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ABSTRACT 
 

Discrete choice models have had wide application for mode choice simulation as part of 
the multi-modal four-step transport demand modelling process in South Africa. For all 
models since 2000, urban commuter modal trip preference data for the mode choice sub-
model has been collected using stated preference (SP) surveys. The SP experimental 
designs have been fractional factorial types (FFD). The SP data and the subsequent mode 
choice models were directly dependent on the soundness of the underlying experimental 
designs. This paper presents a review of the experimental designs of four South Africa 
metropolitan SP survey case studies to derive empirical evidence of the efficiency of these 
designs as measured by the D-error. The analysis showed there were several 
inadequacies in the experimental designs. Furthermore, the multinomial logit (MNL) 
models estimated from the SP data for each metro highlighted the shortcomings of the 
experimental designs. The paper illustrates that there is enough insight into prior estimates 
of the attribute parameters for use in efficient experimental designs and that these designs 
provide improved D-error measures over the equivalent orthogonal fractional factorial 
designs. The paper recommends that efficient designs be used in the future for all SP 
transport applications. 
       
1. INTRODUCTION 
 
This paper presents the analysis of the SP experimental designs of four South African 
metropolitan case studies for the development of discrete choice models for the estimation 
of the diversion of car drivers to the Bus Rapid Transit (BRT) mode. The designs and 
surveys were completed between 2011 and 2015. The case studies are for four large 
metropolitan areas in South Africa that were among the first to plan and operate BRT 
systems. This system planning process required the estimation of the BRT passenger 
demand and fare revenue for the system designs, operational plans and financial 
modelling activities. The diversion of passenger trips from the taxi, rail, bus and car modes 
to BRT was anticipated, and the car – BRT experimental designs and choice models are 
focused on in this paper. MNL models that were derived from the SP data collected 
subsequent to the finalization of the experimental designs are presented and discussed. 
Based on the attribute parameters estimated from one of these MNL models, an efficient 
design is presented. The paper demonstrates that this design provides better efficiency as 
measured by the D-error than the equivalent orthogonal fractional factorial designs and 
recommends that efficient designs be used in South Africa in the future.    
 
This paper is organised as follows. Section 2 begins by describing the general principles of 
experimental designs, focusing initially on orthogonal fractional factorial designs. In 
Section 3 orthogonality is discussed as a design requirement and evidence is presented 
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that orthogonality is rarely achieved in execution. In Section 4 the theory and application of 
efficient experimental designs in the transport mode choice context is discussed. The case 
study analysis of the four metropolitan fractional factorial experimental designs is 
presented in Section 5.  MNL models derived from the metropolitan SP data are estimated 
and discussed in Section 6. In Section 7 an efficient design for a car versus BRT SP 
survey is presented and discussed. Section 8 draws conclusions from the analysis and 
provides recommendations.  
   
2. BACKGROUND 
 
An experiment is an investigation that establishes a particular set of circumstances under 
a specified protocol to observe and evaluate the implications of the resulting observations 
(Keuol & Burger, 2018). In SP studies this translates into the need to determine the 
influence of the utility attributes upon the choices that are observed to be made by 
respondents undertaking the experiment. To ensure the statistical integrity of the model to 
be estimated from the observed experimental data it is necessary for the analyst to control 
and quantify the effect of variations made to the independent variables (utility attributes) on 
the dependent variable (choice). The manipulation of the levels of the independent 
variables have conventionally been done for linear models in accordance with orthogonal 
design principles that minimise attribute level correlation. These designs are also popular 
because they are easy to construct and they have historical impetus (Rose & Bliemer, 
2009). High levels of attribute parameter correlation can manifest by either the incorrect 
parameter signs (multicollinearity in linear models) and/or high parameter standard errors, 
rendering the models statistically inadequate. While orthogonal designs are still commonly 
employed for non-linear models by many practioners, they are not the most suitable 
(Bliemer & Rose, 2010), and require large sample sizes (Puckett & Rose, 2010).  
 

 
Figure 1: Hierarchical Structure of Utility Attributes, Levels and Labels 

 
In the context of stated choice experiments in transport planning environments the basis 
for the design of the experiment is the definition of trip utility. The trip utility expression is 
commonly the linear-in-parameters sum of various quantitative, observable trip cost, time 
and transfer attributes as well as qualitative attributes such as comfort and convenience. 
Attribute levels are prescribed for each attribute, and labels provide meaning to 
respondents such as Rands, minutes and the number of transfers. This hierarchical 
relationship is shown in Figure 1. Transport mode choice-related SP experiments consist 



of choice situations (commonly termed choice sets, C) that contain a number of mode 
alternatives (M), each with a number of modal attributes (A) (that do not have to be the 
same for each mode alternative), and with each attribute having a number of levels (L). 
The number of choice sets required for full factorial design (FD) for a labelled experiment 
is given by C=LMA (Street, et al., 2005; Bliemer & Rose, 2010) and C=LM for an unlabelled 
one. For example, a full factorial design for two labelled alternatives with three attributes 
each and with three attribute levels would require 3(2X3) = 729 choice sets. The number 
would be 27 for an unlabelled design. Note that for level balance, the number of choice 
sets must be a factor of the number levels.  
 
Even though it may constrain the design to be sub-optimal, attribute level balance is a 
desirable property that ensures that the levels for each attribute appear an equal number 
of times in the design, and hence avoids attribute level dominance by an alternative 
(Bliemer & Collins, 2015; Rose & Bliemer, 2009). The number of choice sets for a full 
factorial design is commonly too many for practical implementation, so fractional factorial 
designs (FFD) are used. These designs reduce the cognitive load place on respondents – 
the ideal number of choice sets presented to respondents is a complex mix of the number 
of alternatives, attributes, and levels (Chung, et al., 2011; Hensher et al., 2001). Instead of 
randomly choosing choice sets from a full factorial design, choice sets can be chosen to 
ensure that the attribute levels are orthogonal (i.e. to ensure no correlation between the 
levels of two attributes). Orthogonal designs can be sequential, i.e. orthogonality holds 
within each alternative, or simultaneous in which orthogonality also holds across 
alternatives. Sequential designs require fewer choice sets than simultaneous designs 
(ChoiceMetrics, 2018). The inherent assumption made for orthogonal FFD’s is that there is 
no a priori information for the parameter estimates, and they are hence by definition set to 
zero. These parameters are the b values in the utility expressions shown below.    
 
If the number of choice sets required by a FFD design is still too large for practical 
implementation, then a blocking strategy can be used, i.e. the allocation of choice sets into 
blocks with a respondent sample allocated to each block (Bliemer & Rose, 2010). When 
using a blocking strategy it is important to ensure each block is sampled with 
approximately the same number of responses per block (Bliemer & Collins, 2015). 
Response imbalance for a block design will result in attribute correlation in the estimated 
model. In the design estimation process, blocks are considered as another utility attribute 
across all alternatives with the number of attribute levels equal to the number of blocks.  
 
For mode choice simulation in the context of urban peak period trip demand dominated by 
commuters, the main effects generic trip utility expression for a public transport mode is 
commonly the linear-in-parameters sum of the various trip time and cost attributes. The 
main effects are defined as the direct independent effect of each attribute on the response 
variable, i.e. choice, as opposed the interaction effects that are the effect on the response 
variable of combinations of two or more attributes (Hensher, et al., 2015). The case 
studies presented in this paper all have similar main effects utility expressions with generic 
parameters of the following form for individual i and public transport mode j: 
 

Uij = b1*wttij + b2*wktij + b3*ivtij + b4*cij + b5*ntij + εi 
 
where Uij is the total trip (dis)utility; wtt is the waiting time attribute for mode j; wkt is the 
time attribute spent walking to the mode j stop or terminal; ivt is the time spent travelling  
in-vehicle on mode j; c is the trip cost or fare attribute for mode j; nt is the attribute defining 
the number of transfers to be made on the trip using mode j; εi is the unobserved error 
term associated with individual i; and b1, b2…b5 are the parameters to be estimated. For 



MNL models the error terms are assumed IID (independently and identically distributed) 
and drawn from a Type 1 generalised extreme value (GEV) distribution with mean zero 
and variance 1. For individual i and transport mode j (i.e. car mode) the utility equation is 
commonly as follows: 

Uij = b3*ivtij + b4*cij + εi 
 
where ivt is the in-car travel time; c is the out-of-pocket trip cost that that is typically the 
petrol cost of the car trip; εi is the unobserved error term as before and b3 and b4 are the 
attribute parameters to be estimated. If the car trip has other out-of-pocket costs such as 
parking fees or tolls, these are added to the utility expression as separate attributes with 
their associated parameters. No toll or parking cost attributes were included in the case 
studies though there were several toll roads in operation for three of the case studies. In a 
choice experiment with these two modes, the alternative specific constant (ASC) for one 
mode would be normalised to zero. The ASC for the alternative mode would be included in 
its utility expression.  
 
3. A DISCUSSION ON ORTHOGONALITY 
 
Attribute level orthogonality is a mathematical constraint that requires all the attributes to 
be statistically independent of one another (Bliemer & Collins, 2015). Orthogonality 
requires that each possible pair of attribute levels appears an equal number of times in the 
design and in which the columns of the design display no correlation (ChoiceMetrics, 
2018). Models estimated from non-orthogonal data are characterised by confounded 
attributes and manifest with the incorrect parameter signs (the equivalent of 
multicollinearity in linear multiple regression models), and high parameter mean standard 
errors.     
 
However discrete choice models estimated from data collected with orthogonal designs 
seldom have zero attribute correlation (Bliemer & Rose, 2010) and this has called into 
question the requirement for orthogonal designs (Blamey, et al., 2002; Roman et al., 
2011). Attribute level correlation occurs in non-linear models for several reasons including 
unequal spacing of the attribute levels; non-responses to some choice sets; and unequal 
representation in block samples if a blocking strategy has been used. Thus, while 
orthogonal designs are appropriate for linear models (such as multiple linear regression 
models) that meet these constraints, they are not suitable non-linear discrete choice 
models (ChoiceMetrics, 2018). 
 
Evidence of the extent of the loss of orthogonality between an orthogonal design and the 
estimated MNL model is demonstrated by means of a case study for a choice model 
between two access modes (private car versus feeder bus mode) to a railway station. An 
orthogonal fractional factorial main effects experimental design was used for an SP survey 
between the two modes whose generic utility expressions were as follows: 
 
U(car)    =  b1*(ivt)car + b2*(cost)car + b3*(parking cost)car   
 
and, 
 
U(bus)   =  ASCbus + b1(ivt)bus + b2*(cost)bus +  b4*(wkt)bus + b5*(wtt)bus + b6*(safety)bus   
 
where wkt is the walking time; wtt is the waiting time; ivt is the in-vehicle travel time;  cost 
is the petrol cost of the car trip and fare for the bus trip; parking cost is the park and ride 
fee at the railway station for the car mode; safety is personal safety dummy attribute for 
the walk part of the bus trip and b1, b2, .... b6 are the parameters to be estimated. The wkt, 



wtt, cost, parking cost and safety attributes each had two levels and the ivt had three. 
Thirty six choice sets were required for an orthogonal fractional factorial design and a 
three block strategy was used with 12 choice sets per block. The response burden with 12 
choice sets per respondent is suitable. Equal sampling for each of the blocks was 
achieved. The attribute correlation matrix of the MNL model is shown in Table 1. The 
interpretation of the correlation values is as follows (Profillides & Botzoris, 2019). For a 
value between 0 and ± 0.3, a weak correlation exists; between ±0.3 and ±0.6 a moderate 
correlation; between ±0.6 and ±0.8 a strong correlation exists, and for values greater than 
±0.80 a very strong correlation. 
 

Table 1: MNL Correlation Matrix for Car Versus E-Hail Access Mode Choice Model 

Correlation Matrix wkt wtt ivt cost parking safety 
wkt 1.00           
wtt 0.09 1.00         
ivt -0.32 -0.21 1.00       
cost 0.00 0.01 -0.40 1.00     
parking -0.05 -0.03 0.16 -0.60 1.00   
safety 0.01 0.00 0.06 -0.05 -0.05 1.00 

 
4. EFFICIENT EXPERIMENTAL DESIGNS 
 
Efficient experimental designs are a widely used alternative to fractional factorial designs. 
These designs release the orthogonality constraint and have as their focus the 
minimisation of parameter standard errors and hence the maximisation of the design 
efficiency. These designs make use of the fact that the square roots of the diagonal of the 
asymptotic variance covariance (AVC) matrix are the parameter asymptotic standard 
errors. When estimating a discrete choice model based on maximum likelihood, the 
second partial derivative of the likelihood function is the Hessian matrix. The negative of 
the Hessian is the Fischer Information Matrix which contains information relating to the 
rate of change of the likelihood function slope (i.e. the curvature) for each parameter. The 
negative inverse of the Fischer information matrix is the AVC matrix. The diagonal of the 
AVC matrix contains the parameter variances, and their square roots divided by the 
square root of the sample size are the parameter standard errors of the mean (Rose & 
Bliemer, 2009; ChoiceMetrics, 2018). 
 
The AVC matrix can be determined analytically for estimation of an efficient design based 
on a single respondent requiring the analyst to specify the type of model to be estimated 
(multinomial logit (MNL), nested logit (NL) or random parameter logit (RPL)); the utility 
expressions for each alternative; the levels for each attribute; the number of choice sets 
(and whether a blocking strategy is to be used and if so the number of blocks); and a priori 
estimates of the attribute parameters (i.e. b1, b2, .. bn) (Bliemer & Collins, 2015). These 
prior parameter values can be obtained from previous studies or from literature. Even if the 
sign of the parameters is known, the design can be improved (ChoiceMetrics, 2018). 
Designs from which MNL models are estimated require an estimate of the mean 
parameter prior value. If a random parameters logit (RPL) model is to be estimated then 
the distributions of the prior attribute parameters must be specified. For example, a 
normally distributed parameter requires the specification of the parameter mean and 
standard deviation.     
 
More realism can be added by pivoting the alternative mode attribute levels off the 
observed attribute levels of the current mode, with the pivot levels specified by the analyst 



(ChoiceMetrics, 2018). The perceived current mode attribute levels (i.e. anchor levels) 
must be solicited from the respondent for the alternative mode pivoting process that must 
be done in real time by the survey software. These designs thus use a combination of 
revealed preference (from the current mode observed attribute values) and stated 
preference (from the alternative mode pivoted attribute levels).  
 
The design measure of efficiency is expressed as a measure of efficiency error which is to 
be minimised in the estimation process (Bliemer & Rose, 2010). The most widely used 
measure is the D-error which is the determinant of the AVC matrix. The design with the 
lowest D-error is termed the D-optimal design (Bliemer & Collins, 2015; Rose & Bliemer, 
2009). Because the design with the lowest D-error is sometimes hard to find, the design 
with a sufficiently low D-error is used and this is termed the D-efficient design. Another 
error measure is the A-error and the design with the lowest A-error is called the A-optimal 
design. The A-error is the trace of the diagonal of the AVC matrix (i.e. the sum of the 
diagonal values). Hence the A-error only considers the variances and not the covariances 
of the AVC matrix. 
 
An important characteristic of efficient designs is that the impact of the sample size can be 
investigated. Because estimates of the parameter asymptotic standard errors are the 
square root of the diagonals in the AVC matrix divided by the sample size, the standard 
errors decrease at the rate of 1/√𝑁, where N is the sample size. The standard errors thus 
decrease at a diminishing rate with increasing sample size. It is therefore more cost 
efficient to improve the accuracy of the prior parameter values than increasing the sample 
size (ChoiceMetrics, 2018). 
 
5. METROPOLITAN EXPERIMENTAL DESIGN CASE STUDIES  
 
The four metropolitan experimental design case studies are labelled Metro A, Metro B, 
Metro C and Metro D. Table 2 summarises the experimental designs of each for the car - 
BRT designs. The actual number of choice sets in the designs are shown, as well as the 
actual number of attribute levels that were used. The D-errors for these designs were 
estimated ex post and are also shown. Based on the actual design attributes and levels, 
the number of choice sets required for a full factorial design and an orthogonal fractional 
factorial design (ensuring no correlation between attributes) are shown together with their 
respective D-errors. Note that for Metro D two separate designs were evaluated. Metro D1 
has car, train and BRT alternatives and was targeted at the middle-high income segment 
(gross monthly household income between R25 601 and R51 200 monthly). Metro D2 has 
car, bus and taxi alternatives and was aimed at the low-middle income segment (gross 
monthly household income between R3,201 and R25,600 per month). 
 
Table 2 highlights several important issues. Firstly, the designs for Metro’s A and B are the 
same. These designs used 20 choice sets per respondent, whereas a minimum of 24 are 
needed for an orthogonal fractional factorial design. To employ a design with 24 choice 
sets, a blocking strategy would be appropriate to reduce the cognitive burden on 
respondents, i.e. two blocks with 12 choice sets each. For Metro’s A and B designs no car 
trip cost attribute was included in the utility expression which is an important oversight. For 
these metros the D-error is significantly improved by the orthogonal FFD over the value for 
the original design (0.009 versus 0.005, or a ratio of 1.80). This means that, on average, 
the asymptotic standard errors of the parameter estimates in the original design would be 
√1.8 = 1.34, i.e. 34% higher than those estimated with the orthogonal FFD. 
 
 



Table 2: Summary of Metro Experimental Designs for Multinomial Logit Models (MNL) 

Experimental 
Criteria 

Metro A Metro B Metro C Metro D1 Metro D2 

Modes Car, BRT Car, BRT Car, BRT Car, Train, 

BRT 

Car, Bus, Taxi 

Utility Attributes* 

(no. of attributes) 

Car: ivt 

BRT: wtt, ivt, 

f, nt 

(4) 

Car: ivt 

BRT: wtt, ivt, 

f, nt 

(4) 

Car: ivt, f 

BRT: wkt, 

wtt, ivt, f, nt 

(4 per block) 

Car: ivt, f 

Train & BRT: 

wtt, ivt, fare f, 

nt 

(4) 

Car: ivt, f 

Bus & Taxi: 

wtt, ivt, f, nt 

(4) 

Actual No. Choice 

Sets in Experiment 

Designs 

20 20 18 (2 blocks 

of 9, block 1 

with wkt & 

block 2 with 

wtt) 

13 13 

Actual No. of 

Attribute Levels in 

Experimental 

Designs 

wtt = 4 

ivt = 4 

f = 4 

nt = 3 

wtt = 4 

ivt = 4 

f = 4 

nt = 3 

wkt = 3 

wtt = 3 

ivt = 3 

f = 3 

nt = 2 

wtt = 4 

ivt = 5 

f = 7 

nt = 3 

wtt = 4 

ivt = 7 

f = 7 

nt = 3 

Actual Design  

D-error 

0.0090 0.0090 n/a 0.0027 0.0021 

Estimated no. of 

choice sets 

required for full 

factorial design  

(D-error) 

768  

(0.0002) 

768  

(0.0002) 

486 (without 

pivot design) 

(0.030) 

No valid 

design found – 

too many atts. 

& levels 

No valid design 

found - too 

many atts. & 

levels 

Estimated no. of 

choice sets 

required for 

orthogonal 

fractional factorial  

design (FFD)  

(D-error) 

24  

(0.0050) 

24  

(0.0050) 

18 (without 

pivot design) 

(0.080) 

27 

(0.001) 

No valid  

design found 

Note: * wkt=walking time; wtt = waiting time; ivt=in-vehicle time; f=fare/cost; nt = no. of transfers 

 
For Metro C two separate designs were used even though they were stated to be two 
blocks of the same design. The first design (block 1) included the walking time (wkt) 
attribute to the BRT station (with three levels), and the second design (block 2) replaced 
the wkt with the waiting time (wtt) attribute (also with three levels) at the BRT station. It is 
not possible to use a blocking strategy with different utility expressions for the BRT mode 
in each block and the D-error of this design cannot thus be calculated. The orthogonal 
fractional factorial design for Metro C requires 18 choice sets assuming either wkt or wkt 



are included in the utility expression. If both wkt and wtt are included in the BRT utility 
expression with three levels each then an orthogonal fractional factorial design requires 36 
choice sets (D-error is 0.042). A three-block strategy of 12 choice sets each would be 
appropriate in this case.  
 
Both Metro D designs D1 and D2 have different modes with the same attributes but 
different attribute levels. For Metro D1 the original design consisted of three alternatives, 
four attributes and a range of attribute levels - from seven for trip fare (f) to three for the 
number of transfers (nt). The minimum required choice sets for an orthogonal fractional 
factorial design is 27, significantly more than the 13 choice sets used in the design. The  
D-error also reduces significantly from the original design value of 0.0027 to the orthogonal 
FFD value of 0.001 implying, on average, a 64% improvement in parameter standard 
errors with the orthogonal FFD design. For Metro D2, the number of attributes levels is 
high, i.e. seven for ivt, seven for f, four for wtt and three for the nt attribute. For this design 
there are too many attributes and levels for a full factorial or an orthogonal fractional 
factorial design to be identified. 
 
Tables 3, 4 and 5 show the design correlation matrices for the original designs for Metros 
A, B and D1. It can be anticipated that due to the poor design efficiencies the MNL models 
estimated from these designs will be compromised. The correlations in Table 3 are high, 
and some appear to have the wrong signs. Some of the Metro D1 correlation values in 
Table 4 are high and may negatively influence the statistical significance of the MNL 
model. Several of the values for Metro D2 in Table 5 indicate strong correlation between 
attribute levels, and together with the low design efficiencies the MNL model estimated 
with this design is likely to be compromised.  
 

Table 3: Attribute Correlation Matrix for Metros A and B 

Attribute car.ivt brt.wtt brt.ivt brt.f brt.nt 
car.ivt 1         
brt.wtt 1.00 1       
brt.ivt 0.61 0.61 1     
brt.f 0.84 0.84 0.54 1   
brt.nt 0.83 0.83 0.87 0.64 1 

 
Table 4: Attribute Correlation Matrix for Metro D1 

Attribute car.ivt car.f train.wtt train.ivt train.f train.nt brt.wtt brt.ivt brt.f brt.nt 
car.ivt 1                   
car.f 0.00 1                 
train.wtt 0.48 0.00 1               
train.ivt -0.04 0.21 -0.08 1             
train.f 0.04 -0.66 0.28 -0.47 1           
train.nt -0.29 0.12 0.29 -0.34 0.37 1         
brt.wtt 0.21 0.23 -0.07 -0.56 0.01 -0.25 1       
brt.ivt 0.03 -0.09 -0.22 -0.46 0.31 0.21 0.19 1     
brt.f -0.14 -0.46 0.05 -0.31 0.59 0.05 -0.05 0.13 1   
brt.nt -0.47 0.34 -0.66 0.07 -0.36 0.02 0.22 -0.11 -0.30 1 

  

  



Table 5: Attribute Correlation Matrix for Metro D2 
Attribute car.ivt car.f bus.wtt bus.ivt bus.f bus.nt taxi.wtt taxi.ivt taxi.f taxi.nt 
car.ivt 1                   
car.f 0.39 1                 
bus.wtt -0.05 -0.55 1               
bus.ivt 0.38 0.22 -0.16 1             
bus.f -0.10 -0.32 0.71 0.10 1           
bus.nt 0.00 0.24 0.00 -0.14 0.31 1         
taxi.wtt 0.11 -0.13 0.15 0.07 -0.26 0.00 1       
taxi.ivt 0.02 -0.06 0.19 -0.56 -0.21 -0.30 0.34 1     
taxi.f 0.09 0.75 -0.44 0.43 -0.38 0.05 0.14 -0.28 1   
taxi.nt 0.42 0.17 0.03 -0.14 -0.11 -0.11 -0.33 0.28 -0.23 1 

 
6. METRO MULTINOMIAL LOGIT (MNL) MODELS 
 
Discrete choice MNL models were estimated from the SP data collected for each metro. 
Prior to model estimation the data sets were cleaned and non-traders and lexicographic 
errors were removed. The models are labelled MNL A, B, D1 and D2. For Metro C, two 
models were estimated, one for the utility expression containing the wkt attribute for BRT 
mode (MNL C1) and the other for utility expression that contains the wtt attribute for the 
BRT mode (MNL C2). The model outputs are summarised in Table 6.  
 

Table 6: Metro Multinomial Logit (MNL) Model Output Summaries 

Model Attribute Metro A 
MNL A 

Metro B 
MNL B 

Metro C 
MNL C1 

Metro C 
MNL C2 

Metro D 
MNL D1 

Metro D 
MNL D2 

Log-Likelihood -243 -475 -406 -445 -852 -663 
Chi Square 6.0 29.8 195 239 160 7.7 
Prob Chi2 > Value 0.199 0.100 0.000 0.000 0.000 0.105 
wkt Mean Coeff 
Std Error 
t-value 

- - -0.016 
0.021 
-0.75 

- - - 

wtt Mean Coeff 
Std Error 
t-value 

+0.020 
0.016 
+1.22 

-0.038 
0.010 
-3.77 

- 0.000 
0.013 
0.00 

-0.083 
0.009 
-9.38 

+0.011 
0.125 
0.88 

ivt Mean Coeff 
Std Error 
t-value 

+0.025 
0.011 
+2.18 

-0.040 
0.010 
-3.86 

-0.005 
0.003 
-1.88 

-0.005 
0.011 
-0.46 

-0.015 
0.005 
-2.87 

-0.011 
0.005 
-2.09 

f Mean Coeff 
Std Error 
t-value 

+0.059 
0.064 
0.92 

-0.099 
0.077 
-1.29 

-0.163 
0.014 
-11.36 

-0.163 
0.013 
-12.5 

-0.055 
0.010 
-5.31 

-0.022 
0.01 
-2.18 

nt Mean Coeff 
Std Error 
t-value 

+0.062 
0.142 
0.44 

-0.291 
0.177 
-1.65 

-0.320 
0.180 
-1.78 

-0.326 
0.176 
-1.85 

-0.388 
0.166 
-2.34 

-0.045 
0.077 
-0.59 

Car ASC 
Std Error 
t-value 

+2.265 
0.952 
2.38 

-2.44 
1.183 
-2.07 

+0.625 
0.255 
2.45 

+0.783 
0.216 
3.63 

+0.512 
0.403 
1.27 

+0.192 
0.276 
0.69 

ASC Train 
Std Error 
t-value 

- - - - -0.194 
0.067 
-2.88 

- 

ASC Bus 
Std Error 
t-value 

    - 0.105 
0.174 
0.60 

Value of Travel 
Time (R/Hr) 

n/a n/a R1.95/hr n/a R16.36/hr R29.44/hr 

 



Table 6 shows that there are deficiencies in all the models except MNL D1. The influence 
of the experimental designs is evident, i.e. parameters with the wrong signs (the time, cost 
and transfer parameter signs should all be negative reflecting the disutility of travel); some 
parameters are not significant (as indicated by their t-values within the critical range of  
± 1.98 for the 95% confidence interval); the associated high standard errors; and in some 
cases the probability of Chi2 exceeding a value larger than 0.05 (for the 95% confidence 
interval). These Chi2 values indicate that the attribute parameters are not significantly 
different to zero when considered collectively in the utility expression.  
 
Other model characteristics that raise concerns are as follows. The wtt:ivt ratio for models 
MNL A, MNL B and MNL C2 are less than 1.0. This implies that travellers would prefer to 
wait than to travel which is implausible. This ratio for model MNL D1 is 5.5, which is 
significantly higher than benchmarked values of between 1.8 and 3.0 (Wardman, 2011). It 
is not appropriate to calculate the value of travel time for MNL A, MNL B and MNL C2 as 
the fare parameters are not significant for MNL A and MNL B, and the in-vehicle time 
parameter is not significant for MNL C2. The value of travel time for MNL C1 is R1.85 per 
hour, which is unrealistically low, while the value of MNL D2 of R29.44/hour appears 
plausible but cannot be relied on due to the poor overall validity of the model. The MNL D1 
value of R16.36/hour seems plausible given that MNL D1 is a statistically significant 
model. Overall, the model results for Metros A, B, C1, C2 and D2 cannot be used for 
forecasting prediction. Model D1 should be used with caution, as the wtt:ivt ratio is far 
outside benchmarked limits.   
 
The attribute correlation matrices for three of the models are shown in Table 7 (MNL A), 
Table 8 (MNL C1) and Table 9 (MNL D1). The range of correlation values is significant, 
with higher correlations present for models MNL A and MNL D1. For model A the 
correlation between Fare (f) and ASC Car is high (0.94). This is likely due to the omission 
of a trip cost attribute for cars in the utility expression. The MNL A correlation values 
derived from the models are generally lower than those derived from the experimental 
design (Table 4). There is a similar pattern for MNL D1 as shown in Table 9.  
 

Table 7: Correlation Matrix for Model MNL A 

Attribute WTT IVT F NT ASC Car 

WTT 1         
IVT 0.14 1       
F 0.31 0.38 1     
NT -0.29 0.15 0.26 1   
ASC Car 0.40 0.60 0.94 0.37 1 

 
Table 8: Correlation Matrix Model MNL C1 

Attribute WKT IVT F NT ASC Car 

WKT 1         
IVT 0.03 1       
F 0.02 0.07 1     
NT -0.02 0.05 0.06 1   
ASC Car 0.81 0.05 -0.12 0.43 1 

   



Table 9: Correlation Matrix for Model MNL D1 

Attribute WTT IVT F NT Car ASC Train ASC 

WTT 1           

IVT 0.02 1         

F -0.04 -0.24 1       

NT 0.01 -0.26 -0.22 1     

Car ASC 0.33 -0.19 -0.81 0.38 1   

Train ASC -0.18 -0.07 0.08 -0.02 -0.03 1 

 
7. ESTIMATION OF EFFICIENT DESIGNS 
 
D-efficient experimental designs have been prepared for three of the case studies, i.e. for 
Metro’s A, C1 and D1. For Metro’s A and D1, MNL models were derived. For Metro C1, a 
random parameters logit (RPL) model was estimated. For each design the prior parameter 
values have been derived from MNL D1 (see Table 6), with the wtt parameter value 
adjusted to a value of two times the ivt value. The mean prior parameter values (and 
standard deviations) are therefore wtt = -0.030 (0.009); ivt = -0.015 (0.005); f = -0.055; and 
nt = -0.384 (0.166). Note that the ASC attributes are not included in the designs but will be 
estimated in the MNL and RPL models. The d-efficient design parameters for each Metro 
are summarised in Table 10. For a discussion of the impact of error in the prior estimates 
see Bliemer & Collins (2015) and Walker et al (2018). 
 
The experimental design for an RPL model requires the prior parameters to be 
randomised according to the distribution intended in the RPL. The wtt, ivt and nt 
parameters were randomised normal and the cost parameter f was not randomised to 
overcome the problematic issue of the ratio of two distributions when estimating 
willingness-to-pay measures (Train, 2009). 100 Halton draws have been used for the 
randomised draws. The panel effects must also be taken into consideration 
(ChoiceMetrics, 2018), i.e. the effect of repeated observations by individual respondents. 
This design is also a pivot design, with the BRT in-vehicle travel time and fare pivoted off 
the (observed) car values for this metro. Note that the ivt pivot levels are defined in 
percentage terms and the wtt, f and nt levels variation are defined as values as shown in 
Table 10. For the C1 design, the observed car travel time and cost were the mean 
observed values for this metro, viz. 30 minutes and R25 respectively. 
 
Several important issues should be kept in mind when specifying the designs. Firstly, the 
attribute levels should be realistic in the context of the experiment and also to the 
respondent. The model estimated from the surveys will only be valid for the level ranges 
specified in the design. Secondly, for this reason it is recommended that wider level 
ranges are specified with fewer levels (Bliemer & Collins, 2015). These so-called end-point 
designs define two extreme levels (that must still be realistic) that usually translate into 
smaller asymptotic standard errors. However non-linearities cannot be estimated with two 
level designs. Thirdly, there should be attribute level balance in the design, i.e. no 
alternatives should dominate others as discussed earlier. If dominance does occur (i.e. the 
design is unbalanced) the choice situation does not provide information for estimating the 
parameters and the design will not be efficient. Hence the experimental design needs to 
trade off the needs of the choice context as well as the constraints for efficient designs.  
 
  



 
Table 10: Efficient Design Parameters for Metro A, C1 and D1 

Design Parameter Metro A Metro C1 (Pivot 
Design) 

Metro D1 

Alternatives Car, BRT Car, BRT Car, Train, BRT 

Attributes & Levels 

wtt [5,  15]  

ivtcar [15,25,30] 

fcar [15,25,40] 

ivtbrt [20,35,50] 

fbrt [10,15,20] 

nt [0, 1]  

wtt [5, 10, 15]  

ivt* [-10%, 0%, 20%]  

f** [-15, -10, 10]  

nt [0, 1]  

wtt [5, 10, 15]  

ivt [30, 50, 70]  

f [10, 20, 30] 

nt [0, 1, 2]  

No. of Choice Sets 36 (3 blocks of 12) 18 (2 blocks of 9) 15 

*Reference value for car ivt = 30 mins for homogeneous pivot design;  
**Reference value for car cost is R25 for homogeneous pivot design. wtt and ivt are in minutes,  
f in Rands and nt number of transfers.  

 
The efficient designs are shown in Tables 11, 12 and 13 for Metros A, C1 and D1 
respectively. The correlation matrix for each design is also shown (as measured by the 
Pearson Product Moment). The D-error for the equivalent orthogonal fractional factorial 
designs for Metro A and Metro D1 are also shown. In the output the B-estimate is the 
minimum sample size required for overall parameter significance. The S-estimate and the 
Sp estimates are the minimum sample sizes required for individual parameter significance. 
The Sp t-ratios are the estimated t-values that will be achieved with a single respondent. 
The S-estimate and Sp estimate should only be considered as the lower bound sample 
size requirements when comparing alternative designs.   
 
The main observations from these designs are that the efficient designs are all 
improvements over the equivalent orthogonal designs except for the pivot design for Metro 
C1 from which an RPL model will be developed. An equivalent orthogonal pivot design 
cannot be estimated for an RPL or MNL, but an orthogonal design without pivoting results 
in an improved D-error. The suggested minimum sample sizes for Metro A is 85 
respondents, 87 for Metro C1 and 71 for Metro D1. Based on the prior parameter 
distribution defined for the ivt attribute for Metro C1 (i.e. normal with mean -0.015 and 
standard deviation 0.005), the suggested minimum sample size for this attribute  
(Sp estimate) is 329 respondents. The equivalent pivoted design for an MNL model has a 
lower D-error of 0.015 and requires a minimum suggested sample size of 90 respondents. 
This result highlights the requirement for larger sample sizes required for RPL models and 
also emphasizes the need for further research into the application of efficient designs for 
RPL models. Some attribute level correlations are high for Metro’s A and D1, but generally 
lower for Metro C1.   
 
  



Table 11: Metro A Efficient Design for MNL 
D error 0.00292       For equivalent orthogonal FFD the 

D-error is 0.003408 and A-error is 
0.097801.  Hence on average, 
efficient design mean parameter 
standard errors will be 8% more 
accurate.  

A error 0.09188       
B estimate 85.2       

S estimate 9.5       
Prior b1 ivt b3 f b2 wtt b4 nt       
Fixed prior value -0.015 -0.055 -0.03 -0.384       
Sp estimates 6.05 0.82 6.45 9.51       
Sp t-ratios 0.80 2.17 0.77 0.64       
Design               

Choice Set No. car.ivtc car.fc brt.wtt brt.ivtb brt.fb brt.nt Block 
1 15 15 5 50 15 1 3 
2 25 25 15 35 15 0 3 
3 30 25 15 20 15 0 3 
4 25 25 15 20 15 0 2 
5 15 40 15 50 10 0 1 
6 15 40 5 50 10 0 1 
7 25 40 15 35 10 0 3 
8 25 15 5 50 20 1 1 
9 15 15 15 50 20 0 3 

10 30 40 5 20 10 1 2 
11 30 25 15 20 10 0 3 
12 25 40 5 35 10 1 3 
13 30 15 15 20 15 1 1 
14 25 40 15 20 10 0 1 
15 15 25 5 50 20 1 2 
16 30 15 15 20 20 0 1 
17 30 15 15 35 20 0 3 
18 15 25 15 50 15 0 3 
19 25 15 15 35 15 0 1 
20 15 40 5 50 15 0 2 
21 15 25 5 50 15 0 2 
22 30 15 15 20 20 1 2 
23 15 40 5 50 10 1 1 
24 25 15 15 35 20 0 1 
25 25 40 5 35 15 1 2 
26 15 15 5 35 20 1 2 
27 25 15 5 35 20 1 2 
28 15 25 15 50 20 0 1 
29 30 25 15 20 20 1 3 
30 30 40 5 35 10 1 2 
31 15 25 5 50 15 1 3 
32 30 25 15 20 15 1 1 
33 30 15 5 35 20 1 2 
34 25 40 5 20 10 1 3 
35 30 25 5 20 10 1 1 
36 25 40 5 35 10 0 2 

Correlations (Pearson 
Product Moment)               

Attribute car.ivtc car.fc brt.wtt brt.ivtb brt.fb brt.nt Block 
car.ivtc 1.00 -0.13 0.27 -0.85 -0.03 0.18 0.00 
car.fc -0.13 1.00 -0.30 0.05 -0.79 -0.05 0.02 
brt.wtt 0.27 -0.30 1.00 -0.34 0.20 -0.56 0.00 
brt.ivtb -0.85 0.05 -0.34 1.00 0.13 -0.14 0.00 
brt.fb -0.03 -0.79 0.20 0.13 1.00 0.07 0.00 
brt.nt 0.18 -0.05 -0.56 -0.14 0.07 1.00 0.00 
Block 0.00 0.02 0.00 0.00 0.00 0.00 1.00 

  



Table 12: Metro C1 Pivot Efficient Design for RPL with Panel Effects (100 Halton Draws) 

D error 0.039     Note: Efficient Design for MNL model (no 
pivot) has D-error=0.016 and A-error =0.189. A error 0.384     

B estimate 87.0     

S estimate 329             

Prior b2 ivt b3 f b1 wtt b4 nt       

Fixed prior 
value -0.015 -0.055 -0.030 -0.384       

Sp estimates 329.4 2.9 17.3 19.6       

Sp t-ratios 0.11 1.16 0.47 0.44       

Design               

Choice 
situation car.ivt car.f brt.wtt* 

brt.ivt 
(pivot)* brt.f (pivot) brt.nt* Block 

1 30 25 15 0% -10 0 1 

2 30 25 15 20% -10 0 2 

3 30 25 5 -10% -15 1 2 

4 30 25 10 0% -10 1 1 

5 30 25 5 0% -10 1 2 

6 30 25 10 0% -10 0 2 

7 30 25 10 -10% -15 0 1 

8 30 25 10 20% -15 1 1 

9 30 25 5 0% 10 1 1 

10 30 25 15 -10% 10 0 2 

11 30 25 5 20% 10 1 2 

12 30 25 5 -10% -15 0 2 

13 30 25 15 20% 10 0 2 

14 30 25 10 20% -15 0 1 

15 30 25 15 0% -15 1 2 

16 30 25 10 20% -10 0 1 

17 30 25 5 -10% 10 1 1 

18 30 25 15 -10% 10 1 1 

Correlations (Pearson Product Moment)  

Attribute car.ivt car.f brt.wtt brt.ivt brt.f brt.nt Block 

car.ivt ! ! ! ! ! ! ! 

car.f ! ! ! ! ! ! ! 

brt.wtt ! ! 1.00 0.16 0.03 -0.41 0.00 

brt.ivt ! ! 0.16 1.00 -0.06 -0.18 0.00 

brt.f ! ! 0.03 -0.06 1.00 0.21 0.00 

brt.nt ! ! -0.41 -0.18 0.21 1.00 -0.11 

Block ! ! 0.00 0.00 0.00 -0.11 1.00 

wtt and ivt are in minutes, f in Rands and nt number of transfers. 
*wtt, ivt and nt are randomised normal, f is fixed 

  



Table 13: Metro D1 Efficient Design 
D-error 0.004        Note: Equivalent orthogonal design requires 27 

choice sets ( 3 blocks x 9 choice sets) with D-error = 
0.002 and A-error=0.027. Minimum sample size is 100 
respondents. 
  

A-error 0.038       
B estimate 70.8       

S estimate 11.0       
Prior 
Parameters b2 ivt b3 f b1 wtt b4 nt             
Fixed prior 
value -0.015 -0.055 -0.03 -0.384             
Sp estimates 5.7 1.8 11.0 3.8             
Sp t-ratios 0.82 1.46 0.59 1.00             
Design                     
Choice Set No. car.ivt car.f train.wtt train.ivt train.f train.nt brt.wtt brt.ivt brt.f brt.nt 

1 30 30 10 70 10 2 5 70 20 2 
2 70 30 5 50 30 1 10 30 10 0 
3 70 20 5 50 10 2 10 30 10 0 
4 70 20 15 50 30 1 5 30 20 2 
5 30 10 10 50 20 0 15 30 20 0 
6 70 10 15 30 30 2 5 30 30 2 
7 70 30 5 50 10 2 15 70 10 0 
8 30 10 15 50 20 1 5 70 20 1 
9 70 30 5 50 10 2 15 50 30 1 

10 50 20 10 50 20 0 10 50 20 1 
11 30 30 15 30 30 0 15 70 20 0 
12 50 10 10 30 20 1 5 30 30 1 
13 30 10 10 50 20 1 5 70 20 1 
14 50 30 15 70 10 0 10 50 10 2 
15 70 30 15 30 30 0 10 70 10 2 

Correlations (Pearson Product Moment)   
Attribute car.ivt car.f train.wtt train.ivt train.f train.nt brt.wtt brt.ivt brt.f brt.nt 
car.ivt 1.00                   
car.f 0.32 1.00                 
train.wtt -0.31 -0.21 1.00               
train.ivt -0.21 0.28 -0.23 1.00             
train.f 0.09 -0.18 0.51 -0.66 1.00           
train.nt 0.37 0.00 -0.51 0.13 -0.40 1.00         
brt.wtt 0.12 0.49 -0.38 -0.04 -0.20 -0.20 1.00       
brt.ivt -0.42 0.34 0.19 0.12 -0.18 -0.09 0.09 1.00     
brt.f -0.18 -0.50 0.15 -0.34 0.11 0.23 -0.26 -0.21 1.00   
brt.nt 0.09 0.00 0.61 0.13 0.10 0.00 -0.61 0.09 0.23 1.00 
wtt and ivt are in minutes, f in Rands and nt number of transfers. 

 

8. CONCLUSIONS 
 
This paper has demonstrated that the experimental designs used in four South African 
metros for the development of mode choice simulation models were inadequate, not 
meeting several design requirements associated with orthogonal fractional factorial 
designs. These include the number of choice sets required for attribute level balance for 
orthogonality and the appropriate blocking strategies. The consequences were that in all 
instances the MNL models estimated from the data collected from the experiments were 
not statistically significant, leaving a large gap in the understanding of urban car commuter 
mode choice trip behaviour. The willingness to pay for travel time savings as measured by 
the value of travel time is hence still uncertain for urban South African car commuters. The 
analysis provided evidence that orthogonal designs are not orthogonal when executed, 
with a case study showing high attribute correlation in some instances.    
 



The paper demonstrated that main effects orthogonal fractional factorial designs based on 
the utility expressions described in this paper would improve the D-error over the original 
designs. Efficient designs would further improve the D-error, and the use of efficient 
designs for MNL models with the prior parameter values determined in this analysis is 
recommended. While the use of pivot-based efficient designs is recommended for MNL 
models, further research is required for their application in RPL models in the South 
African context. The research should focus on the identification and specification of the 
appropriate parameter distributions. 
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