
Volume 36 (2), pp. 111–139
http://orion.journals.ac.za

ORiON
ISSN 0259–191X (print)
ISSN 2224–0004 (online)

c©2020

Solving the buffer allocation problem using
simulation-based optimisation

JW Joubert∗ DJ Kotze†

Received: 3 August 2020; Revised: 26 October 2020; Accepted: 28 October 2020

Abstract
In production lines, buffers function as a means to decouple stations, which reduce the
effect that station failures and varying process times have on the complete line’s throughput.
However, adding larger buffers can be costly, for example, in the automotive industry where
it results in increased working capital. This manuscript addresses the buffer allocation
problem (BAP), seeking the smallest total buffer size while meeting a prescribed throughput
by employing a simulation-based optimisation approach. A Tabu Search algorithm searches
the solution space for the optimal buffer configuration while a discrete event simulation
model evaluates each configuration, accounting for the machine (un)reliability. Since the
multiple simulations add a sizeable computational burden, our approach introduces a novel
neighbourhood search mechanism, which borrows from the Theory of Constrains. Solving
test sets available in the literature suggest that this approach is 18 times faster than prior
Adaptive Tabu Search approaches for small problems, and more than five times faster for
medium-sized problems.

Key words: Buffer allocation problem, discrete event simulation, simulation-based optimisation, tabu

search, theory of constraints.

1 Introduction

Factors such as uneven processing time and station failure create instability in the produc- tion line,
which has a negative effect on throughput. These factors can cause other stations to become either
blocked or starved. Buffers are locations in which semi-completed parts, also called work-in-progress
(WIP), are stored within a production line to decouple segments of the line. If a station that has
a buffer for its exit material fails, all downstream stations can remain operational while there are
parts in their respective buffers. If the station cannot be repaired before the buffer empties, and
start supplying downstream, the production of the downstream station will stop. If there is a
buffer before the failed station, all upstream stations will be able to produce while there is space
in the buffer. The bigger the buffer, the longer the production line can run independently.

∗Corresponding author: Centre for Transport Development, Industrial & Systems Engineering,
University of Pretoria, South Africa, email: johan.joubert@up.ac.za

†Department of Industrial and Systems Engineering, BMW South Africa, Rosslyn, Pretoria, South
Africa, email: dirk.j.kotze12@gmail.com

http://dx.doi.org/10.5784/36-2-684

111

http://orion.journals.ac.za
johan.joubert@up.ac.za
dirk.j.kotze12@gmail.com
http://dx.doi.org/10.5784/36-2-684

112 JW Joubert & DJ Kotze

By including buffers, the required capital to realise and operate the production line is increased.
WIP is also increased, leading to higher running capital. Minimising capital investment, by
reducing the number of buffers while providing sufficient buffer to reduce the effect of equipment
instability on production availability, makes the optimal placement of buffers in the line a vital
problem to solve. The problem of allocating buffers (location and size) optimally is known as
the BAP. In this study the BAP is solved for a serial and non-serial heterogeneous process time,
unreliable production line.

The BAP is frequently solved using a two-step approach [11]. The evaluation step calculates the
throughput of a production line for a given buffer configuration. Various versions of evaluation have
been employed in the literature. Analytical methods have been used for the BAP. Exact analytical
methods are only applicable to small-sized problems. For larger systems, approximation methods
can be used. Methods employing algebra, calculus or probability theory are used to approximate
the throughput of the line. A method known as the decomposition method is widely used in BAP
as an evaluative method. The literature found on the BAP using the decomposition method is
limited to serial production lines. Alternatively, simulation is used to determine line throughput.
Simulation is the imitation of a system being studied which is performed on computers by creating
a model, or digital twin, of it. Various line topologies can be modelled, including tree structure
lines. Each station can have different random variables describing the processing times. Failure
of stations can also be included in the model. But the disadvantage of simulation is the time it
takes to evaluate a scenario. This can be reduced by creating a discrete event simulation (DES)
model specifically for the application that does not have the additional general tools available in
commercial simulation software.

Simulation on its own, as well as analytical methods, are not optimisation techniques per se. Hence,
the second generative step moves through the solution space and considers the various buffer
configurations to be evaluated [11]. The generative step aims to find a (near) optimum buffer
configuration in the shortest time possible. Methods employed include complete enumeration,
traditional search, heuristic search, and metaheuristics. Complete enumeration evaluates all possible
configurations and is only applicable to small problems. Traditional search methods and heuristics
test only a subset of the buffer configurations. The disadvantage is that they get stuck at a local
optimum. Metaheuristics add mechanisms to the way it moves through the solution space and
have the main advantage that they can escape local optimum.

Figure 1: Buffer allocation problem solution approach.

The methods start with an initial buffer configurationBBB. With the given buffer configura- tion, the
evaluative method can determine the throughput of the line, f(BBB). Because the initial configuration
might not be the optimal solution, the generative method generates new buffer configurations for
the evaluative method to test. This is repeated until a (near) optimal solution is found.

In this study, simulation-based optimisation (SBO) is used to solve the BAP. A DES model created
in Java is used as evaluative method. An adaptive tabu search with theory of constraints neighbour
generation is proposed to solve the BAP for both a serial and non-serial heterogeneous unreliable

Solving the BAP using SBO 113

production line. The performance of the algorithm is investigated for small-size as well as medium
and large-sized problems. Finally the scalability of the proposed solution is tested on a non-serial
large sized problem from industry.

The rest of the article is organised as follows. The assumptions of the model and the BAP is
described in the next section based on a comprehensive literature review on the BAP. The method
of using an evaluative and generative element iteratively to solve the BAP is studied. In §3 the
SBO approach is developed. A simulation program is created in a general programming language,
Java. This program is a newly designed blueprint using the library of the stochastic simulation
in Java (SSJ). The program simulates any size of a serial production line by just specifying the
number of machines, random parameters, replication length and simulation length as well as the
buffer vector. In §3.2 the generative method, two metaheuristics are compared for finding the
optimal buffer configuration for maximising throughput. The first method is based on the works
of Demir et al. [10]. The second method is a proposed improvement on the first to improve the
evaluation time. In §4 this artefact is tested on serial production lines. First, the validity of
the simulation model is checked. Then the two generative methods are compared across various
production line lengths and random parameters. The best, that is the method that achieves a
near-optimal solution within a reasonable amount of time, will be used with the simulation model
to solve the larger and more realistic BAP. Lastly, the proposed methodology is applied to a body
shop production line. The use of SBO in the BAP will help to increase our knowledge on its
effectiveness with solving the BAP for complex lines such as the body shop.

2 Literature review

The BAP deals with finding the optimal buffer configuration to incorporate in the produc- tion line
to achieve a specific objective [11]. Total buffer size N is allocated among the K − 1 intermediate
buffer locations in the production line with K machines (Figure 2).

Figure 2: A typical series of machines M1, . . . ,MK with finite buffers B1, . . . , BK−1 in a queuing

network.

Associated with each machine Mk, k ∈ KKK are several parameters. The first, tk, denotes the
processing time required at machine k. Secondly, fk denotes the time between failures of machine k

while rk denotes the repair time of machine k. We denote the line’s total buffer size as N =
K−1∑
k=1

Bk

where Bk denotes the number of buffer units at location k.

Due to the complexity of the BAP, numerous publications are available in the literature. For a
comprehensive study of the available literature on the BAP see the works of Demir et al. [11]. The
BAP can be expressed in three main forms depending on the objective function.

Objective 1 Maximise the throughput of the line for a given fixed number of buffer N [10, 19, 20].
The BAP formulation is then expressed as

max f(BBB)

subject to

K−1∑
i=1

Bi ≤ N

114 JW Joubert & DJ Kotze

where N is a predefined value.

Objective 2 A prescribed throughput, f?, must be achieved with the minimum total buffer size
[12, 15, 21]. The formulation then changes to

min
K−1∑
i=1

Bi

subject to

f(BBB) ≥ f?

where f? is a predefined value.

Objective 3 Minimise the average WIP inventory, Q(BBB), for the buffer configuration subject to
the total buffer size and prescribed throughput. The problem is then formulated as

min Q(BBB)

subject to

K−1∑
i=1

Bi ≤ N

f(BBB) ≥ f?

where both N and f? are predefined values.

Solving the BAP for objective 2 is the aim of this article. Production plant designers are faced
with the problem of achieving a balance between throughput and WIP in buffers.

The BAP solution approach is also classified based on line parameters. A production line where
the processing time of all stations are similar is called a homogeneous production line. Conversely,
if the process times are different, it is known as a heterogeneous line [25]. In some cases, literature
ignores the possibility that failures may occur, or that failures are negligible, in which case the
line is assumed to be reliable. However, when failures are explicitly addressed in the model, the
line is referred to as being unreliable [11]. BAP has been proven to be an NP-Hard combinatorial
optimisation problem [11]. A complex system such as a production line cannot be expressed by
a simple mathematical equation where the throughput of the line can be calculated for a given
buffer configuration. Due to the lack of this algebraic relation and the problem being NP-Hard,
a method with two elements are frequently used to solve the BAP. A generative and evaluative
method is executed in an iterative manner. The generative method generates various permutation
of buffer allocation from the solution space for the evaluative method to evaluate and determine
the throughput of the line.

2.1 Generative method

The simplest way to find the best buffer configuration is to generate all the possible buffer
permutations and test every single one of them. This is known as complete enumeration. Thus,
complete enumeration is only possible for very small problems.

Because it is not possible to generate all the possible buffer permutations, a subset of them can be
generated. The question is then how do we select this subset of permutations from the solution
space that needs to be tested and how is the best then found. Various search methods have been
used in literature. Traditional search methods have been applied to the BAP. Methods such

Solving the BAP using SBO 115

as gradient search algorithm, knowledge-based methods as well as degrading ceiling local search
heuristics have been used [14, 15, 20]. These methods start with an initial solution. They then
generate all possible permutations of the initial solution that can be reached in one step. A step can
be seen as increasing the buffer space limit with a specific value and decreasing another with the
same value. All the permutations are tested, and the buffer configuration that results in the highest
throughput is then considered as the best solution. This is repeated until no other improved buffer
configuration can be found. Although these methods are more efficient than complete enumeration,
they cannot escape local optima.

Unlike the previous search method, metaheuristics are allowed to select a permutation that results
in a worse throughput than the current best. This allows the metaheuristics to escape a local
optimum and move to other areas in the solution space in the hope to find a better local optimum
or, ideally, the global optimum. Metaheuristics have been widely applied in the buffer allocation
problem. Typical solution methods in this area are genetic algorithm, tabu search, simulated
annealing and ant-colony.

Genetic algorithm is based on the theory of evolution that favour reproduction of individuals with
specific traits. In Dolgui [13] two different genotype generation mechanisms are compared for the
genetic algorithm. The first increases or decreases an individual buffer by one, the second approach
continues increasing or decreasing the gene as long as an improvement in the goal is achieved. Cruz
[9] employed a special version multi-objective genetic algorithm to solve the BAP for objective two.

Demir et al. [10] used an adaptive Tabu Search (ATS) to solve the BAP for an unreliable,
unbalanced line. The objective is to maximise the throughput of the production line f(BBB), for
a given buffer size constraint N . The algorithm distributes a fixed number of buffer between each
buffer location Bk. In their paper Demir et al. [10] proposed a new ATS and compared it to the
simple Tabu Search (TS) referred to as standard Tabu Search (STS). Various changes are made
to the STS which are discussed below.

Neighbour generation The moves through neighbouring solutions are depicted by the notation
i, j, meaning that a given number of buffers is added to location i and the same number is
subtracted from a location j. All the possible i, j scenarios are generated from the current
solution. In the STS the size of buffer change at location i, j is set to 1. In the ATS the
incremental size is subject to the problem size. It is set to 1 for small and medium-sized
problems, i.e., 5 and 10-machine lines. For large problems involving 20–40 machine lines,
the size is set to 1% of the total buffer size, rounded up.

Tabu list The full move tabu criterion was employed in both the STS and ATS. If the move i, j
produces the better objective function from the various scenarios evaluated then move j, i
becomes tabu for a certain amount of iterations until it is moved off the list. The tabu tenure,
which is the length of the tabu list, is set to

√
ns where ns = neighbour solution space size.

The tabu tenure for the ATS is tuned adaptively. Initially, the tabu tenure is set to a
predefined minimum value. It is then calculated for each move. If the objective function is
improved, the tabu tenure is decreased by 1. If the solution is not improved, it is increased
by 1, subject to an upper and lower limit for the tabu tenure.

Intensification The ATS also employs an intensification strategy. If a solution found to be the
best does not change for a certain number of iterations, (0.25×N), the increment (decrement)
size is reduced to 1 for large-sized problems.

Restart diversification implements several random restarts during the optimisation. After
12.5 × N iterations, a new buffer configuration is generated randomly. This allows for
unsearched areas to be considered.

Continuous diversification forms part of the regular search process. A counter is used to track
the number of times a specific move is performed. When the counter reaches a predefined

116 JW Joubert & DJ Kotze

value (12.5×N), the move is penalised and made less attractive. The penalty is determined
as 10−4, but can be adjusted.

Demir et al. [10] also showed that the quality of the initial scenario on which the algorithm starts
could affect the quality of the final solution. Three different methods for determining the initial
allocation of buffer were compared. Either using the ratio of failure to repair rate, the processing
rate or using random initialisation. Experiments showed that using the ratio of failure to repair
rate, where the machine with the higher ratio receives more buffer for its exit buffer, results in
a good initial solution. The algorithm will continue until one of two stopping criteria is reached.
Either after 50 × N iterations or after no improvement is made to the global best for 25 × N
iterations.

Demir et al. [12] expanded on the work of Demir et al. [10] to solve the BAP for objective two.
The inner loop includes an ATS to obtain a maximum throughput for a given buffer size N
as discussed above. Binary search and TS was evaluated for the outer loop. The outer loop
sequentially decreases the total buffer size N to find the desired throughput with a minimal buffer.
First, the outer loop will use a specified N from the user. In most cases, the initial N is a big
number. The inner loop will then determine the best throughput possible for N , by searching for
the relevant buffer configuration. If the throughput is higher than the desired throughput, the
outer loop can decrease the size of N . Again, the best throughput for the new N is determined.
This is repeated until the size of N cannot be decreased as it will result in a lower throughput
than required. The proposed method was tested across a wide range of possible line properties.
Both binary search and TS for the outer loop were able to solve small to large scale problems. For
large problems, the binary search was executed faster than TS, but the authors noted that using
parallel implementation of the TS can result in faster execution time than the binary search.

The main advantage of metaheuristics are that they can escape local optimum. Their main
disadvantage is that they are not problem specific and thus, they have to be adjusted to produce
solutions for a specific problem.

Artificial neural networks [1, 4, 6, 7], as well as genetic programming [6, 7] are successfully employed
to solve the BAP.

2.2 Evaluative method

Every time the generative method generates a new buffer configurationBBB, that is new values for the
buffer’s maximum capacity, Bk, the buffer configuration needs to be evaluated. Recall that a line’s
throughput is a function of its buffer vector, f(BBB). A large number of buffer permutations needs to
be evaluated to get the best solution. It would have been ideal if a simple algebraic formula could
be expressed for f(BBB), as an algebraic formula would be quick to solve. Unfortunately, machine
failure and processing time are stochastic in nature. The algebraic relation between the buffer
configuration and throughput of the line is very limited. The next best option is to approximate
the line’s throughput, using analytical methods. The line reliability and topology influences the
approach we can use.

For very short, serial production lines exact results based on queuing models are possible [11]. For
larger production systems, approximation methods are used. Two approximation methods studied
in the BAP literature are the decomposition method [9, 10, 12, 19] and aggregation method.

The general idea of the decomposition method it to break the line up into L smaller lines, while
the aggregation method combines the stations. These methods are very similar in implementation.
The decomposition method is time-efficient in the calculation of the line’s throughput and is based
on the theory of queueing networks. The decomposition method uses a set of equations that link
the decomposed two-machine lines together. These non-linear equations are solved to determine

Solving the BAP using SBO 117

the throughput of the line. Burman [5] improved the method to be able to model heterogeneous
lines. The main advantage of the decomposition method is its computational efficiency. However,
the disadvantage is that it can be applicable only under the assumptions that processing rates are
either deterministic or exponentially distributed and failure and repair rates are either geometric
or exponentially distributed random variables.

An alternative method used as an evaluative method for the BAP is a simulation model. The
imitation created with the simulation is known as a model and is built with certain assumptions.
With simulation, the real system is not analysed, but the model. It must then be assumed that if
the model is an adequate imitation of the system, that the results obtained with the model might
also be obtained in the real-life system if similar changes are made to it. Simulation allows any
line topology to be simulated. Reliable and unreliable lines can be modelled, and each station can
have unique parameters. Due to this flexibility, it has been used widely in complex systems such
as production lines [17].

Simulation is applied in various research contributions [2, 3, 4, 7, 8, 16, 18, 21, 22, 23]. There
are two ways in which simulation is used as an evaluative method. The simulation itself can be
used to determine the throughput for each buffer configuration. Alternatively, a meta-model can
be made of the simulation, and this meta-model is then used to determine the throughput. A
simulation model is a representation of a real-world system, whereas the term meta-model refers
to a mathematical approximation of a simulation model. Meta-models are developed to obtain
an understanding of the relationship between the input variables and the output variables of the
system under investigation. The complexity of cellular manufacturing is also a motivation for
the use of meta-models as the evaluative method when assigning buffers. Lee [18] developed an
approach to find the buffer configuration that leads to the lowest cost in terms of investment
and running cost. Amiri & Mahtashami [2] proposed a multiobjective formulation to solve the
BAP for an unreliable line. A detailed DES is used to build a meta-model, which is then used
for estimating the throughput. The objective is to maximise the throughput of the line and to
minimise intermediate buffer storage. Numerous methods have been used to develop meta-models.
The one used by Amiri & Mahtashami [2] was a polynomial regression model. Can & Heavey
[6] investigated the robustness and accuracy of genetic programming to create meta-models. In
a subsequent paper, Can & Heavey [7] created a meta-model of a simulation of the line studied
and used genetic programming and artificial neural networks to solve the meta-model. Chan &
Ng [8] made a simulation on Siemens IV to find an algebraic relation between line throughput
and buffer sizes. The use of meta-models allows for more valid representations of complex systems
being modelled than the decomposition method as well as faster execution than pure simulation.
The disadvantage of the meta-model is that if the algebraic relation between line throughput and
buffer size is not valid for all scenarios, an invalid representation is being solved. Most papers
using analytical methods use deterministic or exponential times for the process, failure and repair
times. The methods are limited to simpler line topologies.

Simulation is utilised in the literature to relax these restrictions. The simulation model allows
general function distributions to be used (e.g., normal, gamma, Weibull and uniform) for all
parameters of the production line. Simulation is employed for a more realistic representation of the
dynamic behaviour of a system. DES is used for its effective way of estimating almost any system
performance, given that the input data is accurate. Research papers considering real-life systems
usually employ simulation as the evaluative method. DES is a model that executes by moving
through the simulation by changing the state of variables at separate (“countable”) points of time
called events [17]. These events are scheduled in a chronological event list, and the simulation is
executed by moving from one event to the next. Upon reaching an event, specific actions need to
be taken by the simulation program which, in turn, can result in more events being scheduled.

The various components of a DES is presented by Law [17]. An event can be anything from a
part leaving a machine, machine failure or workers becoming available. The time at which these

118 JW Joubert & DJ Kotze

events occur is usually stochastic. When a simulation model is created the structure of the line
is first defined in the simulation program. For each stochastic machine process, failure and repair
times are also defined in the simulation program. At this point, it is also necessary to define
the simulation length that is required. This represents the system in real life. The simulation
length can range from seconds to years. The advantage of using simulation on computers is that
the computational time of the simulation is a lot quicker than the needed simulation length. A
simulation representing months worth of production can be computed in minutes.

Once the model has been defined in the simulation program, it can initiate the simulation. Upon
initialisation, the simulation program schedules the events. The time of each event occurrence, tk,
is randomly generated from the distributions. This is added to the current time to determine the
time of occurrence. The simulation also schedules the simulation end event, which is the specified
simulation length. A simulation clock is used to keep track of where the simulation is in the event
list. At initialisation, the simulation clock is at 0 s. The simulation clock needs to move to the first
event in the list. The simulation clock can be advanced by two approaches:

Fixed-increment, the simulation has a predefined time increment size. Assume the incremental
size is 0.01 s. The simulation clock will advance with 0.01 s throughout the entire simulation.
At each point, the simulation identifies if any event has occurred. This time incremental
size should be small enough so that with each increment, an event cannot be overlooked.
The disadvantage of this approach is that the simulation program requires time evaluating
“inactive” time where events do not occur.

Next-event time overcomes this disadvantage by skipping inactive time. This approach will
move from the time of one event to the time of the next event. The reason for this is that no
changes to the system states occur during this inactive time. This reduces the computational
time of the simulation program.

Assembly line simulator (ALS) was developed in Java, due to the common adoption of the Java
programming language. Java programs are easily distributable and work on multiple platforms.
The ALS was implemented using the SSJ library. SSJ is an organised set of code, offering
general-purpose libraries for DES in Java. It contains the classes and objects required for the
various components of DES. Kose et al. [16] solved the BAP for a real-world facility, namely a
thermo technology company in Turkey. Due to the complexity of the system, a simulation was
done using Arena. Spieckermann et al. [21] conducted a comprehensive case study at BMW AG.
A simulation optimisation approach was used to solve the BAP. An existing simulation model
made using SIMPLE++ was combined with commercially available optimisation packages, the
WitnessOptimizer and SIMPLE/GA. Simulation is a common tool within the automotive industry.
It is very convenient to use when determining a line’s throughput, but very expensive as each
evaluation of the objective function requires at least one simulation run. The use of commercial
optimisation tools had to be considered as black boxes, with only a small degree of configuration.
Execution times can be up to several days and evaluated solutions per optimisation run had to be
restricted.

3 Material and methods

Recall that solving the BAP requires finding the best size and configuration of buffers in the
production line. What is considered best will depend on the objective function that is specified. In
this article, the best buffer configuration will be the one that achieves the desired throughput with
the minimum total number of buffers, objective two. The lines under investigation are subject
to machine failure and different processing times, and these are stochastic in nature. It cannot
be assumed that the distributions for these process rates are exponentially distributed or that

Solving the BAP using SBO 119

the failure and repair rates are either geometric or exponentially distributed. These assumptions
are required for approximation methods such as the decomposition method. The throughput of
these lines can be evaluated using simulation as the evaluative method, with any distributions.
Evaluating all possible buffer configurations is computationally not practical. Consequently, we
employ an optimisation procedure to navigate the solution space more efficiently and generate
useful configurations. Demir et al. [12] solved the BAP for objective two using tabu search. The
method was extensively tested on various line sizes and machine parameters, forming a solid base
for generative method. The combined use of simulation and metaheuristics is known as SBO.

3.1 Discrete event simulation

DES require various components to function. The SSJ package, [24] is used to assist with the
programming. SSJ contains libraries that can manage the event list and generate random variables.
The SSJ package provides the programming code for: initialise routine, event routine, timing
routine, library routine and the report generator. For this article, a unique main program is
created to combine each of these routines. Two specific event routines are created to meet the
requirements of BAP.

The various components of DES and the interaction between them are shown in Figure 3. A model
creation program is used to create the model of the line itself. The number of machines, total
buffer limit and machine parameters are defined. A main program is required that controls all the
other components. The main starts by invoking the initialisation routine. This routine sets the
simulation clock to 0 time units. It initialises all system states and creates the event list with all
the initial events. The simulation program then returns control to the main program, which then
invokes the timing routine. This routine is responsible for managing the event list. It determines
which event is next on the list as well as its time of occurrence. It then advances the clock to
this event’s time. The simulation program again returns control to the main program, which then
invokes the event routine. There is a specific event routine for each type of event. This routine
contains all the actions that need to be taken when the event is executed. The event routine updates
system states, statistical counters and generates any future events. If the simulation end time is
reached, the simulation stops and the report generator returns reports on statistical counters. If
this time is not yet reached, the timing routine is again invoked to move to the next event. This
action between the timing routine and the event routine is repeated until the simulation end time
is reached. The library routine generates the random times required during the event scheduling.

Two main events are programmed into the event routine. The first event is activated when a part
leaves a machine, called a departure event, and a second is activated when a machine fails failure
event.

Departure event is triggered when a part is completed and leaves the station. Law [17] explains the
structure for a general departure event of a simple simulation model. This structure is expanded
to meet the needs of the BAP. The departure event is scheduled in the event list and represents
a machine completing a part. When the event is performed by the simulation, the logic in flow
chart Figure 4, is executed. The departure event first needs to move the completed part to the
downstream station. If the downstream station is idle and starved (meaning the buffer was empty
and no part was available to process) the completed part can be sent directly to the downstream
station for processing. Transfer time is ignored in the simulation. It is assumed that transfer time
is constant. Transport time can be included by increasing the processing time of the station with
the additional transport time. Upon part arrival at the downstream station, the station state is
set to not idle and not starved. The downstream station immediately starts service on the
part. The new random process time is generated and added to the current simulation time. The
completion time of the event is scheduled in the event list. If the part arrived at a station that is
failed, repair time is also generated. The departure event is delayed by the repair time. A new
failure time is generated and added to the event list. The failure status is changed to not failed.

120 JW Joubert & DJ Kotze

Figure 3: Flow control for DES with the next-event time-advance approach.

If the downstream station is not idle, it means that parts might be in the buffer before the
station. It is necessary to check if the buffer has reached its capacity. If there is space left in the
buffer, the part can exit the current station and join the queue while if it has reached its capacity,
the part cannot exit. The current station’s blocked state is set to blocked and the departure
event ends.

After the part has left the current station, it is ready to receive parts, the station’s state is set to
idle. If there are no parts available in the upstream buffer, the station’s state is set to starved.
The departure event ends.

If a part is available from the upstream buffer, it can be removed from the queue and enter the
station, station’ state is change to not idle. All parts in the queue are moved up one space. Upon
arrival in the station the random processing time for the part is generated. This is based on the
random distribution defined in the model creation step. The processing time of the part is added
to the current simulation time to determine the time the part is planned to be completed. The
next departure event is scheduled in the event list.

Solving the BAP using SBO 121

Figure 4: Departure event flow chart for simulation model.

122 JW Joubert & DJ Kotze

The model checks if the part arrived at a station that failed while it was idle. If the machine’s failed
state is failed, repair time is generated randomly from the defined distribution. The departure
event that was scheduled is now delayed by the repair time. If the machine’s failed state is not
failed, no adjustment to the scheduled departure event is needed.

It is possible that the upstream station was blocked by a full buffer before the departure event
was executed. If a part was removed from the upstream buffer, it now has space available for the
upstream station to place its blocked part. If the previous station was blocked, a departure event
for it could be triggered. If it was not blocked no further action is needed, and the departure
event is completed.

Failure event is triggered when a station fails. The flow chart for the failure event is shown in
Figure 5.

Figure 5: Failure event flow chart for simulation model.

When the simulation time moves to a failure event, the station stops processing and awaits repair.
The machine can be in one of two states when the failure event time is reached. It can either be
idle or not idle.

If the station is idle, it means no part is currently being processed by the machine. In practice,
the failure will only be detected when the next part arrives at the station. Thus repair is not yet
scheduled, but the station fail state is set to failed.

If the station is not idle the failure will stop the machine processing, and the failure is immediately
detected. Repair time is generated randomly from a random distribution. The departure event of
the current station is delayed by the repair time. A new failure event is scheduled by generating

Solving the BAP using SBO 123

a random time between failure and adding it to the current simulation time. The time between
failure is generated from a specified random distribution.

The DES is implemented in Java and used to evaluate the throughput of the production line
scenario generated by the generative method. The simulation returns the throughput as well as
statistics on the amount of time a station was either blocked or starved.

3.2 Tabu Search

Demir et al. [11] proposed two TS metaheuristics working in an iterative manor to solve the BAP
for objective two. The inner loop using the ATS determines the maximum throughput a line
can achieve for a given buffer size N . The ATS neighbour generation evaluates all the scenarios
that can be reached by either increasing or decreasing each individual buffer size. Some of these
neighbours actually decreases the buffer after stations that are highly blocked and increase for
stations that are rarely blocked, generating ′bad′ neighbours. To overcome this an alteration to the
work of Demir et al. [10] is proposed for neighbour generation, this method is called the Theory of
Constraints Tabu Search (TOCT).

A smaller set of good neighbours are generated. This is achieved using the theory of constraints.
It states that the performance of a line is limited by a specific station, the slowest one, known as
the bottleneck. If the overall performance of the line is to be improved, this single station needs to
be improved first. It is crucial that this station is never blocked nor starved. This bottleneck can
be identified with reports from the DES.

The DES provides statistics on how long each station was blocked during the simulation. It is
thus possible to allocate weight to each buffer indicating how much time it blocked its upstream
station. The longer the station is blocked, the higher the weight allocated to the buffer. The swap
index is then randomly generated, where the buffer that has the highest block weight has a higher
probability of being picked, and the buffer with the lowest block weight has the lowest probability
of being picked. This station’s buffer is increased. The buffer that will decrease in size is also chosen
randomly, where the buffer that has the smallest block weight has the highest probability of being
chosen and the buffer with the highest block weight the lowest probability. Only 0.5×(Number of
machines K) neighbours are generated per iteration using the proposed method. This dramatically
decreases the number of neighbours that need to be evaluated per iteration of the inner tabu. The
factor 0.5 is quite an arbitrary choice in this paper but can be subjected to sensitivity analysis in
future work.

Another alteration to the ATS heuristic is the inclusion of a list, storing the throughout for each
evaluated buffer configuration. After generating new neighbours, the generated neighbours are
compared to the items in this list to see if it has been evaluated previously. If it has been evaluated,
the previously achieved throughput can be used, and the scenario does not have to be re-evaluated.
The rest of the algorithm is the same as the ATS in the work of Demir et al. [10].

The outer loop is based on the work of Demir et al. [12]. It reduces the total size of N to obtain
the smallest N possible while still meeting the required throughput. The algorithm starts with an
initial buffer size of N0. Upon initialisation N should be a sufficiently large number. The size N is
then given to the inner tabu algorithm. This determines the best buffer configuration and returns
it as well as the total throughput.

The outer tabu loop is then used to generate a new total buffer size. Again the inner loop evaluates
this and returns the best buffer configuration and throughput. This is repeated until either of two
stopping criteria is reached:

• no better solution has been found within a certain number of iterations,

• the maximum number of iterations is performed.

124 JW Joubert & DJ Kotze

4 Computational study

Experiments on small-sized, medium and large-sized problems with varying machine para- meters
are done to evaluate the efficiency of the proposed solution method. At first serial production lines
are considered.

The DES execution time is compared to commercial simulation software. Experiments are done
to determine the simulation length and replication that achieves a balance between execution time
and solution quality. The DES is then used to test the proposed TOCT against the ATS inner
loop.

The BAP is solved for objective two by using the DES with the TOCT inner loop and outer loop
from Demir et al. [12]. Finally the proposed solution approach’s scalability is tested on a real world
non-serial production line.

4.1 Data sets

Data sets used in Demir et al. [10] will also be used in this article. Four line sizes with the number
of machines denoted by the set K = {5, 10, 20, 40} are evaluated. For each line, the total buffer
size N is calculated by multiplying the number of machines by a factor of 5, 10, and 20. Thus 12
different serial line scenarios are used, representing lines ranging from small to large as shown in
Table 1.

Number of machines
in line, (K)(K)(K)

Total buffer
size, (N)(N)(N)

5 25, 50, 100
10 50, 100, 200
20 100, 200, 400
40 200, 400, 800

Table 1: Serial line scenarios for SBO experiments [10].

Lines with five machines are considered small, while those with 10 machines are considered medium
in size. Lines with 20 and 40 machines are regarded as large lines.

Each scenario will be referred to by its number of machines (K) and total buffer size (N). As per
Demir et al. [10], the range of line scenarios allows the effectiveness of the proposed method to
be tested across various line sizes. For each line scenario the various machine characteristics are
tested. Again the work of Demir et al. [10] is referred to. The following section explain how the
random process time, time between failure and repair time for each machine are defined. Table 2
shows the eight different line parameters.

Process time: the time it takes to complete a part. The processing time is randomly sampled
from a uniform distribution, U(a, b). Each machine’s process time will first be described
with parameters, a = 5, b = 15. Then experiments will be done on the line with parameters,
a = 5, b = 45. The distribution for each machine is the same.

Time between failure: each machine is subject to failure. The time between failure is randomly
sampled from a geometric distribution G(pK). Unlike the processing time, each machine
in the line will have a unique distribution, some machines are more reliable than other.
Each machine has a unique parameter p for the geometric distribution. This parameter
is randomly sampled from a uniform distribution, pK = 1

U(a,b)∀K to give each machine a

unique distribution. Two different parameters are considered for the uniform distribution.
First the parameters are a = 1, b = 200 then a = 1, b = 2000.

Solving the BAP using SBO 125

Repair time: each machine has a repair time once it fails. The repair time is randomly sampled
from a geometric distribution G(pK). Similar to the failure time, each machine in the line
will have a unique parameter for the geometric distribution. Some machines are easier
to repair than others. This parameter is randomly sampled from a uniform distribution
pK = 1

U(a,b)∀K. Four different parameters are considered for the uniform distribution. For

lines that have failure parameters U(1, 200) repair parameters are a = 1 and b = 10, then
a = 1 and b = 40. Lines that have failure parameters U(1, 2000) repair parameters are a = 1
and b = 100, then a = 1 and b = 400.

Instance Processing time Time between failure Repair time

1 U(5,15) G(1/U[1,200]) G(1/U[1,10])
2 U(5,15) G(1/U[1,200]) G(1/U[1,40])
3 U(5,15) G(1/U[1,2000]) G(1/U[1,100])
4 U(5,15) G(1/U[1,2000]) G(1/U[1,400])
5 U(5,45) G(1/U[1,200]) G(1/U[1,10])
6 U(5,45) G(1/U[1,200]) G(1/U[1,40])
7 U(5,45) G(1/U[1,2000]) G(1/U[1,100])
8 U(5,45) G(1/U[1,2000]) G(1/U[1,400])

Table 2: Serial line machine parameters for SBO experiments [10].

4.2 DES experiment and results

The DES is tested in this section. The execution of the experiments is done on a computer having
a 3.80Ghz Intel Core i5-7600K processor and 8 GB of RAM.

Before any model and its results can be used to solve the BAP, the simulation program needs to be
tested to establish if the program is executing the simulation as expected. The DES is compared
to a commercially available program to test similarity of results.

Only 10 of the 12 line scenarios in Table 1 are modelled in the commercial program due to licensing
constraints. Scenarios 40.400, 40.800 are not considered. For each line scenario, three different
values for each machine’s failure and repair time are generated based on the parameters in Table 2.
Thus each of the 80 scenarios is tested three times for a total of 240 tests. For these tests, a random
buffer configuration BBB is generated for each total buffer size N .

SimioTM is a widely used commercial simulation software. Both DES and SimioTM were run for a
duration of 300 000 time units to ensure a steady state is reached. The simulation is replicated 1 000
times to get 1 000 different throughput results. At the end of the simulation run, the throughput is
recorded, and the average results across the 1 000 replications used to compare the DES program’s
results to those of SimioTM. Secondly, the computational time of the programs model using DES
is compared against that of SimioTM to see if a simulation in Java can outperform a commercial
program.

The % throughput error between the SimioTM line and DES is compared using the calculation
in (1)

SimioTM throughput−DES throughput

SimioTM throughput
× 100, (1)

while the time factor is calculated using equation (2)

SimioTM computational time

DES computational time
. (2)

Table 3 shows the results of the test. The first column shows the problem scenario, (K.N).

126 JW Joubert & DJ Kotze

Problem scenario Throughput diff. (%) Time factor

5.25 0.60 74
5.50 0.27 94
5.100 −0.48 89
10.50 1.03 67
10.100 0.54 79
10.200 0.21 65
20.100 2.30 53
20.200 0.35 60
20.400 0.01 59
40.200 2.60 51

Table 3: Simulation results from Java tool compared to SimioTM program.

The second column shows the average throughput difference between the DES tool and the
SimioTM program calculated with equation (1). The third column shows the time difference
between the two programs calculated with equation (2). The DES simulation program created in
Java has on average a 0.84% difference in total throughput compared to SimioTM. This difference
is small and is due to the stochastic nature of simulation. Figure 6 supports this. The figure shows
the density plot of the throughput obtained from the 1 000 replications for line scenario 10.200.
The two programs result in a density plot with similar shapes.

Figure 6: Simulation throughput comparison between Java and SimioTM program.

DES had a significant speed advantage compared to SimioTM. On average, SimioTM takes 71
times longer than the proposed program based on DES. For the small-sized problems, SimioTM

took 23 minutes to complete the simulation run and replications and 75 minutes for large-sized
problems. In comparison, the DES only took 19 seconds for small problems and 1.5 minutes for
large problems.

The experiment above verified that the simulation program using DES can obtain a throughput
similar to that of commercial software. DES is also faster than commercial software. From this
point, all simulations used in experiments are done using the Java simulation program created for
this manuscript using DES. The simulation tool will be used by the inner tabu loop to determine

Solving the BAP using SBO 127

the throughput of a line for a given buffer configuration. The inner loop will generate thousands
of permutations that need to be tested. Thus it is crucial that the simulation achieves an accurate
throughput in the shortest amount of time.

Two factors influence both the simulation’s computational time and the quality of the solution it
provides: the simulation length is the amount of time the simulation model uses to test the line,
and the simulation replications, which is the number of times the simulation is repeated for each
problem instance.

The simulation model in Java is quite fast. Still, if it takes 1.5 minutes for every evaluation during
the generative method, the time required to solve the BAP can be excessively long. As the solution
quality is time-dependent, a balance is needed between solution quality, simulation length and the
number of replications.

Simulation steady state is a state at which the value of the throughput has acceptable small
fluctuations over time. At the start of the simulation, throughput can be relatively fast because
all the buffers are empty and all the machines are operational. As time progresses, buffers start
filling up, and machines begin to fail. This can lead to a different throughput compared to the
one achieved at the start of the simulation. Thus solution quality is dependent on the simulation
length.

To find this point for the simulation model, all the possible scenarios in Table 2 are tested across
all the line sizes in Table 1. Each scenario is evaluated for a simulation length of 1 000 000 time
units. At each time unit, the throughput of the line is compared to the average value the line can
achieve at time 1 000 000.

At time 1 000 000 the line completed 59 198 units, achieving an average throughput of 1 000 000
59 198 =

16.89 time units per unit. The average time unit per unit is calculated every time a unit is completed
and compared to the average of 16.89 time units per unit. Experiments of the simulation show,
the throughput has a significant variation from the 16.89 time units per unit at the start of the
simulation. During this stage it takes more time to produce units. This variation decreases as the
simulation length is increased, with a simulation length of 40 000 the simulation has 0% deviation
from the average of 16.89 time units per unit.

The simulation computational time is dependent on the simulation length. To reduce the computational
time, a 5% throughput deviation will be considered as acceptable. In the above example at 10 000
time units, the line remains under the 5% deviation target. At this simulation length, the average
time units per unit is 17.61 time units.

The second factor contributing to simulation run time and solution quality is the number of
replications. Take a simulation of a line with five machines and a total buffer size of 25. A
simulation is done with a simulation length of 10 000 time units. At the end of the simulation run,
193 units are produced, or an average of 52 time units per unit. The same simulation is repeated,
this time, a total of 355 units are produced, or an average of 28 time units per unit.

With each replication the initial system state can vary due to the random parameters used. To
obtain a stable throughput from the simulation, multiple replications of the same simulation,
each with a unique random seed, are done, and the throughput of each simulation is recorded.
An average throughput across all simulations is then used to reduce this variation. This can be
done because each replication is independent. The number of replications performed is directly
correlated to the accuracy of the average statistic. Again, a large number of replications comes at
the expense of execution time.

To find a good number of replications, simulations of the problem scenarios were done, each
replicated 1000 times. Initially, the average throughput varies significantly from 1 to 100 replications
and then decreases to a small variation concerning the total throughput. Although more replications

128 JW Joubert & DJ Kotze

do result in less variation in the average throughput, at 200 replications, the variation is already
minimal compared to the total throughput achieved by the line. Experiments showed the throughput
at 200 replications is only 0.01% different from the throughput at a 1000 replications.

The experiments above showed that the accuracy of the line’s throughput is dependent on both
simulation length and simulation replications. The longer the simulation length and the higher
the number of replications, the more accurate the throughput obtained is. This is crucial for the
inner loop. When two buffer scenarios are compared, it should be able to accurately say that a
change in the throughput was due to the change in the buffer configuration and not due to natural
throughput variation within the simulation model.

Unfortunately, the increase in simulation length and number of replications come at the cost
of computational time. To minimise the simulation computation time, for all experiments, a
simulation duration of 10 000 and 200 replications will be used. This will result in a simulation
steady-state error of below 5% and a small fluctuation in average throughput across the number
of replications.

4.3 TOCT experiments and results

Once again the eight line scenarios in Table 1 and the 12 machine parameters in Table 2 are used.
A total of 96 experimental combinations are generated. Because the inner tabu loop must be
repeatable, each of the 96 experiments will be repeated ten times. This is done to determine
whether the inner loop was able to achieve the same result for an experiment across all ten
replications. The 12 problem sets are grouped into three classes: small (K = 5), medium (K
= 10) and large (K = 20, 40). For the small-sized problem, the efficiency of the ATS and TOCT
algorithm are compared against complete enumeration (CE). However, for medium and large scale
problems CE is not computationally feasible and will not be tested using CE but will be compared
against the ATS.

The experiments were done on the Lengau cluster of the Centre for High Performance Computing
(CHPC), South Africa, parallelising the tasks over 261 threads.

Table 4 shows the results from the experiments on small problems using ATS. First the ATS is
compared with the CE.

The first column shows the problem set, shown as machine and buffer size, (K.N). The second
column shows the experimental scenario from Table 2. The third column shows the % error of the
average optimal (maximum) throughput achieved, compared to the solution found using CE. To
calculate the % error we use

Deviation for ATS =

(
f(CE)− f(ATS)

f(CE)

)
× 100. (3)

For each of the ten replications the absolute % error is calculated and averaged for each experiment
scenario. Column four show the average computational time of the ATS algorithm in minutes. This
is the time it took one iteration of the inner loop to complete. Column five show the average number
of iterations it took the algorithm to find the best throughput it returned. All entries in the table
are the averages across the ten replications of each scenario. Experimentation on small lines shows
that the ATS method is capable of returning a throughput similar to the global optimum achieved
using CE. The absolute error for ATS in comparison to complete enumeration was 0.30%. This
small fluctuation can be attributed to the inherent stochasticity of the simulation, and in some
instances, the method resulted in a better throughput than the CE.

Solving the BAP using SBO 129

Avg. % error Avg. computation Total iterations
Problem from optimal time of algorithm until optimal
set Scenario solution (min.) solution

5.25 1 0.06 8.28 145
2 0.44 8.11 158
3 0.63 7.31 145
4 0.71 6.14 134
5 0.20 7.08 198
6 0.62 5.30 178
7 0.69 4.51 129
8 1.41 4.03 163

5.50 1 0.06 18.30 461
2 0.10 18.84 263
3 0.11 16.22 374
4 0.18 15.72 291
5 0.08 11.36 328
6 0.10 10.70 722
7 0.20 9.90 259
8 0.21 8.08 267

5.10 1 0.04 27.62 713
2 0.18 23.60 1274
3 0.10 26.09 807
4 0.72 18.29 486
5 0.16 21.24 1010
6 0.09 19.31 1356
7 0.07 16.61 1035
8 0.14 16.25 435

Table 4: Inner tabu computational results for small sized problems ATS vs CE.

The experiments on small-sized problems are repeated, using the new proposed TOCT method.
To calculate the % error we use

Deviation for TOCT =

(
f(CE)− f(TOCT)

f(CE)

)
× 100. (4)

Table 5 shows the results from the experiments on small problems using TOCT.

Similar to the ATS method, the TOCT is capable of achieving throughput similar to the global
optimum achieved using CE. The absolute error for TOCT in comparison to CE was 0.88% versus
the 0.30% for ATS. The significant difference between TOCT and ATS is computation time. The
ATS method took, on average, 18 times longer to execute.

The third performance comparison is the number of iterations the program took to reach the
solution it returned. For these small sized problems, K = 5, various total buffer sizes are tested,
N = 25, N = 50, N = 100. The inner tabu is terminated if one of the two termination criteria
are met. Either after N × 50 iterations, termination criteria 1, or after N × 25 iterations without
an improvement on the optimal solution, termination criteria 2. Table 6 shows the stipulated
number of iterations required to meet the termination criteria for the different scenarios. The
actual number of iterations at which point the best throughput found does not improve for the
ATS method is shown in column five in Table 4. Column five in Table 5 shows the number of
iterations at which point the best throughput found does not change for the TOCT method.

Both the ATS and TOCT found, on average, the optimal solution in fewer iterations than the
maximum allowed iterations. After that point, the algorithm kept running until the termination

130 JW Joubert & DJ Kotze

Avg. % error Avg. computation Total iterations
Problem from optimal time of algorithm until optimal
set Scenario solution (min.) solution

5.25 1 0.02 0.51 502
2 1.64 0.36 350
3 0.26 0.29 415
4 0.34 0.32 329
5 0.52 0.23 433
6 1.11 0.20 315
7 0.33 0.28 378
8 0.98 0.17 450

5.50 1 0.33 0.50 858
2 2.60 0.80 1630
3 0.61 1.42 1425
4 1.52 1.86 858
5 0.04 0.46 933
6 0.14 0.53 1031
7 0.11 0.85 879
8 3.75 0.60 879

5.100 1 0.09 0.72 1119
2 0.79 0.71 1335
3 0.21 2.34 1635
4 3.36 2.18 1064
5 0.52 0.78 1645
6 0.43 0.48 1262
7 0.37 0.44 1949
8 1.11 0.90 1538

Table 5: Inner tabu computational results for small sized problems TOCT vs CE.

criteria were met but could not find a better solution. The ATS needed fewer iterations compared to
TOCT because it can find a better solution per iteration due to complete neighbourhood generation,
but it takes much longer to do a single iteration. The termination criteria can thus be revised if
the same results are found for medium and large-sized problems.

Complete enumeration is not possible for medium and large-sized problems. For the medium sized
problems, the throughput achieved using ATS and TOCT is compared using equation (5), which
shows the calculation used to determine the throughput deviation between the two methods.

% throughput deviation
between ATS and TOCT =

(
|f(TOCT)− f(ATS)|

f(TOCT)

)
× 100 (5)

Table 7 shows experimental results for the medium sized problems.

The first column shows the problem set for the medium sized line, and the scenario in the
second column. For each of the ten replications, the % throughput deviation is calculated using
equation (5); the average result is shown in the third column. Columns 4 & 5 are the average
computational time for the two methods and columns 6 & 7 the average number of iterations it
took the tabu algorithm to reach its optimal solution.

For experiments on lines with 10 machines and total buffer size 200, only two of the eight scenarios
are tested using the ATS method due to long execution times. The average error between the

Solving the BAP using SBO 131

Problem
set

Termination
criteria 1

Termination
criteria 2

(N × 50) (N × 25)

5.25 1250 625
5.50 2500 1250
5.100 5000 2500

Table 6: Inner tabu termination criteria for small-sized problems.

Problem
set Scenario

% Deviation
between ATS

& TOCT

Computation time

of algorithm (min.)

Total iterations
until optimal

solution
ATS TOCT ATS TOCT

10.50 1 −1.11 112.20 11.40 419 639
2 −0.71 56.53 3.43 367 763
3 −4.59 76.13 3.84 443 1135
4 −6.44 36.65 2.38 352 1046
5 −0.33 76.69 11.09 314 680
6 −0.74 77.23 12.05 382 506
7 −0.53 66.17 9.09 426 1144
8 −1.80 57.90 8.48 285 744

10.100 1 −0.20 270.18 39.20 433 883
2 −1.33 249.75 57.43 871 2078
3 −1.20 259.67 50.49 853 2245
4 −6.62 199.22 31.07 534 1424
5 −0.46 191.02 26.36 869 919
6 −0.62 161.65 26.04 696 1737
7 −0.91 155.50 19.01 602 1045
8 −2.27 103.49 13.70 685 1758

10.200 1 −0.21 629.54 22.57 2315 2152
2 −0.07 382.31 56.39 1376 2342
3 – – 82.03 – 3714
4 – – 45.34 – 2861
5 – – 47.52 – 2948
6 – – 45.57 – 4508
7 – – 53.63 – 3499
8 – – 29.44 – 1883

Table 7: Inner tabu computational results for medium sized problems ATS vs TOCT.

ATS method and TOCT method is 1.68%. The ATS method takes 5.5 times longer to complete
compared to TOCT. Similar to small-sized problems, the throughput achieved across the ten
replications are tightly grouped. Once more the number of iterations the program took to reach
the solution it returned is considered. The same termination criteria apply. Both ATS and TOCT
found, on average, the optimal solution at fewer iterations. After that point, the algorithm kept
running until the termination criteria is met but could not find a better solution.

Large sized problems can only be evaluated using the proposed TOCT algorithm. Due to the size
of the problem and the increase in computational time required as the total buffer size and number
of machines increase, ATS becomes computationally expensive to test comparatively. Note due to
long computational time, experiments on lines with 40 machines and 400 N as well as 800 N could
not be performed using TOCT.

132 JW Joubert & DJ Kotze

Table 8 shows the results for the large sized problem with 20 machines as well as 40 machines.

Problem set Scenario Throughput Time (min.) Iteration

20.100 1 575.33 66.04 1205
2 119.66 33.20 3309
3 623.69 89.58 1120
4 57.39 15.41 3380
5 295.38 63.19 1148
6 76.22 20.19 2077
7 19.12 11.39 2343
8 101.30 31.31 1219

20.200 1 602.44 99.30 1932
2 552.28 186.81 1136
3 470.88 154.52 5558
4 170.09 82.93 1852
5 262.47 178.05 2897
6 199.80 129.33 2453
7 233.57 121.80 3172
8 89.13 49.56 3372

20.400 1 670.06 642.68 5215
2 570.03 621.26 5458
3 603.30 495.67 1208
4 333.46 270.36 298
5 274.24 464.34 3861
6 191.54 376.49 4280
7 205.63 286.36 5457
8 122.19 237.02 5624

40.200 1 373.83 376.54 9004
2 15.28 57.06 2843
3 18.26 65.55 4060
4 14.73 47.92 7257
5 227.09 462.19 4702
6 28.47 78.03 3320
7 21.37 64.60 4315
8 16.01 51.61 4681

Table 8: Inner tabu computational results for large sized problems, 20 & 40 machines ATS vs

TOCT.

For the large sized problems, more outliers are present compared to medium and small-sized
problems. Similar to the previous experiments, maximum throughput is achieved within fewer
iterations than required by the termination criteria.

The inner tabu loop experimentation showed that the proposed TOCT method could satisfy the
BAP’s first objective: finding the buffer configuration BBB that results in the maximum throughput.
For small problems, the TOCT method achieved similar results to CE and ATS within a much
shorter time. The reduction in execution time makes it possible to solve medium sized problems
using SBO. Large sized problems with large number of buffer 400N as well as 800N still require
large computational time to solve even with the proposed method.

The experiments indicate that in the majority of cases, the maximum throughput was achieved
with fewer iterations than currently set up in the termination criteria. For future experiments,
the termination criteria for the inner tabu loop is changed to either 20 × N or 10 × N iterations
without an improved solution. This can significantly reduce the execution time required to run the

Solving the BAP using SBO 133

inner tabu algorithm and makes it more practical for the use in the outer tabu loop. Replicating
each experiment 10 times indicated that the inner loop returned sufficiently similar incumbent
(near-optimal) solutions. It is therefore argued that it is safe to run the inner loop once for each
N provided by the outer loop as its results are similar to multiple replications.

4.4 Solving the BAP using SBO, experiments and results

The final piece of the SBO method is the outer loop. Recall that the main objective of the
SBO is to find a buffer configuration, BBB, that results in the smallest total buffer size N while
achieving a required throughput. The experiments thus require a target throughput. Similar to
the experiments on the inner loop the line scenarios presented in Table 1 and Table 2 are used. To
determine the target throughput, each experiment is done with half the initial N . For example, a
line with K = 5 machines and N = 25 total buffer size, the inner tabu loop is executed using

⌈
N
2

⌉
,⌈

25
2

⌉
= 12. For a line with K = 5 machines and N = 12 total buffer size the inner loop achieved a

maximum throughput of 918. This then becomes the target for the outer loop. It will start with
the initial total buffer size N = 25 and search for the smallest N that results in a throughput of
at least 918. It can be that the outer loop only return N = 12, or if possible, it could achieve a
throughput of 918 with even a smaller total buffer size.

The execution of the experiments is done on a computer having 3.80Ghz Intel Core i5-7600K
processor and 8 GB of RAM. For small-sized problems, the experiment was repeated five times.
For medium and large-sized problems, the experiment was only replicated once. The CHPC is not
used to run these experiments but a desktop. Do to computational resources, only limited number
of replications are tested. All entries in the tables are the averages of the number of replications
for each problem instance. The results for small-sized problems are shown in Table 9.

The first column is the problem set from Table 1. The second column is the problem scenario from
Table 2. The throughput target the algorithm needs to achieve is shown in the third column. The
actual throughput and the corresponding optimal buffer size to achieve this is shown in the fourth
and five column respectively. Lastly, the time to solve one instance of the SBO in minutes is shown
in the sixth column. For small sized problems the final throughput achieved by the model is very
similar to the objective. In ten of the scenarios the model achieved the throughput at

⌈
N
2

⌉
of the

starting N . In 14 of the scenarios, the model achieved the required throughput with less than
⌈
N
2

⌉
of the starting N .

Table 10 show the results for medium and large-sized problems. With the large sized problems, 3
scenarios 20.100.8, 20.200.2 and 20.200.8 was not successfully solved, for medium-sized problems
and remaining large-sized problems the model was able to achieve a required throughput close to
the target throughput.

45 scenarios was less than or equal to
⌈
N
2

⌉
, of the starting N . Only three scenarios 20.100.8,

20.200.2 and 20.200.8 was not successfully solved. A higher throughput is achieved with a total
buffer size required bigger than

⌈
N
2

⌉
of the starting N .

Experimentation showed that DES can effectively be used to solve BAPs. In conjunction with the
proposed inner loop, using TOCT and the outer loop based on the works of [10] the BAP is solved
for various line sizes and line parameters.

4.5 Solving BAP a case study

Body-in-White (BIW) is a production phase in which the automobile’s metal body, called the body
in white, is assembled using preformed pieces of metal.

134 JW Joubert & DJ Kotze

Problem
set Scenario

Target
throughput

Avg. throughput
achieved

Avg. total
buffer size

CPU time
(min.)

5.25 1 918 918 12 10
2 626 629 12 8
3 681 683 12 5
4 423 425 12 5
5 294 295 12 6
6 238 240 12 3
7 277 278 12 3
8 190 192 12 2

5.50 1 650 651 12 8
2 710 714 20 29
3 843 844 24 36
4 755 757 24 36
5 360 360 25 18
6 270 270 20 13
7 345 345 25 16
8 198 199 24 9

5.100 1 940 940 37 54
2 435 436 40 32
3 785 786 49 103
4 345 348 49 36
5 317 317 43 42
6 288 288 33 14
7 325 326 40 15
8 299 301 38 19

Table 9: Outer tabu experimental results small sized problems.

Such a line can consists of hundreds of welding robots, the production line this case study is based
on has 292 robots. The lines are subject to failure and are partially unbalanced. Throughput of
these manufacturing lines are generally very high and is affected by factors such as variation in
processing times and reliability.

The topology is a tree structure, various machines have more than one station feeding parts into
them. The three main sub-assemblies are produced in separate areas, the Front End, Centre Floor
and Rear End. The Front End has seventeen machines. To conform with the BAP notation, each
of these production cells will be simulated and referred to as a single machine K. Each of these
machines are separated with a small buffer. The Centre Floor has nine machines while the Rear
End has twelve. These stations are followed by the main line, which produces the underbody and
sideframes. Each machine has a unique processing time, which can be simulated with a uniform
distribution. Each machine also has unique failure and repair times. Not only do the distributions
of the various machines’ failure and repair rate differ, but also its parameters. Some are modelled
using Gamma, some using Beta distributions.

Together the total facility has 63 machines, 59 buffer locations and a total buffer size N of 318. The
BIW problem is considered a large-sized problem. The SBO method developed in this manuscript
can be used to solve the BAP for complex lines such as this production system. A simulation is
created of the line, using its tree topology. Each machine has unique random distributions that
represent the processing time, failure rate and repair time, respectively.

The simulation has a simulation length of three days (72 hours). The simulation starts with all
buffers empty and a single part in every station. The throughput for the first two days are not

Solving the BAP using SBO 135

Problem
set Scenario

Target
throughput

Avg. throughput
achieved

Avg. total
buffer size

CPU time
(min.)

10.50 1 552 608 9 35
2 60 60 11 7
3 392 392 24 44
4 31 31 18 9
5 255 288 9 37
6 212 224 9 36
7 280 281 25 81
8 164 164 24 64

10.100 1 837 837 42 738
2 684 684 50 842
3 729 730 50 754
4 391 392 48 541
5 276 276 45 466
6 255 256 47 390
7 283 283 47 305
8 100 101 50 121

10.200 1 503 503 50 458
2 614 615 66 998
3 650 655 98 1826
4 368 370 98 922
5 283 283 43 433
6 216 217 63 415
7 214 215 67 473
8 131 132 96 396

20.100 1 13 14 47 141
2 8 5 45 59
3 9 9 20 241
4 9 12 16 58
5 16 16 46 137
6 12 15 39 30
7 9 10 16 11
8 23 98 88 169

20.200 1 601 601 82 618
2 112 550 124 988
3 15 15 70 109
4 124 125 97 1507
5 211 261 80 710
6 19 196 80 413
7 14 216 44 137
8 32 103 163 219

20.400 1 669 669 63 2885
2 563 563 133 2615
3 237 564 157 2217
4 223 256 182 1437
5 274 274 161 8171
6 189 190 99 1006
7 203 203 188 3652
8 112 112 175 1811

Table 10: Outer tabu experimental results medium sized problems.

136 JW Joubert & DJ Kotze

recorded as it allows the simulation to reach a steady state. The throughput for the third day is
then stored and used for analysis. The simulation is replicated 10 times and the average of the
throughput across the 10 replications is returned as the performance result for the line.

The local automotive plant is measured on daily output performance. Stability is crucial and the
line needs to achieve its targets daily. The current buffer allocation and line parameters results in
an average daily throughput of 239.7 units per day.

Using the TOCT inner tabu the optimal buffer configuration resulted in a daily throughput of
282.7 units per day. Reconfiguring the allocation of buffer increased the performance of the line
by 43 units from the initial state.

Front End Centre Floor Rear End

Buffer
index

Initial
BiBiBi size

Optimal
BiBiBi size

Buffer
index

Initial
BiBiBi size

Optimal
BiBiBi size

Buffer
index

Initial
BiBiBi size

Optimal
BiBiBi size

B0 2 2 B17 2 1 B26 4 1
B1 2 1 B18 2 1 B27 4 1
B2 2 1 B19 2 1 B28 2 1
B3 2 1 B20 2 1 B29 2 1
B4 2 1 B21 4 2 B30 2 2
B5 2 2 B22 4 2 B31 2 1
B6 2 1 B23 2 1 B32 4 2
B7 10 1 B24 2 1 B33 2 1
B8 2 1 B25 10 1 B34 4 1
B9 2 1 B35 4 1
B10 2 1 B36 2 1
B11 2 1 B37 10 1
B12 2 1
B13 2 1
B14 5 1
B15 2 1
B16 10 1

Table 11: Buffer allocation results production phase 1.

The objective function of the BAP for this article is achieving a specific throughput with the
smallest total buffer size. The proposed SBO method is used on a production line of a local
automotive manufacturer of luxury vehicles. A target throughput of 230 units per day needs to
be achieved by the line. The SBO method obtained a buffer configuration that resulted in 242.9
units per day with a total buffer size of 126. That is a reduction of 192 units in the total buffer
size. The algorithm required 3 hours and 55 minutes to finish. Table 11 and Table 12 show the
buffer allocation for the initial case study versus the optimal buffer allocation. None of the buffers
where reduced to 0 thus, the optimal buffer configuration is to have more small buffers among the
line than fewer large buffers. Some buffer locations (B47, B50, B52, B56) increased in size. The
case study shows that the proposed SBO method is able to solve the BAP for complex, realistic
lines.

5 Conclusion

In this study, we propose a SBO approach to solve the BAP for unreliable, heterogeneous serial
and non serial production lines. The objective is to achieve a desired throughput with the smallest
buffer size. The proposed approach uses DES designed specifically for the BAP as evaluative

Solving the BAP using SBO 137

Underbody Framing

Buffer
index

Initial BiBiBi
size

Optimal BiBiBi
size

Buffer
index

Initial BiBiBi
size

Optimal BiBiBi
size

B38 4 1 B45 16 1
B39 2 1 B46 3 3
B40 3 2 B47 1 3
B41 2 2 B48 2 2
B42 12 2 B49 2 1
B43 1 1 B50 1 2
B44 7 1 B51 12 2

B52 2 3
B53 2 1
B54 2 1
B55 19 1
B56 3 4
B57 50 1
B58 47 47

Table 12: Buffer allocation results production phase 2.

method and integrated TOCT as inner loop and TS outer loop as generative method. The TOCT
uses an alternative neighbourhood generation mechanism based on theory of constraints. The
proposed methods elements are tested on serial lines and finally applied to a case study.

The results on the experiments on the DES model show it can achieve similar throughput to that
of commercial software, with 0.84% difference in total throughput compared to SimioTM. DES
has a significant time advantage compared to SimioTM, for small-sized problems, SimioTM took
23 minutes compared to 19 seconds for DES, and 75 minutes for large problems compared to 1,5
minutes for DES. Initial experiments on simulation length and replication show that a balance
between solution quality and execution time for this problem can be achieved. Simulation length
of 10 000 and 200 replications are used. It must be noted that these values can be very problem
specific.

Experiments on the TOCT show that for small-sized problems the absolute error for TOCT in
comparison to CE was 0.88% versus the 0.30% for ATS. The significant difference between TOCT
and ATS is computation time. The ATS method took, on average, 18 times longer to execute.
Experiments also show that the metaheuristics solution stops improving long before the termination
criteria are met. For medium-sized problems the average error between the ATS method and TOCT
method is 1.68%. The ATS method takes 5.5 times longer to complete compared to TOCT. Large
sized problems the ATS method was computationally impossible to run, as well as experiments on
line with 40 machines and 400, 800 N could not be done with TOCT.

The proposed SBO method is capable of solving the BAP for objective two. For small sized
problems the final throughput achieved by the model is very similar to the objective. In ten of the
scenarios the model achieved the throughput at

⌈
N
2

⌉
of the starting N . In 14 of the scenarios, the

model achieved the required throughput with less than
⌈
N
2

⌉
of the starting N . With the large sized

problems, 3 scenarios 20.100.8, 20.200.2 and 20.200.8 was not successfully solved, for medium-sized
problems and remaining large-sized problems the model was able to achieve a required throughput
close to the target throughput. 45 scenarios was less than or equal to

⌈
N
2

⌉
, of the starting N . Only

three scenarios 20.100.8, 20.200.2 and 20.200.8 was not successfully solved. A higher throughput
is achieved with a total buffer size required bigger than

⌈
N
2

⌉
of the starting N .

The model can be adapted to non-serial lines. The automotive manufacturing plant is measured
on daily output performance. Solving the case study for objective one show that the throughput

138 JW Joubert & DJ Kotze

of the line can be increased from 239.7 unites per day to 282.7 units with the same total buffer
size. Solving it for objective two with a throughput target of 230 units per day, the throughout
was achieved with 242.9 units per day with total buffer size of 126, a reduction of the total buffer
size with 126. The algorithm required 3 hours and 55 minutes to finish.

The use of parallel implementation can have a significant improvement on the computational time
of the model and is another direction for future research.

References
[1] Altiparmak F, Dengiz B & Bulgak AA, 2007, Buffer allocation and performance modeling

in asynchronous assembly system operations: An artificial neural network metamodeling approach,
Applied Soft Computing Journal, 7(3), pp. 946–956.

[2] Amiri M & Mahtashami A, 2012, Buffer allocation in unreliable production lines based on design
of experiments, simulation, and genetic algorithm, International Journal of Advanced Manufacturing
Technology, 62(1–4), pp. 371–383.

[3] Battini D, Persona A & Regattieri A, 2009, Buffer size design linked to reliability performance:
A simulative study, Computers & Industrial Engineering, 56(4), pp. 1633–1641.

[4] Bulgak AA, 2006, Analysis and design of split and merge unpaced assembly systems by metamodelling
and stochastic search, International Journal of Production Research, 44(18/19), pp. 4067–4080.

[5] Burman MH, 1995, New results in flow line analysis, PhD Thesis, Massachusetts Institute of
Technology.

[6] Can B & Heavey C, 2011, Comparison of experimental designs for simulation-based symbolic
regression of manufacturing systems, Computers & Industrial Engineering, 61(3), pp. 447–462.

[7] Can B & Heavey C, 2012, A comparison of genetic programming and artificial neural networks in
metamodeling of discrete-event simulation models, Computers & Operations Research, 39(2), pp.
424–436.

[8] Chan FTS & Ng EYH, 2002, Comparative evaluation of buffer allocation strategies in a serial
production line, The International Journal of Advanced Manufacturing Technology, 19(11), pp.
789–800.

[9] Cruz FR, Van Woensel T & Smith JM, 2010, Buffer and throughput trade-offs in m/g/1/k
queueing networks: A bi-criteria approach, International Journal of Production Economics, 25(1).

[10] Demir L, Tunal S & Eliiyi DT, 2012, An adaptive tabu search approach for buffer allocation
problem in unreliable non-homogenous production lines, Computers & Operations Research, 39(7),
pp. 1477–1486.

[11] Demir L, Tunali S & Eliiyi DT, 2014, The state of the art on buffer allocation problem: A
comprehensive survey, Journal of Intelligent Manufacturing, 25(3), pp. 371–392.

[12] Demir L, Tunali S, Eliiyi DT & Løkketangen A, 2013, Two approaches for solving the buffer
allocation problem in unreliable production lines, Computers & Operations Research, 40(10), pp.
2556–2563.

[13] Dolgui A, Eremeev A, Kolokolov A & Sigaev A, 2002, A genetic algorithm for the allocation
of buffer storage capacities in a production line with unreliable machines, Journal of Mathematical
Modelling and Algorithms, 1(2), pp. 89–104.

[14] Jeong KC & Kim YD, 2000, Heuristics for selecting machines and determining buffer capacities in
assembly systems, Computers & Industrial Engineering, 38(3), pp. 341–360.

Solving the BAP using SBO 139

[15] Kolb O & Göttlich S, 2015, A continuous buffer allocation model using stochastic processes,
European Journal of Operational Research, 242(3), pp. 865–874.

[16] Köse SY, Demir L, Tunal S & Eliiyi DT, 2015, Capacity improvement using simulation
optimization approaches: A case study in the thermotechnology industry, Engineering Optimization,
47(2), pp. 149–164.

[17] Law AM, 2015, Simulation Modeling and Analysis, 5th Edition, McGraw-Hill Education, New York
(NY).

[18] Lee S, 2000, Buffer sizing in complex cellular manufacturing systems, International Journal of
Systems Science, 31(8), pp. 937–948.

[19] Nahas N, Ait-Kadi D & Nourelfath M, 2006, A new approach for buffer allocation in unreliable
production lines, International Journal of Production Economics, 103(2), pp. 873–881.

[20] Sabuncuoglu I, Erel E & Gocgun Y, 2006, Analysis of serial production lines: Characterisation
study and a new heuristic procedure for optimal buffer allocation, International Journal of Production
Research, 44(13), pp. 2499–2523.

[21] Spieckermann S, Gutenschwager K, Heinzel H & Voß S, 2000, Simulation-based optimization
in the automotive industry – A case study on body shop design, Simulation, 75(5), pp. 276–286.

[22] Tiacci L, 2012, Event and object oriented simulation to fast evaluate operational objectives of mixed
model assembly lines problems, Simulation Modelling Practice and Theory, 24, pp. 35–48.

[23] Vitanov IV, Vitanov VI & Harrison DK, 2009, Buffer capacity allocation using ant colony
optimisation algorithm, Proceedings of the 2009 Winter Simulation Conference, pp. 3158–3168.

[24] Yücesan E, Chen CH, Snowdon JL & Charnes JM (Eds), 2002, SSJ: A Framework for Stochastic
Simulation in Java, IEEE Press, Available from http://simul.iro.umontreal.ca/ssj/indexe.html.

[25] Zandieh M, Joreir-Ahmadi MN & Fadaei-Rafsanjani A, 2017, Buffer allocation problem
and preventive maintenance planning in non-homogenous unreliable production lines, International
Journal of Advanced Manufacturing Technology, 91(5–8), pp. 2581–2593.

http://simul.iro.umontreal.ca/ssj/indexe.html

