Supplementary Information

Table S1. Sociodemographic composition of questionnaire respondents ($\mathrm{n}=1561$).

	No.	\%
Gender:		
Male	309	19.8
Female	1249	80.0
Prefer not to answer	3	0.2
Age:		
18-24	154	9.9
25-34	278	17.8
35-44	281	18.0
45-54	305	19.5
55-64	308	19.7
65+	235	15.1
Education:		
Less than high school degree	8	0.5
High school graduate or GED	492	31.5
Some college/associate or technical degree	497	31.8
Bachelor's degree	366	23.5
Graduate or professional degree	198	12.7
Ethnicity:		
Asian American	28	1.8
Black or African American	138	8.8
Native American	9	0.6
Hispanic or Latino/a	85	5.5
Native Hawaiian or Pacific Islander	2	0.1
White	1206	77.3

Mixed	73	4.7
Other	20	1.3

Table S2. Respondents' prior awareness of invasion risks ($\mathrm{n}=1561$).

	No.	\%
Before taking this survey, which of the following ecological risks associated with non-native species had you		
considered?		
Out-compete native wildlife for resources	879	56.3
Spread diseases to native wildlife	1051	67.3
Pollute waterways	863	55.3
Eat native wildlife or their eggs	927	59.4
Before taking this survey, which of the following economic risks associated with non-native species had you		
considered?		
Property damage	847	54.3
Crop and livestock damage	1077	69.0
Negatively affect tourism	643	41.2
Infrastructure damage	792	50.7
Harm to recreational and commercial fisheries	880	56.4
Before taking this survey, which of the following human health and well-being risks associated with non-native		
species had you considered?		
Direct injury	1181	75.7
Spread diseases and parasites	1248	80.0
Harm or poison pets	1124	72.0
Indirect injury	460	29.5

Table S3. Respondents' affinity for case study animals ($\mathrm{n}=1561$).

Statement/Species	N	Median	Percent of respondents				
			Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree
This animal looks threatening to me							
Black-tailed prairie dog	523	$2^{\text {a }}$	27.7	40.9	18.7	9.2	3.4
Gambian pouched rat	517	4	8.7	17.4	16.3	35.4	22.2
Nutria	521	3	12.3	27.6	20.9	26.9	12.3
Chestnut-fronted macaw	521	2	39.9	44.7	10.2	3.8	1.3
Egyptian goose	517	2	24.0	38.7	21.1	13.2	3.1
Red-whiskered bulbul	523	2	36.5	47.4	10.9	2.9	2.3
Cane toad	521	3	11.9	24.4	22.5	24.2	17.1
Common Caiman	518	4	3.3	5.0	8.9	38.6	44.2
Nile monitor	522	4	6.1	14.0	15.7	39.9	24.3
Red-bellied pacu	510	3	15.5	32.6	28.2	16.9	6.9
Asian swamp eel	526	4	3.4	9.1	13.3	39.5	34.6
Vermiculated sailfin catfish	525	3	12.2	36.6	25.9	18.7	6.7
I would enjoy seeing this animal in the wild in Florida							
Black-tailed prairie dog	523	3	8.2	19.7	31.2	32.3	8.6

Gambian pouched rat	517	2	48.2	30.2	12.6	7.0	2.1
Nutria	521	2	22.8	30.9	24.4	16.1	5.8
Chestnut-fronted macaw	521	4	3.3	7.1	19.6	44.7	25.3
Egyptian goose	517	3	7.7	16.8	32.9	31.3	11.2
Red-whiskered bulbul	523	4	1.5	6.9	28.1	46.1	17.4
Cane toad	521	2	30.1	32.8	24.0	8.3	4.8
Common Caiman	518	2	33.8	32.4	16.6	12.4	4.8
Nile monitor	522	2	32.0	33.0	18.6	12.6	3.8
Asian swamp eel	526	1	51.1	30.8	12.0	4.9	1.1
Red-bellied pacu	510	3	15.5	27.3	37.8	15.5	3.9
Vermiculated sailfin catfish	525	3	14.7	30.5	35.2	16.4	3.2
I would like to have this animal in my neighborhood							
Black-tailed prairie dog	523	2	23.1	38.1	22.8	11.3	4.8
Gambian pouched rat	517	1	62.3	25.9	8.5	1.9	1.4
Nutria	521	2	39.0	36.9	17.3	4.4	2.5
Chestnut-fronted macaw	521	3	6.7	19.6	29.8	29.4	14.6
Egyptian goose	517	3	18.0	29.2	31.7	14.1	7.0
Red-whiskered bulbul	523	3	4.8	14.3	42.5	27.2	11.3
Cane toad	521	2	44.3	29.8	19.2	3.1	3.7
Common Caiman	518	1	65.6	25.9	5.2	1.2	2.1

Nile monitor	522	1	52.5	30.8	10.7	4.0	1.9
Asian swamp eel	526	1	65.6	27.0	5.3	1.0	1.1
Red-bellied pacu	510	2	25.5	39.6	27.3	5.1	2.6
Vermiculated sailfin catfish	525	2	27.4	38.5	27.8	4.2	2.1
I would be interested in having this animal as a pet							
Black-tailed prairie dog	523	1	52.4	30.4	8.4	5.6	3.3
Gambian pouched rat	517	1	74.5	17.2	3.9	2.9	1.6
Nutria	521	1	60.1	28.8	6.9	2.7	1.5
Chestnut-fronted macaw	521	2	32.6	26.5	17.1	15.0	8.8
Egyptian goose	517	1	50.7	35.4	8.3	2.5	3.1
Red-whiskered bulbul	523	2	46.7	34.2	12.4	4.0	2.7
Cane toad	521	1	66.0	23.6	6.3	2.3	1.7
Common Caiman	518	1	82.2	14.1	1.2	1.5	1.0
Nile monitor	522	1	65.1	23.6	5.9	3.5	1.9
Asian swamp eel	526	1	77.0	18.1	3.4	1.0	0.6
Red-bellied pacu	510	2	49.4	36.5	9.2	2.6	2.4
Vermiculated sailfin catfish	525	1	58.9	30.1	6.5	3.2	1.3
This animal looks appealing to me							
Black-tailed prairie dog	523	3	14.7	16.6	31.9	27.9	8.8
Gambian pouched rat	517	1	59.6	21.9	11.0	5.4	2.1

Nutria	521	2	34.6	29.2	23.2	9.4	3.7
Chestnut-fronted macaw	521	4	4.8	6.1	20.2	47.6	21.3
Egyptian goose	517	3	14.7	19.7	33.7	24.4	7.5
Red-whiskered bulbul	523	4	6.12	9.0	26.6	45.3	13.0
Cane toad	521	2	48.0	26.9	17.5	4.4	3.3
Common Caiman	518	1	59.3	22.0	12.7	4.1	1.9
Nile monitor	522	2	49.2	25.5	14.6	7.5	3.3
Asian swamp eel	526	1	66.0	24.0	7.6	1.3	1.1
Red-bellied pacu	510	2	27.3	33.5	25.3	9.8	4.1
Vermiculated sailfin catfish	525	2	32.4	34.3	24.2	6.3	2.9

[^0]Table S4. Distribution of responses to the question "How concerned are you about the different risks posed by the [case study animal] in Florida?" ($\mathrm{n}=1561$).

Invasion risk/Species	N	Median	Percent of respondents				
			Very unconcerned	Unconcerned	Neutral	Concerned	Very concerned
Ecological risks							
Black-tailed prairie dog	523	$4^{\text {a }}$	4.4	7.7	14.0	42.8	31.2
Gambian pouched rat	517	4	4.1	3.9	7.2	41.2	43.7
Nutria	521	4	6.5	4.4	11.1	42.0	35.9
Chestnut-fronted macaw	521	4	7.1	9.4	16.9	40.9	25.7
Egyptian goose	517	4	5.4	6.6	13.9	38.5	35.6
Red-whiskered bulbul	523	4	5.2	6.9	15.5	44.2	28.3
Cane toad	521	4	6.9	3.8	6.7	34.6	48.0
Common Caiman	518	4	5.0	3.3	8.7	38.6	44.4
Nile monitor	522	4	6.5	5.8	10.2	37.4	40.2
Asian swamp eel	526	4	4.0	2.3	7.2	36.7	49.8
Red-bellied pacu	510	4	5.9	7.7	15.7	40.0	30.8
Vermiculated sailfin catfish	525	4	5.1	4.0	8.6	42.9	39.4
Economic risks							
Black-tailed prairie dog	523	4	5.5	7.7	17.2	40.9	28.7
Gambian pouched rat	517	4	5.6	7.4	11.2	36.0	39.9

Nutria	521	4	5.6	7.5	15.0	40.7	31.3
Chestnut-fronted macaw	521	4	6.9	10.4	18.8	39.0	25.0
Egyptian goose	517	4	6.4	7.9	16.3	38.1	31.3
Red-whiskered bulbul	523	4	5.7	8.8	17.6	41.5	26.4
Cane toad	521	4	6.5	3.8	10.2	35.5	44.0
Common Caiman	518	4	5.6	4.6	11.2	39.6	39.0
Nile monitor	522	4	6.5	5.8	11.3	39.5	37.0
Asian swamp eel	526	4	5.3	6.8	13.7	35.9	38.2
Red-bellied pacu	510	4	6.3	8.6	14.7	40.2	30.2
Vermiculated sailfin catfish	525	4	5.3	9.3	14.3	42.3	28.8
Human health and well-being risks							
Black-tailed prairie dog	523	5	4.8	4.2	9.4	30.0	51.6
Gambian pouched rat	517	5	2.9	2.9	5.4	32.1	56.7
Nutria	521	4	6.5	5.2	12.5	34.9	40.9
Chestnut-fronted macaw	521	4	7.9	11.9	16.1	33.2	30.9
Egyptian goose	517	4	6.6	5.0	12.2	31.1	45.1
Red-whiskered bulbul	523	4	5.4	6.7	15.1	34.6	38.2
Cane toad	521	5	5.2	1.3	6.7	29.4	57.4
Common Caiman	518	5	5.0	3.5	6.4	29.9	55.2
Nile monitor	522	4	6.1	3.5	10.0	31.0	49.4

Asian swamp eel	526	5	2.9	1.9	8.4	31.8
Red-bellied pacu	510	5	5.9	7.3	6.7	26.9
Vermiculated sailfin catfish	525	4	5.7	8.4	18.1	53.3

${ }^{a}$ Very unconcerned $=1$; unconcerned $=2$; neutral $=3$; concerned $=4$; very concerned $=5$.

Table S5. Respondents' risk perceptions related to non-native case study animals ($\mathrm{n}=1561$).

Statement/Species	N	Median	Percent of respondents				
			Strongly disagree	Disagree	Neither agree nor disagree	Agree	Strongly agree
Level of agreement with the statement: "This animal is a serious risk to the state of Florida"							
Black-tailed prairie dog	523	3	6.3	15.7	29.6	35.2	13.2
Gambian pouched rat	517	4	2.9	10.1	19.0	39.9	28.2
Nutria	521	4	5.6	11.7	24.0	36.7	22.1
Chestnut-fronted macaw	521	3	12.5	20.9	28.4	30.9	7.3
Egyptian goose	517	4	4.8	12.4	24.2	40.0	18.6
Red-whiskered bulbul	523	3	7.5	18.0	28.1	34.2	12.2
Cane toad	521	4	2.9	6.7	13.2	42.6	34.6
Common Caiman	518	4	3.7	9.3	19.7	37.6	29.7
Nile monitor	522	4	4.0	7.7	20.5	41.4	26.4
Asian swamp eel	526	4	1.5	4.8	20.2	43.4	30.2

Red-bellied pacu	510	4	4.5	11.2	22.8	37.8	23.7
Vermiculated sailfin catfish	525	4	2.7	9.1	23.6	42.3	22.3
Level of agreement with the statement "This animal is a risk to my family or household"							
Black-tailed prairie dog	523	3	14.2	25.2	28.1	22.6	9.9
Gambian pouched rat	517	3	8.7	22.6	21.7	28.8	18.2
Nutria	521	3	12.3	22.8	30.1	21.9	12.9
Chestnut-fronted macaw	521	2	19.0	32.4	26.9	15.7	6.0
Egyptian goose	517	3	8.5	25.3	28.4	26.3	11.4
Red-whiskered bulbul	523	3	15.5	29.6	29.3	18.0	7.7
Cane toad	521	4	6.1	11.5	21.3	35.5	25.5
Common Caiman	518	3	10.8	20.1	23.8	23.9	21.4
Nile monitor	522	3	8.8	18.6	26.1	30.5	16.1
Asian swamp eel	526	3	7.6	16.2	26.4	32.3	17.5
Red-bellied pacu	510	3	11.8	23.5	27.5	22.2	15.1
Vermiculated sailfin catfish	525	3	12.8	27.6	33.0	18.3	8.4

${ }^{a}$ Strongly disagree $=1$; disagree $=2$; neither agree nor disagree $=3$; agree $=4$; strongly agree $=5$.

Table S6. Respondents' support for invasive species management actions for non-native case study animals (n=1561).

Question/Species	N	Median	Percent of respondents				
			Strongly oppose	Oppose	Neutral	Supportive	Strongly supportive
How supportive would you be of efforts to prevent future introductions of [case study animal]?							
Black-tailed prairie dog	523	$4^{\text {a }}$	3.3	5.5	22.8	40.7	27.7
Red-bellied pacu	510	4	3.5	3.5	17.8	35.9	39.2
How supportive would you be of attempts to euthanize (eradicate) the [case study animal]?							
Gambian pouched rat	517	4	6.0	8.7	17.0	30.0	38.3
Nutria	521	4	9.4	13.1	24.2	30.3	23.0
Chestnut-fronted macaw	521	3	19.4	23.6	25.9	22.8	8.3
Red-whiskered bulbul	523	3	13.2	19.3	31.2	24.5	11.9
Common Caiman	518	4	6.2	12.4	24.5	28.0	29.0
Asian swamp eel	526	4	4.0	9.7	15.6	36.5	34.2
How supportive would you be of a control (containment) program for the [case study animal]?							
Egyptian goose	517	4	4.6	9.9	23.0	34.0	28.4
Cane toad	521	4	3.7	5.6	15.2	31.1	44.5
Nile monitor	522	4	4.0	7.3	18.0	36.0	34.7
Vermiculated sailfin catfish	525	4	3.2	5.7	23.2	37.9	29.9

${ }^{a}$ Strongly oppose $=1$; Oppose $=2$; Neutral=3; Supportive $=4$; Strongly supportive=5.

Table S7. Factor analysis and Cronbach's alpha for composite variables.

	Prevention model			Eradication model			Containment model		
	Factor loading	Eigenvalue	Cronbach's alpha	Factor loading	Eigen- value	Cronbach's alpha	Factor loading	Eigen- value	Cronbach's alpha
Affinity for case study animals:		2.477	0.818		3.256	0.900		2.767	0.854
This animal looks threatening to	-0.466			-0.713			-0.562		
me									
I would enjoy seeing this animal in	0.803			0.866			0.834		
the wild in Florida									
I would like to have this animal in	0.799			0.900			0.839		
my neighborhood									
I would be interested in having this	0.587			0.620			0.590		
animal as a pet									
This animal looks appealing to me	0.795			0.897			0.839		
Perception of risks associated with		2.811	0.856		2.900	0.864		2.855	0.853
case study animals:									
Ecological risks	0.858			0.839			0.840		
Economic risks	0.872			0.860			0.901		
Human health and well-being risks	0.728			0.827			0.840		

This animal is a serious risk to	0.682			0.677			0.629		
Florida									
This animal is a risk to my family	0.566			0.556			0.487		
or household									
Awareness of personal consequences		2.543	0.843		2.548	0.842		2.448	0.830
of species invasions:									
Threats to your livelihood	0.731			0.714			0.716		
Eliminating native species you care	0.634			0.629			0.597		
about									
Harming your family, your pets, or	0.778			0.772			0.773		
yourself									
Damaging your property	0.775			0.799			0.800		
Increasing your taxes to fund	0.633			0.638			0.583		
management actions									
Willingness to assist in ISM:		2.061	0.823		1.899	0.797		1.864	0.792
Reporting sightings of non-native	0.719			0.653			0.666		
species									
Preventing the release of any pets I	0.661			0.637			0.625		
obtain									

Avoiding purchases that can	0.719	0.714	0.696
transport non-native species to			0.739
Florida	0.746		
Staying informed about non-native	0.769		0.0

Table S8. Respondents' awareness of personal consequences of species invasions (AC) related to species invasions (n=1561).

	Median	Percent of respondents			
		Not a threat	A small threat	A moderate threat	A large threat
How much of a threat do you think non-native species are to you in terms of					
Threats to your livelihood	$2^{\text {a }}$	26.5	28.6	29.8	15.2
Eliminating native species you care about	3	9.0	21.6	35.2	34.2
Harming your family, your pets, or yourself	3	9.4	22.8	33.3	34.6
Damaging your property	2	17.6	35.6	29.4	17.4
Increasing your taxes to fund management actions	3	13.1	26.0	34.9	25.9

[^1]Table S9. Respondents' willingness to assist in ISM ($\mathrm{n}=1561$).

	Median	Percent of respondents			
		Not at all likely	Somewhat likely	Moderately likely	Very likely
How likely are you to commit to the following actions that aid in preventing the release and controlling the spread of non-native species in Florida?					
Reporting sightings of non-native species	$3^{\text {a }}$	10.3	22.6	26.1	41.0
Preventing the releases of any pets I obtain	4	8.5	8.5	12.9	70.2
Avoiding purchases that can transport non-native species to Florida	4	5.9	10.6	16.3	67.3
Staying informed about non-native species	4	4.8	16.1	28.2	50.9

[^2]Table S10. Distribution of composite variables for the prevention model ($\mathrm{n}=858$).

	Median	Mean	Std Dev	Min	Max
Prior awareness of invasion risks					
Naïve score ${ }^{\text {a }}$	8.0	7.65	3.70	0.0	13.0
Weighted score ${ }^{\text {b }}$	4.4	4.26	2.07	0.0	7.2
Affinity for case study animals					
Naïve score	-2.0	-1.86	4.13	-10	10.0
Weighted score	-1.5	-1.41	2.94	-6.9	6.9
Perception of risks associated with case study animals:					
Naïve score	4.0	3.28	4.52	-10	10.0
Weighted score	3.1	2.60	3.38	-7.4	7.4
Awareness of personal consequences of species invasions (AC):					
Naïve score	13.0	13.41	3.86	5.0	20.0
Weighted score	9.4	9.50	2.75	3.6	14.2
Willingness to assist in ISM:					
Naïve score	14.0	13.08	3.06	4.0	16.0
Weighted score	10.0	9.36	2.19	2.9	11.5

[^3]Table S11. Distribution of composite variables for the eradication model ($\mathrm{n}=1,481$).

	Median	Mean	Std Dev	Min	Max
Prior awareness of invasion risks					
Naïve score ${ }^{\text {a }}$	8.0	7.66	3.75	0.0	13.0
Weighted score ${ }^{\text {b }}$	4.6	4.36	2.13	0.0	7.4
Affinity for case study animals					
Naïve score	-4.0	-3.23	5.35	-10.0	10.0
Weighted score	-3.2	-2.50	4.37	-8.0	8.0
Perception of risks associated with case study animals:					
Naïve score	4.0	3.56	4.56	-10.0	10.0
Weighted score	3.2	2.89	3.46	-7.5	7.5
Awareness of personal consequences of species invasions (AC):					
Naïve score	14.0	13.37	3.84	5.0	20.0
Weighted score	9.6	9.47	2.74	3.6	14.2
Willingness to assist in ISM:					
Naïve score	14.0	13.15	2.96	4.0	16.0
Weighted score	9.6	9.04	2.03	2.8	11.0

[^4]Table S12. Distribution of composite variables for the containment model ($n=1,327$).

	Median	Mean	Std Dev	Min	Max
Prior awareness of invasion risks					
Naïve score ${ }^{\text {a }}$	8.0	7.66	3.73	0.0	13.0
Weighted score ${ }^{\text {b }}$	4.6	4.36	2.12	0.0	7.3
Affinity for case study animals					
Naïve score	-4.0	-3.47	4.42	-10	10.0
Weighted score	-2.9	-2.58	3.32	-7.3	7.3
Perception of risks associated with case study animals:					
Naïve score	5.0	3.96	4.46	-10	10.0
Weighted score	3.7	3.15	3.39	-7.4	7.4
Awareness of personal consequences of species invasions (AC):					
Naïve score	14.0	13.49	3.82	5.0	20.0
Weighted score	9.5	9.32	2.68	3.5	13.9
Willingness to assist in ISM:					
Naïve score	14.0	13.12	3.00	4.0	16.0
Weighted score	9.5	8.94	2.04	2.7	10.9

[^5]Table S13 Structural equation model for preventing the introduction of case study animals

Dependent Variable	Independent Variable	Coeff.	S.E.	z	p
Support for prevention	Affinity for case study	-0.169	0.027	-6.370	<0.001
	animals (species charisma)				
	Prior awareness of invasion	0.193	0.030	6.437	<0.001
	risks				
	Perception of risks	0.422	0.031	13.758	<0.001
	associated with case study				
	animals				
	Awareness of personal	0.027	0.031	0.873	0.383
	consequences of species				
	invasions (AC)				
	Willingness to assist in ISM	0.140	0.031	4.580	<0.001
Affinity for case study	Case study animals: Red-				
species (species charisma)	bellied pacu	-0.462	0.052	-8.862	<0.001
	Prior awareness of invasion	-0.225	0.034	-6.611	<0.001
	risks				
Perception of risks	Case study animals: Red-				
associated with case study	bellied pacu	-0.079	0.048	-1.657	0.098
animals					
	Affinity for case study	-0.269	0.029	-9.408	<0.001
	animals (species charisma)				
	Prior awareness of invasion	0.235	0.033	7.243	<0.001
	risks				
Awareness of personal	Prior awareness of invasion	0.261	0.033	7.984	<0.001
consequences of species	risks				
invasions (AC)					

Willingness to assist in	Prior awareness of invasion	0.202	0.030	6.782	<0.001
ISM	risks				
	Awareness of personal	0.404	0.027	14.711	<0.001
	consequences of species				
	invasions (AC)				
AIC	65.800				
BIC	214.007				
Fisher's C	5.8				
P	0.832				
DF	10				

Table S14 Structural equation model for eradicating case study animals

Dependent Variable	Independent Variable	Coeff.	S.E.	Z	p
Support for eradication	Case study animals: Asian				
	swamp eel	0.095	0.033	2.900	0.004
	Chestnut-fronted macaw	-0.103	0.038	-2.693	0.007
	Common caiman	-0.119	0.032	-3.757	<0.001
	Gambian pouched rat	0.116	0.033	3.533	<0.001
	Nutria	-0.044	0.030	-1.466	0.143
	Red-whiskered bulbul	$0.055^{\text {a }}$	-	-	-
	Affinity for case study	-0.403	0.025	-16.090	<0.001
	animals (species charisma)				
	Perception of risks associated	0.441	0.021	20.789	<0.001
	with case study animals				
	Awareness of personal	0.184	0.027	6.782	<0.001
	consequences of species				
	invasions (AC)				
	Willingness to assist in ISM	0.149	0.027	5.534	<0.001
Affinity for case study	Case study species: Asian				
animals (species charisma)	swamp eel	-0.662	0.023	-28.742	<0.001
	Chestnut-fronted macaw	0.992	0.024	41.665	<0.001
	Common caiman	-0.538	0.023	-23.238	<0.001
	Gambian pouched rat	-0.528	0.024	-22.082	<0.001
	Nutria	-0.129	0.024	-5.440	<0.001
	Red-whiskered bulbul	0.865	-	-	-
	Prior awareness of invasion	-0.117	0.016	-7.431	<0.001
	risks				

Perception of risks	Case study animals: Asian				
associated with case study	swamp eel	-0.025	0.029	-0.857	0.391
animals					
	Chestnut-fronted macaw	0.052	0.034	1.547	0.122
	Common caiman	-0.045	0.028	-1.599	0.110
	Gambian pouched rat	-0.030	0.029	-1.034	0.301
	Nutria	-0.087	0.027	-3.246	0.001
	Red-whiskered bulbul	0.135	-	-	-
	Affinity for case study	-0.422	0.021	-20.260	<0.001
	animals				
	Prior awareness of invasion	0.197	0.020	9.643	<0.001
	risks				
Awareness of personal	Prior awareness of invasion	0.276	0.017	16.334	<0.001
consequences of species	risks				
invasions (AC)					
Willingness to assist in	Prior awareness of invasion	0.214	0.015	13.974	<0.001
ISM	risks				
	Awareness of personal	0.380	0.016	24.384	<0.001
	consequences of species				
	invasions (AC)				
AIC	110.669				
BIC	364.664				
Fisher's C	26.669				
p	0.427				
DF	26				
${ }^{\text {a }}$ Because we used effects coding to enter species into the SEM, the coefficient for the red-whiskered bulbul is					

Table S15 Structural equation model for containment of case study animals

Dependent Variable	Independent Variable	Coeff.	S.E.	z	p
Support for containment	Affinity for case study animals (species charisma)	-0.228	0.020	-11.610	<0.001
	Prior awareness of invasion risks	0.202	0.025	8.082	<0.001
	Perception of risks associated	0.343	0.021	16.135	<0.001
	with case study animals				
	Awareness of personal	0.142	0.026	5.548	<0.001
	consequences of species invasions				
	(AC)				
	Willingness to assist in ISM	0.125	0.026	4.745	<0.001
Affinity for case study	Case study animals: Egyptian				
animals (species charisma)	goose	0.520	0.028	18.333	<0.001
	Nile monitor	-0.290	0.030	-9.794	<0.001
	Cane toad	-0.223	0.030	-7.447	<0.001
	Vermiculated sailfin catfish	$-0.007^{\text {a }}$	-	-	-
	Prior awareness of invasion risks	-0.193	0.023	-8.362	<0.001
Perception of risks	Case study species: Egyptian				
associated with case study	goose	0.008	0.030	0.268	0.789
animals					
	Nile monitor	-0.014	0.030	-0.467	0.640
	Cane toad	0.150	0.030	4.937	<0.001
	Vermiculated sailfin catfish	-0.144	-	-	-
	Affinity for case study animals	-0.213	0.023	-9.461	<0.001
	(species charisma)				
	Prior awareness of invasion risks	0.200	0.026	7.831	<0.001

Awareness of personal	Prior awareness of invasion risks	0.249	0.023	11.017	<0.001
consequences of species					
invasions (AC)					
Willingness to assist in	Prior awareness of invasion risks	0.219	0.020	10.842	<0.001
ISM					
	Awareness of personal consequences of species invasions (AC)	0.381	0.019	19.989	<0.001
AIC	80.006				
BIC	271.852				
Fisher's C	12.006				
p	0.957				
DF	22				

[^6]
[^0]: ${ }^{a}$ Strongly disagree $=1$; disagree $=2$; neither agree nor disagree $=3$; agree $=4$; strongly agree $=5$.

[^1]: ${ }^{\mathrm{a}}$ Not a threat $=1$; a small threat $=2$; a moderate threat $=3$; a large threat $=4$

[^2]: ${ }^{\text {a }}$ Not at all likely=1; somewhat likely=2; moderately likely=3; very likely=4

[^3]: ${ }^{\text {a }}$ The naïve score is calculated by summing individual items together to generate the score.
 ${ }^{\mathrm{b}}$ The weighted score takes factor loadings into account when generating the score. We used the weighted scores in our structural equation models.

[^4]: ${ }^{\text {a }}$ The naïve score is calculated by summing individual items together to generate the score.
 ${ }^{\mathrm{b}}$ The weighted score takes factor loadings into account when generating the score. We used the weighted scores in our structural equation models.

[^5]: ${ }^{\text {a }}$ The naïve score is calculated by summing individual items together to generate the score.
 ${ }^{\mathrm{b}}$ The weighted score takes factor loadings into account when generating the score. We used the weighted scores in our structural equation models.

[^6]: ${ }^{a}$ Because we used effects coding to enter species into the SEM, the coefficient for the vermiculated sailfin catfish is derived by summing the coefficients on the other case study species and multiplying this sum by -1 .

