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Abstract 

Supporting the teaching of mathematics by information 

technology in a co-operative learning environment 

CANDIDATE: M.C. Matthee 

PROMOTER: Prof. J.D. Roode 

CO-PROMOTER: Dr. D.M. de Kock 

DEPARTMENT: Informatics 

DEGREE: PhD (Informatics) 

This study presents the computer-supported co-operative mathematics learning 

environment (CSCML) as a catalyst for change of an inappropriate educational system. 

CSCML is seen as a way to enhance social skills and critical understanding of 

mathematics, thereby preparing learners for the demands of the technological society. 

The need for an overall view of the CSCML environment was pointed out in the study. 

This is the need addressed by this study i.e. the main aim of this work was to develop a 

theoretical framework for CSCML which would give an overall view of the most 

important features and components of this complex learning environment. It is the belief 

that such an overall view could facilitate better design and understanding of the learning 

environment. 

A social constructivist model for the learning of mathematics was developed with the 

focus on the self-organising nature as well as the social aspects of mathematics learning. 
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Two case studies were conducted guided by the social constructivist model for 

mathematics learning. The data collected from the case studies was then used to enhance 

the social constructivist model, mentioned above, to a model for CSCML. 

This enhanced model proved to be inadequate. It failed to capture the dynamic nature of 

the learning environment, the complexities of social constructivism and the perceived 

openness and unpredictability of this learning environment. 

Giddens' theory of structuration was then suggested as a suitable theory to use, to enable 

better understanding of this learning environment. Giddens' theory reconceptualises the 

reciprocal influence between the structural aspects of social systems and human action as 

a duality. With the aid of this theory, social constructivism was then reconceptualised as 

a duality. 

The CSCML environment was interpreted from a structurational perspective as a social 

system in which interpretations of organisational and mathematical structures of 

signification, legitimation and domination are represented by the CL methods/principles, 

IT, objective mathematical knowledge and the learning task. These components act as 

modalities of structure upon which actors can draw in co-operative actions to 

reconstitute or change the structural properties of the components. This takes place by 

the changing or reaffirmation of the agent's mental schemas in a specific organisational 

context. 

This framework was applied to one of the case studies to illustrate how it can be used as a 

tool to enable better understanding of the CSCML as a whole. The framework sheds more 

light on the dynamics of social constructivism and recognises the unpredictable nature of 

the learning environment. It also recognises one of the emergent properties of the 

CSCML environment as its evolutionary nature, i.e. the application of this learning 

environment could act as a catalyst to reshape and redirect traditional educational 

practices. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Opsomming 

Supporting the teaching of mathematics by information 

technology in a co-operative learning environment 

KANDIDAAT: M.C. Matthee 

PROMOTOR: Prof. J.D. Roode 

MEDEPROMOTOR: Dr. D.M. de Kock 

DEP AR TEMENT: Informatika 

GRAAD: PhD (Informatika) 

Rekenaar gesteunde kooperatiewe wiskunde leer (RKWL) word in hierdie studie 

voorgestel as 'n moontlikheid om verandering binne bestaande uitgediende 

onderrigsisteme te bevorder. RKWL kan die dieper verstaan van wiskunde bewerkstellig. 

Dit kan ook sosiale vaardighede bou en leerders sodoende beter voorberei vir die eise van 

die tegnologiese samelewing. Die studie beklemtoon die tekort aan 'n samevattende 

beskrywende teoretiese raamwerk vir RKWL. Hierdie studie spreek hierdie tekort aan, 

en het ten doel om 'n teoretiese raamwerk vir RKWL te ontwikkel wat 'n holistiese beeld 

gee van die belangrike aspekte en komponente waaruit die betrokke leeromgewing 

bestaan. 

'n Sosiale konstruktiwistiese model wat die leer van wiskunde beskryf, is ontwikkel. Die 

model fokus op die teenwoordigheid van beide individuele sowel as sosiale prosesse in 

die leer van wiskunde. Twee gevallestudies is daama gedoen. Sekere aspekte van die 
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beplanning en uitvoering van die gevallestudies is gebaseer op die bogenoemde model. 

Die data wat versamel is vanuit die gevalle studies, is hiema gebruik om die model aan te 

pas tot 'n beskrywende model vir RKWL. 

Dit het egter geblyk dat hierdie aangepaste model onvoldoende is. Die model het nie die 

dinamiese aard van die leeromgewing gereflekteer nie. Dit het ook nie die kompleksiteite 

van sosiale konstruktiwisme genoegsaam beskryf nie. Verder het dit die betrokke 

leeromgewing as 'n voorspelbare sisteem beskryf met seker invoere, prosesse en 

uitkomste. 

Die struktureringsteorie van Giddens is gevolglik voorgestel as 'n gepaste teorie wat 

gebruik kan word om tot 'n beter verstaan te kom van die dinamiek van die RKWL 

omgewing. Hierdie teorie rekonseptualiseer die wedersydse wisselwerking tussen die 

strukturele aspekte van sosiale sisteme en menslike aksie, as 'n dualiteit. Met behulp van 

hierdie teorie kon sosiale konstruktiwisme ook as 'n dualiteit gekonseptualiseer word. 

Vanuit 'n struktureringsteorie perspektief kan die RKWL omgewmg dus soos volg 

beskryf word: Dit is 'n sosiale sisteem waarbinne interpretasies van organisatoriese en 

wiskundige strukture verteenwoordig word deur kooperatiewe leer beginsels, 

inligtingstegnologie, objektiewe wiskunde kennis and die leertaak. Hierdie komponente 

dien as modaliteite van struktuur waarop agente hulle kooperatiewe aksies baseer. Die 

aksies bevestig of verander die strukturele eienskappe van die komponente. Dit all es vind 

plaas deur die verandering of bevestiging van die agent se kognitiewe skemas binne 'n 

spesifieke organisatoriese konteks. Die woord 'agent' verwys hier na die mens se 

vermoee om 'n verskil te maak. Die mens is dus 'n agent in die sin dat hy/sy een of ander 

vorm van mag kan uitoefen. 

Dit het duidelik geword dat hierdie teoretiese raamwerk meer lig werp op die dinamiek 

binne die RKWL omgewing en dat dit ook die onvoorspelbaarheid van hierdie sisteem 

erken. Die model identifiseer ook een van die eienskappe van RKWL as sy evolusionere 
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aard. Hiermee word bedoel <lat die toepassing van hierdie leeromgewing, tot 

veranderinge en nuwe rigtings in die tradisionele onderriggebruike kan lei. In hierdie 

studie word hierdie eienskap dan ook uiteindelik gei"dentifiseer as een van die 

belangrikste bydraes wat die toepassing van RKWL kan lewer. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Contents 

Contents 

Chapter 1: An introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

1.3 Contribution of this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

1.4 Research philosophy......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

1.4.1 Research in Information Systems . . . . . . . . . . . . . . . . . . . . . . . . 6 

1.4.2 Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

1.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

1.5.1 Process-based framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

1.5.2 The research questions................................. 13 

1.6 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

Chapter 2: Mathematics learning . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2.2 The philosophy of mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2.2.1 Historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2.2.2 The fallibilist view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

2.3 Mathematics education. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

2.4 The learning of mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

2.4.1 Leaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

2.4.1.1 The behavioural perspective . . . . . . . . . . . . . . . . . . . . . . . 34 

2.4.1.2 The information processing perspective . . . . . . . . . . . . . . 35 

2.4.1.3 The constructivist perspective . . . . . . . . . . . . . . . . . . . . . 37 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Contents n 

2.4.1.4 More views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 

2.4.2 Constructivism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

2.4.2.1 Radical constructivism . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

2.4.2.2 Sociocultural versus constructivist perspectives . . . . . . . 44 

2.4.2.3 Social constructivism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

2.4.3 Theories of mathematics learning . . . . . . . . . . . . . . . . . . . . . . . . . 49 

2.4.3.1 Piaget's operational constructivism . . . . . . . . . . . . . . . . . . 50 

2.4.3.2 Other theories based on Piaget's operational 

constructivism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

2.4.3.3 Problem solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

2.4.3.4 Schematic learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

2.5 A social constructivist model for the learning of mathematics.. . . . . . . . 61 

2.6 Summary ................................................... 82 

Chapter 3: Computer supported co-operative mathematics 

learning (CSCML) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

3 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

3.2 Co-operative learning (CL).... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

3.2.1 Leaming environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

3.2.7,,, Definition of co-operative learning. . . . . . . . . . . . . . . . . . . . . . . . 86 

3.2.3~rinciples of co-operative learning . . . . . . . . . . . . . . . . . . . . . . . . 86 

3 .2.4 Rationale for co-operative learning . . . . . . . . . . . . . . . . . . . . . . . . 89 

3.2.5
1

vMethods of co-operative learning . . . . . . . . . . . . . . . . . . . . . . . . . 93 

3.2.6 Research on co-operative learning in mathematics education.. . 97 

3.2.f--/Obstacles to co-operative learning and co-operative 

mathematics learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

3.2.S--,, Designing the co-operative mathematics learning environment . . 102 

3.2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Contents 

3.3 Information technology (IT) and education ....................... 105 

3.3.1 Historical overview .................................... 105 

3.3.2 Reasons for the integration of IT in education ............... 106 

3.3.3 IT and mathematics education ............................ 107 

3.3.3.1 Historical overview .............................. 107 

3.3.3.2 Information technologies used in 

mathematics education ........................... 108 

3.3.3.3 Research on IT in mathematics education ............. 111 

3.3.4 The integration of IT in mathematics education .............. 115 

3.3.5 Summary ........................................ ; ... 118 

3.4 Computer supported co-operative learning (CSCL) ................. 119 

3.4.1 Definition ............................................ 120 

3.4.2 Reasons for the use of IT in co-operative learning ............ 120 

3.4.2.1 Computer Supported Co-operative Work ............. 122 

3.4.3 Research on computer supported co-operative learning ........ 123 

3.4.4 Information technologies used in co-operative 

learning environments .................................. 125 

3.4.5 Research on computer supported co-operative 

mathematics learning ................................... 129 

3.4.6 Obstacles to computer supported co-operative learning ........ 136 

3.4.7 The design of the CSCL and CSCML environments .......... 136 

3.4.8 Summary ............................................ 138 

3.5 Conclusion ................................................ 139 

Chapter 4: Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

4.2 Case study: The development of computer supported co-operative 

mathematics learning at community learning centres . . . . . . . . . . . . . . . . 142 

iii 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Contents iv 

4.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 

4.2.2 The learners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 

4.2.3 Outline of the procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

4.2.4 The content and materials needed. . . . . . . . . . . . . . . . . . . . . . . . . 144 

4.2.5 The objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

4.2.6 The procedure....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 

4.2. 7 Results of the questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 

4.2. 7 .1 Questionnaire on co-operative learning, CBT 

and computer literacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 

4.2. 7 .2 Questionnaire on CSCML . . . . . . . . . . . . . . . . . . . . . . . . . 154 

4.2. 7.3 Analysis of questionnaires . . . . . . . . . . . . . . . . . . . . . . . . 157 

4.2.8 Other data collected from the case study. . . . . . . . . . . . . . . . . . . 158 

4.2.8.1 Independent evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 

4.2.8.2 Worksheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 

4.2.8.3 Teachers' lessons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 

4.2.8.4 Video-based analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 

4.2.9 Remarks............................................. 165 

4.3 Case study: MATLAB, Linear Algebra and co-operative learning..... 166 

4.3.1 Background.......................................... 166 

4.3.2 The learners.......................................... 167 

4.3.3 The content and materials needed. . . . . . . . . . . . . . . . . . . . . . . . . 167 

4.3.4 The objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

4.3.5 The procedure.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

4.3.6 Results of the questionnaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 

4.3.6.1 Questionnaire on CSCL........................... 172 

4.3.6.2 Questionnaire on CSCML . . . . . . . . . . . . . . . . . . . . . . . . . 176 

4.3.6.3 Analysis of questionnaires . . . . . . . . . . . . . . . . . . . . . . . . 179 

4.3.7 Other data collected from the case study. . . . . . . . . . . . . . . . . . . 180 

4.3. 7 .1 Worksheets and individual assignments . . . . . . . . . . . . . . 180 

4.3.7.2 Evaluation lists completed by students. . . . . . . . . . . . . . . 181 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Contents V 

4.3.7.3 Video-based analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 

4.4 Summary of the most important findings.... . . . . . . . . . . . . . . . . . . . . . 188 

4.5 Enhancement of the generic social constructivist model for 

mathematics learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 

4.5.1 A CSCML environment................................ 189 

4.5.2 The dual nature of mathematical concepts. . . . . . . . . . . . . . . . . . 190 

4.5.3 Classroom culture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 

4.5.4 Information technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

4.5.5 Shortcomings of the social constructivist model for CSCML. . . 197 

4.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 

Chapter 5: A theoretical framework for computer supported 

co-operative mathematics learning . . . . . . . . . . . . . . 199 

5 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 

5 .2 The theory of structuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 

5 .2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 

5.2.2 The main premises of structuration theory. . . . . . . . . . . . . . . . . . 200 

5.2.3 Key concepts ofstructuration theory . . . . . . . . . . . . . . . . . . . . . . 201 

5.2.4 Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 

5.3 Information technology.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 

5.3.1 Conceptualisations of technology. . . . . . . . . . . . . . . . . . . . . . . . 217 

5.3.2 A structurational analysis of computer supported 

co-operative work (CSCW)............................. 219 

5.3.3 A theoretical framework for CSCL. . . . . . . . . . . . . . . . . . . . . . . . 223 

5.3.4 Some critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 

5 .4 A theoretical framework for CSCML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 

5.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 

5.6 The theoretical framework applied to case study 2. . . . . . . . . . . . . . . . . 244 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Contents VI 

5. 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 

Chapter 6: Evaluation of research . . . . . . . . . . . . . . . . . . . . . . . . . 252 

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 

6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 

6.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 

6.4 Evaluation of contribution of this study. . . . . . . . . . . . . . . . . . . . . . . . . . 271 

6.5 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 

6.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 

Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 1: An introduction 

1.1 Introduction 

Chapter 1 

An introduction 

Rapid change, the accelerated pace of life, temporariness, instability, variation, novelty -

these are some key words used by Toffler (1971) to describe the life of the 21 st century 

person. A totally new society is foreseen, activated by technology. This highly 

technological society will be characterised by computer-based information technology 

which will have ( and is already having) an effect on the fundamental structuring 

principles of society (Skovsmose, 1994). 

Some of the predictions that Toffler made more than a decade ago, have already come 

true: not only amoeba but sheep have been cloned, the Internet already provides ' ... near­

instantaneous communication across the globe ... ' (Toffler, 1971:363), and in 

organisations we see the demise of bureaucracy. However, his prediction about 

'education in the future tense' is far from being realised, leaving young people 

unprepared for the immense challenges facing them in adult life. 

Businesses and other organisations are changing from bureaucracies to organisations 

characterised by Bennis (in Toffler, op.cit.) as ' ... temporary systems, where problems 

will be solved by task forces composed of 'relative strangers who represent a set of 

diverse professional skills ... " (Toffler, op.cit.:137). Also, ' ... skills in human 

interaction will become more important, due to the growing needs for collaboration in 

complex tasks ... '(Toffler, op.cit.: 137). 

The majority of schools around the world still follow the model of industrial 

bureaucracy. The system was adequate in the industrial era, since students left school to 

enter a similar adult society. However, the future world does not need ' ... millions of 
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lightly lettered men, ready to work in unison at endlessly repetitious jobs, it requires not 

men who take orders in unblinking fashion ... but men who can make critical judgements, 

who can weave their way through novel environments ... ' (Toffler, op.cit.:364). 

Machines will do the routine work, leaving humans free to concentrate on the intellectual 

and creative tasks. 

What would a more appropriate educational system than the present one look like? A 

more adequate educational system would be characterised by a less clear separation 

between formal and informal education (Bannon, 1995), cross-disciplinary curricula 

(Newman, 1995), a move from public education to home instruction (Debenham & 

Smith, 1994), part-time schooling and innovative teaching techniques (seminars, role­

playing, group projects, microworlds, computer-based learning, etc. ). Toffler is of the 

opinion that an educational system must increase the individual's ' . . . cope-ability . . . ' 

(Toffler, op.cit.:364). 

There is generally an acute awareness of the need for change in the educational system. 

For example, information technology has been used in education for more than three 

decades. Many teachers experiment with different teaching techniques. Still, the changes 

in schools seem to be made more slowly than the changes in society. Most schools are 

still dominated by teacher-centred lectures in factory-like environments. Changes and 

new ideas are adopted as isolated innovations into a closed system that stays the same 

(Jost & Schneberger, 1994). Papert blames it on the ' ... innate intelligence of School, 

which acted like any living organism in defending itself against a foreign body. ' (Papert, 

1993:40). 

The computer-supported co-operative learning environment is seen by some researchers 

as a possible catalyst for change. Van Weert states that '(c)ollaborative learning in multi­

disciplinary teams, with integrated use of Information Technology, is expected to have 

growing importance in education, and in the end to change its organization. ' (Van 

Weert, 1995:9). De Villiers (1995) proposes computer-supported co-operative learning 
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(CSCL) as an organisational idea that has the potential to connect educational and 

working environments, thereby making school more relevant to the demands of adult life. 

Mathematics and related sciences underlie the dominant technology, since many aspects 

of information technology consist of applications of mathematical models. Mathematics 

and its formal methods are thus becoming an integral part of today's, and the future's, 

society. Some understanding of the role of mathematics is necessary for a person not to 

become a victim of the social processes of which mathematics is a component (Niss in 

Skovsmose, 1994). Niss adds that' ... the purpose of mathematics education should be to 

enable students to realise, understand, judge, utilise and also perform the application of 

mathematics in society, in particular to situations which are of significance to their 

private, social and professional life. ' ( op.cit., 1994:57). 

The computer-supported co-operative learning environment provides an ideal 

organisational structure in which mathematics can be not only understood but also 

applied, judged and reflected upon both collectively and individually. Learners 

experience mathematics as both social power and social construction. On the one hand 

mathematical principles are built into the software, constraining and mediating social and 

mathematical behaviour, while on the other hand new mathematical meanings are created 

through social negotiation. 

This study will thus focus on the support of the teaching of mathematics by information 

technology in a co-operative learning environment. Not only is this learning 

environment seen as a way of preparing learners for adult life but also as a way of 

enhancing learners' critical understanding of mathematics. 
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1.2 Problem statement 

Co-operative Leaming is described as a way of structuring the learning environment 

such that groups of students pursue academic goals through collaborative efforts. 

Research shows that co-operative learning results in more higher-level reasoning, 

generation of new ideas and solutions, and better transfer ofleaming (Slavin, 1991a). 

Research on Co-operative Mathematics Leaming (CML) shows that benefits include the 

fostering of positive attitudes towards mathematics, the development of problem-solving 

skills, better social skills and the promotion of higher self-esteem and motivation (Leikin 

& Zaslavsky, 1997; Good, T.L., Mulryan, C. & McCaslin, M.; 1992; Dees, 1991). It 

was also found that CML fosters on-task verbal interaction which has a positive effect on 

mathematics learning (Leikin & Zaslavsky, 1997). 

Leaming in a co-operative mathematics learning environment can be enhanced by the 

integration of information technology (IT) to provide computer-supported co-operative 

mathematics learning (CSCML). Research on CSCML includes studies on the effect of 

heterogeneous/homogeneous grouping on the gaining of complex learning skills, studies 

contrasting mathematical interaction in computer and non-computer contexts, and studies 

contrasting mathematics learning supported by different software (Hooper & Hannafin, 

1988; Emihovich & Miller, 1988; Hoyles et al., 1994). Other studies reflect on the 

development of appropriate software to assist the co-operative mathematics learning 

process (Denning & Smith, 1997; Croisy et al., 1994). 

McConnel (1994) points out that CSCL is a new area of research and that there are no 

definite answers to questions of design. This is also the case for CSCML. O'Malley 

(1995) identifies a need for an agreed framework for comparing and contrasting research 

on CSCL which might provide guidelines or principles for design. An overall view could 

help to identify important variables that need investigation in future research. Such 

theoretical frameworks do exist for CSCL environments but some researchers ask for 
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more local theories for CSCL taking into account the particular knowledge domain 

(Mandi & Renkl, 1992). Good et al. (1992) also identify the need for a structure or 

overall view of the mathematics co-operative learning environment that identifies 

important variables that need investigation. They believe that this could serve as a basis 

for planning other research and as an aid in examining and interpreting existing research. 

Livni and Laridon (1993) feel that the application of learning theories to instructional 

design is too narrow and that there is a lack of attention given to the nature of the 

discipline being treated and the power of the computer itself. 

It is thus clear that although researchers in general realise the interdependence of the 

different features and variables of the CSCML environment, no attempt has been made to 

describe this interdependence. This study addresses this need by providing a theoretical 

framework for the CSCML environment. 

1.3 Contribution of this study 

This study contributes to mathematics education by providing a theoretical framework 

for the design of a computer-supported co-operative mathematics learning environment. 

The findings from the case studies (discussed in Chapter 4) and the findings implicated 

by the framework ( discussed in Chapter 5), 

i) enhance the understanding of the complex web of activities and processes involved in 

CSCML, 

ii) enable instructors to design more effective CSCL mathematics lessons by knowing 

what the features are and how they interact, 

iii) provide more insight into the cognitive processes involved m the learning of 

mathematics in groups, and 

iv) provide more insight into how the use of technology could enhance mathematics 

group learning. 
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1.4 Research philosophy 

The topic of inquiry, viz. supporting the teaching of mathematics by information 

technology in a co-operative learning environment, places this study in the field of 

Information Systems. Roode defines the field of Information Systems as ' ... an inter­

disciplinary field of scholarly inquiry, where information, information systems and the 

integration thereof with the organization are studied in order to benefit the total system 

(technology, people, organization and society).' (Roode, 1993:2). This definition 

recognises the fundamental social nature of information systems and challenges the 

sometimes implicit assumption that information systems is a purpose unto itself. 

One can thus say that in this study, Information Technology and the integration of it in 

the mathematics classroom, or more specifically, the co-operative mathematics learning 

environment, will be studied. It is hoped that this will benefit the total system which 

includes the elements of technology, the learners, the effectiveness of the co-operative 

learning environment, the greater mathematics community as well as society in general. 

The nature of the topic points to research philosophies within Information Systems (IS) as 

a possible source of ways to approach this inquiry. 

1.4.1 Research in Information Systems 

Smith (1990) argues that epistemological assumptions and issues surrounding social 

science research, guide the choosing of appropriate methods of research. Such an 

epistemological view that dominated social sciences until recently, is positivism. 

Positivists are working and thinking in the manner of natural scientists (Belt and Newby 

in Smith, 1990). Behind it lies the belief that social sciences can be investigated in a 

similar manner to the natural sciences. The general assumption is that reality is 

objectively given and that it can be described by measurable properties. These properties 

are independent of the observer. The observer is thus seen as objective and the scientific 
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method tries to annihilate the individual scientist's standpoint. Also, the aim of science is 

regarded as the discernment of causal relationships pertaining to the social context and 

formulation thereof as universal scientific laws (Lamprecht, 1997). 

Smith (1990) argues for the use of appropriate methods for the research problem - the 

researcher has to consider the purpose of the research and the nature of the phenomenon 

under investigation. If the assumption is made that information systems is social rather 

than technical, several reasons can be given why the underlying philosophy of positivism 

is inappropriate for Information Systems research. Lamprecht (1997) summarises a few 

of these points: 

• The premise that the social world operates according to fixed general causal laws is 

questionable since empirical generalisations are made based on past experience alone 

which states nothing about the future. 

• Observation is not a theoretically neutral matter - the observer's assumptions 

influence his/her observations. Also, the values of the observer influence the process 

and hence produce value-laden science (in contrary to positivism's claim of value-free 

science). 

• The meaningful character of social life is largely ignored by positivist views. Social 

action is described and redescribed in the light of new evidence. Meaning can be 

understood hermeneutically and thus ascribes importance to language . 

• The acquisition of knowledge is a social process in which knowledge becomes 

intersubjectively determined within the rules and conventions held by a particular 

community, which constitute a scientific discipline. 

• Social wholes are metaphysical entities (not directly observable or verifiable against 

direct experience), giving them a non-scientific status in the positivistic view. 

• Social systems are fundamentally unstable because of their ability to adapt in several 

ways (Lamprecht, 1997:39,40). 

The above points explain why several researchers choose more inductive and interpretive 

approaches, using qualitative methods including case studies, action research, etc. For 
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example, Banville and Landry (1989) view Management Information Systems (MIS) as a 

pluralistic scientific field and emphasise that it can only be understood and analysed with 

pluralistic models - not only models grounded on positivism. 

Other researchers argue for the application of the interpretive paradigm to the study of 

Information Systems (IS). Interpretive researchers view the world as created through 

meanings and believe that access to reality is through social constructions such as 

language, consciousness, and shared meanings (Myers, 1997). For example, Boland 

(1985) believes that the design and study of information systems is best understood as a 

hermeneutic process. The Information System's output is text that must be read and 

interpreted by other people. Also, in the studying of IS, researchers study the interaction 

during system design and use in order to interpret the significance and potential meanings 

they hold (Boland, 1985: 196). Also, ' ... whereas positivist science pretends meanings 

are not problematic, phenomenology accepts meaning as the central problem on which 

all the knowledge of the social world will depend.' (Boland, 1985: 196). 

Hughes (in Lamprecht, op.cit.), sees the aim of social sciences as reconstruction of 

particular fragments of the social reality from the elements of the structural mechanism. 

It is not concerned with prediction but rather with structures which exist independently of 

our knowledge and experience. It places less emphasis on the discovery of invariant 

empiricist causal generalisation than on the construction of models which will account for 

the patterns found among phenomena. 

1.4.2 Research approach 

The field of inquiry has an inter-disciplinary nature, borrowing research methods and 

background from sociology, psychology, management, anthropology, mathematics 

education, mathematics, and philosophy. It is thus a multi-dimensional, complex whole 

that cannot be reduced to its composite observable and 'measurable' parts. 
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Although this inquiry is about mathematics, it is not mathematics: nothing can be 

proved, only suggestions can be made; there are no predefined dependent and 

independent variables; no definition has mathematical precision since no such formal and 

unambiguous language exists in which these phenomena can be described. 

It is assumed that mathematical knowledge is a social construction, that social interaction 

and negotiations enhance mathematics learning, that information technology is a human 

construction, subject to social interpretation. If knowledge is a social construction, then it 

can only be accessed through social constructions such as language, consciousness and 

shared meanings (Myers, 1997). 

The above discussion provides the motivation for the choice of the philosophical 

perspective of this study, namely interpretivism - i.e., it will be assumed that 

phenomena can only be understood through the meanings that people assign to them. 

With this underlying philosophy in mind, a model is developed which accounts for the 

patterns found amongst phenomena in the computer-supported co-operative mathematics 

learning environment. 

Two theories are used to obtain a better understanding of the social system in which 

learning takes place, namely, Gidden's structuration theory and ~~cial c~nstructivism. 

The latter is a philosophy of knowledge acquisition and the former a meta-theory of the 

constitution of social society. / 

Both theories try to overcome a dualism. Social constructivism tries to marry a dualism 

between the psychological subject and mathematical object. The underlying principle of 

social constructivism is that the social mathematical domain has an impact on the 

individual's developing of mathematical concepts and that the individual appropriates his 

or her meanings in response to his or her experiences in social context (Ernest, 1994a). 
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Gidden's structuration theory reconceptualises the dualism between objectivism (focus on 

society) and subjectivism (focus on the human agent). According to Gidden's duality of 

structure, social activity is enabled and constrained by social structures produced and 

reproduced through human agency (Lyytinen & Ngwenyama, 1992). 

Case studies are used to inductively refine the developed theory. According to Yin (in 

Myers, 1997), '(a) case study is an empirical inquiry that: investigates a contemporary 

phenomenon within its real-life context, especially when the boundaries between 

phenomenon and context are not clearly evident.'(Myers, 1997:6). Goode and Hatt (in 

Smith, 1990) put it like this: '' The case study, then, is not a specific technique. It is a 

way of organising social data so as to preserve the unitary character of the social object 

being studied. Expressed somewhat differently, it is an approach which views any social 

unit as a whole. "(Smith, 1990: 127). 

The greatest criticism against case study use in research is its u!!!_epresentativeness. 

Representativeness implies the applicability of conclusions derived from samples to the 

population as a whole. According to Smith (op.cit.), one can overcome the problem by 

either viewing case studies as appropriate to exploratory work only, or by applying 

quantitative procedures. Alternatively, representativeness can be viewed as irrelevant: 

i.e., that validity does not depend on the representativeness of cases in a statistical sense, 

but on the plausibility of the logical reasoning used in describing the results from the 

cases, and on drawing conclusions from them (Walsham, 1993: 15). In the interpretivist 

view " . . . every particular social relation is the product of generative forces of 

mechanisms operating at a more global level, and hence the interpretive analysis is an 

induction (guided and couched within a theoretical framework) from the concrete 

situation to the social reality beyond the individual case." ( Orlikowski & Baroudi in 

Walsham, 1993:15). 

Case studies are thus chosen, not on how typical they may be, but on their explanatory 

power (Smith, 1990). 
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1.5 Research questions 

Burrell and Morgan (1979) emphasise that all social sciences are approached via explicit 

or implicit ontological and epistemological assumptions. These include assumptions on . 
human nature, e.g. are human beings conditioned by their external experiences or are they 

the creators of their own environment? These assumptions have implications for 

methodology. The researcher could view the world like the natural world or stress the 

importance of the subjective experience in the creation of the social world. Others 

emphasise the importance of overthrowing the limitations of social arrangements. Burrell 

and Morgan (1979) identify four paradigms defined by meta-theoretical assumptions that 

underlie the frame of reference, mode of theorising, and strategies of researchers working 

within the paradigms (Burrell & Morgan, 1979:23). These are the functionalist, 

interpretivist, radical humanist, and radical structuralist paradigms. According to Burrell 

and Morgan (op.cit.) they are mutually exclusive and cannot be operated in 

simultaneously - in accepting the conditions of one, the assumptions of the others are 

defied. 

1.5.1 Process-based framework 

Du Plooy, Roode and Introna (1993) (see also Roode (1993a)) see a way in which the 

deliberate use of the different paradigms mentioned above can assist researchers in their 

task. By switching assumptions, different facets of the problem are highlighted which 

enhances its holistic appreciation. They propose a framework called process-based which 

refers to the deliberateness behind the use of different sets of assumptions in the viewing 

of the research problem. 

The framework entails the posing of different questions to explore different aspects of the 

problem. The researcher does not necessarily accept the assumptions associated with one 

question, or defy the assumptions of the other questions. It is merely an inquiry about 

different facets of the research problem to obtain as much information as possible. The 
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importance and order of the questions (utilising certain assumptions from the Burrell 

paradigms) will be determined by the problem. The generic research questions are given 

in Figure 1.1. 

What is?: 

These type of questions explore the fundamental nature and essence of the problem. The 

structure of the problem as well as the underlying concepts are determined. The 

questions draw from the interpretivist paradigm in that they attempt to uncover relations 

and meanings. 

How does?: 

These questions deal with the observation and description of the problem as it manifests 

itself in reality. 

How does? 
---+ 

What is? 

i 
Research problem 
Teaching situation 
IS development 

i 
How should? 

Figure 1.1 

Generic research questions 

(Source: Roode, 1993:11) 

Wh . ? +--- y IS. 
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Why is?: 

Real-life behaviour of phenomena are explained here. Relationships between variables 

are determined and described to provide possible explanations. The underlying 

assumption is that the relationships can then be used to generalise. 

How should?: 

The conclusions, implications and normative aspects of the research results are reviewed 

here. It might provide prescriptive conclusions or just enhance understanding of the 

problem domain. 

By applying the different generic questions discussed above to the topic of inquiry of this 

study, the following research questions are defined. 

1.5.2 The research questions 

What is? 

The key concepts are explored and defined. 

• What is mathematics? This question not only involves a definition for mathematics 

but also assumptions about its nature, e.g. what is the nature of mathematical objects, 

how can the robustness and stability of mathematics be explained, is mathematics 

discovered or constructed? 

• What is mathematics learning? Questions are asked here on assumptions about 

learning in general and more specifically mathematics learning, e.g. how important is 

the social environment for mathematics learning to take place, what is the role of the 

learner in his/her learning process, how are mathematical concepts stored in the mind 

of the learner? 

• What is a co-operative mathematics learning environment? What is a computer­

supported co-operative mathematics learning environment? These questions deal 

with the main 'ingredients' of the CML and CSCML environment and more 
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specifically the nature of mathematics learning m these specific learning 

environments. 

How does? 

Although not unrelated to the 'what is' questions, these questions deal with the modelling 

of real-life phenomena. 

• How can the learning of mathematics be modelled? Questions are asked here on the 

process of mathematics learning based on the assumptions made in the 'what is' 

questions. All important aspects and features of mathematics learning need to be 

identified and related in this model. 

• How can the model be enhanced to reflect the CSCML environment? The 

shortcomings of the model need to be identified and addressed by interpreting data 

obtained from case studies. Questions need to be asked about the relationship 

between different features and components of the learning environment and how it 

can be clarified using different social theories. 

• How does the introduction of mathematics in the CSCL environment influence that 

environment? These questions deal with the uniqueness of mathematics and what this 

uniqueness brings to the CSCL environment. 

• How does the CSCL environment influence the mathematics curricula and learning? 

Questions are asked here on the influence on the role of the learner, the role of the 

teacher, the rate and order of learning, the curricula, and the attitudes towards 

mathematics. 

Why is? 

Real-life behaviour is explained. Most of the 'how does' questions also deal with 

explanations of relationships between variables. 
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• Why would one want to apply CSCL to the teaching and learning of mathematics? 

This question looks for reasons why one would use CSCL in the mathematics 

classroom. Benefits on cognitive, affective and social levels are considered. 

How should? 

An evaluation of research results will provide a prescriptive conclusion on how the 

environment should be designed. 

• How should the CSCML environment be designed to enhance effectiveness and 

production. This question addresses the practical implications of the developed theory 

for designers of the CSCML environment. 

The chapters that follow are structured around the research questions. The what is and 

why is questions are addressed in Chapters 2 and 3. Preliminary work on the how does 

questions are done in Chapter 2 and finalised in Chapter 5. The how should question is 

addressed in par. 6.3. The research questions are revisited in par. 6.3 and this paragraph 

shows how the work done in this study answers the questions. 

1.6 Layout 

The main aim of this study is to develop a theoretical framework for CSCML which will 

give an overall view of the most important features and components of this complex 

learning environment. The development of this framework proceeds in the following 

way. 

Chapter 2 describes the development of a social constructivist model for the learning of 

mathematics. It is assumed that mathematics is a human invention and that mathematics 

learning is both a process of self-organisation and enculturation. Different theories for 

the learning of mathematics are presented from which a final model is derived. 
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Chapter 3 gives an overview of important literature on CL, CML, CSCL and CSCML. 

The fragmented nature of research on CSCML is pointed out. This chapter also addresses 

problems and obstacles to the implementation of CSCML as well as design issues. 

Chapter 4 describes two case studies that were conducted, guided by the theory developed 

in Chapter 2 as well as the theory described in Chapter 3. The data collected from the 

case studies is then used to refine the social constructivist model given in Chapter 2. 

Shortcomings of this model are pointed out and addressed in Chapter 5. 

Chapter 5 summarises the main points of the structuration theory of Giddens and gives 

applications of the structuration theory to CSCW (Lyytinen & Ngwenyama, 1992) and 

CSCL (De Villiers, 1995). Finally, a theoretical framework for CSCML is developed 

using theory discussed in Chapter 5. This is followed by an illustration of ways in which 

the framework can enhance the better understanding of the dynamics of the CSCML 

environment by applying it to one of the case studies. 

Chapter 6 evaluates the developed theory described in Chapters 2 to 5. It answers the 

research questions stated in this chapter, gives a critical evaluation of the contribution 

made to the body of knowledge and discusses further research. Figure 1.2 shows the 

interrelatedness of the different chapters of this study. 

1.7 Summary 

This chapter focuses initially on the social, technological and mathematical needs of the 

technological society, and the inadequacy of most of the educational systems to meet 

them. It offers CSCML as a possible catalyst for the change of outdated practices. It 

further highlights the need for an overall view of the CSCML environment to facilitate 

better design and understanding of the learning environment. The aim of this study is 

then to address this need. The philosophical approach is discussed. This approach, 
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grounded in interpretivism, involves the development of an initial model for the learning 

of mathematics and the enhancement of it by case studies, learning theories and 

structuration theory. The research questions are then discussed based on the process­

based framework of Du Plooy et al. (1993) (see also Roode, 1993a). 

Chapter 2 

A social constructivist 
model 
for the learning of 
mathematics 

Chapter 3 

Literature survey on 
CL, CML, CSCL, 
CSCML 

~ 
, 

Chapter 4 Chapter 5 

Case Enhanced final model - 1-------+ 
studies model for for CSCML 

/ 
CSCML I 

structuration 
theory 

Figure 1.2 

Inter-relatedness of the chapters 

Chapter 6 
~ 

Evaluation 
of 

research 
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2.1 Introduction 

Chapter 2 

Mathematics Learning 

18 

In this chapter a social constructivist theoretical framework will be developed to describe 

the learning of mathematics. The framework is based on certain ontological and 

epistemological hypotheses. The ontological hypothesis is that mathematical objects are 

social-cultural-historical entities. The epistemological hypothesis is that of social 

constructivism, incorporating human and cultural aspects in epistemological questions. 

The first part of the chapter presents an explanation and justification for the choice of 

ontological and epistemological hypotheses. The second part gives existing theories for 

the learning of mathematics and the last part explains the theoretical framework for the 

learning of mathematics. Existing theories are thus investigated through the lens of social 

constructivism and used in the development of the theoretical framework. 

2.2 The philosophy of mathematics 

2.2.1 Historical overview 

Until as late as the nineteenth century, geometry was regarded by everybody as the most 

reliable branch of knowledge. Analysis derived its legitimacy from its link with 

geometry (Hersh, 1979). Therefore, the axioms on which the arguments were based, 

were accepted as basic truths which needed no justification. It was accepted that 

theorems that were derived from assumed axioms were true, since logical proof preserves 

truth and the axioms were self-evident truths. This view, called Platonism, considers 

mathematical activity as relating to the discovery of mathematical objects and relations 

that have an independent and objective existence. 
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It was found, however, that the denial of some of the 'true' postulates, leads to new 

bodies of knowledge ( e.g. the denial of the parallel postulate of Euclid lead to the 

discovery of non-Euclidean geometries, showing that there was more than one thinkable 

geometry). 

The development of analysis surpassed geometrical intuition, exposing its vulnerability. 

This loss of certainty in mathematical knowledge was perceived as intolerable, since it 

implied the loss of certainty in human knowledge (Hersh, 1979). 

With great fervour, mathematicians set out to repair the foundations. The quest for 

certainty turned from geometry to arithmetic, and infinite sets were now introduced into 

the foundations of mathematics (Davis & Hersh, 1981 ). 

Four major views resulted from the quest for certainty. The fathers of Logicism, Russell, 

Frege and Whitehead, attempted to establish mathematics upon logic as foundation. 

However, in order to do this, they needed certain set theoretic axioms such as the axiom 

of infinity. Russell's paradox in 1902 shattered this illusion by exposing certain 

contradictions in set theory and the search for certainty continued (Devlin, 1988). 

Followers of lntuitionism, the school of the Dutch topologist Brouwer, argued that the 

natural numbers were reliable and needed no deeper foundation (Hersh, 1979). They are 

given to us by a fundamental intuition, and should therefore be seen as the starting point 

for all mathematics. This school views the only meaningful (and existent) mathematical 

objects as those that are given by a construction, in a finite number of steps, starting from 

the natural numbers. A more streamlined intuitionism was produced by Errett Bishop 

called Constructivism (Hersh, 1994). To most mathematicians, the criteria of 

intuitionism and constructivism seemed unreasonable: these programmes reject the Law 

of Excluded Middle and therefore any 'reduction ad absurdum' proofs. A strict 

adherence to this approach would prevent the creation of many fundamental results 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 2: Mathematics learning 20 _.:..__ ______ ...:;___ ______________________ _ 

(especially in Analysis). The majority of mathematicians thus continued to work 

nonconstructively (Hersh, 1979). 

Formalism, the creation of Hilbert, originated from his response to the dilemma by 

inventing proof theory. Hilbert's idea was to regard mathematical proofs as sequences of 

formal symbols, rearranged and transformed according to certain rules which correspond 

to the rules of mathematical reasoning. Finite, combinatorial arguments would then be 

found to show that the axioms of set theory would never lead to a contradiction (Hersh, 

1979). Thus, mathematics is seen as only a matter of choosing the right axioms and 

examining the logical consequences of these axioms (Rucker, 1982). 

This was Hilbert's way of providing a secure foundation to mathematics, although not a 

'true' one in the sense that geometry had been believed to be true. The formalists tried to 

make mathematics safe by turning it into a meaningless game. 

However, in 1930, Godel showed that no finite describable theory can codify all 

mathematical truth. The theorem, known as Godel' s Incompleteness Theorem, implies 

that mathematics is open-ended (Hersh, 1979). There can thus never be a final, best 

system of mathematics. The message sent to the thinkers of the Industrial Revolution 

who regarded the universe as a vast pre-programmed machine, was that Man will never 

know the final secret of the universe. 

The schools described above are known as foundationist schools because of their attempts 

to establish a foundation for mathematical indubitability (Davis & Hersh, 1981 ). This 

absolutist view of mathematical knowledge sees it as consisting of certain and 

unchallengeable truths. 

A radically different alternative was offered by Lakatos. Based on the philosophy of 

science of Karl Popper, Lakatos holds that informal mathematics grows by a process of 

successive criticism and refinement of theories and the advancement of new and 
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competing theories (thus not by the deductive pattern of formalised mathematics) (Davis 

& Hersh, 1981). His masterpiece Proof and Refutations (Lakatos, 1976) is and was an 

inspiration for many people working on a new tradition in the philosophy of mathematics. 

The new tradition sees a broadening of the scope of the philosophy of mathematics by 

admitting the human nature of mathematics and the consequent incorporation of social 

and cultural aspects in the understanding of the nature of mathematics. 

2.2.2 The fallibilist view 

This view rejects the absolutist view by saying that mathematical knowledge is not an 

absolute truth and not beyond correction and revision (Ernest, 1991). Hersh (1979) claims 

that the verification of the correctness of a proof is not only a mechanical procedure, but 

always includes intuitive reasoning (whether verbal or diagrammatic). This explains why 

mathematicians often disagree, make mistakes, or are uncertain whether a proof is correct 

or not. 

A term also associated with this view 1s quasi-empiricism. Tymoczko (in Koetsier, 

1991) loosely defines quasi-empiricism as a set of related philosophical positions, re­

characterising mathematics experiences, taking into account the actual practice of 

mathematicians: 'If we look at mathematics without prejudice, many features will stand 

out as relevant that were ignored by the foundationalists: informal proofs, historical 

development, the possibility of mathematical error, mathematical explanations (in 

contrast to proof), communication among mathematicians, the use of computers in 

modern mathematics, and many more. ' (Tymoczko in Koetsier, 1991 :2). 

Another term associated with this view 1s social constructivism. The term social 

constructivism applied to the work of sociologists of science and knowledge from the late 

1960's. The term was later also used to describe work done on psychology by Harre, 

Shotter and the Soviet Activity Theorists, as well as work done on ordinary language and 

1 
I I 1 ? \ I c._- ) ./ 
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speech act philosophy by Wittgenstein and the philosophy of science with contributors 

Kuhn, Hesse and Foucault (Ernest, 1994a). 

The underlying principle of social constructivism is that the social domain has an impact 

on the developing individual, and that the individual appropriates his or her meanings in 

response to his or her experiences in social context (Ernest, 1994a). Applied to the 

philosophy of mathematics, social constructivism focuses the attention on conversation 

and interpersonal negotiation in the construction of mathematical knowledge. (A more 

detailed discussion of constructivism will be given in par. 2.4.2.) 

Hersh (1994) lists a few questions that a philosophy of mathematics should be able to 

answer. A few of these questions will now be looked at from the perspective of the 

contributors to the fallibilist view of mathematics: 

What is mathematics? 

A survey on the beliefs of mathematicians and mathematics educators regarding a 

definition of mathematics, gives several views: the reduction of complexity to simplicity, 

problem solving, a tool for other sciences, logic, rigour, accuracy, deductive reasoning, a 

language, and so on (Mura, 1995). However, Rucker (1987) gives a compelling 

argument in describing mathematics as the study of pure pattern. He groups the patterns 

of mathematics into five groups: number, space, logic, infinity and information. He 

further describes how logic and infinity can be seen as tools to bridge the gap between 

number and space: logic combines the facts about space patterns into a few symbols 

whereas infinity connects number and space by breaking up space into infinitely many 

distinct points. However, he argues that the new world view (which is partly a result of 

the computer revolution), describes reality as a pattern of information. Rucker makes this 

world view relevant to mathematics by describing it as problem solving: 'Mathematics 

turns shapes into areas, conjectures into theorems, equations into solutions. 
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Mathematics turns questions into answers; this is a process of generating information. ' 

(Rucker, 1987:25). 

What is the nature of mathematical objects? 

The objects are non-empirical and inaccessible to sense-perceptions. Hersh (1994) 

provides an argument to characterise mathematical objects as social entities. He proposes 

that objects can be divided into not only mental or physical, but also social categories. 

Mental is thought, individual consciousness, wishes, hopes, etc. Matter is what takes up 

space, has weight and can be studied by scientific instruments. 'Is there anything that is 

neither mental nor physical? Yes! : sonatas; poems; churches; morality; the profit 

motive; armies; wars; academies of science. ' (Hersh, 1994: 15). According to Hersh, 

these are social entities. 

He expands mathematics as social entities to social-cultural-historical entities. Social, 

because mathematical objects are created by humans and because of the necessity of a 

'mathematical social environment' for work to be criticised and refined; cultural, because 

of the growth of mathematical knowledge in response to pressures in society and the 

needs of science and daily life, and historical, because of the origins of mathematics in 

the self-creation of the human race. 

Why is mathematical knowledge stable and reproducible? 

Hersh explains it as follows: '/ believe that there are social or intersubjective concepts 

which have the rigidity, the reproducibility, of physical science. ' (Hersh, 1994: 19). He 

calls mathematics the study of lawful, predictable parts of the social-conceptual world. 

On the question of why there is such a lawfulness, Hersh provides no answer and 

considers the question as fruitless as the question, 'Why is there a universe?' 
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In an admittedly superfluous attempt to answer this question, the constructivist Piaget's 

theory of operational constructivism will now be examined. (Constructivism will be 

discussed in more depth in par. 2.4.2.) 

Piaget distinguishes between two types of experience at elementary stages: physical 

experience (which comes from actions on objects) and logico-mathematical experience 

( experience whose source is the general co-ordination of these actions). This is, according 

to Piaget, where the roots of mathematical knowledge lie. Later on, in the formal 

operations stage, as the child grows older, he/she becomes capable of deductive thinking 

and reflective abstraction, based on the above two kinds of experience (Reynolds et al., 

1995). 

Piaget makes it clear that genetic analysis has convinced him of the non-empirical 

character of the origin of mathematics: 

• The subject initially discovers logico-mathematical truths through expenence by 

manipulating objects; truth is not derived from the objects, but from the actions 

carried out on the objects. 

• Logico-mathematical relationships are constructed by the subject starting from a 

schematisation of the general co-ordination of action, which is neither perceptible nor 

the object of direct experience. 

• This schematisation is common to all subjects and not dependent only on the 

characteristics of individual action. 

• The subject becomes aware of the structures by reconstruction. 'The "reflective 

abstraction " by means of which the subject discovers the laws of the co-ordination of 

actions, consists of projecting or reflecting on to a new plane what is abstracted from 

the structure to be discovered, so as to reconstitute it in order to use it. ' (Beth & 

Piaget, 1966:282). The reconstruction enriches the initial structure and implies new 

operations that free the initial structure from its concrete context to provide a more 

general and abstract model of it. 
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Still, why the accordance of mathematics with reality, why the robustness and stability of 

mathematical knowledge? Piaget emphasises that individuals' mathematical 

constructions have common origins. 'And this common origin is simply the co-ordination 

of the subject's actions. But as this general co-ordination of actions itself depends on the 

laws of neural co-ordinations, and the latter on the laws of organic co-ordination in 

general and as the organisms originate (in a way still unknown to us) out of interaction 

with the physico-chemical environment, this common origin of reason and experience 

assumes from the start a fundamental interaction between the subject ( organism) and the 

objects (environment).' (Beth & Piaget, 1966:284). 

This viewpoint implies a subtle shift towards Platonism in that ' . . . any structure, 

however elementary, provided that it be of a logico-mathematical nature (that is, that it 

be either operational or pre-operational but, free or capable of being freed, from any 

connection with objects or actions of the individual subject, as opposed to general co­

ordinations) involves a whole system of possible developments, and that the novelty of 

later structures consists merely of actualising some of them . . . ' (Beth & Piaget, 

1966:301). However, no transition from the possible to the real entity can take place 

without actualisation by an effective construction. 

Ernest (1991) presents a social constructivist philosophy of mathematics. One of the 

premises is that the mathematical knowledge embedded in language usage provides a 

basis for informal mathematical knowledge which eventually leads to formal 

mathematical knowledge. This happens through the construction of a series of language 

games of which the basis is embodied in the rules of natural language and where the 

upper reaches of the hierarchy are formalised and axiomatised theories. At this level the 

rules of the games become explicit. 

Piaget disagrees with this linguistic interpretations of mathematics: ' ... to introduce in 

this connection the general co-ordination of actions as the starting point of logico-
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mathematical structures forms a guarantee of autonomy, which is neither more nor less 

reliable than a reference to linguistic syntax and semantics, but it is a question of a 

deeper origin from which the linguistic co-ordination themselves are derived. ' (Beth & 

Piaget, 1966:296). Piaget agrees that there is order in language, but ascribes it to human 

behaviour which enters at all stages, which depends in tum on biological organisations 

which are yet more primitive. 

How does mathematical knowledge grow and how do we know it is true? 

Mathematics has been defined as a subject that exhibits the pattern of assumption­

deduction-conclusion (Davis & Hersh, 1981 ). (This is still the acceptable way of 

presenting new mathematical knowledge). The deduction part of this process usually 

takes the form of proof. Proof is a process of moving from a hypothesis to a conclusion 

on the basis of mathematical rules and logical manipulation. Several mathematicians, 

philosophers and psychologists emphasise the fact that the assumption-deduction­

conclusion pattern reflects only the final ordering of thoughts and gives no clear way of 

the actual working and thought processes taking place in the mathematician's mind. 

Lakatos (1976) distinguishes between Euclidean theories and quasi-empirical theories. 

Euclidean theories are considered to be theories in which the characteristic flow of truth 

of the whole system goes from the axioms down to conclusions. Quasi-empirical studies 

on the other hand, are theories in which the flow of truth is an upward transmission of 

falsity from basic statements to axioms (Koetsier, 1991 ). Ernest summarises Lakatos' 

logic of mathematical discovery as a cyclic process ' .. . in which a conjecture and an 

informal proof are put forward (in the context of a problem and an assumed informal 

theory). In reply, an informal refutation of the conjecture and/or proof is given. Given 

work, this leads to an improved conjecture and/or proof, with a possible change of the 

assumed problem and informal theory. '(Ernest, l 994a:42). 
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Lakatos took fallibilism seriously: not only may mathematical theories be overthrown, 

but he considers attempts to overthrow theories by falsification as a necessary condition 

for progress (Koetsier, 1991: 11 ). 

Hanna (1996) questions the adequacy of Lakatos' scheme to explain some important 

cases of mathematical discovery ( e.g. the development of abstract group theory, the 

emergence of non-standard analysis). Indeed, Lakatos himself said (in Hanna (1996:8)): 

'Not all formal mathematical theories are in equal danger of heuristic refutations. For 

instance, elementary group theory is scarcely in any danger; in this case the original 

informal theory has been so radically replaced by the axiomatic that heuristic refutations 

seem to be inconceivable. ' 

It is important to realise, though, that this model is first and foremost an attack on 

formalism and does not claim to give answers to all philosophical questions: 'The core of 

this case-study will challenge mathematical formalism . . . Its modest aim is to elaborate 

the point that informal quasi-empirical mathematics does not grow through a 

monotonous increase of the number of indubitably established theorems but through the 

incessant improvement of guesses by speculation and criticism, by the logic of proof and 

refutations. '(Lakatos, 1976:5). 

One of the premises of Ernest's social constructivist philosophy of mathematics, is that 

the basis of mathematical knowledge is linguistic knowledge, conventions and rules 

(Ernest, 1991). Ernest also distinguishes between objective and subjective mathematical 

knowledge. Objectivity is social - knowledge becomes objective after public acceptance. 

Newly generated mathematical knowledge can either be subjective or objective and is 

linked in a cyclic process. In this cycle, subjective and objective knowledge of 

mathematics contribute to the rene~al of each other. This cyclic process is illustrated in 

Figure 2.1. 
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Figure 2.1 can be explained as follows: 

28 

• An individual possesses subjective mathematical knowledge. The mathematical 

thought of an individual is subjective thought which are unique representations of 

mathematical knowledge. 

• Publication is necessary (not sufficient) for subjective knowledge to become objective 

knowledge. To be accepted, subjective knowledge must be physically presented (in 

print, in writing or as the spoken word). 
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• Published knowledge becomes objective knowledge through Lakatos' heuristics 

model. These heuristics depends on objective criteria. They include shared ideas of 

valid inference and other basic methodological assumptions. 

• The objective criteria (referred to above) are based on objective knowledge of 

language as well as mathematics. The criteria depend not only on shared 

mathematical knowledge, but ultimately on common knowledge of language 

(linguistic convention). 

• Subjective knowledge of mathematics is largely internalised, reconstructed objective 

knowledge. Individual contributions can add to (new conjectures, proofs, concepts or 

definitions), restructure (generalisations, synthesis), or reproduce existing knowledge 

(textbooks). 

The social constructivistic view of mathematics regards subjective and objective 

knowledge as mutually supportive and dependent. In a creative cycle, subjective 

knowledge leads to the creation of mathematical knowledge. Therefore, objective 

knowledge rests on the subjective knowledge of individuals. On the other hand, 

representation of objective knowledge allows the genesis and re-creation of subjective 

knowledge. The constraints at work throughout this cyclic process include the physical 

and social worlds, and the linguistic and other rules embodied in social forms of life. 

Koetsier (1991) recognises the 'proof aspect of the methodology of mathematics but 

adds tactical and strategic considerations. Similar to Ernest, he distinguishes between the 

micro- and macro-levels of mathematical activity. The micro-level is that of the 

individual, busy with tactical aspects, posing him-/herself problems and publishing 

articles. He/she is limited by his/her own talent and knowledge as well as subjective 

personal preferences. On the other hand, the macro-level is the level of the mathematical 

community as a whole. The long-range development of mathematics is important here as 

well as strategic issues which play a role (recognising main problems, setting up new 

trends, etc.). Survey papers, e.g. reflect developments on this level. There is a wider 

overview, and more knowledge and talent involved. Subjective factors play a lesser role, 
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and aspects and factors on which there exists consensus play an important role. Journal 

editors and referees for example act as filters. There is also feedback from the macro- to 

the micro-level: the individual researcher does not work in isolation and takes notice of 

new results and trends in the greater mathematical community (op.cit.:13,14). 

A final remark on the issue of objective and subjective knowledge: traditionally 

'objective meaning' refers to meaning that exists independently of any human agency. If 

we accept that no meaning exists independently of its attribution by the human brain, we 

have to redefine objective meaning as concepts that are fit or sound. Certain patterns of 

meaning are just indispensable. 'Human capacities for attributing meaning show 

regularities that keep them from being radically private or arbitrary not because they are 

grounded in objective meaning but because the human brain develops under what we 

might call necessary biology and necessary experience.' (Turner, 1994). (This definition 

of 'objective truth' also explains why what is now considered as truth can be considered 

false in the future, e.g., for thousand of years people believed the earth to be flat.) 

2.2.3 Conclusion 

The following essentials are extracted from the preceding discussion to serve as a premise 

for the rest of the argument in this chapter. 

Ontological hypothesis 

The ontological hypothesis is that mathematical objects are social-cultural-historical 

entities. Social, because of the necessity of a 'mathematical social environment' for work 

to be criticised and refined; cultural, because of the growth of mathematical knowledge in 

response to pressures in society; and historical, because of the origins of mathematics in 

the self-creation of the human race (Hersh, 1994). The origin of mathematics lies in the 

co-ordination of human actions. The commonality of the co-ordination of human actions 

lies in a universal which is that of biological organisation itself. This common origin 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 2: Mathematics learning 31 

explains the robustness of mathematics as well as its accordance with reality. Also, a 

quasi-Platonism is accepted: logico-mathematical structure involves a system of 

possibilities, and new constructions are the actualising of these possibilities. 

Epistemological hypothesis 

The epistemological hypothesis is that of social constructivism, namely that 

• Mathematics is a human invention; 

• Objectivity is social in the sense that there is agreement on what is true. This 

agreement is based on a shared basis of linguistic knowledge, conventions and rules 

of logic (with biological origin). However, language is a necessary ' ... condition for 

the achievement of the structures of a certain level (hypothetico-deductive and 

propositional) but it is not a sufficient condition for any operational construction. ' 

(Piaget in Beth & Piaget, 1966:289); 

• Mathematics grows not only through the top to bottom deductive process (proof), but 

also through the upwards transmission of falsity from basic statements to axioms 

(Lakatos' heuristics), and other tactical and strategic considerations; 

• Mathematical knowledge is not infallible. It can advance by making mistakes, 

correcting them and recorrecting them (Hersh, 1994; Ernest, 1991; Lakatos, 1976; 

Beth & Piaget, 1966). Davis (in Hersh, 1979), suggests that the length and 

interdependence of mathematical proof mean that truth in mathematics is 

probabilistic. 

2.3 Mathematics education 

Mathematics educators realise that the information age presents new challenges of which 

some are yet unknown. Bell (in Skovsmose, 1994), describes the coming century as one 

in which technological development will provide new social structures and where the 

highly technological society is characterised by the dominance of computer-based 

information technology. According to Skovsmose (1994), mathematics and related 
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subjects provide a condition for the development of information technology ( every 

application of a computer can be seen as an application of a mathematical model). 

Skovsmose argues further that mathematical competence constitutes a major part of 

democratic competence in a highly technological society. Morgan Niss (in Skovsmose, 

1994:57) states that ' ... the purpose of mathematics education should be to enable 

students to realise, understand, judge, utilise and also perform the application of 

mathematics in society, in particular to situations which are of significance to their 

private, social and professional life. ' 

Schoenfeld (1990), emphasising the technological sophistication needed for the non­

dead-end jobs of the information society, sees the goal of mathematics instruction as the 

development of the abilities to 

• understand mathematical concepts and methods, 

• discern mathematical relations, 

• reason logically, and 

• apply concepts, relations and methods to solve nonroutine problems. 

2.4 The learning of mathematics 

Mathematics education researchers study how people learn and are taught mathematics, 

including the phenomena that influence teaching and learning (Selden & Selden, 1993). 

Research focuses on several aspects including mathematical aspects, cognition, teaching 

methods, psychological factors and culture, borrowing research methods and background 

from sociology, psychology, philosophy and artificial intelligence. 

Skemp (1971) considers problems of learning and teaching as psychological problems 

and feels that we need to know how mathematics is learnt before we can make much 

improvement in the teaching of mathematics. Since the psychology of the learning of 

mathematics borrows concepts from learning theory, some of these learning theories and 

their influence on the learning of mathematics will now be discussed. Also, an in-depth 
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discussion on the philosophy of constructivism will be given to provide a suitable 

background for the development of the social constructivist model for mathematics 

learning. 

2.4.1 Learning 

The interest of educationists in the study of learning lies in the implications it can have 

for educational practices. However, in a certain way, learning is inaccessible: most 

learning theorists agree that learning cannot be studied directly. Rather, changes in 

behaviour can shed light on the nature of learning. Thus, with a few exceptions, learning 

theorists view learning as a process that mediates behaviour. Hergenhahn (1988) 

elaborates further: ' . . . learning is a relatively permanent change in behavior or in 

behavior potentiality that results from experience and cannot be attributed to temporary 

body states such as those induced by illness, fatigue, or drugs. ' (Hergenhahn, 1988 :7). 

Other descriptions of learning include, ' . . . a process of adaptation. It encompasses 

creativity, problem solving, decision making and attitude change. ' (Kolb in Shedletsky, 

1993:7,8). 

Yet others emphasise the social nature of learning (Schwen, Goodrum & Dorsey, 1993). 

They feel that pedagogy should emphasise both active participation by teachers and 

students, and a more democratic relationship between them. 

There exist numerous viewpoints concerning the learning process, possibly because of the 

relatively covert nature of learning. Three broad theoretical perspectives will be 

highlighted here: behavioural, information processing and contructivist. It is 

important to understand that this is a rather crude categorisation and that most theories 

share elements of each other. 
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2.4.1.1 The behavioural perspective 

The father of behaviourism, J.B. Watson (1878-1958), felt that consciousness can only 

be studied through introspection which is an unreliable research tool. Instead, behaviour 

can be seen and be dealt with directly. His main concern was thus with behaviour and 

how it varies with experience. Some behaviourists concentrated on behaviour related to 

survival and others focus on behaviour in terms of laws of association. 

Thorndike (in Hergenhahn, 1988), being a behaviourist of the first kind, tried to discover 

how human actions as well as thought processes contribute to adaptation and survival. He 

called the association between sense impressions (stimuli) and impulses to action 

(responses), a connection. The stimulus (S) and response (R) are connected by a neural 

bond. He viewed the most basic form of learning as trial-and-error which is not 

insightful but direct (not mediated by thinking). 

Three learning laws formulated by Thorndike are: 

• The law of readiness. Interfering with goal-directed behaviour causes frustration, and 

causing someone to do something they do not want to do is also frustrating. 

• The law of exercise. Exercising the connection between a stimulating situation and a 

response strengthens the connections. 

• The law of effect. If the response is followed by a satisfying/annoying state of affairs, 

the S-R connection is strengthened/weakened. 

Thorndike had a low opinion of the lecture technique of teaching and urged the formation 

of S-R connections that life itself demands. In 1922 he published a book 'The 

Psychology of Arithmetic' which has had a great influence on American mathematics 

instruction for many years. His proposal that S-R connections that go together, should be 

taught together implies drill and practice techniques that are still used as an instructional 

approach (Schoenfeld, 1987). 
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In general, the behaviourist's view of the learning process can be summarised as follows: 

the environment presents an antecedent that prompts a behaviour that is followed by 

some consequence that then determines whether the behaviour will occur again (Newby, 

Stepich, Lehman & Russell, 1996:29). 

Behaviourism now includes a variety of forms such as emergent behaviourism, inter­

behaviourism, methodological behaviourism, paradigmatic and radical behaviourism. All 

these forms try to deal in their own way with the inability of the S-R formula to explain 

the divergent complexity of observed behaviour (Vargas, 1993). 

The implications for teaching are: 

Instruction in this case, focuses on environmental conditions that are arranged and 

presented to students. Teachers follow certain guidelines: objectives must be stated as 

learners' behaviours; goals must be broken down into observable simpler behaviours and 

should be arranged in a sequence of frames that guide the progress of students towards 

the goal; teachers should provide cues to guide students to desired behaviour; 

consequences (reinforcers) should be used to reinforce desired behaviour (Newby et al., 

1996). 

2.4.1.2 The information processing perspective 

Metaphorically speaking, this approach views the mind as a channel through which 

information flows and which shapes and directs that flow (Viau, 1994). Leaming is seen 

as a set of processes having the function of information processing (Gagne & Glaser, 

1987). The approach assumes that information from the environment is acted upon by 

the cognitive structures before it is translated into behaviour. Information is processed 

from the short-term memory (STM) to the long-term memory (LTM). 

Gagne & Glaser describe the process as follows: 

STM receives input from the senses; 
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• Because of the limited capacity of the STM both in space and time, information 

progresses to the working memory (WM). The WM compares incoming information 

with knowledge already stored in the L TM; 

• The task is to match and recognise items, and to compare and to integrate new 

material to be learned with an organised set of knowledge (schema) retrieved from the 

LTM. Other functions of the WM are rehearsal (the implicit repetition of material) 

and elaborate rehearsal (investing stored material with additional semantic meaning). 

Figure 2.2, illustrates the process described above. 
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The implications for teaching are: The focus is on cognitive processes and the critical role 

memory plays in translating new information to meaningful forms that can be 

remembered. Teachers should organise new information; link new information to existing 

information and use techniques to aid students in accessing, encoding and retrieving 
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information. These techniques include the use of focused questions, highlighting of 

important information, and the use of analogies, metaphors and mnemonics (Newby et 

al., 1996). 

2.4.1.3 The constructivist perspective 

Although constructivism is not a learning theory but a philosophy of knowledge 

acquisition, quite a few learning theories have their origin in the constructivist 

philosophy. What these theories have in common is the belief that we build our own 

interpretative framework for making sense of the world, and the world is then seen in the 

light of that framework (Schoenfeld, 1987). The constructivist perspective differs from 

other perspectives in that knowledge is defined as an individual interpretation of 

experience. Leaming is also determined by the complex interplay between the students' 

knowledge, the social context and the problem to be solved. Piaget (1896-1980), a well­

known constructivist, bases his analysis of thinking and learning on observable child­

behaviour rather than adult introspection. His learning theory and how it applies to 

mathematical learning was discussed in par. 2.2.2 and will again be discussed in greater 

detail in par. 2.4.2. 

The implications for teaching are: 

The teacher has to pose good problems. A good problem is defined as one that requires 

students to make and test a prediction, that is realistically complex, that benefits from 

group efforts, and is seen as relevant and interesting by students. In this setting students 

will naturally explore their knowledge which would lead to continual refinement of the 

knowledge. One of the assumptions of this perspective is that students learn while 

interacting with others - by meeting challenging ideas that result in cognitive conflict and 

by interiorising more sophisticated thinking processes observed in peers and the teacher. 

The teachers should thus provide opportunities for collaboration as well as modelling and 

guiding the construction process (Newby et al., 1996). 
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2.4.1.4 More views 

Members of the school of Gestalt theory believed that we experience the world in 

meaningful wholes. We do not see isolated stimuli. Rather, we see stimuli organised 

into meaningful Gestalten (configurations). Hence the saying the whole is more than the 

sum of its parts . Insightful learning to them, has certain characteristics among which are 

a) a solution to a problem gained by insight is retained longer, and b) a principle gained 

by insight is easily applied to other problems. Wertheimer (in Hergenhahn, 1988) 

criticised on the one hand teaching based on the teaching of correct S-R connections 

through drill and memorisation, and on the other hand, teaching that emphasises the 

importance of logic. According to Wertheimer, understanding also involves emotions, 

attitudes and perceptions. In his book 'Productive thinking', he argues his case with a 

number of examples that illustrate the ability of students to carry out arithmetic 

procedures without understanding the meaning of those procedures. His most famous 

examples deal with the parallelogram problem (finding the area of a given parallelogram 

with base B and height H). Unfortunately, the Gestaltists had little or no theory of 

instruction (Schoenfeld, 1987). 

Bloom (1956) describes the different steps that must be taken for information to become 

meaningfully assimilated into cognitive structures in his Taxonomy of Educational 

Objectives (Bloom, 1956). Six levels in order of complexity are named: knowledge 

(recall of facts), comprehension (low level of understanding), application (use of 

abstractions in particular and concrete situations), analysis, synthesis and evaluations 

(quantitative and qualitative judgements). 

De Villiers (1995) describes a model of the learning process incorporating ideas from 

research on information systems. It can be summarised as follows: 

• Data are seen as basic facts. 

• Data become information through a process of appropriation. This process should be 

guided by the teacher. Understanding now takes place. 
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• Through understanding, learners can apply, analyse synthesise and evaluate. At this 

stage, information has become knowledge. 

• By applying, experiencing and judging the knowledge, the learner moves to a stage of 

competence. 

• Teachers' knowledge must be converted into data to help the learner to go through the 

appropriation process, transforming the data into knowledge. This is where teachers 

can use models or other techniques to convey data. 

• The learners follow an iterative process in the learning process. Information gained 

by the learner will at some stage revert back to data, asking for a new appropriation 

process. 

The learning process as described by De Villiers is illustrated in Figure 2.3. 

Currently, theories that stress the cognitive nature of learning dominate research on 

mathematics learning theory. Even so, behaviouristic learning principles are still being 

applied in classrooms all over the world. In practice, most educationists use learning 

principles from different perspectives in their classrooms. 

However, the most influential and widely accepted philosophical perspective m 

mathematics education today is constructivism (Selden & Selden, 1993). According to 

Schoenfeld (1987), constructivism is not part of cognitive science per se, but rather a 

perspective that plays an important role in cognitive inquiries. In the next section, a 

detailed discussion will be given of the different forms of constructivism and its 

implications for mathematics teaching and learning. 
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2.4.2 Constructivism 

Figure 2.3 

Model of the learning process 

(Source: De Villiers, 1995:83) 

According to the constructivist perspective, we build our own interpretative framework 

for making sense of the world, and the world is then seen in the light of that framework 

(Schoenfeld, 1987). 

The biologists Maturana and Varela (1992), investigating the biological roots of human 

understanding, illustrate this by referring to optical illusions as well as the phenomenon 
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of coloured shadows (first described by Otto van Guericke in 1672). In this illustration, 

certain shadows are observed as greenish-blue whereas if measured, no predominance of 

green or blue wavelengths is found. The authors propose that our naming of colours 

correlates with neuronal activity and not with wavelengths, and that our experience is 

dependent on our human structure in a binding way. 

Piaget (in Jaworski, 1994) illustrates this perspective further using the 'conservation of 

volume' example: when equal amounts of liquid are poured from identical glasses into 

glasses of different shapes, children will say that there is more liquid in the glass with a 

higher level of liquid. This version of reality differs from the adult perception. He saw 

the construction of knowledge as taking place through cognitive adaptation in terms of 

the learner's assimilation and accommodation of experience into action schemas 

(Jaworski, 1994). 

Piaget's theories are seen as forerunners of a more revolutionary form of constructivism 

called radical constructivism. 

2.4.2.1 Radical constructivism 

Von Glaserfeld (in Jaworski, 1994) defines radical constructivism as a theory of 

knowledge which asserts the following two main principles: 

1. Knowledge is not passively received but actively built up by the cognising subject; 

2. a) The function of cognition is adaptive, in the biological sense of the term, tending 

towards fit or viability; 

2. b) Cognition serves the subject's organisation of the experiential world, not the 

discovery of an objective ontological reality (Jaworski, 1994: 16). 

The 'radicality' of constructivism lies in the second principle: although the existence of 

an objective world is not denied, it is only possible to know 'that world' through 

expenence. 
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Maturana and Varela put it this way: ' ... the phenomenon of knowing cannot be taken as 

though there were ''facts" or objects out there that we grasp and store in our head. The 

experience of anything out there is validated in a special way by the human structure, 

which makes possible "the thing" that arises in the description. ' (Maturana & Varela, 

1992:26). 

Knowledge and meaning 

In contrast to the absolutist view of knowledge as true and matching ontological reality, 

constructivism sees knowledge as viable in the sense that it fits within the constraints of 

the 'real' world (Von Glaserfeld in Jaworski, 1994). 

Thus, ideas, theories, rules and laws are exposed to the world from which they were 

derived, and if they do not hold up, they have to be modified to take the constraints into 

account. Since the human structure is more or less homogeneous, our experiences of the 

world are more or less homogeneous, which leads to more or less similar perspectives 

(within cultures), but the organising of the individual's experience is done in a unique and 

subjective way. Despite this individuality of knowledge, the sharing of meaning can take 

place through communication. Further 'fitting' and 'viability testing' of the individual's 

meaning structures take place through communication. As Piaget has noticed, the most 

frequent reasons for accommodation ( change in a way of operating and acting) arise in 

social interaction where the individual's ways and means tum out to be insufficient in 

comparison to the ways and means of others (Von Glaserfeld, 1991). 

Teacher and learner 

Radical constructivism is not a pedagogy, but many constructivists have claimed 

consequences from a constructivist philosophy for the teaching of mathematics 

(Jaworski, 1994). Von Glaserfeld, for example, suggests five consequences: 
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1. There will be a radical separation between educational procedures that aim at 

generating understanding ('teaching') and those that merely aim at the repetition of 

behaviours ('training'). 

2. The researcher's, and to some extent also the educator's, interest will be focused on 

what can be inferred to be going on inside the student's head, rather than on overt 

'responses'. 

3. The teacher will realise that knowledge cannot be transferred to the student by 

linguistic communication but that language can be used as a tool in the process of 

guiding the student's construction. 

4. The teacher will try to maintain the view that students are attempting to make sense 

in their experiential world. Hence he or she will be interested in students' 'errors' and 

indeed, in every instance where students deviate from the teacher's expected path, 

because it is these deviations that throw light on how students, at that point in their 

development, are organising their experiential world. 

5. The previous point is crucial also for educational research and has led to the 

development of the teaching experiment, an extension of Piaget's clinical method, 

that aims not only to infer the student's conceptual structures and operations but also 

to find ways and means of modifying them (Von Glaserfeld in Jaworski, 1994:26,27). 

The five points described above, emphasise the importance of the teacher/learner 

relationship. In the teacher's construction of a student's mathematical understanding, not 

only the behaviour but especially the student's construction of knowledge should be 

considered. By talking to the learner, setting tasks, analysing the outcomes of the task in 

a cyclical fashion, a picture could be built of the learner's construction (Jaworski, 1994). 

Weaknesses of radical constructivism 

The focus of radical constructivism is on the individual organising experiences in a way 

which best fits his/her needs and purposes. Critics view this individualistic emphasis as 
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leading to an overly learner-centred, romantic progress1v1sm and solipsism, where 

anything the child does is sanctioned as expressions of individual creativity (Ernest, 

1993). The society's shared sets of concerns and values are largely ignored. 

Both Cobb (1994a) and Ernest warn against the 'political correctness' surrounding 

constructivism in mathematics and science education, and point out that rote learning, 

drill and practice, and listening to lectures, can also give rise to learning (Ernest, 1993). 

Zevenbergen (1996) criticises the failure of constructivism to acknowledge that the 

schooling system only recognises particular constructions of meaning. Some students are 

thus at a distinct disadvantage when they enter the schooling system. Constructivism 

does not address this issue fully (Zevenbergen, 1996: 111 ). However, radical 

constructivism offers a rich theory which is giving rise to innovative research into the 

learning of mathematics. 

2.4.2.2 Sociocultural versus constructivist perspectives 

The sociocultural perspectives have a social view of knowledge construction that is based 

on a Vygotskian view of learning: 'Human learning presupposes a special social nature 

and a process by which children grow into the intellectual life of those around them. ' 

(Vygotsky in Jaworski, 1994:25). His emphasis is on social and linguistic influences on 

learning and he defines the zone of proximal development as the distance between the 

actual development level and the potential development level of the learner in 

collaboration with others. He sees a mental function as being social before it is 

internalised. 

The primacy of social versus individual processes in learning has caused much debate in 

recent years. Constructivists argue that socioculturalists do not adequately account for 

the process of learning, whereas socioculturalists blame constructivists for not being able 

to account for the production and reproduction of the practices of schooling and the 

society. Cobb (1994) gives some comparisons and contrasts between these two 

perspectives: 
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• Whereas both highlight the crucial role that activity plays in mathematical learning, 

the sociocultural perspective links activity to participation in culturally organised 

practices. The constructivists, on the other hand, focus on the individual's sensory­

motor and conceptual activities. 

• For the constructivists, the focus in analysing thought is on conceptual processes 

located in the individual, whereas the sociocultural theorists take the individual-in­

social action as their unit of analysis (Minick in Cobb, 1994). 

• The socioculturalists focus on social settings enabling students to participate in the 

activities of experts, rather than on cognitive processes. 

• Bauersfeld (as a constructivist) characterises negotiation as a process of mutual 

adaptation, in the course of which teacher and learners establish expectations for the 

activities of others and obligations for their own activity. This implies that 

Bauersfeld's point of reference is the local classroom rather than the mathematical 

practices of the wider society (Bauersfeld in Cobb, 1994). On the other hand, 

Newman et al. (in Cobb, 1994) characterise negotiation as mutual appropriation 

where teacher and learner co-opt and use each other's contributions in the setting of 

the wider mathematical society. 

• Sociocultural theorists use sociohistorical metaphors such as appropriation, whereas 

constructivists employ interactionist metaphors such as accommodation and adaption. 

Cobb (1994) argues against a choice between the two perspectives, but sees the 

perspectives as complementary by referring to an analyses of arithmetical activity by 

Saxe and Steffe et al. (in Cobb, 1994). In analysing the body-parts counting systems 

developed by the Oksapmin people of Papua New Guinea, Saxe takes a developmental 

perspective that focuses on the individual's understanding while emphasising at the same 

time the influence of cultural practices and the use of sign forms and cultural artefacts. 

From this study, it became apparent to Cobb that, on the one hand, both the process of 

individual construction and its products are social, while on the other hand, the various 

strategies (viewed as cultural forms) are cognitive, being results of the individual 
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Oksapmin's constructive activities. Cobb forms the view that learning is a' ... process of 

both self-organization and a process of enculturation that occurs while participating in 

cultural practices, frequently while interacting with others. '(Cobb, 1994: 18). 

2.4.2.3 Social constructivism 

The view of Cobb described above can be seen as a social constructivist theory in that it 

acknowledges that both social processes and individual sense making have essential and 

central parts to play in the learning of mathematics. 

Ernest (1994) distinguishes between two types of social constructivism: social 

constructivism with a Piagetian theory of mind, and social constructivism with a 

Vygotskian theory of mind. 

The 'Vygotskian' social constructivism views the individual and the realm of the social 

as indissolubly interconnected (Ernest, 1994). This version has no underlying metaphor 

for the isolated individual mind. According to Ernest (1994), the social constructivism of 

the first kind is either a radical constructivism acknowledging the importance of social 

interaction or a complementarist version adopting two complementary theoretical 

frameworks, namely the intra-individual and interpersonal frameworks. 

Language, knowledge and meaning 

All versions of social constructivism acknowledge the importance of language in the 

construction of meaning. Discourse can occur, because people have established a 

consensual domain. Maturana (in Richards, 1991) describes a consensual domain as a 

biological relationship established when two or more organisms interact recursively and 

where the conduct of each organism is interlocked with the other. 
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The importance of language is this: the medium of language is a necessary condition for 

the creation of most human consensual domains, albeit not sufficient. Not only 

conversation, but communication should take place. Maturana and Varela (1992: 193) 

define communication as 'the co-ordinated behaviours mutually triggered among the 

members of a social unity'. Participants within consensual domains learn what they can 

take for granted (what is obvious) and only that which is not obvious is said (Richards, 

1991 ). Misunderstandings occur within consensual domains and negotiation of meaning 

takes place via sharing of doubts, answers, questions, challenges and compromises. 

Language thus plays a crucial role in the meaning-making process, but within a certain 

context. According to Good et al. (1992), language acquires two functions: 

communication with others and self-direction (which is related to self-consciousness). 

Meta-cognition / Reflective thinking 

This capacity for self-awareness that leads to self-direction or self-regulation is, 

according to Maturana and Varela, mankind's most intimate experience. Self-directive 

inner speech is a mechanism for merging the affective with the intellectual in the pursuit 

of motivated thinking and learning (Good et al., 1992). Schoenfeld (1987) translates 

meta-cognition (self-regulation) into 'thinking about your own thinking' and relates 

meta-cognition to three distinct categories of mathematical behaviour: 

• Knowledge about your own thought processes; 

• Self-regulation, or control. Keeping track of what you are doing; 

• Beliefs and intuitions. Knowing what ideas and beliefs about mathematics you bring 

to your work in mathematics, and how they influence your work. 

Schoenfeld describes efficient self-regulation as ' ... to be good at arguing with yourself. ' 

(Schoenfeld, 1987 :210) In his research on problem-solving, he found that a person with 

this ability takes on different roles (idea generator, critic, progress monitor) in solving 

problems, thus putting forth multiple perspectives on the problem. Schoenfeld argues 

that these skills which are part of higher order cognitive skills, are developed by the 
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internalisation of the individual's interaction with others. Referring to Vygotsky's zone 

of proximal development (ZPD), Schoenfeld sees the individual as functioning at a 

somewhat higher level in collaboration with more able peers, or under adult guidance. In 

a group the learner has to defend his/her own views, listen and evaluate others' views 

which is precisely the kind of inner speech needed for self-regulation. 

Skovsmose (1994) sees reflective knowing (thinking) as important in preparing pupils for 

critical citizenship. He views technology (which contains frozen mathematics) as a 

formatting power with constructive and destructive potentials. Reflective knowledge has 

to do with the evaluation and discussion of technological aims, including the social and 

ethical consequences of pursuing that aim. Since mathematics and specifically 

mathematical modelling underlies technology, Skovsmose extends reflective knowledge 

to mathematics education, assigning it the role of developing a critical conception of the 

use of mathematics. 

Tasks involving problem solving activities, seem to provide a rich context for self­

regulation and reflective thinking. 

Problem solving 

Using a constructivist definition of knowledge as viable and fitting the context, students 

should be provided with opportunities to test the viability of their knowledge. Problem 

solving tasks could provide such a setting. Cobb et al. (1992) agree that an implication of 

constructivism is that mathematics should be taught through problem solving. By 

problem solving they do not mean typical textbook word problems. Instead, they view 

teaching through problem solving as acknowledging that problems arise for students in 

their attempts to achieve their goals in the classroom. This is reiterated by Schoenfeld 

(1990) who views word problems as only a small part of the problem solving world. In 

conducting a teaching experiment, Cobb et al. found that genuine mathematical problems 

can arise from classroom interaction as well as from the individual's attempts to complete 
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the instructional activities. Schoenfeld (1990) defines a mathematical problem for an 

individual as a task (a) in which the individual is engaged and interested, and (b) for 

which the individual has no ready access to a means of getting there. Thus, a given task 

will be experienced by an individual as a problem depending on what he/she knows. 

Teacher and learner 

The social interaction in the classroom as well as the teacher's overt use of the socio­

cultural context to promote mathematics learning become important from the social 

constructivist perspective (Jaworski, 1994). The view of mathematics as a dynamically 

organised structure (located in a social and cultural context) identifies it as a problem 

solving activity. The teacher should facilitate these activities and deliberately set contexts 

where active, meaningful learning can take place. 

The dialogic nature of the teaching/learning process implies a non-authoritarian 

disposition in the classroom. However, the teacher may act in an authoritative way, being 

an experienced member of the mathematical community. The students should thus be 

encultured into the conventions and discursive practices of the mathematical community 

(Magadla, 1996). 

2.4.3 Theories of mathematics learning 

By adapting the definition of learning theory of Newby et al. (1996) to mathematics 

learning, a mathematics learning theory can be defined as a set of related principles 

explaining changes in mathematical human performance or mathematical performance 

potential in terms of the causes of those changes (Newby et al., 1996:28). Mathematics 

learning theories not only explain mathematics learning but also predict it (i.e. if x, then 

y). Most of the learning theories that will be discussed in the next section, not only 

explain mathematics learning, but some explicitly predict the order of activities that 

should take place for successful learning to occur. It is clear that mathematics learning 
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theories are strongly informed and influenced by ontological and epistemological 

assumptions. Most of these theories discussed here are strongly influenced by the 

constructivist philosophy discussed in the preceding section. 

2.4.3.1 Piaget's operational constructivism 

Piaget did extensive work on the development of children's mathematical understanding. 

His emphasis is on the role of overt activities in the construction of concepts. The 

process of conceptual abstraction is thus seen as a highly developed form of activity. 

This involves a complex learning process which is only possible at a relatively late age 

(Beth & Piaget, 1966). 

The activities lead to the construction of 'operations' which are ' ... action or system of 

bodily movements, which has become internalised in the form of thought activities. ' (Beth 

& Piaget, 1966:xvi). In his stage theory he describes the developing child's mind at each 

of four main stages: 

The four main stages are the 

• sensori-motor stage (pre-language sensory-motor activities of the young child can 

display some of the features of intelligence), 

• pre-operational thought (in which language, symbolic play and invention occur), 

• concrete operations (involving classifying, ordering and enumerating activities), and 

• propositional or formal operations (verbal and formal logico-mathematical reasoning) 

(Mays in Beth & Piaget, 1966:xvi). 

In different words, Piaget's view of the learning process can be summarised as: 

• children are born with sensori-motor schemata; 

• events are assimilated into these schemata; 

• through experience, these schemata are modified; 

• the cognitive structure of the child changes, allowing more experiences; 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 2: Mathematics learning 51 

• later on, children are freed from needing to deal directly with the environment but 

can now deal with symbolic manipulations; 

• the cognitive structures can now be said to construct the physical environment. 

2.4.3.2 Other theories based on Piaget's operational constructivism 

In line with Piaget's genetic epistemology, Steffe (in Von Glaserfeld, 1991) considers 

mathematical knowledge to be based on co-ordination of action such as throwing, 

pushing and lifting, into organised action patterns to achieve some goal. She argues that 

the mathematical knowledge of children can thus be understood as goal-directed action 

patterns where action is seen as mental as well as physical actions. 

Dubinsky (1994) extends Piaget's view of learning, as described above, to college level 

and describes mathematical concept formation with the action-process-object idea. He 

describes concept formation as process, and object construction through a process of 

reflective abstraction. 

• An action is seen as any repeatable physical or mental manipulations that transform 

objects to obtain objects. 

• An action has become interiorised to become a process once the total action can take 

place in the mind of the individual without running through all the specific steps. 

• When a process can be transformed by some action, then it has been encapsulated to 

become an object. 

All mathematical objects are seen as encapsulated processes and any object can be de­

encapsulated to become a process again. Existing objects and processes can be used to 

deal with new situations through generalisation (Dubinsky, 1994). Figure 2.4 illustrates 

this theory of learning. 
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(Source: Dubinsky,1994:229) 

This learning theory can further be illustrated by an example: 

• object: number, 

• action: adding three to a number, 

52 

• process: when adding three to different numbers a tendency 1s detected and 

interiorised to become the process x + 3. 

A single process can be encapsulated to become an object, e.g. x + 3 where the standard 

algebraic manipulations are now seen as actions on the objects. 

Sfard (1991) tries to understand the psychology of the forming of mathematical concepts 

by asking epistemological questions on the nature of mathematical knowledge. She 

believes that there is more to mathematics than just the rules of logic or its abstractness, 

but that mathematical abstractness differs from other kinds of abstractions in its nature. 

Her main premise is that mathematical entities (concepts) have a dual nature which is 
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illustrated by the history of mathematical concepts, manifested in several symbolic 

representations of the same concept. This has implications for the teaching and learning 

of mathematics. 

Sfard constructs her argument as follows: The building blocks of mathematics are called 

'concepts', whereas the internal representations and associations evoked by the concepts 

are called 'conceptions'. Like the physicist and biologist, the mathematician talks about a 

universe, populated by concepts with certain features which are subjected to certain 

processes governed by well defined laws (an objective reality). However, unlike material 

objects, these mathematical constructs can only be seen in the mind's eye. Being able to 

see these invisible abstract objects appears to be an essential component of mathematical 

ability. 

This kind of conception is defined as the structural conception. However, this is not the 

only kind of conception. For example, functions are not only a set of ordered pairs but 

also a computational process. The computational process part of the definition of 

functions involves actions, processes and algorithms, which reflect an operational 

conception of a notion. 

Interpreting a concept as a structure implies a static, integrative real thing. On the other 

hand, operational conceptions are potentialities (rather than actual entities), coming into 

existence in a sequence of actions. It is dynamic, sequential and detailed. 

Sfard believes that there is an ontological gap between operational and structural 

conceptions, because it implies different basic beliefs about the nature of mathematical 

entities. Even so, the two conceptions are complementary (in the same sense as the dual 

nature of entities at sub-atomic level) and inseparable though different facets of the same 

thing. 
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Most mathematical concepts have this dual nature, e.g. a natural number can be seen as 

both a property of a set or as a result of counting; a rational number can be seen as both a 

pair of integers or as a result of division of integers. The dual nature of a mathematical 

construct is also illustrated by the various kinds of symbolic representations, e.g. a 

graphic representation tends to give an integrated whole whereas the algebraic 

representation can be seen as a concise description of a process. 

Sfard argues that a prerequisite to a deep understanding of mathematics is the ability to 

see a mathematical concept as both an object and a process, and that real insight 

necessary for mathematical creation can hardly be achieved without the ability ' ... to see 

abstract objects, and that, on the other hand the structural conception is very difficult to 

obtain . . . ' (Sfard, 1991 :9). 

Sfard explains the role that this duality plays in the formation of mathematical concepts 

as follows: for a person to get acquainted with a new mathematical concept, it seems that 

the operational conception must first be developed. Three hierarchical steps in the 

process of concept formation are identified: 

• Interiorisation: the learner gets acquainted with the processes which will eventually 

lead to a new concept. The process has been interiorised if it can be carried out 

through mental representations (it no longer needs to be actually performed). 

• Condensation: compacting lengthy sequences of operations into more manageable 

units. The learner becomes more capable of thinking about a given process as a 

whole. This is the point at which a new concept is 'officially' born. 

• Reification: seeing the notion as a fully-fledged object. Something familiar is seen in 

a totally new light, where processes become objects. 

Processes can now be performed on these new objects (interiorisation of higher level 

concepts). ' ... here is a vicious circle: on one hand, without an attempt at the higher­

level interiorization, the reification will not occur; on the other hand, existence of objects 

on which the higher-level processes are performed seems indispensable for the 

interiorization - without such objects the processes must appear quite meaningless. In 
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other words: the lower-level reification and the higher-level interiorization are 

prerequisite for each other! '(Sfard, 1991 :31). 

Figure 2.5 gives a model for concept formation. 
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General model of concept formation 

(Source: Sfard, 1991:22) 

2.4.3.3 Problem Solving 

There is a prevailing thought among mathematicians and mathematics educators that 

mathematical activity involves essentially the solving of problems. Balacheff (1990) 

assumes that problems are the source of the meaning of mathematical knowledge. Also, 

that mathematical productions tum into knowledge only if they prove to be ' ... efficient 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 2: Mathematics learning 56 

and reliable in solving problems that have been identified as being important practically 

(they need to be solved frequently and thus economically) or theoretically (their solution 

allows a new understanding of the related conceptual domain). '(Balacheff, 1990:259). 

Through reflective thinking, Polya examined his own thoughts to identify patterns of 

problem solving behaviour (Schoenfeld, 1987). In his book 'How to Solve It', he 

proposes a four-phase model: understanding the problem, making a plan, carrying out the 

plan and looking back. Polya does not refer explicitly to the managerial processes in 

problem solving (i.e. self-monitoring, self-regulating and self-assessment), but addresses 

it in the form of heuristic suggestions (Fernandez et al., 1994). Wilson (in Fernandez et 

al., 1994) presents a framework representing a dynamic and cyclic interpretation of 

Polya's stages, including the managerial decisions implicit in the movement from one 

stage to the other. 

Schoenfeld (1987) argues that these managerial processes, as well as problem solving 

activities, should be addressed since most students are unaware of their own thinking 

processes. 

Other thoughts on mathematics learning that describe and predict the order of thinking 

that takes place in the construction of mathematical concepts are those of Romberg, 

Freudenthal and van Hiele. 

Romberg (1994) recognises four related activities common to all of mathematics namely 

abstraction, invention , proof and application. These activities will be discussed in greater 

detail in par. 2.5. 
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57 

Freudenthal (in Schoenfeld, 1994) believes that the central focus of a mathematics 

curriculum should be the learning of strategies of mathematizing. He describes 

mathematizing as follows: 'Mathematizing involves representing relationships with a 

complex situation in such a way as to make it possible to put them into a quantitative 

relationship with one another. ' ( Schoenfeld, 1994:295). 

The Van Hieles (in De Villiers, 1997) distinguish between five levels of argumentation 

in the development of pupils' understanding of geometry. The first four levels 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 2: Mathematics learning 58 

(considered to be most important in secondary school geometry) can be characterised as 

follows (op.cit.: 1997): 

Level J (Recognition): The objects of thought are individual figures and pupils recognise 

the figures by their global appearance and shape. 

Level 2 (Analysis): Pupils think in terms of classes of figures. They analyse and name the 

properties of figures but do not interrelate figures or properties of figures yet. For 

example, a rectangle will not be considered as a parallelogram since a rectangle has 

ninety degree angles but a parallelogram not. 

Level 3 (Ordering): Pupils think in terms of definitions of classes of figures. They 

logically order the properties of figures and understand the interrelationship between 

figures. 

Level 4 (Deduction): Students are able to develop longer chains of deductions and they 

show an understanding of the importance of deduction, proof, theorems and axioms. 

Freudenthal (Goffree, 1993) extended their theory to other mathematical areas. In 

investigating the difficulties experienced in the teaching of mathematical induction, he 

decided that the problems originate in the levels at which teachers begin their 

explanations being too high. Students are not given opportunity to go through previous, 

lower levels of the learning process. He saw mathematics as an organising activity and 

that through reflection on these activities higher levels of learning are reached. 

2.4.3.4 Schematic learning 

Using ideas of Piaget and the information processing approach discussed above, Skemp 

(1971) identifies schematic learning as learning which uses existing schemas as tools for 

the acquisition of new knowledge. He distinguishes between rote learning and intelligent 

learning. He defines the latter as the formation of conceptual structures communicated 

and manipulated by means of symbols. Networks of conceptual structures form schemas. 

Assimilation refers to the fitting of new material to an existing schema, with no great 
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change in the schema itself. For example, the concept of number initially means counting 

numbers. The number 2000 requires assimilation since, although it is large, it is still 

countable. Accommodation, on the other hand, refers to a major reorganisation of the 

basic structure of the schema. For example fractions form a new number system, not an 

enlargement of the existing schema of number. A major accommodation of the schema is 

needed before it is understood. 

Concept formation 

A concept requires for its formation a number of experiences which have something in 

common. Language is closely linked to concept formation. Not only does it play a part 

in actual concept formation, but it also helps in classifying concepts into classes. Skemp 

distinguishes between primary concepts ( experiences from the outside world) and 

secondary concepts (more abstract and removed from experiences from the outside 

world). Higher order concepts cannot be communicated by definition, but only through 

experiencing a suitable collection of examples. Since most mathematical concepts are of 

a higher order, the communication thereof is difficult. Man's superiority lies in the 

ability to detach concepts from experiences which gave rise to them and to attach them 

instead to language. Without language, primary concepts cannot be brought together to 

form higher order concepts. The construction of a conceptual system is done by the 

individual but is facilitated by social interaction and experiences. 

Skemp (1971 :32) summarises the consequences of the above discussion for mathematics 

educators as: 

• Concepts of a higher order than those which a person already has cannot be 

communicated to him by a definition, but only by arranging for him to encounter a 

suitable collection of examples. 
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• Since in mathematics these examples are almost invariably other concepts, it must 

first be ensured that these are already formed in the mind of the learner. 

Schemas 

Concepts are embedded in structures of other concepts. These networks of concepts 

(mental structures) are called schemas. However, the schemas could be unsuitable in 

certain contexts. The inappropriateness of a schema can be detected by testing the 

adaptability of the learner to new, though mathematically related, situations. An 

appropriate schema is one which takes into account the long-term learning task. 

The responsibility of the educator is thus to facilitate the laying of a well-structured 

foundation of basic mathematical ideas (to help students to find basic patterns) and to 

teach them to be ready to accommodate their schemas. 

Intuitive and reflective intelligence 

Skemp (1971) describes intuitive intelligence as intelligence dealing with objects in the 

outside world, accessible to the sensory registers. Reflective intelligence, on the other 

hand, deals with mental objects (e.g. mathematics objects). Skemp (1971) suggests that 

primary concepts can be formed intuitively, whereas reflective intelligence is needed for 

the formation of higher order concepts. Also, once we become able to reflect on our own 

schemas, we can communicate them, set up new schemas and replace inappropriate 

schemas with new ones. A sophisticated and powerful result of reorganising schemas is 

mathematical generalisation, which involves the creation of enlarged concepts ahead of 

demands for assimilation of new situations. Communication has an important influence 

on the development of reflective intelligence, because of the linking of ideas with 

symbols and the clarification and justification of ideas that take place. 
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2.5 A social constructivist model for the learning of mathematics 

A theoretical framework for the learning of mathematics will now be developed based on 

the ontological and epistemological hypotheses discussed in par. 2.2.3. Ideas will be used 

from Ernest's social constructivist philosophy of mathematics; from Skemp's schematic 

learning model and from the various theories for learning and mathematics learning that 

were discussed. The underlying social constructivist philosophy will be radical 

constructivism acknowledging the importance of social interaction. 

In the discussion that follows, elements that compnse mathematics learning are 

identified. Different components that play a role in mathematics learning are highlighted 

and related to each other. The learning environment is seen as a micro-community set in a 

macro-community. The norms and the negotiation of the norms of these communities are 

discussed. Leaming is then described as the transformation of data into information and 

finally into knowledge. The transformation process exhibits a cyclical nature in that 

'publicised' private knowledge becomes data to other learners. The creation of subjective 

knowledge (the private knowledge of the learner) is described by considering the role of 

convergent and divergent thinking. Concepts related to divergent and convergent thinking 

are discussed in detail. These concepts include abstraction, generalisation, formalisation, 

logic, proof, analysis and inductive and deductive reasoning. The role of symbols are 

discussed and related to ways in which mathematical concepts are represented in the 

mind of the learner. 

Macro-/micro - mathematical community 

According to Ernest (1991), mathematical activity takes place in the private and social 

realm. This is also the case in the mathematics classroom. 

Cobb et al. (1992) draw attention to the similarities between the mathematics classroom 
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'community' and the scientific research community. Both create traditions which 

influence and restrict perceptions of what count as problems, solutions, explanations and 

justifications. As is pointed out by Ponte and Matos (1992), in mathematical 

investigations, students play the role of mathematicians: in complex situations they try to 

understand, to find patterns, to generalise and to solve. Investigations could involve 

complex tasks or relatively simple ones dealing with small variations on well-established 

facts or procedures. 

The mathematical research community is a community with well-established research 

traditions. Richards (1991) describes the discourse domain in which this community 

functions as 'research maths'. He regards this as the spoken mathematics of the 

professional mathematicians or scientists. The language used is technical and the 

discourse is structured according to the logic of proof and refutations. The mathematical 

research community differs from other research communities in their reliance on notions 

regarding the nature of proof. 

It is also in this (fairly small) community where new mathematics is created and 

transmitted (Davis & Hersh, 1981). New mathematical knowledge in its final form (after 

it has been criticised, corrected and accepted) is presented through publication. This 

takes place, according to Richards, in another domain of discourse which he names 

'journal maths' which is the language of mathematical publications and papers. It is a 

formal communication, based on reconstructed logic. 

Mathematical activities are not restricted to the research community. Richards (1991) 

describes another domain of mathematical discourse as 'inquiry maths' which is the 

mathematics as it is used by mathematically literate adults. Although being similar to 

research mathematics, it includes more informal activities: participating in mathematical 

discussions, reading and challenging popular articles containing mathematical content, 

listening to mathematical arguments, solving new mathematical problems, etc. He 

further describes 'school maths' as the discourse of the standard mathematics classroom. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 2: Mathematics learning 63 

It usually takes on the form of the tripartite exchange (initiation - reply - evaluation) 

(Wood, 1996). According to Richards, this discourse, in many ways, does not produce 

mathematical discussions and exchanges. However, whatever the underlying traditions 

and conventions in the mathematics classroom are, the classroom community is set in the 

realm of the macro mathematical community. Any learning that takes place in the 

mathematics classroom, takes place against the background of accepted objective 

mathematical knowledge (in the sense of Ernest's philosophy). Thus, the role of the 

teacher includes that of mediating ' ... between students 'personal meaning and culturally 

established mathematical meanings of wider society.' (Cobb, 1994:15). 

On the other hand, the mathematics classroom can also be described as a micro­

mathematical community. This community is characterised by certain patterns of 

interactions and practices which become taken-for-granted ways of acting, and on which 

teacher/learner draws to produce regularities in their actions and communications (Wood, 

1994). Cobb et al. (1992) view these classroom traditions as having a great influence on 

students' experiences of meaningfulness. In a study on characteristics of classroom 

mathematics traditions, they analyse interactions in two different classrooms where the 

lessons that were given covered the same theme and where the same manipulative 

materials were used. They found two different established traditions. In the one class 

they noticed 

• an implicit belief that mathematical interpretations do not need to be justified, 

• a shared assumption that to engage in mathematical activity is to act in accordance 

with the teacher's expectations, 

• that making mistakes was interpreted as ineffectiveness (inability to achieve the aim 

of acting in accordance with the teacher's expectations), and that making mistakes 

resulted in the student experiencing him/herself as an outsider to the classroom 

community, 

• that the main goal of the children was to be effective by following procedural 

instructions, 
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• that the teacher regarded the mathematical procedures as fixed and self-evident, and 

that the children acted as though they believe the same, and 

• that the teacher acted as the sole validator of the pupils' interpretations and solutions. 

However, in analysing the interactions in the other class, they noticed 

• a shared belief that one could challenge each other's interpretations, 

• the constitution of mathematical truths by the teacher and children in the course of the 

social interactions, 

• that the acts of explaining and justifying were central to the process of social 

negotiations, 

• that the teacher and children acted together as validators of interpretations, and 

• the teacher using the students' autonomous constructions to guide the constitution of 

their taken-as-shared mathematical reality towards the macro mathematical 

community's ways of knowing. 

Cobb et al. (1992) use Richards' (1991) domains of discourse discussed above to describe 

the two cultures as 'school maths' and 'inquiry maths'. In both traditions, 

communication was a process in which the teacher and students mutually orient their own 

and each other's activity within a consensual domain of taken-as-shared mathematical 

meanings and practices. Also, in both traditions, teachers were authorities that initiated 

the students into particular interpretive stances (Cobb et al., 1992:597). However, it was 

the students' experiences of meaningfulness as they engaged in mathematical activity that 

differed. In one class, they experienced mathematical 'understanding' when they can 

follow procedural activities successfully, whereas in the other class, understanding was 

experienced when they could create and manipulate mathematical objects in ways that 

they could explain and justify. This last view of understanding is in line with the social 

constructivist view of mathematical knowledge as human constructions which become 

socially accepted through the negotiation of meaning. 
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One of the most important role players in the constitution of a micro-mathematical 

community where meaningful learning can take place, is the teacher. The ways in which 

teachers can guide the development and maintenance of such a consensual domain, will 

be discussed later. 

Social Negotiation 

Social constructivism recognises the importance of language and discourse in the creation 

of mathematical knowledge (Lakatos, 1976; Ernest, 1991). Bauersfeld (in Cobb, 1994) 

characterises social negotiation as a process of adaptation in the course of which teacher 

and learner establish expectations for each other's activity, and obligations for their own 

activity. This happens in the setting of the macro mathematical community. Much and 

Shweder (in Cobb et al., 1992) distinguish between five types of classroom norms: 

regulations, conventions, morals, truths and instructions. 

• Regulations are established by an authority ( e.g. only one person in a group may fetch 

the study materials). 

• Conventions are similar to regulations but their source is not specifiable ( e.g. it is 

customary for students to attempt to respond to the teacher's questions). 

• Morals are traditional norms ( e.g. the norm that students should not copy each other's 

answers). 

• Truths are norms of which the transgression is seen as an error. 

• Instructions are norms of which the transgression is seen as ineffectiveness. 

Social negotiation acts are triggered by the moments in which a community member 

accuses another of having transgressed a norm. By using ideas of Much and Shweder, 

Cobb et al. (1992) call these moments, situations for justification (negotiations of 

mathematical meaning) and situations for explanation ( the individual's clarification of 

aspects of his or her mathematical thinking). These situations are interactively 

constituted by the students and teacher, and can occur as students solve given tasks, 
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explain their interpretations, validate explanations or discuss the legitimacy of particular 

mathematical constructions. 

However, a situation for explanation or justification is interactively constituted only if 

there is a shared understanding that an interpretation or solution should be explained or 

justified (Cobb et al., 1992). Also, in order to negotiate a taken-as-shared interpretation 

of a given solution, community members must have the same understanding of what 

counts as an explanation and justification. 

Again, social negotiation will only take place if it is part of the convention: i.e. if the 

students come to believe that mathematical constructs should and can be explained, and 

be justified to arrive at mathematical truths. The teacher's acts could establish these 

beliefs. This, again, has implications for the teacher's role. Steffe (in Von Glaserfeld, 

1991) gives some guidelines to teachers who opt for social constructivism. They should 

try to 

• communicate mathematically with their students, 

• foster reflection and abstraction in the context of goal-directed mathematical activity, 

• engage students in goal-directed mathematical activity, 

• encourage students to communicate mathematically among themselves, 

• learn the mathematics of the students they teach. 

Also by creating opportunities for students to make connections between their 

explanations and the formal notational methods used by the wider mathematical society, 

students will begin to realise that symbols can convey mathematical meaning (Cobb et 

al., 1992). 

Wood (1996), emphasises the importance of the negotiated norms as follows: 'It is the 

nature of these norms and the manner in which they are agreed upon and committed to 

by the participants that create opportunities for children to engage in the process of 

mathematical thinking and reasoning for themselves. These settings create opportunities 
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for children to engage in what is alternatively referred to as reflective thinking or 

reflective abstraction. ' (Wood, 1996: 102,103). 

Data 

Data can be seen, as described by de Villiers (1995), as basic facts. Van Loggerenberg 

(in de Villiers, 1995) describes data as unevaluated attributes. For the purpose of this 

study, data will be viewed as stimuli that are registered through the senses. In the 

proposed model for the learning of mathematics, distinctions will be drawn between two 

kinds of data: data that can be socially negotiated and fixed data. The fixed data can 

include physical objects, the physical environment, and objective mathematical 

knowledge. The data that are negotiable are facts generated within the community 

including the explanations, justifications, solutions, regulations, and conventions of the 

classroom community members. 

Although some of the data are accidentally registered, most of the data are presented to 

the student by the teacher. The way of presenting mathematical data will depend on the 

level of the learners (as described by Piaget and van Hiele in par. 2.4.3). At the 

elementary school level, educators stress the use of concrete and iconic representations of 

concepts, whereas later, the focus shifts to symbolic and abstract representations of 

mathematics (Gadanidis, 1994). Also, by presenting examples in order to convey a new 

concept, the learner must already have the concepts on which these examples are based. 

However, in the presentation of data, the social constructivist view of learning as the 

active organisation of the experiential world, should be kept in mind. 

This is where problem solving activities can provide a meaningful learning experience by 

enabling the learner to discover the relevance of data making it more meaningful. 
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Information 

Through a process of personal reformulation and interpretation, data is put into 

perspective and context (van Loggerenberg, in De Villiers, 1995). This process will 

depend on the existing schemas of the learner. Through the processes of assimilation the 

new material is fitted into an existing schema. Understanding now takes place. These are 

covert processes and it is possible that the learner could have constructed an inappropriate 

schema. Being a member of the macro mathematical community, the teacher should 

identify an inappropriate schema and guide the learner to the construction of more 

appropriate schemas. This is only possible if the covert mental processes become public. 

By setting suitable tasks, asking suitable questions and encouraging students to justify 

and explain their own interpretations, the diagnosis can be made. By these activities, 

information becomes better settled in the network of schemas - it is becoming knowledge. 

Creation of subjective knowledge 

This refers to the new subjective mathematical knowledge created by the learner in the 

learning process. 'New' here is seen as new from the perspective of the learner and 

subjective mathematical knowledge refers to the individualised mathematical knowledge. 

This knowledge includes newly formed concepts and schemas which lead to 

reinterpretations of existing knowledge, new conjectures, proofs and definitions, and 

solutions to given problems. Dubinsky (1992:46) views an individual's subjective 

knowledge as ' ... her or his tendency to respond to certain kinds of perceived problem 

situations by constructing, reconstructing, and organizing mental processes and objects 

to use in dealing with the situations. ' 

By referring to Skemp's metaphor for learning (1971) - schematic learning -

understanding is seen as the assimilation of data into an appropriate schema. However, 

for information to become knowledge, major reorganisation of basic structures of 
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schemas should take place (accommodation). Earlier schemas are used (with their 

particular examples) but giving them a wider meaning (Skemp, 1971 ). 

The question now is, through what processes does this major reorganisation of schemas 

take place? 

A closer look into the different models for the creation of mathematical knowledge and 

the learning of mathematics reveals three common features: the hierarchical nature of 

mathematics (levels of sophistication), convergent and divergent thinking. 

The hierarchical nature of mathematics follows from the fact that higher order concepts 

are built on, and with, already formed ones. Ernest (1991 :77) describes it as follows: 

' ... the generation of a hierarchy of increasingly abstract concepts reflects a particular 

tendency in the genesis of human mathematical knowledge. Namely, to generalise and 

abstract the shared structural features of previously existing knowledge in the formation 

of new concepts and knowledge. ' This has important implications for mathematical 

understanding: e.g. it is not possible to understand algebra without ever really having 

understood arithmetic since algebra can be seen as generalised arithmetic. Also, the level 

of the sophistication of concepts and its hierarchy depends on the developmental level of 

the learner (this was discussed in more detail in par. 2.4.3.2 ). 

Fischer and Ellis (in Tromp, 1993) view divergent thinking as unconstrained thinking, 

not attempting to be efficient and rational. Related to the concept of divergent thinking is 

De Bono' s lateral thinking which is described as provocative and probabilistic, with no 

fixed categories, classifications or labels, exploring all avenues (Tromp, 1993). For the 

purpose of this study certain concepts will be associated with divergent thinking, namely 

generalisation, inductive thinking, intuition and visualisation. 

Convergent thinking, on the other hand, concentrates on validity and efficiency. 

Through a finite number of logical and analytical thought processes, a valid justification 
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or solution is reached (Tromp, 1993). Related concepts are abstraction, deductive 

reasoning, formalisation, logic, proof, formulation (symbols), and analysis. 

For example, in Lakatos' model for the heuristics of mathematical discovery (par. 2.2.2), 

the guesses by speculation and criticism involve divergent thinking where criticism is 

based on convergent thinking in the form of the logic of proof and refutation. 

Also, the stage theories of Piaget and van Hiele (par. 2.4.3) show a clear hierarchical 

progress where the ability of convergent thinking develops with age. (Classifying, 

ordering, deductive thinking and formal logico-mathematical reasoning only occur at 

later stages.) 

The problem solving models (par. 2.4.3.3) imply abstraction and analysis (being able to 

discard irrelevant information) which are converging thought processes. To make a plan 

( or build a model) requires inventive thinking. The validity and self-consistency of the 

plan are based on how well implementation of the plan worked as well as the logic of 

proof. 

The models of Dubinsky and Sfard (par. 2.4.3.2) give actual descriptions of the elements 

of invention, called processes and objects. In the invention process ( called reflective 

abstraction by Dubinsky), both divergent and convergent thinking is involved. Loosely 

described, the interiorisation activity can be seen as a divergent kind of thinking since a 

mental leap is made to a process, whereas the encapsulation/reification activity can be 

seen as a convergent kind of thinking which involves abstraction. These activities are 

reversible. Also, by this cyclic process, higher levels of conceptual sophistication are 

reached. 

However, these constructions have to be 'managed' by the learner. These managerial 

thinking skills are called reflective thinking or metacognition (par. 2.4.2.3). Most 

researchers whose theories were discussed above, stress the necessity of reflective 
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thinking: Dubinsky and Piaget refer to reflective abstraction, whereas Schoenfeld 

emphasises the importance of reflective thinking in problem solving (par. 2.4.2.3). 

From the discussion above a general descriptive model for the construction of subjective 

mathematical knowledge is now proposed and given in Figure 2.7. 

Higher 

Levels 

of 

Sophisti 
cation 

Divergent thinking 

Convergent thinking 

Reflective thinking 

Figure 2.7 

The construction of subjective mathematical knowledge 

The construction of mathematical knowledge thus takes place through 

• a constant fluctuation between divergent and convergent thought processes, which is 

• managed by the learner through meta-cognition (reflective thinking), 

• moving to higher levels of sophistication. 
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This fluctuation between divergent and convergent thinking is described by Beth (in Beth 

& Piaget, 1966:93) as ' ... a curious methodological dualism which is distinguished, 

amongst other things by the traditional opposition between an ars inveniendi and an ars 

disserendi. ' Ars inveniendi means the heuristic precepts which enable possible invention 

of solutions but which have no demonstrative power. It is also not guaranteed that a 

solution will be found, or that if it is found, that it will be correct. On the other hand, the 

ars disserendi provide principles to judge the validity of the solutions, but no way to 

discover the solution. 

This fluctuation can be further described using Einstein's words: ' ... [the] emotional 

basis' [of this] 'rather vague play' [with concepts (guesses), is] 'the desire to finally 

arrive at logically connected concepts.' [ Also, the] 'play with the mentioned elements is 

aimed to be analogous to certain logical connections one is searching for. ' (Einstein in 

Hadamard, 1945:143). 

The concepts associated with convergent and divergent thinking will now be discussed in 

more detail. 

Abstraction 

According to Skemp (1971), abstraction is an activity by which we become aware of 

similarities among our experiences. This enables us to recognise new experiences as 

having similarities to an existing class of concepts and the consequent classification of 

them. The process of abstraction leads to abstractions called concepts that are networked 

to form schemas. The important role that language plays in concept formation has 

already been discussed in par. 2.4.2.1. 

Davis and Hersh (1981) distinguish between abstraction as extraction, and abstraction as 

idealisation. An example of the first kind is where the number four is extracted as a 

common feature from the examples: four birds, four apples, etc. The second kind refers 
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to what Aristotle has described as the stripping away of everything that is sensible 

(weight, hardness, heat) and leaving only quantity and spatial properties (Davis & Hersh, 

1981 ). A simple example is that of the straight line: there is the straight line drawn by a 

carpenter across a board using a pencil, and there is the mental idea of the mathematical 

abstraction of an ideal straight line from which the imperfections have been eliminated. 

Through idealisation, mathematical models are built that again have implications for the 

real world situation, e.g. a system of differential equations can be seen as an idealisation 

of a complex set of physical conditions (Davis & Hersh, 1981 ). 

Generalisation 

The words abstraction and generalisation are sometimes used interchangeably but Dienes 

(in Plumpton, 1972) defines generalisation as ' 'the discovery that a general rule extends 

beyond the first few known cases' ', whereas abstraction is ' 'the awareness that the rule 

applies in a number of other situations' '(Plumpton, 1972:98). Skemp (1971) describes 

generalisation as a powerful activity, because it makes possible new schemas ahead of the 

demands for them, seeking or creating new examples to fit the enlarged concept. 

Plumpton views generalisation as a more efficient coding, while Davis and Hersh speak 

of it as a consolidation of information (or a synthesis). 

Plumpton notes that the generalisation of a particular result should include the result itself 

as a special case ( e.g. Pythagoras' rule as a special case of the cosine rule). However, 

Davis and Hersh point out that the general cannot include all aspects of the particular. As 

an example, they refer to the general theory of continuous functions which contains only 

a small amount of interesting information about a particular continuous function, e.g. the 

exponential function. 

It is also through generalisation that the concept of infinity is formed. Although being a 

basic object in mathematics, intuitively understood by children, infinity is shrouded in 

mystery and paradoxes. Nevertheless, by naming the unnameable, and expressing facts 
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about the infinite in a finite number of symbols, a powerhouse is created. Davis and 

Hersh (1981) issue a warning: where there is power, there is danger. The nature of 

infinity is open-ended, and the necessity for carefully scrutinising arguments involving 

infinity will always be there. 

Inductive/Deductive reasoning 

Two kinds of reasoning are usually associated with mathematical thinking, namely 

inductive and deductive reasoning. Although being mentioned as if separate from 

abstraction and generalisation, they are actually abstracting and generalising activities. 

Simon (1996:197) defines inductive reasoning as ' ... the drawing of a generalised 

conclusion from particular instances ... ' and deductive reasoning as conclusions drawn 

from a ' . . . logical chain of reasoning in which each step follows necessarily from the 

previous. 

Deductive reasoning is usually associated with logic and that which gives mathematics a 

unique character, namely 'proof '. Proof is a formalised argument based on assumed 

truths (axioms), followed by propositions each of which is implied by the former through 

rules of logic. Proof is also a kind of validation and certification. By presenting a proof, 

it is subjected to a process of criticism, reformulation and acceptance, and then becomes 

new mathematics. 

Inductive reasoning on the other hand usually precedes new mathematical ideas. It is 

through deductive reasoning that these ideas are validated and formalised, opening them 

up to public scrutiny and eventually to the creation of new mathematical knowledge. It 

seems though, that a lot more than only inductive and deductive thinking is involved in 

mathematical creativity. 
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Symbols and formalisation 

Mathematics can be seen as a discourse dealing with a specific subject, having a specific 

nature. Communication takes place via the use of signs. 

In the study of signs (semiotics), signs are classified as indexes (relating the sign to what 

it signifies by describing its intensity), icons (acting upon the senses in the same way as 

what it signifies do) and symbols ( a looser connection to what it signifies). Due to the 

abstract nature of mathematics, the most frequently used signs are symbols. 

However, there is agreement among the members of the mathematical community on the 

meaning of these symbols. Furthermore, mathematical discourse characteristically strives 

for effective communication (i.e. a high degree of correspondence between the intention 

of the sender and the receiver's interpretation) (Liebenau & Backhouse, 1990). This 

implies that in mathematics, symbols are there to designate with precision and clarity 

(Davis & Hersh, 1981) and that the meaning of each symbol should be unambiguous. 

Formalised texts can be seen as unambiguous and precise. The best-known example of a 

formalised text is a computer program where every logical step is included, leaving 

nothing to the imagination (Davis & Hersh, 1981 ). Mathematical text in general is only 

partly formalised. Sometimes the formalised parts are left out because they are seen as 

obvious, leaving behind the sentences explaining the not so obvious (Davis & Hersh, 

1981). 

Symbols also play an important role in learning, as Roman Jakobson (in Hadamard, 

1945) has described: 'Signs are a necessary support of thought. For socialized thought 

(stage of communication) and for the thought which is being socialized (stage of 

formulation), the most usual system of signs is language properly called; but internal 

thought, especially when creative, willingly uses other systems of signs which are more 

flexible, less standardized, than language and leave more liberty, more dynamism to 

creative thought ... Amongst all these signs or symbols, one must distinguish between 
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conventional signs, borrowed from social convention and, on the other hand, personal 

signs which, in their turn, can be subdivided into constant signs, belonging to general 

habits, to the individual pattern of the person considered and into episodical signs, which 

are established ad hoc and only participate in a single creative act. ' (op.cit.: 

1945 :96,97). Thus, symbols enable the learner to communicate his/her ideas, not only to 

others but also to him/herself. New concepts can also be communicated through 

symbols, where classes of concepts already known can be related to form new concepts. 

Furthermore, symbols are used in the recording of knowledge which is a permanent 

record of mathematical ideas. Through these written and printed symbols, new 

generations can learn in a few years ideas that took generations to evolve. Another 

important function of symbols is to be able to record one's thoughts on paper as one 

progresses. The amount of information that we can keep in consciousness at a time is 

limited. A single mathematical symbol carries considerable information and this helps to 

reduce the cognitive strain. Symbols can thus also be described as both a label and a 

handle for identifying and manipulating concepts (Skemp, 1971 ). 

Invention and discovery 

Inspired by a celebrated lecture of Henri Poincare given at the Societe de Psychologie in 

Paris, Hadamard wrote a book in 1945 entitled 'The psychology of invention in the 

mathematical field'. Several great mathematics inventors were asked for their opinion 

and experiences. Quite a few similarities were found: the suddenness of a new idea after 

long often fruitless, thinking described as ' ... a gleam of light ... ' or a ' ... sudden flash of 

lightning . . . ' (Hadamard, 1945: 16, 1 7), the emergence of a new idea at a moment when 

not consciously thinking about the problem, new ideas being preceded by constantly 

thinking about the problem or as put by Poincare: '' a consented, a voluntary faithfulness 

to an idea" (Hadamard, 1945:44). 
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A frequent emotion accompanying new ideas, is the feeling of absolute certainty. Oliver 

(1972) observed similar reactions from children involved in a study on intuitive thinking. 

They were not aware of any mathematical thought before they made their guess, but were 

still certain about the correctness of it. Oliver also found that not all children had the 

same aptitude for intuitive thinking, but that intuitive thinking could be fostered by 

asking the right questions and creating an atmosphere where guesses and consequent 

mistakes are allowed and encouraged. Poincare (in Hadamard, 1945) illustrates the 

cognitive processes during and before invention with a comparison. He compares 

already formed concepts that are used in the invention process to hooked atoms which are 

at rest in the inactive mind. Studying a problem results in the mobilising of these ideas or 

'atoms'. 'The mobilized atoms undergo impacts which make them enter into 

combinations among themselves or with other atoms at rest, which they struck against in 

their course. ' (Hadamard, 1945 :4 7). Not all these combinations are helpful, nor relevant 

to the specific problem but new combinations were made that could lead to sudden 

insights later. These combinations can be likened to 'schemas' referred to earlier. 

Although it is generally accepted that mathematical invention is not something that can 

be commanded at will, George Polya shared his experiences on the principles of 

discovery and invention in a series of books. The best known of these, translated into 18 

languages, is the famous 'How to solve it' published in 1945. His ideas have already 

been mentioned in the section on problem solving in par. 2.4.3.3. 

Form of schemas 

A question that could have been asked before, but that will now be discussed is: in what 

form are these schemas stored? Do we think in words, pictures or neither? Hadamard 

found some opposing views related to this question: 

• No thought is possible without words, Max Muller, famous philologist; 

• We think in nouns, Hegel; 
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• We cannot think without images, Aristotle; 

• Thoughts die the moment they are embodied by words, Schopenhauer. 

The list is by no means complete and it reflects Galton's opinion that people differ greatly 

in cognitive style (Skemp, 1971 ). However, of the mathematicians that Hadamard 

contacted in his survey, practically all of them used vague images. Einstein mentioned 

that ' ... the words or the language, as they are written or spoken, do not seem to play any 

role in my mechanism of thought.' [He considered] ' elements in thought' [to be] 'signs 

and more or less clear images which can be voluntarily reproduced and combined. ' 

These elements are some ' ... visual and some of muscular type. ' (Hadamard, 1945: 142, 

143). 

The famous physicist Richard Feynman jokingly describes the same kind of visual 

imagery he used in his arguments with his mathematician colleagues: ' ... the 

mathematicians would come in with a terrific theorem, and they 're all excited. As they 're 

telling me the conditions of the theorem, I construct something which fits all the 

conditions. You know, you have a set (one ball) - disjoint (two balls). Then the ball turns 

colors , grows hairs, or whatever, in my head as they put more conditions on. Finally 

they state the theorem, which is some dumb thing about the ball which isn 't true for my 

hairy green ball thing, so I say, "False!".' (Feynman, 1985:85). 

Most mathematics educators share the experience that visual symbols are often more 

understandable than a verbal-algebraic representation of the same idea. Skemp (1971) 

views visual symbols as more primitive and basic but more difficult to communicate. 

This corresponds with Koopman's idea that the images appear in full consciousness, ' ... 

while the corresponding arguments provisionally remains in the antechamber . . . ' 

(Hadamard, 1945:86). 

Although some of these visual images have to be translated into words to be 

communicated, some compelling arguments can be presented in a visual way. For 
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example, Skemp (1971) argues that a straight line may also be considered as a particular 

kind of angle and present his argument visually in the following way: 

I\ 
Skemp summarises the difference between the two kinds of symbols in Table 2.1. 

Visual 

Table 2.1 

Differences between visual and algebraic symbols 

(Source: Skemp, 1971 : 111) 

Verbal-algebraic 

Abstracts spatial properties, e.g. shape, Abstracts properties independent of 

position spatial configurations, e.g. number 

More individual, harder to communicate May represent socialised thinking, easier 

to communicate 

Showing structure Showing detail 

Simultaneous, intuitive Sequential, logical 
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In Hadamard's survey, a third kind of mental schema was mentioned, namely that of 

kinetic images. As an example, the above visual argument of Skemp has also a 

kinaesthetic and action-oriented mode (the enlarging of the angle is 'seen'). 

Simon ( 1996) develops a related concept in what he calls transformational reasoning. 

This is a reasoning that is involved when students want to get a sense of how a 

mathematical system in question works, by running the system. It thus involves the 

transformation of a mathematical situation and the interpretation of the results of the 

transformation. Simon illustrates this kind of reasoning with several examples, such as 

the case of the student whose understanding of an isosceles triangle consists of the idea of 

two people walking from the ends of a line at equal angles towards each other, having 

covered the same distance when they meet. He notices that the consequence of this kind 

of reasoning is often a sense of understanding of 'how it works'. According to Simon, 

mathematics educators have failed to recognise the importance of transformational 

reasoning in the mathematics classroom, to the detriment of insight. Encouraging this 

reasoning could lead to theorem generation, validation of ideas and the connection of 

different mathematical ideas (Simon, 1996). Schemas are thus stored in visual, kinetic or 

verbal-algebraic forms. 

Overt and covert subjective mathematical knowledge 

Maturana and Varela (1992:174) write about knowledge: 'We admit knowledge whenever 

we observe an effective (or adequate) behavior in a given context, i.e., in a realm or 

domain which we define by a question (explicit or implicit) ... '. 

This is a view shared by both behaviourists and cognitive theorists, but the latter are more 

interested in the cognitive processes behind the effective behaviour. The cognitive 

processes include the reorganisation of schemas to form new knowledge (images, 

conjectures, proofs, definitions, solutions, etc.) 
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Not all this knowledge will be made public, but it is by making it public that it becomes 

data to other community members. It is also only now that the teacher and others can 

admit knowledge if effective ( or adequate) behavior is observed in the given context 

(using the definition of knowledge ofMaturana and Varela). 

'Making public' here is not restricted to a written communication or printed formalised 

proofs, but can include verbal informal statements. The other learners will start 

interpreting this incoming data and, depending on misfits with their own existing 

schemas and objective mathematical knowledge, will ask for justifications or validations. 

Again, the teacher's role here is to guide acts of creation, justification and criticism close 

to the practices of the wider mathematical community. The learner will reformulate and 

rethink his/her own creation via this social negotiation process which leads to new 

creations. 

The new subjective mathematical knowledge that stays in the private realm, can also 

undergo the processes of criticism and consequent reformulation. By listening to other's 

explanations and justifications, and observing their effective behaviour, the learner can 

criticise and rethink his/her own ideas through inner speech (reflective thinking). 

However, the 'private' knowledge tends to be vague and sometimes lying in deeper layers 

of the unconscious (Hadamard, 1945). It is in the private realm that the vague 

combinatory play with ideas takes place before being made overt by the ' ... connection 

with logical constructs in words or other kinds of signs which can be communicated to 

others. ' (Einstein m Hadamard, 1945: 142). It 1s also through this 

formulation/reformulation and formalisation that the vague ideas are clarified and brought 

to consciousness. 

Figure 2.8 shows the cyclical process of transformation of data into knowledge. It also 

shows how this process is accompanied by social negotiation as well as individual 

creation processes. The role of covert and overt subjective knowledge is shown and the 
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learning environment 1s set against the background of the macro mathematical 

community. 

Private Realm 

Creation 

Written, diagrammtic, 
printed (syrrrols), 
speech, application 

Macro/Micro Mathematical 
Community 

explanation and justification Regulations 

and 
Physical objects, 

Learners' enviromrent 
Higherr~ levels OU·~ 

Convergent thinking 
-------1•~ 

... Teacher 

... Learners 

conventions overt and objective rrnth 
knowledge knowledge 

ls 

Reflective thinking 

Subjective knowledge 
(covert) 

Scherms as verbal-algebraic 
(objects), visual ( objects, 
processes) and kinetic 
irrnges( actions, processes 

Accommxlation 
reorganisation, corroining 
of 
existing scherms 

Information 
Assimilation of data into 
existing schemas 

Personal reformulation 

Figure 2.8 

Data 

Representation 

A social constructivist model for the learning of mathematics 

2.6 Summary 

In this chapter, a brief overview is given of selected theories regarding the philosophy 

and learning of mathematics. Mathematics is defined and the nature of mathematics 
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discussed. Leaming theories in general are described and constructivism extensively 

discussed, in particular the mathematics learning theory of Piaget and related theories. 

From these theories, a framework for the learning of mathematics is then developed. The 

framework is based on the following ontological and epistemological hypotheses. 

The ontological hypothesis is that mathematical objects are social-cultural-historical 

entities. The epistemological hypothesis is that of social consttuctivism, namely that 

mathematics is a human creation and that objectivity is social in the sense that there is 

agreement on what is true. 

The model for the learning of mathematics which was discussed in detail in par. 2.5., 

does not provide for co-operative learning nor computer-supported learning. These 

issues will be addressed in Chapter 4 where the existing model will be enhanced to 

provide for CSCML. Before that can be done a closer look into existing research on CL, 

CML, CSCL and CSCML is necessary. The next chapter will thus give a review of some 

of the existing literature available on these topics. 
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Chapter 3 

Computer Supported Co-operative Mathematics Learning 

(CSCML) 

3.1 Introduction 

84 

This chapter gives an overview of research done on CML and CSCML. The goal of this 

chapter is not only to define and clarify the most important concepts comprising the topic 

of this study, but also to highlight the need in existing literature for a conceptual 

framework for CSCML. 

The chapter is divided into three parts. The first part (par. 3.2) covers the definition of 

CL, it methods , its rationale and principles. It then discusses research findings on CML 

and covers some design issues. The second part (par. 3.3) discusses the integration of IT 

in education in general and then more specifically, the integration of IT into mathematics 

education. This includes a survey of some of the research done on computer support to 

mathematics teaching and learning. The third part (par. 3.4) defines CSCL and discusses 

research done on CSCL. This includes the different technologies used in CL 

environments as well as the relevant research on CSCW and CSCL. CSCML is then 

defined as an organisational structure based on CL principles in which a group of students 

pursue mathematical academic goals through collaborative efforts supported by IT. 

Relevant research on CSCML is then summarised and design issues are highlighted. 

3.2 Co-operative learning 

3.2.1 Learning environment 
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The learning environment will be defined in terms of its constitutive 'ingredients', i.e. all 

relevant components, features and social aspects which create the environment in which 

learning takes place. For example, Collin, Brown and Newman (in Chung, 1991), list 

three dimensions that constitute a learning environment: content, teaching methods and 

sequence (phases of integration and generalisation of knowledge). De Villiers (1995), on 

the other hand, focuses on the social aspects created by the different interactions between 

the learners. 

The structuring of the learning environment could have different effects on student­

student interactions: they try to outperform their peers (competitive learning), students 

work towards a goal without needing to worry about the efforts of the other students 

(individualised learning), or they work together, ensuring that all group members master 

the given study material ( co-operative learning). 

Johnson and Johnson (1994) argue that each pattern of interaction has its place. An 

effective teacher will use all three appropriately and ensure that students learn how to 

work co-operatively, how to make competition fun and how to work on their own. 

Co-operative learning is the most thoroughly researched of the three. The great interest 

in co-operative learning stems from the benefits that research findings show in social­

affective outcomes (better self-esteem, better intergroup relations and the acceptance of 

academically handicapped students) (Slavin, 1991a). In addition, co-operative learning 

offers possible answers to the demands put to the student by a rapidly changing industrial 

world. It hopes to prepare the learner for an increasingly collaborative work force 

(Slavin, 1991a; Adams & Hamm, 1990). 

Smith and MacGregor (in Bitzer, 1994) describe the broader concept of collaborative 

learning as an umbrella term for a collection of educational approaches that deal with 

joint intellectual efforts by students, or students and teachers together. Collaborative 
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learning is one of several alternative names used by educationists for co-operative 

learning. Other names include small group learning, study circles and collective learning. 

3.2.2 Definition of co-operative learning 

There are numerous ways of defining co-operative learning. Johnson et al. (in Bitzer, 

1994:40) define it as: ' ... the instructional use of small groups so that students work 

together to maximize their and each other's learning. ' 

Hilke ( in De Villiers, 1995 :90) describes it as: 'An organizational structure in which a 

group of students pursue academic goals through collaborative efforts. Students work 

together in small groups, draw on each other's strengths and assist each other in 

completing the task. This method encourages supportive relationships, good 

communication skills and higher-level thinking abilities. ' 

This last definition draws the attention to the components that characterise co-operative 

learning: teachers and students participate actively; co-operation fosters a sense of 

community; knowledge is created, not just transferred, and that knowledge becomes 

community property (Whipple in Chung, 1991). 

3.2.3 Principles of co-operative learning 

A number of people working together is not necessarily a co-operative group. This is an 

opinion shared by several researchers (Johnson et al., 1994; Dockterman, 1991). There 

are certain basics that must be adhered to in designing a co-operative learning 

environment. Johnson et al. (1994) describe the basic principles or components of 

effective co-operative structuring as positive interdependence, individual accountability, 

face-to-face promotive interaction, interpersonal and small group skills, and group 

processmg. 
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Positive interdependence 

In his article 'A theory of co-operation and competition' M. Deutsch wrote: 'In a co­

operative social situation the goals for the individuals or sub-units in the situation under 

consideration have the following characteristics: the goal-regions for each of the 

individuals or sub-units in the situation are defined so that a goal-region can be entered 

(to some degree) by any given individual or sub-unit only if all the individuals or sub­

units under consideration can also enter their respective goal-regions (to some degree).' 

(Deutsch, 1949: 131,132). 

Johnson et al. (1994) summarise the above paragraph with ' ... group members have to 

know that they "sink or swim together".' (Johnson & Johnson, 1994:81). 

Johnson et al. (1994) name three steps to take in structuring positive interdependence. 

Firstly, learners must have a clear idea of what they are supposed to do. Secondly, a goal 

interdependence must be established - group members must know that they cannot 

succeed unless all the members succeed. Finally, goal interdependence could be 

combined with other types of interdependence: resource interdependence ( dividing 

resources), role interdependence or identity interdependence. Salomon (1992) describes 

the characteristics of interdependence as the need to share information, meanings and 

conclusions provided by the group; a division of labour, and the pooling together of 

minds. 

The effective structuring of positive interdependence could prevent the occurrence of 

free-riders ( individuals perceiving their efforts not to be necessary) or social loafing 

(loss of motivation due to large groups) (Hooper,1992). Salomon (1992) names status 

sensitivity and ganging up on task as two more social effects that could lower positive 

interdependence. Status sensitivity describes the taking charge of the process by learners 

with perceived high status (high ability, popularity, etc.). Ganging up on task refers to 

group members working together to finish the task as fast as possible. 
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Individual accountability 

Each student is individually accountable for his or her share of the work. This can be 

accomplished by rewarding a group in a way that is based on the assessment of the 

performance of each member of the group. 

Face-to-face promotive interaction 

Promotive interaction exists when group members encourage each other and guide each 

other's efforts to reach group goals. Johnson et al. (1994) see promotive interaction as 

characterised by help and assistance, exchanging information and materials, providing 

feedback, challenging conclusions and reasoning to promote higher quality decision 

making and greater insight, motivating each other to strive for mutual benefit, and acting 

in trusting ways. 

Interpersonal and small group skills 

Kagan (in Bennett, 1994) says that for pupils to benefit from group work, they need a 

degree of tolerance and mutual understanding, an ability to state a point of view, to 

discuss, to probe, and to question. Kagan is of the opinion that these skills are not innate, 

but need to be taught. The more socially skillful the student is, the higher the 

achievement in the groups. Some social skills that need to be taught are trust, 

communication, acceptance and support of each other, and conflict resolution (Johnson et 

al., 1994). 

Group processing 

Groups should reflect on how well they are functioning. Members could reflect on each 

other's actions and make decisions on what actions to continue or change. This should be 
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done to improve the effectiveness of the member's contribution to the team's efforts to 

achieve the mutual goal. 

The five basic elements need to be designed into the co-operative learning environment 

for it to be effective. These elements should also be kept in mind in using informal co­

operative learning (group discussion combined with direct teaching) and other kinds or 

group work. 

There is general agreement that of the five basic elements the most important is positive 

goal interdependence. Helen Block Lewis wrote in an article: 'A minimum requirement 

for cooperative behavior is not physical togetherness nor joint action, nor even 

synchronous, complementing behavior, but a diminution of ego demands so that the 

requirements of the objective situation and of the other person may function freely. In 

truly cooperative work, personal needs can function only if they are relevant to the 

objective situation, the common objective, in other words, is more important than any 

personal objective.' (Block Lewis in Deutsch, 1949:135). Deutsch sees it as the group 

members occupying ' ... the same relative positions with respect to their goals.' (Deutsch, 

1949:135). Salomon states that ' ... for genuine collaboration to take place, you need 

genuine interdependence.' (Salomon, 1992:64). 

3.2.4 Rationale for co-operative learning 

The value of interpersonal processes in both learning and relationships is widely 

recognised by educators. Reviews of studies of co-operative learning confirm this by 

showing positive results in affective and cognitive outcomes (Slavin, 1990). Research on 

the rationale for co-operative learning can be divided into two perspectives: the 

motivational and cognitive perspectives. 
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Motivational perspective 

This emphasises the reward or goal structure under which group members operate. This 

approach emphasises the effect of co-operative rewards on students' achievements in co­

operative learning. 

The co-operative rewards could include individual or group points and create an 

interpersonal reward structure (group members give or withhold praise and 

encouragement among each other) (Bennett, 1994). 

Cognitive perspective 

This perspective relates to the effects of working together (with or without a mutual 

goal). The following developmental and cognitive elaboration theories fall under the 

cognitive approach (Slavin, 1990). 

Developmental theory 

In the last decade developmental psychology changed its concept of a learner from a 

'lone scientist' to that of a 'social being' (Bennett, 1994:51). The theories of Piaget and 

Vygotsky (which dominate the developmental psychological research on co-operative 

learning) look at the learner from different perspectives. 

The Piagetian approach underlines the necessity of the presence of cognitive conflict for 

learning to take place. Co-operative learning provides the ideal setting for socio-cognitive 

conflict through voicing of different opinions and strategies (Mandi & Renkl, 1992). 

Related to the Piagetian approach is the controversy theory. This theory states that 

conceptual conflict creates reconceptualisation and a search for more information. This 

leads to more thoughtful conclusions (Johnson et al., 1994). 
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The Vygotskian approach, on the other hand, emphasises the internalisation of processes 

on the social level. According to Vygotsky, learning is seen as a relationship between 

language and cognition - this learning takes place in an interactive context in which 

cognitive development of children can be seen as the transition from other-regulation, to 

self-regulation, of behaviour. This transition is a function of mediated activity with 

origins in the social interaction between child and adult. These mediated strategies of the 

adult become the scaffold on which children cross the zone of proximal development 

(ZPD), i.e. children perform tasks which they do not exactly understand but come to 

internalise these strategies through adult/peer guidance (Emihovich & Miller, 1988). 

Cognitive elaboration theory 

Cognitive psychology research has found that for information to be accommodated into 

already existing schemas in the long-term memory, some kind of cognitive restructuring 

or elaboration of it must take place (Wittrock in Slavin, 1990). Research findings show 

that a very effective way of elaboration is to explain the study material to someone else 

(Devin et al.; Dansereau in Slavin, 1990). 

De Villiers (1995) discusses two models that describe the group process that is relevant 

to co-operative learning. These are Allen's model of group behaviour and the model of 

Hackman and Morris. 

Allan's model of group behaviour 

Slavin et al. (in De Villiers, 1995), describe it as an input-output model. The input 

variables to the group are process, individual, group level and environmental 

characteristics. The output variables are the performance and social reactions of the 

learner. The interaction process takes place between the input and output in a task in a 

social environment that facilitates the task. Figure 3.1 illustrates this model. 
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This model is a combination of an input-output model and a contingency model. Here, 

attention is put on the most important input variables from the individual (prior 

knowledge, task performance strategies and member effort) (Slavin in de Villiers, 1995). 

Although the relationship between group variables and individual variables is stated 

explicitly, the model neglects to show how the input factors operate in the interaction 

process (De Villiers, 1995). Figure 3.2 shows the relationship between the different 

variables. 
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3.2.5 Methods of co-operative learning 

93 

There are many different forms of co-operative learning, but all of them require students 

to work in small groups or teams to help each other learn academic material. Co­

operative learning could be incorporated in courses as informal groups, base groups or 

formal groups. Informal groups are short-term groups and are used with direct teaching 

(lecturing). This is where the teacher could invite discussion on a topic between students 

sitting next to each other. Base groups are long-term learning groups with the emphasis 

on social support and long-term accountability. Formal learning groups are groups 

where the emphasis is on a mutual goal and individual responsibility to achieve a goal 

(Johnson et al., 1994). 

Some formal co-operative learning models that have been evaluated are described below: 
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Jigsaw 

Students are assigned to six-member teams to work on academic material that has been 

fragmented into sections. Each team member studies his or her section after which the 

members of the different groups who have studied the same section meet in their expert 

groups to discuss that section. The experts then return to their teams and teach the others 

what they know. 

De Villiers (1995) draws attention to important other aspects of this method: specially 

designed curriculum materials; group building and communication training; importance 

of a group leader; and heterogeneity of groups with respect to sex, race and ability levels. 

Student Team Learning ( STL ) 

Student team learning methods emphasise the use of group goals and group success. The 

student's task is not to do something but to learn something. Five STL methods that have 

been extensively researched will now be discussed. 

Students Teams-Achievement Division ( STAD) 

The teacher presents a lesson after which the students work within their heterogeneous 

teams to make sure that all team members have mastered the lesson. Finally, students 

take individual quizzes on the material. The scores are compared to the individual's own 

past averages, and points are awarded based on the degree to which students can meet or 

exceed their own earlier performances. These points added together form team scores. 

High performing teams earn certificates or other forms of rewards. 

This process could take three to five class periods. The method has been used with 

learners of all ages and in a variety of subjects, but it seems better suited to the mastery of 

factual material (De Villiers, 1995). 
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Team-Games-Tournament (TGT) 

It has the same structure as STAD, but replaces the quizzes with weekly tournaments. 

Students from different groups compete against others with comparable ability. This 

method is appropriate for the same kind of objectives as STAD. 

Team Assisted Individualisation (TAI ) 

TAI combines co-operative learning with individualised instruction. It was originally 

designed to teach mathematics to primary school children. 

Students enter an individualised sequence according to a placement test and then proceed 

at their own pace. Group members thus work on different units but check each other's 

work and help each other. Final unit tests are taken. Rewards are given on a weekly 

basis to groups based on the total number of units completed by all group members. 

Extra points are given for perfect papers and completed homework. While students 

proceed at their own pace, the teacher teaches small groups drawn from the groups. 

The use of TAI in the classroom enhances self-concept in mathematics, as well as 

achievement (Slavin, Madden & Stevens in De Villiers, 1995). 

Co-operative Integrated Reading and Composition (CIRC) 

CIRC was designed to teach reading and writing to young learners. In most CIRC 

activities, students follow a sequence of teacher instruction, group practice, group 

preassessments and quizzes. It also includes reading groups, pairs from different reading 

groups, partner checking, testing, direct instruction in reading comprehension, and 

independent reading (Slavin, in De Villiers, 1995). 
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Jigsaw II 

This is a modification of the Jigsaw method by incorporating it into the ST AD method. It 

combines individual and co-operative incentives: groups compete for group rewards and 

learner's grades are based on points obtained in quizzes (Sharan, in De Villiers, 1995). 

Learning together 

Students work together on assignment sheets in heterogeneous groups. A group hands in 

a single sheet and the reward is based on the group product. Slavin (in De Villiers, 1995) 

emphasises the training of learners to be effective group members and the evaluation of 

the functioning of the group by the members. 

Group investigation 

Learners in small groups take responsibility for deciding what to learn, how to organise 

the task and how to communicate their knowledge to the class. Sharan (in De Villiers, 

1995) describes steps to be followed by the learners: topic selection, co-operative 

planning (procedures and goals), implementation, analysis and synthesis, presentation 

and evaluation. 

Despite being the most complex of the methods, research findings show that 

implementation of this method leads to higher levels of achievement, and enhancement of 

co-operation and social interaction (Sharan & Sharan in De Villiers, 1995). 

Reynolds et al. ( 1995) add to these categorisations three further methods which are 

variations on group investigation used in mathematics teaching: Coop-Coop ( a 

combination of jigsaw and group investigation), small group laboratory approach, and 

the small group discovery method (with focus on the discovery of new ideas). 
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3.2.6 Research on co-operative learning in mathematics education 

The effectiveness of co-operative learning in mathematics teaching and learning has been 

confirmed by research findings (Davidson & Lambdin Kroll, 1991). In their overview of 

research on co-operative learning related to mathematics, Davidson and Lambdin Kroll 

classify existing research studies into three groups. The first group consists of studies 

which investigate conditions under which co-operative learning raises students' 

achievement. The second group includes studies identifying the benefits ( cognitive and 

affective) of co-operative learning, and the last group focuses on the processes and 

interactions taking place in a co-operative learning environment. A few research studies 

and results will be discussed under these headings. 

Promotive conditions 

Research findings indicate that the effects of co-operative learning vary considerably 

according to the particular methods used (Bennett, 1994). Slavin (1991a) is of the 

opinion that the two factors necessary for achievement gain are the use of group goals 

and individual accountability. Group goals are sometimes used synonymously with 

group rewards. In a study done by Yackel, Cobb and Wood (1991), no extrinsic 

incentives were provided for groups in the project classroom. It was found that the 

classroom norms (mutually constructed and reconstructed), supplied the incentives, or, in 

other words, the norms were inextricably related to mathematical activity. The norms 

included that students should co-operate to solve problems, that meaningful activity is 

valued over correct answers, that persistence on personally challenging problems is more 

important than completing a large number of activities, and that partners should reach 

consensus as they work on the activities (Yackel et al., 1991 :397). 
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Benefits 

Researchers have focused on diverse outcomes including achievement, higher level 

reasoning, motivation, student retention, transfer of learning, prejudice, social support 

moral reasoning, and many others. Johnson et al. (1994) divide these outcomes into three 

broad categories: effort to achieve, interpersonal relationships and psychological health. 

Research shows that co-operative learning resulted in more higher-level reasomng, 

generation of new ideas and solutions, and better transfer oflearning (Slavin, 1991a). 

Studies done by Wimbish (in Reynolds et al., 1995), Leikin and Zaslavsky (1997) and 

Mulryan (in Good et al., 1992) have found a fostering of positive attitudes toward 

mathematics, the instructional experience, and further study in the subject area. Mulryan 

(in Good et al., 1992), reports a narrower and less differentiated view of co-operative 

learning among low achievers than among high achievers. Also, low achievers tend to 

view mathematics more as work with numbers and operations. 

One of the earliest findings in co-operative learning, was that students who co-operate 

learn to like each other (Slavin, 1991a). This is also the case where group members have 

different ethnic backgrounds (Johnson et al., 1994). 

Johnson et al. (1994) discuss research findings which compare the impact of individual, 

competitive, and co-operative learning on the student's self-esteem. These studies show 

consistently that co-operative efforts promote higher self-esteem than competitive and 

individual efforts. They ascribe this to the perception of students that they are liked by 

their peers, that they have contributed to the group's success, and that they were 

appreciated for their own abilities. 

One of the major strengths of co-operative learning is to help students develop problem 

solving skills (Good et al., 1992). Good et al. define the problem solver as someone who 
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maintains the intention to learn while trying different strategies in the face of uncertainty. 

This conception of the problem solver involves spheres of emotion, motivation, cognitive 

strategy, and metacognition. A study done by Dees (1991) involving college remedial 

mathematics students, shows an increase in students' problem solving skills through the 

use of co-operative learning, especially in word problems and proof writing in geometry. 

The findings also confirm other researchers' views that co-operative learning may not be 

significantly better than traditional methods for acquiring skills and facts not involving 

complex thinking. 

Yackel et al. (1991) noticed that children engage in two types of problem solving 

activities as they work in small groups: solving the mathematical problem and solving 

problems of working productively together. The resulting interactions give rise to 

opportunities of learning in the following way: the use of the solution activities of others 

as prompts in developing one's own solution; the reconceptualisation of a problem for the 

purpose of analysing a wrong solution method, and the extending of one's own 

conceptual framework in an attempt to make sense of the solution activities of others for 

the purpose o freaching consensus (Yackel et al., 1991 : 406). 

Quite a few researchers have employed a black box strategy in researching co-operative 

learning, i.e. more focus is put on the outcomes than the process. However, Good et al. 

(1992) notice a notable difference between studies that show achievement effects (black 

box designs) and studies involving observation of classroom processes. The latter report 

more problematic findings, including some that not always support the themes of co­

operative learning (Slavin in Good et al., 1992). Webb (1991) is of the opinion that such 

studies that focus on the processes could contribute more by identifying the kinds of 

interaction among students that should be encouraged to maximise learning. 
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Process and interactions 

Mulryan (in Good et al., 1992) conducted a study focusing on the attention and 

interactive behaviour of secondary school mathematics pupils in co-operative small 

groups. Mulryan found that opportunities provided by small-group instruction vary for 

different students. Also, low achievers had the most difficulty in adapting to the group 

context and that they asked more questions whereas the high achievers gave more 

explanations. 

Webb (1991) identifies possible strategies for promoting effective small-group 

interaction. These include certain group compositions, changing the reward structure, 

providing training in desirable verbal behaviour, and structuring the group to enhance 

social negotiation ( explanation and justification). For example, it seems as if the most 

productive group composition consists of high and medium ability students, or medium 

and low ability students. Also, groups with an equal number of boys and girls promoted 

more explanation than groups with unequal number. 

Leikin and Zaslavsky (1997) divided mathematics classroom activities into active and 

passive on-task activities, and active and passive off-task activities. By observation and 

interviews they collected data from research experiments and found that co-operative 

learning induces a shift towards students' on-task verbal interactions. Webb (1991) 

found that task-related verbal interactions are closely related to learning outcomes. 

Good et al. (1992) recognise a need for a structure or overall view of the mathematics co­

operative learning environment that identifies important variables that require 

investigation. This could serve as a basis for planning other research and as an aid in 

examining and interpreting existing research. They also point out that several variables, 

such as task variables, teacher and instructional variables, individual and group variables, 

rieed further research. 
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3.2. 7 Obstacles to co-operative learning and co-operative mathematics 

learning 

Slavin warns that 'Every innovation in education carries within it the seed of its own 

downfall, and cooperative learning is no different in this regard.' (Slavin, 1991: 86). 

He mentions a few problems: 

• Teachers with inadequate knowledge may use ineffective forms of this approach 

which could result in failure. 

• Undertrained teachers apply co-operative learning methods to subject areas for which 

it is not suitable ( e.g. ST AD and TGT are less suitable for subjects that lend 

themselves to discussion and controversy). 

Dockterman ( 1991) adds: 

• Teachers are used to structuring their lessons in such a way as to ensure maximum 

control. Co-operative learning activities could threaten classroom control. 

• Direct teaching is still the best way to cover a large amount of material in a short 

time. Teachers with too much work to handle will not deviate from traditional 

lectures to avoid an additional burdening on their work load . 

• Group members could waste time discussing irrelevant issues and should be carefully 

monitored. 

Complaints from learners are: 

• They spend more time on courses that are taught usmg co-operative learning 

strategies than on traditionally taught courses (Killen, in De Villiers, 1995). 

• They find co-operative learning activities more demanding (Hiltz, in De Villiers, 

1995). 

Good, Reys, Grouws and Mulryan (in Good et al., 1992) conducted research that 

involved 63 observations of 15 elementary school mathematics teachers implementing 

co-operative learning. They identified several weaknesses of the method: 
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• Inadequate curriculum - the lack of curriculum material forced teachers to use 

unsuitable text books or develop their own material; 

• Curriculum discontinuity - no continuity in content difficulty across grades; 

• Designing appropriate tasks - too many topics and activities are forced into the model; 

• Implementing new tasks - too little time was allowed for groups to work on assigned 

tasks; 

• Assigning student roles - designation of students as leaders, recorders, etc. seemed 

artificial; and 

• Lesson structure and accountability - lessons ended abruptly without time to 

summarise. 

It is thus clear that grouping in itself does not improve lessons. Adams and Hamm (1992) 

see the individual teacher as a critical factor in the effective implementation of co­

operative learning. Not only should the teacher be trained in the use of co-operative 

learning methods, but he/she should have experience of the various methods of co­

operative learning to understand the power of the technique. 

3.2.8 Designing the co-operative mathematics learning environment 

Adams and Hamm (1990) assign the teacher a critical role in the designing of an effective 

co-operative learning environment. This is also the case for the co-operative mathematics 

learning environment. Co-operative learning groups differ from the traditional classroom 

in several ways: the role of the teacher changes to that of a facilitator and the role of the 

student to that of responsible creators of their own knowledge and meaning (Bitzer,1994). 

Learners become tutors, investigators and presenters. 

The teacher's role 

Johnson, Johnson and Holubec (in Johnson et al., 1994) describe five aspects of the 

teacher's role: 
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1. Specifying the objectives for the lesson. 

2. Making preinstructional decisions, such as 

• deciding on the size of groups; the basic rule is the smaller the group, the 

better; 

• ass1gnmg students to groups; this includes deciding on heterogeneous or 

homogeneous groups; 

• arranging the room; students should be put in small groups with resources 

readily available; 

• planning the study material; Reynolds et al. (1995) emphasise the active 

nature of the learning of mathematics. In designing the learning task, the 

teacher should keep in mind that the purpose of the learning activity is to 

create a basis for group discussion of a concept, rather than to find a 

numerically correct, unique solution; and 

• assigning roles to ensure interdependence; as was said earlier, some 

researchers find the roles artificial (Good et al., 1992) and others are of the 

opinion that roles originate naturally because of negotiated classroom norms 

(Yackel et al., 1991). 

3. Structuring the task and positive interdependence. Teachers should 

• explain the academic task, 

• explain criteria for success, 

• structure positive interdependence by creating goal interdependence, 

• frequently assess the level of performance of each group member, and 

• specify behaviours that are appropriate and desirable within the group. 

4. Monitoring the co-operative lesson. Teachers should 

• keep the groups on task by stimulating discussion, g1vmg information, 

sharing opinions and co-ordinating activities; 

• observe the thought processes of learners and intervene when necessary to 

help students understand what they are studying; 

• offer encouragement, foster communication and energise learners; and 
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• intervene to teach necessary social skills. 

5. Evaluating learning and processing interaction. 

Students should be able to summarise what they have learned. Tests should be 

given, and papers and presentations should be evaluated. Teachers should use a 

variety of evaluation procedures . At the end of an assignment, the functioning of 

the group should be discussed. Students have to reflect on their experiences in the 

group process. 

Teachers need to model attitudes, problem solving attitudes and inquiry. Learners should 

understand that they are active learners and that no one knows all the answers (Adams & 

Hamm, 1990). Zigurs and Kozar (1994), emphasise that the group process should not be 

underestimated by the initiator (teacher) of the co-operative activities. They should 

concentrate on group building exercises. Adams and Hamm (1990) argue that teachers 

should re-examine the concepts of the organisational process and grouping structure in 

order to structure co-operative groups and activities. 

3.2.9 Summary 

This part of the chapter defines CL as an organisational structure in which a group of 

learners work together to pursue academic goals (par. 3.2.2). It is made clear that CL is 

more than simply grouping learners together. To ensure successful implementation, the 

principles of CL should be adhered to (par. 3.2.3). The application of CL techniques to 

mathematics learning has certain benefits. Research studies mention positive attitudes 

towards mathematics, better self-esteem, improved motivation and the fostering of 

problem solving skills. Other research focuses on conditions under which CL raises 

students' achievement (par. 3.2.6). Several obstacles to CL and CML are pointed out and 

the teacher is identified as a crucial role player in the design and execution of CML (par. 

3.2.7 and 3.2.8). 
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Most of the research studies discussed above concentrate on isolated features of the co­

operative mathematics learning environment. Good et al. describe a need for an overall 

view of the CML environment that identifies and relates the important components of the 

learning environment. It will be shown that this need also exists for the CSCML 

environment (par. 3.4). The next section first deals with the integration of IT m 

mathematics education after which the integration of IT in CML environments 1s 

discussed in par. 3.4. 

3.3 Information technology and education 

'Technological tools can foster students' abilities, revolutionize the way they work and 

think, and give them new access to the world. ' This is the view of Peck and Doricott 

(1994: 11 ), shared by several educators. 

3.3.1 Historical overview 

Van Weert (1995) describes three consecutive stages of information technology 

development in education as the first stage of automation, the second stage of information 

and the third stage of communication: 

• The automation stage aims at automating the teaching process and administration. 

Much emphasis was put on computer-assisted instruction (CAI) which Bork (in De 

Villiers, 1995) criticises as the mere transposing of books and lectures. The computer 

was at the centre of the teaching process with restricted interactivity, forcing the 

student to follow a sequence of frames (Muhlhauser, 1995). 

• The information stage views information technology as a tool which can be used to 

empower the individual. Much emphasis is put on simulations, computer literacy and 

development of suitable software. 

• The communication stage focuses on the innovative educational uses of computer 

communication. 
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3.3.2 Reasons for the integration of information technology in learning 

environments 

Van W eert ( op. cit.) sees the last two stages described above, as supporting the new 

organisational structures in society brought about, and enabled, by the use of information 

technology. 

According to van W eert, this organisational change is from a hierarchical, industrial 

organisation to a network organisation. Powerful personal computers are being integrated 

into local-area, wide-area and global networks, empowering individuals in business 

processes and supporting co-ordination in team-based network organisations. New 

competencies are thus needed in the workplace: inductive thinking, generalist and 

information technology competencies, decision making, handling of dynamic situations, 

communication and co-operation skills. Some of these competencies can be enhanced by 

using information technology in the learning process. 

Bannon (1995) emphasises the fact that much learning takes place outside the formal 

classroom and that everyday social practices of people at work and play, offer rich 

opportunities for learning. He questions the separation of formal and informal education 

and feels that the use of information technology in the so-called informal education 

could have a significant impact (Bannon, 1995). By permitting and facilitating 

exchanges between 'teachers' of both environments, computer communications networks 

indeed blur the separation between learning in the formal and informal contexts (Kaye, 

1992). 

Peck and Doricott (1994) give several reasons why information technology should be 

used in learning: 

• Technology can individualise instruction by offering individual learning paths 

through integrated learning systems via computer networks. 
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• Competencies such as assessmg, evaluating and communicating information are 

fostered by information technology. 

• Technology fosters problem solving by enabling students to independently organise, 

analyse, interpret, develop and evaluate their own work all of which assist in focused 

problem solving. 

• Modem technology-based art forms encourage artistic expression by providing an 

alternative way of expression to students constrained by traditional options of verbal 

and written communication. 

• Technological tools allow students to reach around the world and use resources that 

exist outside the school. 

• Technology provides a global audience for students' work, enabling them to do work 

that has value outside school. 

• Electronic media, laserdisc and CD ROM offer stimulating, interesting courses. 

• Students should feel comfortable with using information technology, being such an 

integral part of their living environment. 

• Productivity and efficiency in schools can be increased by usmg information 

technology for doing routine tasks, elevating the role of the teacher. 

3.3.3 Information technology and mathematics education 

3.3.3.1 Historical overview 

Computers have been used in mathematics education for more than thirty years now. The 

stages of IT development in mathematics education follow the same pattern as is laid out 

by van Weert (1995), par. 3.2.5.1. In the stage of automation, educational computing in 

mathematics was dominated by Computer Assisted Instruction (CAI) and BASIC 

programming courses. Mathematics was seen as particularly suitable for the use of 

computerised teaching and learning (where the computer takes over or minimises the 

teacher's role) (Morgan, 1994). Nowadays (in the stage of information and 

communication), new leamingware is continuously being developed to exploit the vast 
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memory, logical structures and graphic capabilities of the computer. Powerful tools are 

available to empower the individual by enabling exploration, discovery learning and the 

building of intellectual structures. 

3.3.3.2 Information technologies used in mathematics education 

Rather than going into detail on all the software and technologies available, an attempt 

will be made to give a general overview of what is commonly used in mathematics 

education. The popular categorisation scheme developed by Robert Taylor (Newby et al., 

1996) divides computers in education into three broad categories, namely tutor, tool and 

learner. Morgan (1994) and Kaput (1992) view this categorisation as not very successful 

since a particular piece of software can be used in various types of activities. Morgan 

sees the way in which software is used as dependent on the existing classroom culture 

(Morgan, 1994). Kaput (1992) realises that a categorisation of existing technologies for 

mathematics will quickly be outdated and uses the fundamentals of the underlying 

structures of users' interaction with mathematical notation in any medium (not 

considering the specific technologies) to categorise IT uses in mathematics education. 

This results in categories including dynamic/static media, interactivity of media, and the 

presence of procedure capturing and executing facilities. 

In the following overview, a short discussion will be given of well-known information 

technologies in mathematics education, with reference to the above categories. 

• Microworlds: This is where mathematical phenomena are an integral part of the 

learner's environment. Noss, Healy & Hoyles (1997) describe it as ' ... almost any 

exploratory learning environment which incorporates a computer ... ' (Noss et al., 

1997:203). As put by Papert (in Wiebe, 1993:146): 'The idea of "talking 

mathematics " to a computer can be generalized to a view of learning mathematics in 

"Math land"; that is to say, in a context which is to learning mathematics which 

living in France is to learn French. ' Seymour Papert is also one of the developers of 

the programming language LOGO ( and Turtle graphics) with which such 
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microworlds can be created. In this microworld, certain concepts central to writing 

computer programs as well as mathematical concepts are mastered. Ernest (in Wiebe, 

1993) identifies a few of these concepts as estimating distance, angles, shapes, 

symmetries, similarities, transformation, variables and problem solving strategies. 

Other computer languages used are Basic, Pascal and multimedia/hypermedia 

authoring tools such as HyperCard and Boxer (Newby et al., 1996). This is a good 

example of where the computer becomes the learner. The learner has to teach the 

computer to perform a task. In order to do that, the learner has to know how to 

perform a task and communicate it to the computer in an understandable way (i.e. to 

learn to program). 

• Computer Algebra Systems (CAS): This is described by Smith (in Karian, 1992:2) as 

' . . . an integrated symbolic, numeric and graphical system with interactive and 

procedural interfaces.' Unfortunately, it is not always immediately clear how to use 

CAS effectively. The most transparent of the CAS is Derive, but it is seen more 

purely as a tool and lacks real procedural interface or capability for creating students' 

learning environments. The most used CAS are Maple, Derive and Mathematica. 

The latter is described by Kaput as a potent set of mathematics tools coupled with a 

sophisticated command language. The user needs to be competent in mathematics 

and physics to be able to use it as a tool or learner. 

• Mathematical programming languages: The well-known LOGO has already been 

mentioned above. Another language worth mentioning is ISETL. With this language 

mathematical concepts can be constructed on the computer. The syntax of ISETL 

language and its basic constructs are so close to standard mathematical notation, that 

learning the language is inseparable from learning mathematics (Dubinsky, 1997). 

• Multi-representational software: This enables the student to see what the effects of 

changing a feature of one representation has on the others. Different aspects of 

complex ideas are exposed and the meaning of actions in one notation is linked to its 
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consequences in other notations. For example, rate of change can be expressed in 

slopes of graphs or in formal algebraic derivatives; solving of equations can be done 

using tables, graphs or symbols (Kaput, 1992). Noss et al. (1997) describe a 

microworld called Mathsticks where they helped students to construct mathematical 

meanings by providing links between the actions, and symbolic and visual 

representations they developed. 

• Graphing Facilities: Graphing calculators are very popular because of their 

portability and easy integration into classroom activities (Karian, 1992). 

• Content free software: Spreadsheets are used not only in the teaching of statistics, but 

also in the teaching of division, geometry, problem solving skills and other activities 

involving generalisations (Wiebe, 1993). 

• The Internet: The Web is already being used as a conveyer of mathematical material, 

mathematical software and as a former of educational communities. A consortium of 

American Universities, called NetMath, is investigating the establishment of 

mathematical learning environments (not correspondence courses) via the Internet 

(Klotz, 1997). 

• Geometry Leaming Environments: A widely used software package is the Geometer 

Supposer series. It provides easy construction of geometric shapes and easy 

measurement as well as the capture of students' constructions as general procedures 

that can be repeated. CAB RI and The Geometer's Sketchpad provide more by 

enabling animation wherein a construction can be adjusted by dragging actions 

(Kaput, 1992). 

In addition to the above classifications, Schoenfeld (in Karian, 1992) adds more 

categories which include drill-and-practice environments, tools that do the drudgery, 

simulations and intelligent tutoring systems. 
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3.3.3.3 Research on information technology in mathematics education 

Research in this field focuses on different aspects of the learning environment. Because 

of the observed ability of IT to sustain social interaction, the social aspects of IT support 

with regard to mathematics education is increasingly becoming a point of interest to 

researchers. These aspects will be discussed in greater length in par. 3.4. 

Some research studies deal with instructional design and the integration of the ideas in 

the development of new software. Laborde et al. (1991) describes the linking of the 

existing tools, viz. Cabri and Hypercard, to create an intelligent tutoring system. The 

design is based on observation of the tasks of a tutor guiding a construction task in 

geometry. 

Other researchers develop theories for the learning of mathematics and use the theoretical 

framework to develop new software. Dubinsky (1992) and fellow researchers have been 

busy with specific undergraduate research for the past 12 years. This research is based on 

a paradigm that entails an analysis of learning; the consequent development of a general 

theory of learning based on Piaget's ideas (discussed in par. 2.4.3.2); designing the 

instruction using pedagogical strategies relating to the general theory; implementing 

instruction; and observing students while they learn. The observation is influenced by the 

theory, but the observation also influences the theory by identifying the necessity for 

revising it (Dubinsky, 1997). Roughly speaking, their learning theory looks like this: 

processes are built up out of actions on objects and ultimately converted into new objects 

which are used for new processes (Dubinsky, 1992). Dubinsky views the ' ... primary 

goal of teaching to help students construct appropriate processes and objects and get 

them to reflect on and use these constructions in dealing with problem situations that 

arise in maths.' (Dubinsky, 1992:48). He analyses topics to decide which construction 

one would like the students to make, and designs problem solving strategies accordingly. 

The students need to solve the problems using ISETL. The intent is ( and studies show 
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that it does happen), that students will make effective mathematical constructions in their 

minds as a result of making the computer constructions (Dubinsky, 1997). 

The work of Papert has already been looked at briefly. Illuminating work resulted from 

Papert's epistemology and learning research group at MIT. Papert and his colleagues' 

ideas are based on a theoretical framework called constructionism. He describes it as 

standing on two legs, constructivism, and the construction of public entities. These ideas 

were implemented in research programs. One of these describes a learning environment 

where elementary school pupils are given the active role of teacher/explainer in designing 

software (Harel & Papert, 1991). The programme was called 'Instructional Software 

Design Project' (ISPD). The evaluation of ISPD was designed to examine learning of 

fractions and Logo through ISPD, versus learning of fractions and Logo through other 

pedagogical methods. Pupils had to design screens and representations to explain the 

difficult concepts of fractions to lower-grade fellow pupils. Quantitative results showed 

that students improved their ability to perform on standardised tests on fractions, more so 

than students not on the ISPD programme. Qualitative findings include the effectiveness 

of learning programming and fractions simultaneously rather than separately, a greater 

involvement with deep structure, rather than surface structure (algorithms) of rational 

number concepts, personal expression and social communication of ideas (partly due to 

the use of Logo). The researchers found that Logo facilitated communication about acts 

of cognition and learning. They realised, however, that the improvement of results could 

not be attributed to only one factor but to various factors including the affective side of 

cognition, personal appropriation of knowledge, the use of Logo, the learning-by­

teaching principle, and many others. 

Di Sessa (1991) uses different images of learning as a theoretical framework to study the 

role of pupils in the designing of representational forms for capturing motion with the aid 

of Boxer. Boxer is a general purpose computational system with all-time accessible 

resources of text and hypertext editing, for dynamic graphics and for programming (Di 

Sessa, 1995). By letting the different images of learning guide their observations, it was 
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concluded that the image of the child as a designer is the most conducive to good 

learning. This image of the child as a designer will prove profitable because of the 

provision of certain imperative elements in the learning environment, namely continuity, 

externalisation (providing a physical artefact), investment (personal or group pride in 

ownership), goal clarity, involvement (preventing the danger of the 'teacher knows what 

is right') and co-operation and sharing (Di Sessa, 1991 ). 

Kaput (1992) develops a theoretical framework for the interaction between mental 

processes and physical actions in structuring physical media. The theoretical framework 

is based on the following premises: The power of our mental ability lies in the interaction 

between two sources of organisation of experience, namely the structures inherent in our 

long-term knowledge and our ability to exploit physical means of organising experience. 

This can broadly be described as the interaction between thought and language. Kaput 

distinguishes thus between a world of mental operations ( almost always hypothetical) and 

a world of physical operation, frequently observable. Interaction between these two 

worlds include on the one hand, reading and the evoking of mental phenomena by 

physical material, and on the other hand, the production of new structures and the 

projection of mental structures into existing material. Kaput further describes notation 

systems as systems of rules for identifying or creating characters, for operating on them 

and for determining relations among them. According to Kaput, most true mathematical 

activity involves the coordination of, and translation between, different notation systems, 

e.g. the function y = x + 1 may be translated to a coordinate graph system. 

Kaput describes a case study which investigates the influence on the translation between 

two notation systems by computer-based notation systems. Wood Dines blocks and 

computer-based blocks were used to teach addition. It was found that the computer-based 

system helps to overcome cognitive overload problems by handling some of the 

translation activities. Also, computer-based systems keep records to help students 

remember previous acts. 
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According to de Villiers (1997), the availability of new dynamic geometry software such 

as Cabri and the Geometer's Sketchpad, is one of the most exciting developments in 

geometry since Euclid. It has the potential to encourage pupil-oriented research 

involving associated skills such as problem posing, explanation, conjecturing, refuting, 

reformulating and proof. It also has implications for teaching - Cabri/Sketchpad type 

investigations seem so convincing that students generally do not see the necessity of 

proof. Other conceptualisations of proof rather than verification are needed. De Villiers 

found that students agree that inductive verification lacks illuminating power, and that 

they are willing to give deductive arguments as a means of explaining how their findings 

are the consequences of other results (De Villiers, 1997). 

Laborde (1995) believes that the way geometry is taught often presents geometry as 

theoretical knowledge, ignoring the relations between drawings and theory. She 

distinguishes between drawing (a material entity) and 'figure' (the theoretical referent 

from the drawing). Mathematicians ignore the imperfections of drawings and work on 

idealised drawings. However, this is not the case for pupils - they often misinterpret 

drawings as constructions. Laborde believes that the unique character of Cabri makes it a 

helpful tool for interpreting visual phenomena. The unique character stems from the 

dragging mode of free elements (primitives). Figures in this learning environment 

become sets of geometrical properties and relations attached to a drawing that are 

invariant through the dragging mode (Laborde, 1995 :41 ). Other consequences of using 

Cabri include the generation of new kinds of problems due to the concretisation of 

abstract concepts ( e.g. transformations become means of construction). Also, the visual 

feedback appears to play an important role in showing students the inadequacy of their 

strategies as well as giving evidence of some visual phenomena. 
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3.3.4 The integration of information technology in mathematics 

education 

Tarrago (1994) describes the integration of Information Technology in education as ' ... 

any situation in which Information Technology becomes a full and habitual part of the 

objectives of education, of teaching systems and models, of the learning activities of 

pupils and the teaching activities of teachers, and of any information management 

systems at the service of the educational community.'(Tarrago, 1994:16). 

Educational systems are professional bureaucracies; that is, organisations whose aim is to 

ensure the education of pupils by professionals with particular formal qualifications 

(Tarrago, 1994). The role of management in a professional bureaucracy is small. This is 

a characteristic unique to learning environments not generally seen in other organisations 

using information technology (Tarrago, 1994). Changes in educational organisations 

cannot be forced from the top downwards. The individual professional educators are thus 

fundamental role players in the innovation process (Jost & Schneberger, 1994; Barron & 

Orwig, 1995). This should be kept in mind by educational authorities in the integration of 

information technology in educational environments. Guidance, more flexible structures, 

and support should be provided to teachers. 

Caftori (1994), and Jost and Schneberger mention the disparity between the way 

educational software (technology) is utilised and the way designers intend it to be used. 

These and other problems are mentioned by several researchers in their realisation that 

information technology has had a low impact on education with few implementation 

successes (Jost & Schneberger, 1994). 

Vockell (1990) ascribes the problems experienced in the integration of technology in 

learning environments to several factors, among which is the application of computers to 

instruction without a sound theoretical framework. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 3: CSCML 116 --=---------------------------------

Ridgway and Passey (in Cannings, 1995), point out that information technology 

integration in the culture of schools takes a minimum of three years. They describe 

seven developmental stages in technology implementation in schools. The stages are: 

• innovation (awareness of possible uses by person(s)); 

• firelighting (persuading influential people); 

• promotion ( supported by school administration); 

• growth ( other teachers use); 

• co-ordination (maintaining student outcomes); 

• integration ( most teachers use technology); and 

• extension (new uses are explored). 

Tarrag6 (1994) emphasises the following points on technological innovations m 

educational organisations: 

• The integration of information technology in education should be seen as an ongoing 

process occurring in a complex system. 

• Technological change is a question of culture, an intrinsic part of the evolution of 

society. 

• The integration of information technology and the goals of education ( defined in 

terms of development of pupils' abilities) are compatible. 

• Successful integration of information technology into education involves adapting 

organisational structures. 

• The innovation process includes staff training, responsibility and job satisfaction. 

Alavi (1994) feels that the training of instructors and learners in the use of computers 

is not enough, but that a departure from the traditional mode of instruction is needed. 

• Without teamwork, the innovation brought about by the integration of technology will 

not be assimilated by educational organisations. 

From the discussion in par. 3.3.3.3, it seems as if the integration of IT in mathematics 

education could support a mathematics learning environment characterised by learner and 
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teacher's interactivity. IT offers motivating, novel and dynamic possibilities for 

stimulating meaningful interaction with, and acquisition of mathematical concepts. 

However, Hillel (1991) highlights some problems regarding the use of IT. Since 

feedback is quick, a solution strategy of trial-and-error becomes a dominant heuristic 

regardless of its effectiveness. The availability of the computer thus changes the 

character of problems. Attiyah (in Hillel) describes mathematics as ' .. . the art of 

avoiding brute-force calculation by developing concepts and techniques which enable 

one to travel more lightly. ' (Hillel, 1991 :208). Students' actions show their disbelief of 

this statement. This also focuses the attention on the belief of students that problem 

solving entails the production of solutions and not the production of knowledge (De 

Villiers, 1997; Hillel, 1991). 

Koblitz (1996) launches a fierce attack on the use ofIT in Mathematics Education using 

arguments like immediate gratification leading to anti-intellectualism, etc. In their 

reaction to Neal Koblitz's attack, Dubinsky and Noss (1996) see IT as a medium of 

expression ( comparing it to a piano or pen) of which the creative use depends on the 

user. The role of the teacher is thus of paramount importance in choosing appropriate 

teaching strategies to change the learning environment, allowing more appropriate uses of 

technology. 

Simonsen and Dick (1997) regard one of the barriers to successful integration of IT in 

mathematical classrooms as the lack of access to IT. They see the more accessible, less 

expensive graphing calculators as a possible solution to this problem. 

North recommends the teaching of information technology as a cross-curricular theme in 

preparing students for an information-based society. However, the integration of 

information technology may challenge the content and structure of a curriculum 

consisting of bounded subjects (North, 1991). Cross-curricular information technology 

also challenges formal, authoritarian didactic teaching styles and is more concerned with 
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processes than outcomes. There are thus some areas where conflict can arise between the 

ideals of information technology and current practice. Bottino and Furinghetti (1996) 

describe the reluctance of mathematics teachers to accept informatics in the mathematics 

curriculum. They ascribe this to a view of mathematics as a rigid body of knowledge, not 

to be contaminated by outside elements. 

Research on the adoption of information technology emphasises the user's acceptance 

and use of the system. Users (teachers and learners) should be involved in the designing 

process and their needs should be identified and addressed (De Villiers, 1995). In a study 

done by Simonsen and Dick (1997) on teachers' perceptions of integration of graphing 

calculators in the mathematics classroom, teachers identified a need for organisational 

support (relevant curriculum materials and technical assistance), as well as a supportive 

environment for their professional growth and development. Bottino and Furenghetti 

(1996) report effective integration of informatics in mathematics teaching, only when it is 

perceived as providing answers to questions already present in teachers' minds ( even 

subconsciously). 

The importance of successful integration of information technology in educational 

environments is stressed by Tarrag6. He feels that an integration failure would amount to 

the missing of a ' ... social opportunity whose effects are felt in the near future by society 

itself in the form of problems of job competitiveness and assimilating people into the 

workforce.' (Tarrag6, 1994:18). 

3.3.5 Summary 

This section gave a brief history of computers in education and more specifically in 

mathematics education (par. 3.3.1). It presented reasons for the use ofIT in education in 

general and motivated the use of IT in mathematics education by describing some 

technologies used in mathematics education (par. 3.3.2 and 3.3.3.2). The research on IT 

support in mathematics education includes the use of ideas on instructional design and 
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mathematical learning theories in the development of mathematics software. The work of 

Papert, Dubinsky and Kaput are highlighted in this regard. The research on new dynamic 

software is included and it reports the influence of the software on notions of 

mathematical proof and the creation of new mathematical problems (par. 3.3.3.3). The 

consequences of integration of IT into mathematics education and obstacles to it are then 

discussed. The section concludes by emphasising the need for the successful integration 

ofIT in education to ensure a well-prepared and -equipped future workforce. 

3.4 Computer supported co-operative learning (CSCL) 

There is general agreement among researchers (including educational researchers) that 

the growing social and technological complexity of the workplace need the capacity for 

group work and communication skills (Jost & Schneberger, 1994; Van Weert, 1995, 

Tarrag6, 1994). Not only are teamwork skills necessary for the successful integration of 

information technology in learning environments, but it seems as if technology 

integration in schools induces a shift from a competitive to a co-operative structure 

(Newman, 1992). Some views on the futuristic role of teamwork in education are: 

• Schwen, Goodrum and Dorsey ( 1993) build a conceptual futuristic learning 

environment where people make sense individually and as a team by sharing, 

comparing and contrasting views. Learners arrange working documents in a personal 

and collective workspace, and construct their own meaning and knowledge structures. 

• Debenham and Smith (1994) propose a radical vision of public education where 

individualised instruction through personal computers and networks will be done at 

home, while schools will focus on group-orientated instruction. 

• Van Weert foresees the focus of education to be on the furthering of social 

understanding and community participation. He states that 'Collaborative learning 

in multi-disciplinary teams, with integrated use of Information Technology, is 

expected to have growing importance in education, and in the end to change its 

organization.' (Van Weert, 1995:9) 
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Jost and Schneberger (1994) describe the educational system as a social system where the 

challenge is to learn from different perspectives and working together. 

3.4.1 Definition 

In his description of the nature of CSCL Bannon (1995) sees it as a multifaceted concept 

that involves learning, co-operative learning, support for co-operative learning and 

specifically computer support for co-operation between human learners. McConnel 

(1994) uses the term to encompass any form of co-operative learning that occurs over a 

network of computers. 

The definition used in this study will be an extension of the definition for co-operative 

learning given by Hilke (par. 3.2.2): An organisational structure based on co-operative 

learning principles in which a group of students pursue academic goals though 

collaborative efforts supported by the instructional use of IT. 

In this study, the term co-operative learning will be narrowed down to formal co­

operative learning. Co-operative learning methods thus refer to the formal co-operative 

learning methods discussed in par. 3.2.5. However, in the review of research done on 

CSCL, studies on informal co-operative learning will be included. 

3.4.2 Reasons for the use of information technology in co-operative 

learning environments. 

Educators have been interested in the potentialities of co-operative learning and in 

computers for enriching learning for over a decade now. Both provide opportunities for 

the enhancement of cognitive and metacognitive skills, self-esteem and social 

development (Light & Mevarech, 1992). 
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Light and Mevarech (1992) describe the interest in CSCL as an interesting intersection 

of, on the one hand, the interest in co-operative learning and, on the other hand, the 

interest in the use of information technology in instruction. 

Initially, software design focused on individualised instruction. The computer seemed a 

suitable medium for individualised instruction because of its potential to offer different 

presentation modes and alter instructional decisions on the basis of individual 

performance (Hooper, 1992). Most computer courseware still emphasises individualised 

instruction. 

In the search for more effective ways of integrating information technology in education, 

educators find that co-operative learning represents a cost-efficient alternative to 

individual instruction, and a solution to the social isolation and possible sterile 

environment associated with computer-based education (Hooper, 1992). 

Dockterman (1991) sees the computer as an aid m managmg co-operative learning 

activities: 

• As assistant classroom manager, the computer helps the teacher keep multiple teams 

of students directed and on task. 

• As distributor of information, the computer enforces a level of co-operation among 

group members. 

• As record-keeping device, the computer helps increase inter-group interactions during 

the activity - knowing the situation of each group at any given moment, competitive 

or co-operative messages can be sent to other teams. 

• Telecommunications and computer networks offer additional ways in which 

technology can promote co-operative learning. Newman (1995) discusses the use of 

local area networks within the school. He points out that this technology can help in 

making cross-disciplinary connections, giving students flexible access to these 

connections and enabling teachers to collaborate. However, he warns that networks 
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can serve to isolate rather than bring students together. (Networks are traditionally 

used in schools to deliver individualised instruction.) 

Salomon (1992) sees the most successful role of the computer in learning, as opening up 

new opportunities for co-operative learning and supporting it. He points out that the 

computer in the classroom shifts learning from recitation to exploration, from 

individualised learning to co-operative learning, and from separate disciplines to cross­

disciplinary curricula. However, he stresses that a computer tool, in and of itself, cannot 

support the socially based process of meaning appropriation. This process is less 

dependent on technology and far more on other factors (Salomon, 1992:63). 

Another reason for the interest in the support that information technology provides to co­

operative learning, stems from the concepts, practices and technologies being developed 

in a related area of research, namely computer supported co-operative work (CSCW) 

(Davies, 1988). Some researchers are of the opinion that the application of CSCW 

technology in learning environments will yield significant advantages (Riidebusch, 1995; 

Davies, 1988; Midoro & Briano, 1994). 

3.4.2.1 Computer Supported Co-operative Work (CSCW) 

This term is used to refer to the interests of a number of researchers involved in seeking 

new ways to assist groups in performing tasks co-operatively (Riidebusch, 1995). 

Research in this area focuses on the design, delivery and evaluation of computer 

supported co-operative work applications. 

The computer support ranges from message handling facilities or shared data spaces to 

describing rules for co-operatively solving complex tasks. The software systems that 

support user groups are referred to as groupware. Riidebusch gives a more detailed 

definition of groupware and describes it as a ' ... software system which support two or 
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more, possibly simultaneous, users working on a common task and which provide an 

interface to a shared environment. ' (Riidebusch, 1995). 

O'Malley (1995) points out that in introducing technology to the social learning 

environment, it is sometimes done with the underlying assumption that the technology is 

neutral to the process. This deterministic view fails to realise the new structures and 

meaning brought about by technology, e.g. it could change the nature of the task (Pozzi, 

Hoyles & Healy, 1992). This deterministic view also ignores the rich social context of 

the CSCW environment. 

Lyytinen & Ngwenyama (1992) remark that the traditional view of work is based on a 

mechanistic theory of work. This view underpins much of the research on information 

systems and focuses on an individual's task productivity while underestimating the 

importance of the social context. 

They propose a theoretical framework for CSCW based on Giddens' structuration theory. 

They define co-operative work and CSCW within the structuration theory framework, 

describe CSCW applications as social structures and discuss distinguishing characteristics 

of CSCW applications. This framework will be discussed in par. 5 .3 .2. 

3.4.3 Research on computer supported co-operative learning 

Research in this area has stemmed from two paradigms, one focusing on co-operative 

learning methods and the other on computer assisted learning (Light & Maverich, 1992). 

Research questions asked about computer supported co-operative learning, thus involve 

both aspects. Light & Maverich (1992) ask two obvious questions being asked: 

• Does peer interaction facilitate computer based learning? 
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• Do computers have anything special to contribute to fostering effective peer 

interaction? 

As researchers in this area have discovered, these two questions are by far not the only 

important questions to ask. O'Malley (1995) points out that none of the factors in the 

computer-supported co-operative learning environment can be considered in isolation, 

which makes research in this area a complex task. Batson (1992) discusses the 

problematic nature of the evaluation of the effectiveness of CSCL practices. 

This is due to the relative incomparability of CSCL with traditional classroom practices. 

Attempts to compare CSCL with traditional classroom practices, involve pairing 

variables of which any could bring about significant changes in teaching and learning. 

Other variables do not have counterparts in the traditional classroom. 

Bannon (1995) is of the opinion that a theoretical framework that includes features 

influencing the CSCL process can assist comparing and contrasting different studies on 

CSCL. This will bring about better understanding of the process which will influence the 

success of future implementation. ( Such a framework will be discussed in par. 5.3.3.) 

As was discussed before (par. 3.2.4), the psychological research on co-operative learning 

is dominated by theories based on Vygotsky's and Piaget's ideas. Pozzi, Hoyles and 

Healy (1992) argue that the introduction of the computer to the co-operative learning 

environment, creates a new context in which learning is mediated through interaction 

with the computer as well as with peers. 

Despite new variables being added to the process by the introduction of technology, 

research on CSCL is still based on Piaget's and Vygotsky's theories with preference 

being given to the sociocultural theory based on Vygotsky's ideas. Mandl and Renkl 

(1992) find research results more differentiated than these theories would predict. They 

ask for more local theories of co-operative learning that take the following aspects into 

account: the knowledge domain, the kind of learning objective, the psychologically and 
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educationally relevant dimensions of the computer software, and the mechanisms of 

compensation and substitution in the social learning process. 

3.4.4 Information technologies used in co-operative learning 

environments 

A number of research studies focus on specific technologies and how they can mediate 

co-operation. Some of the technologies are described below: 

Computer-assisted instruction (CAI) 

CAI has been traditionally designed for individualised instruction. However, because of 

logistical and financial constraints, students often work in small groups at the computer. 

Seemingly students have much to gain from co-operating at the computer using CAI: 

Shlechter (1990) reports that learners who complete CAI lessons in a co-operative group 

perform as well as students who work alone. Other studies show that the performance is 

often better (Hooper, 1992). Shlechter also finds that co-operative practices can occur in 

minimally structured groups without group rewards or specially designed courseware. 

Hooper (1992) points out that the nature of the instructional strategies for CAI may be 

unfit for group learning. Designers should reconsider issues including learner control, 

feedback timing, nature of feedback and instructional scripting. 

Sloan and Koohang (1991) encourage the use of CAI through local area networks but 

emphasise that the CAI programs should be interactive, encouraging inquiry and 

discovery, and including game and computer simulations, peer teaching and problem­

solving. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 3: CSCML 126 --=---------------------------------

Roschelle & Teasley (1995) use the EM (the Envisioning Machine), a graphical 

simulation of concepts of velocity and acceleration that can be manipulated, to teach 

physics concepts to groups of students. They find that the computer assists in 

disambiguating language, resolving impasses, inviting and constraining students' 

interpretations. They describe the CSCL environment as a rich environment for studying 

learning. 

Computer-mediated communication (CMC) 

This is a term used to describe computer-based interactive message passing systems. 

Davies (1988) sees the main features of CSC systems as time independence (messages 

are stored centrally until accessed), distance independence, and centrally structured 

communication. The CMC systems can be locally based (Local Area Networks) or 

nationally/internationally based (Wide Area Networks) using computers networked 

together. 

Hiltz et al. (1994) describe different modes in which CMC can be utilised to support 

education: 

• As an adjunct to a regular face-to-face course in order to improve communication. 

• As a mechanism for providing communication in a distance education. 

• As a total means of delivery, without other communication modes. 

Two examples of CMC systems are: 

Electronic mail 

The immediacy of the medium, the ability to go beyond classroom walls and the 

computerised trace of activities make it a suitable medium to support co-operative 

practices. However, social activities must be created to ensure co-operative practices. 

(Bannon, 1995). Riel (1992) describes the learning circle design where a learning circle 

refers to a small number of classrooms that interact electronically. Teachers involved 
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work closely with students to plan their activities and become thus learners and problem 

solvers. It seems then that electronic networks provide the possibility for educational 

programme that bring students and teachers into working relationships with each other. 

Teachers working on educational networks rank their own learning (not that of their 

students) as the most important benefit. 

Computer conferencing 

Computer conferencing supports many-to-many communication. It also includes features 

designed to help in the organisation, structuring and retrieval of messages. Applications 

vary from virtual seminars where a small group exchanges ideas over a period of months, 

to multi-media distance education programmes ( e.g. programmes run by Open University 

and EuroP ACE) (Kaye, 1992). The great potential of computer conferencing for co­

operative learning lies in the cumulative record of message contribution and the tools 

available for retrieving and organising messages, since thoughtful analysis and review of 

earlier contributions can take place (Kaye, 1992). 

Group Decision Support Systems (GOSS) 

The term refers to the integrated combination of specialised hardware, software and 

procedures to support group interaction and activities (Zigurs & Kozar, 1994). 

GDSS supports groups through different mechanisms, such as 

• process support ( electronic messaging capabilities), 

• process structure (techniques of rules directing the pattern, timing or content of group 

interactions), 

• task structure ( analytical techniques and models), and 

• task support (information and computational infrastructure) (Alavi, 1994). 
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Alavi (1994) found in a study involving MBA students that those who used GDSS to 

support co-operative learning activities, perceived higher levels of skill development, 

learning and interest in learning, compared to students who did not use GDSS. 

It also appears that the information structuring and information sharing feature of GOSS 

contribute to the co-operative learning process by enabling members to link and collect 

opinions and perspectives. 

Hypermedia and multimedia 

The non-linear structure of hypermedia systems makes hypertext-based collections of 

material powerful resources for collaborative discovery and learning. Midoro & Briano 

( 1994) report that contrary to studies claiming that only gifted students gain in using 

hypermedia systems, most students found the use of hypermedia systems motivating and 

fun. 

Hamm & Adams (1992) consider that multimedia systems m co-operative learning 

environments can be used: 

• to illustrate and support lecture material, 

• in courseware as simulations and problem solving techniques, 

• to combine computer graphics and video through authoring systems, 

• to provide material to students who miss a class to review complex concepts in the 

library, and 

• to enable students to develop video projects. 

Other technological developments used in co-operative learning environments include 

shared screen facilities and interactive video. Dillenbourg & Self (1995) describe the 

design of a system where collaboration takes place between human learner and artificial 

learner. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 3: CSCML 129 _.:...._ ____________________________ _ 

3.4.5 Research on computer-supported co-operative mathematics 

learning (CSCML) 

Few studies done on CSCML involve formal co-operative learning methods. Studies 

vary from the effect of peer collaboration to the design of collaborative technologies. 

Hoyles, Healy and Pozzi (1994) identify important questions addressed by research on 

CSCML including a) the importance of structuring the task environment, b) the 

importance of socio-cognitive conflict on negotiation, c) the role of computers in 

stimulating formal mathematical expressions, d) the influence of prior individual 

experiences and interpersonal variables ( e.g. gender, status, etc.). For the purpose of this 

study, the research on CSCML will be divided into studies investigating the effects of 

different variables and studies investigating IT support to co-operative learning. 

Effects of variables/group processes 

Hooper and Hannafin (1988) studied the effect that homogeneous and heterogeneous 

grouping (with respect to ability) has on the learning of complex concepts. This took 

place through computer-based tutorials on arithmetic operations. They found that the 

grouping strategies had little influence on high ability students ( definitely not 

detrimental), but low ability students in heterogeneous groups performed better than 

those in homogeneous groups. This was on factual and application levels. There was 

however no significant gain in complex learning skills. They thought that it was unlikely 

to occur because of limited exposure to group work and that more long term research was 

needed. 

Emihovich & Miller (1988) believe that successful learning of Logo concepts involves a 

careful structuring of the teaching context. Basing their ideas on Vygotsky's perspective, 

they hypothesised that the use of mediating teaching strategies, instead of discovery 

learning, will allow the groups of pupils to achieve more. They found that with time, 
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teachers' directives decreased as peer collaboration increased and that children's talk 

became more task oriented. 

Hoyles, Healy and Pozzi (1994) discuss in several articles the outcomes and findings of a 

research project that was part of a greater project called 'Group work with Computers'. 

They used a multi-site case study design in six schools which involved eight 

heterogeneous groups (with respect to ability and gender) of six pupils each (aged 9 -

12), undertaking three mathematical tasks, two using Logo and one a database. This 

encompassing study addresses several research questions. Some of them are: 

• How effectively can a group function without a teacher? 

• To what extent can groups of pupils take responsibility for task organisation and the 

articulation of mathematical ideas? (Hoyles, Healy, Pozzi, 1992). 

• How do background and process factors of the group influence group work? 

• What is the influence of the task and software? 

• Is it possible to identify criteria for group management to achieve successful group 

work? 

• How can tasks be designed that facilitate successful group work? (Hoyles, Healy & 

Pozzi, 1994). 

In the analysis of the collected data, the researchers identified several variables to focus 

on. The background variables included previous experiences of software, co-operative 

work, prior knowledge, established inter-personal relationships and friendly relationships. 

Process variables included organisational style and patterns of interaction. Outcome 

variables included effectiveness (individual progress) and productivity (was the group 

goal reached?). 

Their findings reveal yet again the complexity of the CSCML environment. These 

includes the influence of the form of individual involvement on the nature of the 

discussion taking place, on role-taking (pupils adopting a specific role for the remainder 

of the group work), and eventually on learning. This involvement includes not only 

learner-learner but also learner-computer interaction (typing, encoding, etc.) (Pozzi, 
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Hoyles & Healy, 1992). They also found consistent patterns of working across tasks and 

software (these findings differ from other research findings (Hoyles, Healy & Sutherland, 

1991)). The same pupil took on the role of pupil-teacher across the three tasks. Effective 

groups were characterised by the emergence of a synergy between structured pupil 

interdependence and pupil autonomy - a sharing of responsibility for successful task 

completion but a sharing in ways attainable by every pupil in the group (Hoyles, Healy & 

Pozzi, 1992:254). The task structure allowed students to structure a system of 

interdependence, and the software allowed pupils to construct and develop their own 

ideas. Furthermore, a good group outcome seems to be associated with the emergence of 

a pupil-teacher who is accepted by the group members. The pupil-teacher needs to 

manage group activities and to have access to relevant mathematics knowledge and 

software skills. A minimum amount of mutual respect and willingness to co-operate is 

important for co-operative learning to take place. In contrast to other research, this study 

did not indicate significant influences of gender differences, previous co-operative 

experiences and software experiences. The only significant influence was that of age 

difference. Older children ( over 10 years old) managed the complexity of the task, the 

computer and human resources better than the younger children. 

Hoyles, Healy & Pozzi (1994) summarise unsuccessful and successful group settings in 

Figure 3.3 and Figure 3.4 respectively. 

In another research study titled 'The role of peer group discussion in Mathematics 

Environments', processes whereby pairs of pupils came to make mathematical 

generalisations were analysed (Hoyles, Healy & Sutherland, 1991 ). Interaction in 

computer and non-computer contexts were contrasted. Pairs of pupils worked in three 

environments, Logo, spreadsheet, and paper and pencil. All the tasks involved the 

construction and formalisation of mathematics generalisations. Hoyles et al. (1991) 

found that the Logo environment and Logo language itself assisted in the generalising 

process in contrast to the other two environments. Also, formalisation took on an 

important role in computer environments in contrast to the paper-pencil environments. 
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Initial reluctance to work together/ prior inter-personal hostility 

1 
Competitive subgroups/Outcome orientation 

Computer interaction 
dominated by high 
status pupils 
(directors) 

Computer centrism and 
little negotiation away 
from the computer 

Figure 3.3 

Disruptive 
behaviour 

Unsuccessful group settings 

(Source: Hoyles, Healy & Pozzi, 1994:213) 

No interpersonal antagonism. 

Maturity to manage task together. 

I 
Collaborative working style/pupil co-ordinator 

Shared 
responsibility for 
task completion 

Sense of 
ownership over 
computer-based 
constructions 

Figure 3.4 

Successful group settings 

Negotiated 
interaction about 
results of computer 
interaction 

(Source: Hoyles, Healy & Pozzi, 1994:213) 
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This could be ascribed to the necessity of providing formal representations m the 

computer environment. They also found that in both computer environments, the same 

person who adopted the exclusive role of encoder, also dominated the keyboard. In the 

paper-pencil environment, more so than in the computer environment, pupils seem to be 

more likely to share in the generalisation process. 

IT support to co-operative learning 

Most of the software and technologies available for use in mathematics education 

discussed in par. 3.3.3.2, are used in groups. However, the research studies reporting on 

these uses, focus on the software and its effect on learning rather than group processes. 

Kafai and Harel (1991) conceptualise collaboration somewhat differently from the usual 

way within their framework of ISPD (discussed in par. 3.3.3.3). Instead of groups 

working towards a group goal, all students have a common goal ( to construct screens to 

explain difficult concepts of fractions to a lower grade peer). They work individually but 

are allowed to form partnerships on all or selected aspects of the task. 

One way in which CAS is used in group work, is in the calculus laboratories. This 

concept resulted from calculus reform attempts where questions were asked about the 

active involvement of students in conceptual learning. This is a laboratory where 

observation, identification, experimental investigation, analysis and explanation take 

place. CAS assists in the investigation process. Students work with partners and have to 

hand in a report. There are quite a few manuals available on the use of Maple, Derive 

and Mathematica in the laboratory (Leinbach, 1992). 

Clements and Nastassi (1991) conducted three separate studies in which students were 

observed working in pairs in Logo and Computer Assisted Instruction (CAI) 

environments. Behaviours reflecting conflict and its resolution were identified and 

observed. They found that peer interaction that is focused on learning and problem 

solving, is more likely to take place in Logo environments than in more traditional 
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environments ( e.g. CAI drills). Logo facilitated engagement m conflict resolution 

strategies and interpersonal co-ordination of divergent ideas. CAI on the other hand, 

structures the problem, solution process and interaction. Thus, the responses of students 

are not necessarily built on those of others. 

Roschelle and Teasly (1995) emphasise the inherent fragility of the collaborative learning 

process - for learning to take place, individuals must make a conscious effort to produce 

shared knowledge. They believe that the most important resource for co-operative 

learning is talk. Collaborators use the overall tum-taking structure of talk, narration, 

questions, socially-distributed productions and repairs to enhance mutual understanding 

(Roschelle & Teasly, 1995:94). Roschelle et al. see computer support to co-operative 

learning as a resource that mediates collaboration. By conducting studies on teaching 

physics through the use of the Envisioning Machine, they identified several important 

support functions provided by the computer to co-operation: 

• The computer is a means for disambiguating language by providing precise technical 

vocabulary, 

• The computer mediates the resolving of impasses - students resolve their differences 

by trying out ideas on the computer to see what works, 

• The computer invites and constrains students' interpretations - e.g. the display of the 

Envisioning Machine was designed to suggest appropriate interpretation but also 

constrains interpretation because it behaves according to Newtonian physics. 

Other collaborative technologies are specifically designed to assist co-operative learning. 

For example, The Color Matcher, is a game designed to foster the ability to manipulate 

numerical variables in co-operation with other students so as to achieve a definite goal 

(Denning & Smith, 1997). The software and hardware are designed to encourage 

individual accountability and positive interdependence necessary to ensure academic 

gams. 
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Croisy, Clement and Barme (1994) built a multimedia environment for mathematics 

education. One of the four prototypes called RTMConf provides students with an 

integrated learning environment. Students have to solve a mathematical problem using 

different tools of the RTMConf which include public window, telepointer, opinion 

collector, time manager, audio tool and welcomer tool. They communicate through PC 

stations connected to a server which includes an audio channel. There are four sites (with 

four students at each site) and one teacher site. 

J ehng, Shih, Liang and Chan ( 1994) developed a computerised learning environment 

called Turtlegraph to support co-operative geometry problem solving. Since knowledge 

sharing plays an important role in problem solving, the designers decided that the co­

operative learning environment must be designed to enable group members to 

communicate and share their ideas effectively. Students sit individually at PCs and can 

communicate with peers or the computer via the software learning environment. It 

consists of different instructional areas: control panel, dialogue recorder, program editor, 

listener and Turtle window. The control panel has two buttons: the communication 

button and system button. When in need of help from peers, the communication button is 

pressed which activates all the communication buttons and collaboration can then take 

place. 

It is clear that there are various features that influence the CSCML process and that these 

factors can be combined in numerous ways in research studies. Bannon (1995) lists a few 

features that play a role: 

• the nature of the task, 

• the nature of collaborators (peers, teacher-student, student-computer), 

• the number of collaborators, 

• the previous shared experiences between collaborators, 

• the motivation for co-operation (intrinsic, money, etc.), 

• the physical environment, 
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• the conditions of collaboration (computer-mediated, etc.), and 

• the time-period of co-operation. 

3.4.6 Obstacles to CSCL 

Dockterman (1991) lists a few obstacles to co-operative learning and how it can be 

overcome by introducing the computer to the process (par. 3.2.7). Most of the obstacles 

to CSCL have to do with the incompatibility of the teaching styles called for by CSCL 

and the styles used in current teaching (Newman, 1995): 

• Time frame: The impact of the CSCL process on students' achievement is cumulative 

and realised over longer periods of time (Alavi, 1994; Hooper & Hannafin, 1988). 

• Curriculum: Effective CSCL sometimes implies decompartmentalisation of the 

curriculum of the school (Newman, 1995). 

• Location: CSCL implies the distribution of workstations among classrooms rather 

than centralising them in the traditional computer laboratory. 

• Evaluation: Usual evaluation procedures fail to capture the complexity of the co­

operative learning process. 

Bannon (1995) expresses his concern over the gap between available technologies and 

what can be expected to work in an ordinary educational setting. He found that in the 

course of his research study, much of the time was spent in overcoming technical 

problems regarding response time and interface issues. 

3.4. 7 The design of the CSCL and CSCML environment 

Salomon (1992) emphasises the complexity of the co-operative learning process and 

points out that in his experience, success of co-operative teams in terms of learning 
) 

outcomes and true collaboration are rare. A reason for this is the lack of genuine 

interdependence. He argues that the ' . . . whole learning environment, not just the 
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computer program or tool, be designed as a well orchestrated whole. ' (Salomon, 

1992:64). 

The same principles as for the design of the co-operative learning environment, are 

applicable to the design of the CSCL and CSCML environments. The essential 

components discussed in par. 3.2.3 should be incorporated in the design. 

McConnel (1994) raises several questions that should be asked m the process of 

designing the CSCL environment: 

• How can the learners be encouraged to be active, to take control of their own learning, 

to contribute to the learning of the group, and to participate in the design, assessment 

and evaluation? 

• What kind of learning is being designed for? 

• What kind of knowledge are we trying to encourage and explore? 

• What kind of educational philosophy are we involved in? 

From the discussions on research in co-operative mathematics learning and computer­

supported co-operative mathematics learning, it is clear that co-operative learning 

enhances the learning of certain mathematical knowledge. For example, problem solving 

activities seem particularly suitable for group exploration. Also, co-operative learning 

may not be significantly better than traditional methods for acquiring skills and facts not 

involving complex skills. Hoyles, Healy and Pozzi (1992) identify the difference between 

co-operative learning in mathematics and other subjects as the importance in the task 

solution process of clarifying and articulating what the problem space is and developing a 

language to describe it. The designer of the CSCML environment should keep these 

aspects in mind in the design process. 

McConnell (1994) mentions six important aspects of CSCL design: 

• Openness in the educational process - learners should feel free to make decisions 

about their learning and to exercise their choices. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 3: CSCML 13 8 --=----------------------------------

• Self-determined learning - learners should become aware of how they learn through 

interaction with other learners. 

• A real purpose in the co-operative activity - this is often best achieved through a 

problem-centred approach. 

• A supportive learning environment - through interaction, learners need to encourage 

and facilitate each others' efforts. 

• Collaborative assessment of learning - learners should have an important part to play 

in assessing each others, and their own, work. 

• Evaluation of the ongoing learning process - this must be done by both the learners 

and the tutor and must be characterised by a real willingness to change. 

CSCL is a new and untested area of research and there are no definite answers to 

questions regarding design (McConnel, 1994). O'Malley (1995) affirms this and 

identifies the need for an agreed framework for comparing and contrasting research on 

CSCL which might provide guidelines or principles for design. 

De Villiers (1995) developed a theoretical framework for CSCL in an attempt to 

contribute to the understanding of the CSCL environment as a whole. She developed a 

generic model for CSCL and refined this using results from case studies and the 

structuration and adaptive structuration theories of Giddens' and DeSanctis and Poole 

respectively. This theoretical framework will be discussed in greater length in par. 5.3.3. 

3.4.8 Summary 

This section introduces CSCML as an organisational structure based on CL principles in 

which groups of students pursue mathematical academic goals through collaborative 

efforts supported by the instructional use ofIT. Since some of the research on CSCML 

and CSCL overlaps, this section starts by defining CSCL and discussing some reasons for 

the use of IT in CL environments (par. 3.4.2). Not only does CL present a cost-efficient 

alternative to individual computer-based instruction, but the computer also seems to 
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sustain social interaction. The application of findings from research on CSCW is 

believed to have important advantages for CSCL (par. 3.4.2.1). Technologies used in 

CSCW are also used in CSCL ( e.g. Group Decision Support Systems, Computer 

Mediated Communication). Other technologies include CAI, hypermedia and multimedia 

(par. 3.4.4). 

Some relevant research studies on CSCML are discussed. They range from studies on 

the effect of heterogeneous/homogeneous grouping on the gaining of complex learning 

skills, to studies contrasting mathematical interaction in computer and non-computer 

contexts, and studies contrasting mathematics learning supported by different software. 

Other studies reflect on the development of appropriate software to assist the co-operative 

mathematics learning process (par. 3.4.5). 

This section also discusses implementation and integration problems with respect to 

CSCML (par. 3.4.6 and 3.4.7). Quite a few obstacles and problems are noted, most of 

which stem from the difference between the teaching styles called for by CSCL and the 

styles used in traditional teaching. Other problems are caused by ineffective design 

(mostly a lack of genuine interdependence) and uninformed teachers. The teacher is seen 

as playing a crucial role in the design of the learning environment. Salomon (1992:64) 

warns teachers that this learning environment should be designed as a ' . . . well 

orchestrated whole. '. 

3.5 Conclusion 

A number of researchers identified variables that play a role in the CSCML learning 

environment (Bannon, 1995; Good et al., 1992). In an encompassing study done by 

Hoyles et al. (1994), variables were grouped into background-, process- and outcome­

variables (par. 3.4.5). Their work provides valuable remarks on the characteristics of 

successful groups, the role of pupil-teachers and task structure. Although researchers in 

general realise the interdependence of the different features or variables, no attempt has 
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been made yet to describe this interdependence. Variables are at most paired or grouped 

and then investigated. 

O'Malley (1995) identifies a need for an agreed framework for companng and 

contrasting research on CSCL which might provide guidelines or principles for design. 

Good et al. (1992) identify a similar need for the mathematics co-operative learning 

environment. No such framework exists for the CML or CSCML environments. This 

study addresses this need by developing a theoretical framework for CSCML which will 

be presented in Chapter 5. 

The next chapter reports two case studies, of which the design and execution were guided 

by the model for the learning of mathematics developed in chapter 2 and by the research 

findings presented in this chapter. The findings of the case studies are then used to 

enhance the model in Chapter 2 to a theoretical framework for CSCML. The 

shortcomings of this model are pointed out and addressed in Chapter 5 by the 

development of a final model for CSCML. 
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4.1 Introduction 

Chapter 4 

Case studies 

This chapter describes two case studies that were designed and conducted, guided by the 

model for mathematics learning developed in Chapter 2 and the research findings 

presented in Chapter 3. The first case study was directed at mathematics teachers and 

formed part of a greater project which is described in par. 4.2.1. The other case study 

involved undergraduate Linear Algebra students. 

Data were collected through questionnaires, observation lists, tests and tape and video 

recordings. The video tapes were subsequently transcribed and are available as two 

documents (Transcripts A and B, available from the author). The theoretical framework 

for mathematics learning discussed in par. 2.5 is generic in the sense that it does not 

provide for computer support to mathematics learning or the implementation of co­

operative learning techniques. The findings from these two case studies and the results 

from other similar experiments in the literature ( discussed in Chapter 3) were used to 

refine the model in par. 2.5 to provide for the computer-supported co-operative 

mathematics learning environment (par. 4.3.9). This enhanced model is criticised and 

improved in Chapter 5 using Giddens' structuration theory. 
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4.2 Case study: The development of computer supported co-operative 

mathematics learning at community learning centres 

4.2.1 Background 

The South African government has decided to implement a new education policy 

generally referred to as Curriculum 2005. This is a learner centred approach based on the 

principles of outcomes based education (QBE). It requires lecturers and students to focus 

their attention and efforts on the desired end results of education. Eight learning areas are 

defined and broken down into specific outcomes for classroom practice. Seven critical 

outcomes underpin changes in the new curriculum and feed into each of the eight learning 

areas. The seven critical outcomes include the ability to work effectively with others in 

groups as well as the ability to use science and technology effectively. 

The Departments of Didactics, Informatics, Electrical and Electronic Engineering of the 

University of Pretoria have initiated a project that hopes to address the problems in 

Science and Mathematics Education in South Africa. Based on the principles of QBE, it 

plans to facilitate computer-supported co-operative learning at community learning 

centres, through the development of a model to support teacher education, using 

interactive television and educational technology. 

The focus of this case study is on a part of the overall project, namely the development 

and deployment of Computer Supported Co-operative Mathematics Leaming (CSCML) 

at community learning centres, with the emphasis on teachers. The pilot learning 

community centre will be established at SEIDET's community learning centre 

(Siyabuswa Education Improvement and Development Trust). SEIDET is a non-profit, 

non-governmental based education improvement institution and a registered development 

trust that was established at Siyabuswa (100 km north-east from Pretoria) in 1992. 
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The main objective of this project is the establishment of a computer-supported co­

operative learning (CSCL) environment at the SEIDET community centre at Siyabuswa 

to complement the current teaching of subject areas such as Science, Mathematics, 

English and Biology ( other subject areas are not excluded). 

Ultimately, the goal is to establish several such community learning centres in rural South 

Africa where CSCL could form part of the available infrastructure. In order to achieve 

this, the (pilot) project at Siyabuswa will be utilised as a feasibility study to develop 

implementation plans for further rural learning centres. 

The overall project is expected to last until December 2000. A concern of the project is 

the sustainability of the community learning centres that were created. The focus is on 

existing community centres and the proper training of persons involved in the operation 

of the centres. 

With the first phases of the project completed the focus is now on the establishment of an 

extended and fully equipped computer laboratory at SEIDET centre, the continuation of 

in-service education of teachers, and the establishment of computer-supported co­

operative distance learning environments through interactive television. 

The completed part of the project involved laying the foundation for CSCML 

environments by introducing and practising the fundamental concepts related to co­

operative learning (CL) and computer support to mathematics learning through contact 

tuition. The work was conducted as a case study and is described below. 

4.2.2 The learners 

The research group consisted of six male mathematics teachers, all teaching and living in 

the rural areas of South Africa near Siyabuswa in Mpumalanga. The case study was 

conducted in co-operation with SEIDET at their centre in Siyabuswa. The teachers 
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participated voluntary in the case study on Saturday afternoons from 14:00 to 17:00. 

They were divided into three permanent groups of two each. However, this was changed 

in sessions 5, 6 and 7 when one of the teachers was absent. 

4.2.3 Outline of the procedure 

The work was distributed over nine sessions in the following way: 

Session 1: An introductory and group building session where expectations of the course 

were discussed. 

Session 2: A lecture session on the definition, elements and methods of CL as well as a 

hands-on experience of the application of CL in the mathematics classroom. 

Sessions 3 and 4: Computer literacy teaching through CL methods using MSWord. 

Session 5: Individual testing of teachers on MS Word and introduction to mathematical 

software. 

Sessions 6 and 7: Teachers doing CSCML lessons. 

Sessions 8 and 9: Teachers developed and presented their own CSCML lessons. 

4.2.4 The content and materials used 

The mathematical content of the lessons in sessions 2, 6 and 7 was built around 

quadrilaterals. The quadrilaterals included the six well-known ones (trapezium, 

parallelogram, rectangle, square, rhombus and the kite) as well as newly defined cyclic 

quadrilaterals. The lessons (worksheets) were developed using the ideas of De Villiers 

(1995) and curriculum material developed by Key Curriculum Press, accompanying the 

software. The worksheets are given in Appendix A. The mathematical software used in 

sessions 5 to 9 was a geometry package called The Geometer's Sketchpad. 
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4.2.5 The objectives 

Two main objectives were defined: 

At the end of the programme, teachers should be able to 

1. show an understanding of the principles and techniques of co-operative learning and 

of the use of the particular software by being able to apply it in the development and 

conducting of a CSCML lesson; and 

2. show an understanding of the definitions ( and properties) of the trapezium, rectangle, 

square, parallelogram, kite, rhombus, cyclic quadrilateral, cyclic kite and cyclic 

trapezium, by being able to relate them in the form of a family tree. 

4.2.6 The procedure 

Session 1: Group building exercise 

The researchers used two lecturers from the Department of Didactics to do a group 

building exercise with the teachers and to introduce them to the importance of the concept 

of co-operative learning in the new education policy that will be introduced into the 

South African educational system from 1998. This opportunity was also used to discuss 

the expectations of the course. It was clear that most teachers expected an emphasis and 

focus on the role of the computer in mathematics education. Computer literacy and how 

to design computer supported mathematics lessons were also mentioned as expectations. 

Session 2: Co-operative learning 

The second sess10n was spent g1vmg a lecture to the teachers on CL covenng the 

definition of CL, elements of CL and different co-operative learning methods. The 

teachers were then asked to develop a vague CL lesson plan to revise the properties of the 

six familiar quadrilaterals. This was discussed and improved on in their groups. The 

teachers then had a chance to practice the concepts of CL by doing a CL mathematics 
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lesson. The Jigsaw method was used and two expert groups were formed who 

investigated the properties of different quadrilaterals through tessellation with triangles. 

The experts also had to discuss the correctness or otherwise of an example of a family 

tree relating only a few of the quadrilaterals. After that the experts joined their groups and 

had to complete a table of properties of the six quadrilaterals: trapezium, parallelogram, 

rectangle, square, rhombus and the kite. The teachers then had to identify the different 

elements of CL in the lesson and give their input on how to improve it. 

Session 3: Computer literacy 

On the third Saturday a short introduction to the computer was given to the teachers, 

telling them about the components of the computer. They were then divided into groups 

of two each and had to work through two computer-based training (CBT) lessons 

developed by the University of South Africa. The lessons dealt with the use of the mouse 

and the keyboard, as well as general word processing. 

Session 4: Word processing 

An adaptation of the Jigsaw method was chosen as the co-operative learning method to 

teach the teachers something about word processing using MSWord. 

Session 5: Testing of word processing skills and introduction to mathematics 

software 

An assignment was given to each teacher to complete individually on MSWord. The 

purpose of this exercise was to determine whether they had really learnt something during 

the co-operative learning sessions. All six teachers received full marks for this 

assignment and had showed that they accomplished the objectives that the researchers 

had set out at the beginning of the case study. 
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The teachers were then introduced to The Geometer's Sketchpad by working through 

tutorials. The software is best described as an electronic compass, pencil and straight­

edge with additional commands that allow translation, rotation and dilation. Measuring 

and graphing are possible which makes it suitable to do analytical geometry. Also, 

scripts (recordings) can be made of complicated sketches which extend the capabilities of 

the software. But most of all, by clicking and dragging, constructed relationships remain 

valid and geometry becomes dynamic (The Geometer's Sketchpad, Guide and Reference 

Manual, Key Curriculum Press, 1995). 

Sessions 6 and 7: Teachers doing a CSCML lesson 

Again, the Jigsaw method was used as the CL method. Each member of the group is 

given unique information on a subject which is then discussed with their counterparts in 

the other groups (Johnson & Johnson, 1991 ). The following describes the lesson 

according to the steps necessary for the successful implementation of the Jigsaw method. 

1. Divide into groups and do group building exercises. As described in session 1, one 

afternoon was spent on this and the researchers used the same groups for the word 

processing part of the case study. 

2. Explain to the student the idea of group work. Session 2 covered the lecture on co­

operative learning that was given to the teachers before the process of computer 

literacy was started. At this point an explanation was given to the teachers about the 

Jigsaw method. 

3. Explain the goal and task. The teachers received an envelope with learning materials 

and worksheets. The first page explained the overall goal, viz. Draw a family tree to 

show the relation between the following quadrilaterals: trapezium, rectangle, square, 

parallelogram, kite, rhombus, cyclic quadrilateral, cyclic kite and cyclic trapezium. It 

was explained to the teachers that in order to solve this problem, a deep knowledge of 

the properties and definitions of the different quadrilaterals was crucial. To acquire 

this knowledge, several activities were included in the lesson (see Appendix A, I): 

• Each member of the group had to join an expert group to revise the properties of 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 4: Case Studies 148 --=---------------------------------

the first six quadrilaterals mentioned in the given problem. One expert group 

investigated the properties of the rectangle, kite and parallelogram, and the other 

expert group the properties of the rectangle, rhombus and square. These tasks 

were designed around the mathematics software (see Appendix A, II). 

• After returning to their original groups, they had to read and discuss an extract of 

a document, 'A Classroom Episode' (De Villiers, 1996), which captures the 

discussion in a classroom where students are working on a similar task. 

• Then they had to work on a worksheet ( again involving the mathematics software) 

on cyclic quadrilaterals to investigate the properties of the different cyclic 

quadrilaterals, after which they were ready to draw the family tree ( see Appendix 

A, III). 

4. Design special curriculum materials so that each member of the group has a unique 

source that can be used independently of other sources. The two experts in their 

original groups had material on different quadrilaterals and could share their 

knowledge on the properties of those specific quadrilaterals in solving the problem. 

5. Use instructional material to promote interdependence among students. Each group 

had only one computer to work on and only one copy of the worksheets. In the expert 

groups each member received a copy of the worksheet to take back to his home group. 

6. Assess the students' work. The completed worksheets on cyclic quadrilaterals and 

the family tree were used to evaluate the teachers. 

7. Final assessment: This was done by means of an individual assignment (see 

Appendix A, IV). 

8. Assess group functioning. This was done through ongoing observation while the 

groups were busy with the course, as well as through the completion of a 

questionnaire by each individual at the end of the course. 

The five basic elements of co-operative learning were implemented in the following 

ways: 

a. Positive goal interdependence, which occurs when learners undertake a group task 

with a feeling of mutuality. This was achieved by having the group produce a 
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single solution to the given problem. They also had to complete a single 

worksheet on cyclic quadrilaterals. 

b. Face-to-face promotive interaction, which occurs when a verbal interchange takes 

place where learners explain how they obtained an answer or how a problem may 

be solved. The experts in the group had to explain to each other what they know. 

Also, by doing the given task as a group, group members gave their input and 

suggestions. 

c. Individual accountability, which means taking responsibility for learning material. 

An individual test was given at the end of the course. This test focused on the one 

hand, on the ability to formally prove findings that were discovered and, on the 

other, the use of the software to investigate certain concepts. 

d. Social skills, which involve knowing how to communicate effectively and how to 

develop respect and trust within a group. By this time the group members knew 

each other and certain group habits were formed. One group in particular had the 

problem of a dominating member which hampered effective communication. 

e. Group processing to reflect on how well the group is working and to analyse their 

effectiveness and how it may be improved. Although the behaviour of the groups 

was monitored, the researchers only discovered a malfunctioning group when it 

started to work on difficult concepts. Up to that point, the other group members 

accepted the leadership of the 'natural' leader. When it came to the difficult 

concepts, it was clear that some of the other members would have been better 

leaders in deciding on strategies. By this time, however, group habits were set 

and the intervention of the researchers had little effect. This led to frustration and 

a less satisfactory solution to the given mathematics problem, which was reflected 

in the questionnaire. 

Sessions 8 and 9: Teachers developed and presented their own CSCML lessons 

The teachers were given copies of examples of lessons usmg the software from 

'Exploring Geometry with The Geometer's Sketchpad' - D. Bennet. They now had to 
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design a CSCML lesson in their groups using these examples to be presented (by the 

group) to the other groups at the next session. 

In designing the lesson they had to keep in mind content, materials needed, learning 

objectives, procedure, evaluation, how to use the software, which CL method to use, and 

how to incorporate the basic elements of CL. After presenting the lessons the members 

of each group had to evaluate themselves and were also evaluated by their peers. This 

was done by means of evaluation lists ( see Appendix A, V). 

4.2. 7 Results of the questionnaires 

Two questionnaires were given to the teachers. The first questionnaire focused on co­

operative learning, the use of computer-based training and MSWord. The second 

questionnaire focused on CSCML. 

4.2. 7.1 Questionnaire on CL, CBT and computer literacy 

A total of 6 questionnaires completed by the teachers were evaluated. The following 

scale was used in the questionnaire: 

4 Always / Definitely 
3 Frequently I Nearly almost 
2 Occasionally / Seldom 
1 Never 

The results were as follows (because of the small sample, the statistical analysis includes 
only the averages): 
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PART A 

Al 

A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

AlO 

QUESTIONS ON THE STUDENT'S BEHAVIOUR IN A GROUP 

I offer facts and relevant information in order to promote group discussion. 

I give my opinions and ideas and provide suggestions in order to promote group 
discussion. 

I express my willingness to co-operate with other group members. 

I ex ect other grou members to be co-o erative. 

I give support to group members who are struggling to express themselves 
intellectually. 

Average 

3.5 

3.16 

4 

3.3 

3.8 

1.7 
I evaluate the contributions of other group members in terms of whether their 2.8 
contributions are useful to me and whether they are right or wrong. 

I take risks in expressing new ideas and my current feelings during group 
discussion. 

I communicate to other group members that I am aware of, and appreciate, their 3. 7 
abilities, talents, skills and resources. 

I share any sources of information or other sources I have with the group 4 
members in order to promote the success of the individual members as well as 
the group as a whole. 

All I offer help to anyone in the group in order to bring up the performance of 3.8 
everyone. 

PARTB 

Bl 

B2 

B3 

B4 

B5 

B6 

QUESTIONS ON THE LEVEL OF ACCEPTANCE OF THE 
STUDENT AS A GROUP MEMBER 

- -
My fellow group members are completely honest with me. 

M fellow group members understand what I am trying to communicate. 

My fellow group members accept me just the way I am. 

Average 

3.5 

3.5 

3.7 

3.7 

My fellow group members include me in what they are doing. 4 .....-.----My fellow group members value me as a person, apart from my skills or 4 
status. 
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PARTC 

Cl 

C2 

C3 

C4 

C5 

C6 

C7 

C8 

PARTD 

D1 

D2 

D3 

D4 
D5 

D6 

D7 

D8 
D9 

D10 

D11 

D12 

PARTE: 

QUESTIONS ON GROUP COHESION Average 

I try to make sure that everyone enjoys being a member of a group. 3.8 ------1 discuss my ioeas, feelings and reactions to what is currently taking place 3.8 
within the grou . 
I express acceptance and support when other members disclose their ideas, 3.8 
feelings and reactions to what is currently taking place in the group. 

I ~ to make all members feel valued and a reciated. ...3_._5 __ __. 

I try to include other members in group activities. 3.8 -----1 tak:e risks in expressi new ideas and m current feelings. 2.8 ____ ..... 
I express liking, affection, concern for other members. 3.3 -~---I encourage · rou norms that su ort individuality and personal e?q>ression. _3_._7 __ __. 

QUESTIONS ON GROUP WORK IN GENERAL Average 

3.8 

4 

The group motivated me to do my share of the work. 3.5 

The rou work hel ed me understana. the stud material better. ....3.,,...._""""7 ......... --

I learned to co-operate with other students. 3. 7 _,,___,,_ __ _ 
e grou work caused me to be e endable and do m assi~ent. 3.0 -----It was fun working in a group. 3.5 -----In the · rou I got the benefit of everyone's ideas. 3 .3 ____ ..... 

I got help from group members with problems. 3.5 
The work got done faster and more work was done. _3 ____ 5 __ _ 

The group work gave me an opportunity to talk and discuss the study 3.7 
material. 

e rou work macte the stud material more interesting. 3.8 -----

QUESTIONS ON SELF-DEVELOPMENT 

E.1 I have worked in groups before. 

r----- _ ---,----- _ ----7 
1 

YES -4 
1 

NO - 2 
1 

I __________ I __________ I 

E.2 I would have liked to choose my own group members. 
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r----- _ ----r----- _ ----7 
1 

YES - 2 
1 

NO - 4 1 
I __________ I __________ I 

E.3 Why do you think group work was introduced in this course? 

Some of the comments were: 

It is a trend in South African education to introduce co-operative learning. 
To share ideas and information with other people. 
To find out how other people think and learn from them. 

To show that it is easier to accomplish a task if you work with other people. 

E.4 What do you like about working in groups? 

Work becomes less burdensome. 
It is fun. 
Other group members help you to solve your problem. 
Communication and social skills are developed. 
Expression of support and acceptance within the group. 

E.5 What don't you like about working in groups? 

Some group members are not committed enough. 
It takes time to get a chance to work on the computer. 
When one group member wants to dominate the group. 
It can be time consuming if the group does not agree on an issue. 
Lack of respect for other people's ideas. 

E.6 Do you think this experiment with group work was successful? Give reasons for 
your answer. 

Yes, because the participants were happy and felt they have learnt something. 
Yes, because help was available from other group members. 
Yes, because we managed a lot of skills in a short period of time. 

E.7 Would you like group work to be introduced in your school to teach children? 
Give reasons for your answer and if yes, in which subjects? 

Children are able to learn from one another. 
Leaming becomes fun and enjoyable. 
Children can share their experiences. 
More skills are taught at one time. 
Group work will develop pupils as a whole, academic as well as social skills. 
Will develop problem solving skills. 

Subjects mentioned are Mathematics and Science. 

E.8 Explain what you liked about the computer-assisted instruction (keyboard and 
word processing) and what you didn't like. 
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The teachers liked the following: 

Challenging and inspiring. 
Accuracy, time saving and neatness of the lessons. 
Liked it as a first exposure to the computer. 

They didn't like: 

The time allocated for this part of the case study was too short. 

E.9 Do you think computers can be used successfully m groups as opposed to 
individual instruction? Motivate your answer. 

Groups can cover a lot of work in a small space or time. 
Members of a group are encouraged by the other members to continue. 
Yes, provided there is a facilitator available to help with problems. 
Not necessarily - the two methods must supplement each other. 

E. l 0 What do you think will be the advantages and/or disadvantages of usmg 
computer-supported group work in a school environment? 

Disadvantages: 

Advantages: 

Financial implications. 
Time constraints in the classroom. 
Unco-operative pupils may hinder the group progress. 
Lack of skills on the part of the teachers can be a problem. 

Numerous advantages were listed as above (E.4, E.8, E.9). 

4.2. 7 .2 Questionnaire on CSCML 

The five completed questionnaires were evaluated. The same scale was used as in the 

questionnaire discussed above. 

PARTS AA AND BB: INHERENT BELIEFS ON THE NATURE OF MATHEMATICS 

Part AA 

Describe your view of mathematics by using a comparison. 

Teachers compared mathematics to games, a riddle, building a house and a toolbox. 

Part BB 
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Prioritise the following descriptions of mathematics: 

The creation and study of abstract structures and objects. 
Logic, rigor and accuracy. 
A kind of language, a set of notations and symbols. 
A way of understanding and predicting real life phenomena. 
Reduction of complexity to simplicity. 
Problem solving. 
The study of patterns. 
Exploration, observation and generalisation. 
An art, a creative activity. 
A tool for other sciences. 

155 

Four out of the five students chose mathematics to be a kind of language, a set of 
notations and symbols characterised by logic, rigor and accuracy. Only one saw it as 
primarily a problem solving activity. 

PARTS CC AND DD: CO-OPERATIVE MATHEMATICS LEARNING 

Part CC 

CC 1. Name the aspects you liked most working in groups doing mathematics. 

It creates opportunity for constructive arguments and positive conflict. 
A variety of ideas are shared. 
It encourages participation and promotes discussion. 

CC2. Name the aspects you did not like working in groups doing mathematics. 

It is time consuming ( because of discussions and arguments). 
The group is sometimes dominated by one person. 
Unco-operative group members hamper group work. 
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Part DD Average 

DDl I give my opinions and ideas when I disagree with the group members. 3.8 

4 DD2 

DD3 The other group members ask me to explain and justify my ideas when I disagree 4 
with them. 

DD4 

DDS 

DD6 
DD7 

DD8 
DD9 
DDl0 

I sometimes laiow wliat the answer is, but I find it difficult to say it (to verbalis~ 
it). 

I think it is not necessary to verbalise my ideas. 

Once I have verbalised m ideas, it is as ifl understand it better. 

The group members help me to verbalise my ideas. 

The other grou2 members correct me if I am wrong. 

I could have done the same problem much quicker on my own. 

I could have done the same ro lem much easier on my own. 

PARTS EE, FF AND GG: COMPUTER SUPPORT TO CO-OPERATIVE 
MATHEMATICS LEARNING 

Part EE 

EEL Name the aspects you liked most doing mathematics using computers. 

The computer is fast and accurate in drawing, measuring and labelling. 
Sketches can be saved for later use. 
It is fun. 
Instant feedback is given. 
Constructions are made fast (e.g. parallel lines, perpendicular lines, etc.). 

EE2. Name the aspects you did not like doing mathematics using computers. 

If you do not know the software well, it is difficult and time consuming to make drawings. 
On choosing the wrong tool, no feedback is given to correct that. 
It does all the thinking, you do not have to think. 

2 

3.4 

2.2 

2.2 
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Part FF Average 

FFl My view of mathematics has changed. 2.5 

FF2 -~--The software hel ed me to understand the study material etter. ._3_._8 __ ..... 

FF3 Working with the software helped me to formulate my ideas. 3 

FF4 -~--3.2 

FF5 Working with the software helped me to visualise possible solutions to the 3.6 
problem. 

FF6 M intuitive ideas were confirmed b using the software. _3-._8 __ __. 
FF7 The same lesson could be done as effectively without the software. 2.2 

FF8 It would have been easier to do the roblems inoiv1duall usin the com uter. - i-_--4 __ _ 

FF9 I realised that my solution was correct if it was approved by the teacher. 2.2 

Part GG 

GG 1. Explain your answer to question FF2. 

The following ideas were mentioned: 
The software helped me to understand the study material better because: 
of its speed and accuracy, 
I could investigate and discover properties from constructions, 
it confirmed my intuition, e.g. it gave values as I predicted. 

GG2. What skills do you need to solve problems? 

Basic knowledge (know your tools, know the basics). 
The ability to think analytically. 
The ability to see patterns and relationships. 

GG3. In what way did the use of the software aid you in solving the problems? 

Relationships could be observed and generalisations could be made. 
One could draw diagrams. 
It confirmed suspicions and intuitions. 
Deductive thinking skills were improved. 

4.2. 7.3 Analysis of questionnaires 

An analysis of the completed questionnaires reveals the following points: 

1. A sense of enjoyment (D2, D7, E4, E7, EE 1 ). 

2. A sense of belonging, trust, support and mutual respect (AS, A9, All, Bl, B2, B3, 

B4, BS, B6, C 1, C3, C4, C7, E4, E6). 
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3. A willingness to co-operate and to ask for co-operation (A3, A4, C5, C8, C2, D3, D5, 

D9). 

4. The offering of explanations, justifications and opinions, and the willingness to listen 

to each other's arguments and to adapt own views (Al, A2, AlO, D8, Dll, E4, DDl, 

DD2, DD3, DDS). 

5. A perception of CSCML as advantageous: 

• It facilitates understanding (D 1, D4, FF2, GG 1 ). 

• More work and more difficult work is done (DlO, E4, E6, DD9, DDlO). 

• More interesting work is done (Dl2). 

• The computer helps with the formulation of ideas, proving ideas, visualising, 

confirming intuitions, aiding investigation, discovery and generalisation 

(GGl, FF2, FF3, FF4, FF5, FF6). 

4.2.8 Other data collected from the case study 

4.2.8.1 Independent evaluation 

The Centre for Communication Research of the Human Sciences Research Council 

(HSRC) conducted an independent evaluation of the CSCML training at SEIDET. The 

evaluation showed that all the teachers involved consider The Geometer's Sketchpad to 

be useful and indicated a willingness to use it in their classrooms provided that they have 

computer facilities. However, some teachers expressed their concern about the 

effectiveness of CL methods in classes that are too big. 

4.2.8.2 Worksheets (sessions 6 and 7) 

De Villiers (1997) distinguishes between uneconomical and economical mathematical 

definitions. An uneconomical definition is one that gives unnecessary information, e.g. a 

rectangle is a quadrilateral with opposite sides parallel and equal, all angles 90 degrees, 

equal diagonals, half-tum symmetry, two axes of symmetry through opposite sides, and 
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so on. It also tends to be partitional, e.g. a square will not be seen as an example of a 

rhombus. This understanding is at a lower level than the level of understanding 

economical definitions. An example of an economical definition is the definition of a 

rhombus as a quadrilateral with all sides equal. This is also a hierarchical definition - it 

includes squares. The understanding of hierarchical definitions lies at the heart of 

drawing the family tree. Students are forced to think in this way to be able to draw the 

family tree. 

The worksheets of the expert groups were designed to lead the learner to the essential 

characteristics of the quadrilaterals (by using the properties to construct the quadrilaterals, 

they had to identify the minimum needed to do that). Also, in the cyclic quadrilaterals 

worksheet, pertinent questions are included to aid students to formulate hierarchical 

definitions, e.g. is a parallelogram also a cyclic quadrilateral? One group said no, 

whereas the other group answered it using the hierarchical definition - 'not always, only 

if the parallelogram is a rectangle'. Some groups thus showed an understanding of the 

hierarchical definition, although an inconsistent one (this is in line with the research done 

by De Villiers (1997)). Teachers still used partitional definitions for quadrilaterals in the 

development of the family tree. Both groups had great difficulty in drawing the family 

tree, one group especially so because of its ineffective functioning. In both cases the 

final product contained illogicalities. However, it is the belief that with time, the teachers 

would have become more fluent in this way of thinking - near the end of the session, one 

of the teachers said, 'I am not convinced yet, but I start to see the picture'. 

The individual assignments revealed yet again the partitional definitions of quadrilaterals 

but showed good abilities to prove findings formally. 

4.2.8.3 Teachers' lessons (sessions 9 and 10) 

The teachers had to develop a CSCML lesson of 40 minutes to present to the other 

groups. After each lesson they assessed themselves and were assessed by their peers (see 
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Appendix A, V). 

Group 1 

• The content was the theorem: The line joining the centre of the circle to the midpoint 

of the chord is perpendicular to the chord. After students had discovered this by 

construction and measurement, they had to apply it to find an unknown angle in a 

sketch. 

• In the lesson plan they gave the CL method as Jigsaw but did not use any of the 

principles of the Jigsaw method. 

• Self-assessment: Both teachers saw the lesson as successful because 'learners were 

able to execute the individual task successfully'. 

• Peer-assessment: They perceived the lesson as successful because 'we were able to 

prove the theorem', and because 'all benefited in the group'. They all indicated that 

they obtained new insights from the lesson. However, on answering the question 

'How was positive goal interdependence promoted in this lesson?', the teachers 

showed only a vague understanding of the 'swim, or sink together' concept: remarks 

like 'we all helped each other, students worked together', were given. This was the 

case in all three lessons. All the teachers saw the software as necessary to do the 

lesson, because of the ease of making accurate constructions, and measuring angles 

and lengths. 

Group 2 

• The content dealt with the area of parallelograms. Teachers had to discover the 

relationship between the areas of rectangles and parallelograms by using a process 

called shearing (using the drag mode of the software). 

• Practically no attention was given to the CL part of the lesson. 

• The intention of the lesson plan was that individuals from each group would explain 

their findings at the end of the period, but because of a lack of time, this did not take 
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place. 

• Self-assessment: Both teachers thought the lesson too long and the constructions too 

difficult. One teacher was of the opinion that clearer instructions would have made it 

easier. 

• Peer-assessment: On questions about the necessity of the software to the lesson, 

some teachers commented on the time-saving aspect, while another mentioned the 

new insight he got from using the software: 'I was not aware that as long as the 

polygon is having the same height and same base, that the area does not change'. 

Group 3 

• The content dealt with trigonometric ratios. Students had to discover relationships 

between the sides and angles of right triangles by dragging one of the vertices. 

• No real attention was given to CL techniques and principles. 

• Individuals of each group were asked to explain their group's findings at the end of 

the lesson. 

• Self-assessment: Both teachers perceived the lesson as successful. One of the 

teachers described the way in which the software assisted learning as 'the length of 

the side and the angles were changed without drawing new sketches'. 

• Peer-assessment: All learners perceived the lesson as successful and interesting, and 

one gave the reason as 'findings were the same as in the table'. 

4.2.8.4 Video-based analysis 

An analysis of the transcript of the video-tapes revealed the following: 

Role-taking 

Hoyles et al. (1991) mention a tendency of specific pupils to take on a role for the 

duration of the lesson. The same was noticed here. Teacher A took on the role of 
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operator in both the expert and home groups. Some teachers perceived the role of the 

operator as not part of the problem solving team: when A tried to see the worksheet, J 

reacted: 'Don't you look here, you look there' (pointing to the screen) 'and we will look 

here' (Transcript A, Tape 1,3:11). Teacher A was initially very quiet but eventually 

showed the most understanding in his home group. 

Another teacher, J1 took on the role of leader in his group. He did this by verbalising his 

ideas all the time and giving instructions to the others. This proved to be detrimental to 

the group later on, because the other members had better strategies but were each time led 

back to inefficient strategies. It was only when the facilitator (M) intervened more 

forcefully that the pattern was broken and that J1 actually listened to the others' ideas: 

M: 'Now what about a square, is a square also a cyclic trapezium, is it maybe also a cyclic kite?' 
They discuss it. A leads the discussion. 
J2: 'A square is also a cyclic trapezium.' 
A draws a line. 
M: 'What about a cyclic kite. What were the properties of a cyclic kite?' 
J2: 'Give properties: one pair of opposite angles are equal and 90 degrees. Yes, for a square the opposite 
angles are also ninety degrees.' 
M: ' ... and adjacent sides are equal.' 
J2: 'Thus it is also a cyclic kite.' 
M: (Points to Jl ), ' ... it seems that you are not convinced.' 

J1: 'No, I'm not yet convinced but I get the picture.' (Transcript A, Tape 3, 34:00) 

Problem solving 

Schoenfeld (1994) mentions how new problems are created by students in the classroom 

while working on other problems. The facilitator should grasp such moments to create 

realistic problems. The Geometer's Sketchpad provides ample opportunity for this to 

happen: 

M: ' ... and in this case, what are they, even more, these two they are both 90. 
Now you must ask yourself the question, are there any other way to construct a cyclic kite?' 
J: 'By the way what have we done here? ... Another way is to draw circumscribed triangles.' 

K: 'Another way is also, we have decided that a square is also a cyclic kite.' (Transcript A, Tape 
2:6:42) 
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K: 'What do they mean by circumscribed circle.' 
M: 'Let me show you the sketch here.' (Fetches a book.) 'You see this is the circumscribed circle.' 
J: 'Does it mean the circle is not inside.' 
M: 'Yes, that circle on which the four vertices lie. Exactly like this picture. And now you must say why the 
center is where you say it is. You can even, it is nice to draw a picture, but that is now a long story, so 
maybe we should not do it now. But if you draw a rectangle, you remember the way you constructed it, 
then you take the two diagonals, take the intersection. If you can construct the circle from there, it will go 
right through the four vertices. If you try this with the other quads it doesn't work, but for the rectangle it 

does. Why? ' {Transcript A, Tape 2, 00:48). 

Beliefs of the teacher 

The remark 'but that is now a long story, so maybe we should not do it now' from the 

facilitator in the above passage, indicates a belief that the product is still more important 

than the process. The facilitator, by trying to keep to the time limits and the original goal, 

discouraged learners from exploring meaningful new problems. The teachers should 

have been encouraged to try out all sorts of investigations. It also highlights the time 

problem with this approach that some teachers identified. 

In the lessons offered by the teachers, J1 again took on the role of authoritarian figure and 

let the whole class make the constructions at the same pace. Groups were not functioning 

as individual units: 

J1 (talking to the whole class): 'Thereafter we go to the midpoint of that chord, and how do you get that? 
You must select that line, that chord, you select it first.' 

J1: 'Write down your findings, OK, after you have written down ... ' {Transcript A, Tape 4, 4:00). 

This kind of approach could lead to the belief that the main goal was to follow procedural 

instructions correctly. Indeed, one teacher wrote in his evaluation of the lesson 'we 

achieved our objectives by following the instructions'. 

Inappropriate use of the software 

Teachers mentioned in the questionnaire (EE2) that 'if you do not know the software 

well, it is difficult to make the drawings' and that 'on choosing the wrong tools, no 

feedback is given to correct that'. Most of the teachers had only a few hours exposure to 
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computers when they started to work on this lesson. Teachers sometimes made 

inaccurate sketches by not using ( out of ignorance) the facilities that guide one to points 

of intersection, etc. 

J(l) 'So let us add it.' 
M: 'Your sketch is not accurate enough. That is why it is different from what you expect.' 

(Transcript A, Tape 1, 22:58). 

Also, by not understanding the 'parent', 'children' concept of drawings, they often did 

not use the drag mode correctly. The success of group 2's lesson rested on the 

accurateness of the drawings (with respect to 'parent" and 'children' elements). By 

making incorrect sketches at first, no clear findings could be made. All constructions had 

to be done again (with the help of the facilitator) before the investigation could lead to 

findings that was satisfactory. 

The versatility of this software package lies in the dragging capabilities. When it was 

used appropriately, it lead to convincing illustrations of tendencies as in the case of the 

lesson of group 3: 

K: 'This one is approaching zero, you see as the angle approaches zero, it approaches one.' (Transcript 
A, Tape 5, 5 :29) 

New Tools - new problems 

Laborde (1995) mentions that CABRI (similar to The Geometer's Sketchpad) gives rise 

to new kinds of problems due to the concretisation of abstract concepts. For example, a 

property of the kite is that one of the diagonals is a symmetry axis. This is an abstract 

concept which, in this learning environment, becomes concrete by becoming a way of 

construction (using the reflect command). Teachers showed amazement when they used 

this command to construct figures. 
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Proof 

From the observations it became clear that the teachers do not see the necessity to prove 

their findings formally. The measurements and findings from their constructions seem to 

be convincing enough: 

J1: 'Is that your finding?' 
J: 'So in a way you have proved the theorem.' 

Jl: 'Yeah, they have proved the theorem.' (Transcript A, Tape 4, 5:00) 

Also, drawings become a way of intuitively deciding on the truth or otherwise of a 

statement, probably resulting from the use of the software (see underlined text below): 

K:' ... the diagonals, then parallelogram' 
Makes sketch with pen. Tries to fit parallelogram into circle. 
J: 'Parm is not cyclic.' 
K writes something down. Draws circle with quadrilateral (hand sketch). Shows opposite angles 
supplementary. 
M: 'We have checked that last week.' 
J: 'We say that opposite angles of the cyclic trapezium is supplementary. Do we have a cyclic parm?' 
K: 'No.' 
J: 'We do not have it.'. 

W: 'it is not easy to draw.' (Transcript A, Tape 3, 8:00). 

4.2.9 Remarks 

It was mentioned above that teachers had difficulties usmg the software and that 

inaccurate sketches hampered the drawing of clear conclusions. It should be mentioned 

here that the difficulties experienced by the teachers could also be ascribed to the 

possibility that some of the teachers' geometry knowledge is still at Van Hiele level 1 

(par. 2.4.3.3). The step-by-step instructions that they had to follow in order to construct 

the different quadrilaterals, would mean more to learners at a higher Van Hiele level. 

Once students have already explored the properties of a particular quadrilateral, they can 

'see' how they are used in a construction. A more appropriate exercise for Van Hiele 

level 1 learners, would have been the dragging and exploring of a given construction. 
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One important result that emerged from the questionnaire completed by teachers was the 

fact that when they had problems assimilating the course material, they received help 

from the other group members. Another result was the idea that co-operative work will 

be advantageous in the school environment. The teachers continuously, throughout the 

questionnaire, expressed their enjoyment of the group work, the value of sharing ideas 

and feelings, and the motivation and support they experienced in their groups. The 

results of this case study also indicated that teachers had a better understanding of the 

study material and that they learned quicker. This shortens the educational life-cycle, 

which means that more people can use the system over a shorter period of time. 

This case study clearly showed the teachers' enthusiasm about the concept of group work 

and of computer support thereof. This implies that one could expect positive results from 

employing CSCL to remove educational backlogs and to contribute towards 

development. However, any attempt to increase the efficiency of investment in education 

through technological support requires an indispensable component - the full support of 

teachers. Training in the technology used to support them only addresses part of the 

problem - if teachers do not accept the concept of technological support, no amount of 

training will make the particular attempt successful. 

4.3 Case study: MATLAB, Linear Algebra and co-operative learning 

4.3.1 Background 

This study involved undergraduate mathematics students from Vista University. Vista 

University is a South African historically black university (HBU) and has a multi-campus 

structure. The case study was conducted on the Mamelodi campus in Mamelodi (now a 

suburb of Pretoria, but historically a black township). The majority of students at Vista 

University come from disadvantaged backgrounds. 
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4.3.2 The learners 

Twelve students ( 4 female, 8 male) in the second year Linear Algebra class volunteered 

to participate. They were divided into four heterogeneous groups (with respect to ability) 

of three each. None of the participants can be described as high ability students and not 

one of them passed the first component of their second year mathematics course. 

4.3.3 The content and material needed 

The content deals with basic concepts of matrix operations, the solving of linear 

equations, vector spaces, linear independency, and basis. A preknowledge of the basic 

concepts of calculus was assumed. The learning tasks entailed revision of concepts 

already covered in the lectures during the year. The second learning task provided a 

different first exposure to the relations between the null space, row and column spaces of 

matrices. This was not very effective, since the students already knew most of the 

concepts from class and skipped investigations that were supposed to lead them to the 

findings. This was probably also because of time constraints and the belief that a final 

product had to be delivered. 

The software used was the student version of MATLAB. The material used for the 

learning tasks and the tutorials came from Donelly (1995: 1-8, 19-35) and Leon, Herman 

and Faulkenberry (1996: 78-80, 82-84). The first version of MATLAB, written in the 

1970s, was intended for use in courses on matrix theory, linear algebra and numerical 

analysis. Today, MATLAB is an interactive system and programming language for 

general scientific and technical computation. Its basic data element is a matrix. It has 

many routines for generating random matrices and various types of structured matrices 

which help to generate interesting examples in the classroom. The graphic capabilities 

help to visually illustrate the major theoretical concepts in linear algebra. 
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4.3.4 The objectives 

Lesson 1: At the end of the lesson the learner must 

• show a basic understanding of MATLAB usage by being able to carry out the basic 

matrix operations and drawing of graphs using MATLAB; 

• show some problem solving skills by being able to analyse and interpret the given 

problem and generate ideas to solve it; 

• show an understanding of differential calculus by being able to interpret the 30 degree 

angle in terms of the derivative of the polynomial; and 

• show an understanding of matrix operations and the solving of systems of linear 

equations by being able to know which instructions should be carried out using the 

software. 

Lesson 2: At the end of the lesson the learner must 

• show a thorough understanding of dimension, basis and vector spaces by being able 

to, after completing the learning task, relate the dimensions of the row space, column 

space and null space of matrices, and to explain the relations. 

4.3.5 The procedure 

Session 1: Group building and getting to know MATLAB 

Students were divided into their groups and given a group building exercise. This 

entailed the following: students had to individually prioritise aspects of problem solving 

from a given list, after which the group had to reach consensus on the four most 

important aspects of problem solving (see Appendix B, I). Each group then had to 

discuss their decision with the other groups. Groups were asked to point out negative and 

positive aspects of their fleeting experience of group work. The five principles of co­

operative learning (par. 3.2.3) were then explained with reference to the feedback from 
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the groups. After this, groups worked through a tutorial on MATLAB. 

Sessions 2 and 3: Designing a ski jump 

The Jigsaw method was used as the CL-method. The lesson is described below, 

according to the steps necessary for the successful implementation of the method: 

l. Divide into groups and do group building exercises. This was done in session 1. 

2. Explain to the students the idea of group work. This was also done in session 1. 

3. Explain the goal and task. The groups received one set of materials per group. The 

first page explained the main goal: Design a ski-jump that has the following 

specifications: the ski-jump starts at a height of 30,5 m and finishes at a height of 3 

m. From start to finish the ski jump covers a horizontal distance of 36, 6 m. A skier 

using the jump will start off horizontally and will fly off the end at a 30 degree angle 

from the horizontal. Find a polynomial whose graph is a side view of the ski-jump 

(check your answer visually by plotting the graph). Since most students were 

unfamiliar with ski-jumps, pictures were shown and eventually they compared it with 

the more familiar slide. The second page contained another task to aid them in doing 

the given problem (see Appendix B, II). 

This task entailed: 

a) The acquiring of problem solving skills and getting familiar with the capabilities 

of MATLAB to draw graphs and solve linear equations: each member of the 

groups had to join an expert group. One expert group focused on problem solving 

skills, the other on how to solve linear equations with MATLAB and another on 

how to draw graphs using MATLAB (see Appendix B, III). It was made very 

clear to the students that they would be the only experts on these skills in their 

home groups and that the success of the group would depend on them. 

b) Revising the identification of the equation of a polynomial where three points on 

the curve are given. This eventually involved the solving of systems of linear 
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equations. 

After returning to their home groups, they had to go through the activities described 

in b) above, after which they could proceed with the main problem. 

4. Specially designed curriculum material so that each member of the group has a 

unique source that can be used independently of other sources. Each expert had 

his/her worksheet on the skills necessary to solve problems/solve linear equations/ 

draw graphs and shared their skills with the others when required by the group. 

5. Use instructional material to promote interdependence among students. Each group 

had only one computer to work on and only one copy of the worksheets. In the expert 

groups each member received a copy of the worksheet to take back to his home group. 

6. Assess the students ' work. The group solution to the problem was handed in as well 

as a diary file of the work on the computers. This was used to assess the students. 

7. Final evaluation: This was done by means of an individual assignment (see 

Appendix B, IV). 

8. Assessing group functioning. This was done through ongoing observation while the 

students were working as well as by the completion of a questionnaire. Also, students 

completed an evaluation list at the end of the lesson to monitor their feelings as well 

as what they perceived they had learned (see Appendix B, V). 

Session 4: Investigating the relation between dimensions of vector spaces 

The CL-method 'learning together' was used in this lesson. This is a method where 

learners work in small groups to complete a single worksheet for which the group 

receives recognition. The lesson is described below, according to the steps necessary for 

the successful implementation of the method. 

l. Heterogeneous groups. The students still worked in the same groups as the previous 

sessions. These groups were heterogeneous with respect to ability ( according to 

marks obtained in tests during the linear algebra course). Students already knew what 

the desired behaviour within the group was and they were reminded of it during the 

lesson. 
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2. Assign roles to the different group members. Groups had to decide among themselves 

who to assign the role of scribe, operator and problem solving expert. However, the 

roles proved to be artificial and students did not adhere to their roles unless reminded 

to. This is in line with research done by Good et al. (1992) (see Appendix B, VI). 

3. Arrange groups in circles to facilitate communication. Groups were arranged in half 

circles around the computer. This proved sufficient for communication to take place. 

4. Explain the goal and task. The students were led through the investigation by a well 

structured worksheet that gave sequential steps that had to be followed. The same 

sequence of steps had to be carried out on different matrices to be able to recognise a 

pattern. 

5. Use instructional material to promote interdependence among students. Each group 

had only one computer to work on and only one copy of the worksheet. 

6. Assessment. The students were evaluated by the completed worksheet, as well as by 

the individual tests given at the end of the session (see Appendix B, VII). 

7. Evaluating group functioning. An observation list was used to assess group 

functioning (see Appendix B, VIII). A check list was also included in the worksheet 

of the students through which they could evaluate their own group functioning ( see 

Appendix B, V). 

The five basic elements of CL were implemented in sessions 2, 3 and 4 in the following 

way: 

a. Positive goal interdependence, which occurs when learners undertake a group task 

with a feeling of mutuality. This was achieved by having the group produce a 

single solution to the given problem. 

b. Face-to-face promotive interaction, which occurs when a verbal interchange takes 

place where learners explain how they obtained an answer or how a problem may 

be solved. The experts in the group (in sessions 2 and 3) had to provide the group 

with their skills. Also, by doing the given task as a group, group members gave 

their input and suggestions. 

c. Individual accountability, which means taking responsibility for learning material. 
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Individual tests were given at the end of sessions 3 and 4. These tests focused on 

aspects of MATLAB usage, on questions relating to the identifying of equations 

of polynomials, on relations between the dimensions of the fundamental spaces of 

a matrix, and on more elementary concepts of linear algebra. 

d. Social skills, which involve knowing how to communicate effectively and how to 

develop respect and trust within a group. The students already showed some 

social skills in the group building exercises. 

e. Group processing to reflect on how well the group is working and to analyse their 

effectiveness and how it may be improved. Groups were observed while they 

worked but sometimes intervention was necessary. However, there was one group 

with a dominating member and another group with two free-riders. In session 4, 

the worksheet contained one page with a check list of group functioning that the 

group had to complete. This forced the group to reflect on their own functioning. 

4.3.6 Results of the questionnaires 

The same two questionnaires that were given to the teachers in case study one, were 

given to the students (with a few changes). 

4.3.6.1 Questionnaire on CSCL 

A total of 12 questionnaires completed by the students, were evaluated. The following 

scale was used in the questionnaire: 

4 Always I Definitely 
3 Frequently/ Nearly almost 
2 Occasionally / Seldom 
1 Never 

The results were as follows (sd = standard deviation): 
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I PART A 

I 

QUESTIONS ON THE STUDENT'S BEHAVIOUR IN A GROUP Average 

I I 

A3 

A4 

AS 

A6 

A7 

A8 

A9 

AlO 

All 

I offer facts and relevant information in order to promote group discussion. 3.5 --~--I give my opinions and ideas and provide suggestions in order to promote 3. 7 S 
group discussion. 

I express my willingness to co-operate with other group members. 3.7 
I ex ect other ~ou members to be co-o erative. 3.7 
I give support to group members who are struggling to express themselves 3.6 
intellectually. 

I keep my thoughts, feelings and reactions to myself during group 1.4 
discussions. 

I evaluate the contributions of other group members in terms of whether 2. 7 
their contributions are useful to me and whether they are right or wrong. ,-..---I take risks in expressing new ideas and my current fee ings during group 3.1 
discussion. 

I communicate to other group members that I, am aware of, and appreciate 3 .2 
their abilities, talents, skills and resources. 

I share any sources of information or other sources I have with the group 3.8 
members in order to promote the success of the individual members as well 
as the grouQ as a whole. 

I offer help to anyone in the group in order to bring up the performance of 3. 7 
everyone. 

PARTB QUESTIONS ON THE LEVEL OF ACCEPTANCE OF 'FHE 
STUDENT AS A GROUP MEMBER 

Bl My fellow group members are completely honest with me. 3.8 
B2 My fellow oup members understand what I am tryin to communicate. 3.3 

B3 My fellow group members accept me just the way I am. 3.7 
B4 

BS My fellow group members include me in what they are doing. 

B6 My fellow group members value me as a person, apart from my skills or 3.8 
status. 

sd 

0.7 

0.9 

1.1 

oT 

-
0.7 

0.7 
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PARTC QUESTIONS ON GROUP COHESION Average r::--
-

Cl I try to make sure that everyone enjoys being a member of a group. 3.8 
C2 I discuss my ideas, feelings and reactions to what is currently taking place 3.7 

within the group. 

C3 I express acceptance and support when other members disclose their ideas, 3.5 0.5 
feelings and reactions to what is currently taking place in the group. 

C4 I try: to make all members feel valued and appreciated. 3.6 
C5 I try to include other members in group activities. 3.5 
C6 3.1 
C7 I express liking, affection, concern for other members. 3.3 0.5 
C8 I encourage group norms that sup ort individuality and ersonal ex ression. 3 

r-
PARTD QUESTIONS ON GROUP WORK IN GENERAL Average sd 

-
D1 I have learnt more in the group than I would have learnt on my own. 3.9 
D2 I enjoyed workin in a grou: . 3.8 
D3 The group motivated me to do my share of the work. 

D4 Tue grou work helped me understand the stud material better. 

D5 I learned to co-operate with other students. 3.9 0.3 
D6 Tb.e grou worlc caused me to be d .· • endable and do my assignment. 3.3 
D7 It was fun working in a group. 3.5 
D8 In the grou I got the benefit of everyone's ideas. 3.7 
D9 I got help from group members with problems. 3.8 
D10 Tliework ot done faster and more work was done. 3.6 
D11 The group work gave me an opportunity to talk and discuss the study 3.9 0.3 

material. 

D12 The fil'OU work made the study material more interesting. 3.9 

PARTE: QUESTIONS ON SELF-DEVELOPMENT 

E.1 I have worked in groups before. 

r----------.-----------7 
1 YES =7 1 NO = 5 1 
I __________ I __________ I 

E.2 I would have liked to choose my own group members. 

r----------.-----------7 
1 YES= 2 1 NO =10 

1 
I __________ I __________ I 
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E.3 Have you worked on a computer before doing this course? 

r----- _ -----r------ _ ----7 
1 

YES - 7 
1 

NO - 5 1 
I __________ I __________ I 

E.4 Why do you think group work was introduced in this course? 

Some of the comments were: 

Computer literate students can help illiterate students to work on the computer; 
in groups we can use our time to really try to understand the work; 
such that we can create experts in the groups; 
it is easier to understand the work if we can work together; 
to share different ideas; 
to improve interpersonal skills; 
verbalising makes your ideas clearer to yourself; 
it takes less time to do the work in a group. 

E.5 What do you like about working in groups? 

Many points given in E.4 were repeated. Other points mentioned were: 
If other group members understand better what the lecturer said, they can explain it to you; 
a decision is made by compromise; 
you learn how others think, and you learn to express yourself in a precise way; 
if you verbalise something, you rarely forget it; 
you are encouraged by others, you do not give up easily. 

E.6 What don't you like about working in groups? 

Unco-operative group members; 
dominating group members; 
being ignored by others; 
unprepared group members; 
if you fmd it difficult to say what you mean, but you know your idea is correct; 
the blaming of each other and unwillingness to listen to each other. 

E. 7 Do you think this experiment with group work was successful? Give reasons for 
your answer. 

Yes, because reasoning abilities increased; 
I developed good communication skills; 
if I get stuck, I do not have to wait for the lecturer to help me; 
now I know my fellow students, I was shy, now I can talk in a full hall; 
all members attended every Saturday; 
we completed the problems successfully; 
our group will still function as a group even after this course; 

E.8 Do you think computers can be used successfully m groups as opposed to 
individual instruction? Motivate your answer. 
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Yes, it saves time and we can learn from each other, it never tells a lie, it is precise; 
no, computers are like calculators, it will spoil us and we will not be able to solve problems by hand. It 
should not be allowed in the exam room. 

4.3.6.2 Questionnaire on CSCML 

The 12 completed questionnaires were evaluated. The same scale was used as in the 

questionnaire discussed above. 

PARTS AA AND BB: INHERENT BELIEFS ON THE NATURE OF MATHEMATICS 

Part AA 

Describe your view of mathematics by using a comparison. 
Students wrote: 
Mathematics is like: 
a motor car that needs to be checked to make sure that it is still perfect and correct; 
a game, it has rules that have to be applied, a game in which we play with numbers that enable abstract 
thinking; 
life, obstacles are encountered that must be overcome; 
a rainbow - different colours can be grouped together and be one - different problems can be grouped 
together to obtain one solution; 
an engine, without it life is difficult and you cannot solve even small problems. 

Part BB 

BB 1. Prioritise the following descriptions of mathematics: 

The creation and study of abstract structures and objects. 
Logic, rigor and accuracy. 
A kind of language, a set of notations and symbols. 
A way of understanding and predicting real life phenomena. 
Reduction of complexity to simplicity. 
Problem solving. 
The study of patterns. 
Exploration, observation and generalisation. 
An art, a creative activity. 
A tool for other sciences. 

Most students perceive mathematics as a problem solving activity involving rigor, logic 
and accuracy. 
BB2. What is it that you like about mathematics? 
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It gives me insight in how to solve problems ( even outside mathematics); 
it keeps me busy, I forget my problems; 
it makes me think logically; 
it is challenging. 

BB3. What is it that you do not like about mathematics? 

I do not like the theorems, and the theory part; 
it is too abstract, I cannot relate it to something in the real world; 
it is nerve wrecking; 
sometimes you are forced to cram the work without understanding. 

PARTS CC AND DD: CO-OPERATIVE MATHEMATICS LEARNING 

Part CC 

CCl. Name the aspects you liked most working in groups doing mathematics. 

A variety of ideas are shared; 
we support each other; 
cover a lot of work; 
you are forced to prepare; 
the group members challenge your ideas; 
there is always only one solution, so even when we have different answers, we must agree on only one. 

CC2. Name the aspects you did not like working in groups doing mathematics 

It is time consuming and sometimes work is left undone; 
arguments and disagreement amongst the group members; 
unprepared group members hamper group work. 
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Part 
DD 

DDl 

DD2 

DD3 

DD4 

DDS 

DD6 

DD7 

DD8 

DD9 

DDlO 

I give my opinions and ideas when I disagree with the group members. 

The other group members ask me to explain and justify my ideas when I 
disagree with them. 

I sometimes know what the answer is, but I fmd it difficult to say it ( to 
verbalise it . 

I think it is not necessary to verbalise my ideas. 

Once I have verbalised my ideas, it is as if I understand it better. 

The group members help me to verbalise my ideas. 

The other · ou, members correct me if I am wrong. 

I could have done the same problem much quicker on my own. 

I could have done the same problem much easier on my own. 

3.7 

3.9 

3.8 

2A 

3.3 

4 

2.4 

1.9 

PARTS EE, FF AND GG COMPUTER SUPPORT TO CO-OPERATIVE 
MATHEMATICS LEARNING 

Part EE 

EE 1. Name the aspects you liked most doing mathematics using computers. 

The computer is fast and accurate in graphing and solving of linear equations; 
instant feedback is given; 
we do not use our brains much, therefore, we do not have much stress. 

EE2. Name the aspects you did not like doing mathematics using computers. 

The technology does not always work; 
if you do not know the software well, you make mistakes typing the commands; 
you need to know how to arrive at an answer, but the computer does not show the steps, 
just solves the problem. 

0.4 

0.8 

0.8 

1.0 
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Part 
FF 

FFl 
FF2 
FF3 
FF4 
FF5 

FF6 

FF7 
FF8 
FF9 

My view of mathematics has changed. 3.8 
The software hel ed me to understand the study material better. 3.8 

3.3 
3.2 

Working with the software helped me to visualise possible solutions to the 3 .4 
problem. 

3.3 
The same lesson could be done as effectively without the software. 2 

1.9 

I realised that my solution was correct if it was approved by the teacher. 2.9 

Part GG 

GG 1. Explain your answer to question FF2. 

0.5 

1.3 

The computer is reliable, I compare my answers to the computer's answers and then I continue, it always 
gives correct answers if you entered correctly and use correct commands; 
it shows that you can do a lot with mathematics, it is more than just knowing theorems; 
it is easy to draw the graphs; 
I could try several ideas on a problem; 
it decreases the work load; 
you can see relations by drawing graphs. 

GG2. What skills do you need to solve problems? 

Persistence, patience; 
divide the problem into subproblems; 
read the problem carefully; 
consider many alternatives; 
creativity; 
logical thinking. 

GG3. In what way did the use of the software aid you in solving the problems? 

It is quick in doing calculations ( e.g. Gaussian elimination); 
more problems can be tackled; 
immediate feedback; 
graphing capabilities. 

4.3.6.3 Analysis of questionnaires 

An analysis of the completed questionnaires reveals results similar to the first case study. 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 4: Case Studies 180 _,:__ ____________________________ _ 

However, other aspects were also mentioned by the students: 

• The motivational aspect of group work (CCI, D3). 

• The importance of verbalising one's ideas and the encouraging thereof by group 

work (E4, ES, DD4, DDS, DD7). 

• The changing of one's beliefs about mathematics because ofCSCML (FFl, GGl). 

• Additional advantages of computer support to mathematics co-operative learning, 

were the decrease of the work load (GGl), the many similar problems that can be 

generated using the software (GGl), the quick feedback given (EEl) and the 

facilitating of the drawing of relations and comparisons because of the graphing 

facilities (GG 1 ). 

• A perceived disadvantage of computer support to mathematics learning is the fear that 

the computer does all the thinking and that it gives the solution without giving the 

steps to get to the solution (EE2, EE 1, ES). 

4.3. 7 Other data collected from the case study 

4.3.7.1 Worksheets and individual assignments 

Sessions 2 and 3: 

All four groups' written solutions to the ski jump problem were correct. However, these 

correct solutions could only be found after hints ( often very explicit) by the facilitator. 

Not a single group interpreted the 30 degree angle correctly and most tried to side-step 

that part of the information in their solutions. It was clear though, that the students could 

carry out basic commands of MATLAB. 

The individual assignment given after the completion of the problem asked two questions 

about a MATLAB command and one question on further questions to ask about the 

finding of the equation of polynomials (see Appendix B, IV). The students complained 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



_C_ha..:...p_ter_4_:_Ca_se_S_tu_d_ies __________________________ 181 

( questionnaire, EE2, EE 1, E8) about the non-transparency of the software. These first 

two questions tried to encourage students to ask themselves questions on what is going on 

behind the scene. Also, students were encouraged to use the command 'rrefmovi' to see a 

'movie' of row-reduction on a matrix. The individual assignments were marked and the 

average obtained was 33%. 

Session 4: 

In analysing the group worksheets of session 4, it was clear that all groups could 

eventually identify the relation between the fundamental spaces of a matrix. However, 

they ignored the way in which the worksheet wanted to lead them there: they did not 

answer questions that asked for explanations and they found the column space using an 

algorithm they did in class during the year, instead of going through the instructions that 

used concepts from the null space to find the column space (which tested and reinforced 

more insight). 

The individual assignment was an adaptation of part of a course test that they wrote 

earlier in the year (see Appendix B, VII). The average for that part of the course test 

written earlier in the course was 33% and the average for this individual assignment was 

52%. 

4.3.7.2 Evaluation lists completed by students 

An evaluation list was given to the students to complete after each session. The following 

issues were addressed: 

Sessions 2 and 3: 

In you own words state today's goal or goals. 

The students' perceived goals corresponded with the objectives stated in par. 4.3.4. 
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What was the topic/s of the day? 

Most students just wrote 'designing a ski-jump' and others mentioned 'finding a 

polynomial' and 'graphing a polynomial'. 

These are the strategies and concepts I learned today: 

• How to analyse a problem, by using the little information given. 

• How to plot graphs and solve linear equations using MATLAB. 

• How to work in a group. 

What was your AHA (now I understand) today? 

• You can use the solved values to plot a graph. 

• What 'format rat' does. 

• Using the angle given in the problem, finding the last equation using the slope. 

• Reducing a matrix using 'rref. 

• Plotting a graph using a computer, when the graph appeared on the screen. 

I'm still confused about: 

• Finding the points when given a question in words. 

• Using the given angle. 

• Element by element row operations. 

• Why it is simpler doing the problem using MATLAB, than doing the problem on 

paper. 

• How we reached the solution of the problem. 

• Using some commands of MATLAB. 

Today in class I felt: 

• Helpful because I helped my group to solve linear equations using MATLAB. 

• Like I am really working towards a goal, because I was deeply involved in different 

topics. 

• Very happy because I solved some difficult problems. 

• Very proud, because working in a group helps me to understand things that I never 

knew and increases my knowledge on what I know. 

• Worried, because much of the work was done by the graphing expert and I did not get 

a chance to prove myself. 
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• Helpful, because I helped my group to plot the graph since I was the graphing expert. 

• Lost and confused, because I missed the first session and did not feel prepared. 

Session 4: 

In you own words state today's goal or goals. 

Most students stated the goal as the finding of dimensions of vector spaces and only three 

stated the goal as finding the relation between the dimensions of the fundamental spaces 

of a matrix. 

What was the topic/s of the day? 

Most students described the topic of the day as the same as the goal and a few wrote 

simply 'basis and dimension'. 

These are the strategies and concepts I learned today: 

• I learned how the row space, null space and column space are related. 

• I learned what a null space, row space and column space is. 

• How to find basis and dimension of vector spaces. 

What was you AHA (now I understand) today? 

• When I could 'see' the dimension of the null space in the reduced form of a matrix. 

• To find the basis without thinking a lot. 

• How the null space really works. 

I'm still confused about: 

• The difference between null space and nullity. 

• Determining the basis of the null space. 

• Nothing because we arrived at the conclusions without arguments. 

• How to use the MATLAB commands. 

Today in class I felt: 

• Very pleased and grateful, because I can find the dimensions of the vector spaces; I 

could not do that before. 

• Like I was really beginning to understand the concepts, because there were times 

where one had to make an input based on those concepts. 
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• Happy because we were co-operating. 

• Great and hope that with group discussion I can get a distinction in mathematics, 

because my friends explained everything clearly and patiently to me. 

4.3.7.3 Video-based analysis 

An analysis of the transcript of the video-tapes revealed the following: 

Group functioning/processing 

There were two groups that did not function optimally. Group 1 had a dominating group 

member and group 2 had two group members that did not really participate. 

In group 1, member 1 b took on the role of operator and also dominated the discussions. 

She showed impatience with the other group members: 

Group 1, 1 b reads a sentence from the worksheet and points to it, 1 a points to place on worksheet and 1 b 

shoves her hand away. la laughs embarrassedly (Transcript B, Tape 2, 9:51 ). 

This impatience with each other apparently became the norm: 

Group 1, 1 a sits in the middle, they are busy with solving of linear equations and 1 a was a member of the 
expert group on that topic. They all have a look at what they have done last week. 
1 c rises. 1 a hands 1 b the worksheet and draws the keyboard nearer. She reaches over 1 b for another 

document shoving her hand away. (Transcript B, Tape 3, 1 :05). 

Group 1, they have the system of linear equations on the screen. 1 c is now looking at his 'graphing expert 
group' worksheet to see how to plot the graph. 
1 a takes it out of his hand. 1 c tries to reach for it but 1 a pulls away. 1 b gives 1 c another worksheet. 

(Transcript B, Tape 3, 8:45). 

The facilitator tried to intervene in session 4: 

M: 'Can I ask who the operator is?' 
lb: 'I am.' 
M: 'And the scribe?' 
la: 'I am.' 
M: 'Don't you want to be the operator?' (Talking to la) 
la: 'OK.' 
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M: 'And you are the problem solver, you must ask them things like "have you read the problem carefully, 

those things ... ' (Talking to le) (Transcript B, Tape 4, 5:56). 

After this 1 b left the room for about 10 minutes. It is interesting to note that most 

complaints about dominating group members and disagreements came from 1 c. Also, he 

found session 4 more enjoyable because 'we were co-operating'. 

Group 3 had two members who looked uninterested and confused. Also, the third 

member only joined them in sessions 3 and 4 and then tried to get the group going. 

However, she was not well informed and prepared, and this hampered group functioning. 

She mentioned this problem in the questionnaires and the self-evaluation lists (CC2). 

3c (new member): 'I have this equation., 1 0 0 6 .. OK we can solve it by using ... Yeah.' 
M: 'They have already solved this one, or which one is this.' 
3c: 'It is this one.' 
M: 'They have done this one, do you remember it?' (Directs questions to 3a and 3b). 
3b: 'We haven't finished it.' 
M: 'Yes, but it is OK, it was only to help you to solve this problem.' 
M: 'Ask them they know how to solve this by using the computer, this is the idea we need to use the 
computer.' 
3c: 'So we do not need to do this one?' 
M: 'No, this is the example. This is the one I actually want you to solve.' (Points to the given problem). 

(Transcript B, Tape 3, 24:22). 

Problem solving strategies 

A tendency was identified of students reading a problem, quickly choosing an approach 

and then taking off in that direction, instead of taking more time to make sense of the 

problem. This is in line with research done by Schoenfeld (1990). It could also be 

explained by the students' belief that in problem solving something must be done as soon 

as possible - this was one aspect of problem solving which students had to mark as 

important or not in their group building exercise in session one. Only two students 

considered it as not important at all. All the others found it rather or very important. 

The following transcript shows how students combine numerical information from the 

problem in a haphazard way only minutes after they have read the problem: 
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Group 2, All look at THE PROBLEM. 2c fetches the calculator. 2b draws a sketch of a triangle showing 
an angle. 2a points to 2b's sketch. 
2a: 'So it is this over this.' 

2c: 'No, this thing squared, plus that thing squared is equal to the answer squared. So what we are actually 
doing ... ' 
2c: 'So this is our 3m, this is our 30.Sm and this one must be 36.6m.' 
'So using Pythagoras' theorem, this 30.Sm squared plus three squared is equal to this thing and this is 
equal to 30.' 
2b:' ... the angle is 30 degrees.' (Transcript B, Tape 2, 6:28). 

Mathematical actions and mathematical objects 

None of the groups could interpret the 30 degree angle without help and tried several 

other strategies: 

4c: 'We used the turning point.' 
M: 'So you found the turning point? How did you do that? Remember the derivative is Oat the turning 
point. So how did you get that? You see, let me just show you. They say at the end it flows off at an 
angle of 30 degrees. So we do not know anything here, OK we know the derivative is 0. Remember, the 
thing doesn't stop there, it has a little tip and it flies off here with an angle of 30 degrees.' 
4c: 'Here?' 
M: 'No, it is here, it is given, and you know this is the end, not this. So this is the ski jump .. .' 

(Transcript B, Tape 2, 30:22). 

M: 'Can I just ask, this third equation, where does it come from?' 
M: 'OK, I understand this one, this one is ax/\2 where x is 36.6 +bx. Can I just ask, this third equation, 
where does it come from?' 
M: 'OK, I understand this one, this one is ax/\2 where xis 36.6 +bx+ c = y which is 3, and this last one 
where did you get the 21.1 ?' 
2c: 'By using this thing.' 
M: 'Just look at the logic behind what you are doing here. You say this polynomial goes through these 
three points. Can you see that if it is true it won't be a quadratic polynomial? Why not? Because what 
would it look like? At this point it would go straight up in the air, because this point is over there. So what 
your graph will look like is something like that instead of something like this.' 
M: 'This information must be used in another way.' (Transcript B, Tape 3, 3:37). 

It became clear that the students, understanding of a derivative at this stage only covered 

the operational aspects of it. The students could easily find the derivative of the general 

equation of the quadratic polynomial. However, they could not relate the 30 degree angle 

to the slope of the graph at that point. The word 'derivative' probably invokes in the 

mind's eye of the student a set of actions to be taken and not a holistic structure with 

certain properties. Sfard argues that a prerequisite to a deep understanding of mathematics 
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is the ability to see a mathematical concept as both an object and a process, and that real 

insight necessary for mathematical creation can hardly be achieved without the ability to 

see abstract objects (Sfard, 1991 :9). 

Technology as a "black box" 

The students complained that they did not know what was going on 'behind the scenes' 

when using MATLAB. The facilitator encouraged students to ask themselves questions 

about the computational processes of MATLAB: 

M: 'Can I ask you something here, this A slash b, what do you think happens there? What does it mean, A 
slash b. What do you think are the operations used there? Because you know you cannot really divide by 

b, so what do you think goes on there?' (Transcript B, Tape 1, 5: 10). 

This problem would also be of less importance once the students are able to create their 

own macros. 

Representational plasticity 

Technology has the capability to support a variety of notational forms. Kaput (1992) 

draws attention to the ability of electronic media to enable us not only to create any 

manner of new notations for mathematical objects and actions, but also to create dynamic 

ones that can be linked. The representational plasticity observed here was not that 

sophisticated but nevertheless had great effect. It happened that certain numbers were 

given to students in scientific notation. They could change them to fraction notation by 

'format rat'. Students no doubt learned again about scientific notation and one student 

even described this as her AHA experience: 

2a reads to 2b what to type. They type in the matrix. 
2c: 'Aikona!' 
2b: 'What?' 
They look surprised as the matrix is given in scientific notation. 
2a points to values. They look confused. 
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M: 'OK, can I just explain to you what is happening here. You want O O 1 but it gives you O O .001. But 
what this means is that they multiply each value by 1000. But if you find it difficult to work with, just say 

format rat. OK type that' (Transcript B, Tape 3, 15 :02). 

4.4 Summary of the most important findings 

The findings of both case studies confirm existing research results in that students 

reported a sense of enjoyment, belonging and trust. They were willing to co-operate and 

offer explanations and justifications, and showed an openness to each others' ideas. 

Students in case study 2 stressed the motivational aspects of group work, the importance 

of verbalising ideas and the changed attitudes towards mathematics resulting from their 

experiences in the groups. 

Graphing facilities and its enhancement of visualisation were mentioned as an important 

aspect of computer support to mathematics learning. Students also mentioned the 

decreased work load, the many similar problems that can be generated using the 

software, and the quick feedback given. However, in both case studies, the perceived 

disadvantage of computer support to mathematics learning was that the computer does all 

the thinking. This perception can be explained by recalling the dual nature of 

mathematics concepts. In case study 2, the computer was used to do the computational or 

process part of the mathematics, leaving the students free to draw relations and 

concentrate on the structural side. Most students, however, consider the process part of 

the concepts the only part. 

One of the important findings is thus that mathematical learning m the CSCML 

environment can be examined through the lens of the dual nature of mathematical 

concepts. This sheds light on most of the difficulties students experience with 

mathematical concepts. Another important finding was that the classroom culture or 

organisational context plays an important role in interactions and learning in the CSCML 

environment. The classroom culture consists of habitual patterns which are created 

through interactions and the underlying beliefs of the participants. Examples were given 
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of the sometimes detrimental influence of the teachers' beliefs on meaningful problem 

solving. 

The importance of true interdependence was confirmed. This was lacking in case study 

1, although the Jigsaw method was used. The researcher exploited the idea of experts to 

the full in case study 2, which had the desired effect. It is thus clear that the success of 

CL implementation does not lie in the application of CL methods, but in the 

incorporation, and full understanding, of the CL principles. 

The CSCML environments of the two case studies exhibited an open and unpredictable 

nature. Although goals were set, new ideas emerged during interaction and students 

negotiated alternative goals. This should be seen as an asset of this learning environment, 

which could lead to meaningful and sometimes surprising discussions and problems. 

4.5 Enhancement of the generic social constructivist model for 

mathematics learning 

4.5.1 A CSCML environment 

The social constructivist model for mathematics learning described in par. 2.5 does not 

provide for groups of learners learning mathematics supported by technology. The 

interaction between teachers and learners (now groups of learners) is now influenced by 

information technology and the course material (this is indicated in Figure 4.1 ). 

From the case studies it is clear that the CSCL process terminates at some point and that a 

certain outcome is desired. It will thus be more suitable to use the ideas of Hoyles, Healy 

and Pozzi (1994) and Slavin (in de Villiers, 1995) to describe the environment in terms of 

input-process-output functions. The input is considered as the data and other structures 

that are introduced to the learning and social process. The output is two-fold: on the one 
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hand one hopes for an individual learner with subject knowledge (effectiveness) and on 

the other hand, one hopes for a productive, well functioning group that achieved the 

group goal (productivity) (Hoyles et al., 1994). This is indicated in Figure 4.1. 
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environment 
and objective math 
knowledge 
(s mbols 

The input-process-output aspects of the CSCML environment 

4.5.2 The dual nature of mathematical concepts 

During and after the execution of the case studies, it became clear that the existing model 

for the learning of mathematics proves to be insufficient for understanding the learners' 

difficulties. For example, why was it so much more difficult for the teachers in case study 

1 to use the definition of quadrilaterals in a comparative way than to use the definition to 

make constructions? Also, in case study 2 students had great difficulty in relating the 30 
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degree angle to the derivative of the function of the graph at that point, but no difficulty 

in finding the derivative of the general equation of the quadratic function ( discussed in 

par. 4.3.7.3). 

Sfard's (1991) theory for the forming of mathematical concepts highlights the dual nature 

of mathematical concepts. Her theory has been discussed in detail in par. 2.4.3.2. This 

theory provides a better explanation for the observed difficulties experienced by the 

learners in the case studies. For example, in case study 1, the construction of a 

parallelogram represents the operational aspects of it, whereas the economical definition 

represents the structural view of it (what is the least necessary for a quadrilateral to be a 

parallelogram and how does it relate to other quadrilaterals?). Sfard emphasises that the 

formation of a structural concept ( object) is a lengthy and painfully difficult process. 

Also, previous operational understanding (processes) is a necessary condition for 

structural understanding. This could thus be a possible explanation for the difficulty 

learners experienced with the building of the family tree in case study 1. The existing 

model will now be enhanced by replacing the fluctuation between divergent and 

convergent thinking processes by a more specific fluctuation between mathematical 

processes and objects (see Figure 2.5). 

Although it is shown as hierarchical, Sfard points out that any mathematical activity is an 

intricate interplay between the structural and operational aspects of the same 

mathematical concept. She also emphasises the important role that representations 

(symbols, graphs, names, etc.) can play in the condensation and reification processes (par. 

2.4.3.2). Kaput (1992) sees true mathematical activity as involving co-ordination of and 

translation between, different notation systems ( e.g. from algebraic-verbal to visual (par. 

3.4.3). Sfard finds a (not necessarily one-to-one) correspondence between the operational 

side of mathematical concepts and verbal-algebraic inner representation of them on the 

one hand, and on the other, the structural conceptions and visual inner representation of 

them. This is in line with Skemps' classification of the two kind of symbols (par. 2.5). 

The kinetic images discussed in par. 2.5 can represent either processes or objects - it 
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generally gives a feeling of the 'how it works' of mathematical concepts, thus involving 

the condensation process in Sfard's theory (par. 2.4.3.2). 

There are several other theories which also recognise the dual nature of mathematical 

concepts (Dubinsky, 1997; Pirie & Kieren, 1994; Kaput, 1992). Pirie and Kieren (1994) 

make it clear that each knowledge level comprises a to-and-fro movement between acting 

and expressing. (They define more knowledge levels than Sfard's interiorisation, 

condensation and reification.) Acting refers to mental and physical activities, whereas 

expressing refers to making overt the activities to others and to the self. Acting usually 

precedes expressing and ' . . . encompasses all previous understanding, providing 

continuity with inner levels, and expressing gives distinct substance to that particular 

level.' (Pirie & Kieren, 1994:175). The actions are directed to representations of 

mathematical concepts ( e.g. seeing a graph, predicting certain trends, applying it). 

'Representation' in the original framework will thus be replaced by 'actions on 

representations'. 

Assimilation of new concepts into existing schemas will now be understood as the initial 

interiorisation of lower-level mathematical processes. Accommodation (major 

reorganisation of schemas) can now be seen as the interplay between the interiorisation, 

condensation and reification processes (as described in par. 2.4.3.2). 

The subjective ( overt) knowledge thus refers to expressing the mental and other activities 

and includes written, diagrammatic, verbal and printed reviewing, definition, recordings, 

justifications, prescriptions and proofs (Pirie & Kieren, 1994). These refinements to the 

existing model for the learning of mathematics are shown in Figure 4.2. 

4.5.3 Classroom culture 

Classroom culture is produced and reproduced by social interaction and negotiation, and 

includes regulations, conventions, morals, truths and instruction (par. 2.5). Truths are 
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norms of which the transgression is seen as an error and instructions are norms of which 

the transgression is seen as ineffectiveness. The beliefs of the teacher and learners about 

the nature of mathematics play thus an important role. In case study 1, one teacher used 

an autocratic teaching style in the presentation of the group's lessons which undermined 

the discovering and exploring potential of both the technology and CL-environment (par. 

4.2.8.4). This affirmed the already existing belief of some of the teachers that 

effectiveness in the mathematics classroom is to follow procedural instructions. (One 

teacher wrote in his evaluation of the lesson 'we have achieved our objectives by 

following the instructions'.) 
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The dual nature of mathematical concepts in the CSCML environment 
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In case study 2, a product orientation was noticed, i.e. students were more interested in 

reaching a solution than in the process of gettfog there (par. 4.3.7.2). Also, students 

focused more on the operational side of mathematical concepts (par. 4.3. 7 .2). These 

beliefs had a detrimental effect on learning and attitudes towards the technology 

especially noticed in lesson 2 of case study 2. 

On the other hand, the application of the CL-principles led to new social rules: 

• The importance of verbalising one's ideas (par. 4.3.6.3). 

• A change of attitude towards mathematics (par. 4.3.6.3 and 4.3.7.2). 

• A willingness to co-operate and listen to others (par. 4.2.7.3). 

It became clear that the CL environment provided ontological security (Lyytinen & 

Ngwenyama, 1994) which had an influence on motivation and attitude. 

The classroom culture is thus part of the input to the learning and interaction process, 

influencing it and eventually being influenced itself by the interaction process ( either 

reinforcing it or changing it). In the case studies, the CL principles and technology 

induced change in some of the initial beliefs and norms. This is indicated in Figure 4.3. It 

should be kept in mind that the learners involved in both case studies have the traditional 

mathematics classroom as a background, often involving poorly educated teachers and 

inadequate facilities. In these circumstances the 'traditional' way is often the easiest 

option. 

4.5.4 Information technology 

The CSCML environment involves the support of learning and teaching of mathematics 

by information technology. It can thus be seen as an input to the process of learning and 

interaction. This is indicated in Figure 4.3. 

From the case studies it is clear that technology supports the learning of mathematics by 

aiding formulation, visualisation of intuitive ideas (graphs), easing the workload by doing 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 4: Case Studies 195 -~------------------------------

the calculations, and providing immediate feedback (par. 4.2.7 and 4.3.6.2). 
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Information Technology and Classroom Culture as input to the CSCL-environment 

Sfard (1991) describes mathematical activity as a fluctuation between the operational and 

structural sides of mathematical concepts. The Geometer's Sketchpad (used in case study 

1) is a typical example of software which allows a simultaneous representation of 

operational and structural conceptions ( e.g. after the construction of a kite, it remains the 

object 'kite' under the dragging mode - this construction becomes a generic construction). 

In this environment actions, representations and concepts become inseparable (Smith, 

1994). 'Students create their own problematics in relation to posed problems where the 
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problematic they construct is inseparable from their understanding of the actions which 

were possible using the available tools.' (Smith, 1994:87). This type of environment also 

creates new kinds of mathematics problems (Laborde, 1995). 

However, as was already mentioned (par. 4.2.8.4), the learners' inadequate knowledge of 

the possibilities of the software made them use it in an inappropriate way. In case study 

2 students were dissatisfied with the feedback of the technology. The task was designed 

in such a way that the computer handled the operational aspects, leaving the students free 

to concentrate on the structural aspects of the mathematical concepts. Students considered 

the only part of mathematics to be the operational part. A reason for this could be that the 

structural view of the relevant mathematical concepts has not been fully developed yet. 

This could possibly explain their fears about the 'computer doing all the thinking and 

giving the solution without giving the steps to get to the solution'. 

It is thus clear that the students' beliefs of mathematics as well as their knowledge of the 

rules and resources presented by the software, influence their interaction with the 

technology and its support to their learning. 

A consequence of using technology in case study 1 was the assumption of teachers that 

formal proof is unnecessary. Their findings from the constructions seemed to be 

convincing enough. This was also noticed by de Villiers (1997). This tendency asks for 

alternative roles of proof (par. 3.4.3), which in the long run can have an influence on 

how proof is taught in the school environment as well as conceptualisations of proof in 

the professional environment. 

The introduction of technology also influences the social interaction and production and 

reproduction of social norms. For example, in case study 1, it was observed that one 

student adopted the role of operator throughout the lessons (par. 4.2.8.4). The same 

happened in case study 2, but here it was more problematic since this person also 

dominated the discussions and activities of the group (par. 4.3.7.3). 
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4.5.5 Shortcomings of the social constructivist model for CSCML 

The existing model for the CSCML environment in Figure 4.3, fails to provide for the 

delicate interplay between the components of the environment. For example, the 

influence of information technology on social interaction and the resulting altered social 

norms discussed above, are not provided for. Similarly, the change in learners' beliefs 

and attitudes towards mathematics as a result of the applications of CL methods is not 

described in a satisfactory way. The framework thus fails to provide for the production 

and reproduction of rules and resources during social mathematical interaction with 

technology. 

This reciprocal influence between the structural aspects of social systems and human 

action has been conceptualised as a duality by Giddens (1984) in his structuration theory. 

In this theory Giddens views human action as being enabled and constrained by social 

structures which are at the same time produced and reproduced by human agency. Quite 

a few researchers adopted Giddens' structuration meta-theory to come to a better 

understanding of technology-induced change in organisations (Orlikowski, 1992; 

DeSanctis & Poole, 1994; Lyytinen & Ngwenyama, 1992). De Villiers (1995) uses 

structuration theory and adaptations thereof in her development of a theoretical 

framework for the CSCL environment. In the next chapter, the structuration theory as 

well as applications of it will be discussed. Lyytinen & Ngwenyama's framework for 

CSCW and De Villiers' framework for CSCL will then be explored after which a 

theoretical framework for CSCML will be developed. 

4.6 Summary 

This chapter presented two case studies of which the results and findings were used to 

enhance the model for mathematics learning presented in chapter 2. The findings of the 

case studies confirm existing research results ( e.g. increased motivation, better self­

esteem, enjoyment and a willingness to listen to each other's ideas) (par. 4.2.7.3 and 
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4.3.6.3). 

The findings further highlight the importance of the influence of the classroom culture or 

organisational context on attitudes and learning in the CSCML environment. It also 

confirms the importance of real interdependence in the CL classroom for meaningful co­

operation to take place. It is also concluded that some of the most important contributions 

of the computer to mathematics learning support, lie in its graphing facilities and 

representational plasticity. 

The enhanced model, which is an input-process-output model, depicts a well-organised 

and predictable system. This is in contrast to the observed openness and unpredictability 

of this learning environment. The model also fails to provide for the influence of IT on 

social interactions and the resulting altered norms and rules. Finally, although it is called 

a social constructivist model, it does not show the process of self-organisation and 

enculturation clearly. 

These shortcomings are addressed in the next chapter, by developing a theoretical 

framework for CSCML informed by Giddens' structuration theory and other applications 

of structuration theory. 
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Chapter 5 

A Theoretical Framework for CSCML 

5.1 Introduction 

This chapter addresses the shortcomings of the enhanced model described in par. 4.5. 

This is achieved by focusing on the reciprocal influence between the structural aspects of 

the CSCML environment and human action/learning. Giddens has conceptualised this 

dualism as a duality in his structuration theory. By using structuration theory, a model is 

developed which accounts for the delicate interplay between the different components 

comprising this learning environment. 

This chapter is divided into three parts. The first part consists of an in-depth discussion 

of Giddens' structuration theory. The second part presents two applications of 

structuration theory to conceptualisations of the use of Information Technology m 

organisations. These applications entail theoretical frameworks for CSCW and CSCL 

informed by structuration theory. A final theoretical framework for CSCML is developed 

and described in the third part. This is followed by an illustration of how the framework 

can assist in the better understanding of the dynamics of the CSCML learning 

environment by applying it to one of the case studies. 

5.2 The theory of structuration 

Giddens developed his social theory to ' . . . develop an ontological framework for the 

study of human social activities.' (Bryant & Jary, 1991:201). It deals with conceptions of 

human being, human doing, social reproduction and social transformation (Giddens, 

1984:xx). 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 5: A Theoretical Framework for CSCML 200 _..:,__ _______ ___;__ _____________________ _ 

5.2.1 Background 

The development of Giddens' structuration theory can best be understood if it is seen as a 

reaction to development within the social sciences - structuration theory was formulated 

in part through ' . . . - the critical evaluation of a variety of competing schools of social 

thought.' (op.cit.:xxxv). Until the 196011970s there was an apparent consensus on how 

social theory should be approached. Called by Giddens the 'orthodox consensus', human 

behaviour was seen as the result of forces that actors neither control nor comprehend 

(op.cit.:xvi). This view was rejected by many social scientists - they rather emphasised 

the active, reflexive character of human conduct and the importance of the role of 

language. 

Structuration is offered as a social theory that is sensitive to the shortcomings of the 

orthodox consensus and to the importance of the new developments. As social theory it 

deals with ' . . . the nature of human action and the acting self; with how interaction 

should be conceptualised and its relation to institutions; and with grasping the practical 

connotations of social analysis. ' (Giddens, 1984:xvii). The focus is thus upon the 

understanding of human agency and social institutions. An important dualism in this 

regard is that between objectivism (focus on society) and subjectivism (focus on the 

human agent). Structuration theory attempts to reconceptualise this dualism as a duality, 

called the duality of structure. Giddens emphasises that although the theory recognises the 

importance of language and the 'linguistic tum' in social theory, it is not a version of 

interpretative sociology. In fact, Giddens acknowledges the call for the decentring of the 

subject, but does not imply with that the ' ... evaporation of subjectivity into an empty 

universe of signs.' (op.cit. :xxii). 

5.2.2 The main premises of structuration theory 

'(S)ocial practices, biting into space and time, are considered to be the root of the 

constitution of both subject and social object.' (op.cit.:xxii). The social structures of 
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societies (the social object) do not exist in a concrete sense, but are only instantiated in 

social activity over time. In this way the object/subject dualism is reconceptualised as a 

duality. It implies that ' ... all social activity, ... can be viewed as enabled and 

constrained by social structures that are continually produced and reproduced via human 

agency.' (Lyytinen & Ngwenyama, 1992:21). 

5.2.3 Key concepts of structuration theory 

The summary given above touches on some key concepts. These and several other 

important concepts comprising the theory will now be discussed. The concepts are 

closely related and will only be separated for analytical purposes in the discussion. 

Human agents/agency 

A main premise of the theory is the recursiveness (the self-reproducing nature) of human 

social activity, i.e. it is in, and through, the agent's activities that the conditions are 

reproduced that make these activities possible (op.cit.). Deeply involved in the 

recursiveness of action is the ' . . . reflexive form of the knowledgeability of human agents 

... ' ( op.cit. :3). 

Knowledgeability refers to 'Everything which actors know (believe) about the 

circumstances of their action and that of others, drawn upon in the production and 

reproduction of that action, including tacit as well as discursively available knowledge. ' 

(op.cit.:375). Human actors are highly learned in respect of knowledge which they 

possess and apply in day-to-day conduct. This knowledge is more practical than 

theoretical. Giddens considers the knowledgeability of actors to be of fundamental 

significance and sees the actor's knowledge of daily social life, enabling them to 'go on' 

in diverse social contexts, as 'detailed and dazzling'. This knowledge is thus not 

incidental to the patterning of social life but an integral part to it ( op.cit. :26). 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 5: A Theoretical Framework for CSCML 202 ----------------------------------

The reflexivity refers to both a self-consciousness as well as the monitored character of 

the ongoing flow of social life. The ongoing flow of life not only presumes reflexivity 

but also enables it, by presenting a sameness across time and space. Furthermore, 

reflexivity presumes a purposive agent, who has reasons for her/his activities. However, 

action is not a combination of acts (where acts are seen as captured moments or, as 

described by Giddens (1984:3), a ' ... discursive moment of attention ... ') but a 

continuous flow of conduct. This implies that purposive action is not a series of separate 

intentions. From there the description of reflexivity as a continuous monitoring of action 

displayed ( and expected to be displayed) by human beings. Giddens proposes a 

stratification model of action which is given in Figure 5 .1. 

unacknowledged 
conditions of 
action 

reflexive monitoring of action 

rationalization of action 

motivation of action 

Figure 5.1 

unintended 
consequences 
of action 

The stratification model of the agent 

(Source: Giddens, 1984:5) 

The model can be explained as follows: 
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Three layers of action are suggested: reflexive monitoring of action, rationalisation of 

action and motivation of action. Reflexive monitoring and rationalisation of action are 

directly involved with the continuity of action in the following way: 

• actors monitor social and physical aspects of the context in which they move as well 

as the flow of their, and other's, activities, 

• rationalisation of action refers to the continuing ' . . . capability competent actors 

have of "keeping in touch" with the grounds of what they do, as they do it, such that 

if asked by others, they can supply reasons for their activities.' (op.cit.:376). These 

questions are usually asked only if activity seems puzzling or unconventional. 

Since motivation of action refers more to the potential for action, rather than the modes 

in which everyday action is carried out, it is less involved in the continuity of action. 

However, unconscious motivation (the motives that cannot be reported discursively) 

plays a crucial role in human conduct. Giddens calls the non-discursive components of 

consciousness, practical consciousness (not to be confused with the unconscious). 

Practical consciousness consists of the things actors know tacitly about how to 'go on' 

in the context of social life without being able to give them direct discursive expression 

( op.cit. :xxiii). Discursive consciousness on the other hand, refers to what actors can say 

about the conditions of their own action. The unconscious refers here to the forms of 

cognition and impulsion which are repressed from consciousness or which appear only in 

distorted forms in consciousness. The unconscious can also motivate action but exclusive 

focus on these parts of motivational aspects of action, can lead to a reductive theory of 

consciousness which fails to explain the control agents characteristically have to sustain 

reflexively over their conduct. As was said before, actors' knowledge of social 

conventions, of oneself and of others, is an integral ingredient in the routinized character 

of daily social life. The knowledgeability is founded more upon practical than discursive 

consciousness. Routinization which is grounded in practical consciousness, is integral 

both to the continuity of personality of the agent and to the institutions of society. The 

routinized character of daily social life which is provided by the reflexive monitoring of 

social life provides an ontological security ' .. . based on an autonomy of bodily control 
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within predictable routines and encounters.' (Giddens, 1984:64). Giddens finds the 

motive behind this following of routines in the ' . . . prevalence of tact in social 

encounters, the repair of strains in the social fabric and the sustaining of "trust" . . . ', or 

differently put ' . . . a predominant concern with the protection of social continuity . . . ' 

( op.cit. :70). 

Agency refers to the capability of the human actor to do things. 'Agency concerns events 

of which an individual is the perpetrator, in the sense that the individual could, at any 

phase in a given sequence of conduct, have acted differently. Whatever happened would 

not have happened if that individual had not intervened. ' ( op.cit. :9). This definition 

implies that agency involves power. 'An agent ceases to be such if he or she loses the 

capability to "make a difference", that is, to exercise some sort of power. ' (op.cit.: 14 ). 

Agency refers to doing, not to the intentions behind the doing. Although daily social life 

occurs as a flow of intentional activity, acts have unintended consequences which could 

feed back to become unacknowledged conditions of further acts. Also, actors' 

knowledge about the condition of their actions and their reflexivity are bounded by the 

situated nature of action, the degree to which tacit knowledge can be communicated, 

unconscious motivation, and unintended consequences of action (Giddens, 1979). 

'Human history is created by intentional activities but is not an intended project; it 

persistently eludes efforts to bring it under conscious direction. ' (Giddens, 1984:27). 

Structure/ Structuration 

Most social analysts view structure as some kind of 'social patterning' of social relations 

comparable to the skeleton of a building (op.cit.: 16). Giddens, however, defines structure 

as a 'virtual order' of transformative relations which exists, as time-space presence, only 

in the instantiations in practices and as memory traces of human actors (op.cit.: 17). 

Structure refers thus ' ... to the structuring properties allowing the "binding" of time­

space in social systems, the properties which make it possible for discernibly similar 
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social practices to exist across varying spans of time and space and which lend them 

"systemic" form.' (op.cit.:17). Structure is further described as rules and resources, that 

manifest in structural properties of the system. Two types of rules are defined, namely 

normative elements and codes of signification. Resources are divided into authoritative 

resources (co-ordination of the activity of human agents) and allocative resources (which 

stem from control of material products) (op.cit.:xxi). 

Structural properties are structural institutionalised features of a social system giving 

solidity across space and time (op.cit.:23). These properties are institutionalised through 

the habitual use of rules and resources, in the ongoing human action. In this way 

structural properties are the medium of practices by providing the 'systemic' form of 

social systems which are drawn on by humans in their ongoing interaction. On the other 

hand, these structural properties are affirmed and reaffirmed through human action. 

Structural principles are those structural properties most deeply embedded, and 

implicated in the reproduction of societal totalities. 

Giddens emphasises that whereas structure is out of time and space, social systems 

(through structuration) comprise ' ... the situated activities of human agents, reproduced 

across time and space. ' ( op.cit. :25). The analysing of the structuration of social systems 

implies the studying of the modes in which such systems, ' . . . grounded in the 

knowledgeable activities of situated actors who draw upon rules and resources in the 

diversity of action contexts, are produced and reproduced in interaction.' (op.cit.:25). 

Thus, according to the notion of the duality of structure, ' ... the structural properties of 

social systems are both medium and outcome of the practices they recursively organize. ' 

( op.cit.:25). 

Structuration is thus seen as the ' ... structuring of social relations across time and space, 

in virtue of the duality of structure.' (op.cit.:376). 

Although structure was defined above as rules and resources, in a looser fashion structure 

can be spoken of as referring to principles of societal totalities (structural principles), 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 5: A Theoretical Framework for CSCML 206 _..:.,__ _______ ___;_ ______________________ _ 

rule-resource sets (structures), and structural properties. The identification of structural 

principles, ' . . . represents the most comprehensive level of institutional analysis. It refers 

to modes of differentiation and articulation of institutions across the "deepest" reaches 

of time-space.' (op.cit.:185). 

Modalities of structure 

Giddens introduces the concept of 'modalities' of structuration to clarify the mam 

dimensions of the duality of structure in interaction, by relating the knowledgeability of 

actors to structural features (op.cit.:28). 'Actors draw upon the modalities in the 

reproduction of systems of interaction, by the same token reconstituting their structural 

properties.' (op.cit.:28). 

Figure 5 .2 shows the interdependence of the dimensions and modalities of the duality of 

structure. 

STRUCTURE 

MODALITY 

INTERACTION 

Signification Domination .,....__._. 
Interpretative Facility 
scheme 

Communication Power .,....__._. 

Figure5.2 

Elements of the Duality of structure 

(Source: Giddens 1984:29) 

Legitimation 

Norm 

Morality 

Human interaction involves the communication of meaning. In this interaction, human 

actors draw consciously and tacitly upon the mutual stocks of knowledge called 

interpretive schemes (modes of typification). Also, interpretive schemes represent 

organisational structures of signification presenting rules that define and inform 
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interaction. Giddens includes under signification semantic rules and 'all types of rules 

that are drawn upon as interpretive schemes to make sense of what actors say and do, 

and of the cultural objects they produce' (Giddens in Bryant & Jary, 1991:10). 

Action (and interaction) involves power in the sense of transformative capacity, i.e. the 

ability to intervene or not to intervene in the world. Power is being seen as the capacity to 

achieve outcomes, it is thus not necessarily an obstacle to ' ... freedom or emancipation 

... ', but its very medium (Giddens, 1984:257). Power in organisations (or social systems) 

is provided by resources on which actors can draw ( and produce) in their interaction. 

Giddens distinguishes between allocative resources (forms of capabilities to generate 

commands over material phenomena) and authoritative resources (forms of capabilities to 

generate command over people) (op.cit.:83). 

Also, these facilities constitute organisational structures of domination. The structures of 

domination depend on the symmetric properties between the two mentioned kinds of 

resources. A given structure of domination is reaffirmed if actors draw on a given 

asymmetry of resources. However, by explicitly changing the existing asymmetry of 

resources, structures of domination can be altered or undermined (Orlikowski, 1992:405). 

Under the headings legitimation and morality, Giddens includes 'all types of rules that 

are drawn upon as norms in the evaluation of conduct' (Giddens in Bryant and Jary, 

1991: 10). Interaction in organisations is ' ... guided by the application of normative 

sanctions, expressed through the cultural norms prevailing in an organisation. ' 

(Orlikowski, 1992:405). 

On the other hand, norms constitute organisational structures of legitimation. This 

provides the moral code within an organisation which is sustained through morally 

accepted practices and traditions. 
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These elements are only analytically distinct and are actually interlinked in the production 

and reproduction of social relations. For example, the communication of meaning in 

interaction involves normative sanctions, since language use is sanctioned by the nature 

of its 'public character' (Giddens, 1984:28). Also, accountability involves interpretative 

schemes and norms since reasons must be explicated and normative grounds need to be 

supplied ( op.cit. :30). 

The dynamics of structuration are illustrated in Figure 5 .3. 

Intended and 
Unintended 
Consequences 

Social structures - Modes of 
Mediation 

Intended and 
Unintended 
Consequences 

Institutional 
context 

Action and 
Interaction 

Agency 

Reflexive 
monitoring of Action 
and Interaction 

Discursive Consciousness 
Practical Consciousness 

Unconsciousness 

Structuration Agent's Psychological Makeup 

Figure 5.3. 

The dynamics of structuration 

(Source: Lyytinen & Ngwenyama, 1992:24) 
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Rules and Resources 

As was said before, the rules and resources drawn upon in the production and 

reproduction of social action are also the means of system reproduction. However, when 

speaking of structure as rules and resources, there is a risk of misinterpretation because of 

certain dominant uses of 'rules' in other literature. Giddens makes it clear that 

• the rules implicated in the reproduction of social systems are usually subject to far 

greater diversity of contestations than the rules of games (op.cit.:18), 

• most of the rules are only tacitly grasped by actors, they know how to 'go on'. 'The 

discourse formulation of a rule is already an interpretation of it. ' ( op.cit. :23), 

• 'Rules cannot be conceptualized apart from resources, which refer to the modes 

whereby transformative relations are actually incorporated into the production and 

reproduction of social practices. ' (op.cit.: 18), 

• rules are procedures of action and therefore imply methodological procedures, 

• rules have two sides to them, on the one hand the constitution of meaning, and on the 

other the sanctioning of modes of social conduct (op.cit.: 18). 

Giddens considers different examples of rules in trying to explicate the concept further. 

For example, the rule ' It is a rule that all workers must clock in at 8:00 am', is both 

constitutive and regulative - it regulates work practices and constitutes concepts about 

' ... industrial bureaucracy ... '(op.cit.:20). The rule an= n 2 + n - 1, according to 

Giddens, gives a very useful example of what the most analytically effective sense of 

'rule' is in social theory (op.cit.:20). Here someone writes down a series of numbers and 

the other works out a formula supplying the numbers that follow. Understanding this 

formula involves the ability to apply it in the right context and way to continue the series. 

Giddens sees linguistic rules in a similar way. 'To understand a language means to be a 

master of a technique. This can read to mean that language use is primarily 

methodological and that rules of language are methodically applied procedures 

implicated in the practical activities of day-to-day life.' (op.cit.:21). 
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As was said before, structures of signification are only analytically separable from 

domination and legitimation. Domination depends upon the mobilisation of two kinds of 

resources mentioned above, namely allocative and authoritative resources. Allocative 

resources might seem to have a real existence ( a time-space presence), different from 

other structural properties as a whole ( op.cit. :33). However, they still become resources 

(as transformative capacities) when incorporated within the process of structuration 

(op.cit.:3). Any co-ordination of social systems across space and time involves a 

combination of these two types of resources. Giddens classifies resrouces as follows: 

Allocative Resources 

Table 5.1 

Classification of resources 

(Source: Giddens, 1984:258) 

Authoritative Resources 

1. Material features of the environment 1. Organization of social time-space 

(raw materials, material, power (temporal-spatial constitution of 

sources). paths and regions). 

2. Means of material production/ 2. Production/reproduction of the body 

reproduction (instruments of ( organization and relation of human 

production, technology) beings in mutual association). 

3. Produced goods (artefacts created by 3. Organization of life changes 

the interaction of 1 and 2). ( constitution of changes of self­

development and self-expression). 
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The storage of resources is closely involved with the stretching of social systems across 

time-space (time-space distanciation) and thus the generation of power (op.cit.:259). 

Indeed, the expansion of capitalism to form a new world economy would not have been 

possible without the development of techniques for the preservation and storage of 

perishable goods (op.cit.:259, 260). It sounds thus as if human history is a sequence of 

' ... enlargements of the "forces of 'production". '( op.cit. :260). However, ' ... allocative 

resources cannot be developed without the transmutation of authoritative resources, and 

the latter are undoubtedly at least as important in providing "levers" of social change as 

the former. ' ( op.cit. :260). 

The first category of authoritative resources refers to the forms of ' . . . regionalization 

within (and across) societies in terms of which the time-space paths of social life are 

constituted. ' ( op.cit. :260). The second category, the production/reproduction of the body 

should not be seen as similar to material production/reproduction. The ' ... co-ordination 

of numbers of people together in a society and their reproduction over time is an 

authoritative resource of a fundamental sort.' (op.cit.:260). The third category, 

organisation of life-chances, is again not only dependent upon the material productivity of 

a society. 'The nature and scale of power generated by authoritative resources depends 

not only on the arrangement of bodies, regionalized on time-space paths, but also on the 

life chances open to agents.' (op.cit.:261). 'Life chances' means not only chances for 

survival for human beings in different regions of society, but includes the whole range of 

aptitudes and capabilities, e.g. literacy. 

Giddens sees the storage of allocative and authoritative resources as involving the 

retention and control of information or knowledge, that continue social relations across 

time-space. Storage presumes modes of information ( e.g. books, files, films, etc.), 

modes of retrieval and modes of dissemination. The retrieval of the information depends 

on human memory and interpretative skills. Technology influences the dissemination of 

information . Also, ' ... the character of the information medium, ... , directly influences 
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the nature of the social relations which it helps to organize. ' ( op.cit. :262). It is the 

containers which store the resources that generate the major types of structural principles 

in the constitution of societies. 

Constraints 

Structuration theory is based on the proposition that structure is both enabling and 

constraining. The various forms of constraints are thus also forms of enablement, 

opening possibilities of action at the same time that they restrict others. Giddens 

distinguishes between three types of constraint: 

• Material constraint, which is constraint ' . . . deriving from the character of the 

material world and from the physical qualities of the body.' (op.cit.:176). This 

includes the indivisibility of the body, the finitude of the life span, the limited 

capability of human beings to participate in more than one task at once, the fact that 

movement in space is also movement in time and the limited packing capacity of 

time-space (only one human being can occupy a space at one time) (op.cit.:111,112). 

• (Negative) sanctions, which are constraints ' ... deriving from punitive responses on 

the part of some agents towards others.' (op.cit.:176). The constraining aspects of 

power are seen as sanctions of a different kind, ranging from application of force to 

the mild expression of disapproval ( op.cit.: 175). 

• Structural constraint, which is constraints ' . . . deriving from the contextuality of 

action, i.e., from the "given" character of structural properties vis-a-vis situated 

actors.' (op.cit.:176). Instead of seeing the structural properties of social systems as 

walls of a room from which individuals cannot escape, but inside which he or she is 

able to move around freely, structuration theory views structure as implicated in that 

very 'freedom of action' ( op.cit.: 174). Even in reacting to 'inevitable' social forces 

(social forces which actors are unable to resist), it only means that human actors are 

' ... unable to do anything other than conform to whatever the trends in question are, 

given the motives or goals which underlie their action. ' (op.cit.: 178). 
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Society/Social systems 

Social systems comprise ' . . . the situated activities of human agents, reproduced across 

time and space.' (op.cit.:25). The situated activities are organised as regularised social 

practices, which with time, become reaffirmed as social properties - they start to appear 

as 'objectively given'. Reification, according to Giddens, refers not to the thing-like 

nature of the social properties, but to the consequences of thinking in this way. It is thus 

a form of discourse, ' .. . in which properties of social systems are regarded to have the 

same fixity as that presumed in laws of nature. ' (op.cit.: 180). This apparent 'fixity' of 

social properties probably lies behind the popular view of societies as units with clearly 

demarcated boundaries. Giddens does not agree with this view and emphasises the 

variation in the degree of systemness of societies. According to him societies are social 

systems but also constituted by the intersection of multiple social systems. Such 

intersocietal systems are described as social systems which ' .. . cut across whatever 

dividing lines exists between societies or societal totalities, including agglomerations of 

societies. ' ( op.cit. :3 7 5). Societies then, are ' ... social systems which "stand out" in bas­

relief from a background of a range of other systemic relationships in which they are 

embedded. ' (op.cit.: 164). The societies stand out because structural principles serve to 

produce a specifiable overall clustering of institutions across time and space. 

Social and System Integration 

Structuration theory presumes that the conduct of individual actors reproduces the 

structural properties of larger collectivities. Giddens distinguishes between two ways in 

which elements of 'systemness' are created in interaction: homeostatic causal loops are 

causal factors that have a feedback effect which is mainly the outcome of unintended 

consequences; reflexive self-regulation, on the other hand, refers to causal factors with a 

feedback effect, which is mainly the outcome of the knowledge of actors and their use of 

it to control system reproduction. Most social theories acknowledge the effect of causal 
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factors with largely unintended feedback on system reproduction, but structuration theory 

adds the importance of intended and reflexive self-regulation (Bryant & Jary, 1991:8). 

Giddens adds two further important concepts relevant to system reproduction, namely 

social and system integration. Social integration refers to systemness on the level of face­

to-face interaction, whereas system integration refers to the reciprocity between actors 

who are physically absent in time or space (Giddens, 1984:28). The mechanisms of 

system integration are based on the mechanisms of social integration but differ in some 

key respects. 

Time/Space/Con text 

The study of contextualities of interaction is inherent in the investigation of social and 

system integration and thus of social reproduction ( op.cit. :282). 'All social life occurs in, 

and is constituted by, the intersections of presence and absence in the ''fading away" of 

time and the "shading off" of space. ' (op.cit.: 132). Contextuality refers to the situated 

character of interaction in time-space, involving the setting of interaction; the co-presence 

of actors; and the communication between them (op.cit.:373). The terms locale and 

regionalisation are of importance here: locale refers to the use of space providing the 

settings of interaction, and regionalisation to the zoning of time-space in relation to 

routinized social practices (op.cit.:119). For example, locales can range from houses to 

areas occupied by nation-states. However, locales are internally regionalised ( e.g. houses 

are regionalised into floors, halls and rooms) and the regions within them play important 

roles in the constitution of contexts of interaction. 

The physical properties of the body and the surroundings in which it moves give social 

life a serial character and limit access to others not present. The positioning of the body in 

social encounters is thus fundamental to social life. The body is not only positioned in 

the immediate circumstances of co-presence in relation to others, but also ' ... in the flow 

of day-to-day life; in the life-span which is the duration of his or her existence; and in the 
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duration of "institutional time", the "supra-individual" structuration of social 

institutions. '(Giddens, 1984:xxiv). 

The human agent, and thus social interaction, is located in time-space. The 'locus' of the 

human agent is his/her body which has a finite or irreversible life-span. However, 

through structuration, social systems are recursively produced and reproduced giving it a 

'reversible' life-span, i.e. through structuration (which is made possible by the 

recursiveness of the day-to-day practices), the temporality of human practices is 

transcended by the stretching of social relations across space and time ( the reversible 

life-span of institutions). Giddens calls this phenomena time-space distanciation. 

5.2.4 Remarks 

The above gave a summary of the most important concepts of the structuration theory of 

Giddens. With this theory Giddens offers a way out of the conceptual divide between 

objectivism and subjectivism. Instead he presents the dualism as a duality, where social 

activity is regarded as being enabled and constrained by social structures that are 

produced and reproduced via human agency. 

Central to this theory is the knowledgeable human agent and the recursiveness of human 

action. Giddens proposes a stratification model for the agent. The model suggests three 

layers of action, namely reflexive monitoring of action, rationalisation of action, and 

motivation of action. Reflexive monitoring of conduct presumes a purposive, self­

conscious agent. Rationalisation of actions refers to the tacit continual theoretical 

understanding actors have of their own and other's actions. Motivation of action refers 

more to the potential for action, rather than the modes in which everyday action is carried 

out. Unconscious motivation plays a crucial role in human conduct. The three layers of 

consciousness linked to the three layers of conduct, are discursive consciousness (what 

actors can say about the conditions for their own actions), practical consciousness (what 

is known but cannot be communicated), and the unconscious. 
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Social structures have a 'virtual nature' in the sense that they exist only in memory traces 

in the individual's mind and become instantiated only in action. They are described as 

rules (normative elements and codes of signification) and resources (material and non­

material). 

By drawing upon the rules in everyday conduct, meaning is communicated, and conduct 

judged and evaluated. Drawing upon resources involves the exercise of power. Actors 

draw upon these rules and resources in their everyday conduct, thereby producing or 

reproducing the structures. 

In contrast to social structures, social systems are situated in time and space, comprising 

of the situated activities of actors, reproduced across time and space. The systemness of 

social systems is created through homeostatic causal loops ( feedback which is the effect 

of unintended consequences) and reflexive self-regulation (feedback which is the 

outcome of purposeful action). 

It is the belief of the author that with the help of this theory a better understanding could 

be reached of the interplay between the different components of the CSCML 

environment. The production and reproduction of social rules and habits within the 

CSCML environment will be accounted for. Moreover, social constructivism shows 

similarities to structuration theory in that it tries to overcome the dualism between object 

and subject. With the help of structuration theory, the CSCML environment can be 

modelled, taking the dynamics of social constructivism fully into account. This will be 

dealt with in par. 5 .4. 
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5.3 Information Technology 

Information technology can be defined as the use of electronic equipment for storing, 

analysing and distributing information. Being a vast field of interest, there is little 

agreement on the definition and measurement of technology. However, there is no doubt 

that information technology and the integration of it in different environments is a 

complex issue involving numerous aspects. 

5.3.1 Conceptualisations of technology 

Orlikowski(l 992) emphasises the lack of agreement on the definition and measurement of 

technology, despite years of research efforts. Prior conceptualisations of technology 

focused on specific aspects of technology, at the expense of others ( op.cit. :398). 

Orlikowski (1992:398-403) gives an overview of different conceptualisations of 

technology which will be summarised below. 

Two important aspects of technology are scope and role. Scope refers to that which 

comprises technology and role to the interaction between organisation and technology. 

A set of studies focused on the scope of technology as 'hardware' i.e. equipment and 

machines used in productive activities. This led on the one hand to context-specific 

definitions of technology, making comparisons across studies and settings difficult. On 

the other hand, the use of broad definitions became too abstract, limiting informational 

value. The hardware view was extended to 'social technologies', including generic tasks, 

techniques and knowledge used when humans engage in productive activities. This 

conceptualisation of technology is useful in that it recognises technology to be an 

important variable in organisations. However, this approach creates boundary and 

measurement ambiguity. It also fails to look at the mediation of human action by 
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machines, e.g. addressing questions like 'How do artefacts interact with human agents?', 

etc. 

The research that focuses on the role played by technology in organisations can be 

divided into three streams which reflect the opposition between the objective and 

subjective realms discussed in Chapter 1. The earlier stream consisted of studies which 

view technology as an objective, external force with deterministic impacts on 

organisational properties such as structure. Later work focused more on the human 

aspects of technology, seeing it as a product of shared interpretations or interventions. 

According to Orlikowski ( op.cit.), these studies sometimes rely too heavily on the 

capability of human agents and ignore the social and economic forces. The most recent 

work - the 'soft' determinism school - views technology as an external force having 

impacts, but where the impacts are influenced and moderated by human actors in 

organisations. For example, Barley (in Orlikowski, op.cit.), views technology as a 

potential changing force, intervening in the relationship between human agents and 

organisational structure. This view resulted from the observation that different 

organisations responding differently to the implementation of a similar technology. He 

proposes a role for technology as trigger, setting off social dynamics that lead to intended 

and unintended structuring consequences. Barley, however does not allow for the 

physical alteration of technology during use. Orlikowski stresses the point that some 

technologies can be modified during use, especially information technology. 

As part of the last perspective, several researchers have proposed models for the role of 

technology ( and specifically IT) in organisational processes, based on the structuration 

theory of Giddens (discussed in par, 5.2). Structuration theory conceptualises the 

importance of both structure and human agency as a duality. Two research studies which 

use structuration theory as meta-theory to enhance the understanding of the role of 

technology in organisations will now be discussed. The first study gives a structurational 

analysis of CSCW (Lyytinen and Ngwenyama, 1992) and the second study looks at the 
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complexities of the computer-supported co-operative learning environment (De Villiers, 

1995). 

5.3.2 A structurational analysis of Computer Supported Co-operative 

Work(CSCW) 

Lyytinen and Ngwenyama (1992) contribute to the research body on CSCW, by 

presenting a theoretical foundation for further research on CSCW informed by Giddens' 

structuration theory. 

From a structurational perspective co-operative work is defined as co-operative practices 

drawing upon rule, and resource, sets that are produced and reproduced through shared, 

recurrent interactions among individuals. It is also characterised by complex and intense 

interdependencies of activities, which are dependent on the shared understanding of the 

work process. The relationships between human agents are formed through planned 

structuring and deliberate discursive action. It differs thus from a spontaneous linking. 

Co-operative work relies on the reciprocity of practices and the development of a 

reservoir of taken-for-granted activities enabling frictionless encounters and effective 

interaction. The co-operative effect rests on established systems of signification 

(interpretive schemes). Giddens' concept of agency holds implications for this analysis: 

co-operative work provides for ontological security expressed on an unconscious level; 

on the level of practical consciousness, co-operative work enhances the development of 

rich stocks of knowledge that sustain and provide rationalisations of the co-operative 

behaviour of agents; and on the level of discursive consciousness, co-operative work 

involves the capabilities of agents to refine and evaluate their practices. 

Lyytinen and Ngwenyama (1992) use an ontologically focused approach to define 

Computer Supported Cooperative Work that conceptually characterises the nature of 

computer support in co-operative practices. This is in an attempt to avoid the one-sided 
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analyses of technologies at the expense of understanding the social nature of computer 

supported co-operative practices. They define CSCW as: 'Computer Supported 

Cooperative Work applications are open evolutionary structures embedding 

organizational and linguistic rules and serving as resources that mediate and transform 

cooperative interactions via recurrent use-processes (procedures and practices) within 

specific organizational contexts.' (Lyytinen & Ngwenyama, 1992:26). 

Social structures 

CSCW applications act as resources by embodying means and materials of labour, 

around which co-operative work can be structured. Computers also embed rules in 

codified form which mediate and transform communication practices, organisational rules 

and norms, hierarchies and role expectations. The division between rules and resources as 

two modes of computer support is not clear-cut: any CSCW application entails the 

presence of both. 

Human agents are assumed to be skilful and knowledgeable actors in drawing upon 

CSCW applications to support their co-operative activities. The level of support is 

influenced by the scope of the activity in 'co-operative work', the organisational context 

within which the social interactions are computer mediated, and the actors' capacities and 

involvement in the interactions (op.cit.:26). 

Characteristics of CSCW applications 

Lyytinen and Ngwenyama (op.cit.) believe that CSCW applications are distinguished 

from other computer applications by three characteristics: emergent properties, use­

processes and organisational contextuality. 

Emergent properties 
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This refers to features such as openness, evolutionary nature and goal ambiguity. These 

features instantiate combinations of rules and resources that support innovation and 

reinvention of co-operative work practices. An openness must be displayed in the 

application of CSCW practices to provide for rules (that are tacit and informal), the 

practical consciousness of agents and unintended consequences of implementation. 

CSCW has an evolutionary nature due to the continuous reshaping and redirecting of 

organisational practices as a result of the adaptation of CSCW applications. 'As users 

interact over time via these applications they will produce and reproduce structures of 

meaning, create and recreate new facilities to support emerging work patterns, and new 

norms and standards of co-operative work.' (op.cit.:29). 

From a structuration theory perspective, organisations have no goals: agents can never 

describe their actions completely, and thus goals are always ambiguous and negotiable. 

The goals of every co-operative work situation are negotiated and renegotiated by actors 

to adapt them to their own needs. In this way then CSCW applications differ from more 

traditional information systems: they do not support clearly definable organisational 

goals. It is also difficult to identify quantifiable benefits from the use of CSCW 

applications. 

Use-processes 

Three use-processes are defined: collective, autonomous and interpretive. 

Collective use implies that the system should provide an arena for significant computer 

mediated interactions among the operators. Actors should view CSCW applications both 

as mediums for, and products of, meaningful social interactions ( e.g. bulletin boards). 

The collective use-processes also increase the level of system integration where actors are 

located at different time-space co-ordinates. 
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In contrast to traditional information systems, there is a high degree of voluntary 

participation in CSCW applications. This could be referred to as the autonomous use. 

Although an individual can decide to use applications or not, social pressure and high 

social visibility sometimes motivate participation. Thus, the use of CSCW applications is 

often legitimised by group pressure and symbolic value rather than by institutionalised 

rules. 

The interpretive mode of use implies that the meanmg of data is not fixed but is 

interpreted and reinterpreted by the users. Consequently, the type of rules are intensive, 

tacit, informal and weakly sanctioned. 

Organisational contextuality 

The CSCW applications are media and products of co-operative interactions that are 

embedded in a larger organisational context. The use of the system is enabled and 

constrained by the organisational structures ( e.g. the organisational context could include 

contradictory, deep-seated practices that influence the co-operative practices.) 

Organisational practices could explain obstacles to implementation of CSCW 

applications. 

The interactions between the characteristics and structures of CSCW within the context of 

structuration theory are given in Figure 5.5. 

This framework could assist in understanding the nature of computer support in co­

operative learning practices, that is, if co-operative learning is seen as a dialectical 

process between reflexive monitoring and rationalisation of action toward changing a 

situation. This duality shapes organisational reality, and thus the frameworks of meaning 

through which individuals make sense of their actions. (Sheather, Martin & Harris, 1993) 
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5.3.3 A theoretical framework for CSCL 

De Villiers (1995) proposes CSCL as an organisational idea that has the potential to 

connect educational and working environments. She draws on research on systems 

theory and CSCW (specifically applications of structuration theory and adaptive 

structuration theory (DeSanctis & Poole, 1994)) to propose a theoretical framework for 

CSCL. This framework describes the CSCL process as a whole. The main concepts 

comprising the framework will now be discussed. 
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CSCL as social system 

The social structures provided by CSCL not only support the learning environment ( as 

traditional uses of IT), but also co-ordination and communication between learners and 

teacher. The CSCL environment is described as a system, recognising the activities of 

the components but at the same time considering the activity of the whole system that 

contains them. 

The components 

The following components are of importance: 

• Groups of learners - groups must be formed, keeping in mind group dynamics and the 

basic elements of co-operative learning. 

• Teacher - the teacher should mediate learning through dialogue and co-operation, and 

should execute the following tasks: present a learning task; control the group 

dynamics; keep the groups on task; unify the groups by offering encouragement; 

organise the activities, materials, equipment, etc.; monitor group work; be available to 

individuals; and observe the thinking processes. 

• Co-operative learning methods - the methods should be chosen with the objectives, 

subject matter, evaluation methods and level of learners in mind. 

• Information technology - technologies should be chosen in line with the topic and 

subject to be taught. 

• Physical learning environment - the arrangement of desks and computers should 

encourage group discussion. 

• Course materials - course material should be collected or developed by teachers. 

Functions 

This system has five basic interacting functions: 
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• Input (the elements that enter the process): learners with little or no subject 

knowledge, the level of the learners, study material, training of learners, the learning 

task and the planning of the groups. 

• Processing (the transformation of input to output): the learning and teaching process 

(summarised in par. 2.4.1.4 ). 

• Output (the goal of the process): learners with subject knowledge, output from CSCL 

(skills), output from the learning task (new information generated) and the output 

from the organisational environment. 

• Feedback: data about the performance of the system; the teacher monitors the group 

processes, adjusts and coaches the groups accordingly. 

• Control: evaluation of the system to determine whether the system is achieving its 

goal. This includes the evaluation of the learners and groups to ensure that the 

objectives have been achieved. 

Organisational learning 

Organisational learning can take place in the evaluation process. Organisational learning 

takes place when members of an organisation learn by responding to changes to the 

internal and external environments of the organisation by detecting and correcting errors 

in organisational theory-in-use. This results must become shared maps of the organisation 

(Argyris & Schon in de Villiers, 1995). It takes place as: 

• Single-loop learning: e.g. a teacher realises during evaluation and feedback that 

course material should be adapted before continuing the process. 

• Double-loop learning: e.g. changing and correcting norms and assumptions of the 

CSCL environment in an attempt to correct errors. 

• Deutero-learning: e.g. teachers learn more about CSCL and develop their methods 

accordingly. 

De Villiers uses the Adaptive Structuration theory (AST), to describe both the social as 

well as the technical character of the CSCL environment. The key concepts of AST are 

structuration and appropriation. 
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Structuration 

Structural features are the specific types of rules and resources offered by the CSCL 

environment (e.g. co-operative learning methods and the formation of groups oflearners). 

Other sources of structures are the learning task, the level of learners and the 

organisational environment in which learning takes place. These features bring meaning 

(signification) and control (domination) to group interaction. New sources of structure 

emerge as CSCL, the learning task and organisational structures are applied. 

The spirit of the social structures is the general intent with respect to values and goals 

underlying that set of structural features. The spirit provides legitimation to CSCL by 

providing a basis for appropriate behaviour in the context of the CSCL environment. De 

Villiers finds that the goal and values that are promoted and supported by the CSCL 

environment are: better self-esteem, improved human relations and improved 

communication skills. Spirit is identified by analysing the CSCL method, the features 

incorporated in the environment, the study materials, and the training and assistance 

provided by the mediator to the learners. 

Appropriation of Structure 

The appropriations of the CSCL environment, the learning task and organisational 

environment are the immediate, visible actions that evidence deeper structuration 

processes. These actions make up the learning process. The learning process as described 

by De Villiers (1995) is discussed in par. 2.4.1.4. The teacher plays an important role in 

guiding the process of appropriation. 

The appropriation of structures is influenced by: 

• The degree of knowledge and experience of the group members with regard to the 

structures of the CSCL environment. 
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• The style of interaction among group members. 

• The degree to which group members believe that other members know and accept the 

use of the structures. 

• The degree of agreement on which structures to appropriate and the willingness to 

participate in the learning process. 

Learning outcomes 

Effective and quality learning, commitment amongst learners to the learning process and 

consensus within the groups are seen as desired learning outcomes. These outcomes also 

have an influence on the social interactions. Desired learning outcomes are more likely to 

occur if appropriations are faithful to the spirit of CSCL, if the number of technology 

appropriations is high, if there are more on-task instrumental uses of technology and if 

attitudes are positive towards appropriation. 

Figure 5.6 summarises the main components and its interplay in the CSCL environment. 

5.3.4 Some critique 

An important premise of structuration theory is that the social structures of societies (the 

social object) do not exist in a concrete sense, but are only instantiated in social activity 

over time. In this way the object/subject dualism is reconceptualised as a duality. De 

Villiers and Lyytinen & Ngwenyama disregard this important concept by equating 

structure (rules and resources) to information systems. Information systems in their 

physical form only represent interpretations of rules. They become rules and resources 

when instantiated within social action through the agency of individual actors 

(Lamprecht, 1997:201 ). 
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5.4 A theoretical framework for the CSCML environment 

As was pointed out in par. 5.2.4, it is the belief of the author that with the help of 

structuration theory a better understanding could be reached of the interplay between the 

different components of the CSCML environment. Since mathematics is seen as a social 

construction, the theory of Giddens could provide useful insights into the social and 

private learning activities taking place in the CSCML environment. The production and 

reproduction of social rules and norms within the CSCML environment could also be 

accounted for. Since CSCL can be seen as a special application of CSCW, Lyytinen and 

Ngwenyama's (1992) application of structuration theory to CSCW, discussed in par. 

5.3.2, will also be used in the development of the model for CSCML. 

Giddens views the social structures of societies (the social object) as not existing in a 

concrete sense, but as 'memory traces' in the agent's mind. The structures are only 

instantiated in social activity over time. In this way the object/subject dualism is 

reconceptualised as a duality: the social object exists within the realm of the social 

subject. Structures are produced, and reproduced, by the eventual accommodation 

(Skemp, 1971) or reaffirmation of the 'memory traces' ( or mental schemas) and the 

instantiation of them through action. It is thus clear that learning accompanies the 

structuration process. 

A structurational perspective of the CSCML environment 

The CSCML environment is interpreted from a structurational perspective as a social 

system in which interpretations of organisational and mathematical structures of 

signification, legitimation and domination are represented by the CL methods/principles, 

IT, objective mathematical knowledge and the learning task. These components act as 

modalities of structure upon which actors can draw in co-operative actions to 

reconstitute or change the structural properties of the components. This takes place by 
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the changing or reaffirmation of the agent's mental schemas in a specific organisational 

context. Figure 5. 7 illustrates the description. 

Structures 
( mental schemas) 

Modes of 
+-+ mediation 

Figure 5.7 

Co-operative 
+-+ interaction 

The structuration and learning process 

Mental 
schemas 
(structures) 

Although the elements in the above discussion are inseparable, they will now be 

separated for the purpose of analytical discussion. 

Social system 

Giddens describes social systems as ' . . . the situated activities of human agents, 

reproduced across time and space.' (Giddens, 1984:20). The CSCML environment as a 

social system consists of the co-operative interaction ( and individual activities) of the 

teachers and learners in a mathematical learning environment. The social activities have 

a routinized and regularised character, providing it with time the appearance of 

'objectively given'. 

The system can in a certain sense be described as an intersocietal system since it shares 

rules and norms with the macro mathematical community (the professional mathematical 

community). The shared rules include the accepted mathematical knowledge and certain 

working practices. The teacher is seen as the representative of the macro-community and 

thus has to mediate between the individual's personal meanings and the culturally 

established mathematical meanings of the macro community. 

Systemness is created through ho~~Q.§t_c1~!2op~- and reflexive self-regulation. Reflexive )'( 

self-regulation refers to the causal factors having a feedback effect which is the outcome 
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of the actors' use of their knowledge to control system reproduction. By applying CL 

methods, the norm of 'group processing' (par. 3.2.3) is instantiated. This is a form of 

self-regulation where groups reflect on their functioning and introduce ways of 

improving it. The teacher, in particular, uses his/her expert knowledge of CL methods 

and mathematical knowledge to control system reproduction. The concept of 

organisational learning can be applied here (De Villiers, 1995). 

Organisational learning takes place when members of an organisation learn by responding 

to changes to the internal and external environments of the organisation by detecting and 

correcting errors in organisational theory-in-use. These results must become shared maps 

of the organisation (Argyris & Schon in de Villiers, 1995). It takes place as: 

• Single-loop learning: e.g. the teacher realises during evaluation and feedback that 

course materials should be adopted before continuing the process. 

• Double-loop learning: e.g. changing and correcting norms and assumptions of the 

CSCL environment in an attempt to correct errors. 

• Deutero-learning: e.g. teachers learn more about CSCL and develop their methods 

accordingly. ( After conducting case study 1, the facilitator realised that problem 

solving skills need to be made explicit and consequently introduced the concept of a 

problem solving expert in case study 2). 

Social and system integration is not only encouraged by the CL principles 'face-to-face 

promotive interaction' and 'positive interdependence' (par. 3.2.3), but also by the IT 

applications ( e-mail, video-conferencing, etc.). 

The co-operative mathematics learning process 

The assumption of social constructivism is that learning is a ' ... process of both self­

organization and a process of enculturation that occurs while participating in cultural 

practices, frequently while interacting with others. ' (Cobb, 1994: 18). Social 

constructivism is seen here as a philosophy that recognises both the importance of the 
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individual's sense making in his/her experiential world and the effect of the social 

environment and culture on this sense making process. Too strong a focus on the 

individual leads to solipsism and ignores the society's shared sets of values and concerns. 

Too strong a focus on culture and society, on the other hand, leads to the ignoring of 

individual differences and the active role of the individual in the constitution of 

classroom culture. The social constructivist view adopted here ( a radical constructivism 

with the recognition of the importance of the social context), has been criticised as the 

mixing of incompatible theories that lead to linguistic knowledge slides (Smith, 1994). 

This difficulty can be overcome by using the structuration theory of Giddens to obtain a 

better understanding Qf the social context of math~_giatics learning. ------- . ·-·--~-- --

Leaming is seen as an effect of interaction (Voigt, 1996): through social interaction 

(drawing on structures), subjective mathematical knowledge becomes compatible with 

the structures. By this process the structures are reinforced. 'Structures' indicate here the 

accepted rules and resources represented by objective mathematical knowledge as well as 

the rules of accepted mathematical and classroom practices. 

The interaction process can also be seen as social negotiation which is a process of 

adaptation in the course of which teacher and learner establish expectations of each 

others' activity and obligations for their own activity (Bauersfeld in Cobb, 1994). 

The co-operative mathematics learning process supported by IT proceeds in more detail 

as follows: 

• The teacher presents the group with a mathematics learning task. The learning task 

involves the use ofIT and objective mathematical knowledge. 

• By individual and collective action on representations of mathematical knowledge, 

private mental mathematical concepts are 'activated'. The representations of the 

mathematical knowledge could be in the form of verbal-algebraic, visual or kinetic 

images that are presented electronically, verbally or in writing. 
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• However, mathematical concepts are ambiguous: the dual nature of mathematical 

concepts has already been discussed in par. 2.4.3.2. Also, individuals have unique 

ways of representing subjective mathematical knowledge. 

• The CL methods provide norms of co-operation and goal-directed activity. By 

drawing on these norms, groups work towards the unambiguous understanding of 

mathematical concepts. Individuals experience mathematical concepts as 

unambiguous in the following way: interaction in the classroom is seen as more than a 

series of separate acts, but as a continuous flow of conduct, where the actor 

reflexively monitors his/her own actions in accordance with what he/she assumes the 

others' background understanding and expectations are. The others interpret the 

actions of the individual, adopting what they believe to be the actor's background 

understanding and expectations. In this way a background understanding is taken as 

'objectively given' and mathematical concepts are experienced as unambiguous 

(Voigt, 1996). 

• However, this does not mean that the individual group members have the same 

conception of the mathematical concepts, even if they collaborate without conflict. 

The more the background understanding of learners differ, the more likely it is that 

their understanding of mathematical concepts will differ. 

• Because of the disparity between the background knowledge of the teacher and 

learners as well as the teacher's role of mentor, learners and teachers have to 

negotiate mathematical meanings. 

• Through negotiation (between learner and learner, and teacher and learner), a shared 

stock of mathematical meaning is formed (called a 'theme' by Voigt (op.cit.)). The 

theme is not fixed but is interactively constituted through negotiation. 

• With time, the theme gains stability because mathematical discussions are constrained 

and guided by mathematical structures and because of the need for routine to ' ... 

protect social continuity ... ' (Giddens, op.cit.:70). The knowledge now becomes 

ins ti tuti onalised. 
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Even though a consensus was reached, misconceptions can still exist in the mind of the 

individual. A part of the individual's mathematical knowledge lies in the private realm, 

or practical consciousness. It is only by making this knowledge public, or shifting it to 

the discursive consciousness that the misconceptions can be identified by the teacher and 

other learners. This is usually a difficult process since the 'private' knowledge tends to 

be vague. It is in the practical consciousness that the vague combinatory play with ideas 

takes place before it is shifted to the discursive consciousness by the ' ... connection with 

logical constructs in words or other kinds of signs which can be communicated to others. ' 

(Einstein in Hadamard, 1945:142). 

In par. 2.4.3.2 , the formation of mathematical concepts was described as a fluctuation 

between processes and objects. Cobb et. al. (1997) believe that the negotiation process 

supports and stimulates the formation of these dual conceptions of mathematical 

concepts. They observe and define a kind of interaction which they call 'reflective 

discourse' which is characterised ' ... by repeated shifts such that what the students and 

teacher do in action subsequently becomes an explicit object of discussion. ' They also 

define a related concept of 'collective reflection' - referring to the ' ... joint or communal 

activity of making what was previously done in action an object of reflection. ' (Cobb et. 

al., 1997:258). This collective process supports similar individual mental activities 

(interiorization, condensation and reification (Sfard, 1991)) in the individual's mind. 

Modalities of structure 

In the above discussion the CSCML environment was described as a social system where 

the interaction of the learners and teacher produce and reproduce structures which are 

eventually reaffirmed to become structural properties of the system. This paragraph will 

take a more in depth look at the interpretation of structures represented by the different 

components of the CSCML environment. 
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CL methods 

The essential principles of CL (par. 3.2.3) are built into the CL methods and bring the 

constitution of meaning and the sanctioning of modes of social conduct. The more 

formal CL methods ( e.g. the STL method) impose more constraint on social behaviour, 

whereas the more informal methods ( e.g. learning together) encourage exploration and 

discovery. Also, in drawing on the norms provided by CL principles in interaction, the 

norms are reaffirmed. So for example, in both case studies, learners realised the 

importance of verbalising their ideas and they showed a willingness to co-operate and 

listen to others. They also exhibited goal-directed activity and on-task verbal interaction. 

The norms 'positive interdependence', 'face-to-face promotive interaction' and 'good 

social skills' help to develop the learners' psychological security which influences 

attitudes and motivation. This is probably one of the reasons why co-operative learning 

is such a good setting for creative problem solving. The problem solver needs to show a 

certain sense of endurance and self-confidence in trying different strategies in the face of 

uncertainty. 

By drawing on the facilities provided by CL methods ( e.g. one worksheet/computer per 

group, or the appointing of experts in groups) in interaction, structures of domination are 

produced and reproduced. In case study 2, in particular, the 'experts' awareness of 

themselves as agents, increased their motivation and their willingness to co-operate. The 

term 'agents' is used here in Giddens' sense: 'An agent ceases to be such if he or she 

loses the capability to 'make a difference', that is, to exercise some sort of power. ' 

(op.cit.:14). 

The facilities represented by CL methods specifically to enhance positive 

interdependence ( e.g. one computer per group) can be used in ways that alter the original 

norms. For example, in case study 2, the 'group leader' dominated the keyboard as well 

as the worksheet, which led to frustration and the establishment of a new norm of 
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intolerance within the group (par. 4.3.7.3). The keyboard became the symbol of a power 

struggle within the group. 

Information Technology 

Technology acts as a resource and interpreter of rules: interaction supported by 

technology draws on the interpretive schemes designed into the IT, the facilities provided 

by IT, and the underlying norms represented by the system. Through interaction these 

structural properties are either reproduced or changed. 

Mathematical software both enables and constrains the learners' mathematical 

understanding: mathematical structures are built into the software and thus restrict the 

learners' interpretation of what is accepted as true mathematical knowledge (Roschelle & 

Teasly, 1995). For example, certain software facilitates more rigid formalisations and 

thus initiates the learner into the formal mathematical language. It also facilitates group 

consensus in that it needs consensus on the formal language before it can proceed 

(Clements & Nastassi, 1991). Open-ended computer environments facilitate co-ordination 

of divergent perspectives and the resolving of impasses (Roschelle & Teasly, 1995). 

The representational plasticity ofIT referred to in par. 4.3.7.3, supports the formation of 

both kinds of conceptions of mathematical concepts (par. 2.4.3 .2). It provides 

environments in which mathematical processes and mathematical objects become 

inseparable. In this way IT supports the most intimate aspects of mathematics learning. 

Mathematical norms are being changed or questioned as a consequence of the use of 

mathematical software in learning. For example, alternative roles of proof need to be put 

forward (par. 3.4.3), which in the long run can have an influence on how proof is taught 

in the school environment as well as on conceptualisations of proof in the professional 

environment. 
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Another consequence of the use of IT in mathematics learning is the enriching of 

mathematical structures by the creation of new kinds of problems and new mathematical 

objects (par. 3.3.3.3 (Laborde, 1995) ). 

Giddens states that the character of the information medium (in this case IT) directly ' ... 

influences the nature of the social relations which it helps to organize ... ' (Giddens, 

1984:262). The public nature of IT not only seems to sustain social interaction but also 

makes the groups' mathematical processes and products visible, aiding the difficult shift 

of knowledge from the practical to discursive consciousness. 

Some technologies are specifically designed to support co-operative learning. The norms 

of individual accountability and positive interdependence are designed into the software 

and hardware to enable effective interaction (par. 3.4.5). 

Objective mathematical knowledge 

Objective mathematics represents mathematical rules. These include interpretive 

schemes and norms (procedures, definition, algorithms, proof, etc.). This knowledge is 

built into the CSCML environment through the mathematical software and the learning 

task. The teacher, group members and other written sources also provide representations 

of mathematical structures that can be drawn upon in interaction. 

What is meant by mathematical structures ( or mathematical rules and norms) in the sense 

of structuration theory? Although mathematics, the study of pattern, describes more than 

social patterns, it is a social construction (par. 2.2.2). It is thus constructed across time 

and space, through human interaction enabled and constrained by mathematical 

structures. By keeping in mind Giddens' definition of rules as procedures of action, one 

would interpret mathematical structures as only mathematical procedures and processes. 

However, by viewing mathematical objects as reified procedures, one could define 
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mathematical structures as accepted mathematical objects and processes existing as 

mental schemas in the learner's mind. 

The learning task 

The learning task represents interpretations of both mathematical structures as well as 

organisational structures. It organises the groups' activity: with which subject matter 

they will deal, in which way (problem solving, application, discovery, etc.), the time they 

will need, etc. The CL norms must be designed into the task, e.g. the inclusion of 

evaluation forms for group functioning. Complex tasks allowing multiple inputs and 

viewpoints seem most suitable for the CL environment (Good et al., 1992). 

Organisational context 

The CSCML components represent structures that can be drawn upon in interaction that ' 

. . . help to maintain social identity, achieve meaningful social interactions, and develop 

self-esteem and psychological security.' (Lyytinen & Ngwenyama, 1992:25). The nature 

of the structures represented by the CSCML components encourages the formation of the 

following norms: ' ... that meaningful activity is valued over correct answers, that 

persistence on a personally challenging problem is more important than completing a 

large number of activities,' [that individuals] 'will figure out solutions that are 

meaningful to them', [that they] 'explain their solution methods to' [their group members 

and that] 'they try to make sense of their partner's problem solving attempts.' (Yackel et. 

al., 1991: 397,398). 

It was seen in the case studies (par. 5.2 and 5.3) and also observed by Voigt (1996) that 

the norms of the traditional teacher-centred classroom can be restructured within this new 

social organisation of the classroom. The organisational environment which provides the 

setting for the CSCML environment, has an influence on the patterns of interaction. 

Teachers and learners draw upon the underlying norms of the organisational environment 
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in which they operate during their interaction, to establish a certain classroom culture 

(par. 4.4). This is described in a study done by Gregg (1995), where he investigated the 

acculturation of a new mathematics teacher into the mathematics tradition of a specific 

school. The school's approach to school mathematics was the traditional approach. 

Through interaction with students (who also accepted this as objectively given) and 

colleagues, the patterns of interaction soon established the traditional norms in the new 

teacher's classroom. Gregg emphasises that new teachers are not 'funnelled' into ' ... 

traditional practices, but that teachers, students and administrators actively participate 

in the production and reproduction of these practices. ' (Gregg, 1995 :461 ). 

The motives and goals lying behind the conforming behaviour is the wish to act 

competently within the tradition. According to Gregg (op.cit.), this means to produce 

students who score well in university and college admission tests and who are adequately 

prepared for undergraduate mathematics. Traditional mathematics classrooms are thus 

characterised by a compartmentalised curriculum, assessment through test grades, time 

restrictions, and so on. By drawing on the rules and resources presented by the CSCML 

components, these traditional practices are challenged: teachers rethink assessment ( e.g. 

screen output, verbal explanation (Morgan, 1994)) and existing curricula prove 

inadequate ( concepts can be learned in different orders and at different rates, difficult 

concepts can be introduced earlier, etc. (Morgan, 1994)). It is thus clear that most of the 

obstacles to the effective implementation of CSCML has to do with the differences in the 

underlying norms of the traditional learning environment and the CSCML environment. 

Agency 

The knowledgeable agent stands central to Giddens' structuration theory. Giddens (1984) 

defines knowledgeability as ' .. . everything which actors know (believe) about the 

circumstances of their action and that of others, drawn upon in the production and 

reproduction of that action, including tacit as well as discursively available knowledge. ' 

(op.cit.:375). Since the learning of mathematics in the CSCML environment becomes a 
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social activity, this knowledge does not only include the 'detailed and dazzling' 

knowledge of learners of how to 'go on' in daily social life (op.cit.), but also their 

mathematical knowledge. However, learners' knowledge about conditions for their 

actions is bounded by the situated nature of action, the degree to which tacit knowledge 

can be communicated, unconscious motivation, and unintended consequences of action. 

The assumption is that learners are skilful and knowledgeable and that they know more 

than what can be communicated. However, the degree to which learners can draw upon 

CSCML components to support their co-operative interactions, is influenced by the 

internal system of the group (DeSanctis & Poole, 1992). The internal system of the group 

is determined by: 

• The group members' degree of knowledge of, and experience with, the components 

of CSCML. It was seen in case study 1 that inadequate knowledge of the software led 

to their inappropriate use of it. Also, the degree of knowledge of the students (in case 

study 2) of calculus included only the operational aspects of it. This influenced the 

execution of the group tasks. 

• The style of interaction between group members. Both case studies included 

disfunctioning groups that had a detrimental effect on learning and on attitudes 

towards the process. 

• The degree to which group members believe that other members know and accept the 

use of the components of CSCML. 

• The degree of agreement on which strategies to follow and the willingness to 

participate in the learning process. 

Emergent properties 

Lyytinen and Ngwenyama (1992) list one of the characteristics of CSCW applications as 

emergent properties. They describe emergent properties as ' ... those features .. . which 

support innovation and reinvention of co-operative work procedures and practices over 

time by instantiating different combinations of rules and resources ... ' ( op.cit. :28). 
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One of the emergent properties noticed in the CSCML environment is that of goal 

ambiguity: although the facilitator sets a learning task with a specific objective, the 

reality is that the goal is renegotiated by the group members in interaction. Lesson 2 of 

case study 2 showed clearly that the groups' goal differed from the original intention of 

the facilitator and that the intervention by the facilitator did not change their direction 

(par. 4.3.7.3). Also, the application of IT sometimes has unintended consequences. The 

learners' changed view of the role of proof in case study 1 is an example. Another 

positive unintended consequence of applying CSCML is the more positive attitudes 

towards mathematics. Then there is the issue of mathematics learning. Can one say that 

effective mathematics learning takes place? The CSCML environment is no doubt 

designed to enhance effective learning, but to really assess whether it takes place is a 

difficult matter. The learner still has the choice to participate actively in the interaction 

and consequently be initiated into the mathematics culture. The individual also has to 

make personal sense of the interaction and discussions taking place. As was said already, 

this sense making process is influenced by several factors including the unintended 

consequences of actions. The CSCML environment is a rich learning environment that 

provides ample opportunity for incidental learning to take place. Although the average of 

the post-test in case study 2 was 20% better than the pre-test, many students still regarded 

their gain in social skill and self-esteem as the most important result of the programme 

(par. 4.3.6.3). 

Another emergent property of CSCML is its evolutionary nature: the application of this 

learning environment could act as a catalyst to reshape and redirect traditional 

organisational practices. It was seen in the case studies as well as other research studies 

(Leikin & Zaslavsky, 1997) that participation in the CSCML environment fosters positive 

attitudes towards mathematics and mathematics learning. It also changes views of 

mathematics curricula, ways of assessment, and the role of the teacher. 
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5.5 Summary 

This theoretical framework offers IT, CL methods/principles, the learning task and 

objective mathematical knowledge as modalities of structure upon which learners draw in 

their interaction to change or affirm the structural properties of these components. 

Leaming is seen to be an effect of the structuration process which takes place in a specific 

organisational context. 

The overt and covert knowledge of the individual is described as residing in the practical 

and discursive consciousness. The individual's creation process is described as a to-and­

fro movement between mathematical objects and mathematical processes, moving 

towards higher levels of sophistication. This process is managed by the learner through 

the reflexive monitoring of his/her own mental and other actions. 

Learners are recognised as knowledgeable agents who have the power to participate in or 

bypass the system. The teachers are seen as an important controller of system 

reproduction through assessment and critical evaluation of the process. The concepts of 

single-loop, double-loop and deutero-leaming can be applied here. The effect of the 

internal system of the groups on its functioning (DeSanctis & Poole, 1994) is also 

recognised. Some actions have unintended consequences. These unintended 

consequences of action feed back into the system to become unacknowledged conditions 

for further acts, changing the course of original plans. This model thus recognises the 

unpredictability of the CSCML environment. Figure 5.8. gives an illustration of these 

dynamics. 

The model developed in par. 5 .4 is presented as a tool that can be used to enable better 

understanding of the CSCML environment as a whole. This is envisaged to have 

implications for design. The CSCML environment in case study 2 will now be revisited 

to illustrate the use of the theoretical framework. 
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5.6 The theoretical framework applied to case study 2 

Social system 

The CSCML environment consisted of the situated activities of the students and 

facilitator, which were produced and reproduced across time. 

Initially, patterns of interaction were characterised by uncertainty, but with time 

regularised behaviour patterns were observed. These regularised interaction patterns 

differed from group to group. Examples of social integration within groups included 

taking turns, roles within groups, and specialised humour (Lyytinen & Ngwenyama, 

1992). Group 4, in particular, was characterised by lively and humorous discussions. In 

group 1, it became the norm to 'fight' for a chance to participate. This was brought about 

by the dominance of one group member and the inability of the other two group members 

to negotiate better co-operation. Group 2 and 4 reinforced the CL norms of co-operation 

and willingness to listen to others. It also became part of the routinized behaviour of 

group 2 to accept 2b as operator throughout the course. Group 3 failed to establish 

conducive patterns of interaction: in all sessions, one member always came late because 

of transport problems and 3b only attended 3 sessions. At the end, 3b dominated 

discussions, while the other two listened without interest. 

Group 2, and particularly group 4, practised reflexive self-regulation. For example, when 

the group reached an impasse, 4a reminded the group of the problem solving skills (albeit 

in a humorous way). For the facilitator, single loop learning took place when she 

intervened to change the established practices of group 1. The usual operator ( and 

dominating member) was given a less conspicuous role in lesson 2. This had a positive 

influence on the group's co-operation. Also, deutero-learning took place when the 

facilitator realised from her experience in case study 1, that the CSCML environment is 

particularly suited to problem solving tasks, but that these skills need to be made explicit. 

She consequently used the topic of problem solving in the group building exercises of 
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session 1, and introduced problem solving experts m lesson 1. In this way system 

reproduction was controlled. 

The mathematics learning process 

The following excerpt from the transcription of the videotapes shows the negotiation 

process between all three group members of group 4 and the facilitator M, to establish a 

mathematical theme. In this discussion, students are trying to understand the given 

problem graphically. The students have to design a ski-jump with a given vertical height 

and which covers a given horizontal distance. They need to identify the polynomial 

whose graph is a side view of the ski-jump. 

Group 4, animated discussion is going on. 4b is showing with hands something perpendicular. 
4b: 'This is perpendicular'. 
4c:' Uhu, Uhu' ( 4c shakes her head saying no.) 
4b: 'Oh, is it this way?' (4b shows with hands). 
4a and 4c: 'Yes.' (4a and 4c nod heads). 
4b: 'All right.' 
All look carefully at THE PROBLEM. 4b underlines given values. 
M looks at THE PROBLEM. Starts making a hand sketch. 
M: 'This is the horizontal distance.' 
4c: 'The distance is ... ' 
4a: 'So this distance is the horizontal.' 
4b: 'From start to finish.' 
4c: 'Yeah, see ... '( 4c starts drawing a hand sketch). 
M: 'So it goes like this, she says that this distance is 36.6.' 

4a and 4b: 'Oh' (Transcript B, Tape 2, 15 :24). 

The negotiation processes of groups 2 and 4 showed maturity and respect for others' 

opinions. However, the facilitator played an important role in this negotiation process in 

all four groups, because of their inability to interpret the information on the 30 degree 

angle. As was said before, this could be ascribed to the students' exclusive view of 

derivatives in the operational sense. This was discussed in full detail in par. 4.3.7.3. 

Modalities of structure 

The components of the CSCML environment are modalities of structure which students 

draw upon in interaction to produce and reproduce structures of signification, legitimation 
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and dominance. This structuration process goes hand in hand with learning. The 

different components will now be discussed in more detail. 

CL methods/principles 

The five principles (or norms) of CL as well as the CL method (Jigsaw) were discussed in 

the group building session and built into the learning task (see par. 4.3.5). 

Group 2 and 4 reaffirmed these norms through interaction. They realised the importance 

of verbalising their ideas and they showed a willingness to co-operate and listen to others. 

They also exhibited goal-directed activity and on-task verbal interaction. However in 

group 1, the facilities represented by CL methods to specifically enhance positive 

interdependence ( e.g. one computer per group) were used in ways that altered the original 

norms. The 'group leader' dominated the keyboard as well as the worksheet, which led to 

frustration and the establishment of a new norm within the group of intolerance (par. 

4.3.7.3). The keyboard became the symbol of a power struggle within the group. 

Information Technology 

The mathematical software enabled and constrained the students' mathematical 

understanding: the mathematical rules built into the software restricted and guided their 

activities ( e.g. an error message was given if two matrices of incompatible sizes were 

multiplied). 

The representational plasticity of the software had a great effect on the learners. They 

could see their ski-jump in a verbal-algebraic and graphical representation - some 

students indicated there AHA-experience as 'seeing the graph'. In this way both 

conceptualisations ( operational and structural) were represented. 
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The public nature of the computer (screen output) made it easier for the facilitator to 

check the progress of the groups. 

Some students, however, had a different expectation from IT support to their learning. It 

was remarked that 'the computer does all the thinking and gives the solution without 

showing the steps to get to the solution'. Also, 'we do not use our brains much, therefore, 

we do not have much stress'. Another student wrote: 'why is it so much simpler doing 

the problem using MATLAB, than doing the problem on paper?'. ( In these lessons, the 

computer was used to do the usually tedious computations). 

The learning tasks were designed to enhance the formation of structural conceptions of 

mathematics concepts. It was assumed, since students had already done the work in class 

earlier in the year, that the operational conceptions were already formed. It became clear, 

however, that students saw the operational side of mathematical concepts as the only side. 

When the computer did the procedural parts, leaving them free to interpret and 'objectify' 

procedures, they felt that there was nothing left for them to do. It is probably also the case 

that the students view the computer as a substitute for the teacher or textbook and not a 

tool (as it was used in the course). ( Most of the students had only experienced 'drill' 

software before.) Hence the complaint about the computer not showing the steps. 

These complaints about the IT, illustrate the 'reflexive monitoring' and 'rationalisation' 

of actions. Students tried to ' . . . keep in touch with the grounds of what they do ... ' 

(Giddens, 1984:376). They were thus trying to understand the role of IT in their 

activities. This environment thus did not show a seamless integration ofIT. 

The facilitator encouraged questions about 'what is gomg on behind the scenes' of 

MATLAB. In this way the mathematical structures built into the software were exposed 

and could facilitate learning. 

Objective mathematical knowledge 
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The objective mathematical knowledge included basic concepts of matrix operations, the 

solving of linear equations, vector spaces, linear independency, bases and calculus. The 

knowledge that represents interpretive schemes and norms, was presented in text books, 

and in the learning task, and could be discussed with the facilitator. Lesson 1 was a good 

example of how meaningful problems often exhibit a cross-curricular character. 

Learning task 

The CL principles were designed into both learning tasks. Task 1 encouraged positive 

interdependence by dividing the activities into problem solving, solving of linear 

equations, and graph plotting. Experts were then allocated to gain knowledge on these 

different topics which they eventually had to use in their home groups. Task 2 included a 

check list on group functioning to motivate students to assess their progress as a group. 

Organisational contextuality 

The CSCML environment was set in the organisational context of Vista University which 

is a historically black South African university. Vista University, being in a state of 

transition between different management structures, is still characterised by instability, 

uncertainty and disruptions. A further lack of computer and seminar facilities force 

lecturers to use precious time to deliver subject matter in the traditional lecture style. 

This is not questioned by the students, since most of them come from overcrowded 

schools with underqualified teachers, where the traditional teaching methods are often the 

easiest option. The outcome and algorithm centred approach of the students thus comes 

as no surprise. Still, new norms were established in interaction: the students' view of 

mathematics changed, they realised the importance of verbalising their ideas, they 

challenged and questioned others' solutions and offered explanations of their own ideas. 
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Agency 

The actors (the learners) are assumed to be knowledgeable and skilful. The facilitator thus 

realised the students' need for ontological security and that they knew more than what 

can be said. Also, the facilitator viewed the students as agents who have the capability to 

learn. 

The assumption was also that through group discussion, knowledge in the practical 

consciousness could be shifted to the discursive consc10usness. In this way 

misconceptions could be identified and discussed. 

However, the language used in the discussions between the facilitator and the students 

was English which is a second language to all parties involved. This hindered the degree 

to which tacit knowledge could be communicated (Giddens, op.cit.). Also, the internal 

system of the group influenced the degree to which students could draw upon the 

components in their activities: 

• The degree of knowledge of the structures represented by the CSCML components. 

The degree of knowledge of the students (in case study 2) of calculus included only 

the operational aspects of it. This influenced the execution of the group tasks. 

• The style of interaction between group members. Groups 1 and 3 were examples of 

disfunctioning groups that had a detrimental effect on learning and the attitude 

towards the process. 

• The degree to which group members believe that other members know and accept the 

use of the components of CSCML. In group 3 one of the members did not have faith 

in the other members' mathematical abilities and consequently did all the work. 

• The degree of agreement on which strategies to follow and the willingness to 

participate in the learning process. Group 3 had two members who did not really 

participate in the process. This could be the result of the patronising behaviour of the 

third member. 
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Emergent properties 

The facilitator designed the learning task with certain objectives in mind (par. 4.3.4). 

However, a certain goal ambiguity was displayed: 

• In lesson 2, students renegotiated the goal, adapting it to their own views of the 

mathematical concepts. 

• Although learning did take place, it is difficult to assess to what extent it took place. 

In a post-test, students obtained marks of which the average was 20% higher than the 

pre-test. They also indicated in the self-evaluation lists, for example, that 'now I 

understand how the nullspace really works', etc. There are no doubt still students 

who have difficulties with the concepts. Unintended consequences ( e.g. 

disfunctioning groups) had an effect on learning. Also, some students regarded their 

gain in social skills and self-esteem as the more important results of the course. 

• The choices of individuals are often random and constrained by their knowledge of 

the possibilities (Lyytinen & Ngwenyama, 1992). Learners are also agents. They 

thus have a choice of bypassing the system or participating actively in the interaction. 

Since the social rules in this environment are often more informal, participation 

depends more on group pressure and the need for ontological security than on the 

rules from the organisational context. 

It is thus clear that the learners' participation and learning can be guided and facilitated, 

but not determined. 

The evolutionary nature of CSCML was seen in the change of attitude of students 

towards mathematics. Also, students commented that some of the groups will carry on 

functioning after the course. In this way the structural properties of the CSCML 

environment are carried into the organisational context. 
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5. 7 Conclusion 

This chapter dealt with the development of a theoretical framework for CSCML. It 

argues for the appropriateness of the use of Giddens' structuration theory for the 

development of the model, by recognising mathematics as social structures. Several ideas 

from Lyytinen and Ngwenyama's work on CSCW and De Villiers' theoretical framework 

for CSCL are used. However, the model differs from these applications of Giddens' 

structuration theory by viewing IT not as structures, but as either resources or 

representations of interpretations of rules. 

This model (which is summarised in par. 5.5) provides for the dynamics of social 

constructivism. It also shows how rules and resources can be altered through interaction 

and unintended consequences, and it provides for the unpredictability and goal ambiguity 

of the process. It furthermore recognises the evolutionary nature of CSCML as one of its 

emergent properties, implying that this learning environment could act as a catalyst to 

reshape and redirect traditional organisational practices. 

An illustration was given in par. 5.6 of how the model can be used to examine and 

analyse a CSCML environment. It is envisaged that this theoretical framework will 

enhance better understanding of the dynamics of CSCML, which will have implications 

for better design. 
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6.1 Introduction 

Chapter 6 

Evaluation of research 

In this study, a theoretical framework was developed to describe the CSCML 

environment as a whole. This is expected to lead to a better understanding of the 

dynamics of this complex learning environment and to improved design practices. This 

chapter gives an evaluative look at the theory that was developed in the previous 

chapters. It takes the form of answering the research questions put in Chapter 1, a critical 

evaluation of the contribution made to the body of knowledge, and a discussion of 

possible further research. Before this is done, a brief summary will be given of the 

content of the first five chapters. 

6.2 Summary 

Chapter 1 motivates this study by focusing on the potential of the CSCML environment 

to act as a catalyst for change of an inappropriate educational system. This learning 

environment is seen as a way to enhance social skills and critical understanding of 

mathematics, thereby preparing learners for the demands of the technological society. 

Chapter 1 further highlights the need for an overall view of the CSCML environment to 

facilitate better design and understanding of the learning environment. This is precisely 

the need addressed in this study. The philosophical premise underlying the research 

approach is that of interpretivism (rather than positivism) which holds that phenomena 

can only be understood through the meanings that people assign to them. The 

development of the framework using learning theories, case studies and Giddens' 

structuration theory was subsequently undertaken, with this underlying assumption in 

mind. 
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Chapter 2 shows the development of a social constructivist model for the learning of 

mathematics. Mathematics is defined, the nature of mathematics is discussed, and the 

stability and reproducibility of mathematics are contemplated using Piaget's theories. 

The philosophies of mathematics are then briefly discussed to justify the epistemological 

hypothesis of social constructivism. Social constructivism holds that mathematics is a 

human invention and that objectivity is social in the sense that there is agreement on what 

is true. The important implication of social constructivism for mathematics learning is 

that learning is seen as both a process of self-organisation and a process of enculturation, 

that occurs while participating in cultural practices, frequently while interacting with 

others (Cobb, 1994: 18). Different theories for mathematics learning are discussed with 

special interest in the theories of Piaget, Sfard and Skemp. The theoretical framework is 

then described, based on the different hypotheses as well as related mathematics learning 

theories. 

The mam features of the model include the following: learning is seen as the 

transformation of data (unevaluated attributes) into information (data put into perspective 

and context) and then into knowledge (newly formed concepts which lead to 

reinterpretations of existing knowledge). This happens through the fitting of new 

material into existing schemas in the brain (assimilation) and the eventual maJor 

reorganisation of the basic structures of schemas ( accommodation) (Skemp, 1971 ). 

A distinction is drawn between objective and subjective knowledge. Objective 

knowledge ('true knowledge') is publicly accepted knowledge whereas subjective 

knowledge refers to personal knowledge creations (not tested yet). 

This learning takes place in a micro- mathematical community ( e.g. the classroom) with 

a classroom tradition of freedom to create and manipulate mathematical objects in ways 

that can be explained and justified. However, the classroom community is set in the 

realm of the macro- mathematical community. Any learning that takes place in the 
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mathematics classroom, takes place against the background of accepted objective 

knowledge. 

It was mentioned that mathematical knowledge is accepted as true through public 

agreement. In the classroom this takes the form of social negotiation between teacher 

and learners, which is characterised by situations for explanation and justification. 

To understand the acquisition of knowledge in the private realm better (subjective 

knowledge), different theories for the learning of mathematics are considered. A closer 

look into these theories reveals three common features: the hierarchical nature of 

mathematics (levels of sophistication), convergent and divergent thinking. The 

hierarchical nature of mathematics follows from the fact that higher order concepts are 

built on, and with, ones that have already been formed. 

Divergent thinking is unconstrained thinking, not attempting to be efficient and rational. 

Concepts associated with divergent thinking are generalisation, inductive thinking, 

intuition, and visualisation. Convergent thinking, on the other hand, concentrate on 

validity and efficiency. Through a finite number of logical and analytical thought 

processes, a valid justification or solution is reached. Related concepts are abstraction, 

deductive reasoning, formalisation, logic, proof, formulation (symbols), and analysis. 

However, these constructions have to be 'managed' by the learner. These managerial 

thinking skills are called reflective thinking or metacognition. Finally, private knowledge 

can either be made public or not. There is thus a distinction between overt and covert 

knowledge. 'Making public' does not mean restricted to a written communication or 

printed formalised proofs, but can include informal verbal statements. The covert 

knowledge tends to be vague and sometimes lies in deeper layers of the unconscious 

(Hadamard, 1949). It is in the private realm that the vague combinatory play with ideas 

takes place before being made overt by the ' . . . connection with logical constructs in 

words or other kinds of signs which can be communicated to others. ' (Einstein in 
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Hadamard, 1949: 142). It is also through this formulation/reformulation and formalisation 

that the vague ideas are clarified and brought to consciousness. 

Chapter 3 presents an overview of some of the literature available on CL, CSCL and 

CSCML. The lack of a theoretical framework of the CSCML environment in current 

research is pointed out throughout chapter 3. CL is described as a way of structuring the 

learning environment such that groups of students pursue academic goals through 

collaborative efforts. Research shows that co-operative learning results in more higher­

level reasoning, generation of new ideas and solutions, and better transfer of learning. It 

is also made clear that CL is more than just a number of people working together. The 

five basic components or principles of CL need to be adhered to in the design of the 

learning environment. There is general agreement that of the five basic principles the 

most important is positive interdependence. 

Research on CML shows benefits that include the fostering of positive attitudes towards 

mathematics, the development of problem solving skills, better social skills, and the 

promotion of higher self-esteem and motivation. It was also found that CML fosters on­

task verbal interaction which has a positive effect on mathematics learning. Some 

researchers of CML focus more on the outcomes than the process. Studies focusing on 

the process report more problematic findings but are considered more valuable for 

identifying types of interaction that foster learning. 

Research shows that the introduction of computer support to co-operative mathematics 

learning enhances the potential of an already powerful learning environment. Apart from 

the fact that it prepares the learner for the technological and social demands of a 

technological society, it enhances mathematics learning in several ways. Powerful 

software tools empower the learner by enabling visualisation, formalisation, exploration, 

discovery learning, and the building of intellectual structures. Computers also sustain 

social interaction and mediate collaboration (Roschelle et al., 1995). 
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Research on CSCML includes studies on the effect of heterogeneous/homogeneous 

grouping on the gaining of complex learning skills; studies contrasting mathematical 

interaction in computer and non-computer contexts; and studies contrasting mathematics 

learning supported by different software. Other studies reflect on the development of 

appropriate software to assist the co-operative mathematics learning process. 

McConnel (1994) points out that CSCL is a new area of research and that there are no 

definite answers to questions of design. This is also the case for CSCML. O'Malley 

(1995) identifies a need for an agreed framework for comparing and contrasting research 

on CSCL which might provide guidelines or principles for design. Good et al. (1992) 

identified a similar need for the mathematics co-operative learning environment. No such 

framework exists for the CML or CSCML environment. A number of researchers 

identified a list of variables that play a role in the CSCML learning environment 

(Bannon, 1992; Good et al., 1992). In an encompassing study done by Hoyles et al. 

(1994), variables were grouped into background, process and outcome variables. Their 

work provides valuable remarks on the characteristics of successful groups, the role of 

pupil-teachers, and task structure. Although researchers in general realise the 

interdependence of the different features or variables, no attempt has yet been made to 

describe this interdependence. Variables are at most paired or grouped and then 

investigated. 

Chapter 3 also discusses implementation and integration problems with respect to 

CSCML. A number of obstacles and problems are noted, most of which stem from the 

difference between the teaching styles called for by CSCL and the styles used in 

traditional teaching. Other problems are caused by ineffective design (mostly a lack of 

genuine interdependence) and uninformed teachers. The teacher plays an imperative role 

and should design this learning environment as a ' . . . well orchestrated whole. ' 

(Salomon, 1992:64). 
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Chapter 4 describes the two case studies that were conducted, based on the theory 

developed in Chapter 2 and the existing research described in Chapter 3. The first case 

study was directed at mathematics teachers and the second case study involved 

undergraduate mathematics students. Data were collected through questionnaires, 

observation lists, tests and video recordings. The interpretation of the data is described 

and subsequently used in the refinement of the social constructivist model for the learning 

of mathematics developed in Chapter 2. 

The first refinement involves the changing of the model to that of an input-process-output 

system in order to provide for the intended outcome, namely effective mathematics 

learning and productive groups. The second refinement addresses the inadequacy of the 

existing model in aiding the understanding of the learners' difficulties with mathematics. 

The fluctuation between divergent and convergent thought processes was thought to be 

too vague. Sfard's (1991) ideas of the dual nature of mathematical concepts described in 

Chapter 2 are used to give a better picture of the more intimate processes of the creation 

process. The creation process is then described as the to-and-fro movement between 

mathematical objects and processes accompanied by a to-and-fro movement between 

acting and expressing. 

Three components are then identified as the 'input' to the process, namely classroom 

culture, CL methods/principles and IT. Classroom culture is produced and reproduced by 

social interaction and negotiation. It includes regulations, conventions, morals and 

beliefs about the nature of mathematics. It became clear through the case studies that the 

classroom culture influenced, and was influenced by, the interaction process. For 

example, students believed that they had to reach a solution at all costs. This had an 

effect on their attitudes towards the technology as well as learning. The application of 

CL methods led to new social rules, e.g. the importance of verbalising one's own ideas, a 

change in attitude towards mathematics, and a willingness to listen to other's ideas. It 

also provided psychological security which had an influence on their attitudes and 

motivation. IT supported mathematics learning in several ways. It aided formulation and 
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visualisation of intuitive ideas and provided immediate feedback. It also supported the 

dual conceptualisation through its representational plasticity, i.e. students could see 

concepts in both verbal-algebraic and graphical representations. However, students did 

not see the necessity of mathematical proof anymore in the first case study. The 

constructions they made were proof enough. Also, new mathematics problems were 

created which were not part of the initial objective but which were very meaningful. 

Power structures were formed around the keyboard and hostile feelings existed towards 

the IT in the second case study - students accused the computer of 'doing all the 

thinking'. 

Chapter 4 closes with an argument for the insufficiency of the enhanced model. It is 

concluded that although it is called a social constructivist model, it still does not clearly 

show the process of self-organisation and enculturation. Also, it fails to provide for the 

dynamic nature of the learning environment. For example, it does not show the influence 

of IT on social interaction and the resulting altered norms and rules. Finally, it was clear 

from the case studies that there is an openness, and an unpredictability, about this 

environment. The enhanced model depicts a well organised and predictable system. 

Chapter 5 offers Giddens' structuration theory as an appropriate meta-theory upon which 

a conceptual framework for the CSCML environment can be founded. An in-depth 

discussion of Giddens' structuration theory is given followed by conceptual frameworks 

for CSCW (Lyytinen & Ngwenyama, 1992) and CSCL (De Villiers, 1995), both based on 

structuration theory. A final theoretical framework for the CSCML environment is then 

developed and described. This is followed by an illustration of how the framework can 

assist in the better understanding of the dynamics of the CSCML learning environment by 

applying it to one of the case studies. 

Giddens views social structures of societies (the social object) as not existing in a 

concrete sense, but as 'memory traces' in the agent's mind. The structures are only 

instantiated in social activity over time. In this way the object/subject dualism is 
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reconceptualised as a duality. Structures are produced or altered by the reaffirmation or 

change of memory traces of the individual. In this way learning can be seen to 

accompany the structuration process. The CSCML environment is thus interpreted from a 

structurational perspective as a social system in which interpretations of the 

organisational and mathematical structures of signification, legitimation and domination 

are represented by the CL methods/principles, IT, objective mathematical knowledge, and 

the learning task. These components act as modalities of structure upon which actors can 

draw in co-operative actions to reconstitute or change the structural properties of the 

components. This takes place by the changing, or reaffirmation, of the agent's mental 

schemas in a specific organisational context. 

From a structurational perspective, the co-operative mathematics learning process 

supported by IT proceeds as follows: 

• The teacher presents the group with a mathematics learning task. The learning task 

involves the use ofIT and objective mathematical knowledge. 

• By individual and collective action on representations of mathematical knowledge, 

private mental mathematical concepts are 'activated'. The representations of the 

mathematical knowledge could be in the form of verbal-algebraic, visual or kinetic 

images presented electronically, verbally or in writing. 

• However, mathematical concepts are ambiguous: the dual nature of mathematical 

concepts has already been discussed in par. 2.4.3 .2. Also, individuals have unique 

ways ofrepresenting subjective mathematical knowledge. 

• The CL methods provide norms of co-operation and goal-directed activity. By 

drawing on these norms, groups work towards the unambiguous understanding of 

mathematical concepts. Individuals experience mathematical concepts as 

unambiguous in the following way: interaction in the classroom is seen as more than 

a series of separate acts, it is seen as a continuous flow of conduct, where the actor 

reflexively monitors his/her own actions in accordance to what he/she assumes the 

others' background understanding and expectations are. The others interpret the 

actions of the individual, adopting what they believe to be the actor's background 
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understanding and expectations. In this way a background understanding is taken as 

'objectively given' and mathematical concepts are experienced as unambiguous 

(Voigt, 1996). 

• However, this does not mean that the individual group members have the same 

conception of the mathematical concepts, even if they collaborate without conflict. 

The more the background understanding of learners differ, the more likely it is that 

they will have different understandings of mathematical concepts. 

• Because of the disparity between the background knowledge of the teacher and 

learners as well as the teacher's role as mentor, learners and teachers have to 

negotiate mathematical meanings. 

• Through negotiation (between learner and learner, and teacher and learner), a shared 

stock of mathematical meaning is formed (called a 'theme' by Voigt (op. cit.)). The 

theme is not fixed but is interactively constituted through negotiation. This 

negotiation process supports the individual creation process which is described here 

as a to-and-fro movement between objects and processes. 

• With time, the theme gains stability because mathematical discussions are constrained 

and guided by mathematical structures and because of the need for routine to ' ... 

protect social continuity.' (Giddens, op. cit.:70). The knowledge now becomes 

institutionalised ( or reified). 

Another feature of importance is that of agency. This implies that learners are actors in 

the sense that they have a choice of bypassing the system or participating actively. The 

assumption is also that learners are skilful and knowledgeable, and that they know more 

than what can be communicated. The knowledge of learners does not only include the 

'detailed and dazzling' knowledge of how to 'go on' in daily social life (Giddens, 1984), 

but also their mathematical knowledge. However, the learners' knowledge about 

conditions for their actions is bounded by the situated nature of action, the degree to 

which tacit knowledge can be communicated, unconscious motivation, and unintended 

consequences of action. Also, the degree to which actors can draw upon CSCML 
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components to support the co-operative interactions, is influenced by the internal system 

of the group (DeSanctis & Poole, 1992). 

A part of the individual's mathematical knowledge lies in the private realm, or practical 

consciousness. It is only by making this knowledge public, or shifting it to the discursive 

consciousness that the misconceptions can be identified by the teacher and other learners. 

This is usually a difficult process since the 'private' knowledge tends to be vague. 

This model gives a better depiction of the delicate interplay between the components of 

the environment: it provides for the dynamics of social constructivism, it shows how 

rules and resources can be altered through interaction and unintended consequences, and 

it provides for the unpredictability and goal ambiguity of the process. It also recognises 

the evolutionary nature of CSCML as one of its emergent properties, implying that this 

learning environment could act as a catalyst to reshape and redirect traditional 

organisational practices. It was seen in the case studies as well as other research studies 

(e.g. Leikin & Zaslavsky, 1997) that participation in the CSCML environment fosters 

positive attitudes towards mathematics and mathematics learning. It also changes views 

of mathematics curricula, ways of assessment, and the role of the teacher. 

The most important findings of this study will be discussed in par. 6.4. 

6.3 Research questions 

This paragraph evaluates the research done, by examining the extent to which the 

questions stated in Chapter 1 have been answered. 

What is? 

What is mathematics? Mathematics is seen as the study of pure pattern. It is seen as 

social constructions by acknowledging that it is a human invention and that objectivity is 

Digitised by the Department of Library Services in support of open access to information, University of Pretoria, 2020

 
 
 



Chapter 6: Evaluation of research 262 _..:;_,_ ____ _;__ _________________________ _ 

social (in the sense that there is agreement on what is true). According to Piaget, the 

roots of mathematics lie in the action on objects and the eventual abstractions of the 

general co-ordination of these actions. The co-ordination is shared by human beings, 

because they depend on the laws of neural co-ordination. This explains the robustness of 

mathematics. A quasi-platonism is accepted, i.e. any structure of mathematical nature 

involves a whole system of possible developments and the novelty of later structures 

consists merely of actualising some of them. It is further assumed that mathematical 

concepts exhibit a dual nature, i.e. any concept can be seen as a process as well as an 

object. 

What is mathematics learning? Mathematics learning is seen as both a process of self­

organisation as well as enculturation which occurs while participating in mathematical 

practices, frequently while interacting with others. This self-organisation or creation 

process involves the to-and-fro movement between the process and object parts of 

concepts, moving to higher levels of sophistication. This process is managed by the 

learner through reflective thinking. Concepts are stored in the mind in visual, verbal­

algebraic or kinetic form and most of them are tacit knowledge, which needs to be made 

explicit before learning can be acknowledged. 

What is a Co-operative Mathematics Learning Environment? A CML environment can 

be seen as a learning environment with an organisational structure based on CL 

methods/principles in which groups of students pursue mathematical academic goals 

through collaborative efforts. In this environment, mathematics learning is seen as an 

effect of interaction: through interaction subjective mathematical knowledge becomes 

compatible with objective mathematical knowledge. 

What is a computer-supported co-operative mathematics learning environment? A 

Computer-supported Co-operative Mathematics Leaming Environment can be seen as a 

learning environment with an organisational structure based on co-operative learning 

methods/principles in which groups of students pursue mathematical academic goals 
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through collaborative efforts supported by the instructional use of information 

technology. De Villiers (1995) emphasises the necessity of CL methods to enable real 

co-operation. This research found that the application of CL methods does not guarantee 

success ( e.g. artificial roles in lesson 2, case study 2). Rather, it is the CL principles that 

need to be designed into the learning task. A number of studies show the successful use 

of 'informal' groups where individual accountability and interdependence are put in place 

by the values and norms of mathematics research practices (Good et al., 1992). 

How does? 

How can the learning of mathematics be modelled? Chapter 2 deals with the development 

of a social constructivist model for the learning of mathematics. The main features of 

this model are given in the summary of Chapter 2 in par. 6.2. 

How can the model be enhanced to reflect the CSCML environment? The enhanced final 

model for CSCML (Figure 5.8), resulted from attempts to address issues raised by 

interpretation of data obtained from the case studies, as well as the use of Giddens' 

structuration theory. This theory recognises IT, CL methods/principles, the learning task, 

and objective mathematical knowledge as modalities of structure which learners draw 

upon in their interaction to change or affirm the structural properties of these components. 

Leaming is seen to be the emergent result of the structuration process which takes place 

in a specific organisational context. This model gives a better depiction of social 

constructivism, i.e. how mathematics learning is both a process of self-organisation and at 

the same time a process of enculturation. 

The overt and covert knowledge of the individual is described as residing in the practical 

and discursive consciousness. The fluctuation between convergent and divergent thought 

processes that characterise the individual's creation process, is now replaced by the to­

and-fro movement between mathematical objects and mathematical processes, moving 
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towards higher levels of sophistication. This process is managed by the learner through 

the reflexive monitoring of his/her own mental actions. 

Other important features of this model include the concept of agency which recognises 

learners as skilful agents who have the power to participate in, or bypass, the system. 

The teacher is seen as an important controller of system reproduction through assessment 

and critical evaluation of the process. The concepts of single-loop, double-loop and 

deutero-learning can be applied here. The effect of the internal system of the groups on its 

functioning (DeSanctis & Poole, 1994) is also recognised. This model also recognises the 

unpredictability of the system by recognising the existence of unintended consequences 

of action. These unintended consequences of action feed back into the system to become 

unacknowledged conditions for further acts, changing the course of original plans. 

How does the introduction of mathematics in the CSCL-environment influence that 

environment? The introduction of mathematics into the CSCL environment influences 

the environment in several ways: The dual nature of mathematical concepts seems to be 

unique to mathematical abstractions (Sfard, 1991 ). The representational plasticity of IT 

should be fully utilised to find different ways of representing mathematical knowledge 

(e.g. graphs, sequences, tables, verbal-algebraic sentences, etc.). Also, negotiation 

processes should include shifts in the discourse ' . . . such that what the students and 

teacher do in action subsequently becomes an explicit object of discussion.' (Cobb et al., 

1997: 258). 

Hoyles, Healy and Pozzi (1992) identify the difference between co-operative learning in 

mathematics and other subjects as the importance in the tasks solution process to clarify 

and articulate what the problem space is and to develop a language to describe it. This 

language is a more formalised language which can be modelled by the software. For 

example, certain software facilitates more rigid formalisations and thus initiates the 

learner into the formal mathematical language. Some of the software also facilitates 

group consensus in that it needs consensus on the formal language before it can proceed. 
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Although mathematics is a social construction, it provides workable and stable methods 

to describe and control some aspects of the living environment. This characteristic also 

facilitates group consensus especially on mathematical problem solving. Although the 

next statement, made by a student in case study 2, is not quite true, it partly illustrates the 

way in which consensus was reached, 'There is always only one solution, so even when 

we have different answers, we must agree on only one'. This statement could be 

rephrased by, 'No matter how many opinions, we will all recognise and accept a 

workable solution'. 

How does the CSCL environment influence the mathematics curricula and learning? The 

CSCL environment has a certain influence on mathematics teaching. The underlying 

norms and values of CSCML differ from that of the traditional mathematics classroom: 

learners are given more control over their own learning and they are seen as tutors, 

investigators and presenters, whereas the teacher's role changes to that of facilitator. It 

was also found that CSCL fosters positive attitudes towards mathematics. 

Also, the computer makes the learners' activities and difficulties more visible, aiding the 

teacher to identify misconceptions. It enables learners to learn concepts at different rates 

and in different orders. This have implications for mathematics curricula. Because of 

computer support to mathematics learning, teachers tend to view assessment differently. 

More and more experimentation is being done into non-written, classroom-based 

assessment of computer supported mathematics learning (Morgan, 1994). A consequence 

of computer-supported mathematics learning, is that new problems are created and old 

practices questioned (Laborde, 1995; De Villiers, 1997). Teachers are thus challenged to 

come up with new reasons for old practices, which forces a thorough examination of the 

underlying foundations of mathematics. 
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Why is? 

Why would one want to apply CSCL to the teaching and learning of mathematics? 

Throughout this study, the CSCML environment has been described as a potentially 

powerful learning environment. Research on CML shows benefits including the fostering 

of positive attitudes towards mathematics, the development of problem solving skills, 

better social skills, and the promotion of higher self-esteem and motivation. It was also 

found that CML fosters on-task verbal interaction which has a positive effect on 

mathematics learning. 

Computers enhance mathematics learning in several ways. Powerful software tools 

empower the learner by enabling visualisation, formalisation, exploration, discovery 

learning, and the building of intellectual structures. Computers also sustain social 

interaction. It is envisaged that CSCML will prepare learners for the technological and 

social demands of the existing technological society. It is also seen as a catalyst for 

change of the current educational systems. However, the case studies and research make 

it clear that CSCML contains many pitfalls and that CL does not consist of the mere 

grouping of learners. The principles of CL need to be adhered to, especially that of goal 

interdependence and individual accountability. 

Most of these positive attributes were confirmed by the case studies described in Chapter 

4. However, because of the experience gained from the case studies, the following 

important aspect needs to be highlighted. 

Increased motivation 

This is one of the greatest assets of CML and CSCML. From the perspective of 

structuration theory, it is believed that CSCML increases learners' motivation and self­

esteem because it addresses the need for ontological security. Learners feel that they 

belong to the group and that their opinions are respected. Also, CL recognises learners as 
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agents. It gives the learners more power to control and determine their own learning. It 

was said before that problem solving seems to be ideal for the CSCML setting. Through 

the solving of meaningful problems, learners tend to change their view of mathematics as 

dull and uninteresting. 

How should? 

How should the CSCML environment be designed to enhance effectiveness and 

production? This final question addresses the practical implications of the developed 

theory for designers of the CSCML environment. 

Interaction (social negotiation) 

The core activity of the co-operative mathematics learning process lies in the negotiation 

of mathematical meanings and the consequent formation of a mathematical 'theme'. 

Meaningful discussion can be enhanced by designing a real purpose into the co-operative 

activity which is often best achieved through a problem-centred approach (McConnell, 

1994). The teacher thus has to pose good problems. A good problem is defined as one 

that requires students to make and test a prediction, that is realistically complex, that 

benefits from group efforts, and is seen as relevant and interesting by students. In this 

setting students will naturally explore their knowledge which would lead to continual 

refinement of the knowledge. 

The negotiation process 1s triggered by individual and co-operative actions on 

mathematics representations. Because of the different forms in which schemas are stored 

as well as the various meanings that the same concept can carry (Dubinsky and Sfard, par. 

2.4.3 .2), the teacher has to take a multi-representational approach in presenting 

knowledge. 
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Organisational context 

Teachers and facilitators need to be aware of the difference between the norms 

represented by CL principles and technology, and the norms of the traditional classroom. 

Since the potential of the CSCML environment lies exactly in these new norms, the 

structures represented by the CSCML components should not be undermined but drawn 

upon and encouraged in interaction. The following norms should be encouraged: 

• a shared belief that one could challenge each other's interpretations, 

• that mathematical truths are constituted by the teacher and learners in the course of 

the social interactions, 

• that the acts of explaining and justifying are central to the process of social 

negotiations, 

• that the teacher and learners act together as validators of interpretations, and 

• that the teacher should use the students' autonomous constructions to guide the 

constitution of their taken-as-shared mathematical reality towards the ways of 

knowing of the macro- mathematical community. 

Social system 

The system can be described as an intersocietal system since it shares rules and norms 

with the macro- mathematical community (the professional mathematical community). 

The shared rules include the accepted mathematical knowledge and certain working 

practices. The teacher, as an experienced member of the mathematical community, needs 

to mediate ' ... between students' personal meaning and culturally established 

mathematical meanings of wider society. ' (Cobb, 1994: 15). The students should thus be 

encultured into the conventions and discursive practices of the mathematical community. 

The teacher needs to control system reproduction through reflexive self-regulation and 

assessment in the form of organisational learning (discussed in par. 5.4). 
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Modalities of structure 

The learning task, technology, objective mathematical knowledge and CL principles are 

different representations of mathematical and organisational structures. However, in 

designing the CSCML environment, the different structures should be integrated to form 

a ' ... well orchestrated whole.' ( Salomon, 1992:64). The content and structure of the 

learning task and the role that IT will play in the process need to be of such a nature that 

they enhance negotiation and interdependence ( e.g. lesson 1 of case study 2). The CL 

principles need to be explained and made explicit but where possible they should be 

designed into the learning task and facilities. 

Agency 

Teachers need to acknowledge the fact that learners are skilful and knowledgeable, and 

that they know more than what can be communicated. Also, teachers need to realise that 

the learners' knowledge about conditions for their actions is bounded by the situated 

nature of action, the degree to which tacit knowledge can be communicated, unconscious 

motivation, and unintended consequences of action. 

Learners need to expenence themselves as agents, i.e. as individuals who have the 

capability to 'make a difference'. This awareness leads to increased motivation and 

willingness to co-operate. By encouraging students to participate in the design, 

assessment and evaluation of the learning environment, this fact is acknowledged. The 

CL principle of 'positive interdependence' acknowledges learners as agents. The 

application of this principle thus determines to a great extent the success of group 

functioning. 

By realising that some of the learner's individual knowledge lies in the practical 

consciousness, the teacher's interest should also be focused on what can be inferred to be 

going on inside the student's head, rather than on overt 'responses'. The teacher should 
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be interested in the students' errors and indeed, in every instance where students deviate 

from the teacher's expected path, because it is these deviations that throw light on how 

students, at that point in their development, are organising their experiential world (Von 

Glaserfeld in Jaworski, 1994:26,27). Learners should also get the opportunity to make 

their knowledge overt; either by speech or writing. 

The degree to which learners can draw upon CSCML components to support their co­

operative interactions, is influenced by the internal system of the group. Teachers should 

be aware of what determines the internal system and be prepared to intervene where 

necessary (see par. 5.4). Although learners are always reflexively monitoring their own 

actions, this 'action' needs to be seen as a skill that can be acquired. The reflexive 

monitoring of mathematical 'actions' (or reflective thinking) is considered to be very 

important in the learning of mathematics and should be made explicit. For example, 

problem solving activities should be taught explicitly since most students are unaware of 

their own thinking processes. Also, reflective thinking processes and methods should be 

modelled by the teacher. 

The hierarchical and dual nature of mathematical concepts 

In par. 2.4.3 .2, the formation of mathematical concepts was described as fluctuating 

between processes and objects. The teacher should be aware that learners should 

understand the process side of mathematical concepts before these can be objectified. 

Students should be given opportunity to go through previous, lower process-levels of the 

learning process. Concepts of a higher order than those which a person already has cannot 

be communicated to him by a definition, but only by arranging for him to encounter a 

suitable collection of examples. 

By constantly keeping in mind the dual nature of mathematical concepts, teachers can 

have greater understanding of the learners' difficulties. Cobb et al. (1997) believe that the 
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negotiation process supports and stimulates the formation of these dual conceptions of 

mathematical concepts. They observe and define a kind of interaction which they call 

'reflective discourse' which is characterised ' ... by repeated shifts such that what the 

students and teacher do in action subsequently becomes an explicit object of discussion. ' 

They also define a related concept of 'collective reflection' - referring to the ' ... joint or 

communal activity of making what was previously done in action an object of reflection. ' 

(Cobb et al., 1997:258). This collective process supports similar individual mental 

activities (interiorization, condensation and reification (Sfard, 1991)) in the individual's 

mind. The teacher should steer the negotiation process towards 'reflective discourse' 

and 'collective reflection'. 

Emergent Properties 

Because of the unpredictability of the co-operative learning environment, the teacher 

should display an openness towards the educational process. Learners should feel free to 

make decisions about their learning and to exercise their choices. The teacher, on the 

other hand, should provide opportunity for the creation of new problems through 

interaction and the consequent slight deviations from the original goals. 

6.4 Evaluation of contribution of this study 

This study addressed the need for an overall view of, or conceptual framework for, the 

CSCML environment. Existing theories for the learning of mathematics were considered 

and subsequently used in the development of a social constructivist model for the 

learning of mathematics. This model guided the execution of two case studies of which 

the data were used to refine the social constructivist model for the learning of 

mathematics. The shortcomings of this model were pointed out and subsequently 

addressed by developing a final theoretical framework informed by Giddens' 

structuration theory. 
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The findings of this study consist of, on the one hand, findings from the case studies, and 

on the other, the theory developed based on these findings and other theories. The most 

important findings (divided into the above mentioned two groups) are given below. 

Findings obtained from the interpretation of the case studies are: 

• Existing research results were confirmed in that students reported a sense of 

enjoyment, belonging and trust. They were willing to co-operate and offer 

explanations and justification, and showed an openness to each other's ideas. The 

learners stressed the motivational aspects of group work, the importance of 

verbalising ideas, and the changed attitudes towards mathematics resulting from their 

experiences in the groups. 

• Representational plasticity, graphing facilities and their enhancement of 

visualisation, were found to be important aspects of computer support to mathematics 

learning. Students also mentioned the decrease of work load, the many similar 

problems that can be generated using the software, and the quick feedback given. 

• The learners' belief about the nature of mathematics has an influence on their 

perception of computer support to their learning. In both case studies, the perceived 

disadvantage of computer support to mathematics learning was that the computer 

does all the thinking. This perception can be explained by referring to the dual nature 

of mathematics concepts. In case study 2, the computer was used to do the 

computational or process part of the mathematics, leaving the students free to draw 

relations and concentrate on the structural side. Most students, however, consider the 

process part of the concepts the only part. 

• One of the important findings is thus that mathematical learning in the CSCML 

environment can be examined through the lens of the dual nature of mathematical 
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concepts. This sheds light on most of the difficulties students expenence with 

concepts and computer support. 

• Classroom culture or organisational context plays an important role in interactions 

and learning in the CSCML environment. The classroom culture consists of habitual 

patterns which are created through interactions and the underlying beliefs of the 

participants. Examples were given of the sometimes detrimental influence of the 

teachers' beliefs about meaningful problem solving. 

• The importance of true interdependence in co-operative learning was confirmed. 

From the experience gained in the case studies, it became clear that the success of CL 

implementation does not lie in the application of CL methods, but in the 

incorporation and full understanding of the CL principles. 

• The CSCML environments of the two case studies exhibited an open and 

unpredictable nature. Although goals were set, new ideas emerged during interaction 

and students negotiated alternative goals. This should be seen as an asset of this 

learning environment, which could lead to meaningful, and sometimes surprising, 

discussions and problems. 

Findings from the development of the theory are: 

• The existing theoretical frameworks for CL and CSCL are input-process-output 

models (see par.5.3.3 and par.3.2.4). They depict these learning environments as well 

organised and predictable systems. This is in contrast to the observed openness and 

unpredictability of these learning environments. The enhanced model that was 

developed in par 4.5 (based on previous similar models), proved to be inadequate 

because of this reason. It was subsequently enhanced by using Giddens structuration 

theory to provide for the openness of the system. 
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• Giddens' structuration theory proves to be a useful tool in trying to overcome the 

difficulties surrounding social constructivism. The duality presented by social 

constructivism is conceptualised as a dualism. 

An evaluative look into the contribution which these findings make to current thinking, 

yields the following. 

It has been pointed out by several researchers that there is a need for an overall view, or 

conceptual framework, to describe the CSCL and CML environment. Other researchers 

ask for more local theories for CSCL that take into account the particular knowledge 

domain (Mandi & Renkl, 1992). The developed framework addresses these concerns by 

identifying components and features of the CSCML environment and showing the 

relationships between them. This could serve as a basis for planning other research and 

as an aid in examining and interpreting existing research. 

Although Giddens' structuration theory has been used before in research on Information 

Systems, this theory involves a first introduction of the structuration theory to the field of 

mathematics education research. The theories of Giddens, Sfard, De Villiers, DeSanctis 

& Poole, and Lyytinen & Ngwenyama are linked to contribute to mathematics learning 

theory through CSCML. 

By understanding Giddens' structures as mental schemas that exist in the individual's 

mind, and the affirmation or changing of structures as the affirmation or changing of 

mental schemas, learning emerges from the structuration process. This constitutes a 

considerable departure from the traditional approach to learning through single and 

double loop correction of actions. Also, social constructivism is reconceptualised as a 

dualism using structuration theory: learning is seen as an effect of interaction (Voigt, 

1996). Through social interaction ( drawing on structures), subjective mathematical 

knowledge becomes compatible with the structures. The structures are reinforced through 
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this process. 'Structures' indicate the accepted rules and resources represented by 

objective mathematical knowledge, as well as the rules of accepted mathematical and 

classroom practices. 

Mathematical structures as rules and resources, constrain and enable mathematical social 

behaviour. One needs to be reminded that Giddens views rules as procedures of action. 

By relating this to Sfard's theory on the dual nature of mathematical concepts, one would 

interpret mathematical structures as only mathematical procedures and processes. 

However, by viewing mathematical objects as reified procedures, one could define 

mathematical structures as accepted mathematical objects and processes, existing as 

mental schemas in the learner's mind. 

This theoretical framework differs from other theories that describe the CL and CSCL 

environment in that it does not predict the process or outcome, but provides for the 

openness and goal ambiguity experienced in the case studies and reported by several 

researchers (Good et al., 1992). Unintended consequences are drawn upon in interaction, 

to eventually change original goals or intentions. For example, the structural properties 

of mathematical software enable totally new ways of looking at mathematics problems 

and concepts (Laborde, 1995). Learners could thus create and ask new questions not 

provided for in the original planning. Teachers should display an openness towards the 

shifting of goals and objectives to provide for these new meaningful problems. Teachers 

should also be ready to provide new motivation for old techniques, e.g. students using 

mathematical software sometimes do not see the necessity for proof. 

The theory that has been developed also differs from some applications of Giddens' 

structuration theory to change induced by technology (Lyytinen & Ngwenyama, 1992; De 

Sanctis & Poole, 1992), by heeding the warning of Lamprecht (1997) that the view of 

technology as structures annuls the subject/object duality proposed by Giddens. Rather, 

IT is seen as either resources or representations of interpretations of rules. 
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The theoretical framework for CSCML produced a new perspective of the CSCML 

environment. This theory identifies IT, CL principles, the learning task, and objective 

mathematics knowledge as modalities of structure which actors can draw upon in their 

interaction. This implies that the choice and design of these components will have an 

important influence on the type of interaction taking place. On the other hand, interaction 

and action (mental or physical) are seen as a pre-condition for mathematics learning to 

take place. This learning process will either change or affirm the structural properties of 

the components. It also identifies the important role of the teacher as that of controller of 

system reproduction. This takes place through single-loop and double-loop learning as 

well as deutero-learning. 

Lastly, this theory shows the importance of the organisational context in providing the 

setting for the CSCML environment. The structural properties of the organisational 

context play a constraining role on the interaction taking place. The underlying norms 

and rules of CSCML differ from those of the traditional mathematics classroom. To fit 

CSCML into a traditional educational context will imply the adaption of some of the 

underlying norms. However, CSCML shows an evolutionary nature, i.e. it carries the 

potential to act as a catalyst for change in the traditional mathematics classroom. 

6.5 Further research 

Although the theoretical framework was developed for mathematics learning, one could 

ask the valid question whether it can be applied and investigated in other contexts. For 

example, what will be the change to this framework if applied to learning in other subject 

areas (if any)? Also, now that the important components and features were defined and 

described, some of them can be isolated and investigated with respect to the influence on 

the system as a whole. For example, the effect of a specific mathematical software 

package on the learning task, the choice of CL methods, social interaction, and learning, 

can be studied. 
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More empirical research is necessary to refine the understanding of the individual 

creation process in the CSCML environment. The theoretical framework describes the 

individual creation process as a fluctuation between mathematical processes and objects. 

Research is needed into how the components should be chosen and designed to enhance 

this process. Also, more research is necessary on the work of Cobb et al. (1997) applied 

to the CSCML environment. They identified types of discourse in mathematics group 

learning (without computers) that support the objectifying of mathematical processes. 

Valid questions could be asked on the influence of the computer on these types of 

discourse. 

This framework also tries to overcome the difficulties surrounding social constructivism, 

by conceptualising it as a dualism, using Giddens' structuration theory. This idea needs 

further investigation and development by comparing it to other theories in mathematics 

education trying to resolve the object/subject duality (e.g. Voigt's (1996) use of symbolic 

interactionism). 

The changed views of established mathematical practices ( e.g. the learners' views of 

mathematical proof), were indicated as one of the unintended consequences of CSCML. 

It is clear that the introduction of IT to mathematics learning has the potential to change 

the face of mathematics education: Bottino and Furinghetti (1996) are of the opinion that 

past changes in mathematics education were triggered by discussion on content, whereas 

the current changes (triggered by the presence of computers) lead to changes in 

methodology and new classes of problems. This is also true for mathematics research: 

the presence of computers leads to new classes of problems in numerical and discrete 

mathematics, formal languages, and chaos theory. Not only are new areas and problems 

created, but new questions are asked about the foundations of mathematics. For example, 

the computer-based proof for the four-colour theorem triggered great debate. This proof 

is not surveyable (because of its size) nor formalisable in the traditional sense. Computers 

and computer programs are assumed to be fallible, so that these assertions can never be 
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more than provisionally true (unless the computer programs are formally verified - a 

route which, in most cases, would be humanly impossible). Tymoczko (1980) argues that 

computer-assisted proofs thus underline the need for a more realistic philosophy of 

mathematics allowing fallibility and empirical elements. Many mathematicians are 

willing to settle for this 'semi-rigour' whereas others are not willing to give up the idea of 

absolute proof. The fact is that many mathematicians use experimental computer 

methods in their research and more mathematicians have come to appreciate the power of 

computers in communicating mathematical concepts (Hanna, 1996:4). A valid question, 

and a question that needs further research, is: how do these developments influence the 

teaching of mathematics at both school and undergraduate level? 

Finally, by being based on Giddens' structuration theory, the model described in par. 5.4, 

carries within it the same shortcomings as structuration theory. The role of the agent is 

probably overplayed and the influence of structural constraints underplayed. Still, this 

model gives a useful way of viewing learning as both an individual and a social process. 

Valid questions can be asked about new insights that can be obtained from developing 

similar theoretical frameworks for CSCML based on other theories. For example, the 

general theory of communication of Habermas could prove a suitable premise, because 

of the observed importance of interaction and negotiation in the CSCML environment. 

Habermas defines three conditions for ideal speech situations: communication need to be 

true to the objective world, right in the social world and sincere to the internal world. A 

well designed CSCML environment should thus enhance communication, understanding 

and rational discourse (Dahlbom & Mathiassen, 1993). 

6.6 Final remarks 

The theoretical framework presented in this study provides an overall view of the 

dynamics and components of the CSCML environment. It was illustrated in par. 5.6 

how this model can be used to obtain a better understanding of the CSCML environment. 

Better understanding will lead to better design. 
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One of the properties of CSCML, as described by the model, is its evolutionary nature. 

In the case studies this was illustrated by the students' change of attitude towards 

mathematics and the fact that some of the groups carried on functioning after the course. 

CSCML thus has the potential to act as a catalyst for change in the traditional 

mathematics classroom. In the CSCML environment, learners experience mathematics 

both as social power and as social construction. The mathematical principles built into 

the mathematical software and course material enable, and constrain, social and 

mathematical behaviour while new mathematical meanings are created through social 

negotiation. 
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I 

Appendix A 

Case Study 1 

The Problem 

Draw a family tree to show the relation between different quadrilaterals 
including 

Trapezium 
Rectangle 

Square 
Parallelogram 

Kite 
Rhombus 

Cyclic quadrilaterals 
Cyclic kites (kites with four vertices on circumference of circle) 

Cyclic trapezia (trapezia with four vertices on circumference of circle) 
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The following activities will aid you in solving The Problem 

Activities 

• Each of you will join an expert group to revise the properties of the first six quads. 
(30 min) 

After you have returned to you original group 

• Read and discuss the contents of the document A Classroom episode. 
(15 min) 

• Now do the exercises given in Cyclic Quads and hand it in at the end of the period. 
(45 min) 

• Decide now as a group (through discussion), what your family tree will look like and 
draw it on a sheet of paper. Hand this in at the end of the period (with group 
members' names on it). 

(30 min) 
• Each individual group member must complete an individual worksheet and hand it in 

at the end of the period. 
(15 min) 
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II 

Expert Group 

In this exercise. you will revi_se some properties of the rhombus, square and rectangle by 
using Geometer's Sketchpad. 

The rectangle 

Construct a rectangle by doing the following: 

Step 1: Construct circle AB 

OA 

Step2: Choose the line tool and draw two diameters of circle AB. 

Step3: Join the points of intersection of the two diameters and the circle. 
EFGH now forms a rectangle. 

Which properties of the rectangle were used to make this construction? 

Use your knowledge of the properties of the rectangle to find another way of constructing 
a rectangle (and construct it). 
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The Rhombus 

Construct a rhombus by doing the following: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Construct a circle AB and C on the circle. 

Bisect the angle BAC in the following way: select angle BAC by selecting 
B, A and C in that order. From the construct menu, choose Angle 
Bisector. 

Construct circle BA and point D, the intersection of this circle and the 
bisector. 

Construct segments to form rhombus ABCD. 

C 

Which properties of the rhombus were used to make this construction? 

Use your knowledge of the properties of the rhombus to find another way of constructing 
a rhombus (and construct it). 
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The square 

Construct a square by doing the following: 

Step 1: 

Step2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Draw circle AB and circle BA. 

Choose the line tool and draw a line through both centers. 

Select the line and point A. From the construct menu, choose 
Perpendicular line. You now have a perpendicular line through A to the 
diameter. 

Construct a perpendicular line to the diameter through B by using the same 
method as in step 4. 

Construct point D at the intersection of the perpendicular line through A 
and the circle AB. Construct E at the intersection of the perpendicular line 
through B and the circle BA. 

Join D and E. ABED is now a square. 

( 
\ 

Which properties of the square were used to make this construction? 

Use your knowledge of the properties of the square to find another way of constructing a 
square (and construct it). 
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Expert Group 

In this exercise you will revise some properties of the kite, rectangle and parallelogram. 

The Parallelogram 

Construct a parallelogram by doing the following: 

Step 1: 

Step 2: 

Step 3: 

Draw circle AB and circle AC with different radii. 

Choose the line tool and construct two different diameters for circle AB 
(and AC). 

Joint points of intersection of the diameters and circles as indicated on the 
sketch. The figure you now have is a parallelogram. 

Which properties of the parallelogram were used to make this construction? 

Use your knowledge of the properties of the parallelogram to find another way of 
constructing a parallelogram (and construct it). 
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The Kite 

Construct a kite by doing the following: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Draw any triangle ABC. 

Select any side of the triangle. 

Go to the trcmsform menu and choose Mark Mirror. 

Now select the other two sides and choose Reflect from the Transform 
menu. You now have a kite. 

Which properties of the kite were used to make this construction? 

Use your knowledge of the properties of the kite to find another way of constructing a 
kite (and construct it). 
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III 

Cyclic Quads 

Do you remember the properties of cyclic quadrilaterals? 

Investigate the properties again by doing the following: 

• Draw circle AB 
• Construct a cyclic quad BCDE (name the vertices). 

A ,A 

• Measure angles BCD and DEB. 
I' "' 

• Find BCD + DEB 

What do you find? 

What can you conclude about B + D ? 

- -+ 
• Select CB, delete it and replace it by a ray CB. 
• Construct a point F on the ray as indicated in the sketch. 

4 ~ 

• Measure FBE and compare it with EDC. 

What do you find? 

E 

E 
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• Why can one say that all rectangles and squares are also cyclic 
quadrilaterals? 

• Where would one place the compass to construct the circumscribed 
circle of a rectangle or a square? (Look at the sketch of the rectangle 
given in the worksheet of the expert groups). 

• Is a parallelogram also a cyclic quadrilateral? Explain your answer. 
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Cyclic Trapezium 

Construct a cyclic trapezium by doing the following: 

• Construct circle AB. 
• Draw a chord CD as indicated in the sketch. 
• Select CD and B and from the construct menu choose parallel lines. • 
• Complete the quad CBED 

Discover the properties of a cyclic trapezium by measuring ditf erent sides and angles. 
Write down your findings. 

Cyclic Kites 

Construct a cyclic kite by doing the following: 

• Construct circle AB. 
• Choose the line tool and construct a diameter. 
• Draw a triangle DEF as indicated on the sketch. 
• Select the diameter and choose on the Trans/ orm menu, Mark Mirror. 
• Select now DE, point E and EF. 
• On the transform menu, now choose Reflect. 

Discover the properties of the cyclic quad by measuring different angles. Write down 
your findings. 
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IV 

Individual Worksheet 

You now have to prove in a formal way that any cyclic trapezium will have the same 
properties as the one your group had investigated. 

V Self-evaluation, "Teachers" 

A. Content, didactical aspects and evaluation 

A 1. Did you have a clear idea of what your pupils must know at the end of the lesson 
when you designed the lesson? 

Yes More or less No 

A2. Do you think your list of instructions are clearly formulated? 
Yes More or less No 

A3. Are you satisfied that you evaluation methods will help you to get a clear indication 
whether your students have achieved the learning objectives? 

a) as a group Yes Maybe No 
b) as individuals Yes Maybe No 

B. Co-operative learning 

B 1. How was positive goal interdependence promoted in this lesson? 

B2. How was individual accountability promoted in this lesson? 

B3. How did you make sure that the groups functioned effectively? 

····································································· .................................... . 
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C. Software 

Cl. I think the software assisted learning in this lesson in the following way(s): 

C2. Do you think that this lesson was successful? 

C3. What will you change if you have to do it again? 

VI Questionnaire "Pupils" 

1. Content, didactical aspects and evaluation 

Yes Maybe No 
Can you state clearly what you have learned today? 

Did the teacher give a small summary at the end on 
what you have learned today? 

Were there times in the lesson that you felt lost 
because of unclear instructions? 

Did you get new insights from this lesson? 

Was it expected from you to apply what you have 
learned in another setting? ( e.g. prove something 
formally, do another similar problem, etc.) 

Were you evaluated individually? 
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2. Co-operative learning 

Yes Maybe No 
Have you felt dispensable at any stage of the lesson? 
(that is, have you felt that you group members didn't 
need you) 

Did you give feedback and assistance to you group 
members? 

Did you challenge each other's knowledge? 

Would you say your group functioned effectively? 

How was positive goal interdependence promoted in this lesson? 

How was individual accountability promoted in this lesson? 

3. Software 

In what way did the use of Geometer's Sketchpad 
support your learning? Yes Maybe No 

a) Visualization 

b) Generalization (by seeing many examples of the 
same concept, a general rule can be formulated). 

c) Intuition (it confirms your "feeling") 

d) Formulation (it helps you to formulate in words 
your vague ideas). 

e) Proof (it helps you to prove something formally). 
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Was it really necessary to use the software here? 

Would you say this lesson was successful? 
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I 

Group building exercises 

Appendix B 

Case study 2 

Prioritise the following descriptions of mathematics, that is, mark the description that you 
think is the most accurate with 1, the second most accurate with 2 etc. 

The creation and study of abstracts structures and 
objects 

Logic, rigor, accuracy 

A kind of language, a set of notations and symbols 

A way of understanding and predicting real life 
phenomena 

Reduction of complexity to simplicity 

Problem solving 

The study of patterns 

Exploration, observation and generalization 

An art, a creative activity 

A tool for other sciences 

Prioritise the following aspects of solving problems by circling the appropriate numbers. 

1. Very important 
2. Rather important 
3. Not important at all 
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To get to the right answer 1 2 3 

To read the problem carefully 1 2 3 

To analyse the problem statement 1 2 3 

To divide the problem into sub-problems. 1 2 3 

To have a look at similar problems 1 2 3 

To try something as soon as possible 1 2 3 

To verify afterwards that the solutions is correct 1 2 3 

To try several ideas 1 2 3 

Not giving up easily 1 2 3 

To ask someone for help 1 2 3 

What is it that you like about mathematics? 

What is it that you do not like about mathematics? 

II Lesson 1 

The Problem 

Design a ski jump that has the following specifications: The ski-jump starts at a height of 
30.5 m and finishes at a height of 3 m. From start to finish the ski-jump covers a 

horizontal distance of 36.6 m. 

A skier using the jump will start off horizontally and will fly off the end at a 30 degree 
angle from the horizontal. 

Find a polynomial whose graph is a side view of the ski jump. 
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Check your answer visually by plotting the graph. 

The following will help you in solving the problem: 

1. Each member of your group will go to a different expert group. Decide amongst 
yourselves who to send to the expert group on 

A. Problem solving 
B. Graphing with MATLAB 
c. Solving of linear equations. 

2. After having returned from the expert groups you have to work together on the 
problem. 

At the end of the period the group has to hand in a diary file of your work on 
MATLAB as well as a written solution to the problem. 

Here is some more useful information: 

A convenient way to draw curves of a desired shape is to select some points on the curve 
and find a polynomial whose graph goes through these points. Two points, for example, 
determine a unique line, which is the graph of a polynomial of degree 1 (if the line is not 
vertical). Three noncolinear points determine a unique parabola, which is the graph of a 
polynomial of degree 2 (if the points have distinct x co-ordinates). Four points determine 
a unique polynomial of degree 3, and so on. 

Suppose we want a curve through the points (0,7), (1,6), (2,9). We will find the unique 
quadratic polynomial 

P(x) = ax2 +bx+ c 

whose graph goes through these points. Substituting the values for x and y, we get a 
linear system: 

Oa +Ob+ le= 7 
la+lb+le=6 
4a + 2b +le= 9 

1. Ask the expert in you group on solving linear equations, to help you solve this 
system. 
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2. Ask the expert in your group on graphing to help you graph the polynomial. 

3. Try to solve the problem now. 

III Expert group worksheet 

Problem solving 

1. Answer the following questions: 
a) What do you understand under a problem? 

b) Describe the general steps you would take in solving a given maths problem. 

2. What is the definition of a problem ? 

Schoenfeld defines a mathematical problem for a student as a task (a) in which the 
student is engaged and interested and (b) for which the student has no ready access to a 
means of getting there. Thus, a given task will be experienced by an individual as a 
problem depending on what he/she knows. 

3. Are there general steps in solving mathematical problems? 

Through reflective thinking, Polya examined his own thoughts to identify patterns of 
problem solving behaviour In his book How to Solve It, he proposes a four-phase 
model: 

understanding the problem, making a plan, carrying out the plan and looking back 
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Metacognition / Managerial processes 

This has to do with 'thinking about your own thinking' and can be categorized as follows: 
• Knowledge about your own thought processes; 
• Self-regulation, or control. Keeping track of what you are doing; 
• Beliefs and intuitions. Knowing what ideas and beliefs about mathematics you bring 

to your work in mathematics, and how it influence your work. 

Efficient self-regulation is to be good at arguing with yourself. 

If you want to become good at arguing with yourself, here are a few questions you can 
ask yourself while solving problems: 

Individual In a group 

What am I doing? What are we doing? 

Can I describe precisely what I am doing? Can we describe precisely what we are 
doing? 

Why am I doing this? Why are we doing this? 

How does it fit into the solution? How does it fit into the solution? 

How will this help me? How will this help us? 

Can I divide this problem into smaller Etc. 
parts? 

Do I really understand what is asked? 

Can I verify this solution? 

Will this always work? 

Don't I know of a similar problem that can 
be used here? 

Which information is unnecessary? 
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5. Try the following, while keeping m mind the discussions on 
metacognition: 

Can you place the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 in the box, so that the sum of the digits 
along each row, each column, and each diagonal is the same? (This is called a magic 
square). 

Expert group 

Solving of systems of linear equations 

Donelly (1995), pp. 19-35. 

Donelly (1995), pp. 19-35. 

IV 

Expert group 

Plotting graphs 

Individual worksheet 

1. MATLAB has an operation to solve systems of linear equations Ax=b, called the 
matrix division operator"\". That is, to solve Ax=b, you type x=A \b. However, this 
operation can only be used under certain conditions. What is it? 

2. What do you think are the actual computations done by the computer if you type 
x=A\b? 
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3. You solved a problem where three points were given and you had to plot a quadratic 
polynomial going through those points. This led to the solving of a system of linear 
equations. Can you think of a situation where three points are given but where you 
cannot find such a quadratic polynomial going through those points (i.e., where the 
system is inconsistent)? 

V Evaluation list (lesson 1 and lesson 2) 

In your own words state today's goal or goals. 

What was the topic/s of the day? 

These are the strategies and concepts I learner today: 

What was your AHA (now I understand) today? 

I'm still confused about1 

Today in class I felt 

because 

(From Bagley & Gallenberger, 1992). 
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VI Lesson 2 

List of instructions: 

1. Decide who of you will take the role of 
a) Scribe __________ _ 
b) Operator ___________ _ 
c) Problem solving expert _________ _ 

2. Complete the given worksheet and hand it in at the end of the lesson. 

3. Complete the individual worksheets and hand in at the end of the lesson. The 
individual worksheets may be completed while you work in the groups. 

Group worksheet 

Leon et al. (1996), pp. 78-80, 82-84. 

VII Individual worksheet 

1. Suppose that A is an m x n matrix of rank r. Complete the following: 

FUNDAMENTAL SPACE DIMENSION 

Row space of A 

Column space of A 

Nullspace of A 

Nullspace of Ar 
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2. Using the Gaussian elimination procedure determine hand k so that the solution set of 
the given system 

x1 + 2x2 = k 

4x1 + hx2 = 5 
i) is empty, 
ii) contains a unique solution, 
iii) contains infinitely many solutions. 

3. Mark each statement true or false. If true, prove it. If false, produce a counterexample. 

i) If a system Ax= b has more than one solution, then so does the system Ax= 0. 
ii) Every matrix has a unique row-echelon form. 

iii) If A and Bare both m x n matrices then Ar B is a square matrix. 

iv) A = [ ~ ~] is invertible. 

VIII 

Evaluation of social skills and group 
Yes Not well No processing 

enough 

We checked each other's knowledge. 

We helped each other. 

We encouraged each other. 

We finished all the given tasks. 

We learned something new. 
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