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Abstract  

Epidemic control may be hampered when the percentage of asymptomatic cases is high. Seeking 

remedies for this problem, test positivity was explored between the first 60 to 90 epidemic days in 

six countries that reported their first COVID-19 case between February and March, 2020: 

Argentina, Bolivia, Chile, Cuba, Mexico, and Uruguay. Test positivity (TP) is the percentage of 

test-positive individuals reported on a given day out of all individuals tested the same day. To 

generate both country-specific and multi-country information, this study was implemented in two 

stages. First, the epidemiologic data of the country infected last (Uruguay) were analyzed. If at 

least one TP-related analysis yielded a statistically significant relationship, later assessments 

would investigate the six countries. The Uruguayan data indicated (i) a positive correlation 

between daily TP and daily new cases (r=.75); (ii) a negative correlation between TP and the 

number of tests conducted per million inhabitants (TPMI, r= −.66); and (iii) three temporal stages, 

which differed from one another in both TP and TPMI medians (p<0.01) and, together, revealed a 

negative relationships between TPMI and TP. No significant relationship was found between TP 

and the number of active or recovered patients. The six countries showed a positive correlation 

between TP and the number of deaths/million inhabitants (DMI, r=.65, p<0.01). With one 

exception –a country where isolation was not pursued−, all countries showed a negative correlation 

between TP and TPMI (r=.74). The temporal analysis of country-specific policies revealed four 

patterns, characterized by: (1) low TPMI and high DMI, (2) high TPMI and low DMI; (3) an 

intermediate pattern, and (4) high TPMI and high DMI. Findings support the hypothesis that test 

positivity may guide epidemiologic policy-making, provided that policy-related factors are 

considered and high-resolution geographical data are utilized.  
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1. Introduction 

Unlike most other infections, COVID-19 is an infection characterized by a high percentage 

of asymptomatic cases: at least 40% and up to 80% of the cases may not reveal symptoms [1−3]. 

Such a feature creates an unprecedented problem; when this disease disseminates, in principle, the 

only way to identify all infected individuals would be through a universal testing program, i.e., 

testing, repeatedly, 100% of the population. At least in 2020, no country achieved such a high level 

of testing: on average, countries tested much less than 1 % of the population, on a given day. Given 

the scarcity of testing resources, in 2020, Austria and Germany reported that not more than 20% 

of the cases were likely to be detected [4].    

Consequently, in 2020, the true epidemiologic status of the population was unknown. To 

remedy such a difficult and global problem, which may be encountered, again, in future epidemics 

caused by this, similar or other infections, new metrics may be required. 

Testing populations seems to differ markedly from testing individuals. While clinical 

medical practices have historically emphasized personalized diagnostics, population-oriented 

testing is needed when epidemics are rapidly disseminating [5, 6].    

 Test positivity is a metric of potential relevance in situations in which the percentage of 

asymptomatic cases is high. Test positivity (TP) is the percentage of test-positive individuals 

reported on a given day out of all individuals tested the same day. TP is an indicator first mentioned 

in March 30, 2020: the World Health Organization described this metric in a public conference 

[7]. While now broadly used, TP has been used empirically. Hence, TP, as well as associated 

variables (including time), should be explicitly evaluated.  
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The ‘test positivity rate’ (TP) or ‘percent positive rate’ may help public health officials 

answer questions such as: ‘Are we doing enough testing for the amount of people who are getting 

infected?’ [8]. When the total number of tests conducted is too low, the test positivity (TP) 

percentage may be high. A high TP percentage may indicate that there are more people with 

coronavirus in the community who have not been tested yet [9]. A high TP percentage may reflect 

a rapid epidemic dissemination and, consequently, it may predict that places with a high TP will 

soon express a high or very high number of deaths/million inhabitants [6]. 

Vice versa, a low TP percentage may prognosticate the imminent cessation of an outbreak.   

Other indicators that may influence TP or be influenced by TP are: a) the number of tests 

conducted per million inhabitants (TPMI), b) the number of deaths reported per million inhabitants 

(DPMI), c) the number of active cases (all test-positive cases minus deaths and recovered patients), 

and d) the number of recovered patients.  

However, no variable may demonstrate utility or validity unless it is explored within an 

explicit –not an assumed− geographical and temporal context. That is so because the connectivity 

that explains epidemic dispersal is a geo-temporal structure [10-12]. 

Consequently, here the percentage of test positivity was investigated in Argentina, Bolivia, 

Chile, Cuba, Mexico y Uruguay –a group of countries selected because the first COVID-19 case, 

in these countries, was reported less than six weeks apart. Therefore, a relatively similar temporal 

timeframe allowed a hypothesis-generating study that considered both specific time points and 

geography. The purpose of this study was to generate the first geo-temporal evaluation of several 

epidemiologic variables associated with test positivity. 
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2. Methods  

Daily epidemiologic reports corresponding to Uruguay were collected from the  

Uruguayan  National System of Emergencies [13]. Because the data source was published in 

Spanish, it was corroborated with daily reports made by Worldometer [14]. Data corresponding to 

Argentina, Bolivia, Chile, Cuba, Mexico and Uruguay were collected from OurWorldInData [15]. 

Temporal data from these countries on test positivity, TPMI and DPMI are reported in 

Supplementary Table 1. 

The period under study was the first 60-90 epidemic days, which correspond (for the group 

of six countries) to February-May, 2020.  Specifically, daily and/or cumulative count data on: (i) 

the number of tests conducted in a given day, (ii) the number of test-positive individuals reported 

in a given day, (iii) the number of active cases, and (v) number of deaths were obtained. A 

commercial package (Minitab 19, State College, PA, Minitab Inc.) was used to perform statistical 

analyses and create plots. Population medians were analyzed using the non-parametric Mann-

Whitney test. 

 

3. Results 

The data corresponding to Uruguay were first investigated. The rationale for such a priority was 

the fact that it was the last country affected by this pandemic within the selected group and, 

consequently, epidemic patterns observed in Uruguay could follow and/or mimic patterns also 

exhibited by other countries prior to March 13, 2020 (when the first case was detected in Uruguay). 

The second reason for this research plan was that Uruguay started to develop diagnostic tests 

before the first case was detected and, consequently, the analysis of test positivity could be 

facilitated [16]. 
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The first estimates of test positivity were rather high in Uruguay. However, after 

approximately two weeks, they decreased and remained low in the first 60 epidemic days (Fig.  

1A). TP was positively correlated with the daily number of new cases (r= 0.75, Fig. 1B).  

An alternative way to monitor the progression of this pandemic is to plot the cumulative  

number of test-positive individuals (cases) together with the cumulative number of SARS-CoV2-

positive fatalities. This approach revealed two curves, which were not parallel (Fig. 1C). 

Therefore, fatalities could not be predicted from the case data.  

A similar finding was revealed when the cumulative number of cases was compared to the 

cumulative number of tests performed per million inhabitants (TPMI): the curves were not parallel 

(Fig. 1D). One data inflection revealed that, between two and three epidemic weeks (after ~ 2000 

TPMI were reached), the number of TPMI increased linearly over time (Fig. 1D). A similar pattern 

was observed when the cumulative number of fatalities was compared to TPMI: after TPMI 

reached 1000, the number of deaths flattened out (Fig. 1E).   These patterns were also noticed 

when TPMI was compared to the cumulative number of deaths reported per million inhabitants 

(DPMI): only after TPMI exceeded 1000, the DPMI values flattened out (Fig. 1F). 

Several of these variables showed at least two phases (Figs. 1 C, E, F).  The earliest stage 

displayed a quasi-exponential growth (i.e., the number of cases grew faster than time, which 

resulted in a quasi-vertical pattern). Later (after a data inflection was revealed) a quasi-linear phase 

was observed, in which the growth in the number of cases was slower than time and, therefore, 

cases exhibited a quasi-horizontal pattern (e.g., Fig. 1C).  
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Fig. 1. Epidemic curve and early metrics for COVID-19 infections, Uruguay, March to May, 2020. 
(A). Daily test positivity against epidemic days; (B). Daily number of new cases versus daily test positivity; (C). 
Cumulative cases and deaths over the period, March to May 2020; (D). Cases and tests per million inhabitants; (E). 
Fatalities and test per million inhabitants; (F). Deaths per million inhabitants and tests per million inhabitants. 
There was a positive correlation between the daily number of new cases versus daily test positivity (r= 0.75 [CI= 
0.61, 0.85]), Fig. 1B. 

 

 Test positivity was negatively correlated with testing in Uruguay (r= − 0.66, Fig 2A). Three 

subsets of temporal observations showed decreasing values of TP, which corresponded to 
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increasing (and statistically significantly different) values of TPMI (p<0.01, Figs. 2 B, C). When 

the sub-group of active cases was compared to all cases (which included deaths and recovered 

cases), the cumulative number of active cases exhibited a data inflection followed by a decreasing 

trend which, together, supported the view that patterns displayed by the data on active cases may 

inform earlier than the alternative indicator (Fig. 2D). 

 
Fig. 2. Inferential statistics on COVID-19, Uruguay, March to May, 2020. 
(A). Daily test positivity against epidemic days and tests per million inhabitants; (B). Daily test positivity versus 
cumulative tests per million inhabitants reveal L - shaped curve; (C). Temporal evaluation of daily test positivity 
reveals three distinct stage over the period, March to May 2020; (D). Cumulative cases and cumulative active cases 
plotted against a temporal timeline. 
There was a negative correlation between the daily test positivity and epidemic days (r= - 0.66 [CI= - 0.79, - 0.48]), 
Fig. 2A. 
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Fig. 3. External validity and comparison of observed patterns for COVID-19 in eleven countries. 
(A). Deaths per million inhabitants against test positivity; (B). Tests per million inhabitants versus test positivity; 
(C). Tests per million inhabitants versus test positivity, excluding Chile; (D). Deaths per million inhabitants against 
test per million inhabitants, excluding Chile; (E). Three-dimensional plot of deaths per million inhabitants, temporal 
scale and test positivity; (F). Three-dimensional plot of tests per million inhabitants, temporal scale and test 
positivity. 
There was a positive correlation for five countries except Chile, between the test positivity and death per million 
inhabitants (r= 0.65 [CI= 0.44, 0.80]), Fig. 3A. However, there was a negative correlation between test positivity 
and test per million inhabitants, after excluding Chile, (r= - 0.74 [CI= - 0.86, - 0.55]), (a demonstration that TP 
may be a reproducible metric, provided that the context and other variables are also considered). 
 

 Test positivity was positively correlated with deaths/million inhabitants (DPMI) when the 

six countries were simultaneously investigated (r= 0.65, Fig. 3A). However, when the same 
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countries were investigated in terms of TPMI and TP, a distinct, non-linear pattern was detected 

(Fig. 3B).  When one seemingly outlier country was removed from the analysis, a negative 

correlation was revealed (r= −0.74, Fig. 3C). When DPMI and TPMI were investigated, a non-

linear (L-shaped) distribution was noticed (Fig. 3D). When time, TP, and DPMI were plotted, three 

patterns were detected, which were characterized by a) low TP and low DPMI (a pattern displayed 

by three countries), b) intermediate values (shown by two countries), and c) high TP and high 

DPMI, which were only revealed by one country (Fig 3E). In contrast, when TPMI was plotted 

together with time and TP, four patterns were observed, which revealed a) high TPMI and low TP 

values (found in two countries), b) a lower TPMI but a higher TP than the previous subset (a profile 

shown in one country), c) the lowest TPMI and highest TP percentages (detected in two countries), 

and d) high TPMI and high TP values (a pattern observed in one country, Fig. 3F).  

When geography was considered, the association between TPMI and DPMI was further 

documented (Figures 4 A-F). Within two weeks, one country partially predicted the fatalities 

associated with epidemic dispersal: the lowest TPMI values preceded an ~250% growth in DPMI. 

However, exceptions to this pattern were also noticed: in the same period of time, two countries 

that also displayed low TPMI values showed a negligible change in DPMI (Figures 4 A-F). 

 The temporal fluctuation of TP values was minimal across countries. In the period under  

study and without exceptions, countries showed either one- or two-digit percentages (Fig. 5 A-F).   

In addition to TP-related geo-temporal assessments, the shape of the data on active cases 

was also informative. For instance, the detection of data inflections could be viewed as a positive 

outcome (Figures 6 A–C). Similarly, both the directionality and numerical values of the ratio 

between recovered and active cases could be considered: when the ratio is greater than 1, a positive 

prognosis may be considered. In addition, when time progresses faster than the epidemiologic 
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metric (when a horizontal directionality predominates) a rather stagnant situation may be inferred. 

In contrast, when the ratio of recovered individuals over all active cases grows faster than time 

(when a vertical directionality is noticed), a positive prognosis is defensible (Figures 7A-C). 

 
Fig. 4. Country-level comparison of cases, mortality and test positivity per million population for COVID-19. 
Plot of deaths per million inhabitants against tests per million inhabitants in (A). April 24, 2020; (B). April 27, 2020; 
(C). April 28, 2020; (D). May 4, 2020; (E). May 6, 2020; (F). May 9, 2020. 
Fig. 4 (A – F) show a synopsis of a geo-temporal analysis; it includes (low-resolution or aggregate) geographical 
data and a temporal description of epidemics that started less than 6 weeks apart. For visual comparisons, each plot 
is divided into 4 quadrants ('low & low', 'high & low', 'low & high', and 'high & high') It is shown that high TP is 
associated with a faster growth of deaths/mill inh. The opposite pattern (low test positivity & low deaths/mil inh) 
shows one exception. 
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Fig. 5. Selected country classification by cases, mortality and test positivity for COVID-19. 
Plot for (A). Uruguay; (B). Chile; (C). Cuba; (D). Bolivia; (E). Argentina; (F). Mexico. 
Fig. 5 (A – F) show the same data depicted in fig 4, now at individual countries. The left column (A, C, E) displays 
countries with one digit of test positivity percentages. The right column (B, D, F) shows two-digit test positivity 
percentages. 
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Fig. 6. Temporal-related metrics in the analysis of the COVID-19 cases in four countries. 
 (A) Argentina; (B) Cuba; (C). Uruguay. 
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Fig. 7. Relationship between test positivity data and other metrics in selected countries. 
(A) Argentina; (B) Cuba; (C). Uruguay. 
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4. Discussion 

Hoping to explore a novel metric –test positivity−, we evaluated several epidemic 

parameters associated with SARS CoV-2 for the first 60 to 90 epidemic days in six countries where 

the time when the first COVID-19 case was reported differed in six of fewer weeks.  Given that 

test positivity is not a direct measure of health status at population level, it was wondered whether 

this metric could estimate –albeit indirectly− the progression (or lack of) of epidemic dispersal. 

The answer to such a question is unlikely to be totally elucidated with a single study.  

However, one study may provide information that supports or rejects theories and/or technologies 

aiming at monitoring population health status when exposed to infectious diseases  

with a high or very high percentage of asymptomatic individuals.  

 Earlier studies have shown that test positivity predicts epidemic dispersal better than the 

simple number of tests performed per million inhabitants [5, 6]. In addition, this evaluation 

documented several statistically significant associations that may reflect biological relationships. 

For instance, when two sources of data were used, the Uruguayan case revealed a negative 

correlation between TP and TPMI, both when it was investigated alone and when four other 

countries were explored (Figures 2A and 3C). Such a double reproducibility (which involves two 

data sources and five countries) does not support random findings. 

The fact that several variables also exhibited reproducible patterns (such as two temporal 

phases), provides a group of metrics associated with TP that may be worth considering in future 

studies. Some of these indicators may provide geography- (country-), and time-specific 

information potentially useful in epidemic monitoring. For instance, in the Uruguayan epidemic, 

at least 1000 tests per million inhabitants appeared to be needed to flatten out the growth of 

fatalities (Fig 1E).  
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In all six investigated countries, the simultaneous consideration of TPMI and DPMI, over 

time, may help to find both similarities and differences (Figures 3 E and F). 

The observed relationships among TP, tests/million inhabitants, the shape of active cases, 

and the shape of the R/A ratio data supported WHO’s recommendations on policies aimed at low 

TP percentages: the highest levels of testing (which may detect credible levels of disease 

prevalence) only occurred at the lowest levels of TP. The test positivity, together with the shape 

of the number of active cases, can determine whether and when the epidemic is / is not under 

control. Associated patterns –such as increasing or decreasing trends of the recovered/active ratio 

data− may inform policy makers whether an overflow of hospital beds and associated resources is 

not / is likely in the following weeks. When TP is analyzed together with tests/million inhabitants, 

it may indicate (in a country-specific manner and without pre-established assumptions) whether 

testing is sufficient or not. While the data analyzed in this study referred to nationwide levels and 

aggregated data tend to be less informative because it may lose resolution  [17], these metrics could 

also be used with lower-scale, higher-resolution (county- or city-level) geographical data [11, 12].  

While limited in scope, this study generated hypotheses. One example is the hypothesis 

that lack of explicit isolation policies may inhibit the effectiveness of massive testing. Such a 

hypothesis was illustrated by one country that showed a high level of testing, but did not pursue 

isolation [18]. Patterns observed were compatible with studies that have reported (a) lockdowns 

but no specific testing scheme, and (b) neither testing nor lockdowns [18].   

Thus, this initial stdy on test positivity provides support for several recommendations. We 

advocate for a policy that focuses on four aspects: (1) massive and repeated testing, (2) border 

control, (3) tracing of every case, and (4) active isolation which, to be successful, must be 

implemented within a Critical Response Time, that is, before the exponential growth kicks in [19]. 
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Effective responses are not likely to depend on piecemeal approaches that only consider one or a 

few strategies. Instead, new and accelerated educational programs are needed, which should 

provide training on several disciplines, including but not limited to (a) geography, (b) 

epidemiology, (c) the economics of public health, (d) development and use of new software 

packages that facilitate early (real time) and geographically specific interventions, and (e ) the 

creation of new systems that both collect and disseminate data. 

Provided that additional studies reproduce thee findings, one possible application of test 

positivity is to become an alternative to the quasi-centennial ‘reproductive number’ (or R0), 

which estimates the ratio of secondary over primary cases. That is so because, at the present 

time, there are no real time estimates on how rapidlly epidemics may progress and  such 

estimates are also prone to numerous sources of error [20, 21]. Unlike the lack of geographically 

explicit information and delayed calculations associated with the R0 (which prevent real time, 

site-specific decision-making), test positivity can be calculated on daily basis and provide actual 

(not assumed) high-resolution, geographical information (e.g., neighborhood- or village-specific 

geographical coordinates). Such an application could improve policy-making: instead of 

assuming test positivity is homogeneously distributed over large territories and remains constant 

over time, daily changes at specific (and geographically small) sites could support context-

specific, cost-benefot oriented interventions [6].   

To win the war against the next epidemic, reactive responses are not acceptable. Proactive 

responses are the only alternative, which require a robust and immediate creation of novel 

educational programs of inter/transdisciplinary nature. To that end, further research on the  

advantages and limitations of test positivity is necessary.   
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