GP {~(D,, - ,r,r')} G~ )-
1 

g(p) + o(IIP - 11"11) • 

Substituting for , in (2.11) we get 

18 

(2.10) 

(2.11) 
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where :EM = ;(D11" - 1r1r') is the covariance matrix of the multinomial distri­

bution. The above-mentioned result for the multinomial distribution, which is 

not a full exponential family, has the form of (2.3) , with V replaced by :EM 

which is singular. Thus (2.3) which was proved for the full regular exponential 

class may be used with the multinomial covariance matrix. 

Example 2.3: The Negative Multinomial Distribution. 

Consider r + 1 mutually exclusive events Ei, i = 0, 1, ... , r and let Pi be the 

probability of an occurrence of Ei in a single trial, then if the independent 

trials are terminated on obtaining the mth success (including the last trial) 

of E0 , the probability of obtaining Xi = Xi occurrences of Ei, i = 1, ... , r is 

given by 

r 
where p0 = 1 - I: Pi and m is assumed fixed. This is the probability func-

i=I 
tion of the negative multinomial distribution with parameters m and p= 

(p1 , P2, · · · , Pr)'· 

The probability function of the negative multinomial distribution can be writ­

ten in the form of (2.2) as follows 

p(x) = exp [1n { (t_L ~ii 1
;'} + .t xdn(Pi) + m ln(po)] 

m 1 . Xi. i-1 

= b(x)exp{x'0+mln(l-~e0
•)}, 

where Bi = ln(Pi). It also follows from (2.2) that the so called "cumulant 

generating function" is given by 

x:(0) = -min ( 1 - t e0
•) 
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From the properties of the exponential family 

i.e. 

Hence 

= 

Thus 

Furthermore 

Thus 

-m(-e0i) 
r 

(1 - L e8i) 
1 

= 
mpi 

Po 

8 (8K(8)) a [ 0· r 0· -1] 
cov(Xi, Xj) = a0j ~ = 80j me 1 (1 - ~ e 1

) 

Also 

= meo'(-l) ( 1 - t eo' r2 (-eo,) 

= mPiPi 

P6 ' i i- j . 

var(X;) = a~, (a;~~)) 

20 
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The moments may be summarized in matrix form in the following way. 

Let X' = (m,X1 , ... ,Xr) = (m,X(i)) denote the frequency vector (the fre­

quency for the first cell included), where X(i) = (X1 , ... ,Xr)'. Then 

E(X') = ( 
mp1 mpr) m 

m, --, ... ,-- = -(po,PI,···,Pr) 
Po Po Po 

Thus 

where 
, _ ( mp1 mp2 mpr) _ m , 

µ(1) - ' ' ... ' - p . 
Po Po Po Po 

The covariance matrix of X(l) = (X1 , ... ,Xr)' is given by 

Pl 0 p~ P1P2 P1Pr 

Cov(X(i)) 
m P2 m2 P2P1 p~ P2Pr +-
Po mp5 

0 Pr PrPl PrP2 p; 

m m , 
- Dp. + 2P*P* 
Po Po 

l ' ~ 
Dµ(l) + -µ(1)µ (1) = x(l) , 

m 
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which is the covariance matrix of X 1 , ... , Xr given by Steyn et al. (1989) p.89). 

Hence 

( 
0 O' ) 1 (µ') Cov(X) = V = = Dµ + mµµ' - (µ, 0) -

0 o :Ex(l) 

We have shown in Proposition 1, that for a random vector belonging to the 

exponential family 

is the ML estimate of µ subject to the constraints g(µ) = 0. This estimation 

procedure can now be applied to a frequency distribution obtained from a 

negative multinomial sampling method. 

Example 2.4 : The Multivariate Normal Distribution. 

Let X : p x 1 is N(µ, :E), where :E is known. Barndorff-Nielsen (1978) gives 

the canonical parameters which are functions of µ, as 8 = :E-1 µ. 

Thus 
88 -1 8µ 
8 µ = :E and 88 = :E. 

Let G denote a matrix of known constants, then the ML estimate ofµ subject 

to the constraints Gµ = 0, is given by 

where x is an ML estimate of µ. This is the result given in Theorem 1 of 

Crowther and Shaw (1989), which is derived using the conditional distribution 

of the multivariate normal distribution. 

Example 2.5 : The Singular Normal Distribution. 

In the case where X : p x 1 has the singular normal distribution with mean 

vector µ and covariance matrix :E, where rank(:E) = k < p, let X = AY, 

where A : p x k, rank(A) = k and :E = AA' and Y rv Nk(v, Ik)- Thus 

µ=Av. 
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Then from Proposition 1, the ML estimate for v given the constraints g(µ) == O 

or equivalently g( Av) == 0 is 

smce 
8 8 8Av 

8vg(Av) == 8Avg(Av) 8v == GA 

Hence 

Ave== Ay -A(GA)'(GAA'G't1g(Ay) + o(IIAy- Avll) 

Thus 
µc x - AA'G'(GAA'G't1g(x) + o(llx - µII) 

Example 2.6 : The Wishart Distribution. 

Let A == { aij} be a p x p random symmetric positive definite matrix. A is 

said to have a Wishart distribution, A r'-./ WP( n, ~), if the joint p.d.f of the 

½P(P + 1) random elements an, a12, ... , a22, ... , aPP is given by 

IAI ½(n-p-1) ( 1 -1 ) 
J(A; n, ~) = 1 exp --tr~ A , A > 0. 

rp(½n)12~12n 2 

Let ~-1 == B = {bii}, then 

tr(BA) = r, r, llijbij 
i J 

[, aiibii + 2 I: I:aijbij . 
i i<j 

The Wishart distribution belongs to the exponential family since the p.d.f. can 

be written in the form 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

 
 
 



24 

The canonical parameters are {-½bii}, i = 1, ... ,P and {-bij}, i < j, since 

A useful application is that of estimating a covariance matrix when there are 

constraints on the elements { O"ij}. 

Let Xa, a = 1, ... , n be n independent Np(O, ~) random vectors. Then the 
n 

matrix A= I: XaX~ has the Wishart distribution with n degrees of freedom 
a=l 

and covariance matrix ~- Furthermore 

Consider the case where p = 2 and Xa, a = 1, ... , n are i.i.d. N2 (0, ~). Let 

Y = ¼(an, a22, a12)' and u = (an, a-22, a-12)', then E(Y) = u, and 

20-110-12 ) 
20-220"12 

a11a22 + af2 

(i) Consider the case where say a-11 = c and the ML estimate of u, must be 

found, subject to the above constraint. 

a 
Hence g(u) = 0"11 - C = 0 and Ga= aug(u) = (1, 0, 0). 

The ML estimation procedure may be expressed as follows 

A double iteration is necessary. 

If for example o-11 = 4, n = 100 and ¼ A = G D , then 

-A= , or <Fe= 4, 3.444, 2.667 . 1--- ( 4 2.667 ) ~ ( )' 
n 2.667 3.444 
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(ii) Suppose that the ML estimate of u must be found subject to o-11 = ½o-22 . 

This implies that g(u) = 2o-11 - o-22 = 0 and Go- = (2, -1, 0). The form 

of the estimation procedure in (i) above may be employed to find the 

ML estimate of u subject to the given constraint. If as in (i) 

n = 100 and -A= 1 (3 2) 
n 2 3 

then 

O' C = (2.5, 5, 2)', 

(iii) Consider the case where the ML estimate of u must be found subject to 

p = c. Thus the function g(u) = 0-12 - c✓o-110-22 = 0 and 

Ga= (-~cJa2,/a11, -~cJan/ a22, 1) . 

If p = ½, n = 100 and ¼A= G !) , then 

O'c = (2.6667, 2.6667, 1.3333). 

The IML programs for this example appear in the Appendix. 
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Chapter 3 

ESTIMATION FOR MODELS 

RELATED TO CONTINGENCY 

TABLES 

This chapter presents models suitable for data arranged in a contingency table. 

The estimation procedure introduced in Chapter 2 is implemented for the 

estimation of the expected frequencies, where the model under consideration 

is written in terms of constraints of the form g(µ) = 0, satisfying the conditions 

of Proposition 1. The sampling procedures giving the underlying probability 

assumptions for the contingency table are outlined and certain goodness of fit 

tests are summarized for convenience. 

3.1 SAMPLING PROCEDURES 

Suppose we observe counts Xi, i = 1, ... , p which are the frequencies for the 

p cells of a contingency table and that the Xi are arranged into a vector x = 
(x1 , ... , xp)'. These frequencies are considered to be observations of a random 

variable Xi with mean E(Xi) = Fi for cell i. Fi is called the expected frequency 

for cell i. 

26 
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3.1.1 The Poisson Sampling Procedure 

If we assume that each Xi is an independent Poisson random variable with 

mean Fi, then 

The Poisson distribution has E(Xi) = Fi and var(Xi) =Fi. 

Thus for the Poisson sampling procedure the mean vector and variance covari­

ance matrix of X are 

and 

Cov(X) 

E(X) = F 

var(X1) 0 

0 var(X2) 

0 0 

= DF 

0 

0 

where D F = diag(F) is a diagonal matrix, with the elements of F on the 

principal diagonal. 

3.1.2 The Multinomial Sampling Procedure 

Suppose that n independent observations are taken on p mutually exclusive 

categories and that Xi counts the number of observations in category i. If the 

probability that an observation falls in category i, is 7ri, i = 1, ... ,P, where 
p 

7ri 2:: 0 and E 7ri = 1, then we have the multinomial probability distribution, 
i=l 

for which 

For this distribution 
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The mean vector and covariance matrix for X == (X1 , ... , Xp)' are 

E(X) == n1r = F 

and 

Cov(X) == DF - _!_FF'. 
n 

3.1.3 Product Multinomial Sampling 

Product multinomial sampling is best illustrated using an example. Consider 

a categorical response variable Y, say income, divided into 3 categories "low" 

"middle" and "high". Consider two explanatory variables say gender and age, 

where age is divided into three categories A, B and C. We therefore consider 

the following 2 x 3 x 3 contingency table. 

FREQUENCY TABLE FOR INCOME 

Gender Age Income 

Low Middle High 

A 71'"(1)1 71'"(1)2 'lr(1)3 

Male B 'lr(2)1 'lr(2)2 71'"(2)3 

C 71'"(3)1 71'"(3)2 71'"(3)3 

A 71'"( 4)1 'lr(4)2 'lr(4)3 

Female B 71'"(5)1 71'"(5)2 71'"(5)3 

C 'lr(6)1 71'"(6)2 'lr(6)3 

Gender has 2 levels (Male, Female) while age has 3 levels (A,B,C) which to­

gether form 2 x 3 = 6 so called sub-populations. Each of the six sub-populations 

follows a multinomial distribution. Thus for the ith sub-population, let 'lr(i)j 

denote the probability of falling in category j, j = 1, 2, 3 and let Xij denote 

the number of individuals in the ith sub-population falling into category j of 
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the response variable, income. Hence for the ith sub-population 

3 3 
where L Xik = ni and L 1r(i)k = 1. 

k=l k=l 

Hence the joint probability distribution of (Xu, X12, X13, ... , X53) is 

3.2 MEASURES OF GOODNESS OF FIT 

Suppose that {mi} are the estimated expected frequencies for the contingency 

table on fitting an appropriate model to the data. The following statistics can 

be used to test the goodness of fit of a model : 

(i) The Pearson Chi-squared Statistic 

p 

x2 = I:(xi - mi) 2 /mi · (3.1) 
i=l 

(ii) Neyman's Modified Chi-squared Statistic 

p 

xJ...r = I:(xi - mi) 2 /xi. (3.2) 
i=l 

(iii) The Freeman-Tukey Statistic 

(3.3) 
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(iv) The Likelihood Ratio Statistic ( LR) 

Let Xi, X2, ... , Xk have the multinomial distribution M(n; 1r1 , 1r2 , ... , 1rk) 

with probability mass function 

k 
for 7r En= {(1r1, ... ,1rk): 'lri > 0 and I: 7T"i = 1}, Xi 2:: 0, i = l, ... ,k 

i=l 
k 

and I: Xi= n. 
i=l 

Suppose that we wish to test H0 : 1r = 1r0 . The likelihood ratio statistic 

for the test is 
A= L(1ro) 

sup7rEll L( 1r) 
The ML estimator of 1r is 

Thus 

A 

II 'lrio • k ( )Xi 
i=l Pi 

Suppose that under Ho, 1ro = m/n = (m1, ... , mk)/n where mi is the 

expected frequency for the ith cell. Then 

and 

Thus -2 ln A = 2 _,t Xi ln (Xi). This quantity is referred to as the 
i=l ffii 

likelihood ratio statistic. Most well known texts use the notation G2 but 
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we shall use the notation LR, so as to avoid confusion with the matrix 

G. Thus 

(3.4) 

(BFH (1975) show that LR, I<'f,,T and the Pearson x2- statistic all have 

an asymptotic x2-distribution). 

( v) The Akaike Information Criterion. 

Another useful criterion used to test the adequacy of a model is the 

Akaike Information Criterion (AIC), proposed by Akaike (1973). The 

AI C is related to the likelihood ratio statistic, LR. The AI C for a model 

having k free parameters to be estimated, is 

AIC(k) -2L(0k) + 2k 

-2(maximum loglikelihood of the model)+ 2k 

For the multinomial distribution, the log-likelihood is 

and L(fr) 

Hence -2L(fr) 

= LR+ C' 

where 

c = -2 [txdn(xi) - nln(n) + In ( 1 -~!. ,)] 
i=l X1. Xk. 

remains constant for the contingency table. 
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Hence Al C ( k) = (LR+ 2k) + c and the quantity LR+ 2k in parentheses 

is often used as the AIC, since it is simply AIC(k) - c. To this end let 

AIC* =LR+ 2k. (3.5) 

A model with a small AJC*-value is preferable as models with too many 

parameters are penalized by the AJC-procedure. 

(vi) The Deviance. 

Nelder and Wedderburn (1972) introduced the so called deviance as a 

measure of discrepancy. In the context of the generalized linear model, 

let µ denote the mean-value parameter and () denote the canonical pa­

rameter and let </> be some dispersion parameter. Let L(µ, </>, y) be the 

log-likelihood maximized over some vector of parameters f3 for a fixed 

value of </> and L(y, ¢, y) be the maximum likelihood achievable in the 

saturated model, then the scaled deviance is defined as 

D* = 2[L(µ, </>,y) - L(y, </>,y)]/</>. (3.6) 

If </> = 1, then the deviance is defined as 

D = 2[L(µ, </>, y) - L(y, </>, y)] . (3.7) 

As an example consider the form of the deviance for the Poisson distri­

bution. 

Let Yi,½, ... , Yn be n independent Poisson random variables with E(~) = 
µi. The log-likelihood function is 
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Hence the deviance for a model with fitted values µi, is 

( vii) The Wald Statistic 

Another statistic for testing the goodness of fit is the so called Wald 

statistic. If the model under con[ideratioJ is formulated in terms of the 

constraints g(µ) = 0 and G = 
8
8 

g(µ) , then the Wald statistic 
µ µ=x 

( under Poisson sampling) is 

(3.8) 

where Dx = diag(x). 

Wald (1943) shows that this statistic has a chi-squared distribution as 

limiting distribution with degrees of freedom the number of linearly in­

dependent constraints specified by g (-). 

Remark 

Consider the minimum modified chi-squared criterion 

Suppose that the model under consideration is expressed in terms of the im­

plied constraints, say g(µ) = 0. We now wish to find the value of µ that 

minimizes Q subject to the constraints above. Let , be a vector of Lagrange 

multipliers, then we must find the solutionµ, which minimizes 

Differentiating Q* with respect to µ gives 

8Q* -1 ( ) I aµ = -2Dx X - µ + 2G µf . 
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Setting the above expression equal to 0, gives 

I.e. 

µ = X - DxG'µr. (3.9) 

Using a linear Taylor expansion of g(µ) about x, we get 

Setting the above equal to zero and solving for 1 , we get 

Substituting for 1 in equation (3.9) yields 

(3.10) 

This is the minimum modified chi-squared (MMCS) estimator. Neyman (1949) 

showed that the MMCS estimator belongs to the class of best asymptotic nor­

mal or (BAN) estimators, i.e. they are unbiased and asymptotically efficient. 
a 

If the constraints are linear i.e. g(µ) = Gµ, then Gµ = aµg(µ) = G and 

equation (3.10) becomes 

(3.11) 

which is found without iteration. This is the MMCS estimate discussed by 

Grizzle and Williams (1972) in the case of linear constraints. When the con­

straints are linear, the minimum of Q is 

minQ = (x - µc)'D;1 (x - µc) 
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[ (GD x) 1 (GD x G')-1 g ( X)] 'D-;; l [ (GD x) 1 (GD x G' )-1 g ( X)] 

(3.12) 

which is Wald's statistic under Poisson or multinomial sampling. This is an­

other approach to the result of Bhapkar (1966), showing the algebraic equiv­

alence of the MMCS and the Wald statistic for testing a linear hypothesis in 

categorical data. 

3.3 LINEAR MODELLING FOR A CONTINGENCY 

TABLE 

Consider a frequency table with observed count vector x = (x 1 , x2, ••• , xp)' 

and cell probabilities 7r = (1r1 , 1r2 , ... , 1rp)'. Suppose the model is formulated 

in terms of the constraints A1r = 0, where A is a matrix of k linearly inde­

pendent constraints or alternatively Aµ = 0, where µ = n1r. Then in terms 

of Proposition 1, g(µ) = Aµ, G = ~g(µ) = A. The ML estimator for the 

vector of frequencies is 

The ML estimate is found iteratively by using equation (2.6). On convergence 

we obtain the ML estimates for the frequencies subject to the constraints 

Aµ = 0. In the case of Poisson sampling V µ, = D µ, and the ML estimate is 

given by 

(3.13) 

In the case of multinomial sampling 

GVµ, = A(Dµ, - "!:_µµ')=ADµ, -Aµµ'/n =ADµ,, 
n 

since Aµ=O, so that the ML estimate is also given by (3.13). Hence the 
1 

covariance matrix V µ,, in Proposition 1 may be taken as Dµ, or Dµ, - -µµ'. 
n 
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A simple application of the estimation procedure is that of symmetry for a fre­

quency table obtained by using one variable in the classification and assuming 

Poisson sampling. 

Example 3.1 

Consider the example taken from Haberman (1978) where subjects are asked 

the question "If you were asked to use one of the four names for your social 

class, which would you say you belong in: the lower class, the working class, 

the middle class, or the upper class?" The following table was obtained. 

TABLE 3.1: SELF-CLASSIFICATION BY SOCIAL CLASS 

Response Class Number responding 

Lower class 1 72 

Working class 2 714 

Middle class 3 655 

Upper class 4 41 

Examining the table we see that the number of respondents in the lower class 

is comparable with the number in the upper class, while the number in the 

working class and middle class are comparable. 

Now let 7ri denote the probability that a response belongs to class i, i = 
1, 2, 3, 4. The table is symmetrical if 1r1 = 1r 4 and 1r2 = 1r3, or if µ1 = µ4 

and µ 2 = µ3 , where µi = n1ri, and n is the total number of respondents. Let 

µ' = (µ 1 , µ 2 , µ 3 , µ 4 ), then the two restrictions can be written as 

µ1 0 

( ~ 0 0 -~) µ2 0 

1 -1 µ3 0 

µ4 0 

i.e. Aµ=O. 
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These constraints are of the form g(µ) = 0 where g(µ) = Aµ and 

a 
G = Bµg(µ) =A. 

37 

From the preceding discussion the ML estimate for the vector of frequencies is 

found by iteratively using 

as described in the introductory paragraph of this section. The vector of 

estimated expected frequencies is 

m' = (56.5; 684.5; 684.5; 56.5) . 

These estimates agree with the values from the solutions to the equations for 

finding the ML estimates, where 

in1 = in4 = ~(X1 + X4) = ~(72 + 41) = 56.5 

and 

in2 = in3 = ~(X2 + X3) = ~(714 + 655) = 684.5 . 

The statistic x2 = 11.05 based on df = 2 with exact p-value 0.0040 indicating 

that the symmetry model does not provide a satisfactory fit. 

The following example also illustrates the use of the estimation procedure for 

linear modelling of the frequencies in a frequency table. 

Example 3.2 

Grizzle, Starmer and Koch (1969) present the data recorded on 42 subjects, 

who were given drugs A, B and C. Some subjects had a favourable response 

to a single drug, some to two, and some to all three. The patterns of response 

and the number of subjects showing each pattern are shown in the Table 3.3. 

If the three drugs are equally effective then E(T1 ) = E(T2 ) = E(T3). This 

hypothesis can be formulated in terms of the cell probabilities { 7ri} as 
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TABLE 3.2: TABULATION OF RESPONSE TO DRUGS A, B AND C 

(1 denotes favourable response, 0 denotes unfavourable response) 

Pattern of response 

A B C Number (xi) Expected probability m· i 

1 1 1 6 7r1 6.0000 

1 1 0 16 7r2 10.840 

1 0 1 2 7r3 2.6245 

1 0 0 4 7r4 3.2312 

0 1 1 2 7r5 2.6245 

0 1 0 4 7r6 3.2313 

0 0 1 6 7r7 11.4477 

0 0 0 6 7rg 6.0000 

Number favourable 46 1 

28 28 16 

T1 T2 T3 

which simplifies to 

7r3 + 7r 4 - 7r5 - 7r6 = 0, 

and 

Let 1r 

where 

(1r1 , 1r2 , .•. , 1r8 )', then the hypothesis may be written as A1r 

A= [ 0 0 1 1 -1 -1 O O] . 
0 1 -1 0 0 1 -1 0 

38 

o, 

Using the iterative procedure of (2.6) we obtain the ML estimates mi given in 

the table with LR = 5.95 and x2 = 5. 71 based on 2 degrees of freedom. The 

chi-squared value of 6.58 recorded by Grizzle et al. (1969) for this problem is 

based on the method of weighted least squares and the ML estimates for the 

frequencies under the hypothesis are not found. It is evident that the test of 
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Grizzle will reject H0 at the 5% level of significance, while the x2-test based 

on the ML estimates will not reject Ho, (xta.95 = 5.99). 

Koch et al. ( 1977) formulate the hypothesis above as the hypothesis of first 

order marginal symmetry 

where 
</>1 7l'1+1l'2+1r3+1r4, 

¢>2 71'1 + 71'2 + 71'5 + 71'6 , 

qJ3 71'1 + 7r3 + 7r5 + 7r7 • 

The matrix required to generate these constraints is 

[ 

1 1 1 1 0 0 0 

A1 = 1 1 0 0 1 1 0 

1 0 1 0 1 0 1 

In order to construct a function g( 1r) = 0, we let 

C = [ 1 -1 0 ] . 
1 0 -1 

Hence HM can be written as g( 1r) = CA17r = 0 , 

and 
a 

G = a1rg(1r) = CA1 , 

and the ML estimate for the expected frequencies is 

and the iterative procedure given in (2.6) is used to find the ML estimates. 

The ML estimates for the expected frequencies and the statistics are identical 

to those previously obtained. The IML program for this example can be found 

in the Appendix. 

Another application is that of adjusting the frequencies in a contingency ta­

ble to comply with marginal distributions obtained from other sources or to 
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satisfy some theoretical marginal constraints. Little and Wu (1991) consider 

an J x J contingency table and compare the estimates of the adjusted cell 

probabilities for the methods of maximum likelihood under random sampling, 

least squares, minimum chi-squared and the method of raking. We show how 

the ML estimates for the adjusted cell probabilities may be obtained using the 

ML estimation procedure of Proposition 1, utilizing the marginal constraints. 

Consider an J x J contingency table obtained from the cross-classification of 

the variables A and B. Let 'lrij denote the probability that A = i and B = j 

in the target population, and let 71"i+ and 1r +i denote the known marginal 
n·· 

probabilities. Suppose that Pij = 2 is the observed sample cell proportion. 
n 

We now want to find the estimators, 7r'ij, of 'lrij by adjusting the sample cell 

proportions Pij to the known marginal probabilities 7ri+ and 71" +i, so that 

L7r'ij=7ri+, i=I, ... ,I; 
J 

I: 1r ij = 71" + j, j = 1, ... , 1. 

(3.14) 

(3.15) 

Deming and Stephan (1940) proposed an iterative proportional fitting (IPF) 

method to a contingency, which is called raking. In the framework of modelling 

subject to constraints, the adjusted estimates 7r"ij can be obtained as follows. 

The constraints in (3.14) and (3.15) can be written in the form 

and 

which in turn can be written as 

A1r = C. 

For the problem of known margins 
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Hence G~ = a~ g( 1r) = A. If we consider a multinomial sampling procedure, 

then 

Cov(p) = V 71" = (D71" - 1r1r')/n . 

The ML estimate for the cell probabilities subject to the marginal restrictions, 

is given by 

As an illustration consider the following example. 

Example 3.3 

Little and Wu (1991) present data from the Second National Health and Nu­

trition Examination Survey (NHANES II). 

TABLE 3.3: NHANES II DATA AND 1980 CENSUS DATA 

NHANES II data ( n = 1654 7) 

Urban Rural 

Low 0.3305 0.1955 0.5260 

Income 

High 0.3200 0.1540 0.474 

0.6506 0.3495 1.00 

1980 Census ( n = 50 644 862) 

Urban Rural 

Low 0.2064 0.1127 0.3191 

Income 

High 0.4969 0.1840 0.6809 

0.7033 0.2967 1.00 

Table 3.3 shows 2 x 2 tables of income by urbanity from the survey and the 
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1980 Census. There is a distinct discrepancy between the NHANES II and 

Census margins of urbanity and income. It was thus considered necessary to 

adjust the NHANES II data such that 1r11 + 1r12 = 0.3191 . The constraint may 

be written as 

(1, 1, 0, 0)1r = 0.3191 . 

Applying the estimation procedure gives the ML estimate 

1rc = (0.2005, 0.1186, 0.3200, 0.1540)' . 

3.4 LOGLINEAR MODELLING FOR A CONTIN­

GENCY TABLE 

Suppose that the frequency of each cell in a contingency table is considered 

to be an independent observation of a Poisson random variable Xi with mean 

Fi for cell i. If the frequencies for the cells are conveniently arranged into a 

vector say x = (x1 , ... , xp)', the saturated loglinear model can be written as 

ln(F) = A.\ (3.16) 

where F = (F1 , F2 , ... , Fp)' is the mean vector for the Poisson random vari­

ables, A : p x p is the design matrix and ,\ : p x 1 is the vector of parameters 

for the mean, main effects and interaction effects. Fitting a lower order model 

implies fitting a model where certain elements of ,\ are zero. The saturated 

model of (3.16) can be written as 

The hypothesis that certain linear functions of ,\ are zero, can be written in 

the form 

H(A' Ar1 A' ln(F) = H.\ = 0, 

where H is a matrix specifying the linear functions of,\ set to zero. 

Let A~= H(A'Ar1A'. We now have a function 

g(F) = A~ ln(F) = O. 
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The ML estimate of F subject to the constraints g(F) = A~ ln(F) = 0 is given 

by (2.8), where 

Thus 

(3.17) 

Fe must be determined iteratively by iterating over x. The iterative procedure 

is given by (2.5), which when convergence is attained gives the ML estimate 

Fe• The ML estimates of the parameters in the loglinear model, are given by 

(3.18) 

The asymptotic covariance matrix of Fe is obtained from (2. 7) and the esti­

mated asymptotic covariance matrix of Fe is 

(3.19) 

The covariance matrix for .Xe is 

where once again applying the "delta method", the estimated asymptotic co­

variance matrix 

est. [Cov(ln(F e) )] 

Hence the estimated covariance matrix for .Xe is 

(3.20) 

To illustrate the above-mentioned estimation procedure, consider the following 

applications in loglinear modelling using a Poisson sampling scheme. 
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(i) Independence 

Consider a 3 x 3 contingency table with row variable B and column 

variable C. The independence model is written as In( Fij) = µ + >.f + >.f , 
which implies testing 

in the saturated model. 

Let .X' = [µ, >.f, >.f, >.f, >.f, >.f1C, >.f2C, >.f1C, >.fF] · 
The design matrix is given by 

µ >.f >.f >.f >.f >.f ~ >.f ~ >.f ~ >.f f 

1 1 0 1 0 1 0 0 0 

1 1 0 0 1 0 1 0 0 

1 1 0 -1 -1 -1 -1 0 0 

1 0 1 1 0 0 0 1 0 

A 1 0 1 0 1 0 0 0 1 

1 0 1 -1 -1 0 0 -1 -1 

1 -1 -1 1 0 -1 0 -1 0 

1 -1 -1 0 1 0 -1 0 -1 

1 -1 -1 -1 -1 1 1 1 1 

Now let 

H = [04xs , l4]. 

Then H(A' Ar1 A' ln(F) = H.X = 0, gives 

).BC 
11 

).BC 12 =0, 
).BC 21 
).BC 22 

which is the statement under H0 • F\ and Xe can now be found by using 

(3.17) and (3.18) with H above. 
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Another approach to the independence model is to consider the odds 

ratios or cross product ratios for the table. Let 'lrij denote the probability 

that an observation is classified in cell (i,j). The set of (I - l)(J - 1) 

local odds ratios for an J x J contingency table is given by 

0 1rij1ri+I,j+I . I . 
ii = ---- , z = 1, ... , - l; J = 1, ... , J - 1. 

1ri,j+I 1ri+I,j 

The independence model in terms of local odds ratios is 

0 ii = 1, for i = 1, ... , I - 1, j = 1, ... , J - 1. 

Consider the 3 x 3 table as an illustration. The model of independence 

in terms of odds ratios is 

Let Fij denote the expected frequency for cell ( i, j). Then the constraints 

above may be written as 

F11F22 - Fi2F21 = 0, 

F12F23 - Fi3F22 = 0, 

F21 F32 - F22F31 = 0, 

F22F33 - F23F32 = 0. 

These constraints are of the form g(F) = 0 and the ML estimation pro­

cedure of Proposition 1 may be applied. 

The matrix Gp= :Fg(F), where 

(Fn F12 F13 A1 A2 F23 F31 F32 F33) 
F22 -F21 0 -F12 Fn 0 0 0 0 

0 F23 -F22 0 -F13 F12 0 0 0 
Gp= 

0 0 0 F32 -F31 0 -F22 A1 0 

0 0 0 0 F33 -F32 0 -F23 F22 
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If a Poisson sampling procedure is used, then V = DF and the esti­

mation procedure is 

which will require a double iteration, namely over x and F to give the 

ML estimates of the expected frequencies for the independence model. 

Consider the following example, in which the independence model is 

fitted to a 3 x 3 contingency table. 

Example 3.4 

Consider the data of Hedlund (1978), discussed by Agresti (1984). The 

table presents the relationship between the variables "political ideology" 

and "political party affiliation". For a sample of voters taken in the 1976 

presidential primary of Wisconsin. 

TABLE 3.4: POLITICAL IDEOLOGY AND PARTY AFFILIATION 

Political Ideology 

Party Affiliation Liberal Moderate Conservative Total 

Democrat 143(102.05) 156(161.37) 100(135.58) 399 

Independent 119(120.21) 210(190.08) 141(159.70) 470 

Republican 15 (54. 73) 72 (86.55) 127 (72. 72) 214 

The figures in parentheses are the expected frequencies for the indepen­

dence model 

ln( Fii) = µ + )f + A] . 

For the independence model LR = 105.66 and x2 = 102.05 based on 

df = 4. The fit for the independence model is poor other possible models 

should be considered to describe the data. Note that df = 4 is the number 

of columns in the matrix AH. The estimated expected frequencies and 
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parameters are calculated by using the program in the Appendix. This 

program can be used for higher dimensional tables and the testing of 

conditional independence, as will be illustrated in Example 3.5. 

(ii) Symmetry 

For symmetry in the 3 x 3 contingency table, Fij = Fji, and in terms of 

the parameters of the loglinear model, this implies testing 

Consider 

)..B 
2 

)..C 
1 

)..C 
2 

)..BC 
11 

)..BC 
12 

)..BC 
21 

)..BC 
22 

0 -1 0 0 0 0 n 1 0 -1 0 0 0 

0 0 0 0 1 -1 

Thus H0 can once again be written as 

H(A' Ar1 A' ln(F) = H.\ = 0. 

For quasi-symmetry the hypothesis is 

H . , BC _ , BC · · 1 2 
0 • /\ij - /\ji , Z,} = , 

and hence let H = [O O O O O O 1 - 1 O]. 

The ML estimate for the expected frequency E\, is found by iteratively 

using (3.17) and -Xe is given by (3.18). 

The symmetry model can also be easily modelled directly in terms of the 

restrictions Fij = Fji• Once again consider a 3 x 3 contingency table with 

observed frequencies { Xij} and expected frequencies { Fij} i, j = 1, 2, 3. 

The hypothesis of symmetry for the table implies Fij = Fji Vi -=I- j, which 

gives the following constraints 

F12 - F21 = 0, 

F13 - F31 = 0, 

F23 - F32 = 0. 
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These constraints can be written as AF== 0, where 

Fn F12 F13 A1 F22 F23 F31 F32 F33 

A=[ 
0 1 0 -1 0 0 0 0 : l . 0 0 1 0 0 0 -1 0 

0 0 0 0 0 1 0 -1 

a 
Hence g(F) ==AF== 0 and G == BFAF == A. 

The ML estimation procedure is given by 

E\ == x - (ADF)'(ADFA'f 1Ax. 

Since D F is unknown and the constraints are linear iteration takes place 

over F. 

The next example illustrates the use of the symmetry model for a 3 x 3 con­

tingency table. 

Example 3.5 

Table 3.5 presents the information from a survey investigating the view on the 

economic and political situation in S.A. at a particular point in time. For the 

symmetry model we test 

Applying the estimation procedure to the data we get the following parameter 

estimates and standard normal values. 
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TABLE 3.5: VIEW ON POLITICAL AND ECONOMIC SITUATION 

Political 

Economic satisfied neither dissatisfied Total 

satisfied 198 (198) 65 (64) 59 (74) 322 

neither 63 (64) 79 (79) 66 (71) 208 

dissatisfied 89 (74) 76 (71) 272 (272) 437 

Total 350 220 397 967 

(Figures in parentheses are the estimated expected frequencies for the symme­

try model). 

parameter estimate z-value 

µ 4.5239 123.98 
)..E 

1 0.0599 1.91 
)..E 

2 -0.2602 -7.36 
)..P 

1 0.0599 1.91 
)..P 

2 -0.2602 -7.36 
>,.EP 

11 0.6447 9.69 
>,.EP 

12 -0.164 7 -2.78 
>,.EP 

21 -0.1647 -2.78 
>,.EP 

22 0.3660 4.77 

For this model LR = 6.86 and x2 = 6.82 based on df = 3. The fit is not 

adequate so we consider the quasi-symmetry model. For the quasi-symmetry 

model we test 

H ,EP ,EP · · l 2 
0 : /\j = "'ii ' i, J = ' . 

The parameter estimates and standard normal values appear in the following 

table. 
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parameter estimate z-value 

µ 4.5194 123.22 
AE 

1 -0.0052 -0.10 
AE 

2 -0.2854 -5.24 
AP 

1 0.1252 2.50 
AP 

2 -0.2312 -4.32 
AEP 

11 0.6489 9.72 
AEP 

12 -0.1629 -2.75 
AEP 

21 -0.1629 -2.75 
AEP 

22 0.3667 4.78 

For the quasi-symmetry model LR= 1.04 and x2 = 1.04 based on df = 1. The 

fit for this model is much better. The quasi-symmetry model will be revisited 

in Chapter 4, where models for square tables are discussed. 

The estimation procedure can easily be extended to higher order cross-classifications 

and the hypotheses of independence and conditional independence are tested 

by fitting the appropriate models in terms of the implied constraints g(F) = 0, 

as will be illustrated in the following example. 

Example 3.6 

Consider the data from Haberman (1978) where the following table was com­

piled from the 1975 General Social Survey. The table gives the gender of the 

respondent and level of education in determining attitudes toward roles for 

women. The question asked is whether "women should take care of running 

their homes and leave running of the country up to men". 

Let S denote the sex of the respondent 

E denote the education level of the respondent 

R denote the response of the respondent. 
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TABLE 3.6: SUBJECTS CROSS-CLASSIFIED BY ATTITUDE TOWARDS 

WOMEN STAYING AT HOME, SEX OF RESPONDENT AND EDUCA­

TION OF RESPONDENT 

Education of Response Total 

Sex of respondent respondent (yrs) Agree Disagree 

< 8 72 47 119 
Male 9 - 12 110 196 306 

> 13 44 179 223 

226 422 648 

< 8 86 38 124 
Female 9 - 12 173 283 456 

> 13 28 187 215 

287 508 795 

513 930 N = 1443 

The saturated loglinear model can be written as ln(F) = A.\ where 

1 1 1 0 1 0 1 1 1 0 1 0 

1 1 1 0 1 0 -1 -1 -1 0 -1 0 

1 1 0 1 0 1 1 1 0 1 0 1 

1 1 0 1 0 1 -1 -1 0 -1 0 -1 

1 1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 

A= 
1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 

1 -1 1 0 -1 0 1 -1 1 0 -1 0 

1 -1 1 0 -1 0 -1 1 -1 0 1 0 

1 -1 0 1 0 -1 1 -1 0 1 0 -1 

1 -1 0 1 0 -1 -1 1 0 -1 0 1 

1 -1 -1 -1 1 1 1 -1 -1 -1 1 1 

1 -1 -1 -1 1 1 -1 1 1 1 -1 -1 
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and 

,, ( ,s ,E ,E ,SE ,SE ,R ,SR ,ER ,ER ,SER ,SER) 
A = µ,Al, Al , A2 , An , A12 , Ai , An , An , A21 , A1n , A121 · 

Fitting the model of no three-factor effect implies that .Xf~R = .XfJ? = 0, and 

the matrix 

Now consider the model of conditional independence. Using the notation of 

Agresti ( 1984), define the set of local odds ratios as 

1::;; i::;; r -1, 1::;; j::;; c-1, 

for variable X, Y and Z. 

The variables X and Y are conditionally independent at level k of Z if all 

(r - l)(c -1) of the 0ij(k) at that fixed level of Z are equal to 1. The variables 

are said to be conditionally independent given Z (i.e. at every level of Z) if 

all l(r - l)(c-1) of the {0ij(k)} are equal to 1, or alternatively if all of the 

{ln 0ij(k)} are equal to 0. Hence modelling the log-odds will give a function 

g( 1r) = O, in terms of Proposition 1. 

In this example we wish to test whether Sand Rare conditionally independent 

given E. For this to be true 

or alternatively 

ln 01(1)1 

ln 01(2)1 

ln 01(3)1 

Fi31F232 _ l 
F132F231 - ' 

lnFn1 + lnA12 - lnFi12 - lnF2n = 0, 

ln F121 + ln F222 - ln Fi22 - ln F221 = 0 , 

ln Fi31 + ln F232 - ln Fi32 - ln F231 = 0 . 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

 
 
 



This will be true if and only if Aff = 0 and Afft = AffiR = 0. Now let 

H = [ ~ ~ 
0 0 

then 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

53 

The estimated expected frequencies can now be found by applying the esti­

mation procedure of (3.17) with H as above. Using this estimation procedure 

to fit the conditional independence model gives the following ML estimates of 

the parameters and standard normal values. 

parameter estimate z-value 

µ 4.5504 135.57 
As 

1 -0.0673 -2.29 
AE 

1 -0.4912 -9.57 
AE 

2 0.6452 16.07 
ASE 

11 0.0467 0.99 
ASE 

12 -0.1322 -3.64 
AR 

1 -0.2554 -7.63 
AER 

11 0.5654 11.03 
AER 

21 -0.0077 -0.19 

The goodness of fit statistics for the conditional independence model are LR = 
6.02 and x2 = 5.99 based on df = 3 with attained significance level 0.11, 

showing that the fit is reasonable. 

The ML estimates for the expected frequencies in the conditional independence 

model can also be found by using the set of odds ratios as was discussed earlier. 
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The odds ratios 01(j)l = 1 for j = 1, 2, 3 imply 

which is of the form g(F) = 0. The ML estimates can be found by 

which will require a double iteration, namely over x and F. 

3.5 LOGLINEAR MODELS FOR ORDINAL 

VARIABLES 

54 

In the standard loglinear analysis of categorical data all variables are treated as 

nominal. Many cross-classification tables include variables such as age, income, 

opinion to name but some variables, which are ordinal. Loglinear models 

which utilize the quantitative nature of ordinal variables are recommended for 

analysis when one or more variables in the cross-classification table is ordinal. 

Among the advantages for using ordinal methods instead of standard loglinear 

models are that 

( a) ordinal methods have greater power for detecting important alternatives 

to null hypotheses such as the one of independence. 

(b) ordinal methods can use a greater variety of models, most of which have 

fewer parameters than the standard models for nominal variables. 

Agresti (1984) presents a number of models which can be used for ordinal 

data. Some of these models will be reviewed in the following paragraph and 

the estimation procedure for these models will be formulated. 
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3.5.1 Loglinear Models for Two Dimensional Tables 

First consider the r x c table with expected frequencies {Fij}. The standard 

loglinear model is 

In ( Fij) = µ + ,\f + ,\ r + _xjB ' i = I, ... ' r ; j = I, ... ' C . (3.21) 

where 
j j 

(i) Uniform Association Model 

Suppose that the row variable X and column variable Y are both ordinal. 

Assign scores { Ui} to the levels of the variable X and scores { Vj} to the 

levels of the variable Y. The most commonly used assignments are the 

integer scores { Ui = i} and { Vj = j}. A loglinear model which uses the 

ordering of the rows and columns through the scores is 

In( Fii) = µ + -Xf + -X; + /3( ui - u) ( vi - v) , i = I, · · · , r ; j = I, · · · , c ; 

(3.22) 

and Li -Xf = Li -Xf = O. 

The degrees of freedom for testing the goodness of fit, are df = ( r - I) ( c­

l) - I = re - r - c. The parameter /3 describes the association between 

X and Y. The independence model is obtained if /3 = 0. If /3 < 0, 

the interaction term will be positive for cells for which ( ui - u) < 0 and 

(vi - v) > 0 or (ui - u) > 0 and (vi - v) < 0, i.e. small X and large 

Y values or large X and small Y values. If /3 > 0, the interaction term 

will be positive for cells for which ( Ui - u) > 0 and ( Vj - v) > 0 or 

( ui - u) < 0 and ( Vj - v) < 0. For any arbitrary pair of rows k < ,e and 

columns m < n, 

(3.23) 

If ( ui - uk) = ( Vn - vm) = I, then the log-odds ratio is equal to /3. 
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(ii) The Loglinear Row Effects Model 

Suppose that Xis nominal and Y is ordinal with scores { Vj }. A loglinear 

model that uses the ordinality of Y is 

where I:>..f = I:>..f = LTi = 0. 

The {Ti} are parameters, ( r - l) of which are linearly independent. For 

the goodness of fit test, df = re - [l + (r - 1) + (c - 1) + (r - l)] = 

(r-1 )( c-2). The term Ti( Vj-v) describes the interaction term. The { Ti} 

are referred to as the row effects. If Ti > 0 then in row i the interaction 

term is positive for cells for which Vj - v > 0. If Ti < 0 then in row i the 

interaction term is positive for cells for which Vj - v < 0. 

These models can be extended to higher dimensions. Agresti (1984) discusses 

a variety of extensions to higher dimensional tables. 

The estimation procedure of Proposition 1 can also be used to fit these or­

dinal models. The ML estimators of the parameters, as well as the expected 

frequencies can be obtained. An ordinal model can be written in the form 

ln(F) = X/3, where X has main effects and some covariates as column vectors, 

instead of the standard interaction terms. Let P = I - X(X'Xt1X', then 

P ln(F) = PX/3 = 0. Thus g(F) = P ln(F), gives the constraints such that 

g(F) = 0 and G = PDi. The ML estimate is then 

and iteration takes place over x. The iterative procedure is given by (2.5). 

The following example illustrates how the estimation procedure is used to fit 

a row effects model to a contingency table. 
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Example 3.7 

Consider the data presented in Example 3.4. The variable "Political Ideol­

ogy" is ordinal while the variable "Party Affiliation" is nominal. Assign scores 

{ Vj - v} = {-1, 0, 1} for the categories "Conservative", "Moderate" and "Lib­

eral", respectively. The row effects model for the data is given by 

where r:: ,>..f A= r:: A] 1 = r:: Ti= 0. 
i J i 

The Ti are the row effects for "Party Affiliation". Write the model as ln(F) = 
X/3, where /3 1 = (µ , ,>..f A , ,>..f A , ,>..f 1 , ,>..f 1 , T1 , T2) and 

1 1 0 1 0 -1 0 

1 1 0 0 1 0 0 

1 1 0 -1 -1 1 0 

1 0 1 1 0 0 -1 
X 1 0 1 0 1 0 0 

1 0 1 -1 -1 0 1 

1 -1 -1 1 0 1 1 

1 -1 -1 0 1 0 0 

1 -1 -1 -1 -1 -1 -1 

Using the estimation procedure with g(F) = P ln(F) as discussed above, the 

ML estimators F c and ~ can be found iteratively. The expected frequencies 

are given in the Table 3. 7. The parameter estimates and standard normal 

values appear in the following table. 
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TABLE 3.7: EXPECTED FREQUENCIES FOR ROW EFFECTS MODEL 

Political Ideology 

Party Affiliation Conservative Moderate Liberal 

Democrat 136.63 168. 73 93.63 

Independent 123. 79 200.41 145.79 

Republican 16.57 68.86 128.57 

parameter value z-value 

µ 4.6203 120.68 
).PA 

1 0.2414 5.09 
).PA 

2 0.4135 9.00 
).Pl 

1 -0.4391 -7.95 
).Pl 

2 0.2666 6.22 

71 -0.494 7 -7.98 

72 -0.2240 -3.81 

The parameter 7 3 = -(71 + 7 2 ) = 0.7187. For this model LR = 2.81 and 

x2 = 2.80 based on df = 2. The model thus provides an adequate fit for the 

data. Agresti (1984) gives a discussion on the interpretation of the parameters. 

The program for the above-mentioned example appears in the Appendix, with 

a brief explanation on the use of the program. 

3.5.2 Ordinal Loglinear Models For Higher Dimensional 

Tables 

Consider another example of fitting an ordinal loglinear model to a higher 

dimensional table. 
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Example 3.8 

In a survey on socio-political change in South Africa of October 1987, people 

were asked their opinion as to how effectively the unrest situation had been 

handled. The results are summarized in Table 3.8. 

TABLE 3.8: OBSERVED FREQUENCIES AND EXPECTED FREQUEN­

CIES FOR CUMULATIVE LOGIT MODEL FOR OPINION ON THE UN­

REST SITUATION 

Opinion 

Language Age Ineffective Neither effective Fairly Very 

nor ineffective effective effective 

18-24 5 6 53 16 

Afrikaans 25-34 7 15 115 25 

35-64 13 20 197 96 

18-24 7 3 33 7 

English 25-34 8 9 65 23 

and other 35-64 13 13 149 56 

Here the variable language is nominal, while age and opinion are ordinal. Let 

L denote language, A denote age and O denote opinion. Consider the following 

model 

where i = 1,2; j = 1,2,3; k = 1,2,3,4; and I:,\f = I:,\31 = I:,\f Z = 
i j k 

The allocation of scores { Vj} and { wk} for age and opinion are as follows: 

{vj} = {1,2,3} and {wd = {1,2,3,4} so that {vj - v} = {-1;0; 1} and 

{ Wk - w} = {-1.5; -0.5; 0.5; 1.5}. 

The term Tpo ( wk - w) describes the language x opinion interaction, while 
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{3A0(vj - v)(wk - w) describes the age x opinion interaction. We refer to 

i( wk - w), ( i == 1 for Afrikaans and i == -1 for English) and ( Vj -v)( wk -w) in 

the respective terms, as the covariates for the above-mentioned interactions. 

The interaction TfA( Vj - v) for language x age, is not significant and has been 

omitted from the model. 

The loglinear model can be also be written ln(F) = X/3, where Fis the vector 

of frequencies, X is the corresponding design matrix and /3 is the vector of 

parameters. The covariates mentioned above are entered as columns in the 

design matrix and the parameters are then estimated. The column vectors for 

the covariates, to be included in the design matrix X are as follows 

level ( i, j, k) (vi-v)(wk-w) i(wk-w) ( Vj - v) 

111 1.5 -1.5 -1 

112 0.5 -0.5 -1 

113 -0.5 0.5 -1 

114 -1.5 1.5 -1 

121 0 -1.5 0 

122 0 -0.5 0 

123 0 0.5 0 

124 0 1.5 0 

131 -1.5 -1.5 1 

132 -0.5 -0.5 1 

133 0.5 0.5 1 

134 1.5 1.5 1 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

 
 
 



61 

level ( i, j, k) (vi-v)(wk-w) i(wk-w) ( Vj - v) 

211 1.5 1.5 -1 

212 0.5 0.5 -1 

213 -0.5 -0.5 -1 

214 -1.5 -1.5 -1 

221 0 1.5 0 

222 0 0.5 0 

223 0 -0.5 0 

224 0 -1.5 0 

231 -1.5 1.5 1 

232 -0.5 0.5 1 

232 0.5 -0.5 1 

234 1.5 -1.5 1 

The covariate ( Vj - v) will be used later for an ordinal main effect for "age", 

namely (3A ( Vj - v). The ML estimates for the parameters for the model in 

(3.25) are given in the following table. 

parameter estimate z-value 

µ 3.049158 57.046211 

AL 
1 0.157676 3.827043 

AA 
1 -0.625857 -9.103568 

AA 
2 0.002297 0.043882 

Ao 
1 -0.906354 -8.090560 

Ao 
2 -0.748264 -7.332036 

Ao 
3 1.389461 24.022251 

(3AO 0.202855 3.337615 

7 LO 0.064780 1.424733 
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For this model LR = 11.94 and x2 = 11.50 based on df = 15. The Akaike 

Information Criteria, AIC* = LR+ 2p = 11.94 + 2(9) = 29.94 . The model 

fits the data well. The "language opinion" interaction is not significant and 

can be omitted from the model. It is interesting to note that the age main 

effect exhibits a linear trend, namely -0.625857, 0.002297 and 0.623560. Thus 

the age main effect A], j = 1, 2, 3; can be replaced by the term j3A ( Vj - v). 

We thus explain the age main effect by using one parameter, j3A, instead of .Xf 

and -Xt. 

We now fit the following model to the data 

i = 1, 2; j = 1, 2, 3; k = 1, 2, 3, 4; and L .\f = L .Xf = 0. 
i k 

Applying the estimation procedure, we get the ML estimates for the parame­

ters. These appear in the following table. 

parameter estimate z-value 

µ 3.045718 56.992641 
AL 

1 0.193142 5.855991 
,xo 

1 -0.919581 -8.224010 
,xo 

2 -0. 755430 -7.414750 
,xo 

3 1.392513 24.081166 
j3AO 0.202623 3.348394 
j3A 0.623992 11.559688 

The model fits the data well. The likelihood ratio statistic, LR = 13.97 and 

x2 = 13.74 based on df = 17. The AIC* = 25.97, is smaller than that of 

the previous model, hence we would prefer the latter model. The parameter 

'jjAO = 0.202623 is significant and describes the age x opinion interaction. The 

log-odds ratio for any pair of adjacent rows and adjacent columns is 'jjA0 = 
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0.202623. The interpretation of ~Ao is that for a particular row j, of the age 

variable Y, the interaction term is a linear function of opinion, 0 through the 

scores { wk} with slope ~AO ( wk - w) = 0.202623 ( Wk - w). 

For the first row of the age variable (18 - 24 years), the interaction term is 

given by 

0.2026 ( Vj - v) ( wk - w) = -0.2026 ( wk - w) smce ( vi - v) = -1 . 

Across the opinion categories, for which { Wk - w} = { - 1.5; -0.5; 0.5; 1.5}, the 

interaction term has the following contribution to ln ( Fijk) 

-0.2026( -1.5) = 0.3039 for Wk - W = -1.5, 

-0.2026(-0.5) = 0.1013 for Wk -W = -0.5, 

-0.2026(0.5) = -0.1013 for Wk - W = 0.5, 

-0.2026(1.5) = -0.3039 for Wk - W = 1.5 

Thus for the age category 18 - 24 years having the opinion "ineffective", the 

expected frequency is exp(0.3039) = 1.35 times the effect due to the mean and 

main effects for the cell. 

Similarly for the age category 35 - 64 years, the interaction term is 

0.2026 (wk - w) smce Vj - v = 1 

Thus for age category 35 - 64 years with opinion "very effective" the expected 

frequency is 35% higher than the effect due to the mean and main effects for 

the cell. We can thus conclude that the younger age group is of the opinion 

that the unrest tends to be "ineffectively" handled, while the older group is 

more likely to think that the unrest is being handled "very effectively". 

This example will be discussed again in Chapter 5 using logit models . 

3.5.3 Orthogonal Polynomials 

Orthogonal polynomial scores can also be used as a method for describing data 

which are ordinal. Consider the following example. 
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Example 3.9 

Using the data set in Example 3.8 and considering only the variables, age and 

opinion, we have the following cross-classification. 

TABLE 3.9: FREQUENCY TABLE FOR UNREST DATA 

Opinion 

Age Ineffective Neither Fairly effective Very effective 

18-24 12 (12.38) 9 (11.91) 86 (83.30) 23 (22.41) 

25-34 15 (17.12) 24 (20.17) 180 (172. 78) 48 (56.93) 

35-64 26 (23.50) 33 (33.92) 346 (355.90) 152 (143.66) 

The linear by linear association model is given by 

The { Ui - u} values assigned to the age categories are { -1, 0, 1} while the 

{ Vj - v} values for the opinion categories are { -1.5, -0.5, 0.5, 1.5}. Fitting 

this model to the data gives the following ML estimates for the parameters. 

parameter estimate z-value 

µ 3.7572 70.62 
_xA 

1 -0.6259 -9.10 
_xA 

2 0.0023 0.04 
_xo 

1 -0.9195 -8.22 
_xo 

2 -0. 7554 -7.41 
_xo 

3 1.3925 24.08 

/3 0.2029 3.34 

The estimated frequencies appear in parentheses in the cross-classification ta­

ble. The likelihood ratio statistic LR= 4.67 and x2 = 4.57 based on df = 2. 
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If we now consider a model using orthogonal polynomial coefficients, we have 

for l = 3 and 4, 

l = 4 
l = 3 

"Pl 1P2 
"Pl 1P2 'lp3 

-3 1 -1 
-1 1 

-1 -1 3 
0 -2 

1 -1 -3 
1 1 

3 1 1 

Hence replacing main effects by orthogonal polynomial scores we have the 

design matrix 

1 -1 1 -3 1 -1 3 
1 -1 1 -1 -1 3 1 

1 -1 1 1 -1 -3 -1 

1 -1 1 3 1 1 -3 

1 0 -2 -3 1 -1 0 

X= 
1 0 -2 -1 -1 3 0 

1 0 -2 1 -1 -3 0 

1 0 -2 3 1 1 0 

1 1 1 -3 1 -1 -3 

1 1 1 -1 -1 3 -1 

1 1 1 1 -1 -3 1 

1 1 1 3 1 1 3 

The last column is the result of multiplying the elements of columns 2 and 4 

of X which give the linear effects in the age and opinion variables. Applying 

the estimation procedure gives the following parameter estimates. 
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parameter estimate z-value 

µ 3. 7572 70.62 

,f 0.6247 11.07 

,: -0.0011 -0.04 

,f 0.2877 11.11 

,f -0.3186 -6.30 

,f -0.2621 -12.55 

a 0.1014 3.34 

Although the parameters differ from the linear by linear association model, 

the expected frequencies are identical and hence also LR and x2
• The reason 

for this is that the columns of the design matrices of the two models generate 

the same vector space. 

3.6 ASSOCIATION MODELS 

Goodman (1979a) and Clagg (1982) discuss association models for an J x J 

cross-classification table having ordered categories. The (I - 1 )( J - 1) odds 

ratios for the table are used in formulating suitable models. For 2 x 2 tables 

formed from the adjacent rows i and i + 1, the columns j and j + 1, let 0ij 

denote the corresponding odds ratio where 

FijFi+i,j+i . . J 0ij = ---- , z = 1, ... , I - l ; J = 1, ... , - 1. 
Fi,j+1Fi+l,j 

(3.26) 

The model of statistical independence between the row and column categories 

may be expressed as 

0ij = 1, for i = 1, ... , I - l ; j = 1, ... , J - 1. (3.27) 

This is sometimes called the null association model. 

If the odds ratios satisfy 

0 ij = 0, for i = 1, ... , I - l ; j = 1, ... , J - 1; (3.28) 
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then we have the uniform association model. 

The row-effect association model is 

(3.29) 

where Oi. is unspecified. 

The column-effect association model is 

Oij = 0.j , i = 1, ... , I - 1 ; j = 1, ... , J - 1. (3.30) 

A model which includes the effects of the rows and columns for the 0ij is 

Oij = Oi.0.j , i = 1, ... ,I - 1 ; j = 1, ... , J - 1. (3.31) 

The estimated frequencies for these models can be found by using the proce­

dure of Proposition 1 and expressing the conditions given in the various models 

in terms of the constraints g(F) = 0. 

To illustrate the procedure, consider a 4 x 6 table. For this table there 

are 3 x 5 = 15 odds ratios, Oij, i = 1, ... , 3 ; j = 1, ... , 5 as defined ear­

lier. If the expected frequencies for the cells are arranged into a vector F = 
( F11 , F12 , .•. , F64 )', then the log-odds ratios may be found by the expression 

A ln(F), where if 

1 -1 0 0 0 0 -1 1 0 0 0 0 

0 1 -1 0 0 0 0 -1 1 0 0 0 

B= 0 0 1 -1 0 0 0 0 -1 1 0 0 

0 0 0 1 -1 0 0 0 0 -1 1 0 

0 0 0 0 1 -1 0 0 0 0 -1 1 

and O is a 5 x 6 matrix of zeros, then 

[~ 
0 ~] A= B 

0 
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The model in equation (3.28) may be written as ln( 0ij) == ln( 0) == µ and hence 

the uniform association model may be written in the form 

A ln(F) == l1sµ . 

Let 

then 

PA ln(F) == 0 , thus g(F) == PA ln(F) == 0 

and Gp= PADi;1. 

From Proposition 1, the ML estimate for the vector of expected frequencies is 

x - (PA)'(PAD;1 A'P)-1PA ln(x) + o(llx - FIi). (3.32) 

Iteration takes place over x. 

The row-effect association model in (3.29) may be written as 

ln( 0ij) == ln 0i. == ai , i == 1, ... ,I - 1 ; j == 1, ... , J - l. 

This model may be written in the form 

A ln(F) == X/3 , 

(3.33) 

Then as before 

g(F) = PA ln(F) = 0 and Gp = PADF1 
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and the ML estimates for the frequencies can be found by applying (3.32) with 

P given in equation (3.33). 

The column-effect association model may be written as 

In( 0ii) = In 0.j = ,i , i = 1, ... , I - l ; j = 1, ... , J - l. 

This model may now be written as 

Aln(F) = X(3 , where (3 = (,1, ... ,,s)' 

and X = 13 @15 and the ML estimates may be found by using equation (3.32) 

with the latter X used for P in equation (3.33). 

The model in equation (3.31) may be written as 

In( 0ii) = In Bi. + In 0.i = ai + ii , i = l, ... ,I - 1 ; j = 1, ... , J - l 

which can also be written in the form 

and 

The ML estimates may once again be found by using equation (3.32) with P 
defined using the latter X. 

Example 3.10 

Consider the data in Table 3.10, which was analysed by Goodman (1979). 

If the procedure described earlier is used to fit the RC model in (3.31) to the 

data, then the figures in parentheses are the estimated expected frequencies 

for the model. The likelihood ratio statistic LR= 3.045 and x2 = 3.057. The 

degrees of freedom df = (I - 2)( J - 2) = 4 x 2 = 8. The program for the 

example may be found in the Appendix. 
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TABLE 3.10: CROSS-CLASSIFICATION OF SUBJECTS ACCORDING TO 

THEIR MENTAL HEALTH AND PARENTS' SOCIOECONOMIC STATUS 

Mental Parents' Socioeconomic Status 

Health A B C D E 

Status 

Well 64 (63.8) 57 (59.2) 57 (56.8) 72 (68.3) 36 (36.4) 

Mild 94 (94.4) 94 (91.9) 105 (106.4) 141 (143.5) 97 (94.1) 

Moderate 58 (57.8) 54 (51.6) 65 (62.8) 77 (83.2) 54 (58.6) 

Impaired 46 ( 46.0) 40( 42.3) 60 (61.0) 94 (89.0) 78 (75.9) 

It is also possible to construct models for the I x J contingency table in terms 

of odds. Goodman (1983) proposes a class of models based on the log-odds 

for cross-classifications where the categories of the response variable can be 

ordered. 

For adjacent categories j and j + 1 of the variable B, define the odds 

n Fij . 1 J . 1 J 1 
-l l,ij = -- ' z = ' ... ' ; J = ' ... ' - . 

F- ·+1 i,J 

(3.34) 

Let Wij = ln nij, then Goodman (1983) defines three models for the log-odds 

\JI ij, namely the null log-odds model 

\JI ij = 0 , i = 1, ... , I ; j = l, ... , J - l; (3.35) 

the uniform log-odds model 

'11ij = wf , i = 1, ... ,1; j = 1, ... ,J-1; (3.36) 

where wf are unspecified, and the parallel log-odds model 

\Jli1 ='llf+,f, i=l, ... ,1; j=l, ... ,J-1; (3.37) 

F 

21 (22.6) 

71 (71.7) 

54 ( 47.9) 

71 (74.8) 
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where the wf satisfy an appropriate constraint. 

The expected frequencies for these models can also be found by applying the 

estimation procedure of Proposition 1. 

Consider a 3 x 3 contingency table and suppose the model in equation (3.37) 

is to be fitted to the data. There are 2 x 3 = 6 odds for the table, and the 

model may be written in the form 

Aln(F) = X/3 

where 
1 -1 0 0 0 0 0 0 0 

0 1 -1 0 0 0 0 0 0 

A= 
0 0 0 1 -1 0 0 0 0 

0 0 0 0 1 -1 0 0 0 

0 0 0 0 0 0 1 -1 0 

0 0 0 0 0 0 0 1 -1 

/3 = (wt, wt, wt, ,f, ,f )' , 
and 

1 0 0 1 0 

1 0 0 0 1 

0 1 
X= 

0 1 0 

0 1 0 0 1 

0 0 1 1 0 

0 0 1 0 1 

NowletP = l 6 -X(X'Xt1X', theng(F) = PAln(F) = 0 and GF = PADp1
. 

The ML estimation procedure takes the form of that for the odds-ratio in (3.32) 

earlier. 
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Chapter 4 

SQUARE TABLES, 

QUASI-INDEPENDENCE AND 

STRUCTURAL ZEROS 

In this chapter models suitable for square tables will be discussed. The sym­

metry and quasi-symmetry models have already been considered in §3.4. The 

marginal homogeneity problem, conditional symmetry model, the rater agree­

ment problem and various diagonal symmetry models will be discussed. The 

ML estimation procedure also proves very useful for modelling data where 

there are structural zeros and data for which the quasi-independence model is 

suitable. 

4.1 SQUARE TABLES 

Often cross-classifications of data result in tables which are square and a num­

ber of models have been proposed to model such data. 

4.1.1 Marginal Homogeneity 

Consider the problem of comparing two marginal distributions of a square 

table. Marginal homogeneity states that 7ri+ = 7f +i , i = 1, ... , r. 

72 
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Example 4.1 

Consider the well known "unaided vision data set" of Bhapkar (1966) also 

discussed by Bishop Fienberg and Holland (1975). The observed frequencies 

and expected frequencies (in braces) for the marginal homogeneity model are 

shown in Table 4.1. 

TABLE 4.1: UNAIDED DISTANCE VISION FOR 7477 WOMEN AGED 

30-39 

Left eye 

Highest Second Third Lowest 

Right eye grade grade grade grade 

Highest grade 1520 (1520) 266 (252.48) 124 ( 111.84) 66 (56.97) 

Second grade 234 (24 7.24) 1512 (1512) 432 ( 409.42) 78 (70.59) 

Third grade 117 (131.27) 362 (383.13) 1772 (1772) 205 (195.26) 

Lowest grade 36 ( 42. 79) 82 (91.63) 179 (188.40) 492 ( 492) 

Total 1970 2222 2507 841 

The hypothesis of marginal homogeneity is H0 : 7ri+ = 7r +i , i = 1, 2, 3, 4. 

Let 1r' = ( 1r11, 1r12, 1r13, 1r14, 1r21, ••. , 1r24, ... , 1r 41, ... , 1r 44). 

Notice that 7ri+ = 7r +1 gives 

7r11 + 7r12 + 7r13 + 7r14 = 7r11 + 7r21 + 7r31 + 7r 41 

i.e. 1r12 + 7r13 + 7r14 - 1r21 - 7r31 - 7r 41 = 0 

which can be written as 

(0 1 1 1 - 1 0 0 0 - 1 0 0 0 - 1 0 0 0)1r = 0. 

Total 

1976 

2256 

2456 

789 

7477 
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Furthermore H0 can be written as A1r = 0, where 

0 1 1 1 -1 0 0 0 -1 0 0 0 -1 0 0 0 

A= 
0 -1 0 0 1 0 1 1 0 -1 0 0 0 -1 0 0 

0 0 -1 0 0 0 -1 0 1 1 0 1 0 0 -1 0 

0 0 0 -1 0 0 0 -1 0 0 0 -1 1 1 1 0 

Since A is singular, any 3 rows of A may be used to represent H 0 and thus 3 

degrees of freedom are associated with H 0 • 

The constraints may be written as g( 1r) = A1r = 0 or g(F) =AF= 0. 

Hence 
a 

G = BFg(F) = A . 

Thus the estimated expected frequency is found iteratively using (2. 7), where 

at step r in the iterative procedure ( r = 0, 1, 2 ... ) , 

where, µ(0
) = x is the original frequency vector. Applying the above esti­

mation procedure gives ML estimates of the expected frequencies, shown in 

parentheses in Table III, with x2 = 11.97 and LR= 11.99 with df = 3. 

The program for this example can be found in the Appendix. 

4.1.2 Conditional Symmetry 

For ordered classifications, when symmetry does not hold, often 'lrij > 'lrji for 

all i < j, or 7rij < 7rji for all i < j. A generalization of symmetry that has this 

property is 

( 4.1) 

where all Aij = Aji and where I(·) is the indicator function. The corresponding 

logi t model is 

(4.2) 

or 

( 4.3) 
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This model can be formulated as g(F) = 0 as follows. Consider a 4 x 4 table 

with 

The model in ( 4.3) can be written as 

Cln(F) = lr where 1' = (1, 1, 1, 1, 1, 1) ( 4.4) 

and C is the matrix 

Fn F12 F13 F14 F21 F22 A3 F24 F31 F32 F33 F34 F41 F42 F43 

0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 

0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 
(4.5) 

Let X = 16 and P = I - X(X'Xt1 X'. The implied constraints for the model 

are 

g(F) = PC ln(F) = 0, 

or 

K ln(F) = 0, where K = PC. 

Furthermore 
a -1 

G = aFg(F) = KDF and V = DF. 

Thus the ML estimates for the expected frequencies are given by 

where Dx = diag(x) and iteration takes place over x. 

F44 

0 

0 

0 

0 

0 

0 
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Example 4.2 

Table 4.2, taken from Breslow (1982), and discussed by Agresti (1990) p.364 

compares 80 esophageal cancer patients with 80 matched control subjects. 

The response is the number of beverages reported drunk at "burning hot" 

temperatures. The analysis is to establish whether cases tended to drink more 

beverages hot than did controls. 

TABLE 4.2: NUMBER OF BEVERAGES DRUNK AT BURNING 

HOT TEMPERATURES, FOR ESOPHAGEAL CANCER CASE-CONTROL 

PAIRS 

Control 

Case 0 1 2 3 

0 31 5 5 0 

1 12 1 0 0 

2 14 1 2 1 

3 6 1 1 0 

The ordinal nature of the data may be used in the construction of an appro­

priate model. If the symmetry model is fitted to the data, then we observe 

nonnegative residuals below the main diagonal, which indicates a systematic 

lack of fit. The conditional symmetry model of ( 4.1) gives a much better 

fit, with x2 = 3.6 based on df = 5. The ML estimate of T is -1.1584 and 

~ii = exp( T) = 0.314. The probability that a control drank k more beverages 
Fii 
burning hot than did the case is estimated to be 0.314 times the probabil-

ity that the case drank k more beverages burning hot than the control, for 

k = 1, 2, 3. The program for this example can be found in the Appendix. 
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4.1.3 The Diagonals-Parameter Model 

Goodman (1972, 1979b) presents models in which diagonals that are equidis­

tant from the main diagonal exhibit similar patterns for expected cell frequen­

cies. The diagonals-parameter symmetry model is of the form 

(4.6) 

The parameters of this model are thus 81 , 82, ••• , 8r-l. This model can be 

written as 

or 

Cln(F) = Xa, 

where O'.k = ln( 8k), and C and X are appropriately constructed. 

Consider for example, a 4 x 4 contingency table as discussed under the condi­

tional symmetry model. Then C is the matrix in equation ( 4.5), and 

1 0 0 

0 1 0 

0 0 1 
a'= (0:1, 0:2, 0:3). X= 

' 1 0 0 

0 1 0 

1 0 0 

Let P = I - X(X'Xt1 X'. The model can then be formulated in terms of the 

corresponding constraint function g(F) = PC ln(F) = 0, as for the conditional 

symmetry model and the estimation procedure takes on the same form, namely 

where K = PC, and iteration takes place over x. 
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Example 4.3 

Consider the data of Example 4.1. Fit the diagonals-parameter symmetry 

model of equation ( 4.6) to the data. 

The ML estimates of the frequencies are given in Table 4.3. 

TABLE 4.3: UNAIDED DISTANCE VISION FOR 7477 WOMEN AGED 

30-39 

Left Eye Grade 

Right Eye Grade Best Second Third Worst 

Best 1520.00 269.07 121.40 66.00 

Second 230.93 1512.00 427.28 80.60 

Third 119.60 366. 72 1772.00 206.65 

Worst 36.00 79.40 177.35 492.00 

The ML estimates for the parameters are 

o1 = 0.15286, o2 = 0.01496 and o3 = 0.60614, 

81 = 1.1652 , 82 = 1.0151 and 83 = 1.8333 . 

The estimate 8 k is the estimated odds that an observation falls in cell ( i, j) 

satisfying j - i = k, instead of in a cell satisfying j - i = -k, k = l, 2, 3. 

This model fits the data extremely well, LR = 0.50 and x2 = 0.50 based on 

df = 3. The p-value for both tests being 0.9194. 

The program for this example can also be found in the Appendix. 

4.1.4 Models for Mobility Tables 

Square tables are often used to describe the mobility pattern of a population. 

In a mobility table it is often the case that the probability of observing an 

individual in a cell, is smaller the further away it is located from the principal 

diagonal. A model that will describe the pattern is 

(4.7) 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

 
 
 



79 

This model gives a smaller expected frequency in cell ( i, j) the larger the value 

of Ii - j I, i.e. the further the cell is from the principal diagonal. 

There is however often a distinct tendency against changing from a group 

(cell) in a mobility table. This will imply that the observed frequencies for 

cells on the principal diagonal of the table will be large and the model in ( 4. 7) 

will often be inadequate for the data. A model which will better describe the 

above-mentioned trend is 

1 (R·) = { µ + ,\f + -\f + 8li - ii ' i # j 
n iJ A B 

µ + \ + \ + O'.i ' z = J 
(4.8) 

The estimation procedure can once again be implemented for parameter esti­

mation. The model in ( 4.8) can be written as 

ln(F) = X(3, 

where X is the design matrix for the mean, main effects and covariates and 

Example 4.4 

Haberman (197 4b) gives a cross classification table of husband's and wive's 

highest degree attained. The data are given in the Table 4.4. 

If we fit the model in ( 4.3), then the column for the covariate, i.e. Ii - j I is c1 , 

where 

c~ = ( 0 1 2 3 1 0 1 2 2 1 0 1 3 2 1 0), 

and the other columns in X are the columns for the mean and main effects. If 

we fit the model in ( 4.4), then the matrix of the covariates for the parameters 

8, a 1 , a2, 0'.3 and a 4 , is C2 , where 

0 1 2 3 1 0 1 2 2 1 0 1 3 2 1 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

c; = 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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TABLE 4.4: MARRIED RESPONDENTS IN 1974 GENERAL SOCIAL SUR­

VEY CROSS-CLASSIFIED BY HIGHEST DEGREES ATTAINED 

Wife's highest degree 

High school 

Husband's Less than diploma 

highest high school junior college Bachelor's Graduate 

degree diploma degree degree degree Total 

Less than 259 123 2 0 384 

high school (250.95)a (123.86) (8.64) (0.54) 

diploma (259)b (121.92) (2.67) (0.41) 

High school 82 370 30 7 489 

diploma or (78.96) (381. 73) (26.63) (1.67) 

junior college (83.08) (370) (31.13) ( 4. 79) 

degree 

Bachelor's 5 59 34 4 102 

degree (10.91) ( 52. 77) (36.06) (2.26) 

(3.44) (58. 76) (34.) (5.80) 

Graduate 2 41 29 8 80 

degree (7.16) (34.64) (23.67) (14.53) 

(2.48) ( 42.33) (27.20) (8) 

Total 348 593 95 19 1055 

[ (a) (b): the figures in parentheses are the expected frequencies for the models 

in (4.7) and (4.8) respectively.] 
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Both models ( 4.3) and ( 4.4) can be written in the form ln(F) = X/3, where X 

has as columns the relevant main effects and covariates. Let P = I - X(X'X)-1 X', 

then the function g(F) = P ln(F) = 0, is the corresponding constraint function 

for the model. The estimation procedure is once more given by 

and iteration is over x. 

For model ( 4. 7) where the diagonal elements are not fixed, the likelihood ratio 

statistic LR = 39.97, x2 = 38.26 and df = 8. The fit is very poor. If 

model ( 4.8) is considered where the principal diagonal elements are fixed, then 

LR = 3.48 and x2 = 3.19 with df = 4 and there is a significant improvement 

in the fit of the model. For model (4.8), 8 = -1.6888 with normalized value 

z = -8.27, showing the significance of the parameter. 

4.1.5 Models for Agreement Among Raters 

Landis and Koch (1977), Tanner and Young (1985) and Agresti (1988) address 

the problem of agreement between ratings done on an ordinal scale and propose 

various models for the cross-classification which can be displayed as a square 

contingency table when considering the joint ratings of the two raters. A model 

suggested is 

(4.9) 

where 

8( i j) = { 8 , if i = j 
' 0 , otherwise . 

The parameter 8 included for the cells on the principal diagonal represents 

agreement beyond what is expected by chance. Another model is 

where 
, i=j, i=l, ... ,r 

otherwise. 

(4.10) 
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The 8i are for differences by response category. 

( 4.11) 

where u1 < u2 < · · · < Ur are fixed scores. This is the linear-by-linear associa­

tion model previously discussed. 

An extension of ( 4. 7) where a perfect fit is imposed on the principal diagonal 

cells, is 

( 4.12) 

where 

8( i, j) = { 8i , i = j, _i = 1, ... , r, 
0 , otherwise . 

The above-mentioned models can all be written in the form 

ln(F) = X/3, 

where the design matrix will include columns for the mean, main effects and 

any covariate appearing in the model. The estimation procedure of Proposition 

1 can thus be implemented for any of these models where the implied constraint 

function 

g(F) = P ln(F) = 0, where P = I - X(X'Xt1X'. 

The estimation procedure is given by 

where iteration takes place over x. 

Example 4.5 

Consider the data from Agresti (1988) taken from Landis and Koch (1977). 

Table 4.5 displays diagnoses of multiple sclerosis for two neurologists who clas­

sified patients in two sites, Winnipeg and New Orleans. The diagnostic classes 

are (1) certain multiple sclerosis (2) probable multiple sclerosis (3) possible 

multiple sclerosis ( 4) doubtful, unlikely, or definitely not multiple sclerosis. 
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TABLE 4.5: DIAGNOSTIC CLASSIFICATIONS REGARDING MULTIPLE 

SCLEROSIS 

Winni peg neurologist 

Winnipeg patients New Orleans patients 

New Orleans 

neurologist 1 2 3 4 1 2 3 4 

1 38 5 0 1 5 3 0 0 

2 33 11 3 0 3 11 4 0 

3 10 14 5 6 2 13 3 4 

4 3 7 3 10 1 2 4 14 

Let S: site, Rl: rating by New Orleans neurologist, R2: rating by Winnipeg 

neurologist. 

Agresti fits the model 

with 8( i, j) defined under model ( 4.9) for the Winnipeg patients and the New 

Orleans patients separately and finds 

Site (3 8 LR df 

Winnipeg 0.804 -0.028 9.4 7 

New Orleans 1.041 0.028 8.8 7 

The similar results for the patients suggest a single model for the 4 x 4 x 2 
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cross-classification. Thus consider the following model 

ln(Fijk) = µ+>.f +>.f1+>.f2+>.lRI+\~R2+,Bujuk+8(j, k), i = 1, 2, j, k = 1, ... , 4 

where ui, Uj = 1, ... , 4 and 

8 (j' k) = { 
0
1 , if j = k 

otherwise. 

The matrix for the covariates is C, where 

C' = [ 1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16 ] : ,8 
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 :8 

The model can be written as ln(F) = X/3, where X has the columns for the 

mean, main effects, site x neurologist interaction and the columns of C. The 

estimation procedure follows as described earlier and the ML-estimates are 

8 = 0.0198 and~= 0.8548 with LR = 19.04 and x2 = 24. 70 based on df = 16. 

Since 8 is not significant, remove it from the model. The ML estimate for ,8 
is then ,8 = 0.8612 and LR = 19.03 based on df = 17 with p-value 0.3268 

indicating an adequate fit. 

4.1.6 Quasi-symmetry 

In Chapter 3 estimates for the expected frequencies under the quasi-symmetry 

(QS) model were found by expressing the constraints in terms of the param­

eters in the loglinear model. It is also possible to formulate the constraints 

of the QS model in terms of constraints on the frequencies using odds ratios. 

From Agresti (1990) equation (10.14), the QS model can be written in the 

multiplicative form 

Quasi-symmetry can also be written in terms of symmetry of odds ratios. The 

quasi-symmetry model holds if and only if for all integers i, j, k and l between 

1 and R 
1rik7rjt 7rki7rlj 
1rit7rjk 7rzi7rkj 

( 4.13) 
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Now fixing one cell, by taking j = l = R and forming all odds ratios, equation 

( 4.13) becomes 

or 1rik7rkR7rRi = 7rki1riR7rRk ' 
1f'iR1f'Rk 7rRi7rkR 

( which is the result of Agresti (1990) exercise 10.26). These constraints can 

now be written in the form g( 1r) = 0 and the proposed estimation procedure 

may be used to find the ML estimates of the expected frequencies for the 

quasi-symmetry model. 

As an illustration, consider a 4 x 4 table. For the quasi-symmetry model to 

hold, the following constraints must hold 

7r127r247r41 = 7r211r141r42 F12F24F41 - F21F14F42 = 0 

7r137r347r41 = 7r317r147r43 or F13F34F41 - F31F14F43 = 0 

7r237r347r 42 = 7r327r247r 43 F23F34F42 - F32F24F43 = 0 , 

which is of the form g(F) = 0 and Gp= O~g(F) is a 3 x 16 matrix, with 

GF(l, 2) = F24F41, GF(l, 4) = -F21F42, GF(l, 5) = -F14F42, 

GF(l, 8) = Fi2F41, GF(l, 13) = Fi2A4, GF(l, 14) = -F21F14, 

GF(2, 3) = F34F41, GF(2, 4) = -F31F43, GF(2, 9) = -F14F43, 

GF(2, 12) = F13F41, GF(2, 13) = Fi3F34, GF(2, 15) = -F31F14, 

GF(3, 7) = F34F42, GF(3, 8) = -F32F43, GF(3, 10) = -F24F43, 

GF(3, 12) = F23F42, GF(3, 14) = F23F34, GF(3, 15) = -F32F24. 

All other GF(i,j) are zero. 

The ML estimates of the expected frequencies are found by using 

V may be taken as D F for a Poisson sampling procedure. A double iteration 

over x and F is necessary. The QS model may be considered for the following 

square table. 
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Example 4.6 

Consider the migration example of Agresti (1990) where the table compares 

region of residence in 1985 with 1980 for a sample of U.S. residents and fit the 

QS model to the data. 

TABLE 4.6: MIGRATION FROM 1980 TO 1985 

Residence in 1985 

Residence in 

1980 North East Mid West South West 

North East 11607 100 (95.7) 366 (370.4) 124 (123.8) 

Mid West 87 (91.2) 13677 515 (501. 7) 302 (311.1) 

South 172 (167.6) 225 (238.3) 17819 270 (261.1) 

West 63 (63.2) 176 (166.9) 286 (294.9) 10192 

(Figures in parentheses are the ML estimates of the expected frequencies for 

the QS model). 

The likelihood ratio statistic LR= 2.99 and x2 = 2.98 with df = 3. 

4.2 QUASI-INDEPENDENCE 

4.2.1 Quasi-Independence in the Ix J Table 

Using the notation of Goodman (1994), let the odds ratio 0ij,rs be defined as 

follows 

0 
'lrij'lrrs £ . cl . 

ij,rs = -- or z < r an J < s. 
'lris'lrrj 

( 4.14) 

Instead of considering all possible odds ratios for the I x J table, consider the 

situation where a given subset S of the cells ( i, j) in the table, is of interest. 
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'lrij = o:i{3j, V cells (i,j) in S. 

From equation ( 4.14) the quasi-independence model implies that 

O:i{3j0:rf3s . 
0ij,rs = 4 4 = 1, V Tij,rs 1Il T 

O:ifJsO:r/Jj 
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where Tis the set of 2 x 2 tables Tij,rs in which cells (i,j), (r,s), (i,s) and 

( r, j) are in S. 

The conditions above can be written in terms of constraints g( 1r) = 0 and the 

proposed ML estimation procedure can be employed to find the ML estimates 

of the expected frequencies in the QI model. 

Example 4.7 

Consider the migration example of Example 4.6 which compares region of 

residence in 1985 with 1980 for a sample of U.S. residents. Consider whether, 

for people who moved, residence in 1985 is independent of region in 1980. We 

investigate independence for cells not on the principal diagonal, i.e. a subtable 

Sin T. 

Let F = (F1 , F2 , ••• , F16 )' denote the expected frequencies arranged as a col­

umn vector. For the quasi-independence model there are 5 cross product ratios, 

which are each set equal to one. These are given by 

FsFi2 _ l F3Fs _ l F2F1s = l, FsFis =land FgF14 = 1. 
FsFg - ' F4F1 - ' F3F14 F1 Fi3 F10F13 

These constraints can now be expressed in the form g(F) = 0, where 

91 (F) = FsF12 - FsFg = 0, 

92 (F) = F3Fs - F4F1 = 0, 

93(F) = F2Fis - F3F14 = 0, 

94(F) = FsF1s - F1Fi3 = 0, 

9s (F) = FgF14 - FioFi3 = 0. 
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TABLE 4.7: MIGRATION FROM 1980 TO 1985 

Residence in 1985 

Residence in 

1980 North East Mid West South West 

North East 11607 100 (126.6) 366 (312.9) 124 (150.5) 

Mid West 87 (117.4) 13677 515 (531.1) 302 (255.5) 

South 172 (133.2) 225 (243.8) 17819 270 (290.0) 

West 63 (71.4) 176 (130.6) 286 (323.0) 10192 

(Figures in parentheses are the ML estimates of the expected frequencies for 

the QI model). 

The matrix Gp= :Fg(F) is a 5 x 16 matrix, with 

Gp(l, 5) = F12, Gp(l, 8) = -F9 , Gp(l, 9) = -Fs, Gp(l, 12) = Fs 
Gp(2, 3) = Fs, Gp(2, 4) = -F1, Gp(2, 7) = -F4, Gp(2, 8) = F3 

Gp(3, 2) = Fis, Gp(3, 3) = -Fi4, Gp(3, 14) = -F3, Gp(3, 15) = F2 

Gp( 4, 5) = Fis, Gp(4, 7) = -Fi3, Gp( 4, 13) = -F1, Gp(4, 15) = Fs 

Gp(5, 9) = Fi4, Gp(5, 10) = -Fi3, Gp(5, 13) = -F10, Gp(5, 14) = F9 

All other Gp( i, j) are zero. 

The ML estimation procedure 

is implemented. If a Poisson sampling procedure is considered, then V = D p 

and a double iteration is required for convergence to the ML estimates of the 

expected frequencies for the QI model. The likelihood ratio, LR= 69.51 with 

df = 5. 
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Another approach to quasi-independence, is to express the QI model as a 

loglinear model, where 

ln(Fij) = µ + -Xf + -Xf, for i-/= j, 

i.e. quasi-independence for cells other than the cells on the principal diagonal. 

For this model Fii = Xii, i = 1, ... , 4 and these constraints can be imposed 

through the matrix 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
C1= 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

The quasi-independence model can be written as ln(F) = X/3, where the design 

matrix X has columns 116 , the main effects for the variables A and B and the 

columns of C1 . Let P = I - X(X'X t 1 X'. Then P ln(F) = PX/3 = 0, and we 

thus have a function g(F) = 0 with Gp = PDi. The estimation procedure 

is given by 

and iteration is over x. 

4.2.2 Quasi Independence in a R x R Triangular Table 

Goodman (1994) presents an explicit expression for the ML estimate of the 

frequencies expected in a R x R triangular contingency table under the quasi­

independence model. For the R x R triangular table, with 7rij denoting the 

probability that an observation will fall in the ith row and jth column of the 

table, the QI model states that 

1fij ai{Jj, for i ~ j, 

0, for i > j, 
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with O\ > 0 and /3i > 0, for i == I, ... , R, and j == I, ... , R. Without loss 

of generality consider the table with positive probabilities in the upper-right 

triangle. 

The problem of QI can also be easily modelled in terms of all possible odds 

ratios for the triangular table set equal to one, which can be expressed in terms 

of constraints on the cell probabilities. 

Example 4.8 

Consider the 5 x 5 contingency table taken from BFH (1975) wherein the initial 

and final condition of stroke patients is considered. 

TABLE 4.8: INITIAL AND FINAL CONDITION OF STROKE PATIENTS 

Initial Final Condition 

condition A B C D E 

E 11 (15.66) 23 (21.92) 12 (11.93) 15 (11.48) 8 (8.0) 

D 9 (6.16) 10 (8.63) 4 ( 4.69) 1 ( 4.52) 0 (0) 

C 6 ( 4.43) 4 (6.20) 4 (3.37) 0 (0) 0 (0) 

B 4 (3.75) 5 (5.25) 0 (0) 0 (0) 0 (0) 

A 5 (5.0) 0 (0) 0 (0) 0 (0) 0 (0) 

(Figures in parentheses are the ML estimates of the expected frequencies for 

the QI model). 

For convenience arrange the cell probabilities 'lrij as a vector 1r = ( 1r1, 1r2, ... , 7r2s)', 

where 1r1 = 1r11, 1r2 == 7r12, ... , 7r2s = 7r55. 
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The QI model can be expressed in terms of 6 odds ratios ( cross product ratios), 

each of which must be equal to one for independence to hold for the non-zero 

cells. The constraints are 

7r17r7 7r17rg 7r17rg 7r17r12 7r17r13 7r17r17 -- = 1, -- = 1, -- = 1, -- = 1, -- = 1, -- = 1. 
7r27r6 7r37r6 7r47r6 7r27r11 7r37r11 7r27r16 

These constraints in turn can now be expressed in the form g( 1r) = 0, where 

91(1r) = 7r17r7 - 7r27r6 = 0, 

g2(1r) = 7r17rg - 7r37r6 = 0, 

g3(1r) = 7r17rg - 7r47r6 = 0, 

g4(1r) = 7r17r12 - 7r27r11 = 0, 

g5(1r) = 7r17r13 - 7r37r11 = 0, 

96(1r) = 7r17r17 - 7r27r16 = 0. 

The matrix G,,. = :1rg(1r) is a 6 x 25 matrix, with 

G1r(l, 1) = 1r1, G1r(l, 2) = -1r6, G1r(l, 6) = -1r2, G1r(l, 7) = 1r1 , 

G1r(2, 1) = 1r8 , G1r(2, 3) = -1r6, G1r(2, 6) = -1r3, G1r(2, 8) = 1r1 , 

G1r(3, 1) = 1r9 , G1r(3, 4) = -1r6, G1r (3, 6) = -1r 4, G1r(3, 9) = 1r1 , 

G1r( 4, 1) = 1r12, G1r( 4, 2) = -1r11, G1r(4, 11) = -1r2, G1r( 4, 12) = 1r1 , 

G1r( 5, 1) = 1r13, G1r(5, 3) = -1r11, G1r(5, 11) = -1r3, G1r(5, 13) = 1r1 , 

G1r(6, 1) = 1r11, G1r(6, 2) = -1r16, G1r(6, 16) = -1r2, G1r(6, 17) = 1r1. 

All other entries G1r( i, j) are equal to zero. 

Let F = (Fi, ... , As)' denote the vector of expected frequencies, then for 

example 
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and similarly for the other cross product ratios. The constraints g( 1r) = 0 may 

be written in the form g(F) = 0 and GF = a~g(F) is the 6 x 25 matrix with 

elements of G1r replaced by the corresponding entry in terms of the expected 

frequencies, i.e. Gp(l, 1) = F7 and so on. 

The ML estimation procedure 

may now be used to find the ML estimates of the expected frequencies in the QI 

model. The matrix V may be taken as D F for Poisson sampling or D F - ¼ FF' 

for multinomial sampling. A double iteration is required and the procedure 

converges to the ML estimates. The likelihood ratio statistic, LR = 9.60 with 

df = 6. Note that df = number of constraints in the function g(F). 

4.3 STRUCTURAL ZEROS 

If a contingency table has a cell for which it is theoretically impossible to 

have an observation, then we have a so called structural zero. For such a cell 

the ML estimate of the frequency must necessarily also be zero. This can be 

done by imposing a constraint on any cell having a structural zero. These 

constraints can be written to comply with the conditions of Proposition 1 

and estimation for models for the contingency table will be possible. Bishop, 

Fienberg and Holland (1975) as well as Haberman (1973, 1974a) examine the 

influence of empty cells on the existence and uniqueness of ML estimates for 

loglinear models for incomplete tables. The constraint method provides ML 

estimates for expected frequencies for tables where the ML estimates can or 

cannot be written in closed form. To illustrate the principle, consider the 

following hypothetical example. 

Example 4.9 

Consider the following incomplete table. 

We wish to fit the model of independence to the non-zero cells and the cells 
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TABLE 4.9: FREQUENCY TABLE WITH STRUCTURAL ZEROS 

Variable B 

64 70 11 

Variable A 83 95 0 

0 0 32 

with structural zeros must have zero expected frequencies. Thus impose the 

constraints on the zero frequency cells through 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

C= 0 0 0 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

In the design matrix X, incorporate a column of ones for the mean along with 

the columns for the main effects for the variables A and B, and concatenate 

these columns with the columns of C. Write the model as ln(F) = X/3 and let 

P = I - X(X'X)-1X'. Then P ln(F) = PX/3 = 0, and we thus have a func­

tion g(F) = 0. The estimation procedure can once more be applied to obtain 

the ML estimates of the expected frequencies. The program for the example 

can be found in the Appendix. The estimation procedure gives the following 

ML estimates for the expected frequencies for the quasi-independence model. 
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Variable B 

63.1346 70.8654 11.0000 

Variable A 83.8654 94.1346 0.0000 

0.0000 0.0000 32.0000 

For this model LR= 0.0393 and x2 = 0.0393 with df = l. 

Note that for this table the ML estimates can be obtained by partitioning the 

table into the subtable 

The ML estimates for the frequencies can now be found by using the marginal 

totals in the usual way. For example 

-- 134 X 147 
F11 = 

312 
= 63.1346. 

Bishop, Fienberg and Holland (1975) also discuss the so-called "Block Stairway 

Incomplete Table" and give formulae for the ML estimates for the non-zero 

expected frequencies for the quasi-independence model. They also comment 

on the fact that the iterative proportional procedure does not always converge 

exactly to the ML estimates for certain incomplete tables. The constraint 

method, however, does give the exact ML estimates as will be illustrated by 

the following example taken from BFH. 

Example 4.10 

Consider the following example, the details of the experiment can be found in 

BFH p.200. 

The loglinear model for the quasi-independence for the incomplete table can 

be writ ten as 

ln(F) = X/3 
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TABLE 4.10: BLOCK STAIRWAY TABLE FORM 

Female Type Male Type 

A'B A'B' AB' AB 
Female with a Y-Chromosome - 1029 2240 1413 

Female with Proximal segment 346 548 1287 -

of the Translocation 

where 
1 1 1 0 0 1 0 

1 1 0 1 0 0 0 

1 1 0 0 1 0 0 

X= 
1 1 -1 -1 -1 0 0 

1 -1 1 0 0 0 0 

1 -1 0 1 0 0 0 

1 -1 0 0 1 0 0 

1 -1 -1 -1 -1 0 1 

The last two columns of X are the constraints necessary to impose zero ex-

pected frequencies for the two cells having structural zeros. Using the same 

technique as in Example 4.8, we have a function g(F) = 0, and the ML es-

timates for the expected frequencies can be found. These are given in the 

following table (segment) 

0.0000 1010.0339 2258.9661 1413.0000 

346.0000 566.9661 1268.0339 0.0000 

These are the exact values that will be obtained by using the closed formula 

given in BFH equation (5.2-48) on page 199. The likelihood ratio LR = 1.44 

and x2 = 1.43 with df = 1. 

Quasi-independence for this incomplete table can also be expressed in terms 
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of the only possible odds ratio for the table, namely 

This is of the form g(F) = 0 and it follows that GF = (0, F23, -F22, 0, 0, -Fi3, F12, 0). 

The ML estimates for the expected frequencies under independence for the in­

complete table are given by 

which will require a double iteration, namely over x and F. 

The programs for this example appear in the Appendix. 

The next example will illustrate another problem that needs consideration 

when dealing with incomplete contingency tables. 

Example 4.11 

Consider the following example taken from Everitt (1977) p.109. The table 

presents the cross classification of 291 teenagers according to Age (A), Sex (B) 

and Health Problems (C). 

TABLE 4.11: CROSS-CLASSIFICATION OF HEALTH OF TEENAGERS 

Sex 

Males I Females 

Age 12-15 16-17 12-15 16-17 

s 4 2 9 7 

Health Problem M - - 4 8 

H 42 7 19 10 

N 57 20 71 31 
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S: Sex reproduction 

M: Menstrual problems 

H: How healthy I am 

N: Nothing 

97 

Since males were naturally not affected by menstrual problems, certain cells 

are structural zeros. 

Consider fitting the model 

to the data. The constraints for the two structural zeros are 

c' = [ o o o o 1 o o o o o o o o o o o
0 

] . 
1 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

The design matrix X for the above mentioned model, written as ln(F) = X/3, 

will have 13 columns for the 13 unknown parameters in the model. If we 

consider Z = [X, C1] to impose the structural zero constraints, then Z will 

be singular. By applying a singular-value-decomposition to Z, we will find 

14 non-zero singular values. Hence the degrees of freedom for the model, 

df = 16-14 = 2. Now by using the eigenvectors corresponding to the non-zero 

singular values as the column vectors of the matrix say, U, we can write the 

model as ln(F) = Ua and by taking P = I - U(U'U)-1U', we have g(F) = 

P ln(F) = 0 and once more the estimation procedure of Proposition 1 will 

yield the ML estimates of the expected frequencies. The ML estimates for the 

expected frequencies for the preceding table are as follows. 

4.03 1.97 8.97 7.03 

0.00 0.00 4.00 8.00 

39.81 9.18 21.19 7.81 

59.16 17.84 68.84 33.16 

The likelihood ratio statistic, LR= 2.026 and x2 = 2.030 based on df = 2. 
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Chapter 5 

LOGIT MODELS AND LOGISTIC 

REGRESSION 

This chapter deals with a cross-classification, where one variable is considered 

to be a response variable and the other variables are explanatory variables. 

Logit models are suitable for such data. The standard logit, cumulative logit 

model, adjacent categories logit model and continuation ratio logit model will 

be discussed and written in terms of the implied constraints g(µ) = 0. The 

proportional hazards model proposed by McCullagh (1980), which is an appro­

priate model for data where the response variable is exponential, is also dis­

cussed. The estimation procedure of Proposition 1 will then be implemented 

for parameter estimation in these models. 

Estimation for models suitable for binary data is discussed and the logistic 

regression model and extreme value model are presented in terms of the implied 

constraints g(µ) = 0. 

5.1 THE LOGIT MODEL 

Suppose that C is a response variable with k categories and that variables A 

and B are explanatory variables with r and c categories respectively. Suppose 

that the last category of variable C is chosen as the reference category, then a 

98 
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standard logit model including main effects for A and B is 

1 (
Fijl) ,A ,B l k 

n Fijk = µ + /\i + /\j ' = l, ... ' - 1. (5.1) 

The standard logit model can be written in the form 

K ln(F) = A..\, (5.2) 

where A is the full design matrix, ..\ is the vector of parameters and the matrix 

K is appropriately constructed. 

The s = r x c category combinations of A and B form the so called populations. 

Arrange the cross-classification as follows. 

VARIABLE C 

Population 1 2 ... k-l k 

1 F11 F12 ... Fi,k-l Flk 

2 F21 F22 ... F2k-l F2k 
' 

s Fsl Fs2 ... Fs,k-l Fsk 

Let Fij now denote the frequency in the ith population and the j th category 

of the response variable C. For the 1st population let F~ = (F11, Fi2, ... , F1k)­

The logits for the 1st population are 

ln (~::) , ln (~::) , ... , ln ( F~:~ 1
) 

Let L1 be the vector of these logits, then 
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where 
1 0 0 

0 1 0 

0 0 0 

Repeat for the other populations and let 

L= 

0 -1 

0 -1 

1 -1 

F' = (F11,F12,• • .,F1k,Fsl,· • .,Fsk), 

Then all the logits can be written as the vector 

L = K ln(F). 

100 

(5.3) 

(5.4) 

In order to set certain parameters equal to zero, write the model in the form 

H(A'Ar1 A'Kln(F) = H,\ = 0, 

where H specifies the functions of,\ set to zero. Let A~= H(A'A)-1 A' as in 

Chapter 3. Then 

g(F) = A~ K ln(F) = 0. (5.5) 

From (5.5) GF = :F g(F) = A~ K Df/. 

Use V = D F for Poisson sampling and the estimation procedure becomes 

where iteration takes place over x. 
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5.2 THE CUMULATIVE LOGIT MODEL 

Suppose that the response variable is ordinal with say k categories. Models 

utilizing the ordinal nature of the response variable are constructed by defining 

alternative logits. Consider explanatory variables A and B with r and c levels 

respectively and response variable C with k levels. 

Let 1r1 , 1r2 , ... , 7rk be the response probabilities at a certain combination of 

levels of explanatory variables. 

The cumulative logit at cut point j is defined as: 

[

7r1 + 7r2 + ... + 'lrjl 
Li = ln ------- , 

7rj+l + ... + 7rk 
j = l, ... ,k-1. (5.7) 

Agresti (1984) suggests a number of cumulative logit models some of which 

are given below. McCullagh (1980) also discusses a number of cumulative 

link models and presents an iterative routine for calculating the ML estimates 

of the parameters. The routine expresses the response probabilities in the 

likelihood function in terms of cumulative probabilities, and applies a Fisher 

scoring algorithm. 

5.2.1 Cumulative Logit Models For Two-way Tables 

(i) Ordinal-Ordinal Tables 

Suppose that the row and column variables are ordinal. Let j be a fixed 

cut point for the cumulative logit. The jth cumulative logit in row i is 

[ 
Fil + ... + Fij l 

Li(i) = ln ------- , 
Fi,j+l + ... + Fik 

i = 1, ... , r. (5.8) 

Suppose we assign scores { ui} to the row variable. A linear model for 

the j-th cumulative logit values { Lj(l), Lj(2), ... , Lj(r)} is 

(5.9) 

This model holds for each of the cut points j, where j = 1, 2, ... , k - 1. 

The model in (5.9) is in fact the usual logit model, where for cut point j, 
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an r x 2 table is formed by combining the first j categories to form the 

first category and combining the last c - j categories to form the second 

category. 

If in (5.9) /31 = /32 = · · · = f3k-t = /3, then this model simplifies to 

L j ( i) = µ j + /3 ( Ui - u) , 1 ~ i ~ r , 1 ~ j ~ k - 1. (5.10) 

(ii) Ordinal-Nominal Tables 

Suppose that A is nominal and B is ordinal. A cumulative logit model 

having row effects, each of which is identical for the k-1 ways of forming 

the logits is 

(5.11) 

where 

Note that the ith row effect Ti is the same for all k - 1 ways of forming 

the logits, i.e. Ti and not Tij. 

5.2.2 Cumulative Logit Models For Higher Dimensions 

Let A and B be explanatory variables and C an ordinal response variable 

with k categories. Suppose that there are r x c subpopulations formed by the 

category combinations of X and Y. At levels i of X and j of Y and for cut 

point£, 

[ 
Fijl + ... + Fijl l Lt(ii) = ln ------- , 

Fij,l+l + ... + Fijk 
R = 1, ... k-1. 

Consider the following examples of cumulative logit models. 

(a) If A and B are nominal, a possible cumulative logit model is 

Lt(ij) = µl + T/ + 8f , where LT/= I:8f = 0. 
j 

( 5.12) 

(5.13) 
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(b) If A and B are ordinal, a possible cumulative logit model is 

(5.14) 

( c ) If A is nominal and B is ordinal, a possible cumulative logit model is 

(5.15) 

The above-mentioned cumulative logit models have homogeneous row effects. 

It is possible to start with non-homogeneous effects and then establish whether 

homogeneous effects are valid. 

All of the above-mentioned cumulative logit models can be written in the form 

(5.16) 

where C 1 and C2 are appropriately constructed, X is the design matrix and 

f3 is the vector of unknown parameters. The design matrix X has main ef­

fects, interactions and any covariates to be considered. In order to apply 

the estimation procedure, we require a function g(F) = 0. To this end let 

P = I - X(X'X)-1X' and perform a singular-value-decomposition if there are 

column dependencies. Now let AH = [P, XG~], where XG~ can be used to 

impose further constraints on the parameters in the logit model. For example, 

one might have a homogeneous model for the main effects of A. Then XG~ 

will be used to equate the parameters for each logit. This aspect of the model 

formulation allows a great amount of flexibility in the type of model that is 

constructed. This area can be an advantage over the established packages such 

as SAS and GLIM, where it may be necessary to use macros to cater for more 

diverse models. The function g(F) = A~[ln(C1F) - ln(C2F)] is the function 

of implied constraints for the model. Furthermore 

G = ag(F) = A' [D-1 C - 0-1 C ] 
F 8F H C1F 1 C2F 2 

where DC
1
F = diag(C1F) and DC

2
F = diag(C 2F) and the estimation proce­

dure is 

(5.17) 
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where V is the variance-covariance matrix for product multinomial sampling. 

DF may be used in place of V, since for a contingency table with says popu­

lations and c response categories, the likelihood function may be written as 

and the canonical parameter 

0ij = ln 7rij (see Example 2.2) 

Whereµ .. - n·1r·. iJ - i iJ. 

Thus 

and 

Hence, from Proposition 1 

or in terms of the frequencies 

aeij 1 

8µij µij 

8µ 
ao = Dµ · 

where iteration takes place over x and F. 

Example 5.1 

(5.18) 

Consider the data of Example 3. 7. The opinion variable may be considered 

as an ordinal response variable with 4 categories. There are 2 x 3 so called 

populations, i.e. 
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Afrikaans Age 18-24 

Afrikaans Age 25-34 

Afrikaans Age 35-64 

English Age 18-24 

English Age 25-34 

English Age 35-64 

Consider the contingency table as an r x c array where Fij is for the ith 

population and j th category of the response variable. 

For the ith population, the cumulative logits are 

Arrange these 3 expressions in a vector, say L1 , then L 1 = ln(C1F 1)-ln(C2F 1), 

where 

(: 0 0 :) (: 1 1 :) C1= 1 0 C2= 0 1 (5.19) 

1 1 0 0 

and F~ = (Fn, F12, Fi3, F14). 

Repeating the principle for the 6 populations, the 3 x 6 = 18 logits can be 

jointly written as 

L= 

where K 1 = C1 ® 16 and K2 = C2 ® 16 . The Kronecker product is defined as 

in Searle (1982) equation (27), section 10.7, and 
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The cumulative logit vector L can now be written in the model form 

as mentioned in (5.16). 

Example 5.1 (continued): 

In a survey on socio-political change in South Africa of October 1987 people 

were asked their opinion as to how effectively the unrest situation had been 

handled. The results are summarized in the following contingency table. 

TABLE 5.1: OBSERVED FREQUENCIES AND EXPECTED FREQUEN­

CIES FOR CUMULATIVE LOGIT MODEL FOR OPINION ON THE UN­

REST SITUATION 

Opinion 

Language Age Ineffective Neither effective Fairly Very 

nor ineffective effective effective 

18-24 5 (5.33) 6 (8.25) 53 (53.25) 16 (13.17) 

Afrikaans 25-34 7 (7.95) 15 (12.90) 115 (106.43) 25 (34. 72) 

35-64 13 (11. 72) 20 (19. 73) 197 (205.21) 96 (89.35) 

18-24 7 (5.49) 3 ( 4.58) 33 (32.48) 7 (7.45) 

English 25-34 8 (8.60) 9 (7.59) 65 (68.33) 23 (20.48) 

and other 35-64 13 (13.98) 13 (12.91) 149 (146.11) 56 (58.00) 

(Figures in parentheses are the expected frequencies for the cumulative logit 

model Lf(ij) = µf +Tl;+ (3A ( Vj - v) , £ = 1, 2, 3). 

Consider "opinion" as the response variable, with "language" a nominal ex­

planatory variable and "age" an ordinal explanatory variable. The non-homogeneous 

model for the data is 
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When this model is fitted to the data, it is found that the ~f are similar 

in magnitude (~f = -0.3656, ~} = -0.2747 and ~f = -0.3555), hence the 

following model is fitted to the data 

The parameter estimates and their standard normal values are given in the 

following table. 

parameter estimate z-value 

µ1 -2.6908 -18.59 
L 

Tll -0.2737 -1.93 
(3A -0.3249 -3.29 

µ2 -1.8072 -17.74 
L 

T12 -0.1052 -1.08 

µ3 1.3584 14.59 
L 

7 13 -0.0594 -0.75 

The cumulative logit model fits the data well. The likelihood ratio statistic, 

LR = 8.35 with df = ll. 

Discussion of the cumulative logit output. 

The cumulative logit model fits the data well. The likelihood ratio statistic, 

LR= 8.35 with df = 11, AIC* =LR+ 2p = 8.35 + 2(7) = 22.35. 

For cut point f = l, µ,1 = -2.6908, which being negative indicates an over­

all tendency that fewer people favour the opinion "ineffective" rather than the 

other three categories combined. For the Afrikaans speaking people aged 18-24 

years, the odds of having the opinion "ineffective" rather than the other three 

categories combined, is 0.0714, while the above-mentioned odds for the English 

speaking people aged 18-24 years is 0.1234. The odds for the Afrikaans speak­

ing people aged 35-64 years is 0.0373, while the odds for the English speaking 

people is 0.0644. 
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Consider the cut point f == 3. For the Afrikaans speaking people aged 18-24 

years the odds of having the opinion "ineffective or neither effective nor inef­

fective or fairly effective" rather than "very effective" is 5.0725. The above­

mentioned odds for Afrikaans speaking people aged 35-64 years is 2.6487, or 

alternatively the odds of "very effective" rather than the other three cate­

gories combined are 1/5.0725 == 0.1971 and 1/2.6487 == 0.3775 . Simi­

larly the odds of "very effective" rather than the other three categories com­

bined, for the English speaking people aged 18-24 years and 35-64 years are 

1/5.7128 == 0.1750 and 1/2.9830 == 0.3352 . Thus showing that the older 

people have a higher odds of the opinion "very effective" rather than the other 

three categories combined, than the younger age group. 

On the grounds of the AIC-criterion, the above-mentioned model will be pre­

ferred to the model suggested in Example 3.7 for which AIC* == 29.94 . As 

mentioned earlier, the model with the smaller AIC*- value is preferable. The 

program for fitting the cumulative logit models appears in the Appendix. 

5.3 ADJACENT CATEGORIES AND CONTINUA­

TION RATIOS LOGITS 

(i) The adjacent categories logit is defined as: 

L j == ln [ 7r j +I ] , j = 1, ... , k - l. 
7rj 

(ii) The continuation ratios logit is defined as: 

[ 
7r j+l l L j = ln __ :_,.____ , 

7r1 + ... + 7rj 
j==l, ... ,k-1. 

or 

* 1 [ 7rj l L j = n --------'--- , 
7rj+I + ... + 7rk 

j=l, ... ,k-1. 

(5.20) 

(5.21) 

These models can also be written in the form of equation (5.16), where C1 and 

C2 are appropriately defined. For Example 5.1, the matrices C1 and C2 (for 
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a population) for (i) are: 

(: 1 0 

n C2 = (: 

0 0 :) C1= 0 1 1 0 

0 0 0 1 

and for (ii) the matrices are: 

In order to specify the model over all s populations use C1 01s and C2 018 as 

C1 and C 2 in (5.16) and use (5.18) with the double iteration to find the ML 

estimates for the expected frequencies for the model. 

5.4 PROPORTIONAL HAZARDS MODEL 

Suppose the underlying distribution for the response variable Y is exponential, 

then McCullagh ( 1980) suggests the response function 

ln[- ln(l - Fi(x))] 

where { Fj(x), j == 1, ... , c} denotes the distribution function of Y when vector 

variable X takes on the value x. The linear model 

ln[-ln(l - Fj(x))] == /3oj + f3'x, 1 ::; j ::; c - 1 (5.22) 

is called the proportional hazards model. The Fisher scoring iterative algo­

rithm is generally used to find the ML estimates of the parameters. The 

method presented in Proposition 1 also provides a useful and flexible proce­

dure for finding the ML estimates, by writing the model in terms of the implied 

constraints. This can be done as follows. 

Estimation 

Let lj == ln[- ln(l - Fi(x))]. The saturated model for the complementary 
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log-log model may be written as l = A.X, where A is the appropriate design 

matrix and.Xis the vector of parameters. The reduced model to be considered 

may be written as 

The vector l may be written in the form 

where 
0 1 1 1 

0 0 1 1 

1 

0 0 0 1 

and C1 7r then gives the survival probabilities. Hence 

A~ ln(h( 1r)) 

Now 

a 
B1r A~ ln(h( 1r)) 
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where Dh(7r) is a diagonal matrix with the elements of h( 1r) on the principal 

diagonal and Dc1 1r is a diagonal matrix with the elements of C 1 1r on the 

principal diagonal. 

Let 1r' == (1r(l)' 7r(2), ... , 7r(s)), where 7r(i) == (1r(i)1, 1I"(i)2, ... , 1I"(i)c) denotes the 

ith subpopulation probabilities. Then 

where 

V; = ~; (D1r(i) - 1r(;)1r(;)), i = 1, ... , s . 

The estimation procedure for the expected cell probabilities is 

A double iteration is necessary namely over p and 1r. 

Example 5.2 

The following data from the HSRC show the distribution of income of white 

male graduates in S.A. Note: Income in thousands of 1981 Rands. 

Consider the model 

where the subscripts i, j and k refer to the year, work sector and income 

category respectively, and Fijk is the cumulative relative frequency in subgroup 

(i,j) earning an amount less than or equal to the amount specified as upper 

limit of income category k. For example, if Fijk denotes the sample analogue 

for Fijk, then 
* 5397 + 2333 + 3505 

F213 == 5397 + 2333 + 3505 + 1506 + 645 

If we fit the model to the data, the ML estimates are as follows: 
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TABLE 5.2: INCOME DISTRIBUTION FOR WHITE MALE GRADUATES 

IN SA 

YEAR 1975 1981 1987 

SECTOR Pub. Priv. Pub. Priv. Pub. 

INCOME 

0-15 2309 2050 5397 4125 3315 

15-18 2138 1360 2333 1626 2044 

18-24 4011 2528 3505 3313 3472 

24-30 2794 1967 1506 2032 1105 

::; 30 784 2475 645 2264 477 

parameter estimate 

µ1 -1.1430 

µ2 -0.5914 

µ3 0.2113 

µ4 0.7497 
,\y 

1 -0.1812 
,\y 

2 0.1539 
,\s 

1 0.2590 

For any specific sector j 

Hence 

or 

ln[- ln(l - Ajk)] - ln[-ln(l - Fijk)] 

~y ~y 
= ,\2 - ,\1 = 0.1539 - (-0.1812) = 0.3351 . 

ln(l - Ajk) = ln(l - Fijk) exp(0.3351) 

- 1.3981 ln(l - Fijk) 

Priv. 

2737 

1263 

2530 

1848 

2397 
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This means that for example that if 60% of the graduates earned more than 

a specified amount in 1975, then (0.60)1.3981 = 0.49 or 49% of the graduates 

earned more than the same amount in 1981. Similarly 

Thus, if for example, 60% of the graduates earned more than a specified amount 

in 1981, then (0.60)°"8811 = 0.64 or 64% of the graduates earned more than the 

same amount in 1987. 

For any specific year i 

Hence 

or 

= j~ - Xr = -0.2590 - (0.2590) = -o.5180 . 

ln(l - F'i2k) = ln(l - F'i1k) exp(-0.5180) 

0.5957 ln(l - F'i1k) 

(1 - F'i2k) = (1 - F'ilk)°-
5957 

. 

Thus, if for example, 60% of the graduates in the public sector earned more 

than a specified amount in any year then (0.60)0
·
5957 = 0.74 or 74% of the 

graduates in the private sector earned more than the same amount. (The 

program for the proportional hazards model may be found in the Appendix). 

5.5 MODELS FOR A BINARY RESPONSE 

VARIABLE 

5.5.1 The Logistic Regression Model 

Let Yi, i = 1, ... , k be independent random variables with Y£ binomially dis­

tributed with parameters ni and 'lf'i, i.e. Yi rv b( ni, 1ri)- We may observe the 

following frequency distribution for the k independent binomial distributions: 
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Subgroups 

1 2 ... k 

Successes Y1 Y2 ... Yk 

Failures n1 - Y1 n2 - Y2 ... nk - Yk 

Suppose that the covariates X1 , X2 , ... , Xm are observed and that at occasion 

i, x'i = (xii, X2i, ... , Xmi) and Yi is the number of successes in the ni trials, 

i = 1, ... , k. 

The logistic regression model is written as 

1 ( 'Tri ) 
n 1 - 'Tri = (5.23) 

(1, xD/3 , where /3' = (/30, ... , f3m) 

e{l,xD/3 
or 'Tri = 

1 + e{l,xD/3 · (5.24) 

For the binomial variables Yi, i = 1, ... , k, 

The likelihood function for Yi, Y2, ... , Yk is 

Thus 
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Hence the canonical parameter is 0i = ln (_!i___), i = 1, ... , k 
1 - 'lfi 

( 
µi ) or 0i = ln --- , where µi = ni7ri, Thus 

ni - µi 

and 

Thus 

n· i 

1 

1 

:: = diag[n;iri(l - ir;)] = V µ • 

The logistic regression model in (5.23) can be written as 

l = X/3 

where 

and 
1 X11 X21 

1 X12 X22 
X= 

Xm2 

1 X1k X2k Xmk 

115 

(5.25) 

(5.26) 

(5.27) 

Let P = I- X(X'Xt1X', then Pl= PX/3 = 0. Hence g(µ) =Pl= 0, since 

li = ln ( 7ri ) = ln ( µi ) is a function of µi, 
1 - 7ri ni - µi 

Furthermore 
azi 1 
8µi ni1ri(l - 1ri) . 
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Thus 

G,, = a~~) = P[diag(n;1r;(l - 7r;))r1 = Pv;1 
. 

From Proposition 1, the ML estimate forµ subject to the constraints g(µ) = 0 

lS 

(5.28) 

where l~ = ( li,y, ... , lk,y) and li,y = ln ( Yi ) , i = 1, ... , k and iteration 
ni - Yi . 

takes place over y. 

The estimated parameters (3 are given by 

where l(c) is the value of the vector of logits on convergence. 

The asymptotic covariance matrix of (3 is 

Comment: 

(5.29) 

(5.30) 

When Yi = 0, we record a frequency 1 x 10-8 or some small value. If any 

Yi = ni, then enter the appropriate ni as ni + ( 1 x 10-8
). This will eliminate 

the problem of a zero in the sample logit 
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Example 5.3 

To illustrate the ML estimation procedure in logistic regression in the case 

where some frequencies are zero, consider the data from Cox and Snell (1989). 

The data summarize a two-factor 5 x 4 industrial investigation in which the 

number, Yi, of ingots not ready for rolling out of ni tested is shown for combi­

nations of heating time, x1 , and soaking time, x2. 

TABLE 5.3: NUMBER, Yi, OF INGOTS NOT READY ROLLING OUT OF 

ni TESTED 

(Pairs (yi; ni) are recorded in the cells) 

Heating time (xi) 

Soaking 

time (x2) 7 14 27 51 

1.0 (0;10) (0;31) (1;56) (3; 13) 

1.7 (0;17) (0;43) ( 4;44) (0;l) 

2.2 (0;7) (2;33) (0;21) (0;l) 

2.8 (0;12) (0;31) (1;22) (0;0) 

4.0 (0;9) (0;19) (1;16) (0;1) 

The logistic regression model is 

i = 1, ... ,19. 

Using the estimation procedure of (5.28) gives the ML estimates 

Jo = -5.559165 , J 1 = 0.082031 , andJ2 = 0.056772 . 

The deviance D = 13. 75. These estimates are identical to the values obtained 

by PROC LOGISTIC of SAS/STAT (1990). 

The IML program for this example can be found in the Appendix. 
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5.5.2 The Extreme Value Model 

Another model which is suitable for modelling binomial data is the model 

( 5.31) 

or 

(5.32) 

The link function for this distribution is called the complementary log-log link. 

Suppose that there is only one explanatory variable x, which denotes the dosage 

of a toxic chemical. Let the random variable }'i = 1 if the ith subject dies. Let 

T be the tolerance of a subject for the dosage and let }'i = 1 when T ::;; x. Let 

G(t) = P(T ::;; t) denote the cdf for T. For fixed dosage x 

P ( }'i = 1) = 1r i ( x) -= P ( T ::;; x) = G ( x) . 

If the model 

?r(x) = exp[- exp(,Bo + ,81x)] 

is considered, then using the log-log link 

This model is also called the extreme value model because the cdf of a random 

variable X having the extreme value distribution has the cdf given by 

G(x) = exp[- exp(x - a)/b] , b > 0, -oo <a< oo. 

Note that when the complementary log-log model holds for the probability of 

a success, the log-log model holds for the probability of a failure. 

The ML estimates for the parameters in the model given in (5.32) can be found 

using the estimation procedure of Proposition 1. Letting li = ln[- ln(l - ?ri)], 

we can write the model in (5.32) as 

l = X(3. (5.33) 
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Now l; = In [- ln(l - ~:)], whereµ; = n;ir;. Thus 

1 

(5.34) 

Furthermore, as for the logistic regression model, the implied constraints are 

g(µ) = Pl = PX/3 = O (5.35) 

and 
a 

Gµ = 8µg(µ) = PDd 

where Dd = diag( di)- The estimation procedure then becomes 

(5.36) 

where l~ = ( 11,y, ... , lk,y) and /;,y = In [- In ( 1 - !: ) ] , V µ is defined in (5.26) 

and iteration takes place over y and µ. 

Example 5.4 

Consider the data in Table 5.4, taken from Bliss (1935) and used by Dobson 

(1983), where Y is the number of beetles killed after 5h exposure to gaseous 

carbon disulphide at various concentrations. 

Firstly fitting the logistic regression model 

( 
'lri ) 

ln 1 - 7ri = f3o + f31xi ' 

using the estimation procedure discussed earlier, gives the MLE's ~o = -60. 71745 

and ~1 = 34.27033 for (30 and /31 , which agree with the values obtained by Dob­

son. 
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TABLE 5.4: BEETLE MORTALITY DATA 

Dose Xi Number of Number 

(log10 C S2 mg 1-1 ) insects ni killed, Yi 

1.6907 59 6 

1.7242 60 13 

1. 7552 62 18 

1.7842 56 28 

1.8113 63 52 

1.8369 59 53 

1.8610 62 61 

1.8839 60 60 

Fitting the complementary log-log model 

to the data, using the estimation procedure given in (5.36) gives the MLE's 
,,.._ ,,.._ 

{30 = -39.5723 and /31 = 22.0412 . So if for example the log dosage x = 1. 7 

then the estimated probability of survival is 

1 - n- = exp[- exp(-39.57 + 22.04(1.7))] = 0.885. 

Similarly the estimated probability of survival at log dosage 1.8 is 0.332. The 

probability of survival is exp(22.04 x 0.1) = 9.06 higher for each 0.1 increase in 

log dosage. The deviance D = 2 ~ Yi ln(yi/yi) = 3.45, with df = 6, indicating 
i 

that the fit for the model is adequate. For the deviance the sum ~ is taken 
i 

over all (2 x k) cells with frequencies Yi and ni - Yi . 

The programs for the logistic regression model and the extreme value distri­

bution can be found in the Appendix. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

 
 
 



Chapter 6 

MODELS FOR POISSON, 

NORMAL, GAMMA AND 

INVERSE GAUSSIAN 

OBSERVATIONS 

This chapter deals with models where the observations have either a Poisson, 

Normal, gamma or inverse Gaussian distribution. Regression models are for­

mulated in terms of constraints and the ML estimates of the parameters are 

found using the proposed estimation procedure. 

6.1 THE POISSON REGRESSION MODEL 

Suppose that Yi , i = l, ... , n are independent Poisson random variables with 

E(Yi) = µi , and var(Yi) = µi , i = 1, ... , n and that the model to be fitted is 

µ = X/3' (6.1) 

where X is the appropriate design matrix and /3 is the vector of parameters. 

Let P = I - X(X'X)-1X'. Then g(µ) = Pµ = 0, and 

a 
G = aµg(µ) = P. 

121 
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Furthermore V = Cov(y) = D w Hence the estimation procedure is 

(6.2) 

where iteration is overµ and the iterative process is the same as that described 

in Chapter 2 equation (2.6). 

Example 6.1 

The data from Dobson (1983) are counts Yi observed at various values of a 

covariate x. 

TABLE 6.1: POISSON REGRESSION DATA 

3 6 7 8 9 10 12 15 

-1 0 0 0 0 1 1 1 

Observing that the variability increases with x, assume that the responses Ji 
are Poisson random variables with 

E (Ii) = µi = /3o + /31 xi , i = 1, ... , 9 . 

X= 

1 -1 

1 -1 

1 1 

' y= 

2 

3 

15 

Dobson uses the iterative reweighted least squares procedure to find the ML 

estimates of the parameters. Using (6.2) to find the ML estimate flc, Cov(Y) = 
Dµ , must be estimated. Take µ( 0) = y to initialize the diagonal matrix and 

iterate to get the ML estimates, ~o = 7.4516 and ~1 = 4.9353, which agree 

with those obtained by Dobson. 

The procedure may also be used when the logarithms of the mean values diplay 

a linear trend when plotted against the logarithms of a predictor variable and 

the observations are assumed to have a Poisson distribution. 
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Example 6.2 

Consider the data from Dobson (1990)(Exercise 4.1 pp. 46-4 7). The number 

of deaths from AIDS in Australia recorded in 14 consecutive quarters from 

Jan-Mar 1983, to Apr-Jun 1986 are presented in Table 6.2. 

TABLE 6.2: AIDS DATA IN AUSTRALIA 

Quarter (t) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Deaths (Yt) 0 1 2 3 1 4 9 18 23 31 20 25 37 45 

Consider the number of deaths at time t as an independent Poisson variable 

with mean µt. If the logs of both the time variable, t and Yt are plotted, then 

a possible linear trend can be observed. Thus a feasible model is 

µt exp(a + 8ln(t)) , t = 1, 2, ... , 14; 

or ln(µt) = a+ 8ln(t). 

This model may be written as ln(µ) = X/3, where 

X= 

1 ln(l) 

1 ln(2) 

1 ln(14) 

and /3' = ( a, 8). 

The model can be formulated in terms of the implied constraints g(µ) = 0, 

where 

g(µ) = P ln(µ) = PX/3 = 0, P = I- X(X'X)-1X'. 

and 
a -1 

Gµ = Bµg(µ) = PDµ . 

Thus the estimation procedure is 

(6.3) 
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where iteration takes place over y. 

Applying this procedure to the data gives the ML estimates a = -1.9442 and 

8 = 2.1748 for the parameters (which agree with those reported by Dobson). 

6.2 MODELS FOR NORMAL OBSERVATIONS 

We now consider models where the observations are assumed to have a Normal 

distribution. As a simple application consider a frequency table with k classes 

for the classification variable as shown in the table. 

A1 A2 ... Ak 

YI Y2 ... Yk 

Suppose that Yi, i = 1, ... , k are independent N(µi; 1) variables. We wish to 

find the ML estimates µi for the model of symmetry µ1 = µk, µ2 = µk-I, and 

so on. As an illustration consider the following example. 

Example 6.3 

Suppose Yi, i = 1, ... , 6 are independent N(µi, 1) variables and that the fol­

lowing vector of observations is found 

y' = (20, 15, 9, 11, 14, 18) . 

The model of symmetry µ 1 = µ6, µ2 = µs, µ3 = µ4 can be written as 

or 

0 

0 0 -1 

1 -1 0 

0 -1 l 
~ µ=0 

Aµ=O. 

. 8g(µ) . 
Once agam g(µ) =Aµ= 0 and G = Bµ =A. In this case Cov(y) = 16 
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and the estimation procedure is 

= y - G'(GG't1Gy. 

Here no iteration is required and the estimate is found directly from the ex­

pression above. 

The vector of ML estimates is given by 

y = (19, 14.5, 10, 10, 14.5, 19) , 

Another application is a regression problem with certain constraints. Suppose 

that }'i , i = 1, ... , n are independent Normal random variables with E(l-'i) = 
µi , and var(l'i) = cr2 

, i = 1, ... , n. The variance-covariance of matrix y is 

Cov(y) = o-21 . 

Example 6.4: 

Consider a data set where the first 5 points lie ( apart from random error) on 

the first line and that the last 5 points lie on the second line and that the 5th 

point is thus common to both lines. Suppose that we fit the two line segments 

to the data with the constraint that the lines must pass through the 5th point. 

Use the dummy variables X1 and X 2 as defined in Table 6.3 and fit the the 

model E(Y) = {30 + {31X1 + {32X2 , with the constraint that the lines must pass 

through the point (5; 10.2). 

Let P = 19 - X(X'Xt1 X', r' = (0, 0, 0, 0, 1, 0, 0, 0, 0) and 

The function required to force the lines through the point (5; 10.2) is 

g(y) = Gy - (0, 0, 0, 0, 0, 0, 0, 0, 10.2)' = 0. 
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TABLE 6.3: REGRESSION FOR NORMAL OBSERVATIONS 

obs no. Xo X1 X2 y 

1 1 -4 0 2.3 

2 1 -3 0 3.8 

3 1 -2 0 6.5 

4 1 -1 0 7.4 

5 1 0 0 10.2 

6 1 0 1 10.5 

7 1 0 2 12.1 

8 1 0 3 13.2 

9 1 0 4 13.6 

The ML estimate for the mean subject to the constraints above, is 

which is obtained without iteration. 

The ML estimates are Po = 10.20 , P1 = 2.03 and /32 = 0.89 . 

Another example is that of fitting a quadratic function subject to the constraint 

that the funtion must pass through a certain point. 

Example 6.5 

A study was conducted to examine the relationship between the number of 

years of experience (X) and the annual salary (Y) for individuals in a particular 

profession. The following information is obtained for a representative sample 

of 16 such professionals ( salary in thousands of dollars): 

X 1 2 4 5 5 9 11 14 16 20 22 24 25 27 29 30 

Y 23 27 29 34 38 46 48 54 54 59 58 59 61 63 59 60 
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When these data are plotted, a curvilinear trend will be observed. The ordinary 

least squares equation for a quadratic function is 

y = 19.9801 + 3.2152x - 0.0634x 2 
• 

If we desire a further constraint that the equation must pass through the point 

(16; 54), then the ML estimates for the parameters can be found using the 

estimation procedure. 

The design matrix for fitting a quadratic function, is 

1 1 1 

1 2 4 
X= 

1 30 900 

Now let P = 116 - X(X'Xt1 X', and r' = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) 

then 

and g(y) = Gy - (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54)'. 

The constraint g(y) = 0, will force the function through the point (16; 54). 

The ML estimate is 

which is obtained without iteration. 

The ML estimates are fio = 20.7487, ~1 = 2.9633 and fi2 = -0.0553. 

The following example illustrates the use of the double iteration, when the 

observations are normal and the variable Y varies non-linearly with X. 

Example 6.6 

Consider the following data, where X is an explanatory variable, and Y is the 

response variable. 

X 0 0 0 1 1 1 2 2 3 3 3 4 4 5 5 5 

y 5 7 9 7 10 8 11 9 16 13 14 25 24 34 32 30 
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It appears that Y varies non-linearly with X, and that the variance is approx­

imately constant. Suppose further that y rv N(µ, a 2I) and that the model to 

be considered is ln(µ) = X(3. Let P = I16 -X(X'Xt1X', then the constraints 

for the model can be written as g(µ) = P In(µ) = 0 and 

The estimation procedure is given by 

Since Dµ is unknown, iteration takes place over both µ and y. Applying the 
,,.._ ,,.._ 

procedure to the data yields the ML estimates {30 = 1. 7214 and {31 = 0.3496 

and deviance D = 52.30, which agree with the estimates from the procedure 

Genmod of SAS. The program for this example can be found in the Appendix. 

6.3 MODELS WITH GAMMA-DISTRIBUTED 

OBSERVATIONS 

Jorgensen (1992) defines the exponential dispersion model for the univariate 

continuous case as 

p(y; 0, >..)=a().., y)e>..(y0 - K(8)), y E IR (6.5) 

where a(·) and K( ·) are suitable functions and ).. and 0 are parameters with 

domain (0, >..) E 0 x A~ IR x IR+· For).. known (6.5) is an exponential family 

and a 2 = 1 /).. is called the dispersion parameter. 
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The p.d.f of the gamma distribution can be written in the form 

p(y; µ, 11) = 
11
(

11

) y
11

-
1 exp [-~y + ln (~)] r v µ µ 

Thus from (6.5) with 0 = _ _!_ and ,\ = 11 
µ 

1111 11-l 

a(v, y) = r(v/ and ~(0) = -ln(-0), 0 < O. 

The expectation is given by 

a {-1} 1 E(Y) = -~(0) = - - = -- = µ 
80 -0 0 

and 
2 a2 

1 ( 1 ) µ
2 

var(Y) = (J" a02 ~( 0) = -;; 02 = ---;; . 

The coefficient of variation is 

jvar(Y) 

E(Y) 
µ 

µfo 
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(6.7) 

(6.8) 

If all observations are assumed to come from the same distribution with pa­

rameter 11, then the coefficient of variation is constant. See McCullagh and 

Nelder (1989) Chapter 8 for data with constant coefficient of variation. 

If the observations come from different distributions then take Iii = cwi, where 

Wi are some appropriate weights assigned to the different distributions. Then 

(6.9) 

Estimation of parameters in the model 

Suppose Yi, i = 1, ... , n come from a gamma distribution as defined in (6.6). 

Then µi = E(Yi). 
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(i) Let li = ln(µi) and consider covariates X 1 , ••• , Xm. 

Suppose the model to be considered is 

l = X{3 

where {3' = (/30, /31, ... , f3m) and X is the design matrix. 

Let P = I- X(X'Xt1X', then g(µ) =Pl= 0 and 

Gµ = :µg(µ) = Pdiag CJ = PD~
1 

From Proposition 1, the estimation procedure is given by 

130 

(6.10) 

(6.11) 

where V µ = diag ( µf ) . Since V µ is a function of µ, we iterate over µ 
CWi 

and y. 

(ii) Suppose we consider fitting the model 

E(Y) = µ = X{3 

a 
then g(µ) = Pµ and G = Bµg(µ) = P. 

The estimation procedure becomes 

with V µ = diag (:) and iteration takes place over µ. 

( 6.12) 

1 
(iii) Suppose we consider fitting an inverse linear model, where µ'l = li = -, 

µi 
i = 1, ... , n and µ* =I= X{3 . The constraints are 

g(µ*) = Pµ* = 0 
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so that 

G a * = -Pµ =P. 
8µ* 

The estimation procedure is 

1 
where Yi= -, is the ith element of y* and V* is the asymptotic covari­

Yi 
ance matrix of y*. The ith diagonal element of V * is given by 

Iteration takes place over µ. 

Example 6.7 

( azi) 2 (µ;) 
8µi Wi 

(:; r (:) 
1 

Consider the example of McCullagh and Nelder (1989) pp.306-311. The data 

for the example appear in Table 6.4. The details of the experiment are dis­

cussed in the above-mentioned reference on pp 306-309. 

The models to be considered are of the form 

where f(µi) can be chosen as ~' ln(µi) or simply µi, 
µi 

The weighting variable is batch size and the values for wi, i = 1, ... , 23 are 

given in the table. 

For the log, inverse and identity links 8 is given the values 58.644°0, 33.5°C 

and 0.6°C, respectively. 
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TABLE 6.4: MEAN DURATION OF EMBRYONIC PERIOD IN THE DE­

VELOPMENT OF Drosophila melanogaster 

Temp (Ti) Duration (Yi) Batch (wi) 
oc (hours) size 

14.95 67.5 54 

16.16 57.1 182 

16.19 56.0 153 

17.15 48.4 129 

18.20 41.2 64 

19.08 37.80 94 

20.07 33.33 82 

22.14 26.50 57 

23.27 24.24 135 

24.09 22.44 188 

24.81 21.13 217 

24.84 21.05 141 

25.06 20.39 37 

25.06 20.41 84 

25.80 19.45 196 

26.92 18.77 104 

27.68 17.79 148 

28.89 17.38 83 

28.96 17.26 95 

29.00 17.18 232 

30.05 16.81 148 

30.80 16.97 195 

32.00 18.20 58 
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By using the procedures described in (i) (ii) and (iii) we fit the respective 

models and find the following ML estimates for the parameters. 

Link f3o f31 f32 Deviance 

log 3.2014 -0.2648 -216.998 0.318 

inverse -0.0384 0.0036 0.0333 1.406 

identity -163.2180 2.9892 2664.2152 0.4713 

6.4 MODELS WITH INVERSE GAUSSIAN 

OBSERVATIONS 

The p.d.f. of the inverse Gaussian distribution is given by 

1 ( (y-µ)
2

) 
f (y; µ;a) = J21ry3a2 exp - 2(µa )2y ' 0 < y < oo . 

For this distribution E(Y) = µ and var(Y) = a 2 µ3
. The canonical parameter 

0 = --\ and the dispersion parameter is a 2
• The appropriate link function 

2µ 

is ~ and the model to be considered is 
µ 

1 ' 
2 =xJ3, 
µi 

where x~ is the ith row of the design matrix and /3 is the vector of unknown 

parameters. 

1 
Let 7i = 2 . Then 7i = x~/3 and the model can be written in terms of con-

µi 

straints as g (-y) = P1 = 0 and G = 8~\') = P, where P = I - X(X'XJ-1 X' . 
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1 
If we let Zi = 2 , then the asymptotic covariance matrix of Z is V * with 

Yi 
ith diagonal element 

8,-
( ) 

2 

8µ: var(~) 

4a? 
(- 2µ-:-3)2µ~a~ = _i 

i i i 3 ' 
µi 

The estimation procedure is then given by 

If we assume that a; = a 2 for all i, then a 2 cancels out in the expression above 

and since the µi are unknown, iteration takes place over µ. 

6.5 AN APPROXIMATE SOLUTION FOR MODELS 

WITH A NON-LINEAR PARAMETER IN THE 

COVARIATE 

If a model has a covariate which includes a non-linear function of a param­

eter, then the following estimation procedure may be followed. Suppose the 

covariate is represented by f ( x; 0) with 0 unknown, then we use a linear Taylor 

expression about an initial value 00 to approximate f ( x; 0) and write 

[
8f(x; 0)] 

f(x;0)~J(x;0o)+(0-0o) 80 B=Bo. 

Thus if a non-linear term in the predictor variable x is given by /3 f ( x; 0), then 

we write 

(3f(x; 0) ~ (3f(x; Bo)+ (3(0 - Bo) [ BJ~ Ol=Bo 

(3u + 1 v 

where u [
8f(x;0)] f(x; 00 ), , = /3(0 - Bo) and v = 

80 
0=00 
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Fit the model in the usual way and find 7 and l Now 

r 
~ = 0 - Bo. 

135 

Let Bu = .=r + Bo and use the updated value Bu in the next iteration. Repeat 
(3 

the procedure until convergence is attained. At each stage the design matrix 

X must also be appropriately changed depending on the function f(x; 0). 

Example 6.8 

Consider the example discussed by McCullagh and Nelder (1989, pp.384-386). 

The data are for estimation of lowest cost mixtures of insecticides and syner­

gists. They relate to assays on a grasshopper Melanopus sanguinipes (F·) with 

the insecticide carbofuran and the synergist pipeonyl butoxide (PB), which 

enhances the toxicity of the insecticide. 

McCullagh first suggests the model 

In (-1r-) = f3o + f31x1 + : 2
x

2 

1 - 7C" + X2 

where x1 is the log dose of insecticide and x 2 is the dose of the synergist PB. 

The term : 2
x

2 is non-linear in the parameter 8, so we follow the discussion 
+ X2 

of the previous paragraph. Let 

f32x2 
f(x2,8) = 

8 
. + X2 

Then 
a -f32x2 
88!( X 2' 8) = ( 8 + X2) 2 

Thus approximate f(x2, 8) by 

f(x2, 80) + ( 8 - 80) [ :/(x2, 8)L
60 

and fit the model 

In (-1r) 
1 - 7C" 
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TABLE 6.5: DATA FROM ASSAY ON INSECTICIDE AND SYNERGIST 

Number killed, Sample size, Dose of Dose of 

y m insecticide synergist 

7 100 4 0 

59 200 5 0 

115 300 8 0 

149 300 10 0 

178 300 15 0 

229 300 20 0 

5 100 2 3.9 

43 100 5 3.9 

76 100 10 3.9 

4 100 2 19.5 

57 100 5 19.5 

83 100 10 19.5 

6 100 2 39.0 

57 100 5 39.0 

84 100 10 39.0 

This is done by initializing 80 and finding the design matrix at the first it­

eration using the covariates 

X2 -X2 

XI' 80 + X2 ' ( 80 + X2) 2 . 

Estimate the parameters in the model in the usual way and use 

' 8u =-=-- + 80 
/32 

as the updated value for 8 in the next iteration. Re-evaluate the design matrix 

with the value of 8 replaced in the expressions for the covariate. The estima-
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tion procedure of Proposition 1 is implemented here, with the model above 

written in terms of the implied constraints, g(µ) == 0. In this case the design 

matrix is changed appropriately at each iteration. 

Since the model above does not provide a good fit, McCullagh suggests the 

following model 

where z is the dose of insecticide. The second and third terms are non-linear 

in the parameters and are linearized to give the form 

where 00 and 80 are the initial values. The covariates for the design matrix are 

These are updated at each iteration where 

d C ~2 + CO an Vu == -- V 

f32 

are the expressions for the updated values. Applying the estimation procedure 

with starting values 80 == 1. 76 and 00 == 1.5 as recommended by McCullagh 

gives 0 == 1.67, 8 == 2.06 with a deviance D == 18. 70 with df == 15 - 5 == 10 . 

The program for this example is given in the Appendix. 
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6.6 CONCLUSION 

This chapter has illustrated the use of the ML estimation procedure for a 

number of models which belong to the class of models described as generalized 

linear models. Other examples presented emphasize the usefulness of modelling 

in terms of constraints. The ML estimation procedure of Proposition 1 can 

accommodate any choice of model assuming any predetermined distribution 

of the observations, provided that the covariance matrix of the variables can 

be computed as in the case of the generalized linear model. Another distinct 

advantage of the estimation procedure is that the constraints can be non-linear. 

The applications of this ML estimation procedure, as presented in this work, 

are only some of the possible areas where the procedure may be implemented. 

There are, no doubt, many other applications and these areas will provide 

opportunities for further research. 
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APPENDIX 145 

The IML programs for certain examples are given in the Appendix and appear under 

the appropriate chapter heading and example number. 

CHAPTER 2 

Example 2.6 

(i) constraint: a11 = 4, n = 100. 

proc iml worksize=SO; 

reset nolog; 

x={ 3,3,2}; 

n=100; 

V=J(3,3,0); 

GG={1 0 O}; 

diff1=1; 

i=O; 

x1=x; 

do while (diffi>0.000001); 

i=i+1; 

m=x; 

x=x1; 

V[1,1]=2#m[1]##2; V[1,2]=2#m[3]##2; V[1,3]=2#m[1]#m[3]; 

V[2,1]=2#m[3]##2; V[2,2]=2#m[2]##2; V[2,3]=2#m[2]#m[3]; 

V[3,1]=2#m[1]#m[3]; V[3,2]=2#m[2]#m[3]; V[3,3]=m[1]#m[2]+m[3]##2; 

V=V/n; 

Gm=GG; 

diff=1; 

j=O; 

do while (diff>0.000001); 

xv=x; 

j=j+1; 

Gx=GG; 

g=Gx*x-4; 

x=x-(Gm*V)'*ginv(Gx*V*Gm')*g; 

nt=x [ +]; 

diff=(x-xv)'*(x-xv); 

print i j nt x m; 

end; 

diff1=(m-x)'*(m-x); 

end; 
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(iii) constraint: p = ½-

proc iml worksize=50; 

reset nolog; 

x={ 3,3,2}; 

n=100; 

r=0.5; 

V=J(3,3,0); 

Gm={O O O}; 

Gx={O O O}; 

diff1=1; 

i=O; 

x1=x; 

do while (diffi>0.00000001); 

i=i+1; 

m=x; 

x=x1; 

V[1,1]=2#m[1]##2; V[1,2]=2#m[3]##2; V[1,3]=2#m[1]#m[3]; 

V[2,1]=2#m[3]##2; V[2,2]=2#m[2]##2; V[2,3]=2#m[2]#m[3]; 

V[3,1]=2#m[1]#m[3]; V[3,2]=2#m[2]#m[3]; V[3,3]=m[1]#m[2]+m[3]##2; 

V=V/n; 

146 

c=sqrt(m[2]/m[1]);c1=-r#c/2; c2=-r/c/2; Gm[1]=c1; Gm[2]=c2; Gm[3]=1; 

diff=1; 

j=O; 

do while (diff>0.00000001); 

xv=x; 

j=j+1; 

c=sqrt(x[2]/x[1]);c1=-r#c/2; c2=-r/c/2; Gx[1]=c1; Gx[2]=c2; Gx[3]=1; 

g=x[3]-r#sqrt(x[1]#x[2]); 

x=x-(Gm*V)'*ginv(Gx*V*Gm')*g; 

nt=x[+]; 

diff=(x-xv)'*(x-xv); 

print i j nt x m; 

end; 

diff1=(m-x)'*(m-x); 

end; 
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CHAPTER 3 

Example 3.1 

proc iml worksize=80; 

reset nolog; 

n=4; 

*------------>, y={ 72,714,655,41}; 

SIG=diag(y); 

G={1 0 0 -1 , 

0 1 -1 0 }; 

itr=O; 

diff=1; 

m=y; 

do while (diff>0.00000001); 

gm=G*m; 

m1=m; 

m=y-(G*SIG)'*ginv(G*SIG*G')*G*y; 

SIG=diag(m); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

mi=1/m; 

X2=(y-m)'*(mi#(y-m)); 

prob=1-probchi(x2,2); 

print y[format=5.2] m[format=5.2]; 

print X2 prob; 

Example 3.2 

proc iml; 

* Drug comparisons Grizzle et al. (1969); 

reset nolog; 

* Frequency vector; 

*---->; f={6,16,2,4,2,4,6,6}; 

n=sum(f); 

* Matrix of constraints; 

A={O 0 1 1 -1 -1 0 

0 1 -1 0 0 1 -1 

m=f; 

diff=1; 

itr=O; 

0, 

O}; 

147 
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do while (diff>0.00000001); 

S=diag(m); 

m1=m; 

m=f-(A*S)'*ginv(A*S*A')*A*f; 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

mi=1/m; 

G2=2*f'*log(f/m); 

X2=(f-m)'*(mi#(f-m)); 

vec=x2 I I g2; 

df=nrow(A); 

prob=J(1,2,1)-probchi(vec,df); 

vec1={ 11 Pearson 11 11 LR 11 
}; 

R={"Chi-2" "Df" "Prob"}; 

TEST=vec//J(1,2,df)//prob; 

print "Expected frequencies, no. of iterations"; 

print m itr; 

print""; 

print "Chi-squared statistics with attained significance levels"; 

print TEST[rowname=R colname=vec1 format=15.6]; 

Example 3.4 

148 

This program can also be used for loglinear models for higher dimensional tables. 

The information to be supplied is : 

(a) the frequencies, entered as a vector "x". 

(b) the number of variables, "nf''. 

( c) the names of the variables, "name". 

( d) the number of levels of each variable, "k", a vector. 

( e) the index vector, "nh" which references the A's which will be set to zero, e.g. 

nh=4 will set all Ai]B = 0. 

( f) the matrix "G 1" is used to impose constraints on the A's, for example in the 

symmetry and quasi-symmetry models certain A's are equated. 

The output from the program is the following : 

( a) the expected frequencies 

(b) the parameter estimates for the model fitted 
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( c) the statistics, degrees of freedom and exact p-value. 

proc iml worksize= 80; 

options pagesize=200; 

149 

*------------- FREQUENCY VECTOR(factor that changes slowest first); 

*------------>; x={ 143, 156, 100, 

119,210,141, 

15, 72, 127}; 

*------------- NUMBER OF VARIABLES 

*------------>, nf=2; 
*------------- NAME OF VARIABLES -----. , 
*--------->; name={ 11 aff. 11

,
11 ideol. 11

}; 

*---------------------------------------------------------------; 
k=j(6,1,0); 

*---------- NUMBER OF LEVELS FOR EACH FACTOR (MAX 6 FACTORS)--; 

*--------->; k[1,]=3 ;k[2,]=3 ;k[3,]=0 ; k[4,]=0 ;k[5,]=0 ;k[6,]=0 

*---------------------------------------------------------------· , 
*---------- SPECIFICATION OF HYPOTHESIS MATRIX AH--------------; 

*index vector nh of the hypothesis in the order (lambdas set to zero) 
1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D ens. 

=1 AB ABC AC BC ABC DAD BD ABD CD ACD BCD ABCD etc.; 

*----------->, nh={4}; 
*----->;G1={0 O}; 

*----------------------------------------------------------------· , 
*-------------- CONSTRUCTION OF DESIGN MATRIX A 

reset nolog; 

reset fw=10; 

c=k[1,]; 

een=J(c,1,1); 

d=c-1; 

A=(i(d)//J(1,d,-1)); 

e=k [1]; 

do i=2 to nf; 

c=k [i ,] ; 

one=J(c,1,1); 

d=c-1; 

Y=(I(d)//J(1,d,-1)); 

one1=j(e,1,1); 

A1=A©one; 

Y1=one1©Y; 
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A=A1 I IY1; 

A=AI lhdir(A1,Y1); 

e=k[i,]*e; 

end; 

A=j(e,1,1) I IA; 

*----------------------------------------------------------------· 
vg=1; 

do i=1 to nf; 

vg=vg//((k[i,]-1)*vg); 
end; 

kol=cusum(vg); 

nrh=nrow(nh); 

ii=nh[1,]-1;iii=nh[1,]; 

a1=kol[ii,]+1;a2=kol[iii,]; 

AH=A [, a1: a2] ; 

do i=2 to nrh; 

ii=nh[i,]-1;iii=nh[i,]; 

a1=kol[ii,]+1;a2=kol[iii,]; 

AH=AHI IA[,a1:a2]; 

end; 

*-------------- CONSTRUCTION OF THE INDEX VECTOR----------------; 
tyd=name [1, 1] ; 

name1={'"'}//tyd; 

do i=2 to nf; 

name1=name1//concat(name1,name[i,1]); 

end; 

name1=rowcatc(name1); 

nn=nrow(name1); 

index={"mu"}; 

do i=2 to nn; 

tyd=name1[i,1]; 

index=index//repeat(tyd,vg[i,1]); 

end; 

*---------------------------------------------------------------; 
*---------------- HYPOTHESIS MATRIX WITH STRUCTURE 

sg=sum(g1*g1'); 

if sg-=O then AH=AH*G1'; 

-------------· ' 

*---------------------------------------------------------------; 
free Y A1 Y1 tyd name! 

A=inv(A'*A)*A'; 

' 

150 
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lambda=A*1og (x) ; 

x1=1/x; 

varl=A*(x1#A'); 

stdl=sqrt(vecdiag(varl)); 

standl=lambda/stdl; 

free varl stdl 

gx=AH'*log(x); 

m=x; 

gm=gx; 
itr=O; 

diff=1; 

do while (diff>0.000001); 

m1=m; 

mi=1/m; 

m=m-AH*inv(AH'*(mi#AH))*gm; 

gm=AH'*1og(m); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

151 

lambdah=A*log(m); 

varlh=vecdiag(A*(mi#A'))-vecdiag(A*(mi#AH)*inv(AH'*(mi#AH))*AH'*(mi#A')); 

vecvar=varlh<>J(e,1,1E-10); 

stdlh=sqrt(vecvar); 

standlh=lambdah/stdlh; 

df=ncol(ah); 

X2=(x-m)'*(mi#(x-m)); 

G2=2*x'*log(x/m); 

K2ft=4*(sqrt(x)-sqrt(m))'*(sqrt(x)-sqrt(m)); 

Wald=gx'*inv(AH'*(x1#AH))*gx; 

vec=x2 I I G2 I I K2ft 11 Wald; 

prob=J(1,4,1)-probchi(vec,df); 

*output; 

vec1={ 11 Pearson 11 "LR" 11 F-T 11 11 Wald 11 
}; 

R={"Chi-2 11 11 Df 11 11 Prob 11
}; 

Test=vec//J(1,4,df)//prob; 

xr=nrow(x); 

nrt=xr/k[nf]; 

x=shape(x,nrt); 

m=shape(m,nrt); 

print 11
------------ LOG.IML -----------------"· ' 
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print 11 number of iterations=" itr; print" 11 
; 

print x[format=7 .1] m[format=12.6]; print" 11 ; 

print index lambda[format=12.6] standl[format=12.6] 

lambdah [format=12.6] standlh[format=12.6]; 

print" 11
; 

print "Chi squared statistics 'lilith exceedance probabilities"; 

print Test[ro'lilname=R colname=vec1 format=15.6]; 

Example 3.5 

152 

The program is the same as that of Example 3.4, hence only the segment for the 

information to be supplied is given. The matrix G 1 is the matrix of constraints for 

the symmetry model. For the quasi-symmetry model the matrix G 1 is the last row 

of the G 1 in the segment. 

proc iml 'lilorksize= 50; 

options pagesize=200; 

*------------- FREQUENCY VECTOR(factor that changes slo'lilest first); 

*------------>; x={ 198,65,59, 

63,79,66, 

89,76,272}; 

*------------- NUMBER OF VARIABLES 

*------------>; nf=2; 

*------------- NAME OF VARIABLES ------. 
' 

*--------->; name={ 11 e. 11
,

11 p. 11
}; 

*---------------------------------------------------------------; 
k=j(6,1,0); 

*---------- NUMBER OF LEVELS FDR EACH FACTOR (MAX 6 FACTORS)--; 

*--------->; k[1,]=3 ;k[2,]=3 ;k[3,]=0 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· , 
*---------- SPECIFICATION OF HYPOTHESIS MATRIX AH--------------; 

*index vector nh of the hypothesis in the order (lambdas set to zero) 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D ens. 

=1 AB ABC AC BC ABC DAD BD ABD CD ACD BCD ABCD etc.; 

*----------->, nh={2,3,4}; 

*----->;G1={1 0 -1 0 0 0 0 0, 

0 1 0 -1 0 0 0 0, 

0 0 0 0 0 1 -1 O}; 

*---------------------------------------------------------------; 
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Example 3.6 153 

The program is that of Example 3.4, hence only the segment for the information to 

be supplied is given. 

proc iml worksize= 50; 

options pagesize=200; 

*------------- FREQUENCY VECTOR(factor that changes slowest first); 
*------------>; x={ 72 ,47, 

110 ,196, 

44 ,179, 
86 , 38, 

173 , 283, 

28 
' 

187}; 

*------------- NUMBER OF VARIABLES 

*------------>; nf=3; 

*------------- NAME OF VARIABLES -----. 
' 

*--------->; name={ 11 s. 11
,

11 e. 11
,

11 r. 11
}; 

*---------------------------------------------------------------· , 
k= j ( 6, 1, 0) ; 

*---------- NUMBER OF LEVELS FOR EACH FACTOR (MAX 6 FACTORS)--; 

*--------->;k[1,]=2 ;k[2,]=3 ;k[3,]=2 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· , 
*---------- SPECIFICATION OF HYPOTHESIS MATRIX AH--------------; 

*index vector nh of the hypothesis in the order (lambdas set to zero) 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D ens. 

=1 AB ABC AC BC ABC DAD BD ABD CD ACD BCD ABCD etc.; 

*----------->, nh={6,8}; 

*----->;G1={0 O}; 

*---------------------------------------------------------------· , 
Example 3.7 

This program allows the user to introduce covariates into the design matrix along 

with the other main effects to be included. The difference in this program is that 

the quantity "nh" now specifies the effects to be added to the design matrix and not 

set to zero as in the previous cases. 

proc iml worksize=80; 

options pagesize=200; 

*-----> FREQUENCY VECTOR; 

*----->; x={ 143,156 ,100, 
119,210 ,141, 

15, 72 , 127}; 
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*-----> COVARIATES TO BE INCLUDED IN DESIGN MATRIX; 
*----->;cov={ -1 0, 

0 0, 

1 0, 

0 -1, 

0 0, 

0 1, 

1 1, 

0 0, 

-1 -1}; 

*------------- NUMBER OF FACTORS 

*------------>; nf=2; 

-------. , 

*------------- NAMES OF FACTORS-------; 
*--------->; name={ 11 p. 11

,
11 i. 11

}; 

*------------- NAMES OF COVARIATES; 

*--------->;namecov={"t1","t2"}; 

*---------------------------------------------------------------· , 
k=j (6, 1,0); 

*---------- NUMBER OF LEVELS FOR EACH FACTOR (MAX 6 FACTORS)---; 

*--------->; k[1,]=3 ;k[2,]=3 ;k[3,]=0 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· , 
*---------- SPECIFICATION OF DESIGN MATRIX---------------------; 

*index vector nh of main effects and interactions to be included 
1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

=1 AB ABC AC BC ABC DAD BD ABD CD ACD BCD ABCD etc.; 

*----------->, nh={2,3}; 

*---------------------------------------------------------------· , 
*----------- CONSTRUCTION OF THE DESIGN MATRIX 

reset nolog; 
reset fw=10; 
c=k[1,]; 

one=J(c,1,1); 

d=c-1; 
A=(i(d)//J(1,d,-1)); 

e=k [1]; 

do i=2 to nf; 

c=k[i,]; 
one=J(c,1,1); 

d=c-1; 
Y=(I(d)//J(1,d,-1)); 

-----------------· , 
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one1=j(e,1,1); 

A1=A©one; 

Y1=one1©Y; 

A=A1 I IY1; 

A=AI lhdir(A1,Y1); 

e=k[i,]*e; 

end; 

A=j(e,1,1) I IA; 

*---------- CONSTRUCTION OF THE INDEX VECTOR 
vg=1; 

--------------------· 

do i=1 to nf; 

vg=vg//((k[i,]-1)*vg); 

end; 

tyd=name [1, 1] ; 

name1={""}//tyd; 

do i=2 to nf; 

name1=name1//concat(name1,name[i,1]); 

end; 

name1=rowcatc(name1); 

nn=nrow(name1); 

index={"mu"}; 

do i=2 to nn; 

tyd=name1 [i, 1]; 

index=index//repeat(tyd,vg[i,1]); 

end; 

*---------------------------------------------------------------· 
kol=cusum(vg); 

nrh=nrow(nh); 

AA=J(e,1,1); 

index1=index[1,]; 

do i=1 to nrh; 

ii=nh[i,]-1;iii=nh[i,]; 

a1=kol[ii,]+1;a2=kol[iii,]; 

AA=AAI IA[,a1:a2]; 

index1=index1//index[a1:a2,]; 

end; 

J 

*---------------------------------------------------------------; 
A=AA 11 cov; 

index=index1//namecov; 

nc=ncol(cov); 

J 
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vg=vg//J(nc,1,1); 

AH=I(e)-A*ginv(A'*A)*A'; 

vgh=e-ncol(A); 

call svd(ah,q,v,ah); 

AH=AH [, 1 : vgh] ; 

*---------------------------------------------------------------· 
x=x<>J(e,1,le-6); 

x1=1/x; 

*----->;Gl={O O}; 

, 

*---------------------------------------------------------------· 
*------------- HYPOTHESIS MATRIX WITH STRUCTURE 
sg=sum(g1*g1'); 

if sg-=O then AH=AH*Gl'; 

J 

----------------· J 

*---------------------------------------------------------------; 
free namel ; 

A=inv(A'*A)*A'; 

gx=AH'*log(x); 

m=x; 

gm=gx; 

itr=O; 

diff=l; 

do while (diff>0.000001); 

ml=m; 

mi=l/m; 

m=m-AH*ginv(AH'*(mi#AH))*gm; 

*m=m<>J(e,1,le-12); 

gm=AH'*log(m); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+l; 

end; 

xr=nrow(x); 

lambda=A*log (m) ; 
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mi=l/m; 

varl=vecdiag(A*(mi#A'))-vecdiag(A*(mi#AH)*ginv(AH'*(mi#AH))*AH'*(mi#A')); 

vecvar=varl; 

stdl=sqrt(vecvar); 

standl=lambda/stdl; 

free varl stdl; 

X2=(x-m)'*(mi#(x-m)); 

G2=2*x'*log(x/m); 
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K2ft=4*(sqrt(x)-sqrt(m))'*(sqrt(x)-sqrt(m)); 

Wald=gx'*ginv(AH'*(x1#AH))*gx; 

vec=x2 I I g2 I I K2ft I I Wald; 

prob=J(1,4,1)-probchi(vec,vgh); 

*PRINTING OF THE OUTPUT; 

vec1={"Pearson" "LR" "F-T" "Wald"}; 

R={"Chi-2 11 "Df" "Prob"}; 

TEST=vec//J(1,4,vgh)//prob; 

xr=nrow(x); 

nrt=xr/k[nf]; 

x=shape(x,nrt); 

m=shape(m,nrt); 

print 11 ------------LOG.IML----------------- 11
; 

print"number of iterations =11 itr; 

print" 11 
; 

print x[format=7.1] m[format=12.6] 

print""; 

print index lambda[format=12.6] standl[format=12.6]; 

print""; 

print "Chi-squared statistics with exact p-values"; 

print TEST[rowname=R colname=vec1 format=15.6]; 

print""; 

* calculation of AIC; 

aic=G2+2*(xr-vgh); 

print "Akaike Information Criterion"; 

print "AIC=" aic; 

Example 3.8 
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This program is the same as that of Example 3. 7, hence only the relevant information 

to be supplied, is given. 

proc iml worksize=8O; 

options pagesize=5OO; 

*-----> FREQUENCY VECTOR; 

*----->; x={ 5, 6, 53, 16, 

7, 15,115, 25, 

13, 20,197, 96, 

7, 3, 33, 7, 

8, 9, 65, 23, 

13, 13,149, 56 }; 

*-----> COVARIATES TO BE INCLUDED IN DESIGN MATRIX; 
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*----->;cov={ 1.5 -1, 

0.5 -1, 

-0.5 -1, 

-1.5 -1, 

0 0, 

0 0, 

0 0, 

0 0, 

-1.5 1, 
-0.5 1, 

0.5 1, 

1.5 1, 

1.5 -1, 
0.5 -1, 

-0.5 -1, 

-1.5 -1, 

0 0, 

0 0, 

0 0, 

0 0, 

-1.5 1, 
-0.5 1, 

0.5 1, 

1.5 1 }; 

*------------- NUMBER OF FACTORS 
*------------>; nf=3; 

*------------- NAMES OF FACTORS 

-------. , 

--------· , 
*--------->; name={"l. 11 ,"a. 11

,
11 0. 11

}; 

*--------->;namecov={"a.0 11 ,"age"}; 

*---------------------------------------------------------------· , 
k= j ( 6 , 1 , 0) ; 

*---------- NUMBER OF LEVELS FOR EACH FACTOR (MAX 6 FACTORS)---; 

*--------->; k[1,]=2 ;k[2,]=3 ;k[3,]=4 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· , 
*---------- SPECIFICATION OF DESIGN MATRIX---------------------; 

*index vector nh of main effects and interactions to be INCLUDED 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

=1 AB ABC AC BC ABC DAD BD ABD CD ACD BCD ABCD etc.; 

*----------->, nh={2,5}; 

*---------------------------------------------------------------· , 
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Example 3.10 

proc iml worksize=50; 

reset nolog; 

*---->; f={64,57,57,72,36,21, 

94,94,105,141,97,71, 

58,54,65,77,54,54, 

46,40,60,94,78,71}; 

n=15; 

A={1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 

0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 

0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 

0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0, 

0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0, 

0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0, 

0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0, 

0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0, 

0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0 0, 

0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0 0 0, 

0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0 0, 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0 0, 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0 0, 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1 0, 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 -1 1}; 

c=j(5,1,1); 

D=I(3)©c; 

H=I(5)//I(5)//I(5); 

X=HI ID; 

m=f; 

odds=A*log(m); 

P=I(n)-x*ginv(x'*x)*x'; 

P=P*A; 

itr=0; 

diff=1; 

do while (diff>0.00000001); 

SIG=diag(m); 

siginv=inv(sig); 

m1=m; 

m=m-(P)'*ginv(P*siginv*P')*P*log(m); 

diff=sqrt((m-m1)'*(m-m1)); 
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itr=itr+1; 

end; 

b=ginv(x'*x)*x'*A*log(m); 

print b; 

theta=exp(b); 

print theta; 

mi=1/m; 

G2=2*f'*log(f/m); 

X2=(f-m)'*(mi#(f-m)); 

print G2 X2; 

print itr; 

print "Expected Frequencies"; 

print m; 

CHAPTER 4 

Example 4.1 Marginal Homogeneity 

proc iml; 

* Marginal Homogeneity For Vision Data 

reset nolog; 

f={1520,266,124,66,234,1512,432,78, 

117,362,1772,205,36,82,179,492}; 

A={O 1 1 1 -1 0 0 0 -1 0 0 0 -1 0 0 0, 

0 -1 0 0 1 0 1 1 0 -1 0 0 0 -1 0 0, 

0 0 -1 0 0 0 -1 0 1 1 0 1 0 0 -1 O}; 

m=f; 

diff=1; 

itr=O; 

do while (diff>0.00000001); 

S=diag(m); 

m1=m; 

m=f-(A*S)'*ginv(A*S*A')*A*f; 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

mi=1/m; 

G2=2*f'*log(f/m); 

X2=(f-m)'*(mi#(f-m)); 

print G2 X2 

print itr; 
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print "Expected Frequencies"; 

print m· 
' 

Example 4.2: Conditional Symmetry 

proc iml; 

* Example taken from Agresti(1990) p364; 

reset nolog; 

X={1,1,1,1,1,1}; 

f={31, 5,5, 1e-6,12,1,1e-6,1e-6,14,1,2,1,6,1,1,1e-6}; 

C={O 1 0 0 -1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 -1 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 -1 0 

0 0 0 0 0 0 1 0 0 -1 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 0 -1 

0 0 0 0 0 0 0 0 0 

P=I(6)-x*ginv(x'*x)*x'; 

K=P*C; 

m=f; 

diff=1; 

itr=O; 

0 0 

do while (diff>0.00000001); 

Diagf=diag(m); 

Di=inv(diagf); 

m1=m; 

m=m-K'*ginv(K*Di*K')*K*log(m); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

G2=2*f'*log(f/m); 

mi=1/m; 

X2=(f-m)'*(mi#(f-m)); 

print G2 X2 

print itr; 

print II II. 

' 
print "Expected Frequencies"; 

print m[format=12.5]; 

b=inv(x'*x)*x'*C*log(m); 

1 0 

print "Estimated Regression Parameters"; 

print b; 

0 

0 0, 

0 0, 

0 0, 

0 0, 

0 0, 

-1 O}; 
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Example 4.3: Diagonals-parameter model 

proc iml; 

* Diagonals parameter on vision data; 

reset nolog; 

X={1 0 0, 

0 1 0, 

0 0 1, 

1 0 0, 

0 1 0, 

1 0 O}; 

xrow=nrow(x); 

xcol=ncol(x); 

df=xrow-xcol; 

f={1520,266,124,66, 

234,1512,432,78, 

117,362,1772,205, 

36,82,179,492}; 

C={O 1 0 0 -1 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 

0 0 -1 0 

0 0 0 0 

0 0 0 0 0 0 1 0 0 -1 

0 

0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 

P=I(6)-x*ginv(x'*x)*x'; 

K=P*C; 

m=f; 

diff=1; 

itr=O; 

do while (diff>0.00000001); 

Diagf=diag(m); 

Di=inv(diagf); 

0 

0 

0 

0 

0 

0 

0 

0 

m1=m; 

m=m-K'*ginv(K*Di*K')*K*log(m); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

mi=1/m; 

G2=2*f'*log(f/m); 

X2=(f-m)'*(mi#(f-m)); 

0 0 0 0 0, 

0 0 0 0 0, 

0 -1 0 0 0, 

0 0 0 0 0, 

0 0 -1 0 0, 

1 0 0 -1 0}; 
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b=inv(x'*x)*x'*C*log(m); 

*PRINTING OF THE OUTPUT; 

print itr; 

print 11 11
; 

print "Expected Frequencies"; 

print m[format=12.5]; 

print "Estimated Regression Parameters"; 

print b; 

vec=X2 I I G2; 

prob=J(1,2,1)-probchi(vec,df); 

vec1={"Pearson" "LR"}; 

R={"Chi-2 11 "Df" "Prob"}; 

TEST=vec//J(1,2,df)//prob; 

print""; 

print "Chi-squared statistics with p-values"; 

print TEST[rowname=R colname=vec1 format=15.6]; 

Example 4.4: Mobility Tables 
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This example utilizes the program of Example 3.6, introducing covariates into the 

design matrix. Only the relevant information to be supplied is given. 

proc iml worksize=80; 

options pagesize=200; 

*----->Social Mobility: Haberman p 488; 

*-----> FREQUENCY VECTOR; 

*----->; n={ 259,123,2,0, 

82,370,30,7, 

5,59,34,4, 

2,41,29,8}; 

cov={O 1 0 0 0, 

1 0 0 0 0 , 

2 0 0 0 0 , 

3 0 0 0 0 , 

1 0 0 0 0 , 

0 0 1 0 0 , 

1 0 0 0 0 

2 0 0 0 0 , 

2 0 0 0 0 

1 0 0 0 0 , 

0 0 0 1 0 , 

1 0 0 0 0 
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3 0 0 0 0 , 

2 0 0 0 0 , 

1 0 0 0 0 , 

0 0 0 0 1 }; 

*------------- NUMBER OF FACTORS 

*------------>; nf=2; 

*------------- NAMES OF FACTORS 

-------. 
' 

-------. 
' 

*--------->; name={ 11 husband 11
,

11 wife 11
}; 

*--------->;namecov={ 11 d11
,

11 a1 11
,

11 a2 11
,

11 a3 11
,

11 a4"}; 

*---------------------------------------------------------------· , 
k=j(6,1,0); 

*---------- NUMBER OF LEVELS FOR EACH FACTOR (MAX 6 FACTORS)---; 

*--------->; k[1,]=4 ;k[2,]=4 ;k[3,]=0 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· , 
*---------------------------------------------------------------· ' 
*---------- SPECIFICATION OF DESIGN MATRIX---------------------; 

*index vector nh of main effects and interactions to be included 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

=1 AB ABC AC BC ABC DAD BD ABD CD ACD BCD ABCD etc.; 

*----------->, nh={2,3}; 

*---------------------------------------------------------------· , 

Example 4.5: Rater agreement. 

164 

This example also utilizes the "covariate program" of Example 3.6, hence only in­

formation to be supplied is given. 

proc iml worksize=100; 

options pagesize=500; 

*-----> Loglinear models with covariates; 

*-----> FREQUENCY VECTOR; 

*----->; n={ 38,5,0,1, 

33,11,3,0, 

10,14,5,6, 

3,7,3,10, 

5,3,0,0, 

3,11,4,0, 

2,13,3,4, 

1,2,4,14}; 

*-----> COVARIATES TO BE INCLUDED IN DESIGN MATRIX; 

cov={1 O O O O 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1, 

1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16 1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16}; 
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cov=cov'; 

*------------- NUMBER OF FACTORS 

*------------>; nf=3; 

*------------- NAMES OF FACTORS 

-------. 
' 

--------· ' 
*--------->; name={"s","r1","r2"}; 

*--------->; namecov={"d","b"}; 

*---------------------------------------------------------------; 
k=j(6,1,0); 

*---------- NUMBER OF LEVELS FOR EACH FACTOR (MAX 6 FACTORS)---; 

*--------->; k[1,]=2 ;k[2,]=4 ;k[3,]=4 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· ' 
*---------------------------------------------------------------· ' 
*-------SPECIFICATION OF DESIGN MATRIX; 

*index vector nh of main effects and interactions to be INCLUDED 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

=1 AB ABC AC BC ABC DAD BD ABD CD ACD BCD ABCD etc.; 

*----------->; nh={2,3,4,5,6}; 

*---------------------------------------------------------------; 
Example 4.6 

proc iml worksize=200; 

reset nolog; 

x={ 11607,100,366,124, 

87,13677,515,302, 

172,225,17819,270, 

63,176,286,10192}; 

n=x[ +]; 

Gx=J(3,16,0); 

Gm=J(3,16,0); 

x1=x; 

do i=1 to 5; 

*m=x<>0.0001; 

m=x; 

x=x1; 

V=diag(m)-m*m'/n; 

Gm[1,2]= m[8]#m[13]; Gm[1,4]=-m[5]#m[14]; Gm[1,5]=-m[4]#m[14]; 

Gm[1,8]= m[2]#m[13]; Gm[1,13]=m[2]#m[8]; Gm[1,14]=-m[5]#m[4]; 

Gm[2,3]= m[12]#m[13]; Gm[2,4]=-m[9]#m[15]; Gm[2,9]=-m[4]#m[15]; 

Gm[2,12]= m[3]#m[13]; Gm[2,13]=m[3]#m[12]; Gm[2,15]=-m[9]#m[4]; 

Gm[3,7]=m[12]#m[14]; Gm[3,8]=-m[10]#m[15]; Gm[3,10]=-m[8]#m[15]; 
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Gm[3,12]= m[7]#m[14]; Gm[3,14]=m[7]#m[12]; Gm[3,15]=-m[10]#m[8]; l66 
do j=1 to 5; 

g1=x[2]#x[8]#x[13]-x[5]#x[4]#x[14]; 

g2=x[3]#x[12]#x[13]-x[9]#x[4]#x[15]; 

g3=x[7]#x[12]#x[14]-x[10]#x[8]#x[15]; 

g=g1//g2//g3; 

Gx[1,2]= x[8]#x[13]; Gx[1,4]=-x[5]#x[14]; Gx[1,5]=-x[4]#x[14]; 

Gx [1, 8] = x [2] #x [13] ; Gx [1, 13] =x [2] #x [8] ; Gx [1, 14] =-x [5] #x [ 4] ; 

Gx[2,3]= x[12]#x[13]; Gx[2,4]=-x[9]#x[15]; Gx[2,9]=-x[4]#x[15]; 

Gx [2, 12] = x [3] #x [13] ; Gx [2, 13] =x [3] #x [12] ; Gx [2, 15] =-x [9] #x [ 4] ; 

Gx[3,7]=x[12]#x[14]; Gx[3,8]=-x[10]#x[15]; Gx[3,10]=-x[8]#x[15]; 

Gx[3,12]= x[7]#x[14]; Gx[3,14]=x[7]#x[12]; Gx[3,15]=-x[10]#x[8]; 

x=x-(Gm*V)'*ginv(Gx*V*Gm')*g; 

end; 

end; 

xi=1/x; 

x2=(x1-x)'*(xi#(x1-x)); 

lr=2*x1'*log(x1/x); 

print lr x2; 

print xi m; 

Example 4.7 

The first program uses the cross-product ratios for the set of constraints. 

proc iml worksize=200; 

reset nolog; 

x={ 11607,100,366,124, 

87,13677,515,302, 

172,225,17818,270, 

63,176,286,10192}; 

n=x[ +]; 

Gx=J(S,16,0); 

Gm=J(5,16,0); 

x1=x; 

do i=1 to 5; 

m=x<>0.0001; 

x=x1; 

V=diag(m)-m*m'/n; 
Gm[1,5]= m[12]; Gm[1,8]=-m[9]; Gm[1,9]=-m[8]; Gm[1,12]= m[5]; 

Gm[2,3]= m[8]; Gm[2,4]=-m[7]; Gm[2,7]=-m[4]; Gm[2,8]= m[3]; 

Gm[3,2]= m[15]; Gm[3,3]=-m[14]; Gm[3,14]=-m[3]; Gm[3,15]= m[2]; 
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Gm[4,5]= m[15]; Gm[4,7]=-m[13]; Gm[4,13]=-m[7]; Gm[4,15]= m[5]; 

Gm[5,9]= m[14]; Gm[5,10]=-m[13]; Gm[5,13]=-m[10]; Gm[5,14]= m[9]; 

do j=1 to 5; 

g1=x [5] #x [12] -x [8] #x [9] ; 

g2=x[3]#x[8]-x[4]#x[7]; 

g3=x[2]#x[15]-x[3]#x[14]; 

g4=x[5]#x[15]-x[7]#x[13]; 

g5=x[9]#x[14]-x[10]#x[13]; 

g=g1//g2//g3//g4//g5; 

Gx[1,5]= x[12]; Gx[1,8]=-x[9]; Gx[1,9]=-x[8]; Gx[1,12]= x[5]; 

Gx[2,3]= x[8]; Gx[2,4]=-x[7]; Gx[2,7]=-x[4]; Gx[2,8]= x[3]; 

Gx[3,2]= x[15]; Gx[3,3]=-x[14]; Gx[3,14]=-x[3]; Gx[3,15]= x[2]; 

Gx[4,5]= x[15]; Gx[4,7]=-x[13]; Gx[4,13]=-x[7]; Gx[4,15]= x[5]; 

Gx[5,9]= x[14]; Gx[5,10]=-x[13]; Gx[5,13]=-x[10]; Gx[5,14]= x[9]; 

x=x-(Gm*V)'*ginv(Gx*V*Gm')*g; 

nt=x[+]; 

end; 

end; 

print x m; 
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The next program places constraints on the frequencies and is the same as that in 

Example 3.6 hence only the information to to be entered is given. 

proc iml worksize= 80; 

*------------- FREQUENCY VECTOR(slowest changing vector first); 

*------------>; x={ 11607, 100, 366, 124, 

87, 13677, 515, 302, 

172, 225, 17819, 270, 

63, 176, 286, 10192}; 

xr =nrow(x); 

x=x<>J(xr,1,1e-12); 

*------------- NUMBER OF VARIABLES 

*------------>; nf=2; 

*------------- NAMES OF VARIABLES-----; 

*--------->; Name={ 11 1980. 11
,

11 1985. 11
}; 

*---------------------------------------------------------------; 
k= j ( 6, 1, 0) ; 

*----- NUMBER OF VARIABLES FOR EACH VARIABLE (MAX 6 VARIABLES)--; 

*------>; k[1,]=4 ;k[2,]=4 ;k[3,]=0; k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· , 
*-------- SPECIFICATION OF HYPOTHESIS MATRIX AH ----------------· , 
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*index vector nh:effects to be included in the design matrix 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

=1 AB ABC AC BC ABC DAD BD ABD CD ACD BCD ABCD etc.; 

*----------->; nh={2,3}; 

*---------------------------------------------------------------· 
' 

*---------- SPECIFICATION OF THE CONSTRAINTS 
' 

*--->; Ci={ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0, 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0, 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0, 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1}; 

cov=C1'; 

*---------------------------------------------------------------· ' 
Example 4.8 
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This program uses the cross-product ratios to set up the constraints as described in 

the chapter. 

proc iml worksize=200; 

reset nolog; 

x={ 11, 23, 12, 15, 

9, 10, 4, 

6, 4, 4, 

4, 5, 0, 

5, 0, 0, 

n=x[+]; 

Gx=J(6,25,0); 

Gm=J(6,25,0); 

x1=x; 

do i=1 to 5; 

m=x; 

x=x1; 

V=diag(m)-m*m'/n; 

1, 

0, 

0, 

0, 

8, 

0, 

0, 

0, 

O}; 

Gm[1,1]= m[7]; Gm[1,2]=-m[6]; Gm[1,6]=-m[2]; Gm[1,7]= m[1]; 

Gm[2,1]= m[8]; Gm[2,3]=-m[6]; Gm[2,6]=-m[3]; Gm[2,8]= m[1]; 

Gm[3,1]= m[9]; Gm[3,4]=-m[6]; Gm[3,6]=-m[4]; Gm[3,9]= m[1]; 

Gm[4,1]= m[12]; Gm[4,2]=-m[11]; Gm[4,11]=-m[2]; Gm[4,12]= m[1]; 

Gm[5,1]= m[13]; Gm[5,3]=-m[11]; Gm[5,11]=-m[3]; Gm[5,13]= m[1]; 

Gm[6,1]= m[17]; Gm[6,2]=-m[16]; Gm[6,16]=-m[2]; Gm[6,17]= m[1]; 

do j=1 to 5; 

g1=x [1] #x [7] -x [2] #x [6] ; 

g2=x[1]#x[8]-x[3]#x[6]; 
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g3=x[1]#x[9]-x[4]#x[6]; 

g4=x[1]#x[12]-x[2]#x[11]; 

g5=x [1] #x [13] -x [3] #x [11] ; 

g6=x [1] #x [17] -x [2] #x [16] ; 

g=g1//g2//g3//g4//g5//g6; 

Gx[1,1]= x[7]; Gx[1,2]=-x[6]; Gx[1,6]=-x[2]; Gx[1,7]= x[1]; 

Gx [2, 1] = x [8] ; Gx [2, 3] =-x [6] ; Gx [2, 6] =-x [3] ; Gx [2, 8] = x [1] ; 

Gx[3,1]= x[9]; Gx[3,4]=-x[6]; Gx[3,6]=-x[4]; Gx[3,9]= x[1]; 

Gx[4,1]= x[12]; Gx[4,2]=-x[11]; Gx[4,11]=-x[2]; Gx[4,12]= x[1]; 
Gx[S,1]= x[13]; Gx[5,3]=-x[11]; Gx[5,11]=-x[3]; Gx[S,13]= x[1]; 

Gx[6,1]= x[17]; Gx[6,2]=-x[16]; Gx[6,16]=-x[2]; Gx[6,17]= x[1]; 

x=x-(Gm*V)'*ginv(Gx*V*Gm')*g; 

nt=x[+]; 

end; 

end; 

print x m; 

Example 4.9 
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This program allows the user to place constraints on the frequencies. The quantity 

"nh" still specifies the effects to be included in the design matrix. 

proc iml worksize= 80; 

*------------- FREQUENCY VECTOR(slowest changing vector first); 

*--->Structural zeros example; 

*------------>; x={ 64, 70,11, 

83, 95, 0, 

0, 0, 32}; 

xr =nrow(x); 

x=x<>J(xr,1,1e-12); 

*------------- NUMBER OF VARIABLES 

*------------>; nf=2; 

*------------- NAMES OF VARIABLES 

*--------->; Name={ 11 a. 11
,

11 b. 11
}; 

----. J 

-----. 
J 

*---------------------------------------------------------------· J 

k= j ( 6, 1, 0) ; 

*----- NUMBER OF VARIABLES FOR EACH VARIABLE (MAX 6 VARIABLES)--; 

*------->; k[1,]=3 ;k[2,]=3 ;k[3,]=0 ;k[4,]=0 ;k[S,]=O ;k[6,]=0; 

*---------------------------------------------------------------· J 

*---------- SPECIFICATION OF HYPOTHESIS MATRIX AH--------------; 

*index vector nh:effects to be INCLUDED in the design matrix 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

 
 
 



=1 AB ABC AC BC ABC DAD BD ABO CD ACD BCD ABCD etc.; 

*----------->; nh={2,3}; 

*---------------------------------------------------------------· J 

*--------- SPECIFICATION OF THE CONSTRAINTS 

*--->; C1={ 0 0 0 0 0 1 0 0 0 , 
--------------------· ' 

0 0 0 0 0 0 1 0 0 , 

0 0 0 0 0 0 0 1 0 }; 

cov=C1'; 

*---------------------------------------------------------------; 
*---------- CONSTRUCTION OF THE DESIGN MATRIX 

reset nolog; 

reset fw=10; 

c=k[1,]; 

one=J(c,1,1); 

d=c-1; 

A=(i(d)//J(1,d,-1)); 

e=k [1]; 

do i=2 to nf; 

c=k[i ,] ; 

one=J(c,1,1); 

d=c-1; 

Y=(I(d)//J(1,d,-1)); 

one1=j(e,1,1); 

A1=A©one; 

Y1=one1©Y; 

A=A1 I IY1; 

A=AI lhdir(A1,Y1); 

e=k[i,]*e; 

end; 

A=j(e,1,1) I IA; 

*---------- CONSTRUCTION OF THE INDEX VECTOR-------------------; 

vg=1; 
do i=1 to nf; 

vg=vg//((k[i,]-1)*vg); 

end; 

kol=cusum(vg); 

nrh=nrow(nh); 

AA=J(e,1,1); 

do i=1 to nrh; 
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ii=nh[i,]-1;iii=nh[i,J; 

a1=kol[ii,]+1;a2=kol[iii,]; 

AA=AAI IA[,a1:a2]; 

end; print AA[format=3.0]; 

*---------------------------------------------------------------; 
A=AA 11 cov; 

nc=ncol(A); 

call svd(A,q,v,A); 

Q1=J(nc,1,.001)><Q; 

dfh=1000*sum(Q1); print dfh; 

vgh=e-dfh; 

A=A[, 1 :dfh]; 

AH=I(e)-A*ginv(A'*A)*A'; 

*---------------------------------------------------------------· ' 
*---------------------------------------------------------------· ' 
x=x<>J(e,1,1e-6); 

x1=1/x; 

*----->;G1={0 O}; 

*---------------------------------------------------------------· ' 
*-------------- HYPOTHESIS MATRIX WITH STRUCTURE 

sg=sum(g1*g1'); 

if sg-=O then AH=AH*G1'; 

---------------· . 

*---------------------------------------------------------------; 
gx=AH'*log(x); 

m=x; 

gm=gx; 

itr=O; 

diff=1; 

do while (diff>0.000001); 

m1=m; 

mi=1/m; 

m=m-AH*ginv(AH'*(mi#AH))*gm; 

m=m<>J(e,1,ie-12); 

gm=AH'*log(m); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

mi=1/m; 

vgh=e-dfh; 

X2=(x-m)'*(mi#(x-m)); 
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G2=2*x'*log(x/m); 

K2ft=4*(sqrt(x)-sqrt(m))'*(sqrt(x)-sqrt(m)); 

Wald=gx'*ginv(AH'*(x1#AH))*gx; 

vec=x2 I I g2 I I K2ft 11 Wald; 

prob=J(1,4,1)-probchi(vec,vgh); 

*PRINTING OF THE OUTPUT; 

vec1={ 11 Pearson 11 "LR" "F-T" "Wald"}; 

R={"Chi-2 11 "Df" "Prob"}; 

TEST=vec//J(1,4,vgh)//prob; 

nrt=xr/k[nf]; 

x=shape (x ,nrt); 

m=shape(m,nrt); 

print 11 ------------LOG.IML----------------- 11
; 

print"number of iterations =11 itr; 

print" " ; 

print x[format=7.1] m[format=12.6] 

print""; 

print "Chi-squared statistics with exact p-values"; 

print TEST[rowname=R colname=vec1 format=15.6]; 

Example 4.10 
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The program for this example is the same as Example 4.9, hence the relevant segment 

with input is given. 

proc iml worksize= 50; 

*------------- FREQUENCY VECTOR(slowest changing vector first); 

*---> Structural zeros example; 

*------------>, x={ 0 , 1029, 2240, 1413, 

346, 548, 1287, 0 }; 

xr =nrow(x); 

x=x<>J(xr,1,1e-12); 

*------------- NUMBER OF VARIABLES 

*------------>, nf=2; 

*------------- NAMES OF VARIABLES -----. , 
*--------->; Name={"a. 11 ,"b. 11

}; 

*---------------------------------------------------------------· , 
k=j (6, 1,0); 

*----- NUMBER OF VARIABLES FOR EACH VARIABLE (MAX 6 VARIABLES)--; 

*------->; k[1,]=2 ;k[2,]=4 ;k[3,]=0 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· , 
*---------- SPECIFICATION OF HYPOTHESIS MATRIX AH --------------· , 
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*index vector nh:effects to be included in the design matrix 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

=1 AB ABC AC BC ABC DAD BO ABO CD ACD BCD ABCD etc.; 

*----------->, nh={2,3}; 

*---------------------------------------------------------------· 
*------------ SPECIFICATION OF THE CONSTRAINTS 

*--->; C1={ 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1}; 
cov=C1'; 

J 

-----------------· , 

*---------------------------------------------------------------; 
Example 4.11 
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This program is also the same as that of Example 4.9, hence only the relevant 

information to be supplied is listed. 

proc iml worksize= 80; 

*------------- FREQUENCY VECTOR(slowest changing vector first); 
*------------>, x={ 4, 2, 9, 7, 

0 , 0 , 4, 8, 

42 , 7 ,19,10, 

5 7 , 20 , 71 , 31} ; 

xr =nrow(x); 

x=x<>J(xr,1,1e-12); 

*------------- NUMBER OF VARIABLES 

*------------>; nf=3; 

*------------- NAMES OF VARIABLES 

*--------->; Name={ 11 h. 11
,

11 a. 11
,

11 s. 11
}; 

-----. J 

*---------------------------------------------------------------· J 

k=j (6, 1,0); 

*----- NUMBER OF VARIABLES FOR EACH VARIABLE (MAX 6 VARIABLES)--; 
*------>; k[1,]=4 ;k[2,]=2 ;k[3,]=2 ;k[4,]=0 ;k[S,]=O ;k[6,]=0; 

*---------------------------------------------------------------· J 

*--------- SPECIFICATION OF HYPOTHESIS MATRIX AH---------------; 

*index vector nh:effects to be included in the design matrix 
1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

=1 AB ABC AC BC ABC DAD BO ABO CD ACD BCD ABCD etc.; 

*----------->, nh={2,3,4,5,6,7}; 

*---------------------------------------------------------------· , 
*--------- SPECIFICATION OF THE CONSTRAINTS 

*--->; C1={ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0, 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0}; 
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cov=C1'; 174 

*---------------------------------------------------------------· ' 
CHAPTER 5 

Example 5.1: Cumulative Logit Model. 

This program can be used to fit any cumulative logit model with covariates. Care 

should be taken on setting up the covariates for the populations and must be entered 

in the correct order according to the frequency order of the variables. The response 

variable is the slowest changing variable. 

proc iml worksize=80; 

options pagesize=500; 

*-----> FREQUENCY VECTOR; 

*----->; x={ 5 , 7, 13, 

7 , 8 , 13, 

6, 15, 20, 

3 , 9 , 13, 

53 , 115, 197, 

33 , 65, 149, 

16 , 25 , 96, 

7, 23 ,56}; 

cov={ -1 , 

0 , 

1 , 

-1 , 

0 , 

1 }; 

*------------- NUMBER OF FACTORS -------. 
*------------>, nf=3; 

*------------- NAMES OF FACTORS-------; 

*--------->; name={"o.","l.","a."}; 

*---------> ;namecov={"age'1
}; 

' 

*---------------------------------------------------------------; 
k=j(6,1,0); 

*---------- NUMBER OF LEVELS OF EACH FACTOR (MAX 6 VARIABLES)--; 

*------->; k[1,]=4 ;k[2,]=2 ;k[3,]=3 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· , 
*---------------------------------------------------------------· , 
*--------- SPECIFICATION OF DESIGN MATRIX----------------------; 

*index vector nh for main effects and interactions to be included 
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1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 175 

=1 AB ABC AC BC ABC DAD BO ABO CD ACD BCD ABCD etc.; 

*----------->; nh={2}; 

*---------------------------------------------------------------· ' 
*-- G1 for equal Language and Age parameters; 

*G1={0 1 0 0 -1 0 0 0 0, 

0 0 0 0 1 0 0 -1 0, 

0 0 1 0 0 -1 0 0 0, 

0 0 0 0 0 1 0 0 -1}; 

*-- G1 for equal Age parameters; 

G1={ 0 0 1 0 0 -1 0 0 0, 

0 0 0 0 0 1 0 0 -1}; 

*G1=J(1,9,0); 

*----------- CONSTRUCTION OF THE DESIGN MATRIX 
reset nolog; 

reset fw=10; 
c=k [2,] ; 

one=J(c,1,1); 

d=c-1; 

A=(i(d)//J(i,d,-1)); 

e=k [2]; 

do i=3 to nf; 

c=k [i ,] ; 

one=J(c,1,1); 

d=c-1; 

Y=(I(d)//J(i,d,-1)); 

onei=j(e,1,1); 

A1=A©one; 

Y1=one1©Y; 

A=A1 I IY1; 

A=AI lhdir(A1,Y1); 

e=k[i,]*e; 

end; 

A=j(e,1,1) I IA; 

free Y Yi Ai; 

nsubpop=e; 

----------------· ' 

*---------- CONSTRUCTION OF THE INDEX VECTOR-------------------; 

vg=1; 

do i=2 to nf; 
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vg=vg//((k[i,]-1)*vg); 

end; 

tyd=name [2, 1] ; 

name1={'"'}//tyd; 

do i=3 to nf; 

name1=name1//concat(name1,name[i,1]); 

end; 

name1=rowcatc(name1); 

nn=nrow(name1); 

index={"mu"}; 

do i=2 to nn; 

tyd=namei[i, 1]; 

index=index//repeat(tyd,vg[i,1]); 

end; 

*---------------------------------------------------------------· 
kol=cusum(vg); 

nrh=nrow(nh); 

AA=J(e,1,1); 

index1=index[1,]; 

do i=1 to nrh; 

ii=nh[i,]-1;iii=nh[i,]; 

a1=kol[ii,]+1;a2=kol[iii,]; 

AA= AA I I A [ , a 1 : a2] ; 

index1=index1//index[a1:a2,]; 

end; 

A=AA; 

free AA; 

, 

*---------------------------------------------------------------· 
nc=ncol(cov); 

if any ( cov-=J(e,nc,O)) then do; A=AI lcov; 

index1=index1//namecov; 

vg=vg//J(nc,1,1); end; 

*--------- FULL DESIGN,HYPOTHESIS MATRIX AND INDEX VECTOR 

c=k[1,1]; 

d=c-1; 

A=I(d)©A; 

, 

------. , 

*t.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.; 

*For other Logit types replace the following segment with relevant; 

*segment as described; 

*t.t.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i. FROM HERE i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.; 
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C1=J(d,c,O); 

DO i=1 to d; 

ki=c-i; 

c 1 [i,] =J ( 1, i, 1) I I J ( 1, ki, 0) ; 

end; print c1; 

C2=J(d,c,1)-C1; print c2; 

C1=C1©I(e); 

C2=C2©I(e); 

*t.t.t.t.t.t.t.t.t.t.t.t.t.t.t.t.t.t.t.t. TO HERE Y.%%%%Y.%%Y.%Y.%%Y.%Y.Y.Y.Y.Y.Y.Y.Y.Y.%%Y.%%%Y.Y.Y.%; 
lgtx=log(C1*x)-log(C2*x); 

index=repeat(index1,d,1); 

free tyd name1 

A=A*inv(A'*A); 
x1=1/x; 

e=e*d; 

AH=I(e)-A*inv(A'*A)*A'; 

call svd(AH,Q,V,AH); 

free Q V; 

nca =ncol(A); 

nch=e - nca; 

nrg=nrow(G1); 

AH=AH[,1:nch]; 

If any ( G1A=J(nrg,nca,0)) 

then do; 

AH=AH 11 A*G1'; 
nch = nch + nrg; 

end; 

Gx1= AH'*(diag(1/(C1*x))*C1 - diag(1/(C2*x))*C2); 

g=AH'*lgtx; 

m=x; 

x1=x; 

lgtm=lgtx; 

itr=O; 

diff1=1; 

i=O; 

do while (diff1>0.000001); 

i=i+1; 

m=x; 

x=x1; 

Gm= AH'*(diag(1/(C1*m))*C1 - diag(1/(C2*m))*C2); 
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j=O; 

diff=1; 

do while (diff>0.000001); 

xv=x; 

j=j+1; 

Gx= AH'*(diag(1/(C1*x))*C1 - diag(1/(C2*x))*C2); 

g=AH'*(log(C1*x)-log(C2*x)); 

x=x-(m'#Gm)'*inv(Gx*(m#Gm'))*g; 

diff=sqrt((x-xv)'*(x-xv)); 

itr=itr+1; 

end; 

diff1=sqrt((m-x)'*(m-x)); 

lgtm=log(C1*m)-log(C2*m); 

end; 

xr=nrow(x); 

lambda=A'*(log(C1*m)-log(C2*m)); 

GA= A'*(diag(1/(C1*m))*C1 - diag(1/(C2*m))*C2); 
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free A C1 C2; 

varl=vecdiag((m'#GA)*GA')-vecdiag(GA*(m'#Gx1)'*inv(Gx1*(m#Gx1'))*(m'#Gx1)*GA'); 

vecvar=varl<>J(nca,1,1E-10); 

stdl=sqrt(vecvar); 

standl=lambda/stdl; 

X2=(x1-m)'*((x1-m)/m); 

G2=2*x1'*log(x1/m); 

K2ft=4*(sqrt(x1)-sqrt(m))'*(sqrt(x1)-sqrt(m)); 

vec=x21 lg21 IK2ft; 

prob=J(1,3,1)-probchi(vec,nch); 

*PRINTING OF THE OUTPUT; 

vec1={"Pearson" "LR" "F-T" }; 

R={"Chi-2 11 "Of" "Prob"}; 

TEST=vec//J(1,3,nch)//prob; 

xr=nrow(x); 

nrt=xr/k[nf,]; 

x1=shape(x1,nrt); 

m=shape (m, nrt) ; 

lgtm=shape(lgtm,d); 

lgtm =lgtm' ; 

print "------------CUMULATIVE LOGIT TYPES-----------------"; 

namedep=name[1,1]; 

print "analysis of" namedep; 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2021

 
 
 



print"number of iterations=" itr; print" 11 
; 

print x1[format=7.1] m[format=12.6] ; print""; 

print index lambda[format=12.6] standl[format=12.6]; 

print""; 

print "Chi-squared statistics with exceedance probabilities"; 

print TEST[rowname=R colname=vec1 format=15.6]; print" 11
; 

aic =G2+2*(e-nch); 

print "Akaike Information Criterion"; 

print "AIC=" aic; 
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In order to run any of the other logits described in the paragraph make the alter­

ations at the indicated place in the program above by adding one of the segments, 

depending on which logit model is to be considered. 

The other options are as follows: 

1. Adjacent category logits. 

C1=J(d,c,O); 

C 1 = J ( d, 1 , 0) I I I ( d) ; 

C2=J(d,c,O); 

C2=I(d) I IJ(d,1,0); 

C1=C1©I(e); 

C2=C2©I(e); 

2. Continuation ratio logits (Method 1 ). 

ln(fl/ f2 + f3 + f4), ln(f2/ f3 + f4), ln(f3/ f4) 

C1=J(d,c,O); 

C1=J(d,1,0) I II(d); 

C2=J(d,c,O); 

DO i=1 to d; 

ki=c-i; 

C2 [i, J =J ( 1, i, 1) 11 J ( 1, ki, o) ; 

end; 

C1=C1©I(e); 

C2=C2©I(e); 

3. Continuation ratio logits (Method 2). 

ln(fl/(!2 + f3)),ln(f2/ f3) 
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C1=J(d,c,O); 

C1=I(d) I IJ(d,1,0); 

C2=J(d,c,O); 

DO i=1 to d; 

ki=c-i; 

C2 [i, J =J ( 1, i, o) I I J ( 1, ki, 1) ; 

end; 

C1=C1©I(e); 

C2=C2©I(e); 

Example 5.2 

proc iml worksize=120; 

*---- Proportional Hazards Model; 

options pagesize=500; 

*-----> frequency vector; 

*----->; f={2309,2050,5397,4125,3315,2737, 

2138,1360,2333,1626,2044,1263, 

4011,2528,3505,3313,3472,2530, 

2794,1967,1506,2032,1105,1848, 

784,2475,645,2264,477,2397}; 

*--------------- COVARIATES 

cov=J(6,1,0); 
-----------· J 

*------------- NUMBER OF VARIABLES ----. 
' 

*------------>; nf=3; 

*------------- NAMES OF VARIABLES -----. 
*--------->; Name={ 11 i. 11

,
11 y. 11

,
11 s. 11

}; 

*--------->; Namecov={" "}; 

' 

*---------------------------------------------------------------; 
k= j ( 6, 1, 0) ; 

*----------NUMBER OF LEVELS OF EACH VARIABLE (MAX 6 VARIABLES)--; 

*-------->;k[1,]=5 ;k[2,]=3 ;k[3,]=2 ;k[4,]=0 ;k[5,]=0 ;k[6,]=0; 

*---------------------------------------------------------------· ' 
*---------------------------------------------------------------· ' 
*------------- SPECIFICATION OF DESIGN MATRIX-----------------; 

*index vector nh in the correct order: 

1 A (I+A)B (I+(A+(I+A)B))C (I+A+(I+A)B+(I+(A+(I+A)B)C)D etc. 

=1 AB ABC AC BC ABC DAD BD ABO CD ACD BCD ABCD ens.; 

*----------->, nh={2,3}; 

*---------------------------------------------------------------· ' 
*----------- MATRIX OF CONSTRAINTS ON PARAMETERS 
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G1={0 1 0 

0 0 0 

0 0 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

*G1=J(1,16,0); 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 -1 0 0 0 0 0 0 

0 1 0 0 0 -1 0 0 

0 0 0 0 0 1 0 0 

0 0 -1 0 0 0 0 0 

0 0 1 0 0 0 -1 0 

0 0 0 0 0 0 1 0 

0 0 0 -1 0 0 0 0 

0 0 0 1 0 0 0 -1 

0 0 0 0 0 0 0 1 

*---------CONSTRUCTION OF DESIGN MATRIX A 

reset nolog; 

reset fw=10; 

c=k( 12, I Y; 
one=J(c,1,1); 

d=c-1; 

A=(i(d)//J(1,d,-1)); 

e=k( 121); 

do i=3 to nf; 

c=k( Ii, I); 

one=J(c,1,1); 

d=c-1; 

Y=(I(d)//J(1,d,-1)); 

one1=j(e,1,1); 

A1=A©one; 

Y1=one1©Y; 

A=A1 I IY1; 

A=AI lhdir(A1,Y1); 

e=k(li,l)*e; 

end; 

A=j(e,1,1) I IA; 

0 0 0 0, 

0 0 0 0, 

0 -1 0 0, 

0 0 0 0, 

0 0 0 0, 

0 0 -1 0, 

0 0 0 0, 

0 0 0 0, 

0 0 0 -1}; 

--------------------· J 

*---------- CONSTRUCTION OF THE INDEX (PARAMETER) VECTOR-------; 

vg=1; 

do i=2 to nf; 

vg=vg//((k(li,l)-1)*vg); 

end; 

tyd=name ( 12, 11); 

name1={ 1111 }//tyd; 

do i=3 to nf; 

name1=name1//concat(name1,name(li,11)); 
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end; 

name1=rowcatc(name1); 

nn=nrow(name1); 

index={"mu"}; 

do i=2 to nn; 

tyd=namei(li,11); 

index=index//repeat(tyd,vg(li,11)); 

end; 

*---------------------------------------------------------------; 
col=cusum(vg); 

nrh=nrow(nh); 

AA=J(e,1,1); 

index1=index(l1,I); 

do i=1 to nrh; 

ii=nh(li,l)-1;iii=nh(li,I); 

a1=col(lii, 1)+1;a2=col(liii,I); 

AA=AAI IA(l,a1:a21); 

index1=index1//index(la1:a2,I); 

end; 

A=AA; 

free AA; 

*---------------------------------------------------------------; 
nc=ncol(cov); 

if any (cov-=J(e,nc,O)) then do; A=AI lcov; 

index1=index1//namecov; 

vg=vg//J(nc,1,1); end; 

AH=I(e)-A*inv(A'*A)*A'; 

call svd(AH,Q,V,AH); 

free Q V; 

nca =ncol(A); 

nch=e - nca; 

AH=AH(l,1:nchl); 

*---------------------------------------------------------------· , 
*---------------------------------------------------------------· , 
*-------- FULL DESIGN MATRIX, HYPOTHESIS MATRIX AND INDEX VECTOR; 

c=k(l1,1I); 

d=c-1; 

A=I(d)©A; 

C1 =j(d,c,0); 

Doi= 1 to d; 
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ki=c-i; 

ci(li, l)=J(i,i,O) I IJ(i,ki,i); 

end; 

Ci=Ci©I(e); 

index=repeat(indexi,d,i); 

*---------------------------------------------------------------· 
free Y Ai Yi tyd namei ; 

A=A*inv(A'*A); 

ei=e; 

GG=J(i,c,i)©I(ei); 

row-s=gg*f; 

irow-s = i/row-s; 

p=diag(J(c,i,i)©irow-s)*f; 

xi=i/p; 

e=e*d; 

pr=nrow-(p); 

AH=I(d)©AH; 

nca =ncol(A); 

nrg=nrow-(Gi); 

nch=e - nca; 

test =O; 

If nch=O then do; 

If any ( Gi-=J(nrg,nca,O)) then do; 

AH=A*Gi'; 

end; 

else do; 

AH=A*Gi'; 

test=i; 

end; 

end; 

If nch>O then do; 

AH=AH( I, i :nchl); 

If any (Gi-=J(nrg,nca,O)) then AH=AHI IA*Gi'; 

end; 

m=p; 

If any (Gi-=J(nrg,nca,O)) then nch = nch+nrg; 

gm=AH'*log(-(log(Ci*m))); 

gp=gm; 

, 
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nt=J(c,i,i)©row-s; 

sig=diag(m/nt)-(gg*diag(m/nt))'*inv(gg*diag(m/nt)*gg')*(gg*diag(m/nt)); 
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sig1=sig; 

diff=1; 

If test =O then do; 

Gx1=AH'*((1/log(C1*p)/(C1*p))#C1); 

GW=Gx1; 

x=p; 

m=p; 

x1=p; 

itr=O; 

diff1=1; 

i=O; 

do while (diffi>0.000001); 

i=i+1; 

m=x; 

x=x1; 

Gm= AH'*((1/log(C1*m)/(C1*m))#C1); 
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sig=diag(m/nt)-(gg*diag(m/nt))'*inv(gg*diag(m/nt)*gg')*(gg*diag(m/nt)); 

j=O; 

diff=1; 

do while (diff>0.000001); 

xv=x; 

j=j+1; 

Gx = AH'*((1/log(C1*x)/(C1*x))#C1); 

g=AH'*(log(-log(C1*x))); 

x=x-(Gm*sig)'*ginv(Gx*sig*Gm')*g; 

diff=sqrt((x-xv)'*(x-xv)); 

itr=itr+1; 

end; 

diff1=sqrt((m-x)'*(m-x)); 

end; 

end; 

lambda=A'*log(-(log(C1*m))); 

GA= A'*((1/log(C1*m)/(C1*m))#C1); 

if test=O then 

sig=sig-(Gm*sig)'*inv(Gm*sig*Gm')*(Gm*sig); 

*varl=vecdiag((m'#GA)*GA')-vecdiag(GA*(m'#G)'*ginv(G*(m#G'))*(m'#G)*GA'); 

varl=vecdiag(GA*sig*GA'); 

vecvar=varl<>J(nca,1,1E-10); 

stdl=sqrt(vecvar); 

standl=lambda/stdl; 
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if test=0 then do; 

m1=diag(J(c,1,1)©rows)*m; 

X2=(f-m1)'*((f-m1)/m1); 

G2=2*f'*log(f/m1); 

K2ft=4*(sqrt(f)-sqrt(m1))'*(sqrt(f)-sqrt(m1)); 

Wald=gp'*inv(GW*sig1*GW')*gp; 

vec=x2 I I g2 I I K2ft I I Wald; 

prob=J(1,4,1)-probchi(vec,nch); 

end; 

vec1={ 11 Pearson 11 11 LR 11 11 F-T 11 11 Wald 11 
}; 

R={ 11 Chi-2 11 11 Df 11 11 Prob 11
}; 

Test=vec//J(1,4,nch)//prob; 

xr=nrow(f); 

nrt=xr/k[nf]; 

print 11 ------------PR0PHAZ.IML----------------- 11
; 

print p [format=12.6] m[format =12.6]; 

print 11 number of iterations= 11 itr; 

Example 5.3 

proc iml; 

* Logistic regression Dobson Cox & Snell p11; 

reset nolog; 

X={1 7 1.0, 

1 7 1. 7' 
1 7 2.2, 

1 7 2.8, 

1 7 4.0, 

1 14 1.0, 

1 14 1. 7' 
1 14 2.2, 

1 14 2.8, 

1 14 4.0, 

1 27 1.0, 

1 27 1. 7' 
1 27 2.2, 

1 27 2.8, 

1 27 4.0, 

1 51 1.0, 

1 51 1. 7' 
1 51 2.2, 
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1 51 4.0}; 

yi={1e-6,1e-6,1e-6,1e-6,1e-6,1e-6,1e-6,2,1e-6,1e-6, 

1,4,1e-6,1,1,3,1e-6,1e-6,1e-6}; 

ni={i0,17,7,12,9,31,43,33,31,19,56,44,21,22,16,13,1,1,1}; 

xr=nrow(X); 

e=j(xr,1,1); 

pi=yi/ni; 

logit=log(pi/(e-pi)); 

var=ni#pi#(e-pi); 

ivar=1/var; 

SIG=diag(var); 

P=I(xr)-x*ginv(x'*x)*x'; 
G=P*diag(ivar); 

m=yi; 

diff=1; 

itr=O; 

do while (diff>0.00000001); 

m1=m; 

m=m-(G*SIG)'*ginv(G*SIG*G')*P*logit; 

pi=m/ni; 

ri=pi/(e-pi); 

ww=ni#pi#(e-pi); 

iww=1/ww; 

G=P*diag(iww); 

SIG=diag(ww); 

logit=log(ri); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

b=inv(x'*x)*x'*logit; 

A=inv(x'*x)*x'; 

covb=A*diag(iww)*A'; 

se=sqrt(vecdiag(covb)); 

ei=(yi-m)#(yi-m)/m; 

chi2=sum(ei); 

print "Estimated Regression Parameters"; 

print b se[format=12.6] ; print 11 11
; 

print itr; print 11 11
; 

print "Expected Frequencies"; 
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print m; print 11 11
; 

print "Chi-squared Statistic"; 

print chi2; 

*---- Calculate the Deviance; 

G2yi=2*yi'*log(yi/m); 

nmyi=ni-yi; 

nmyh=ni-m; 

g2nmyi=2*nmyi'*log(nmyi/nmyh); 

Deviance=G2yi+g2nmyi; 

print II II, , 
print Deviance; 

Example 5.4 

proc iml; 

* The extreme value distribution Dobson p.77; 

reset nolog; 

X={1 1. 6907, 

1 1. 7242, 

1 1. 7552, 

1 1. 7842, 

1 1.8113, 

1 1. 8369, 

1 1.8610, 

1 1. 8839}; 

yi={6,13,18,28,52,53,61,60}; 

ni={59,60,62,56,63,59,62,60.00000001}; 

e= j ( 8, 1, 1) ; 

pi=yi/ni; 

lx=log(-log(e-pi)); 

var=ni#pi#(e-pi); 

S=diag(var); 

P=I(8)-x*ginv(x'*x)*x'; 

Z=X; 

x1=yi; 

m=yi; 

d=(yi-ni#e)#log(e-pi); 

di=1/d; 

D=diag(di); 

G=P*D; 

do i=1 to 10; 
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x=x1; 

do j=1 to 10 

pi=x/ni; 

d=(x-ni#e)#log(e-pi); 

di=1/d; 

D=diag(di); 

G_x=P*D; 

lx=P*log(-log(e-pi)); 

x=x'; 

print x; 

x=x'; 

end; 

m=x; 

pi=m/ni; 

-ww=ni#pi#(e-pi); 

d=(m-ni#e)#log(e-pi); 

di=1/d; 

D=diag(di); 

G=P*D; 

S=diag ( ww) ; 

end; 

b=inv(Z'*Z)*Z'*log(-log(e-pi)); 

A=inv(Z'*Z)*Z'; 

covb=A*D*S*D*A'; 

se=sqrt(vecdiag(covb)); 

print "Estimated Regression Parameters"; 

print 11 
"; 

print b se[format=12.6] ; print 11 
"; 

print "Expected Frequencies"; print 11 
"; 

print m; 

*---- Calculate the Deviance; 

G2yi=2*yi'*log(yi/m); 

nmyi=ni-yi; 

nmyh=ni-m; 

g2nmyi=2*nmyi'*log(nmyi/nmyh); 

Deviance=G2yi+g2nmyi; 

print II II, 
J 

print Deviance; 
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Example 6.1 

proc iml worksize=50; 

options pagesize=250; 

reset nolog; 

n=9; r=5; 

x={-1,-1,0,0,0,0,1,1,1}; 

x1=j(n,1,1) I Ix; 

CHAPTER 6 

*------- ----->; y={ 2,3,6,7,8,9,10,12,15}; 

sig=diag(y); 

b=inv(x1'*sig*x1)*x1'*sig*y; 

print b; 

yh=x1*b; 

sig=diag(yh); 

G=I(n)-x1*ginv(x1'*x1)*x1'; 

itr=O; 

diff=1; 

m=y; 

do while (diff>0.00000001); 

gm=G*m; 

m1=m; 

m=y-(G*SIG)'*ginv(G*SIG*G')*G*y; 

SIG=diag(m); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

b=inv(x1'*x1)*x1'*m; 

print b; 

*print SIG[format=5.2] SIGM[format=5.2]; 

print y[format=5.2] m[format=5.2]; 

print itr; 

Example 6.2 

proc iml worksize=50; 

options pagesize=200; 

reset nolog; 

n=14; 

t={1,2,3,4,5,6,7,8,9,10,11,12,13,14}; 

t=log(t); 
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x=J (n, 1, 1) I It; 
*------------>, y={ 1e-6,1,2,3,1,4,9,18,23,31,20,25,37,45}; 

sig=diag(y); 

isig=inv(sig); 

P=I(n)-x*ginv(x'*x)*x'; 

itr=0; 

diff=1; 

m=y; 

do while (diff>0.00000001); 

m1=m; 

m=m-(P)'*ginv(P*isig*P')*P*log(m); 

sig=diag(m); 

isig=inv(sig); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

b=inv(x'*x)*x'*log(m); 

print b; 

print y[format=S.2] m[format=S.2]; 

print itr; 

Example 6.6 

proc iml worksize=120; 

reset nolog; 

*-normal-errors:SAS Report P-243(genmod) page 53; 

y={S,7,9,7,10,8,11,9,16,13,14,25,24,34,32,30}; 

x={0,0,0,1,1,1,2,2,3,3,3,4,4,5,5,5}; 

n=nrow(x); 

one=j(n,1,1); 

x=onel Ix; 

yi=1/y; 

Dyi=diag(yi) 

P=I(n)-x*ginv(x'*x)*x'; 

G=P*Dyi; 

y1=y; 

do i = 1 to 10; 

y=y1; 

do j= 1 to 10; 

yi=1/y; 

Dyi=diag(yi); 
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gy=P*1og(y); 

G_y=P*Dyi; 

y=y-(G)'*ginv(G_y*G')*gy; 

end; 

yi=1/y; 

Dyi=diag(yi); 

G=P*Dyi; 

end; 

b=inv(x'*x)*x'*log(y); 

dev=(y1-y)'*(y1-y); 

print "Estimated Parameters."; 

print b; 

print "Deviance."; 

print dev; 

print "Observed an Predicted Values"; 

print y[format=12.6] y1[format=12.6]; 

Example 6.7 

proc iml worksize=120; 

reset nolog; 

*--gamma-errors:McCullagh and Nelder p307 using log link; 

y={67.5,57.1,56.0,48.4,41.2,37.80,33.33,26.50,24.24,22.44,21.13, 

21.05,20.39,20.41,19.45,18.77,17.79,17.38,17.26,17.18,16.81, 

16.97,18.20}; 

x={14.95 54, 

16.16 182, 

16.19 153; 

17.15 129, 

18.20 64, 

19.08 94, 

20.07 82, 

22.14 57, 

23.27 135, 

24.09 188, 

24.81 217, 

24.84 141, 

25.06 37, 

25.06 84, 
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25.80 196, 

26.92 104, 

27.68 148, 

28.89 83, 

28.96 95, 

29.00 232, 

30.05 148, 

30.80 195, 

32.00 58}; 

n=nrow(x); 

one=j(n,1,1); 

temp=x [, 1] ; 

itemp=1/(temp-one#58.644); 

wi=x[,2]; 

iwi=1/wi; 

yi2=y#y; 

x=onel ltempl litemp; 

ss=yi2#iwi; 

P=I(n)-x*ginv(x'*x)*x'; 

itr=0; 

diff=1; 

m=y; 

do while (diff>0.00000001); 

mi=1/m; 

gm=P*1og (m) ; 

G=P*diag(mi); 

m1=m; 

m=m-(ss'#G)'*ginv(G*(ss#G'))*gm; 

mi2=m#m; 

ss=mi2#iwi; 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

b=inv(x'*x)*x'*log(m); 

dev=-2*wi'*(log(y/m)-(y-m)#mi); 

print "Estimated Parameters."; 

print b; print""; 

print "Deviance. 11
; 

print dev; print""; 
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print "Observed an Predicted Values"; 

print y[format=12.6] m[format=12.6]; 

print 11 11
; 

print "Number of Iterations."; 

print itr; 

Identity link 

proc iml worksize=120; 

reset nolog; 

*--gamma-errors:McCullagh and Nelder p307 using identity link; 

y={67.5, ... ,18.20}; 

x={14.95 54, 

32.00 58}; 

n=nrow(x); 

one=j(n,1,1); 

temp=x [, 1] ; 

itemp=1/(temp-one#0.6); 

wi=x[,2]; 

iwi=1/wi; 

yi2=y#y; 

x=one 11 temp 11 i temp; 

ss=yi2#iwi; 

P=I(n)-x*ginv(x'*x)*x'; 

itr=O; 

diff=1; 

m=y; 

do while (diff>0.00000001); 

mi=1/m; 

gm=P*m; 

G=P; 

m1=m; 

m=m-(ss'#G)'*ginv(G*(ss#G'))*gm; 

mi2=m#m; 

ss=mi2#iwi; 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 
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end; 

b=inv(x'*x)*x'*m; 

dev=-2*wi'*(log(y/m)-(y-m)#mi); 

print "Estimated Parameters."; 

(see preceding program) 

Inverse link 

proc iml worksize=120; 

reset nolog; 

*--gamma-errors:McCullagh and Nelder p307 using inverse link; 

y={67.5, ... ,18.20}; 

x={14.95 54, 

32.00 58}; 

n=nrow(x); 

one=j(n,1,1); 

t emp=x [, 1] ; 

itemp=1/(temp-one#33.5); 

wi=x[,2]; 

iwi=1/wi; 

yi2=y#y; 

x=onel ltempl litemp; 

ss=yi2#iwi; 

P=I(n)-x*ginv(x'*x)*x'; 

itr=0; 

diff=1; 

m=y; 

do while (diff>0.00000001); 

mi=1/m; 

mi2=mi#mi; 

imi2=1/mi2; 

ss=mi2#iwi; 

gm=P*mi; 

G=P; 

m1=m; 

mi=mi-(ss'#G)'*ginv(G*(ss#G'))*gm; 

m=1/mi; 
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diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

end; 

b=inv(x'*x)*x'*mi; 
Dev=-2*wi'*(log(y/m)-(y-m)#mi); 

print "Estimated Parameters."; 

(see preceding program) 

Example 6.8 

proc iml; 

* Non-linear parameter in the covariate: McCullagh p385; 

reset nolog; 

yi={7,59,115,149,178,229,5,43,76,4,57,83,6,57,84}; 

ni={100,200,300,300,300,300,100,100,100,100,100,100,100,100,100}; 

dosein={4,5,8,10,15,20,2,5,10,2,5,10,2,5,10}; 

dosesy={0,0,0,0,0,0,3.9,3.9,3.9,19.5,19.5,19.5,39,39,39}; 

e=j(15,1,1); 

pi=yi/ni; 

logit=log(pi/(e-pi)); 

var=ni#pi#(e-pi); 

ivar=1/var; 

SIG=diag(var); 

delta=1.7; 

x1=log(dosein); 

den=(delta#e+dosesy); 

x2=dosesy/den; 

den2=(delta#e+dosesy)#den; 

x3=-dosesy/den2; 

x=el lx11 lx21 lx3; 

P=I(15)-x*ginv(x'*x)*x'; 

G=P*diag(ivar); 

m=yi; 

diff=1; 

itr=O; 

do while (verskil>0.00000001); 

m1=m; 

m=m-(G*SIG)'*ginv(G*SIG*G')*P*logit; 

pi=m/ni; 
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ri=pi/(e-pi); 

ww=ni#pi#(e-pi); 

iww=1/ww; 

SIG=diag(ww); 

logit=log(ri); 

diff=sqrt((m-m1)'*(m-m1)); 

itr=itr+1; 

b=inv(x'*x)*x'*logit; 

delta=b[4,]/b[3,]+delta; print delta; 

x1=log(dosein); 

den=(delta#e+dosesy); 

x2=dosesy/den; 

den2=(delta#e+dosesy)#den; 

x3=-dosesy/den2; 

x=el lx11 lx21 lx3; 

P=I(15)-x*ginv(x'*x)*x'; 

G=P*diag(ivar); 

end; 

print delta; 

b=inv(x'*x)*x'*logit; 

A=inv (x' *x) *X' ; 

covb=A*diag(iww)*A'; 

se=sqrt(vecdiag(covb)); 

print "Estimated Regression Parameters"; 

print 11 11
; 

print b se[format=12.6] print 11 11
; 

print itr; print II II, 

' 
print "Expected Frequencies"; 

print m; 

*---- Calculate the Deviance; 

G2yi=2*yi'*log(yi/m); 

nmyi=ni-yi; 

nmyh=ni-m; 

g2nmyi=2*nmyi'*log(nmyi/nmyh); 

Deviance=G2yi+g2nmyi; 

print II II, 

' 
print Deviance; 

print II II, , 
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