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ABSTRACT 

Understanding the precise movements of different commodities on South African roads 
can help in not only describing the logistics sector more accurately, but also in the 
planning of road infrastructure maintenance and investment. Truck combinations can be 
classified into several classes broadly associated with different commodity groups, 
including tautliners, tankers, flatbeds (general freight) and flatbed (containerised freight). 
Current truck classification systems in South Africa can classify trucks by number of axles 
and vehicle mass but are unable to determine the combination type and hence commodity 
group. Video data allows for truck combinations to be classified in more detail using 
image-based classifiers. The latest developments in deep learning algorithms have made 
it possible for accurate classification of vehicle types using camera data. A CCTV camera 
feed of a section of the N3 was provided by the South African National Roads Agency 
Limited (SANRAL) and was used as a case study to develop a proof-of-concept classifier 
for tautliner and tanker truck combinations, using a transfer learning approach and the pre-
trained ResNet50 classifier. The results indicate good accuracy based on relatively small 
datasets. Future work will focus on further optimisation and investigating the training 
dataset requirements in more detail. 
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1. INTRODUCTION 

1.1 Background 

Freight modes in South Africa include road, rail, air, pipelines and coastal. Road is 
however the most dominant mode, accounting for 75.88% of South Africa’s freight 
transport in 2013 (Department of Transport, 2017). This can partly be attributed to 
competitive pricing and flexibility, though policy and legislation have helped influence this 
as well (Department of Transport, 2017). In 1993, the Department of Transport increased 
the minimum axial load from 8200 kg to 9000 kg, allowing for more efficient movement of 
goods by road (Department of Transport, 2017). Even though there is a desire to move 
freight to rail, it is likely that road freight will remain the dominant mode for the foreseeable 
future, so implying that much of the country’s logistics movements will be via road. It is 
important therefore that this freight movement be monitored carefully to monitor the state 
of logistics in the country, and to help authorities plan road infrastructure maintenance and 
investment. 
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Detailed knowledge of the types of trucks and associated traffic on the network can help to 
understand the movement of freight in South Africa, and is useful for economic studies, 
road planning, maintenance interventions etc. Currently, the South African National Roads 
Agency SOC Limited (SANRAL) uses a four-class vehicle classification system for toll and 
infrastructure planning purposes, as summarised in Table 1 (Smith & Visser, 2004). 
 

Table 1: SANRAL vehicle classification 
Single 
loop 

Dual 
loop  

Dual loop with axle sensor Dual loop with 
sensor (Toll) 

None None Motorcycle Toll Class 1 
Light Light Light motor vehicle 

Light motor vehicle + trailer 
Heavy Short 

Truck 
Two axle bus Toll Class 2 
Two axle single unit 
Three Axle Unit + trailer (Max axles) Toll Class 3 
Two axle Single Unit + Trailer (Axles Max) 
3 Axle Single Unit Including Single Axle Light Trailer 

Medium 
Truck 

Four or less Axle single trailer 
Busses with 5 or more axles Toll Class 4 
Three axle Single Unit and light trailer (more than 4 
axles) 
Five Axle single Trailer 
Six axle single trailer 

Long 
Truck 

Five or less axle Multi-trailer 
Six axle multi-trailer 
Seven Axle Multi-trailer 
Eight or more Axle Multi-trailer 

 
This classification system differentiates trucks based on number of axles and axle loads. 
This is useful from a toll and road impact point of view but gives little insight into the types 
of freight moving on different routes. Therefore, the current information has limited value 
for logistics studies. In recent years, cameras coupled with image-based classification 
algorithms have seen substantial growth in performance and application and have been 
used for a wide range of vehicle-based classification tasks to good effect (Moussa, 2014), 
including traffic monitoring and accident detection. The technology has the added benefit 
of requiring little additional equipment (existing CCTV camera feeds can be used), and 
having very low maintenance requirements compared to, for example, the inductance-
based loop detectors currently used (Zhang et al., 2007). 
 
In this work, a Neural Network based classification system was used. Neural networks are 
a subset of machine learning algorithms, and in this case the specific method of transfer 
learning was adopted. These are described in more detail in the following sections. 
 
1.1.1 Machine Learning 
Machine learning is a subset of the artificial intelligence field, where artificial intelligence 
describes the use of computers to solve a variety of problems through algorithms of 
varying complexity. Machine learning is a form of applied statistics that uses computers 
and algorithms to statistically estimate complex functions (Goodfellow et al., 2017).  
  



 
 

Machine learning algorithms can generally be divided into three subsections, namely: 
 
• Supervised learning 
• Unsupervised learning 
• Reinforcement learning 
 
Supervised learning involves the training of an algorithm using existing labelled data, for it 
to make predictions on new unseen data (Raschka & Mirjalili, 2017). Supervised learning 
can be further categorised into classification and regression problems. Regression entails 
making predictions where the outcome is a continuous value, whereas classification 
involves outputs that are discrete but unordered (Raschka & Mirjalili, 2017), which is the 
case for image recognition. 
 
1.1.2 Transfer Learning with Convolutional Neural Networks 
Transfer learning is a method of reducing the training requirements of a new classifier, by 
relying on an existing neural network trained to detect similar classes (Menshawy, 2018). 
Most of the layers of feature recognition within a neural network identify image features 
common to most objects, and only the last few layers of the network focus on the object-
level identifiers. This means that only the last few layers of the network must be retrained 
for new classes, while the rest can remain the same. Transfer learning allows for a 
significant reduction in the size of the training dataset needed for the neural network to 
converge (Menshawy, 2018) or reach a stable point for the new classification task. This in 
turn means reduced training time by taking advantage of the prior learning of the network 
and allows a task specific classifier to be obtained with less resources. This in turn could 
yield a quicker time between prototyping to implementation of the model. 
 
1.1.3 Previous Work 
Several studies have shown the potential for vehicle-type classification through image 
processing, such as the work of Moussa (2014), in which geometric and appearance 
attributes are used to classify vehicles with the help of support vector machines (SVM). 
The idea of using small datasets was explored by researchers who modified a deep 
VGG161 network and trained it on the CIFAR-10 dataset2

 

 (Liu & Deng, 2015). The dataset 
had 60 000, 32×32 pixel colour images separated into 10 classes. The performance was 
not necessarily state-of-the-art (error rate of 8.45%) but showed the potential of using 
neural networks to train on relatively small datasets. The conclusion made was that a 
model that performed strongly for a large dataset could be used to perform well on a small 
dataset. Larger datasets have a smaller chance of producing a model that overfits the data 
compared to a model trained on a smaller dataset. 

Deep Convolutional Neural Networks (CNN’s) like the VGG16 network allow for improved 
performance because of the increased number of layers to extract features. A downside of 
these networks is that they exhibit degradation of the training accuracy as the number of 
layers is increased. Experiments done by the authors showed that the accuracy 
degradation was not caused by data overfitting. They concluded that the degradation was 
due to poor optimisation of the algorithm. Researchers showed that this problem could be 
reduced with the ResNet (Residual Network) family of deep networks (He, et al., 2016). 
Different configurations of the ResNet network were developed and compared to the VGG 

                                            
1 A CNN model at the 2015 International Conference on Learning Representations (ICLR) that improved on AlexNet 
(Simoyan & Zisserman, 2015) 
2 The dataset is small relative to the ImageNet dataset of 1.2 million images that was used to train AlexNet in 2012 
(Krizhevsky, et al., 2012) 



 
 

network. Amongst these networks were the ResNet 34/50/101/1523

  

 variations. ResNet 
50/101/152 classifiers were considerably more accurate than the ResNet 34 variant. 

More recently, transfer learning has been applied to truck classification tasks, using the 
pre-trained ResNet_152 network (Nezafat et al., 2018). The network was used as a 
feature extractor and the following 3 supervised classifiers were compared: K-nearest 
neighbourhood (KNN), a Support Vector Machine (SVM), and a Multilayer Perceptron 
(MLP).The network was trained on 1500 images of trucks. The two body types were: an 
intermodal container truck and a closed body truck shown in Figure 1. The images used 
were taken from a single camera point of view and had no other cars obstructing the 
captured trucks. Defining the accuracy as the number of correctly predicted images for the 
test data (images that were not used in the training of the model)4

 

,the MLP model 
achieved an accuracy of 96.5%, with the SVM model coming second with an accuracy of 
88% and the KNN model achieving an accuracy of 84,7%. 

 
Figure 1: Sample dataset for truck classification (Nezafat, et al., 2018) 

2. OBJECTIVES 
 
The goal of this work was to develop a proof of concept truck classifier for South Africa, 
based on South African data. The specific objectives were as follows: 
 
1) Develop a truck classifier to distinguish between a fuel tanker and container trucks on 

South African roads. 
 
2) Assess the performance of the classifier against the following metrics: 

• Amount of training data. This will assess the effect of the size of the training 
dataset on classification accuracy and the inherent biases this might introduce 
due to a smaller diverse set of images. 

• The effects of image resolution. This is a practical consideration which will 
highlight the hardware requirements for traffic monitoring cameras.  

                                            
3 These numbers relate to the number of layers in the network. The higher the number after “ResNet”, the higher the 
number of layers the network has. 
4 Test and training data images are different from each other to prevent learned biases from affecting the predictions. 



 
 

• The effects of occlusion and background noise. This will assess the robustness 
of the system to practical challenges around multi-lane traffic and the 
positioning of the cameras to minimise occlusion. 

 
3. METHODOLOGY 
 
Freeway CCTV video footage was generously provided by SANRAL in a compressed 
video format. The CCTV footage obtained was for a section of the N3 between 
Pietermaritzburg and Durban. The video has a resolution of 800×600 pixels and a frame 
rate of two frames per second. Processing of the data and development of the classifier 
was carried out in MATLAB, making use of the Deep Learning and Image Processing 
toolboxes (Mathworks, 2018).  
 
The transfer learning approach in this work used the ResNet50 model that is fine-tuned 
and used as a classifier and not as a feature extractor (to feed to a supervised classifier 
like an SVM). The ResNet50 network was chosen as the base model because of the 
improvements in accuracy compared with other deep CNN’s. The model has more layers 
compared to the ResNet34 network and less layers than the other ResNet networks. Also, 
work done by Nezafet (2018) has shown that a ResNet model could be used successfully 
on a relatively small dataset. 
 
3.1 Pre Processing 
 
Raw image data usually require pre-processing to yield optimal performance (Raschka & 
Mirjalili, 2017). Hence, pre-processing was carried out on the video data before 
processing. Convolutional Neural Networks such as ResNet-50 typically require input 
images with a 1:1 aspect ratio and ResNet-50 requires input images of resolution 224×224 
pixels. Images were cropped to the correct aspect ratio, then if images were smaller or 
larger in resolution than 224×224, they were scaled accordingly. 
 
For supervised machine learning, training and validation images must be labelled, typically 
through a manual process. This is the most essential part of supervised learning and 
special care needs to be taken when the images are labelled to avoid mislabelling. In this 
work, the images were sorted into folders according to the classes after the pre-processing 
procedure. The data was then sorted into training, testing and validation sets. “Data 
hygiene” was emphasised so that the testing data set was only used for testing the 
classifier and not the training process as well. A breakdown of the image datasets is 
shown in Table 2. 
 

Table 2: Training network data split 

Dataset Percentage Number of images 
Training 60% 177 
Validation 20% 29 
Testing 20% 29 
 Total 294 

 
The pre-trained network was added to the workspace. Once the network was loaded, the 
size of the first input layer was retrieved in order to further condition the images from the 
datasets. The first input layer of the pre-trained ResNet50 network has a dimension of 
224×224×3. The images were scaled to this resolution. 



 
 

3.2 Replacing network layers 

The next step was to find the layers of the network which will be replaced in the transfer 
learning task. The final three layers are: 
 
• A “fully-connected” layer (in which every neuron in one layer is connected to every 

neuron in the next layer). 
• A “softmax” layer (a type of “loss” layer, through which numerical inputs are passed 

through a suitable loss function to create a set of probabilities which sum to 1). 
• A classification (or output) layer, which contains the resultant classification results. 
 
These layers allow the network to give predictions according to the number of classes 
provided. The base model has a fully connected layer with a dimension of 1×1×1000 
because it was trained to classify 1000 different classes. In this case, the model needs to 
classify 2 classes.  
 
Table 3 shows the last layers of the ResNet50 pre-trained network. Namely, the fully 
connected, softmax and classification layers. As described above, the final 3 layers are 
related to the number of classes to be classified. The modified model will give predictions 
from 2 classes. Hence, layer 175 will be replaced by a fully connected layer that has a 
dimension of 1×1×2 followed by the softmax layer with the same dimension.  
 

Table 3: Base ResNet50 network final layers 
Layer number Layer name Layer type Dimension5 
175 ‘fc1000’ Fully connected  1×1×1000 
176 ‘fc1000_softmax’ Softmax 1×1×1000 
177 ‘ClassificationLayer_fc1000’ Classification 

 
 

 
3.3 Training Options 
 
The training options are where the “hyper-parameters” are set. Depending on the 
optimisation algorithm used – i.e. stochastic gradient descent (SGD), adaptive moment 
estimation (ADAM) etc. – the training options vary. For this work, SGD6

 

 was used, which 
requires the following options to be set (amongst others): 

• How the learning rate changes 
• The maximum number of iterations 
• The minibatch size 
• The validation frequency 
 
The training options used are summarised in Table 4. 
 

Table 4: ResNet50 training options 
Minibatch size 10 
Number of epochs 6 
Learning rate 0,0003 
Validation frequency 19 

 
                                            
5 These dimensions relate to the size of each layer represented by a 3-dimensional matrix.  
6 ADAM tends to generalise more than SGD, which would introduce bias into the model that will affect training and 
testing accuracy (Wilson, et al., 2017) 



 
 

4. RESULTS AND DISCUSSION 

4.1 Results 
 
After running the training process, the validation and testing accuracy were reported as 
96.55% and 98.86% respectively. The accuracy and “loss rate” are useful performance 
metrics for the classifier. The accuracy represents the percentage of correct predictions in 
an iteration (or epoch) as the model changes. The cost/loss function (called loss rate) 
represents the error of the model. The aim is to minimise the loss function and maximise 
the accuracy of the model through the training iterations. 
 
Figure 2 shows the accuracy and loss rates for both training and validation of the classifier 
during the training process. It is clear how the model converges to a stable solution after 4 
epochs for the training process. The loss and accuracy values for the validation process 
also reach a solution at the same number of epochs with oscilating values. The training 
process could be stopped after 4 epochs as a form of an early stopping criteria if the 
training loss and accuracies are used. This is because the training loss and accuracy are 
observed to maintanining the same levels of accuracy. This would allow the training to be 
stopped earlier and allow a faster optimisation process for the training model. In this case 
the process was run for 6 epochs. The training process ran for 9 minutes and 38 seconds. 
 

 

 
Figure 2: Training process of network, (a) testing dataset and (b) validation dataset 

 
Figure 3 shows selected classified images resulting from the testing, and for each the 
classifier certainty is also shown. These images were solely from the testing dataset, and 
so were not “seen” during the training process, thus maintaining data hygiene. All the 
images were classified correctly. One result however is borderline, the tautliner on the 
bottom right, which was correctly classified but with an accuracy of 50.2%. This means 
that the algorithm gave a 49.8% probability of the image being a tanker truck. This may be 
due to the resolution of this image, as it had a low initial resolution, which was scaled up 
for training. Additionally, there is evidence of some occlusion from a car in front of the 
truck, which may also have influenced the result. 
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Figure 3: 16 image classifications from the retrained ResNet-50 classifier 

 
Overall, an accuracy of 98.86% was produced from the test dataset. This is a very high 
accuracy, though this is only a very small dataset. Though the result is promising as a 
proof of concept. The testing accuracy of 98.86% compares well previous work. Previous 
work on truck classification achieved a 96.5% accuracy rate (Nezafat et al., 2018). The 
higher accuracy achieved here could be attributed to the lower number of images in the 
dataset. Having a small sample size means that there are less images that test the 
model’s limitations. Another factor could be the specific classes of truck being classified. 
The classes in this paper have distinct appearances compared to the trucks that were 
studied in the work of Nezafat et al. The model shows that for the given camera angle and 
training data, it can classify the trucks reasonably accurately from the small training data. 
 
Figure 4 shows an example of a misclassified image. The first image was misclassified as 
a tanker. This can possibly be attributed to its relatively low resolution (100x100 compared 
to 271 x 271 for the image on the right) or to how the cropped image has excluded parts of 
the rear trailer.  

 

 
Figure 4: Classified images with misclassification 

This suggests a potential sensitivity to image resolution, where the misclassified image 
has a relatively low resolution. There is potentially also a sensitivity to the extent of the full 
truck visible in the training and/or test images; in the misclassified image the vehicle is 
partially cropped due to the fixed aspect ratio of the bounding box These variations and 
sensitivities should be explore in future work, so as to identify optimal camera positioning 
and resolution to ensure that the furthest vehicles in the field of view are suitably classified. 
 



 
 

These variations in viewpoint, resolution, degree of crop etc will be unavoidable to an 
extent in any implementation of such a system. However in the current proof-of-concept 
experiments the system performed reasonably well against these variations, and so it 
seems possible that these challenges can be addressed. The optimal balance between 
performance and hardware requirements may also need to be sought. 

5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

1) The modified ResNet50 network, retrained on CCTV image data from SANRAL, 
demonstrated an accuracy of 98.86%. This is a promising result for a proof of 
concept of a general camera-based truck classification system for South Africa. 

2) The work demonstrates the advantages of transfer learning when training data is 
limited. In this case a relatively small dataset of 294 images was used to train a two-
class truck classifier using a pre-trained ResNet50 network. 
a) Effects of image resolution were noteworthy. It is better to downscale an image 

to the input size of the network as compared to upscaling it. Upscaling results in 
reduced effective resolution, which negatively impacts the classification 
accuracy. This means that existing sources that could provide input data that 
allows the images to be downscaled is preferred (i.e. high resolution sources). 
Low resolution video sources that require upscaling of images, especially after 
cropping, is not preferable. This would need to be taken into account when 
specifying and locating the cameras and associated hardware in practice. 

b) Occlusion and background noise had a relatively small effect on the 
performance of the classification. This could be because the underlying pre-
trained ResNet-50 network has already been trained on a wide variety of 
scenarios, including those with occlusion. The means that the types of training 
images required in the dataset could be increased by not discarding occluded 
images. It also expands the options for locating cameras in practice. 

 
5.2 Recommendations 
 
The performance of the network on small datasets needs to be further investigated. The 
network performs well on this small set but the robustness of it can be improved. More 
training data would be beneficial, but an investigation into precisely how much training 
data is required would be valuable. The next step is to train the classifier on additional 
truck classes, such as flatbeds, car-carrier, side-tippers etc. Additional training data may 
be required, potentially from different road sections. 
 
The effect of camera position and orientation relative to the traffic requires further 
investigation. It would be better if a classifier were trained on a variety of views, such that a 
single classifier could be used by all traffic cameras regardless of location and orientation. 
Although this opposes the statement made prior in the conclusion, if a classifier that can 
be used at any given angle and orientation has excellent performance, this would remove 
the need for strategic placement of the camera and thus means that existing infrastructure 
that meets the resolution requirement could be used. The other option of requiring a 
specification orientation and placement would yield good results with the given limitations 
and costs that are attributed to attaining such infrastructure. A study on these could yield 
interesting results in terms of the validity of a given infrastructure and associated costs that 
are incurred in modifying it. 



 
 

Further work on making the identifications faster could be considered. Detectors such as 
the Region Convolutional Neural Networks (R-CNN) and the family of fast and faster  
R-CNN could be looked at for their applicability. Traditional CNNs have a problem when it 
comes to the spatial location of the object of interest in a given frame, hence why the data 
needed to be cropped so that only the object of interest in the frame. R-CNN’s address this 
problem by allowing the algorithm to automatically create bounding boxes around objects 
of interest, avoiding the cropping step. The means that the amount of work need to 
prepare the data can be reduced concurrently with the time and financial costs associated 
with this process as it is a manual intensive process for supervised learning algorithms. 
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