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Abstract: The ability to block human-to-mosquito and mosquito-to-human transmission of Plasmodium
parasites is fundamental to accomplish the ambitious goal of malaria elimination. The WHO currently
recommends only primaquine as a transmission-blocking drug but its use is severely restricted
by toxicity in some populations. New, safe and clinically effective transmission-blocking drugs
therefore need to be discovered. While natural products have been extensively investigated for the
development of chemotherapeutic antimalarial agents, their potential use as transmission-blocking
drugs is comparatively poorly explored. Here, we provide a comprehensive summary of the activities
of natural products (and their derivatives) of plant and microbial origins against sexual stages of
Plasmodium parasites and the Anopheles mosquito vector. We identify the prevailing challenges and
opportunities and suggest how these can be mitigated and/or exploited in an endeavor to expedite
transmission-blocking drug discovery efforts from natural products.

Keywords: transmission blocking; Plasmodium; Anopheles; natural products; extracts; malaria;
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1. Introduction

1.1. Transmission-Blocking: An Integral Tool for Malaria Elimination

In spite of the many efforts that have been explored to control malaria, the disease still remains
a global health threat [1–3]. The intricate multistage life cycle of the malaria-causing Plasmodium
parasite, which spans both development in the human host and mosquito vector, has been one of
the major reasons for its survival and continued infection of humans. Each developmental stage of
the parasite is characterised by distinct biological processes that causes the variation in stage-specific
drug susceptibility [4–9]. After hepatic schizogony (liver stage development as initial step after
infection with sporozoites transmitted by a feeding female Anopheles mosquito), pathology is associated
with asexual intra-erythrocytic development of the parasite, typified by progression from ring to
trophozoites before schizogony occurs to release daughter merozoites able to infect new erythrocytes
and continue proliferation. Sexual development relies on gametocytogenesis of a small fraction of
the parasites (~1% of the population) and is characterised by the parasite differentiating through five
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developmental stages (stages I–V) in the human host to produce mature gametocytes (stage V) able to
be transmitted by a feeding mosquito. Once back in the mosquito vector, gamete formation ensues
followed by fertilisation and finally oocyst formation before sporogony [10].

For decades, antimalarial drug development efforts have been (rightly so) skewed towards the
discovery of chemotherapeutic agents, drugs able to target the symptomatic intra-erythrocytic asexual
stage Plasmodium parasites and cure a patient of disease and preventing mortality [11,12]. However,
this does not eliminate carriage of gametocytes in these patients and indeed, parasite transmission
largely continues unabated due to the general inactivity of these drugs against the sexual stages of
the Plasmodium parasite life cycle. As global malaria programs shift from control to elimination and
eradication [13], emphasis has therefore been placed on discovery of additional activities associated
with new antimalarial candidates. Not only should such candidates be able to kill asexual parasites and
therefore be useful therapeutically, but they should also have transmission-blocking activity, targeting
either sexual stages of Plasmodium parasites (classified by the Medicines for Malaria Venture as target
candidate profile 5, TCP-5, [10,14,15]) or the Anopheles mosquito vector (endectocides, TCP-6, [10,16]).

It is anticipated that transmission-blocking drugs will reduce the burden of malaria by substantially
decreasing the number of infectious mosquitoes, resulting in significant decline in secondary human
infections [14]. In fact, interruption of transmission through vector control targeted interventions,
has been at the heart of some of the major success stories in the fight against malaria including
elimination of the disease in several countries [17]. However, the efficacy of vector control has
plateaued and is undermined by, amongst others, outdoor feeding behaviour of mosquitoes and
insecticide resistance [18]. The use of drugs to target the parasite and thereby prevent transmission is
therefore an enticing new possibility as add-on to current standard practice. Moreover, the low number
of sexual stage parasites marks them for targeting and their non-proliferative nature could decrease
the probability of development of resistance to transmission-blocking drugs [19], a fact compromising
the use of all antimalarial chemotherapeuticals targeting asexual stages.

Despite these advantages and the growing body of empirical and clinical evidence substantiating its
usefulness [20–23], there is currently only one WHO approved transmission-blocking drug, primaquine.
Unfortunately, its use is limited due to toxicity concerns [24] and it cannot be prescribed to pregnant
women, breast feeding mothers and infants [25], populations that has a large potential parasite reservoir,
which will perpetuate parasite transmission. It is thus imperative to discover new, safe and clinically
effective transmission-blocking agents.

1.2. Can Natural Products Prove a Panacea for Transmission-Blocking Drug Discovery Efforts?

Natural products are an extensive reservoir of diverse chemical compounds with novel biological
targets and mode-of-action (MoA). These qualities have made them a significant component of the global
pharmaceutical arsenal with over half of currently commercially available medicinal drugs having
been either derived from a natural source or been inspired by natural compounds [26,27]. The malaria
field has equally benefitted, with natural products having played a pivotal role in the discovery of
chemotherapeutic antimalarial agents with two mainstay malaria chemotherapeutic agents, artemisinin
and quinine, both derived from medicinal plants [28,29]. These agents also served as scaffolds
for the synthesis of derivatives including artemether, dihydroartemisinin, artesunate, chloroquine
and mefloquine. Another antimalarial, atovaquone, also traces its discovery to a plant-derived
natural compound [28]. Natural compounds isolated from microorganisms have similarly had a
profound impact towards discovery of chemotherapeutic antimalarial agents by providing privileged
scaffolds for the synthesis of derivatives including the tetracycline, doxycycline and the lincosamide,
clindamycin [30,31].

However, research on natural products as a source of drugs drastically declined towards the end
of the 20th century [32]. This was attributed to challenges associated with downstream development
of such compounds in medicinal chemistry programmes, particularly due to limited availability of
starting material and structural complexity of purified natural product compounds that restricts
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their synthesis. Further compounding factors include frequent isolation of pan-assay interfering
compounds, repeated isolation of known molecules and the non-compatibility of some secondary
metabolites with high-throughput screening platforms [32]. Despite this, the emergence of drug
resistant microorganisms and limited chemical structural diversity of synthetic libraries has led to
a revival of interest in natural products as sources for drug discovery [33]. The recent discovery of
structurally unique bacterial-derived antibiotics, teixobactin [34] and darobactin [35] and a anticancer
marine alkaloid, trabectedin [36] is fuelling new research. Likewise, malaria research has benefited
from this renaissance with the discovery and development of the natural product inspired clinical
antimalarial candidates cipargamin [37] and artefenomel [38]. Apart from providing leads, natural
products are also opening up new avenues for rational drug discovery efforts through the identification
of useful novel biological targets and pathways in Plasmodium parasites [39].

Accumulating evidence supports natural products as a source for transmission-blocking drugs
targeting the sexual stages of Plasmodium parasites and / or the Anopheles mosquito. Some natural
compounds exhibit a TCP-5 activity profile while others have dual activity with additional potency
against asexual parasites (defined with both TCP-1 and TCP-5 activity). The low hit rates of the
synthetic compounds against sexual stage Plasmodium parasites [40–43], motivates expansion of the
search for transmission-blocking drugs to natural products. This is justified particularly since their
diverse chemical space and wide range of pharmacophores could lead to identification of novel
lead compounds and associated targets in the parasite and as such avert existing drug resistance
challenges. We therefore discuss here the status quo of natural products that have been explored for
transmission-blocking activity in Plasmodium parasites and debate future usefulness of natural products
and provide guidance as to standardised strategies to explore this rich source more expeditiously and
economically to discover new transmission-blocking hits.

Transmission-blocking screens are typically complex since compounds should show activity
primarily against gametocytes in humans, but also has to translate to retained activity against
early sporogonic stages (ESS, gametes and/or ookinetes) and oocyst mosquito stages (Figure 1a).
Alternatively, compounds active against the Anopheles mosquito itself can then be used in the
form of endectocides [10,40]. Moreover, the assays used in transmission-blocking screens are
technically challenging as they involve multiple biological assay platforms that spans the entire
transmission-blocking cascade, with the standard membrane feeding assay (SMFA) serving as
the gold standard assay to confirm a block in human-to-mosquito transmission [40]. Until now,
transmission-blocking screens for natural products have been largely confined to late-stage gametocytes
(stage IV/V gametocytes) whilst screens directly against gametes or oocysts or for identification of
endectocides have received the least attention (Figure 1a).

A summary of the current profile of natural compounds that have been screened for
transmission-blocking antimalarial potential, revealed that 80 pure natural product compounds
(and 11 derivatives generated from some of these pure compounds) have been investigated for
some form of transmission-blocking activity. Of this, 21 compounds are from microbial origin and
59 from plants (Figure 1a, Table S1). In addition to these purified compounds, complex and/or
minimal extracts from 37 plant species and 10 herbal products have been associated with at least some
transmission-blocking activity. The plant species investigated were drawn from 17 different plant
families with Asteraceae, Meliaceae and Combretaceae being the most represented (Figure 1b).
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Figure 1. Overview of transmission-blocking assays and natural product origins. (a) Sexual stages
within the human host are categorised into early-stage (I–III) and late-stage (IV–V) gametocytes.
Gametocytes are sexually dimorphic with both male (micro-) and female (macro-) gametocytes found
in human host at a ratio of ~1:3.6, respectively. Inside the mosquitoes’ midgut, micro-gametocytes
develop into mature micro-gametes, a process called exflagellation. Each micro-gametocyte produces
eight micro-gametes while a macro-gametocyte matures into a single macro-gamete. Gametocyte
development into gametes is termed gametogenesis. Micro- and macro-gametes fuse together to form
a zygote that develops into a motile ookinete. Gamete-zygote-ookinete development constitute early
sporogonic stages (ESS). Ookinetes penetrate the midgut wall where they form oocysts which enlarge
over time and eventually rupture to release sporozoites. Different assay platforms to assess the activity
against different stages include gametocyte stage specific assays (which assess either development,
viability, metabolic or redox status), dual gamete formation assays (DGFA) (examine development
of mature gametocytes into either micro- or macro-gametes), ookinete development assay (ODA)
(examines development of gametes to ookinetes), standard membrane feeding assay (SMFA, assess
either the number of oocysts per mosquito (termed oocyst intensity) or total number of mosquitoes with
oocysts (termed oocysts prevalence) and endectocidal assays (which examine insecticidal properties of
drugs upon ingestion by mosquito). Numbers indicated in blue and green circles indicate number of pure
natural compounds and plant extracts screened per each respective stage. TB–transmission-blocking.
(b) Summary of plant species reviewed for activity against transmission-blocking stages. Quite
noticeable is the lack of investigations on gametes. It is also evident that the Asteraceae, Meliaceae and
Combretaceae are the most investigated plant families with most species from the latter family being
inactive against the respective transmission-blocking stages they were interrogated against. The colour
scale indicates active (red) and inactive (black) plants species against specific stages.
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2. Effectiveness of Natural Products Against Transmission-Blocking Stages

2.1. Microbial-Derived Natural Products

2.1.1. Ionophores

Ionophores are lipid-soluble carboxylic polyether complexes that facilitate the transportation of
ions across cellular membranes [44]. Inspired by the drug repurposing efforts, D’Alessandro et al. [45]
screened three ionophores, salinomycin, nigericin and monensin (all originally isolated from different
Streptomyces sp. [46]), against early- and late-stage P. falciparum gametocytes in vitro.

All three compounds were highly active (IC50 < 200 nM, Figure 2, Table 1) against both gametocyte
stages, with salinomycin showing preference to late-stage gametocytes [45]. The ionophores were
able to inhibit development of P. berghei gametocytes into early sporogonic stages (ESS) in vitro
and the transmission-blocking properties of these compounds was confirmed in vivo using the
standard membrane feeding assay (SMFA) (Table 1) [45]. Maduramicin, an ionophore produced
by the actinomycete Actinomadura rubra, [47] has transmission-blocking properties both in vitro
and in vivo [48,49], killing late-stage P. falciparum gametocytes (IC50 < 200 nM) (Figure 2, Table 1).
This ionophore is fast acting, reducing late-stage gametocyte viability by >90% 12 h post treatment,
with morphological changes evident even 1 h after drug exposure. This is similarly reflected in in vivo
transmission-blocking activity where oocyst development was significantly blocked by maduramicin
following exposure of gametocytes to drug for only 90 min prior to mosquito feed [48].

2.1.2. Peptides, Glycosides and Miscellaneous

The proteasome inhibitor, epoxomicin, is one of the most widely investigated peptides routinely
used for transmission-blocking as a reference drug for in vitro gametocytocidal assays [48,50–54]. It
has potent (IC50 < 10 nM, Figure 2, Table 1) in vitro activity against late-stage P. falciparum gametocytes
[50,51,53,54], with sex-specific preference towards P. falciparum micro-gametes in vitro [50,55]. In vivo,
epoxomicin completely blocks the formation of P. falciparum oocysts in An. stephensi [55]. The peptide
carmaphycin B targets the β5 subunit of the yeast 20s proteasome, a well characterised antimalarial
target [56]. Carmaphycin B is potent (IC50 < 1 µM) against both intra-erythrocytic asexual P. falciparum
parasites and gametocytes, with 40-fold preference towards asexual parasites (Figure 2, Table 1) [57].
Toxicity concerns with this compound resulted in norleucine replacement of the methionine moiety
and racemic changes on valine, drastically improving selectivity of a new derivative [57].

Cyclic oligopeptides have been explored including the antibiotic thiostrepton, which is moderately
active against intra-erythrocytic asexual P. falciparum parasites (IC50 = 8.9 µM) with a dual MoA:
blocking protein translation in the apicoplast and inhibiting the 20s proteasome of the parasite [58].
Thiostrepton is similarly only moderately potent against the five development stages of gametocytes
(IC50 ranging from 1.82 to 3.4 µM) [4], but has a 14-fold enhanced activity against micro-gametes
compared to macro-gametes (Figure 2, Table 1) [9]. This compound significantly reduces P. berghei
oocyst development in An. stephensi mosquito midguts as well as reducing the number of sporozoites
per mosquito [59]. Dactinomycin (a known transcription inhibitor in eukaryotic cells) and romidepsin
(histone deacetylase inhibitor) [49] both show sub-micromolar gametocytocidal activity (Figure 2,
Table 1), with in vivo transmission-blocking activity only confirmed for romidepsin [60]. Although these
oligopeptides do show potency, their large MW and poor solubility detracts from their development as
TCP-5 candidates.
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Figure 2. Chemical structures of highly potent microbial-derived compounds targeting P. falciparum
transmissible stages.

The glycosides adriamycin (a DNA synthesis inhibitor) and plicamycin (a RNA synthesis
inhibitor) [49] similarly show sub-micromolar gametocytocidal activity (Figure 2, Table 1), indicating
that inhibitors of essential nucleotide synthesis processes are affective against the transmissible forms
of the parasite. This extends to transcription inhibitors such as puromycin [4,6,7], with equipotent
in vitro activity against all five development stages of P. falciparum gametocytes [4]. This compound
additionally has the advantage of being fast acting against P. falciparum macro-gametes (< 1 h) [50].
Similarly, the antibiotic cycloheximide has an almost exactly similar profile to puromycin, killing all
P. falciparum gametocyte stages, and being fast acting against macro-gametes [50], whilst also blocking
P. berghei ookinetes development (Figure 2, Table 1) [61].

The macrolide chlorotonil A is highly potent against late-stage gametocytes (Figure 2, Table 1) [62].
Despite a plethora of investigations examining their transmission-blocking potential, the antibiotics
tetracycline, fosmidomycin and deferoxamine have consistently proved to be inactive against both
P. falciparum gametocytes (IC50 values >12.5 µM) and macro-gametes with the latter two compounds
additionally unable to block P. berghei ookinete development in vitro [4,50,61]. All three compounds
failed to significantly reduce the development of P. falciparum parasites into oocysts in mosquito vector
(Table S1) [63].
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Preliminary assessment of two usnic acid derivatives, designated BT37 and BT122, showed them
to be potent in vivo (both had > 99% inhibition of oocyst formation at 250 µg/mL) [64]. Dose-response
studies for inhibition of oocyst formation were estimated using logistic regression to range from 35 to
234 µM for both derivatives [64]. While both these derivatives were incapable of blocking exflagellation
of mature micro-gametes, they did inhibit transformation of zygotes-ookinetes (Table S1) [64].

2.1.3. Mycotoxins

Fibrinogen-related protein 1 (FREP 1) is one of the many proteins that facilitate mosquito infection
by Plasmodium parasites and thus transmission [65]. An in vitro screen of a library of crude fungal
extracts for compounds that disrupt interaction of FREP 1 with Plasmodium parasites identified three
active extracts, with that from Aspergillus niger (92% inhibition of FREP 1-Plasmodium association) being
the most potent [66]. P-orlandin was identified as the active principle from this extract and has in vivo
transmission-blocking activity against oocysts (Figure 2, Table 1) [66]. Aphidicolin (a DNA synthesis
inhibitor, mycotoxin from Cephalosporum aphidicola) [67,68] is active by inhibiting exflagellation of
P. falciparum micro-gametes [64], without displaying overt toxicity (Figure 2, Table 1).

Table 1. Transmission-blocking activity of microbial-derived natural product compounds. (Further
details provided in Table S1).

Compound MW cLogP

Transmission-Blocking Stage Activity
(IC50, µM/% inhibition @ >5 µM a or <0.5 µM b)

References
EG LG Mic Mac ESS Ooc

Ionophores
Salinomycin 751 5 0.014 0.006 0.035 0.002 c; 0.018 d [45]
Nigericin 724 4.69 0.003 0.001 [45]
Monensin 670 3.74 0.002 0.006 0.017 0.002 c; 0.001 d [45]
Maduramicin 934 1.47 0.015 100% e [48,49]
Peptides, glycosides and miscellaneous
Epoxomicin 554 2.12 99.8% a 0.0004 Inactive 0.008 100% b [48,50–54]
Carmaphycin
B 515 3.31 0.160 [57]

Thiostrepton 1664 −1.04 2.8 1.8 0.096 1.4 8 Active a [4,9,59]
Dactinomycin 1255 0.6 0.015 [49]
Romidepsin 540 1.39 0.637 Active b [49,60]
Adriamycin 579 0.36 0.526 [49]
Plicamycin 1085 0.25 0.833 [49]
Puromycin 471 −0.22 0.103 0.110 100% a [4,6,7,50]
Cycloheximide 281 1.3 0.6 0.477 100% a 100% a [50,61]
Chlorotonil A 479 4.81 0.030 [62]
Mycotoxins
P-Orlandin 410 3.18 56.7% a; 35.3% a [66]
Aphidicolin 338 2.39 100% b [64]

a % inhibition > 5 µM, b % inhibition < 0.5 µM, c Oocysts intensity; d Oocysts prevalence; e % inhibition of
oocysts intensity at 4 mg/kg. MW and consensus LogP (cLogP) calculated using SwissADME online suite [69].
EG–early-stage gametocytes; LG–late-stage gametocytes; Mic–micro-gametes; Mac–macro-gametes; ESS–early
sporogonic stages; Ooc–oocysts.

2.2. Plant-Derived Natural Products

2.2.1. Terpenes and Terpenoids

Sesquiterpene lactones are emerging as a good starting point in search of transmission-blocking
drugs with several studies proving their potential. The most widely investigated member of this
class of compounds is artemisinin, along with its derivatives (Figure 3, Table 2). These agents have
consistently been shown in vitro to be potent against early-stage P. falciparum gametocytes [4,5,7]
but their activity against late-stage gametocytes is rather ambiguous with conflicting data (in some
instances >100-fold differences in IC50 values) [4,6,7,51,70]. Such discrepancies can be explained by
variation in stage composition of parasite cultures and dissimilarities in sensitivity of the different
assay platforms used [40]. Nonetheless, artemisinin sterilises mature micro-gametocytes and blocks
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macro-gamete development [9,50]. While artemisinin does not inhibit P. berghei ookinetes development
in vitro, it blocks P. falciparum oocysts formation in Anopheles mosquito [63,71]. Clinical studies have
shown artemisinin derivatives to reduce gametocyte density and carriage time [72,73]. However,
artemisinin-based combination therapies (ACTs) are unable to clear off the transmittable mature stage
V gametocytes clinically [74].

Figure 3. Chemical structures of selected plant-derived compounds with some described activity
(including only moderate) against P. falciparum transmissible stages. * 1α,4α-dihydroxybishopsolicepolide.

Additional sesquiterpene compounds have been investigated from plant species belonging
to the Asteraceae family. Parthenin and parthenolide (from the Asteraceae family members
Parthenium hysterophorus and Tanacetum parthenium, respectively), inhibit exflagellation of micro-gametes
and block ookinete-oocysts development [75]. From another Asteraceae plant species, Artemisia afra,
two previously undocumented gametocytocidal guaianolide sesquiterpene lactone compounds
(1α,4α-dihydroxybishopsolicepolide and yomogiartemin) were shown to have µM gametocytocidal
activity, the former with a three-fold selectivity towards late-stage compared to early-stage gametocytes
(Figure 3, Table 2, Table S1) [76]. From Vernonia amygdalina (Asteraceae), two sesquiterpene lactones
were isolated, vernodalol and vernolide, with both showing only marginal ESS activity (Figure 3,
Table 2, Table S1) [77]. A germacranolide sesquiterpene lactone from Daucus virgatus (Apiaceae),
daucovirgolides G, was the only compound with marked potency in vitro, strongly inhibiting ESS
development (Figure 3, Table 2, Table S1) [78,79].

Taxol (a diterpene isolated from the plant Taxus brevifolia (Taxaceae) [80]) (Figure 3, Table 2,
Table S1), that inhibit transformation of P. gallinaceum zygotes into ookinetes in vitro by targeting
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microtubules, within 6 h [81]. Furthermore, zygotes exposed to different dosages of these drugs for 4 h
failed to develop into oocysts in midguts of Aedes aegypti mosquitoes [81].

Azadirachta indica (Meliaceae), the neem tree native to India where it has been used for >3500 years
for malaria treatment, has been comprehensively studied for its transmission-blocking activity [82–89].
A. indica fractions are active in vitro against both early- and late-stage P. falciparum gametocytes
(IC50 = 0.001 µg/mL) [85,87]. Transmission-blocking activity of A. indica has been conclusively
demonstrated in vivo (by blocking P. berghei gametocyte-ESS development) and ex vivo (inhibiting
P. falciparum gametocyte and oocyst development) [83,84]. The potency of A. indica against sexual
stages of Plasmodium has been ascribed to limonoids (a class of terpenoids produced by the plant
species), with azadirachtin A being the most prominent. Azadirachtin A, along with three of its
synthetic derivatives (Table S1), are similarly potent against P. berghei micro-gametes (IC50 ranging
from 1.8 to 2.7 µM) (Figure 3, Table 2, Table S1) [82]. Structure-activity relationship analysis showed
that the hemi-acetal moiety on carbon-11 to be critical for the observed pharmacological effect of
these compounds. Azadirachtin A additionally inhibits exflagellation of gametes ex vivo and blocks
development of ESS [88]. The MoA of azadirachtin A has been elucidated to be an impairment
of microtubules formation during exflagellation [90]. In contrast to its potency against gametes,
azadirachtin A is inactive against asexual Plasmodium parasites [90]. Another limonoid shown to have
activity against ESS stages is deacetylnimbin [89]. Unlike azadirachtin A, deacetylnimbin has the
advantage of being thermally and chemically stable [89]. This is an important property to consider in
developing drugs targeting the ESS development process in the mosquito (contraceptive drugs) since
they ought to have a long half-life equal to the peripheral circulation period of gametocytes which can
be as long as 55 days [89,91]. Structural comparisons between deacetylnimbin, azadirachtin A and
other A. indica compounds namely, nimbin (poorly active against ESS) and salannin (inactive against
ESS), suggested that the presence of a free hydroxyl moiety was crucial for potency [89]. Gedunin,
a limonoid highly active in vitro against asexual Plasmodium parasites, has been inferred to have an
inhibitory effect on the development of oocysts in the mosquito vector while existing data suggests
both azadirone and azadidarione to be incapable of blocking oocysts development (Table S1) [84].

2.2.2. Alkaloids, Steroids and Miscellaneous

The gametocytocidal activity of quinine has been a subject of investigation since the 1940s [92].
In some studies, quinine is reported to be more selectively potent towards early-stage P. falciparum
gametocytes than to late-stage gametocytes (> 15-fold variation in IC50 values) (Figure 3, Table 2,
Table S1) [4,5,51], whilst other studies show a six-fold late-stage gametocytes preference [7,49].
Interestingly, quinine is reported to be active against P. vivax and P. malariae gametocytes [93]. While
it has poor activity inhibiting development of P. falciparum macro-gametes [50] and is incapable of
arresting P. berghei ookinete development in vitro [61], quinine is able to block P. falciparum oocyst
development in vivo [63]. Other alkaloids including dihydronitidine and heitziquinone, isolated from
the plant species Zanthoxylum heitzii (Rutaceae), also showed activity against ookinete development
in vitro [94]. The quinazoline alkaloid, tryptanthrin and its synthetic derivatives designated NT1 and
T8, have significant gametocytocidal activity in vitro (Figure 3, Table 2, Table S1) [95]. However, of the
three agents only NT1 strongly inhibited exflagellation of micro-gametes (Table S1) [95]. Cryptolepine
and a root extract of its parent plant, Cryptolepis sanguinolenta (Lindl.) Schlechter (Periplocaceae) both
demonstrate moderate gametocytocidal activity [96]. The MoA of cryptolepine on asexual Plasmodium
parasites has been deciphered to be partly due to inhibition of β-haematin formation [97], a non-viable
late-stage gametocyte target [4]. Another alkaloid with demonstrated late-stage gametocyte activity is
the protein translation inhibitor omacetaxine [49].

While steroids have this far received minimal attention within the malaria transmission-blocking
drug discovery field, a few studies have provided interesting insights into their TCP-5 credentials.
Withaferin A (a transcription inhibitor) is one such compound being highly potent against late-stage
gametocytes (Figure 3, Table 2) [49]. Three steroids, designated SN-1, SN-2 and SN-4, isolated
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from the plant, Solanum nudum Dunal (Solanaceae), were assessed against ex vivo P. vivax parasites.
Only compounds SN-1 and SN-2 significantly reduced infectivity [98], although this could not be
discerned from solubilising agents included such as polyvinylpyrrolidone (PVP). Encouragingly,
SN-2 further significantly reduced oocyst density, a phenotypical effect not observed for PVP (Table
S1) [98]. The results from this study are important as they do point to natural products being useful
in targeting sporogonic stages of P. vivax. In a recent study, a derivative of the steroid sarachine,
designated 1o, was demonstrated to be active against early, mid and late-stage P. falciparum gametocytes
as well as in blocking P. berghei oocysts development in vivo (Table S1) [99].

Additional screens for transmission-blocking activity associated with plant extracts include a screen
of extracts from 12 plant species against late-stage gametocytes of P. falciparum in vitro with only extracts
of five species, Terminalia macroptera (Combretaceae), Combretum collinum (Combretaceae), Argenome
mexicana (Papaveraceae), Zanthoxylum zanthoxyloïdes (Rutaceae) and Lophira lanceolate (Ochnaceae) [100].
Most extracts had moderate activity (IC50 ranging from 20.6 to 54.7 µg/mL) with only the stem bark
ethanol extract of L. lanceolate demonstrating good activity (IC50 = 11.4 µg/mL) [100]. A bioassay-guided
approach led to the isolation of seven biflavonoid compounds from L. lanceolate including lophirone E
which was 100-fold more active towards late-stage gametocytes compared to asexual stage P. falciparum
parasites (Figure 3, Table 2) [101]. Interestingly, screening L. lanceolate extracts against ESS led the
isolation of a different set of compounds, (glucolophirone C, and the lanceolins A and B, IC50 values
ranging from 10.95 µM to 113.58 µM), indicating stage-specific activities (Table S1) [102].

Paton et al. [103] recently demonstrated that exposure of female Anopheles mosquitoes to relatively
low concentrations of atovaquone (an analogue of a plant-derived natural compound which targets
cytochrome b) shortly after P. falciparum infection rapidly blocked zygote-ookinete development inside
the mosquitoes midgut. This consequently led to failure of oocysts development, rendering the
mosquitoes non-infective (Table S1) [103]. Atovaquone could be administered in a way that mimicked
contact with an insecticide on a bed net. Its lipophilic nature allowed for its rapid absorption via the
mosquito’s legs and into the midgut where it exerted its sporogonic effect. The study opens up new,
previously unexplored avenues which, if properly exploited, may have a profound effect on malaria
transmission contributing immensely towards the elimination and eradication solution.

Table 2. Transmission-blocking activity of plant-derived natural product compounds. (Further details
provided in Table S1).

Compound MW cLogP
Transmission-Blocking Stage Activity
(IC50, µM/% inhibition @ > 5 µM a) References

EG LG Mic Mac ESS Ooc

Terpenes and Terpenoids
Artemisinin 282 2.5 0.012 0.037 0.224 0.120 Inactive 93% a [4,6,7,9,50,51,63,70,71]
1α,4α-* 320 0.97 17.5 6.3 [76]
Vernodalol 392 1.45 18.7 [77]
Daucovirgolide
G 446 3.63 82.3 b;

48.4 c [78,79]

Taxol 853 3.39 ~80% a [81]
Azadirachtin A 720 1.08 3.5 17.2 [82,88]
Deacetylnimbin 498 2.77 6 to 25 [89]
Alkaloids, Steroids and Miscellaneous
Quinine 324 2.81 0.44 0.318 29% a 22.6%a 85%a [4,5,7,49–51,61,63]
Dihydronitidine 349 3.65 1.7 [94]
Tryptanthrin 248 2.16 95% d Inactive [95]
Omacetaxine 545 2.47 0.083 [49]
Withaferin A 470 3.45 0.372 [49]
Lophirone E 372 3.95 0.14 [101]

a % inhibition at 5 µM; b ESS development; c Zygote-ookinete development, d % Inhibition of development
at concentration equal to IC90 value against asexual stages; * 1α,4α-dihydroxybishopsolicepolide. MW and
cLogP calculated using SwissADME online suite [69]. EG–early-stage gametocytes; LG–late-stage gametocytes;
Mic–micro-gametes; Mac–macro-gametes; ESS–early sporogonic stages; Ooc–oocysts.
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2.3. Herbal Remedies as Gametocytocidal Agents

Ten herbal products used for malaria treatment in Ghana showed activity (at 100 µg/mL) in vitro
against both early and late-stage P. falciparum gametocytes. Interestingly, at 1 µg/mL, the herbal
product YF, was significantly more potent against late-stage gametocytes in comparison to early-stage
gametocytes, whereas herbal product RT used at sub-optimal concentrations (IC10 of asexual parasite
stages) had the lowest number of gametocytes [104], indicating some preferential killing of gametocytes
in these extracts. Some asexual Plasmodium parasite cultures treated with herbal products also had a
higher gametocytaemia in comparison to untreated cultures [104], implying that this form of stress
(similar to that observed for some antimalarial drugs [105–108]) induces transformation to sexual
development. This makes it that much more important to identify compounds that do kill early- and
late-stage gametocytes.

2.4. Endectocidal Activity of Plant Extracts Against Anopheles

While extracts of plants and plant-derived natural products have been investigated primarily as
insecticides or larvacides (reviewed by Rongnoparut et al. [109] and Kishore et al. [110]), their endectocidal
activity (where mosquitoes ingest either the extracts of plants or plant-derived compounds and is thereby
killed) is poorly explored. A model endectocidal drug for transmission-blocking is ivermectin [111],
a 16-membered macrocyclic lactone semisynthetic derivative drug of avermectin, which is a complex
natural product originally isolated from the bacterium Streptomyces avermectinius [112,113]. Its MoA is
associated with hyperpolarization of cells due to influx of Cl−, due to inhibition of glutamate-gated
chloride channels (GluCl) [114,115]. In a clinical study, ivermectin decreased An. gambiae and An. funestus
mortality by four to seven-fold, 24 h after ingestion [116], and kills outdoor-feeding An. arabiensis
mosquito vector when delivered through cattle [117] for up to 21 days post-treatment [118]. Enticingly,
ivermectin also possesses good activity against asexual P. falciparum parasites and late-stage gametocytes
(IC50′s of 0.1 and 0.5 µM, respectively, Table S1) [119]. It remains to be seen if this will translate to
epidemiological impact in decreasing the parasite transmission burden, in addition to its success
against the mosquito vector.

In the search for new endectocides, Kenyan plant species (including Tithonia diversifolia (Asteraceae)
and Ricinus communis (Euphorbiaceae)) were active at LC50 values of 8.30 and 8.69 mg/mL after 3 days
and 1.53 and 2.56 mg/mL after 7 days of feeding, respectively [120], with two active compounds
isolated (3-carboxy-4-methoxy-N-methyl-2-pyridone and ricinine). Interestingly, the survival of
mosquitoes fed on fruits of Mangifera indica (Anacardiaceae) or parts of Thevetia neriifolia (Apocynaceae)
or Barleria lupilina (Acanthaceae) was decreased by 50–95% [121]. A. indica and Z. heitzii extracts also
have pronounced endectocitocidal properties [122,123].

2.5. Transmission-Blocking Activities of Synthetic Derivatives of Natural Compound Analogues Currently in
Clinical Trials

The natural compound analogue and clinical antimalarial drug candidates KAE609
(cipargamin) [124] and OZ439 (artefenomel) (structural design inspired by artemisinin) [125] have
transmission-blocking properties both in vitro and in vivo [4,38,126,127]. The spiroindolone KAE609
inhibits in vitro gametocyte development with sub-micromolar concentrations [126], whilst the
endoper{oxide OZ439′s potent (IC50 < 10 nM) gametocytocidal potency is limited to late-stages
in vitro [4]. However, OZ439 inhibits exflagellation (>65% at 10 µM) [71] and macro-gametogenesis
(IC50 = 0.15 µM) [50]. P. falciparum transmission-blocking of both compounds has been confirmed
in vivo [50,126]. Although KAE609 cleared P. vivax gametocytes [127] within 8 h and OZ439 reduced
P. vivax gametocytaemia in vivo by >90% within 24 h [38], the clinical efficacy of both compounds
against P. falciparum gametocytes still remains inconclusive [38,127].
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3. Future Perspectives

While natural product compounds show varied activity against transmission-blocking stages,
pragmatic strategies adopted for further discovery of new entities should be refined to ensure selection
of high-quality, potent hits to expedite their subsequent discovery and development. This includes
stringent selection of natural compound libraries, plants and microbial species to increase the probability
of getting hit compounds, given the expansiveness and abundance of the plant kingdom (>300,000
plant species on Earth [128]). While the ethnobotany approach has been pivotal in the discovery of
chemotherapeutic agents [29,129], unfortunately, transmission-blocking is not a topic one comes across
in folk medicine, making it difficult to formulate a question that will lead to identification of plants used
for this purpose. Having noted that some plant families e.g. Asteraceae and Meliaceae, are rich sources
of prolific compounds potent against most transmission-blocking stages (Figure 1b) [75,82–84,89],
a rational approach in selecting plants for screening against sexual stage Plasmodium parasites will
have to focus on members of these plant families documented in ethnobotanical surveys. The vast
unique marine vegetation that produce novel chemical structures [130] should also be explored
for transmission-blocking antimalarials. Novel, previously unculturable bacteria also present huge
untapped source of chemical diversity.

Alternative sources are the de novo screen of natural product libraries in medium- to
high-throughput format. It is now clearly indicated that driving screens based on asexual stage
potency may not identify transmission-blocking specific compounds and as such we recommend
parallel screens against different parasite life cycle stages or at the start, screening driven primarily
on the transmissible forms, after which activity against other stages can be determined for hits
obtained [131,132]. For such natural product libraries, stringent go/no go criteria need to be defined,
similar to screening any other small molecule libraries. However, natural product hits need to be
clearly evaluated very early on in the screening cascade for drug-like characteristics before proceeding
to a hit-to-lead optimisation phase. In line with the innovative thought and approach of the MMV
Malaria Boxes [133], we propose the assembling of a box consisting of a set of structurally diverse
natural compounds with proven antiplasmodial activity, that could be used as interrogative control set.

Since different assay read-outs might vary with the MoA of small molecules, the reliability of
these assay platforms currently used to screen for gametocytocidal activity needs to be rigorously
interrogated and ‘standardised’ to screen extracts against sexual stage Plasmodium parasites at medium-
to high-throughput scale. This will need to extend further to clearly defining protocols to adopt such
as reference control compounds (and possible extracts) per each stage to be used per assay (providing
bench mark IC50 values of each standard reference drug/extract), standard incubation periods and set
potency levels (either % inhibition of development/viability at specified concentration or IC50 values)
that will serve to guide as to which extracts will be prioritised for the next phase, that is, isolation,
purification and identification of bioactive principles. All of the above is entirely dependent on the
ability to isolate and purify bioactive compounds from extracts. Classical bioassay-guided fractionation
approaches have been expansively employed within the malaria field [134–136], whilst cutting-edge
technologies for improved isolation of bioactive compounds have been developed and should be
explored for transmission-blocking discovery [134–138].

There is reason to believe that natural product compounds will retain their potency following oral
administration to mosquitoes, such as when it collects a blood meal. On the basis of this knowledge, it is
a worth-while effort to screen natural products, reported in literature to be highly potent insecticidal
agents, in search of new endectocidal compounds. Another prudent strategy to explore in search of
endectocides is to examine natural products known to target unique invertebrate ion channels e.g.
GluCl with the advantage of potential increased selectivity towards mosquitos and therefore reduced
toxicity. It remains to be seen if such novel compounds will indeed be able to impact epidemiologically
to reduce malaria transmission.
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4. Concluding Remarks

Optimal adoption of a transmission-blocking strategy will be crucial for efforts to eliminate
and subsequently eradicate malaria to be successful. Perhaps the clearest evidence of the
transmission-blocking role of natural products is that currently the only WHO recommended
transmission-blocking drug, primaquine, is a derivative of a natural product compound, quinine. It is
therefore encouraging to note that natural products do have a potential as a viable rich source of
transmission-blocking drugs. The activity of such products described against sexual stage parasites of
the two most prevalent malaria causing species, P. falciparum and P. vivax and some of the most prolific
Anopheles vector mosquitoes, therefore encourages the further exploration of the vast untapped natural
product resources for malaria elimination strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/13/9/251/s1,
Table S1: Supplementary File.
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