
Unsupervised classification of
simulated black hole shadows

By

MICAELA MENEGALDO

Department of Physics
UNIVERSITY OF PRETORIA

Submitted in fulfilment of the requirements for the de-
gree of MASTER OF SCIENCE (MSC) IN PHYSICS in the
Faculty of Natural and Agricultural Sciences.

February 24, 2022

Under the supervision of:
Prof. Roger DEANE

With co-supervisors
Dr. Jordy Davelaar
Prof. Heino Falcke

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 

http://www.johnsmith.com
https://www.up.ac.za/physics
https://www.up.ac.za/


i

UNIVERSITY OF PRETORIA

Abstract
Faculty of Natural and Agricultural Sciences

Department of Physics

Master of Science (MSc) in Physics

Unsupervised classification of simulated black hole shadows

by MICAELA MENEGALDO

Keywords: Black hole shadows; M87; GRMHD models; unsupervised machine
learning methods; self-organising maps, PINK

In April 2019, the Event Horizon Telescope (EHT) Collaboration released the
first image of a black hole (BH) shadow. Theoretical models that aim to describe
the environments of BHs are complex and highly-dimensional numerical sim-
ulations are often needed to outline the problem. While previous work has em-
ployed the use of machine learning (ML) algorithms to predict BH shadow model
parameters from image data, in this thesis, we assess the suitability of a particular
class of ML algorithms, namely self-organising maps (SOM), as a tool to classify
simulated BH shadow images. We employ the SOM network PINK, which spa-
tially compares visual input using a flip and rotation invariant similarity mea-
sure, to generate a set of representative BH shadow prototypes for a library of
simulated images. Using this and the clustered input data parameter distribu-
tions, we find that the shadow ring size, which is related to BH mass in the model,
is the dominant class determining factor of the images. Other model parameters,
especially those that influence the orientation of the shadow on the image plane,
were less influential on the clustering given PINK ’s flip/rotation invariance. De-
spite this, PINK may be useful in determining persistent image-plane features of
BH shadows for other model parameters, given a constant BH mass, to curate a
subset of meaningfully different models that can then be used in more advanced
analyses reducing the volume of data needing further consideration.
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Chapter 1

Introduction

In April 2019, The Event Horizon Telescope Collaboration released the first image
of a black hole (BH; The Event Horizon Telescope Collaboration, 2019a, hence-
forth Paper I). M87⇤, pronounced ’M87-star’, is the radio source associated with
the supermassive black hole (SMBH) found at the centre of elliptical galaxy M87,
located 16.8 ± 0.8 Mpc from Earth (Blakeslee et al., 2009; Bird et al., 2010; Cantiello
et al., 2018). The image was captured using the technique of Very Long Baseline
Interferometry (VLBI), synthesising telescopes from across the globe to form the
apparent Earth-sized telescope, the Event Horizon Telescope (EHT; The Event
Horizon Telescope Collaboration, 2019b, henceforth Paper II). At 1.3 mm, the
EHT was able to image M87⇤ on event horizon scales due to the instrument’s
superior angular resolution. Images of M87⇤ were reconstructed from four sepa-
rate days of observations completed in April 2017 (The Event Horizon Telescope
Collaboration, 2019c, henceforth Paper IV). The images, shown in Figure 1.1, de-
pict a ring-like structure with a dark central deficit of light (The Event Horizon
Telescope Collaboration, 2019e, henceforth Paper VI).

BHs environments are some of the most extreme in the Universe. Theoretical
models that aim to describe BHs are complex and typically span a large parameter
space, especially those generated by modern numerical simulations. Exploring
these models is key to improving our understanding of BHs (The Event Horizon
Telescope Collaboration, 2019d, henceforth Paper V).

1.1 Black holes

The existence of BHs is a fundamental prediction of general relativity (GR), a
gravitational theory developed by Einstein (1915). In GR, gravity is not a force
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Chapter 1. Introduction 2

FIGURE 1.1: Reconstructed images from the EHT 2017 observation run. Each image is
the average reconstruction from three different imaging methods for the given date.
The reconstructions are convolved with Gaussian kernels to achieve the same resolu-
tion across the methods, an FWHM of 20 µas, the size of which is shown in the bottom

right corner of the top image. Credit: EHT Paper I

but rather describes the interaction between mass and space-time geometry. An
object curves space-time and this distortion is seen as gravitational potential. The
curvature of space-time is proportional to an object’s mass, hence, high-mass ob-
jects cause a stronger gravitational field.

Schwarzschild (1916) solved Einstein’s GR field equations for a spherically
symmetric, non-rotating object. In his solution, an object is characterised by mass,
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Chapter 1. Introduction 3

M, and described by the Schwarzschild Radius

RS =
2GM

c2 (1.1)

where G is the gravitational constant and c is the speed of light (Schwarzschild,
1916). RS gives the position of the event horizon, a defining boundary of BHs. In-
side the event horizon, the escape velocity becomes > c so nothing, not even light,
can escape the BH’s gravitational field within this boundary (Schwarzschild, 1916).

The Kerr (1963) Metric describes a rotating BH without charge in GR space-
time. A BH is characterised by mass, M, and angular momentum, J. The event
horizon of a Kerr BH is smaller than for a Schwarzschild BH, making energy
extraction more efficient as matter can orbit closer to a Kerr BH.

BHs are found to exist in two main mass populations: stellar-mass BHs, which
are the result of high mass (M > 8 M�1) star core collapses (e.g. Neugebauer,
2003); and SMBHs, which have masses in the range M ⇠ 106 � 1010 M�. SMBHs
are thought to exist at the centre of every galaxy (e.g. Kormendy and Richstone,
1995; Miyoshi et al., 1995).

As BHs cannot be directly observed, evidence for their existence has been pro-
vided in alternative ways. We describe two here.

Gillessen et al. (2009) tracked the orbits of stars in the neighbourhood of Sgr A⇤,
the SMBH at the centre of the Milky Way, from 1992 to 2008 to determine the grav-
itational field within which they orbit. From the stellar dynamics, they calculated
that a mass of approximately 4.31⇥ 106 M� exists at the galactic centre.

More recently, gravitational waves, originating from two coalescing solar mass
BHs, were detected. Abbott et al. (2016) reported the two BHs to have initial
masses of ⇠ 36 M� and ⇠ 29 M�. The resultant BH mass, post-merger, is stated
as ⇠ 62 M�. About 3 M� worth of energy was radiated away as gravitational en-
ergy during the merger. The gravitational waves produced were detected by the
Laser Interferometer Gravitational-Wave Observatory (LIGO). This result was the
first detection of its kind and confirms the existence of gravitational waves from
GR.

1M� is a solar mass and is the mass of the Sun = 2 ⇥ 1030 kg
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Chapter 1. Introduction 4

FIGURE 1.2: Incident photons from infinity approach a non-rotating black hole with
impact parameter b. This determines the worldline of a photon based on the distance
at which it approaches a BH. b = Rc is the photon ring orbit radius. Credit: Bisnovatyi-

Kogan and Tsupko (2017)

1.1.1 The Photon Ring Around a Black Hole

Another phenomenon resulting from the curvature of space-time by high-mass
objects is gravitational lensing (Einstein, 1915). Light follows the curvature of
space-time, and so, in 3D it appears to bend where there is curvature. In regions
near BHs, the curvature is so large that photons can bend and orbit around the
BH, creating the so-called photon ring (Hilbert, 1917).

Figure 1.2 depicts the path of a photon approaching a non-rotating BH. The
BH has a photon ring, indicated as the photon sphere in the figure, at

Rc =
p

27 rg, (1.2)

where rg is the characteristic length scale of a BH given by

rg ⌘ GM
c2 . (1.3)

Equation 1.2 gives the radius of the only circular orbit around a Schwarzschild
BH. From Equation 1.1, it follows that RS = 2rg, indicating the photon ring is at a
larger radius than the event horizon (Teo, 2003).

Rc determines the worldline of a photon approaching a BH with impact pa-
rameter b. Photons are captured by the BH if b < Rc; escape to infinity if b > Rc;
and, in principle, orbit the BH if b = Rc (Hilbert, 1917).

A Schwarzschild BH has only one photon ring for a given observer, however,
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Chapter 1. Introduction 5

a Kerr BH has an infinite number of photon rings. Photons may be captured on
one of these unstable orbits and exit at a later stage, making it possible to observe
the light that originates from this region (Johnson et al., 2020; Bronzwaer and
Falcke, 2021).

1.1.2 The Local Black Hole Environment

A schematic of the local environment of a BH is shown in Figure 1.3. Here, the
BH is viewed edge-on, so the accretion disk is perpendicular to the viewing plane.
This figure provides a composite view of the features of a BH.

The accretion flow consists of plasma moving near c. Its emission is lensed
from behind the BH, leading it to appear above and below the central depres-
sion. The depression is known as the BH shadow (Falcke, Melia, and Agol, 2000;
Narayan, Johnson, and Gammie, 2019; Bronzwaer and Falcke, 2021).

Doppler beaming is a viewing effect observed when matter is moving at rel-
ativistic velocities as in the accretion disk. As depicted in Figure 1.3, the matter
moving away from the viewer is Doppler diminished and appears dimmer, while
the matter moving towards the viewer is Doppler boosted and appears brighter.
This is argued to be the cause of the apparent asymmetrical brightness of the ring
seen in Figure 1.1.

The photon ring is made up of multiple photon orbits which become thinner
and fainter moving towards the BH. Photons can orbit the BH on these rings
several times before escaping and reaching the observer.

For M87⇤ at 1.3 mm, the diameter of the emission ring was found to be 42 ±
3 µas (Paper I). Previous VLBI studies at 1.3 mm similarly found that, for M87⇤,
the emission region would have a diameter ⇠ 40 µas (Doeleman et al., 2012;
Akiyama et al., 2015). This diameter is consistent with the predicted shadow
diameter and the BH mass estimate from stellar dynamics (Macchetto et al., 1997;
Gebhardt and Thomas, 2009; Gebhardt et al., 2011; Walsh et al., 2013).

1.1.3 Active Galactic Nuclei

Active Galactic Nuclei (AGN) are active SMBHs that produce high luminosities.
The most luminous objects in the universe are a class of AGN known as quasars
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Chapter 1. Introduction 6

FIGURE 1.3: Schematic of a BH viewed edge-on. Light from the accretion disk is lensed
from behind the BH to form a ring shape around the central depression. The photon
ring, which consists of multiple unstable orbits from which photons can escape, sur-
rounds the BH shadow. The relativistic plasma in the accretion disk is dimmed (bright-
ened) when moving away (towards) the viewer due to Doppler beaming, causing an
asymmetric ring brightness. Credits: NASA’s Goddard Space Flight Center/Jeremy

Schnittman

(Schmidt, 1963; Sanders et al., 1989). Their luminosity is due to the SMBH accret-
ing material at a high rate from a geometrically thin and optically thick circum-
nuclear accretion disk (Shakura and Sunyaev, 1973; Sun and Malkan, 1989). AGN
found in the local Universe, including Sgr A⇤ and M87⇤, are low luminosity AGN
(LLAGN) and their accretion is associated with a hot, tenuous accretion flow at a
much lower rate (Ichimaru, 1977; Blandford and Begelman, 1999).

AGN are often seen to have jets of relativistic plasma emanating from their
cores. These can extend from parsec (pc) to megaparsec (Mpc) scales. The jets are
thought to be powered either by accretion (Blandford and Payne, 1982) or by the
magnetic field extracting rotational energy from the BH (Blandford and Znajek,
1977).

In Figure 1.4, five radio images of M87⇤ at different wavelengths and scales are
depicted. From left to right, the figures show: (a) the extended structure of M87
which spans ⇠ 80 kpc (Owen, Eilek, and Kassim, 2000); (b) the M87⇤ jet and radio
lobes from within the red region of the previous image, extending ⇠ 6 kpc (Livio,
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Chapter 1. Introduction 7

FIGURE 1.4: Radio images of M87 from the outer radio lobes to the inner jet launching
region. From left to right: (a) the large radio lobes, formed by jet interactions with
the intergalactic medium, spanning ⇠ 80kpc; (b) a highly collimated jet and radio
lobes within the red region of (a) spanning ⇠ 6kpc; (c) the core and inner jet spanning
⇠ 35pc; (d) the innermost jet spanning ⇠ 5.5pc; (e) the jet launching region near the
central SMBH spanning ⇠ 0.08pc. Figure reproduced from Blandford, Meier, and
Readhead (2019). Image credits: (a) NRAO, 90 cm VLA (Owen, Eilek, and Kassim,
2000); (b) NRAO, 20 cm VLA (Livio, 1997); (c) NRAO, 20 cm VLBA (Cheung, Harris,
and Stawarz, 2007); (d) NRAO, 7 mm VLBA (Walker et al., 2018); (e) 3 mm global VLBI

network (Kim et al., 2018).

1997); (c) the core and inner jet of M87⇤, which span ⇠ 35 pc (Cheung, Harris,
and Stawarz, 2007); (d) the innermost jet of M87⇤, extending across ⇠ 5.5 pc,
and dimmed counter-jet (Walker et al., 2018); and (e) the jet, with base diameter
⇠ 4.0 � 5.5 RS and length ⇠ 1.0 µas ' 0.08 pc ' 140 RS, launching in the region
of the central SMBH (Kim et al., 2018). These images illustrate that jet launching
occurs on horizon scales near the central SMBH in M87.

1.1.4 Simulations of Emission Around a Black Hole

Comparing theoretical BH models with observations is required to extract infor-
mation and meaning from real data. To model a Kerr BH, the 3D dynamics of
magnetised plasma moving relativistically near a rotating BH need to be deter-
mined. This is a complex problem, and analytical solutions only exist for simpli-
fied cases, such as for Schwarzschild (non-rotating) BHs (Schwarzschild, 1916).
General relativistic magnetohydrodynamic (GRMHD) simulations, the equations
of which couple GR curved space-time and energy conservation laws, can numer-
ically model this problem (e.g. Dexter, McKinney, and Agol, 2012; Mościbrodzka,
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Chapter 1. Introduction 8

FIGURE 1.5: Left panel: M87⇤ as imaged by the EHT in 2017. Middle panel: a GRMHD
model of a BH shadow. Right panel: The GRMHD model blurred with a 20 µas FWHM
Gaussian beam. The true M87⇤ image and the blurred GRMHD image are comparable.

Credit: EHT Paper I

Falcke, and Shiokawa, 2016; Mościbrodzka et al., 2017).
GRMHD simulations of M87⇤ for different physical models typically produce

images of an emission ring with asymmetric brightness around a dark central
deficit (Paper V). Simulating a variety of models with varying input parameters
gives insight into how the parameters impact the resultant ring morphology.

Figure 1.5 illustrates the importance of comparing theoretical and intrinsic
data. In the figure, three depictions of a BH shadow are shown: the first is the re-
covered source structure from the 2017 EHT observation; the second, a GRMHD
model image; and the third is the GRMHD model image blurred to the nominal
angular resolution of the EHT. The intrinsic observation and blurred simulated
image look similar even though the (unblurred) GRMHD BH ring shows a com-
plex structure.

The GRMHD simulations in Paper V are characterised by two parameters; a⇤,
a dimensionless spin parameter, and f, the dimensionless magnetic flux across
the event horizon (Tchekhovskoy, Narayan, and McKinney, 2011; Porth et al.,
2019). Both parameters describe the state of the disk accretion flow.

a⇤ is defined as
a⇤ ⌘ Jc

GM2 (1.4)

where J, c, G and M are as previously defined. a⇤ is restricted to �1 < a⇤ <

1. For a non-rotating BH, a⇤ = 0, and, for a maximally spinning BH, |a⇤| = 1.
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Chapter 1. Introduction 9

FIGURE 1.6: GRMHD simulations of a BH in a SANE magnetism environment. Each
1.3 mm image is time-averaged; a⇤ increases from left to right, Rhigh from top to bot-
tom. The inclination is constant at i = 163°. The colour scale is linear. The jet ap-
proaching Earth is on the right in all images. The arrow indicates the direction of the
BH spin vector projected onto the plane of the sky; pointing right indicates the BH is
rotating in an anticlockwise direction, pointing left, a clockwise direction. The image
resolution is 20 times finer than that of the EHT. Credit: The Event Horizon Telescope

Collaboration Paper V

a⇤ < 0 indicates that the angular momentum of the accretion disk and BH are
anti-aligned. For a⇤ > 0, the momentum of the accretion disk and BH are aligned.

The dimensionless magnetic flux, f, is defined as

f =
Fq
Ṁr2

g

(1.5)

where F is the magnetic flux across the event horizon, Ṁ the mass accretion rate
and rg is as defined in Equation 1.3.

The magnetism state of the accretion flow can be SANE (Standard and Normal
Evolution; Narayan et al., 2012) with f ⇠ 1, or MAD (Magnetically Arrested Disk;
Narayan, Igumenshchev, and Abramowicz, 2003) with f ⇠ 15. SANE accretion
flows are a result of a smaller initial magnetic field model than MAD flows in the
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Chapter 1. Introduction 10

FIGURE 1.7: The same as 1.6 but realised in a MAD magnetism environment. Credit:
The Event Horizon Telescope Collaboration Paper V

GRMHD BH simulations.
At 1.3 mm, the bulk of the emission observed is believed to be from syn-

chrotron emission. Synchrotron emission is dependent on the electron distribu-
tion of the emitting plasma. Within the GRMHD BH simulations, the accretion
material is considered to consist of non-relativistic ions, with temperature Ti, and
relativistic electrons, with temperature Te.

While Ti is given within the GRMHD simulations, Te is dependent on the
magnetisation of the plasma (Mościbrodzka, Falcke, and Shiokawa, 2016). The
ratio of these temperatures is given by

R ⌘ Ti/Te = Rhigh
b2

p

1 + b2
p
+

1
1 + b2

p
, (1.6)

where bp = Pgas/Pmag and Pmag = B2/2, where P is power and B is the magnetic
field strength of the source (Mościbrodzka, Falcke, and Shiokawa, 2016; Paper I;
Paper V). In the highly magnetised regions of the flow, Ti and Te are assumed to
be equal while these can differ in the gas dominated regions.

Equation 1.6 is characterised by one parameter, Rhigh, which indicates the
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Chapter 1. Introduction 11

FIGURE 1.8: The orientation of the ring asymmetry on the sky depends on a⇤, the BH
spin, and i, the angle between the disk angular momentum vector and the line of sight.
The bright flux is caused by plasma moving towards the observer so that it is Doppler
boosted. In the figures, the blue ribbon represents the direction of the disk rotation
and the black ribbon represents the BH spin direction. Across each column the rings
look similar; this reflects the degeneracy with respect to the two geometric parameters

a⇤ and i. Credit: The Event Horizon Telescope Collaboration Paper V.

region that produces the bulk of the observed emission (Mościbrodzka, Falcke,
and Shiokawa, 2016; Mościbrodzka et al., 2017; Davelaar et al., 2018; Paper V)
which is either from the weakly magnetised regions (small Rhigh, Te ⇡ Ti/Rhigh)
or strongly magnetised regions (large Rhigh, Te ⇡ Ti).

Other parameters included in the GRMHD simulations are inclination, i, and
position angle, PA. i is the angle between the accretion flow angular momen-
tum vector and line of sight; PA is the angle, East from North, of the accretion-
flow momentum vector projected onto the sky. For an observer, this is counter-
clockwise on the image plane (Paper V).

Figures 1.6 and 1.7 show images of GRMHD BH simulations for SANE and
MAD flow, respectively. These figures establish the influence Rhigh and a⇤ have
on the observed ring structure. In these figures, i is constant at 163°.

In SANE models (Figure 1.6), most of the emission comes from the weakly
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Chapter 1. Introduction 12

magnetised region (the disk) when Rhigh is small, and from the strongly magne-
tised region (the jet) when Rhigh is large. This results in extended emission outside
the photon ring for low Rhigh and inner ring emission when Rhigh is high. MAD
models are unaffected by changes in Rhigh as all regions are strongly magnetised
and the bulk of the emission comes from the disk (Figure 1.7; Paper V).

The bright region observed in the ring is caused by Doppler beaming. For
both MAD and SANE accretion flows, the location of this region changes with a⇤.
In Figures 1.6 and 1.7 the bright section of the ring is at the top of the ring when
a⇤ > 0, at the bottom when a⇤ < 0 and the rings look symmetric when a⇤ = 0.2 This
indicates that the peak flux location is influenced by the BH spin.

In addition to a⇤, ring asymmetry is influenced by i. Ring asymmetry is insen-
sitive to small changes in i but does depend on whether i is above or below 90°.
This is illustrated in Figure 1.8 (Paper V).

1.1.5 Summary

In the previous section, we demonstrated how the GRMHD BH model parame-
ters change a BH shadow’s appearance. In the simulations, we can view these en-
vironments in great detail and can identify differences between the finer structure
of models. In reality, however, achieving clarity to such a degree is not possible.

This challenge is exemplified in Figure 1.9; three BH GRMHD models, un-
blurred (top row) and blurred to the nominal resolution of the EHT (bottom row),
are shown. The structure of emission inside and outside of the ring can be dif-
ferentiated between the top models, but these differences are not evident in the
blurred images. The bottom row of rings are morphologically similar as the finer
ring structure is lost.

The loss of detail, which is a result of limited observing capabilities, intro-
duces uncertainty into the deductions that can be made from EHT images. This
is a motivating factor for exploring an extensive model dataset, even if some mod-
els are unphysical.

In the following section, we give a brief overview of radio astronomy and the
techniques used to improve images’ resolutions.

2This pattern is true for all except for SANE models with Rhigh = 1 where the bright region will
always be at the bottom of the ring when i > 90° (Paper V)
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Chapter 1. Introduction 13

FIGURE 1.9: Top: GRMHD simulation snapshots for three different BH models. Three
parameters have been varied; the accretion flow magnetism state, a⇤ and Rhigh. Bot-
tom: the top row images simulated through a VLBI pipeline set to mimic the EHT
2017 observation conditions. Visible morphological differences are present between
the model snapshots in the top row. Once these are blurred to the resolution of the
EHT, the models look similar. This emphasises the need to explore a variety of mod-
els as multiple fit the 2017 result. Credit: The Event Horizon Telescope Collaboration

Paper I

1.2 Radio Astronomy

Radio waves span a wide frequency range, from 10 MHz to 1 THz. This corre-
sponds to wavelengths of 0.2 mm to hundreds of meters, making radio waves
mostly unaffected by cosmic or atmospheric dust extinction. However, in the
mm-regime, radio waves are affected by absorption and scattering that occurs in
the Earth’s atmosphere. These effects are not explored further in this thesis but
are an important consideration for future analyses of this sort.

The specific intensity of a source at frequency v is given by Iv. Iv is indepen-
dent of distance to the source and has units of W m�2 Hz�1 sr�1. Iv is the measure
of the emission per unit area, per unit time, per unit solid angle at v as seen by
the observer. Iv can also be expressed in units of Jansky (Jy) as Jy sr�1 where
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Chapter 1. Introduction 14

1 Jy= 10�26 W m�2 Hz�1.
A source’s radio strength is measured in terms of flux density, Sv, and is the

integral of Iv over all directions. Hence, Sv is given by

Sv =
Z

Iv(q, f) cos qdW (1.7)

which has units of Jy and is proportional to the inverse of the square of the dis-
tance to the source. Sv is therefore the power of a source radiated at frequency v
per unit area of a detector. A typical radio source will have Sv of the order of 1 Jy.

Integrating Sv over a sphere gives the specific luminosity, Lv, which is the
power of the source at frequency v. This value is intrinsic to a source. Lv is
defined as

Lv =
Z

Sv(R, q, f)R2dW (1.8)

where R is the radius of the sphere.
Iv is defined by the Planck function. When hv << kBT, we use the Rayleigh-

Jeans approximation of the Planck function, given by

Iv = Bv ⇡ 2 kB TB v2

c2 , (1.9)

where kB is the Boltzmann constant, TB is the brightness temperature of the source
and h and T are the Planck constant and physical temperature of the source re-
spectively (Rybicki and Lightman, 1979). Rearranging for TB gives

TB(v) =
Iv c2

2 kB v2 , (1.10)

which is independent of distance.
TB is not necessarily a measure of a physical temperature. This follows from

the approximation made in Equation 1.9 for a thermal emitter. Since radio sources’
radiation is often from non-thermal emissions, such as synchrotron radiation, TB

is the temperature required for a source to produce the specific intensity from
thermal radiation processes (i.e. if it were a blackbody.)

At 1.3 mm, M87⇤ has a high brightness temperature, in the range ⇠ 1⇥ 1010 K
(Akiyama et al., 2015; Paper IV). This is the peak brightness temperature of the
ring in the left panel of Figure 1.5.
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Chapter 1. Introduction 15

1.2.1 Interferometry

In this section, we give an overview of interferometry. As the EHT is an inter-
ferometric telescope, it is important to highlight the methods of this technique.
However, in the proceeding chapters, interferometric effects are not considered
as they are beyond the scope of this thesis as we aim solely to explore an already
highly-dimensional BH dataset with a novel technique. Including the interfero-
metric effects will be of interest for future work.

The maximum angular resolution a telescope can achieve, q, is defined as

q ⇠ l

D
, (1.11)

where l and D are the wavelength of the incoming signal and diameter of the
receiving antenna, respectively. Improving q is desirable as a telescope with a
superior angular resolution captures the finer structure of a source.

As radio waves are the longest waves on the electromagnetic spectrum, creat-
ing dishes that are sufficiently large to achieve high angular resolutions present
insurmountable engineering and mechanical problems. To overcome these limi-
tations, telescopes are synthesised to form radio interferometers that have appar-
ent diameters needed to achieve desired angular resolutions.

An interferometer consists of multiple receiver antennas at various distances
from each other. The distance between any two antennas in an array is known
as a baseline. An interferometer has an apparent dish diameter that is the length
of the longest baseline. Hence, q in Equation 1.11 is no longer limited by the size
of an individual dish but rather is dependent on the distance between the two
furthest antennas (Synthesis Imaging in Radio Astronomy II 1999), to the first order.
Some interferometers have baselines spanning entire continents, or even across
oceans. These use a technique called Very Long Baseline Interferometry (VLBI),
with some having angular resolutions of milli-arcseconds and even µas.

Antennas convert electromagnetic wavefronts into voltages. A pair of spa-
tially separated antennas p and q measure voltages vp and vq. Each voltage, v,
is a vector with two components, a and b, which correspond to the polarisation
orientation of the antenna.

Voltages are amplified before being sent to a correlator for processing. Pair-
wise signals are combined and interfered by multiplying voltages together and
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Chapter 1. Introduction 16

integrating over time. Through this process, the correlator produces four correla-
tions that form the visibility matrix, Vpq,

Vpq = 2

0

B@

D
vpav⇤qa

E D
vpav⇤qb

E

D
vpbv⇤qa

E D
vpbv⇤qb

E

1

CA = 2
D

vpvH
q

E
(1.12)

where angled brackets indicate averaging over some time and frequency bin, x⇤

is the complex conjugate of x and H is the Hermitian transpose operator.
For an N element interferometer, there are N(N�1)

2 independent baselines.
Each baseline can be described by vector b = (u, v, w) where u and v are the
projected length of the baseline as seen at the source in the West (u) and South
(v) directions and w is in the direction of the source which is perpendicular to the
u, v-plane.

The visibility of a baseline, Vu,v, is a complex representation of the antennas’
response to the incoming signal. It is given by the Van Cittert-Zenike Theorem
(van Cittert, 1934; Zernike, 1938) as

Vu,v =
Z Z

I(l, m)e�i2p(ul+vm) dl dm. (1.13)

An interferometer records visibilities, or correlations, which, in the absence of
other instrumental effects, represents spacial coherency. If I(l, m) is the sky bright-
ness distribution in the (l, m) or image-plane, by measuring the spatial correlation
of the incoming signal in an array, we can sample, and in principle recover, the
source brightness distribution by taking the Fourier Transform of Equation 1.13
(Bracewell, 1965).

The above is a simplistic description of correlation. This process actually
requires highly complex calculations and is computationally expensive but has
been included for completeness.

The Event Horizon Telescope

The image of M87⇤ in Figure 1.1 was captured with the EHT, a VLBI array consist-
ing of mm- and sub-mm-telescopes from across the globe. The 2017 EHT array
included 8 stations. The locations of these are shown in Figure 1.10 with baselines
indicated.
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Chapter 1. Introduction 17

FIGURE 1.10: Geographical locations of the eight telescopes included in the EHT 2017
array. The solid lines are the baselines of pairwise telescopes; the dotted lines are the
baselines of pairwise telescopes of the calibration source, 3C279. Credit: The Event

Horizon Telescope Collaboration Paper II

The EHT synthesised an Earth-sized telescope that, at the observational wave-
length of 1.3 mm, enabled it to achieve an angular resolution of 25 µas. This is
the resolution needed to view M87⇤ on event horizon scales (Paper II). However,
the limited instrumental resolution resulted in the blurred ring structure seen in
Figure 1.1 (Paper II).

1.2.2 Summary

The overview of radio astronomy and interferometry we have conveyed in this
section serves to provide the reader with a broad understanding of the field and
emphasise the complex nature of recovering the shadow image of M87⇤ in Fig-
ure 1.1. These observational and technological complexities, combined with theo-
retical data and the products thereof, generate an extensive parameter dataspace
requiring analysis. Using tools to constrain the scope of this space and identify-
ing data of significance may prove invaluable given the increasing rate at which
data is being produced, and hence, needing effective and efficient processing.
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Chapter 1. Introduction 18

FIGURE 1.11: A schematic of an artificial neural network (ANN). The network receives
input(s) which are passed to the nodes in the first network layer. Each connection has a
certain weight. w11 is the weight of the connection between Input 1 and Node 1. Each
node then calculates a result from the inputs based on the weight of each connection.
This result is then passed on to the node(s) in the following network layer and the
process continues. After moving through all the layers, the network will produce a

result consisting of any number of outputs.

1.3 Unsupervised Machine Learning

Machine learning (ML) is a branch of artificial intelligence that utilises computa-
tional analysis to build a model based on some observed data. By analysing the
given data through a number of iterations, the model improves, learning through
practice. The model is both a conjecture regarding the world of the data and can
be used to solve problems (Russell and Norvig, 2021).

ML algorithms are employed to analyse and generate models for data because
the designers do not necessarily know all the eventualities that the model may
encounter and/or how to programme a possible solution to a problem (Russell
and Norvig, 2021).

The algorithm used to produce a model learns from a set of training data.
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Chapter 1. Introduction 19

Training can either be once-off, generating a fixed resultant model, or done con-
tinuously, which allows the model to change and adapt as it processes new infor-
mation throughout its lifetime. While the resultant model can change, the algo-
rithm used to build it cannot.

To produce a satisfactory model, the training data must fully represent the
data population. If biases exist within the training data, the ML algorithm will
build these into the model, which will, in turn, influence the solution(s) the model
produces. So, even though the algorithm itself is unbiased, using biased data
for training will skew the learning which leads to inaccurate outcomes from the
trained model.

Broadly, ML algorithms can be classified as either supervised or unsuper-
vised. Supervised algorithms determine a mapping function between a given set
of inputs and known outputs, i.e. they determine the relationship between input
and target data. An example would be finding the best fit function parameters
for a given set of data points with (x; y) coordinates.

Unsupervised algorithms only receive inputs, for example, x coordinates, with-
out any output information. They use the inputs to describe the structure or fea-
tures of the data. An example of this is clustering; data is divided into smaller
groups based on similarity. The similarity metric is explicitly defined but how
the clusters are partitioned out of the population as a whole is discovered through
iterative analysis of the data.

An artificial neural network (ANN) is a type of ML algorithm structure. An
ANN consists of a network of nodes that are interconnected. Each connection has
a certain weight, or impact, on the resultant model built by the algorithm. ANNs
often have multiple layers and information moves through them in one forward
direction. The basic structure of such a network is shown in Figure 1.11.

In training ANNs, the initial weights of each connection are typically ran-
domised. This will give a bad initial resultant model, but, as the algorithm iter-
ates over the training data, the connection weights will be adjusted to produce a
network with higher accuracy.

Essentially, an ANN node is a mathematical function that takes inputs from
nodes in the preceding network layer and produces a result based on the weight
of each connection. This is then forwarded to nodes in the following network
layer. Hence, a neural network produces a result based on the impact of a varying
number of connections from given inputs.
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1.3.1 Self-Organising Maps

A self-organising map (SOM), also known as a Kohonen map, is a type of un-
supervised ANN algorithm primarily employed as a dimension reduction tool
(Kohonen, 1998). It produces low-dimensional, often 2D, representations of high-
dimensional input spaces. In some cases, it can be a useful anomaly detection tool
in conjunction with other techniques. A SOM typically consists of a single layer
of nodes in either a square or hexagonal shape with each node representing a
prototype of the data.

A prototype is a representative description of a class of objects from the data.
This class will have similar attributes and the prototype portrays these, typifying
the class.

SOMs use a competitive training technique to maintain the structure of the
input data. This training style uses a similarity measure D(y, wj) to assess the
likeness between each input yi and each node which is defined by its weight
vector wj. The smaller the similarity measure, the higher the similarity between
the input and node. The inverse is also true.

The node most like an input, i.e. wj such that D(y, wj) is minimised, is consid-
ered the ’winning’ node or the best matching unit (BMU) for the given input and
training iteration. After a training iteration, the weights of the nodes are updated
to optimise (i.e. minimise) the similarity measures between inputs and their cor-
responding BMUs. These updates are not done in isolation; the weight vectors of
other nodes in the map are also adjusted, the severity of which is dependent on
its distance to the BMU for a training data point. The formalisation of this can be
found in Section 2.2.

Post-training, each node represents a derived prototype of a subset of the data.
These nodes exist in the latent space of the data. The latent space is a multi-
dimensional space containing ’hidden’ variables that are not directly observable
in the data but meaningfully encompass the observable characteristics. These
spaces can drastically reduce the number of variables to consider when faced
with a problem (Russell and Norvig, 2021).

The nodes represent a compression of the data. Each node resides at a certain
position, cj, in the map and will be most similar to the others in its locale. This
provides a spatial ordering of the nodes based on similarity.
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Chapter 1. Introduction 21

FIGURE 1.12: Pictures of a star placed at different locations in the image plane. A
traditional ML algorithm will not be able to assess these images as being of the same

object. PINK solves this by using a rotation and flip invariant similarity measure.

Finally, the data is mapped to the SOM. The similarity measures between in-
puts yj and nodes wj are calculated. yj is mapped to node wj for the minimum of
D(y, wj). The winning node best represents the data. As a result, similar data will
be mapped to the same node, forming classes of similar objects (Teuvo, 2001).

The competitive training algorithm needs a large training set, often as large
as the dataset to be analysed, and multiple training iterations to produce a satis-
factory model. SOM training is affected by the ordering of the training data, the
number of data patterns in each (unknown) prototype class, the similarity mea-
sure used and the number of training iterations completed. Finely tuning these
parameters so that a satisfactory model is produced is imperative for this class of
algorithms.

1.3.2 Parallelized rotation/flipping INvarient Kohonen maps

Polsterer et al. (2016) built the Parallelized rotation/flipping INvarient Kohonen
maps algorithm, PINK, as a parameter reduction and classification tool for 2D
images. Motivated by crowd-sourced classification projects, and the need for
scale and objectivity for upcoming astronomical surveys with expected catalogue
sizes in excess of 109, Polsterer, Gieseke, and Igel (2015) endeavoured to create
an unsupervised ML algorithm with the visual pattern-recognition capabilities
needed to classify such surveys.
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FIGURE 1.13: A flipping and rotation of images are conducted to calculate the
most accurate similarity measure between images and nodes in PINK. On the
left, FIRSTJ075843.0+611936 is flipped; on the right, FIRSTJ072529 is rotated
through 360°. Images are from the Radio Galaxy Zoo project from the FIRST survey

(Becker, White, and Helfand, 1994). Credit: Polsterer, Gieseke, and Igel (2015).

FIGURE 1.14: Hexagonal SOM of 331 nodes produced by PINK trained on 2 ⇥ 105 Ra-
dio Galaxy Zoo images. The image on each node represents a prototype of a class from
the data. There are obvious groups of nodes showing similar characteristics across the

map. Credit: Polsterer, Gieseke, and Igel (2015)
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FIGURE 1.15: Hexagonal SOM produced by PINK trained on 2 ⇥ 105 Radio Galaxy
Zoo images, as in 1.14. Groupings of nodes that display prototypes with similar char-
acteristics are indicated. By classifying the 331 prototypes, the objects in each class are
also classified as they are similar to the prototype. Credit: Polsterer, Gieseke, and Igel

(2015)

Even though this appears to be a simple classification problem, it is made
challenging by ML algorithms’ poor spatial comparison capabilities. Humans
are adept at this sort of comparison, performing various transformations on im-
ages to compare the key visual attributes without needing specific instruction.
However, for ML algorithms, these transformations have to be applied to the in-
put images, either before or during processing, to increase the accuracy of the
similarity calculations and subsequently built model.

As a comparative example, consider the two images of a star in Figure 1.12.
The stars are the same except they are at different locations in the image plane. A
human will easily recognise that these are two images of the same object, how-
ever, a traditional ML algorithm will see these as completely different objects
because they are not at the same location in both images. To reduce the effect
image-plane differences may have on training and mapping a PINK SOM, the
data is pre-processed ensuring the input images are of the same dimension, the
target of interest is centred and the background noise removed.
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During training and mapping, PINK calculates the similarity measure for
each input for multiple rotations and flips of the image to reduce the impact im-
age geometry may have on this metric. In Figure 1.13, the image flip and rotation
transformations are visualised (Polsterer et al., 2016). The lowest similarity mea-
sure from the set for the different image realisations determines the winning node
for the given input.

As an example to assess the usability and capability of PINK, Polsterer et al.
(2016) tested the framework with data consisting of 2 ⇥ 105 images from Radio
Galaxy Zoo (RGZ).3 RGZ is a crowd-sourced citizen science project utilising thou-
sands of volunteers to classify radio images of galaxies in the search for BHs. The
project started in December 2013 and is ongoing.

The PINK SOM was set to have a hexagonal shape with 21 nodes across each
diagonal resulting in a total of 331 nodes. The trained SOM is shown in Fig-
ure 1.14. Each node depicts a prototype of a class of galaxies from the data.
Groups of prototypes with similar characteristics are found in the same locale;
some of these have been identified in Figure 1.15.

In classifying the prototypes, all other images in the node’s class are classified.
This drastically reduces the number of objects to be inspected for classification
from the size of the entire dataset (2 ⇥ 105 in the RGZ test case) to a few repre-
sentative images (331 in Figure 1.14). Images with a large similarity measure to
their class prototype are easily identified for further study. These are possibly
interesting objects that are not well represented by the prototypes in the map.

The RGZ example exhibits the power of SOMs as a dimensionality reduction
tool. It also demonstrates how using ML in certain science applications can save
time and focus attention on objects of potentially greater interest.

1.3.3 Possible Applications of Machine Learning for the Event
Horizon Telescope

In presenting the EHT results, Paper I reported the BH parameter constraints
made from the observations. The emission region diameter was measured as
42 ± 3 µas, which is consistent with previous non-imaging constraints at 1.3 mm
(Doeleman et al., 2012; Akiyama et al., 2015). For the adopted distance of 16.8 ±

3https://radio.galaxyzoo.org/
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0.8 Mpc, the BH mass was found to be M = 6.5 ± 0.7 ⇥ 109 M� which is in agree-
ment with the stellar dynamics measurement in Gebhardt et al. (2011). Details
of the image-plane and visibility-plane model fitting and parameter estimation
techniques used can be found in Papers IV and VI.

The BH mass result was determined using both the visibility data (Paper VI)
and the ring diameter calculated from the image domain (Paper IV). Because of
the image quality, no other BH parameters could be reliably derived from the
observations. Determining additional characteristics, such as the ring width and
asymmetric deficit contrast, are motivating factors for upcoming work.

The potential GRMHD BH simulation parameter space is highly dimensional.
ML techniques may provide useful to explore this problem. Below we present the
work from two papers, namely van der Gucht et al. (2020) and Yao-Yu Lin et al.
(2020), that considered using ML methods for GRMHD BH data analysis.

DEEP HORIZON; a Machine Learning Network that Recovers Accreting Black
Hole Parameters

van der Gucht et al. (2020) built an ANN, DEEP HORIZON, with the purpose of
recovering parameter values from BH GRMHD shadow images. The algorithm
consisted of two networks: (1) a regression algorithm to recover the values of
MBH, Ṁ, Rhigh, PA and i; and (2) a classification algorithm to recover the value of
a⇤ which was a discrete variable in their data. They generated an image library
of 105 GRMHD BH shadows in a SANE magnetism environment using the ray-
tracing code RAPTOR (Bronzwaer et al., 2018).

DEEP HORIZON was able to recover the model parameters with a 95.9 % ac-
curacy from the simulations. To mimic the EHT image reconstruction algorithm,
the images were blurred with 2D Gaussian beams of 5 µas, 10 µas and 20 µas to
ascertain the reliability of parameter recovery for images of a similar fidelity to
the EHT images. Up to the 10 µas beam, DEEP HORIZON could reliably predict
all parameters up to 3 s.

With a 20 µas beam, however, the network could only report M and Ṁ with
satisfactory accuracy. This is likely because these parameters are connected to the
larger-scale features of the BH, specifically the size of the emission ring, which is
consistently present. The PA and Rhigh parameter constraints were most affected
by the convolution with the blurring kernels.
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van der Gucht et al. (2020)’s analysis was also extended to BH simulations for
a space-VLBI network at 690 GHz. Observations from such a telescope would
not be impeded by atmospheric, weather and observation time restrictions that
reduce the quality of the recoverable image. All parameters were recovered with
high accuracy for these mock observations.

Although not directly comparable, the mean uncertainties on the mass mea-
surement recovered by DEEP HORIZON are of the same order of magnitude as
those of the EHT results (Paper VI). van der Gucht et al. (2020) concluded that
such a method can be used to confirm EHT and future space-VLBI observation
results given sufficient visibility coverage.

Feature Extraction on Synthetic Black Hole Images

Yao-Yu Lin et al. (2020) explored a similar ML technique as van der Gucht et
al. (2020), using an Convolutional Neural Network (CNN) trained with 2 ⇥ 105

simulated BH GRMHD images generated with the IPOLE code (Mościbrodzka
and Gammie, 2018). CNNs are particularly adept at processing image data which
lends them to this problem. A full description of CNNs is beyond the scope of
this thesis and is left up to the reader.

Yao-Yu Lin et al. (2020) only considered unblurred images, however, images
from both MAD and SANE accretion flow models were included and the trained
network was tested by providing images of BHs that had spin values that were
not included in the training data. Two networks were trained; one classification
algorithm to determine whether an image was MAD or SANE and one regression
network to predict the spin. Feature maps were also analysed to determine what
image features the network identified to predict the model spin value.

Once trained, Yao-Yu Lin et al. (2020) tested the network on three datasets.
They found the network recovered the spin and magnetic flux classification from
the image libraries with high accuracy. Notably, for one of the datasets, the
MAD/SANE classifications were recovered with 99.89 % accuracy. On average,
the values were recovered with 97.34 % accuracy for all three datasets.

For the spin values, the regression network achieves standard deviations of
0.013, 0.209 and 0.164 versus the truth values for the three datasets respectively.
Although the network predicted the spin values with high accuracy, it favoured
spin values that were included in the training data. This illustrates the impact
training data can have on the output model.
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Chapter 1. Introduction 27

Feature maps were used to determine which image characteristics the model
used to predict spin values. Yao-Yu Lin et al. (2020) found the model focused on
low surface brightness features of the images, specifically, the spiral structures
in the accretion flow. These form from processes related to BH accretion and jet
production which is believed to be caused by BH spin.

These two papers illustrate possible applications of ML to EHT science. How-
ever, the sizes of the datasets used were large even though the model parameter
ranges were somewhat restricted. Empirical EHT data has an even larger num-
ber of impacting factors which include telescope, location, weather and other
performance specific effects; in addition, the u, v space is sparsely sampled, and,
because there are few antennas in the EHT array, each with a corruption of the
incoming signals, calibration is not as robust as it can typically be for lower fre-
quency radio interferometers.

In addition to the above, the emission around a BH itself evolves over time,
on timescales of minutes for 106 M� BHs, and may change between observations
on consecutive days. This, compounded with the large library of simulation data,
is the motivation for exploring an ML technique that can reduce the scope of the
parameter space sufficiently.

1.4 Project Objective and Thesis Layout

This work aims to conduct an exploratory study into the application of a partic-
ular class of ML algorithms to classify simulated GRMHD BH shadow images.
We will test the ability of an unsupervised learning algorithm, a SOM, to distin-
guish differences between BH shadow images in an automated manner. We wish
to make both qualitative and quantitative assessments on the ability of the resul-
tant model to classify shadow images of a wide range of intrinsic geometric and
thermodynamic parameters.

To achieve this, the algorithm PINK, a SOM that uses spatial characteristics to
classify input, will be trained using a GRMHD BH simulation image library gen-
erated by the ray-tracing programme RAPTOR. The images display morpholog-
ical differences based on simulation input parameters. Further, the images will
be mapped to the SOM. An analysis of the distribution of parameters based on
the models’ mappings will conclude this work.
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The thesis is organised as follows; in Chapter 2 we describe the GRMHD simu-
lation dataset to be used and develop the method of analysis with example use of
PINK on a crescent model dataset. Subsequently, we present the results of PINK
for the BH GRMHD simulations and discuss the findings of these in Chapter 3.
We conclude in Chapter 4 with a summary of the project.
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Chapter 2

Method

In this chapter, we describe the two major components required in this thesis:

• a large library of GRMHD black hole images;

• the self-organising map algorithm PINK.

We then present the application of PINK to a parametric crescent model as a
descriptive example ahead of GRMHD applications in Chapter 3.

2.1 GRMHD Image Library

A library of 105 BH model images was generated from GRMHD simulations, cre-
ated with the Black Hole Accretion Code (BHAC, Porth et al., 2017) and pro-
cessed using the ray-tracing code RAPTOR (Bronzwaer et al., 2018). This pro-
duced a library of images of the photon ring and accretion flow around a BH for
different environment initialisations. A sample of the images contained in the
final library can be seen in Figures 2.1 and 2.2. These show how different simu-
lation parameters result in different BH morphology, discussed in more detail in
the following section.

2.1.1 Model Parameters

The simulation input parameters are the mass of the BH, MBH, the accretion rate
onto the BH, Ṁ, the electron temperature prescription, Rhigh (e.g. Mościbrodzka,
Falcke, and Shiokawa, 2016), the inclination, i, the viewing angle with respect to
the BH spin axis, PA, and the dimensionless BH spin parameter, a⇤. The images
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TABLE 2.1: The GRMHD simulation parameters sampled ranges. The first five pa-
rameters were continuously sampled during the simulations, while a⇤ is set to one of
the five values per simulation. Ṁ is sampled logarithmically and all other parameters

were sampled linearly. Reproduced from van der Gucht et al. (2020).

Parameter Description Range

MBH Mass of the central BH [2 ⇥ 109M�, 8 ⇥ 109M�]

log10 Ṁ Mass accretion rate [2⇥ 10�6M�/yr, 1⇥ 10�2M�/yr]

Rhigh ion-electron tempera-
ture ratio

[1, 100]

i inclination [15°, 25°]

PA position angle [0°, 360°]

a⇤ spin parameter 0, ± 0.5, ± 0.9375

were generated at an observing frequency of 230 GHz, the EHT observing fre-
quency (Paper II), captured with a 0.1 ⇥ 0.1 milli-arcsecond2 camera. The images
have dimensions of 128 ⇥ 128 pixels (van der Gucht et al., 2020).

Within the simulation, all parameters are transformed to be dimensionless.
The simulations are also scale free. To convert the parameters from code units
to cgs units, the following are defined: the simulation length unit L = rg (see
Equation 1.3); the simulation time unit T = rg/c; and the simulation mass unit
M, which sets the density in the accretion flow. If Ṁsim is the dimensionless
accretion rate, then Ṁ = Ṁsim M/T (van der Gucht et al., 2020).

The simulation parameters were sampled from ranges as described in Ta-
ble 2.1. Ṁ is sampled logarithmically due to the large parameter range it encom-
passes, while all other parameters are sampled linearly. a⇤ is the only discrete
parameter in the simulations.

Each parameter affects the BH emission morphology in different ways and,
here, we give a broad overview of these. MBH alters the size of the photon ring;
a higher mass BH will have a larger diameter photon ring than a lower mass BH.
Illustrated in Figure 2.1, this follows from Equation 1.3 as the photon ring size is
directly proportional to the BH mass. The flux observed is dependent on Ṁ.

Rhigh characterises the region where the majority of the observed emission
originates. A higher value for Rhigh indicates emission primarily originating from
the jet, and a lower value indicates the dominance of disk emission. Figure 2.2
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FIGURE 2.1: Snapshots from the GRMHD BH simulations. From left to right, MBH
increases as indicated. The top row shows images viewed at 230 GHz, the current
observation frequency of the EHT. The second row depicts the same images observed
at 690 GHz. At 690 GHz, the observing frequency simulated for the space-VLBI obser-

vations in van der Gucht et al. (2020). Credit: van der Gucht et al. (2020)

depicts how this influences the ring morphology; for low Rhigh (top row), there
is extended emission outside the photon ring while for high Rhigh (bottom row)
there is extended emission within the photon ring. This additional ring structure
differentiates the models.

The spin parameter, a⇤, indicates the magnitude of the BH’s spin angular mo-
mentum and the orientation of the accretion flow concerning the BH spin, as
defined in Equation 1.4. For disk motion in the same direction as the BH, a⇤ is
positive. For motion in the opposite direction, a⇤ is negative.

Other parameters included in the simulations were the viewing angle, i, the
angle between the observer and the accretion momentum vector, and the position
angle, PA, the rotation of the image on the image plane. These parameters affect
the orientation at which we view the BH and not the physical state of the GRMHD
environment; they change the jet position and apparent asymmetry in the image.
i in the simulations was restricted to the range given in Table 2.1 as there are
observational constraints on this value for M87⇤ (Walker et al., 2018).
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FIGURE 2.2: Snapshots from the GRMHD BH simulations generated at 230 GHz. From
left to right, a⇤ increases from -0.9375 through zero to 0.9375. From top to bottom, Rhigh
increases from 1, through 50 to 100. The shadows vary based on these parameters

which are shown here. Credit: van der Gucht et al. (2020)

2.1.2 Simulations

Only SANE accretion flows were considered in the simulations. To capture the
evolution of the accretion flow, five simulations were run, each initialised with
one of the a⇤ values. The simulations were run until tfinal = 104 T , each consisting
of 103 snapshots captured at intervals of 10 T .

For each spin value, the last 102 snapshots were used to compute the final
images. These snapshots were selected as the accretion flow at this late stage in
the simulations is well evolved and in a steady state. For each simulation’s 102

snapshots, 2 ⇥ 102 images were computed by linearly sampling the parameters,
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bar a⇤, from the ranges in Table 2.1. These images made up the final dataset of
105 images.

As we have already discussed, different parameter values produce morpho-
logically different BH shadows. With this image library, we want to explore to
what extent certain BH shadow features are persistent for the parameter reali-
sations. In turn, we want to identify any degenerate parameters based on the
images’ spatial characteristics and determine in what ways the parameter space
can be reduced.

2.2 Parallelized rotation and flipping INvariant Ko-
honen maps

PINK is an unsupervised ML framework that employs a competitive training
technique. It creates a compressed representation of data in the form of a 2D
SOM based on the images’ spatial characteristics. The algorithm employs the
well-known similarity metric the Euclidean distance. The objective of the PINK
framework is to provide a compact visual description of highly dimensional data.
This allows for quick classification of multiple objects of the same class as the
classification of a single representative prototype classifies all objects within that
prototype class. It can also be used as a metric to determine outliers/anomalies
by identifying objects that least fit their class prototype.

2.2.1 The PINK Self-Organising Map

A PINK SOM consists of a set of nodes, pj 2 P, that exist in the latent space of the
data. The nodes P = {pj = (wj, cj) |wj 2 Rd, cj 2 N, j = 1, ..., µP} map every
weight vector, wj to a map coordinate cj. Here, j is the size of the latent space.

The weight vector is the prototype that the node represents and the map coor-
dinate gives an ordering of the nodes based on similarity to each other. The data
analysed by pink is an image that is processed as a given set of n patterns.

To determine the weight-vectors, the map needs to be trained on a represen-
tative dataset. The weight vectors are initialised to some value and, iteratively t
times the n patterns yi 2 Rd, with i = 1, ..., n, are applied to the map. Here, d
and n are, respectively, the dimensions and size of the dataset.
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By calculating the similarity measure D(y, wj) between each pattern (image)
yi 2 Rd and weight wj 2 Rd of every node pj 2 P, the closest node or BMU
q(y = argminj=1,...,µP

D(y, wj)) is determined. The nodes are then updated based
on their distance to the BMU in the map d(cq(y), cj) and the number of training it-
erations t via a function f (d(cq(y), cj), t). The function f updates the weight vector
wj of a node pj to a new value w0

j = wj + (f(j)(y)� wj). f (d(cq(y), cj), t). f(j) is
the standard Kohonen-map identity function and is used to align the coordinate
systems of y and wj.

The function f consists of a distance-dependant element, which currently can
be a Gaussian or Mexican Hat distance component in PINK, and simple linear
damping based on the number of iterations t. Over the epochs, the weight-vectors
converge to represent particular classes of objects from the data.

PINK assesses likeness based on spatial characteristics. Hence, to increase
the fidelity of the training and mapping of the SOM, transformations of the input
images are considered when determining a winning node. To achieve this, the
algorithm calculates the Euclidean distances for all possible rotations and flips of
objects to find the optimal value.

The difference between the image yi and its best-fitting node pci is a measure
of how close the two values are. This is given by the quantization error (QE)
defined as

QE =
1
n

n

Â
i=1

||yi � wci || (2.1)

where n is, as previously stated, the number of patterns in the input image yi(Wandeto
and Dresp, 2019). For an input image vector, the QE is the Euclidean distance be-
tween the image vector and the best matching node vector. The QE progression
should converge to a minimum at the best matching node (Kohonen, Nieminen,
and Honkela, 2009). The QE progression of the SOM converges over the training
iterations.

Once training is complete, the weight vectors wj are finalised. Images y can
then be mapped to the prototypes P which give it a coordinate c in the map for
the best matching node.
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2.2.2 Map Parameters

A variety of parameters can be set when training and mapping with PINK. A
full description of these, as well as descriptions of those not included here, can
be found in the PINK documentation.1 In Table 2.2, a selection of parameters
relevant to this work are described.

Structurally, the SOM typically has either a hexagonal or quadratic shape. We
chose to use a quadratic SOM for ease of reference in our outputs. The width and
height of the SOM are set prior to any training which determines the total number
of nodes in the SOM. The node dimensions are fixed; these cannot be bigger than
the input images’ dimensions.

In training, the image being considered can be rotated a number of times,
from 4 (i.e. four 90° rotations) to 360 (i.e. 360 1° rotations) times. The number of
rotations completed is traded off with processing time. It is recommended to keep
the rotations at 360 for the best possible results, even if this increases computation
time (Polsterer et al., 2016).

The number of training iterations completed is set by the user. To keep com-
putation time to a minimum, it is best to set this low without having it nega-
tively impact the result. Polsterer, Gieseke, and Igel (2015) found that increasing
-num-iter > 4 did not have a significant impact on the SOM result. Given the
spherical symmetric characteristics of our GRMHD BH simulation data, we ex-
pect this to hold true for our case.

The training and mapping of PINK are run separately. In training, the training
dataset is the only input given and the fully trained SOM is the generated output.
In mapping, the data to be mapped and the trained SOM are the inputs and the
output is a similarity file that includes the similarity distances between the data
and nodes. Convergence tests could be performed on subsets of the data, but that
is not explored here.

Before using PINK on our GRMHD BH library, we tested it with a toy crescent
model. Apart from the practical benefits, this exploration, presented in the fol-
lowing section, gave us a better understanding of the PINK framework. Here we
present the results of that in a very similar way to what we will in the GRMHD
case in Chapter 3.

1https://github.com/HITS-AIN/PINK
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TABLE 2.2: Descriptions of a selection of PINK parameter inputs set in training and mapping the SOM.

Parameter Function from PINK Docu-
mentation

Input Values

-layout Layout of SOM Quadratic, quadhex or hexagonal; default = quadratic

-num-iter Number of training iterations Integer value; default = 1

-numrot Number of image rotations
completed when calculating
similarity measure

Integer value; 1 or a multiple of 4; default = 360

-som-height Height dimension of SOM Integer value; default = 10

-som-width Width dimension of SOM Integer value; default = 10

-init Node weights initialisation Zero, random, random with preferred direction, user
set; default = zero

-neuron-dimension Pixel dimension of nodes Integer value; cannot be greater than the number
of pixels in the input images; default = image-
dimension⇥

p
2/2

-dist-func Distribution function for
SOM update

Gaussian or Mexican Hat distance measure

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  
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FIGURE 2.3: The geometry of the cres-
cent model and corresponding parame-

ters.

FIGURE 2.4: SOM node numbering ref-
erence. Nodes are numbered from
1 to 64 from left to right, top to bottom

as if reading lines of text.

2.3 Crescent Toy Model

As discussed in Section 2.1, the emission around BHs varies observed as mor-
phological differences between them. The differences are subtle and nonlinear,
and so, to determine whether PINK is a suitable framework to explore GRMHD
BH shadow images, we first investigated PINK’s performance on a parameter
crescent model.

The model used, a crescent, was chosen as it is a simple, well-understood
model that loosely approximates the structure of the BH ring feature (Paper IV).
We generated the dataset using the same model as described in Paper IV.

2.3.1 Crescent Model Parameters

A crescent is characterised by five parameters; Rout, the radius of the outer ring,
Rin, the radius of the inner ring, xoff, the x-offset of the inner ring from centre, yoff,
the y-offset of the inner ring from centre, and F, the integrated flux or brightness
of the source. The inner ring has 0 flux. The geometry of this setup is shown in
Figure 2.3.
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We generated 105 crescent model images, uniformly sampling the parameters
from the continuous ranges stated in Table 2.3. The images were set to have di-
mensions 100 ⇥ 100 pixels with the crescents centred on the outer ring centre.

TABLE 2.3: The crescent parameters and corresponding sample ranges. All parame-
ters were uniformly sampled when generating the images.

Parameter Range

F [0, 40]

Rout [25, 50]

Rin [0, Rout-1]

xoff [0, 10]

yoff [0, 10]

2.3.2 PINK Crescent Self-Organising Map

We trained PINK on the 105 crescent images with parameters as set in Table 2.4.
These settings reflect the setting used later with the GRMHD data.

The trained SOM is shown in Figure 2.5. For reference, nodes are numbered
1 to 64 from left to right, top to bottom as if reading lines of text. This identifica-
tion scheme is depicted in Figure 2.4.

Following training, we mapped the 105 crescent images, the same set as was
used to train the SOM, to the trained map. Figure 2.6 shows the number of im-
ages mapped to each node. Node 64 has the largest class size. This suggests its
prototype represents a crescent that is common in the data.

The SOM in Figure 2.5 has easily distinguishable groups of crescents display-
ing similar characteristics. In Figure 2.7, we have indicated a few of these rudi-
mentary clusters. We note that crescents with large outer radii are positioned
along the right-hand side of the lattice; crescents with the smallest inner radii are
grouped on a diagonal across the bottom left-hand corner of the map, and the
crescents with the highest integrated fluxes are located along the top edge of the
map.

To further our analysis, we used the image mappings and associated model
parameters to determine to what degree the image clustering is present within
the mapped parameter distributions. We present the results excluding those for
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TABLE 2.4: The PINK parameters set when training and mapping the crescent data.
These are the same as those set for the GRMHD data in Chapter 3

Parameter Value

-layout quadratic

-num-iter 5

-numrot 360

-som-height 8

-som-width 8

-neuron-dimension 100

-init random

-dist-func Gaussian

FIGURE 2.5: Trained quadratic PINK
SOM for the 105 crescent models. Con-
sisting of 64 nodes, each prototype rep-
resents a class of similar objects from the

data.

FIGURE 2.6: The number of crescent
models mapped to each node of the
SOM. Models are assigned to a node
based on their similarity to the node’s

prototype.

yoff as they follow those of xoff given they are both geometric translations in the
image plane.
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FIGURE 2.7: The SOM, as in Figure 2.5, with clusters of prototypes displaying similar
characteristics identified.

2.3.3 Crescent Parameter Heatmaps

We used heatmaps to describe the prototypes’ parameter distributions across the
lattice. A heatmap is a colour-gradient representation of a variable in a 2D plane.
The colours are representative of the variable values. The heatmaps of F, Rout,
Rin and xoff are displayed in Figure 2.8. The value indicated on each node is the
mode of the nodes’ class distributions for each parameter.

The flux heatmap (2.8 (a)) shows the node values’ increase in diagonal bands
from the bottom right-hand corner to the top left-hand corner of the lattice. This
structure follows what we identified in Figure 2.7.

For Rout, the heatmap (2.8 (b)) has a similar structure to that of F except it
is mirrored across the counter diagonal. Here, the maximum valued nodes are
clustered in the bottom right-hand corner of the lattice and the minimums are
located in the first column.

The heatmap for Rin (2.8 (c)) has the most defined structure; similarly valued
nodes are grouped in slanted bands orientated along the leading diagonal. The
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(a) Flux, F (b) Outer ring radius, Rout

(c) Inner ring radius, Rin (d) x coordinate offset, xoff

FIGURE 2.8: The heatmaps for four of the crescent model parameters. Here, the
heatmaps of the (a) flux, F, (b) outer ring radius, Rout, (c) inner ring radius, Rin, and (d)
x coordinate offset, xoff are depicted. The value on each node is the parameter mode

from the node’s class of images.

band of the lowest valued nodes is located just above the bottom left-hand corner
of the lattice. Again, this structure follows from what we previously identified in
Figure 2.7 but here we see that this pattern repeats across the lattice.
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(a) Flux, F (b) Inner ring radius, Rin

FIGURE 2.9: Contour maps of (a) flux and (b) Rin superimposed on the crescent SOM.
This composite view helps to identify visual changes in prototypes and how they cor-

respond to parameter changes of the nodes.

Finally, the xoff heatmap is shown in Figure 2.8 (d). There is no apparent struc-
ture within the distribution of values. This is expected given PINK’s rotation and
flip invariant similarity measure.

Interestingly, the heatmaps of both F and Rout have a small group of lower-
valued nodes within their maximum node clusters. It is possible to discern this
detail in the heatmaps as we concentrate on differences based on a singular pa-
rameter.

In Figure 2.9, we have plotted the contour maps of (a) flux and (b) Rin over
the PINK crescent SOM. The contours follow from the heatmap values in Fig-
ure 2.8. These figures reinforce the observations made from the heatmaps. With
the contours superimposed on the SOM, we have a composite view of prototypes
differences and the corresponding parameter distribution across the map.

2.3.4 Parameter Distributions

The parameter modes of each node give a good intuition as to the distribution of
parameters across the lattice. However, the distributions of the model parameters
within each node class will vary.
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FIGURE 2.10: Distribution of mapped models’ F across the SOM lattice. These distri-
butions are created from the model parameters in each node’s class. In each figure,
the x-axis represents the entire parameter range; the value density is on the y-axis. As
every distribution is normalised, the area under each curve equals 1. Since each node
has roughly the same number of images, the relative densities are also captured by
these distributions to a good approximation. The mode of the distribution is indicated
with the red line. The blue shaded region represents the 68% confidence interval of

the mode.

To dissect this, we plot the distributions of the model parameters within each
node. We normalised each distribution to have an integral of 1 so comparisons
between the distributions can be made despite the nodes having different class
sizes.
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FIGURE 2.11: The same as Figure 2.10 but for Rout.

In the coming Figures 2.10 to 2.13, the x-axis of each distribution represents
the entire range for that parameter. The blue line represents the full parameter
distribution. The vertical red line indicates the mode for the distribution, or the
most common value, and the blue shaded region represents the 68% confidence
interval of the mode.

Flux, F

The flux distributions are shown in Figure 2.10. Distributions that peak in the
lower region of the range, mainly those in the bottom three rows of the lattice,
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FIGURE 2.12: The same as Figure 2.10 but for Rin.

are narrowly spread in near-Gaussian distributions. Notably, nodes 63 and 64 are
so narrowly distributed that their confidence intervals do not appear to extend
beyond the mode of the distribution. It is important to note that node 64 contains
all the zero flux (i.e. blank) images, explaining its large class size.

The flux distributions that have a peak near the maximum of the range are
wider than those peaking in the lower part of the range. These distributions are
notably broader and do not have a Gaussian distribution. The 68% confidence
intervals are wider too.
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Outer ring radius, Rout

In Figure 2.11, the distributions of Rout per node are displayed. Those in the first
three columns and the top two rows have narrow distributions, indicated by their
sharp peaks and narrow confidence intervals. These nodes all have peaks in the
lower to mid part of the parameter range.

The distributions in the bottom right-hand corner of the lattice are wide and
noisy in comparison. Rather than a sharp peak, these distributions have wider
confidence intervals for the distribution mode; this is clearly shown in nodes 55 and 56.
Node 64 includes models of Rout from the entire possible range, as expected as
this class is made up of blank images.

Inner ring radius, Rin

The Rin distributions in Figure 2.12 are the narrowest in comparison to those of
the two previous parameters. Bar node 64, the distributions have a clear peak
with narrow confidence intervals.

The wide distribution seen in node 64 is a mapping effect; all zero-flux nodes
were mapped to this node so models with varying Rin values are mapped to it.

Inner ring x-offset, xoff

Figure 2.13 shows the wide xoff distributions. All nodes have distributions that
span the entire range and most are uniformly distributed. The confidence in-
tervals reflect this with all occupying at least half of the entire parameter range.
These distributions are as a result of PINK’s rotation and flip invariant similarity
measure. The crescent geometry, which in our model was affected by the inner
ring offset, is not a dominant influence on the data mapping. The same distribu-
tion structure was seen for yoff.

Distribution maps overview

The F, Rout and Rin parameter distributions did show some degree of clustering
within nodes. Considering the distributions of these parameters concurrently,
there appears to be an inverse relationship between the width of the flux distri-
butions and the Rout and Rin distributions.
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FIGURE 2.13: The same as Figure 2.10 but for xoff.

For node 64, the class is made up of almost exclusively zero-flux models.
Given this, the crescents within the nodes class will have no observable image
plane features, leading to all of these ’blank’ images being mapped to node 64,
irrespective of the other parameters. This is why for Rout and Rin the node 64
distributions are noticeably wider as compared to others for these parameters.

In nodes where both Rout and Rin are constrained, as in node 12, the corre-
sponding flux distributions are wide and noisy. Given that, overall, there are a
higher number of flux distributions with a widespread than for both Rout and Rin,
we can infer that the network has identified the geometric features of a model as
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FIGURE 2.14: 2D-Joint parameter distributions of nodes 6, 11, 31 and 50 for the cres-
cent model. Along the diagonal are the 1D parameter distributions. The 2D joint

parameter distributions are in the lower triangle.

the dominant mapping determinant.

2.4 Further Analysis and Discussion

We plotted the 2D-joint parameter distributions for four quasi-randomly selected
nodes, nodes 6, 11, 31 and 50, in Figure 2.14. These four nodes were chosen in
part because they have similar class sizes (see Figure 2.6). Along the diagonal, the
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1D parameter distributions are plotted, the same as in the previous distribution
graphs. Below the diagonal, the joint parameter distributions are shown. By
considering the joint distributions of four nodes concurrently, we can see if there
are any trends or relationships between the parameter mapping across the lattice.

As expected, the joint distributions between all other parameters and both xoff

and yoff show no correlation due to PINK’s rotation/flip invariance. The xoff and
yoff values of all the nodes span the entire possible range for the parameters. In
particular, the joint distribution of the inner-offsets fill the entire plane.

The joint distributions of F, Rout and Rin show some structure. As previously
noted, when the flux is well-constrained, as for node 50, the radii distributions
extend across a larger part of the range than other nodes’ distributions. In partic-
ular, node 50’s Rin distribution spreads across half of the possible range.

However, the converse of the above is not necessarily true. Consider node 31;
the Rin distribution spread is small but the flux and Rout distributions extend
across a large part, over half for F and almost half for Rout, of their respective
ranges.

For nodes 6 and 11, where the radii distributions are narrowly evidenced by
the small area they occupy in the joint radii plot, the F distributions are wide.
This suggests that, if both Rout and Rin have a small value range, the flux will
have a large range. This suggests there may be a relationship between the flux
and the radii of nodes, but this can only be inferred if the distributions of these
parameters are known.

Finally, we consider the joint distribution of Rout and Rin for the four nodes.
As previously noted, nodes 6 and 11 have narrow distributions for both param-
eters. Node 50 has a narrow Rout and a wide Rin distribution; node 31 has the
opposite in terms of the radii distributions. For these two nodes, the narrow ra-
dius distribution exists at one end of the parameter ranges. It may be that, for the
radii distributions, if one distribution is clustered at one extreme of a range the
other will have a wide distribution. However, there is not enough information in
Figure 2.14 to infer any general relationship between the joint radii distributions.

The above suggests that, for the crescent model used here, PINK’s mapping
is dominated by the crescent structure, i.e. the outer and inner radii, and then by
the flux. This is only true if the flux is high enough to discern crescent features.

From this analysis of the toy model, we are satisfied with our understanding
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of PINK and its performance on a model similar to a BH ring shadow. We ap-
ply the above methods to the GRMHD BH images, the results and discussion of
which are found in Chapter 3. These will follow the same structure as presented
here.
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Chapter 3

Results and Discussion

In this chapter we present the primary results of this thesis separated into the
three sections outlined below.

1. Self-organising map lattice results and their qualitative features and trends.

2. Self-organising map correlations with intrinsic GRMHD parameters which
will connect image-domain features the algorithm has identified to any pat-
terns, or lack thereof, on the SOM lattice structure.

3. Statistical analysis: the distribution of intrinsic parameter values within
each node of the SOM lattice.

As in Section 2.3, the SOM nodes are numbered 1 to 64 from left to right, top
to bottom as if reading lines of text (see Figure 2.4).

3.1 Self-Organising Map Lattice Results

Using the GRMHD image library, SOM algorithm and settings as described in
Chapter 2, we generate the SOM presented in Figure 3.1. The following prototype
features are immediately apparent:

1. the size of the emission ring changes across the lattice;

2. the puffiness or thickness of the emitting region varies between nodes;

3. some nodes display an obvious two-sided jet while, in others, only the ring
structure is visible;

4. the shadow central flux deficit differ;

5. the total flux of the prototypes vary.
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Chapter 3. Results and Discussion 52

FIGURE 3.1: Trained PINK SOM of the
105 GRMHD BH shadow model images.
Each node is a prototype of a class of
models of the data. Morphological dif-
ferences between nodes’ prototypes are

evident.

FIGURE 3.2: Number of GRMHD mod-
els mapped to each node of the SOM.
This is the number of models in each
node class and is the number of mod-
els in the dataset best represented by the

corresponding prototype.

The number of models mapped to each node, shown in Figure 3.2, exhibits
a similar structure to that for the crescent SOM in Figure 2.6. A corner node,
node 1 in this case, has a significantly larger class size as compared to the others,
indicating that the node’s prototype may reflect a common morphology in the
data.

We focus on the shadow which requires high contrast therefore we apply a
pixel clip and pixel stretches to the SOM prototype images to better identify this
feature. In Figure 3.3 we depict how the transformations change the prototype
pixel distributions using node 32 as an illustrative example. The pixel transfor-
mations were not applied to the input data but the trained node prototypes. As
these are the output of the SOM, the transformations did not affect the training
or mapping.

The clip region was chosen based on the distribution maximum. We selected
the pixels from 0.7 to 1.0 of the peak flux as this region contains the high-flux
information from the BH which is associated with the ring feature.
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(a) Node 32 pixel distribution before (blue)
and after (orange) the linear stretch was
applied to the indicated stretch region.

(b) Node 32 pixel distribution before (blue)
and after (orange) the exponential
transformation and linear stretch was
applied to the indicated stretch region.

(c) Prototype for node 32 post the pixel clip
and linear stretch transformation. The disk
and jets of the image are visible.

(d) Prototype for node 32 post the pixel
clip, exponential transformation and linear
stretch. Only the ring structure is visible.

FIGURE 3.3: The pixel transformations applied to node 32. The pixel distributions are
in the top row and the resultant images in the bottom row.

We applied two different transformations to the clipped pixel region in iso-
lation. In the first case, we did a simple linear stretch of the clipped region, ex-
tending the distribution across the entire original pixel flux range (Figure 3.3 (a)).
In the second, we transformed the stretch region pixels as f (p) = 10p, where p
is the stretch region of the pixel distribution. We then, as before, stretched the
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Chapter 3. Results and Discussion 54

FIGURE 3.4: GRMHD PINK SOM with
a linear pixel stretch applied. The pixel
transformation makes the ring and jet

structures more apparent.

FIGURE 3.5: GRMHD PINK SOM with
an exponential transformation and lin-
ear pixel stretch applied. The pixel trans-
formation makes the ring structure more

apparent.

transformed pixel distribution to extend across the original pixel flux range (Fig-
ure 3.3 (b)).

The linear stretch resulted in the image in Figure 3.3 (c). The exponential trans-
formation (and linear stretch) resulted in the image in Figure 3.3 (d). The disk and
jet structure is preserved in the linear case, while the exponentially-transformed
image emphasises the shadow ring structure. The transformed SOMs are dis-
played in Figures 3.4 and 3.5 for the linear and exponential cases, respectively.
Throughout the rest of this thesis, we will refer to these as the linear and expo-
nential cases.

Following the same process as in Section 2.3, we begin our SOM analysis by
visually identifying clusters of morphologically similar nodes. We completed this
exercise for both the linearly and exponentially transformed SOMs.

In Figure 3.6 the linearly stretched map is shown. As indicated, the large,
bright prototypes are located at the top of the lattice. Shadows displaying an
obvious two-sided jet are grouped in the bottom half of the map; this is also
where the smaller prototypes are, with the smallest being in the bottom right-
hand corner of the map.

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Chapter 3. Results and Discussion 55

FIGURE 3.6: The linearly-stretched GRMHD SOM with clusters of prototypes display-
ing visibly similar characteristics identified.

FIGURE 3.7: The exponentially-transformed GRMHD SOM with clusters of proto-
types displaying visibly similar characteristics identified.
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Considering the SOM as in Figure 3.7 of the exponentially transformed pro-
totypes, the ring characteristics immediately discernible between the prototypes
are

• ring size

• ring ’puffiness’

• ring asymmetry or azimutual structure

with no jet features visible. In this figure, rings with a larger diameter are found in
the first three rows of the lattice; those with a smaller diameter are in the bottom
half of the map. Some rings, as in the top left-hand corner, are thicker or ’puffier’.
All rings show some asymmetry, with this being more prominent in some.

The clusters we have identified here are rudimentary. They illustrate that
PINK was able to cluster the models and generate representative prototypes,
even if the prototypes do not display the detailed structure seen in the individual
model images.

3.2 SOM Correlations with GRMHD parameters

In this section, we assess if the image-domain features map to intrinsic BH pa-
rameters used in the GRMHD simulation. This is a purely qualitative assessment,
with a more detailed statistical analysis in the next section of this chapter.

In Figure 3.8, we have included the heatmaps of the four continuous GRMHD
parameters: MBH (3.8 (a)); Rhigh (3.8 (b)); i (3.8 (c)) and PA (3.8 (d)). In these
heatmaps, the value displayed on each node is the parameter mode from the
models’ parameter distributions within the node class.

In Figure 3.8 (a) of the BH mass, the high valued nodes are located in the
top row of the lattice; MBH values decrease from the top-left node towards the
bottom right-hand corner of the lattice. The minimum MBH nodes are located in
this bottom right-hand corner. This structure correlates with the prototype ring
sizes we identified in Figure 3.6 and Figure 3.7. This indicates that the nodes’
prototypes represent the MBH of their class of models well.

The Rhigh heatmap (Figure 3.8 (b)) has high-valued nodes in a ’V’ shape an-
chored in the bottom right-hand corner of the map. The largest cluster of maximum-
valued nodes is in this corner. The low-valued nodes are grouped in the top left
area of the lattice.
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(a) MBH heatmap for the mapped models.
Node values are in units of (1 ⇥ 108) M�.

(b) Rhigh heatmap for the mapped models.

(c) Inclination heatmap for the mapped
models. Node values are in units of degrees.

(d) PA heatmap for the mapped models.
Node values are in units of degrees.

FIGURE 3.8: Heatmaps of the continuous GRMHD model parameters. The value dis-
played on each node is the peak of the parameter distribution, or mode of the distri-

bution, of the models, mapped to the node.

There is a bifurcation of values across the leading diagonal in the inclination
heatmap, Figure 3.8 (c). The maximum and minimum i values of the entire range
are 15° and 25° respectively; both are present in the heatmap and, notably, node 18
and node 26, one of each end of the range, are adjacent. The nodes with the
highest inclinations are found in the bottom triangle, while low inclination nodes
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FIGURE 3.9: Heatmap for a⇤. The value on each node is the mode spin value. There is a
similar bifurcation structure to the one seen in the inclination heatmap. The minimum
values are all in the top triangle of the lattice with the maximums distributed along
the main diagonal. Nodes with Rhigh values of 0.5 are all in the lower triangle. Nodes

of -0.5 appear mostly in the upper triangle and two are found in the lower triangle.

are in the upper triangle.
Figure 3.8 (d) for PA has no clusters of similar-valued nodes present. This

behaviour is expected as PINK is rotation/flip invariant and, as PA affects the
rotation of the BH shadow on the viewing plane, the modes’ being randomly
distributed indicates that the network was successful in this aspect.

Figure 3.9 shows the heatmap for a⇤, the discrete, dimensionless spin param-
eter. This heatmap has a split of high and low values across the leading diag-
onal similar to that of the inclination. Interestingly, no nodes have a mode of
0. Those with a negative spin are mostly found in the upper triangle, with all
minimum spins (-0.9375) in this region; the nodes with the largest (positive) spin
values (+0.9375) are clustered along the main diagonal and all other positive val-
ued nodes are located below the diagonal.

The MBH heatmap indicates that the parameter values correlated well with
the SOM. The a⇤ and inclination heatmaps have a similar structure with a split of
values across the leading diagonal. This is a manifestation of the degeneracy seen
in Figure 1.8. There is also no clear correlation between Rhigh and the prototypes.

Since the inclination in the simulations is constrained from observational data,
its consequence on the prototype morphology is negligible. This follows from
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Paper V; models did not morphologically differ significantly with small changes
in i. PA does not influence PINK as the network is designed to ignore image-
plane rotations.

(a) MBH in units of 109 M� (b) Rhigh

(c) Inclination (d) a⇤

FIGURE 3.10: Contour maps of MBH, Rhigh, i and a⇤ visualised over the GRMHD SOM.
Those of MBH, i and a⇤ are plotted over the exponentially-transformed SOM, while the

Rhigh contour map is shown over the linearly-stretched SOM.

To visualise the parameter distributions in conjunction with the SOM proto-
types, we have plotted the contour maps of MBH, Rhigh, i and a⇤ superimposed
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onto the PINK SOM. These can be seen in Figure 3.10 (a-d). For all but Rhigh, we
have displayed the contours over the exponentially-transformed SOM as these
parameters affect ring morphology the most. For Rhigh, we have shown the con-
tours over the linearly-stretched SOM as it is associated with the primary emis-
sion region between the disk and jet. We stress that this is simply a visual change,
with no difference to the nodes and prototypes themselves.

As noted previously, MBH correlates well with the ring size, which follows
from the photon ring equation (Equation 1.3). For the other parameters, it is not
immediately obvious how the parameter changes correspond to a visual differ-
ence in the prototypes changes when projected onto a 2D lattice.

3.3 Statistical Analysis

In this section, we perform a quantitative analysis of the distribution of intrinsic
GRMHD BH parameters within each SOM node. In the following figures, we are
assessing to what degree the parameters are clustered. This follows from the aims
of this work; we seek to evaluate which GRMHD BH parameters are degenerate
in terms of image morphology, i.e. the possible degeneracy between the individ-
ual parameters and node position. This can, in turn, reduce the parameter space
which needs exploring when studying BHs.

We plot the parameter distributions for each node’s class. The distributions
have been normalised to allow for comparison between nodes despite their vary-
ing class sizes. The x-axes in the distribution graphs represent the full range for
the given parameter. The distribution modes are indicated by a vertical red line;
the shaded region under the distribution curves represent the 68% confidence in-
terval of the mode. The confidence intervals give a sense of how degenerate the
parameters are as a function of lattice position.

Black hole mass, MBH

In Figure 3.11 we have plotted the distributions of models’ MBH per node. Nodes 54 to 60
have narrow distributions that decrease sharply from a peak at the range mini-
mum of 2 ⇥ 109 M�. Nodes that tend to have the larger MBH models don’t have
as narrow distribution as the low mass nodes. However, they are still localised
within the upper part of the range.
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FIGURE 3.11: Distribution of mapped models’ MBH across the SOM lattice. These dis-
tributions are created from the model parameters in each node’s class. In each figure,
the x-axis represents the entire parameter range; the value density is on the y-axis. As
every distribution is normalised, the area under each curve equals 1. The mode of the
distribution is indicated with the red line. The blue shaded region represents the 68%

confidence interval of the mode.

Nodes that peak in the middle of the range, for example, node 22, are sym-
metric and normally distributed. Distributions with a peak in the lower (upper)
half of the range are right (left) skewed; node 43 (node 10) illustrates this. These
trends are not due to the parameter limits but rather due to PINK’s mapping.
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FIGURE 3.12: The same as Figure 3.11 but for Rhigh.

There is one node that behaves differently from the others: node 28. Its dis-
tribution has multiple local maxima and minima around the distribution peak.
Despite this, the confidence interval is still similar in width to the other nodes.

In general, the distributions have clear peaks and narrow 68% confidence in-
tervals. These tightly clustered distributions agree with the large correlation we
noted previously between MBH and ring diameter in the SOM and corresponding
heatmap.
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FIGURE 3.13: The same as Figure 3.11 but for inclination.

Electron temperature prescription, Rhigh

The distributions of Rhigh, shown in Figure 3.12, show no symmetry. Nodes with
peaks near or at the minimum of the range, e.g. nodes 1 and 38, have narrow
distributions. In comparison, distributions that are concentrated in the upper
half of the range, such as in the bottom row, have distributions that have a gentle
incline towards the distribution maximum.

Distributions that peak near the middle of the range are widely dispersed.
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FIGURE 3.14: The same as Figure 3.11 but for PA

Some could even be considered as uniform such as in nodes 5 and 6. The con-
fidence intervals for these nodes are wide, and the distribution modes do not
necessarily describe anything meaningful. Consider node 7; it has a flat distri-
bution with multiple maxima across the range that are of a similar height to the
global peak. When considering the Rhigh heatmap (Figure 3.8 (b)) we understood
node 7 to be a low-valued Rhigh node, but this view shows us that this is not the
case and the parameter distribution must be taken into account when interpreting
the SOM result and corresponding heatmaps.

Overall, Rhigh is not distributed across the SOM in small clusters as in the MBH
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FIGURE 3.15: The same as Figure 3.11 but for a⇤. As a⇤ is highly discretized with only
five possible realisations it does not have a smooth structure like the other parameters.

distributions. Some of the distributions that peak at the minimum or maximum
of the range are narrow, however, there are many nodes, like those in the top
right of the map, that is widely dispersed. In these cases, it has proved critical to
look at the node parameter distributions. For example, comparing nodes 7 and 8
based solely on their distribution modal values is not sufficient. This may make
it difficult to see the differences between the prototypes.
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Inclination, i

The inclination distributions, depicted in Figure 3.13, are widely dispersed. All
contain models with i values from the entire range. The 68% confidence intervals
are wide, with the narrowest of these occupying 53% of the range (node 62) and,
the widest, 74% (node 48).

Some distributions have a slight concentration of models from one end of the
range but are still not well constrained. As examples, nodes 8 and 64 have dis-
tributions more concentrated in the lower and upper range limits of the range,
respectively, but both have i values well above zero across the entire range.

Many nodes display uniform i distributions. These distributions indicate that
i has a small effect on ring morphology and, hence, is not a dominant PINK
mapping factor.

Position angle, PA

We present the PA distributions in Figure 3.14. The distributions have a flat ap-
pearance with none containing values from a particular region of the range. The
confidence intervals occupy a large portion of the range, between 73% and 79%,
and have multiple local maxima and minima similar in height to the global val-
ues. This follows from PINK’s flip/rotation insurance and the random distribu-
tion of values in PA’s corresponding heatmap.

Dimensionless spin, a⇤

Finally, Figure 3.15 shows the distributions of a⇤; these look different to the other
parameter distributions because a⇤ is a discrete and highly quantised variable.
We have not indicated the 68% confidence interval because the small sample size
made this an unreliable indication of degeneracy and/or difficult to interpret.

Distributions with a singular peak are characterised well by their mode, how-
ever, multiple nodes have two peaks of similar value (e.g. node 59). As with
Rhigh, this may be why we can not see morphological differences between the
nodes with different a⇤ modes since the values have a wide-spread distribution.
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TABLE 3.1: Peaks and 68% confidence interval (CI) of MBH in units of (1 ⇥ 109) M�,
Rhigh and a⇤ for nodes 29, 37, 56 and 64.

Node MBH 68% CI Rhigh 68% CI a⇤

Node 29 4.2 [2.95; 5.47] 6.2 [1; 48] -0.9375

Node 37 2.0 [2.0; 3.58] 6.2 [1, 27] 0.9375

Node 56 2.3 [2.0; 2.95] 100.0 [43; 100] -0.9375

Node 64 2.0 [2.0; 2.63] 100.0 [53; 100] 0.9375

Distribution maps overview

The parameter distributions have confirmed that a prototype’s ring size and cor-
responding MBH represents that of the nodes’ classes well. This, however, is not
necessarily true for the other parameters.

While some nodes have comparatively narrow Rhigh, i and a⇤ distributions,
on the whole, the general lack of clustering means node classes aren’t necessarily
well represented by their prototype for these parameters.

3.4 Further Analysis and Discussion

In this section, we aim to investigate in more detail if there are in fact proto-
type differences between nodes with varying a⇤ and Rhigh distributions. We will
look at a higher resolution subset of the parameter space, four node prototypes,
to assess if morphological changes are corresponding to parameter differences
that can be identified. We chose to consider four nodes to assess if the possible
changes seen are consistent across the lattice. We use this as an illustrative exam-
ple of more in-depth analyses that could be performed using our SOM framework
and results, however, which are beyond the scope of this thesis.

To consider visual differences arising from changes in a⇤ and Rhigh, we zoom
in on the four prototypes of nodes 29, 37, 56 and 64. In Table 3.1, we show the
parameter values for these four specific nodes, excluding PA and i. We have
chosen nodes that are all within a similar MBH range, and have comparatively
narrow a⇤ and Rhigh distributions.
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We present the four prototypes, exponentially transformed and stretched, in
Figure 3.16. The nodes with the linear stretch are shown in Figure 3.17. As indi-
cated in the figures, the first column of nodes has low Rhigh, the second column,
high Rhigh. The top row has the peak of a⇤ = -0.9375, the bottom row’s peak is at
a⇤ = +0.9375.

In these zoomed-in views, it is easy to identify morphological differences be-
tween prototypes of different Rhigh extremes. Those with small Rhigh have ring
structures that have more detail, while the large Rhigh rings are thin with no
prominent finer detail (Figure 3.16). In Figure 3.17, we see the images on the
left are brighter as compared to those on the right. These morphological dif-
ferences correlate with the GRMHD Rhigh parameter description, indicating that
classification based on these features may be possible, given the other variables,
in particular MBH, are constant and Rhigh is narrowly distributed.

A distinction between the models based on a⇤ is, however, not obvious. This
is not surprising given that a⇤ affects the location of the bright region of the ring,
i.e. the asymmetry of the ring, and ring diameter is not very sensitive to a⇤ (Jo-
hannsen and Psaltis, 2010; Paper V). PINK is also designed to train and map
models irrespective of their geometry adding to the above.

We conclude this chapter by considering the joint parameter distributions for
four nodes, nodes 8, 20, 33 and 60, in Figure 3.18. These nodes were chosen as they
have similar class sizes (Figure 3.2) which, given the structure of the joint distribu-
tions plots, allows for direct comparison between the nodes’ distributions. Along
the leading diagonal, the 1D parameter distributions for each parameter are plot-
ted (these are the same as the distributions presented in the previous section). For
each parameter pair, the continuous joint parameter distributions are plotted in
the lower triangle. We have excluded a⇤ from this plot as it is highly quantised.
In Figure 3.18, we consider whether there are any general trends across the joint
parameter distributions.

In Figure 3.18, each node is represented by a different colour. Hence, we can
compare the joint parameter distributions between nodes. Besides MBH having a
large influence on the distributions, there is no overlap between the parameters
2D-distributions.

MBH is distributed in narrow clusters, clearly seen in the joint distribution
plots. However, this does not constrain the other parameter distributions. The i
distributions extend across the entire possible range. The Rhigh distributions of
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FIGURE 3.16: Four node prototypes with different extremes of a⇤ and Rhigh. They have
similar MBH distributions. Shown here, nodes 29, 37, 56 and 64, with the exponential

transformation and linear stretch applied.

nodes 8, 33 and 60 all peak near the maximum of the range but we cannot infer
the node’s mass distributions from this as the joint parameter distributions with
MBH shows clustering at the lower, mid and upper parts of the range.

The two parameters that are the most uniformly distributed, i and PA, have
joint distributions that encompass the entire 2D plane. The same follows for the
joint distributions of Rhigh with i and PA; knowing the value of one of these pa-
rameters does not indicate the value of the other, even for a narrow Rhigh distri-
bution.

The lack of correlation between parameters indicates that, for the BH GRMHD
models, using PINK as a dimensionality reduction technique, which clusters
models based on spatial similarity, does not result in classes that can be reliably
categorised based on the prototypes alone. The exception is MBH which has a
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FIGURE 3.17: The same as Figure 3.16 but for the linear stretch.

dominant impact on object ring morphology.
The only other parameter that displayed some level clustering besides MBH

was Rhigh, but the morphological effect this parameter has can only be identified
in the prototypes if the MBH distributions of nodes are in a similar range bracket
and Rhigh has a narrow distribution.

PA impacts the geometry of the image, and hence, due to PINK’s similarity
measure, the characteristic it affects becomes redundant in the SOM training and
mapping. a⇤ and i also affect the asymmetry in the ring and are sub-dominant in
training and mapping.

This is highly relevant in the context of GRMHD simulations and emphasis
the need to carefully consider the data for the SOM. The data structure itself has
a large impact on the outcomes.
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FIGURE 3.18: Joint parameter distributions of nodes 8, 20, 33 and 60 continuous
GRMHD parameters. Along the diagonal are the 1D parameter distributions. The

2D joint parameter distributions are in the lower triangle.

3.5 Potential Future Applications

As a possible extension to this work, one may be able to select a family of GRMHD
models that are most consistent with intrinsic BH data. A quantitative compar-
ison between the data, including the constraints from other, independent pieces
of observational information from, say, X-ray observations of M87⇤, and search-
ing for parameter degeneracies that exist across the space may reduce the need
to explore such large datasets by curating a set of models that are meaningfully
different.
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Chapter 4

Summary

4.1 Summary

The Event Horizon Telescope Collaboration released the first image of a BH shadow
in 2019 (Paper I). The source, M87⇤, is an AGN that displays two highly Doppler-
boosted jets of relativistic plasma emanating from its core. This has opened up
a new era in studying SMBHs on event-horizon scales, revealing new insights
and opportunities to explain the BH (a) jet launch, (b) shadow feature and (c)
accretion flow characteristics.

There is a large suite of inputs required to study and model BH shadows. This
space includes observations from multiple instruments at different wavelengths
and scales; theoretic models and simulation output thereof; instrument-specific
performance, which, for an interferometer such as the EHT, includes individual
telescope performance, site-specific weather factors and other interferometric ef-
fects. Tools that effectively reduce this highly-dimensional parameter space can
lead to more efficient data review, potentially making some approaches that re-
quire the full visibility dataset analysis more feasible.

Comparing theoretical model images with observational data is needed to ex-
tract meaning from the data. While approximations have been made, a rotating
BH accreting from relativistic plasma has no simple analytical model solution.
Instead, attention has shifted to numerical GRMHD simulations, which describe
curved space-time, and are used to capture the accretion flow and BH shadow’s
evolution over time for a given set of initial conditions. However, these face the
challenge of large data volume output, which are non-parametric and therefore
expensive to confront with real data.

SOMs are a type of unsupervised learning algorithm that cluster data based on
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similar characteristics. SOMs produce representations of (often) highly-dimensional
parameter spaces in a 2D manner. This reduces the number of sources, for exam-
ple, to examine from the size of the original dataset to the number of nodes in the
map, with each node representing a prototype of a class from the data. Objects
that are unlike their node class prototype are easily identifiable, so resources can
be focused on anomalies of possibly interesting behaviour or phenomena.

In the astronomy context, SOMs have been used to, for example, classify ra-
dio maps from wide-field cm-wave radio telescopes with MeerKAT and LOFAR
(Mostert et al., 2021). However, they have never been applied in the context of
BH shadow images, which was the primary objective of this project.

The SOM algorithm utilised, PINK, classifies images based on image spatial-
plane characteristics. The similarity measure it employs is both flip and rotation
invariant to reduce the impact object geometry on the image plane has on training
and mapping.

Before exploring the BH data, we validated PINK with a geometric model.
We chose a crescent model, the same as used in Paper V, for its similarity to the
BH shadow morphology observed (Paper I). We concluded that PINK created a
SOM that satisfactorily represented the 105 dataset as 64 class prototypes, demon-
strating its parameter-reduction ability and potential suitability to GRMHD BH
image data exploration.

GRMHD BH simulations consider multiple parameters. Each alters the object
morphology differently. Our data consisted of 105 GRMHD BH shadow images
simulated in a SANE magnetism environment. The parameter subspace included
MBH, Rhigh, i, PA and a⇤ with ranges selected as relevant to M87⇤. Respectively,
these influence: the size of the photon ring; ring flux based on the dominant
emission region; asymmetry of the ring, rotation of the ring on the viewing plane
and the location of the peak flux.

We proceeded by training an 8⇥ 8 PINK quadratic SOM with the image li-
brary. Subsequently, we obtained a mapping of the data to the SOM.

From the SOM, and corresponding model parameter distributions, we found:

• MBH dominates the prototypes’ location on the lattice and models’ MBH

distributions are narrow;

• Rhigh influences the SOM mapping to a lesser degree than MBH, with some
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Rhigh distributions displaying a broad clustering of model values while oth-
ers have more uniform distributions;

• i distributions only display a slight concentration of certain model values
for a few nodes;

• PA was uniformly distributed with no dominant peaks present;

• a⇤, similar to i, has some nodes with a slight tendency towards a peak but
most distributions are more chaotic.

The nodes’ parameter distributions revealed that the SOM algorithm prioritised
ring size as a class determining factor. The distributions of Rhigh, i, PA and a⇤
were widely dispersed except for some Rhigh instances. This is due to two main
reasons: (1) the dominant impact MBH has on ring morphology and (2) the pa-
rameters i, PA and a⇤ all affect the geometry and asymmetry of the ring and, due
to PINK’s flip and rotation invariant nature, were not clustered within image
classes as these types of ring features become redundant within PINK.

Several visualisation and quantitative approaches were used to introduce the
interdependence between all parameters. This implementation technique pro-
duced image classes that were predominantly determined by the BH ring size,
and hence, MBH. The many degeneracies between the image plane appearance
and associated parameters imply that models with different parameters (other
than MBH) may appear morphologically similar.

This tool may be useful in analysing the morphological differences between
models based on GRMHD parameters (other than MBH) to determine which image-
plane features are persistent. These features can be compared and evaluated for
consistency for different MBH values, reducing the parameter space needing ex-
ploration, especially in the case where visibility domain analyses follow, given
their complex response.

The limitation of PINK as a tool in this context is the dominance of ring size as
a class determining factor. The algorithm was unable to consistently differentiate
images based on finer ring structure for models with MBH in the range 2 ⇥ 109 �
8 ⇥ 109 M�. The prototypes reflected this, having blurred rings without many
substructures. This type of detail is needed to determine other physical quantities
of interest for BHs.
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4.1.1 Future Recommendations

The Event Horizon Telescope Collaboration recently presented work on the mea-
sured polarization of M87⇤ (The Event Horizon Telescope Collaboration (2021a);
The Event Horizon Telescope Collaboration (2021b)). They found that magnetic
fields are dynamically important, favouring MAD models of the accretion flow
for M87⇤. Exploring a MAD image library, while constraining the MBH range
based on previous results, may provide valuable insights into possible depen-
dencies between the observed ring structure and polarimetry of M87⇤. The po-
larised intensity images, and specifically the configuration across the ring, may
be a more discriminatory set of signatures to apply this SOM algorithm to.

Methods of the same type used in this work can be employed to explore the
time-variability of Sgr A⇤. The changes in object morphology observed and cor-
responding parameter combinations that result in similar features can assist in
determining the cause of the variability, especially given the much more tightly
constrained mass of Sgr A⇤ when compared with M87⇤ (Gravity Collaboration
et al., 2019).

This thesis only considered non-blurred BH images. However, intrinsic EHT
observations are blurred due to a variety of factors. Future work should assess the
effect blurring has on image-plane characteristics and parameter space reduction
thereof.

Complex instrumental simulation pipelines, such as SYMBA for the EHT
(Blecher et al., 2016; Janssen et al., 2019; Roelofs et al., 2020), can simulate the
effects of actual observation conditions on data and calibrate the image in the
same way (Janssen et al., 2019). These pipelines are often computationally expen-
sive and, hence, processing large datasets through them is not feasible. If a set
of representative prototypes can be found for a given dataset, processing these
through the pipeline instead of the entire dataset will drastically reduce working
time without affecting deductions that can be made from the pipeline output.
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