ZAAyMAN O.C.D. TRRRAN PROBRE ROUGHNESS MEASUREMENT AND CHARACTERIZATMON
 M. ING
 UP
 1989

TPBRIRAIN PROFIIF: ROUCIINBSS MBASURRMBNT ANI) (HIARA("IDRIZATION

by

OSWAIID CORNBIIUS IDANNHAUSBR TAAYMAN

A thesis submitted for the degree of

MASTER IN ENGINEDRING
in the Faculty of Fingincerring
of the

University of Pretoria

Novernber 1988

Absitact
This report deals with an investigation into the monatement ami varactonization: of gromad surface ronghness. with rimphasis on its influence wit vehithe. lab rengheness of interest is defined, whereafore the results of an extensive ithratme staly are presmated. Athation is given manly to the rechniques emplowe by other authors 10 mensure the gromad surface rouphoess. The'se techamus were evaluated and hae slope integration menther. bogether with the methert of reporting the roughass with the l'ower Spectral Density: were actepted at suitable to develope and implement. A prototype system consisting of a measuring cart and software was established and sibjected to acceptante iests. Design changes were implemented on the final measuring system. This: srien was used in field tests over cross country terrain and the results are discusied against the backedrop of other authors' results. Reconmendation are made to improve the measuring system and data representation. It is concluded that the selected slope integration method and the developed hardwate performs satisfactorily in measuring and presenting the surface :oughness of cross country: terrain.

The theory of the mathenatical framework used in this work. togen iner with the results of the ficld measurement. are preseated in the appeaticts.

Acknowiedgements
I would like to express my gratitude to the following perple for their involverment in this sturiy:

- Willian liacked who identifird the merd and emhusiastically promoted thr whole cfforl through finsuciog and motivation.
- Ansan ikaath who was as usual always available for sensible gaidance and excellen:t advice,
- Christo Schoeman who developed most of the spectral analysis software and assisted in the mathematics,
- Arnold Albrecht and Jacob Madileng who manufactured the hardware full of initiative and fresh ideas.
- Neville Young who efficiently took care of the electronics.
- Tertia du Toit who patiently handled the typing of the manuscript.
- all my collegues who showed interest and gave advice in passing.
- and lastly, my faithful wife Nicolette who always atimy eyes back wh the goal.

The Int!er
Nuventure !!an

T'o Nicolette,
my besit friend.

CONTEATS

Lisi of Symbots 7

1. Introduction I!
2. ()bject Definition 12
2.1 Aim 12
2.2 Terrain Characteristics not of interest 12
2.3 Stable Ground Roughness 12
3. Theory 13
3.1 Measuring Surface Profile Geometry
3.1 Measuring Surface Profile Geometry : i : i
3.2 Measuring the Acceceration of a Profile Following Wiecl !?
3.3 Measuring the Strain History of a Vehicle Component 1:
4. Methods for Measuring Surface Roughness $\because 1$
4.1 Level, Tape and Yardstick $\frac{21}{1}$4.2 Slope Integration Method
4.3 Using Accelerometers 2
4.4 Fatigue Cycle Comit and Cumulative Damage Calculation methods \because
4.5 Other Methods $3!$
5. The Prototype Measuring System $3!$
5.1 Concept 31
5.2 Description of the system 36
5.3 Requirements and Considerations 3!
5.4 Detail Design of cart 40
5.5 Software 4.4
6. Qualification Tests 51
7. The Final Measuring Systen 31
7.1 Design Changes i!
S. Field Tests (i)
S.1 Aim (6)
8.2 Results 60
8.3 Discussion 61
8. Conclusion and Recommendations 6.1
9.1 The Measw.ing Device 6.1
9.2 Instrumentation 65
9.3 Data Analysis for Roughness Characterization (i.)
9.4 Genera: (i.)
9. Appendieres
A: Principles of the Pistimation Theory. tii
13: Descriptive Projerties of Random Data.i!
(: (alculation of the Power Spectral Densits: -
I): 'The Spatial PSI). 9s
1): Derivation of Spatial PSI) from PSi)'s of the time data. 10:3
F: Fatigue Analysis Theory. 106
G: Statistical Accuracy and Errors. 11.5
H: Digitizing of Continuous Data and Aliasing. 119
I: Wiring Diagram of the Measuring System. 121
J: Software. $1: 23$
K: Qualification Tests - Graphs. 125
L: Field Tests - Graphs. 1.3.4
M: Investigating the effect of curves in the road on the measuring process. 116
References 150

LIST OF SYMHOLS

a	- Slope of straight ine fit to spatial PSl) function.
a_{0}	- Mean value of function in lourier serios expausion.
a_{k}	- Fourier series conficient lerm.
$\mathrm{b}^{2}[$]	- Bias of an estimate.
b_{k}	- Pourier series rocfficion trim.
d	.. Diameter of wheelset wheed.
ds	- Distance betweers samples when measuriug profile.
e	- Exponent of natural logarithm.
$\mathrm{f}(\mathrm{x})$	- Any function of a variabie x.
f	- Frequency [IIz]
f_{k}	- Frequency of k^{\prime} th harmonic
f_{0}	- Reference frequency or centio frequency.
f_{5}	- Sampling frequency.
f_{c}	- Cut-off or Nyquist frefuemey.
$\mathrm{h}(\tau)$	- A weighting function of time lag 7.
h	- Time interval betweeti samples.
ι	-- Imaginary value defined by $\sqrt{-1}$.
	- Index for a series of sample values.
k	- Number of discrete term in Fourier series expanion.
ℓ	- Trark width.
m	- Mean output from a device.
n	- Number of values in discrete sequence \{ \}
n^{\prime}	- Strain hardening/softening exponent.
$\mathrm{p}(\mathrm{x})$	- Probabiliy density function.
r	- Lag number. - Number of Reversals.
S	- Wheelbasc of measuring wheelset.
t,	- Time value at instant 1 .

x	- Horisontal distance.
$\left\{\mathrm{x}_{\mathrm{n}}\right\}$	- Seguence of discrete valus of the function :
,	- Profile height.
yr	- Right hand rack profile
" 6	-- Left hand track profile
i	Speed of profile height (verlically
y	- Asceleration of profile height (verticails).
$\left\{y_{n}\right\}$	-- Seguency of diserete values of the function 3 .
$\left\{z_{n}\right\}$	- Sequence of discrete values of the function \%.
B	- lirecquency bandwidth.
Be	-- Effective frequeacy bandwidth. - Frequency resolution
D	- Wheel diameter. - Damage value with Miner cumalative damase calculation.
E	-- Modulus of Elasticity of a matorial.
E[]	Estimation of some parameler.
F	Force.
	- Dummy frequency.
G_{xy}	- Cross Spectral Iensity function.
G_{x}	Power Spectral Density function.
$\stackrel{G}{6}^{\text {a }}$	Estimation of PSI) function.
G_{x}	- Raw unsmothed BSis.
$\mathrm{H}(\mathrm{f})$	- Frequency Response Function
H_{0}	Frequency Response Function at reference fremuencs f_{0}.
Im()	- Imaginary part of a complex number.
K	- Roughness constant.
K_{f}	- Fatigue notch factor.
K_{t}	- Theoretical Stress concentration factor.
L	- Total sample record length [m].
	- Space lag in ACF calculation for spatial data.
	- Length of measuring, fart from towing hook to whels.
L'	- Length of shorter sample length in time averaging procedure.
M	- Moment of force acting at a distance.
N	- Total number of samples. sample functions or records.
	- Any random variable.
N_{f}	- Reversals to failure in fatigne analuses and testing.

R	- Radins of curve in roarl.
R_{w}	- Auto correlation function.
R_{v}	Distimate for amo correlation function.
Red)	- Real part of a complex mumixer.
$S_{x}, S_{x y}$	Double sided PSD and (SSD) functions.
T	- Time interval or length of sampling record in time.
W(t)	- Spectral window function.
W_{h}	Hanning Spectral window function.
$\mathrm{W}_{\text {efr }}$	Effective track width of a vehiclos' lyre.
X ${ }_{\text {k }}$	- Discrete Fourier Transform of sequence $\{x\}$ - Fouricr series coefficient of function xill.
X(f)	- Input to a linear sjstem.
Y_{k}	- Discrete Fourier Transform of Sequence \{. $\}$. - Fourier series coefficient of function wit).
$\mathrm{y}_{\mathrm{m}, \mathrm{y}_{\text {im }}}$	Translation and Accelcration of noving mats.
$\begin{aligned} & y_{p}, y_{p} \\ & Y(f) \end{aligned}$	- Transiation and Acceleration of profile with :in:w - Gutput from a linear system.
Z_{k}	- Discrete Fourier Transform of sequenct \{1\}
α	- Life function of material.
	- Wheclset swivel angle relative to frame.
B	- Weibull slope or shape parameter.
	- Gyroscope roll angle.
δ	Delta function.
$\Delta \mathrm{t}$	Time increment.
$\Delta ¢$	Frequency increment.
$\Delta \mathrm{x}$	- Increment of variabie x.
$\Delta \mathrm{c} . \Delta \mathrm{e}$	- Local and nominal strain respectively.
$\Delta \sigma, \Delta \mathrm{s}$	- Local and nominal stress respective! ${ }^{\text {a }}$
ϵ	- Strain. - Error value.
G_{1}	- Monotonic fracture ductility.
$c_{\text {c }}$	- Normalized bias error.
C_{r}	- Normalized standard error (or random frror).
ϕ	- Phase value of complex quantity.

Abreviations:

ACF - Auto Correlation Fuaction.
CCF - Cross Correiation Function.
CSD - Cross Spectral Density Function.
FRF - Frequency Response Function.
FFT - Fast Fouricr Transformation.
DFT - Discrete Fourier Transformation.
JDF - Joint Probability Density Function.
MSV - Mean Square Value.
PDF - Probability Density Function.
Var [] - Variance of an estimate.

1. WTRODTC:ION

Even before the discovery of the wient. anan has bety intrigurd ho
 Wass always the same - mencomeal. promeresion anci wabiits.

 the Neckarsuln (ycle Works. to the night wheoled atl-riotain vehicles of today like Sontli Africa's latest "Roosikat". Thr war: lies with a thorough knowiculge of the ierrain propertice for whind the suspension. tyres, whens and also vehicle structuar ar, io l, designed. One of these properties the therrain renghan

 available as design and lesting input mremation on: , : a, ; applied to existing vehicles or even to new vehticle: : : in phase. This report proceris to destribe the work ju*... ..: \quad.
 romghess in order to compile suche a data tank

2.1

AIM
The object of this work is 10 ghantify ground surface irregularities whicla would induce vil)rations ints a vehicle si racture whinh :maty of may mot resinlt in fatigue failare or exem sotal collapse of any patt of the structure. The data should be in such of format that it mat: be used as a basis for comparing the roughans of various inrains. It may be argued that what is rough to one vehicie is not rough to another vehicle. This is true, and therefore vehicles are chasified in three basic groups viz. light passenger vehticles !ike cars. mini buscs, etc, secondly heasy passenger whicles and road bound trucks. and thirdly cross country and construction vehiclos. Terrain roughness should therefore be differetly defined for each category. It may also be noticed that "roughness" as such. maty vary with the speed of the vehicle, therefore vehicle speed as ats influming factor in the measuring process shomad be considered and it is therefore desirable that the actual genmetry of the :errain shomed be obtained.

TERRAIN CHARA("TERISTICS NOT OF INTERESJ
The question of mobility in a 'gono-go' serner is intioned lerats- it is assumed that ail terrains in question arb passable :", ail :chicles parposed to traverse these terrains. An: traction problenas causerd by soil composition or soil condition viz. mud, clay. wet gras. sand. ct.c. are excluded and it is asimment that viructurai fating on
 Furthermore any ohstactes larger than the whiche whelisto vi\%. rivers. embankments, gullies. etc. aud also any ohstacies which tan I bypassed like trees, aththills. craters. eic. are excluded.

STABLE GROUND ROU'GHNFSS
In the light of the above exclusions the terrain in question is defined as 'hard' ground. Hard ground roughness an be divided into two types, otie type consisting of such ireegularities as mentioned above. viz. large rocks. tree stumps. strean beds. embankments, smail hills, etc. The other type is defirod as conditions that "maintain a statistically uniform character over reasonably large areas changing but gradually with distance" (cone. et al. 1965). These kind of irrogatarities are :o defined to being 'stable' vere large areas and hence the nane of stable gronnet roughness. It is the latter grome roughness whict: is primarity of importance in this work.
An effort will be mate not only to measure and characterize sable ground roughness but is include certain clements of the first type of hard ground roughness like large rocks, tren stamps and smaller atht hills. A suitable method to measure the profile of stable grount roughuss as well as these ohigets should therefore be devised.

THEORY
Having defined the nature of the ground roughness of interest the next step would be to identify the rough ground which would puse a hindrance to whicle locomotion. This involves a selection process which, according to Bekker (1969). consists of two elements, viz. selecting "torrain association areas" and thon devising a method of sampling these areas. Torrain association areas are those areas exhibiting more or less lioe same soil types and surface characteristics. Such areas have been identified to a great extent by geologists but, being subjective to their own aims and purposes. these selections are not of real value to the engineer who is interested in sufface characteristics inducing vibrations into vehicle structures. This has the result that certain judgement is to be arnulied in identifying terrain association areas and this judigemen' should be based on some knowledge of vehicle behaviour. The work of sampling terrain associated areas is therefore immensily reduced if one can sampie only one area as being representative of all associated areas.

A sampling process is however also involved when ohdining the characteristics of a sample area. Samples of the surface characteristics should be made over this area. which wonld be the population according to estimation theory (See appendix Al Thessamples should in turn exhibit statistical properties which are descriptive of the sample areas to a certain level of conffinice. This wilt be discussed later and also in appendix $A \& B$.

The surface characteristics of interest in an identiferd arrad ath herefore the geometrical properties of obstades like lengths, heights. angles, thickness and distribution. These properties should br measured. or at least its' influence on a vehicle (raversing the terrain should be obtained. Three approaches to this problem were found in the literature, viz.- having the actual physical dimensions of the surface profile available:

- having data available of at accelerometer monnted on the axie of a fifth wheel:
- having strain data of a vehicle component availabic.

It can be observed that the first approach is independent of vehicle type or speed and is desirable in certain applications when a comparison of the roughness of terrains are to be made. The second approach would have the vehicle forward spend as a variable. which would have to be accomodated in the output data. The third approach would have the vehicle type. tyre type. speed. efe. as influencing factors, which would need to be climinated or compens...ed for in arriving at a description of the terrain roughne: This data is however very useful if only the specific vehicle is tander scrutiny.

The various methods of obtaining this data will be discussed in chapter 4 , but a discussion on the parameters involved will now follow.

MEASURING SURFAC' PROFliF; (iFOMETRY
The ontput from the measuring device is the actual profile memetry expressed in at sef of coordinates. the height y_{i}. above an arbitrary reforence plane, at ewery horizontal position x_{i}, spaced an equal distance, dis, apart.

Figure 3.1

Sampling
For a measurement to be representative of a given terrain the length of the sample measured should bn of adequate size so that the properties of the terrain can be derived from the sample properties. (See appendix A). The sample size is largerly determined by the method of PSD calculation as deseribed in appendix C. The smallest wavelength reguired in the measured data determines the sampling frequency, which is a measure of the horisontal distance between samples of the profile height. The total number of these sample points needed to form a sample record necessary for the PSD calculation determines the sample length. The sample size or length should also be of such a size that the assumption of stationarity is confirmed (See Appendix A). In other words it must be ensured that all necessary roughness propertics are prevalent in the selected sample. The methods of sampling include random walks over the terrain, dividing the terrain into segments. measuring aiong perpendicular lines. etc. Wendenbori (1965) suggested 75 neter sample lengths as the absolute minimum for country terrains. The Waterways Experimental Station used 50 fect (15m) sample areas (Bekker 1969). Bulmain (1979) suggested 200m lengths and Laib (197) used 50 m lengths.

Frequency bandwidth of measurement
It is necessary to define the bandwidth of waveengetis that should be measured. This is determined by the bandwidth of vibrational frequencies which would be imposed on a vehicle suspension. because the relation between the wavelength and these frequencies is the vehicle's forward speed. The vibrational frequencies affecting both human response as well as the vehicle structure should thercfore firstly be defined. Bekker (1979) fixed these frequencies between 0.5
and 20 Hz and Raasch (1979) defined the bandwidth beiween 0.5 and 10 llz. The following table illustrates the wavelength baindwidth used by the various investigators:

Investigator

Brkker (1969)
Raasch (1979)
('rolla \& Macłaurin (19尺6)
Ohmiya (1986)
Ilunter (1979)
Wendenborn (1965)

Wavelength bandwidth [n?

0.01	-	30
0.1	-	150
$?$	-	20
0.3	-	20
0.25	-	$?$
$?$	-	30

It is obvious that the lower limit would be dictated by the resolution of the measuring device. It would also be suitable to linit the smaller wavelengths to the length of the rubher tire footprint. The only problem would be to define the specific tyre for which the profile is measured.

Measuring both tracks of a vehicle
A vehicle traversing rough ground is subjected to roll movements which impose torsional strains into the vehicle structure. These roll movements result from the difference in clevation of the profile at certain transverse positions. Bekker (1969) asserts that "measuring these two profiles may be an expensive refinement that might not pay for itself in terms of improved accuracy".

Ohmiya (1986) investigated the correlation betwern his seperate measured profiles of the two tracks of a vehicle with the coherence function (Appendix B). He found that no correlation exists between the two tracks and this means that thr transverse track profile is also accepted to be random. Other investigators considered the possibility of using a two dimensional power spectral density to characterize a two track country road (Cebon \& Newland: Cote. Kozin \& Bogdanoff, 1963).

Distortion of the ground by vehicle tyres
Measurement should possibly be done in the vehicle's track because the profile is never the same after a vehicle has passed over it. It also might not be far from the truth to assume that the profile experienced by a vehicie is the distorted one of the vehicles' track. Laib (19it) employed his measuring device in this mamer and Buiman (1979) mentioned the same aspect.

Data representation and classification
For the detail of the mathematics to be discussed in this paragraph the reader is referred to appendix A.B, C and D.

The surface profile, as illustrated in figure 3.1, is assumed io be an ergodic, slationary, random process which exhibit Gaussian sample functions. Like with most matural phenomena. this has been proven to be an erroncous assumption in a strict mathematical sense, but this assumption is necessary in order to make any calculation effort worthwhile and sensible. (Sayles \& 'lhomas, 1978).

The roughness of any surface is a function of the size of the irregularities together with their wavelength. or alternatively their frequency of occurence per unit distance. The property which would illustrate these parameters is the power spectral density (PSD) (See appendix B \& C). A spatiai PSD curve is shown in figure 3.2 when plotled on logarithmic axis.

Figure $3.2 \quad$ PSD (with straight line fitted to the curve)
If a straight line is fitted to the data points. employing the least sfuares technique, the resulting equation reveals the measure of roughness of the terrain (Appendix D):

$$
\begin{equation*}
G_{x}(\gamma)=K \gamma^{a} \tag{I}
\end{equation*}
$$

K is called the rougher ss constant and is the value of the straight line PSD at a reference frepuency of $0,1 \mathrm{c} / \mathrm{m}$. The slope is given by the value of a. The procedure for smoothing the initial PSi), in order to fit tire straight line to the data, is sei out clearly in ISO/TC 108. Twis international standard also gives the classification of road 1 omghess. hy means of the value of K . and is illustrated in figure 3.3

Van Deusen (1969) col.aluded from his work on lunar surfaces that natural random surfaces follow a power law. viz. the ampli, nde falls off at the square of the spacial frequency. Sayles \& Thosods (1978) confirmed this fact with their investigation on surfaces ,anging from virgin terrain to ball bearing surfaces. It is also tllustrated by the value of the slope, ' a ', which was usually found to be -2. Table 3.1 gives the values of ' a ' as calculated by Van Deusen for various surfaces and table 3.2 shows those calculated by Wendenburn (1965).

The value of 'a' in equation (D2) has since then been accepted 10 be -2 , and this was also adopted in the interatational staniard ISO/TC/108. It can therefore be predicted for any natural surface that the slope of the straight line, fitted to the spacial PSD. woukd be approximately -2 .

Surface	K	d
Paved Road	$1.2 \times 10^{-.5}$	2.1
Unpaved, with gravel	1.1×10^{-5}	2.1
Unpaved, waved	$3.7 \times 10^{-(6}$	2.4
Unpaved, rough	2.0×10^{-6}	3.8
Virgin, cross-country	1.6×10^{-3}	2.0

Table 3.1 Van Deusen values of slope ' a^{\prime}. (n in cycles/ft).

Surface	k	a
Country road	$1 \times 10^{-0.48}$	2.33
Field road	$1 \times 10^{-0.46}$	2.24
Freshly ploughed field	1×10^{2}	0.38
Furrowed fieid	$1 \times 10^{1.37}$	1.1 .5

Table 3.2 Wendenborn values of slope ' a '. (n in ç̣cles/ n).

FIGURE 3.3 ISO/TC 108 ROAD ROUGHNESS CLASSIFICATION

3.2 MEASURING THE AC(PLARATION OF A PR()FII.: FOLLOWING WHEEI,

The output from the measuring device is a signal of the vertical acceleration, ats a function of time. measured on the axte of a whed which follows the profile while moving forward at a speed ν. The acceleration can also be measured on a damped mass fixed onto the whed axle.

The same considerations concerning sampling. bandwidth. distortion of the ground by rubber tyres, ete. which was discussed it paragraph 3.1 apply to this measuring method and the reader is simply refered to that paragraph. The difference comes obviousty with the data processing in order to arrive at the same representation format as before, viz, the spatial PSD.
3.2.1 Data nrocessing and representation

The acceleration signal can either be integrated iwice to obtain the actual ground profile as a function of time. as was done by Laib (1977), or a much casier way would be to do some transformations in the frequency domain. For the detail of the mathematics discussed in this paragraph the reader is referred to appendix E. With the transformation principle. the spatial PSI) is calculated via the acceleration PSD from the acceleratien data (equation EiU, The PSD which is calculated from the acceleration signal is called the acceleration PSD and it's unit would tre $\left(\mathbf{m} / \mathrm{s}^{2}\right)^{2} / \mathrm{Hzj}$. Non that the frequency is the time frequency in [Hz]. because these accelerations are measured on the axle, or a"ewhere else except directly on the profile itself, the acceleration PSD) for the profile must be calculated through the frequency response function of the system between the profile and the accelerometer. (See appendix I3 equation (B21)). Hereafter the acceleration PSD) of the profile is: transformed to the spatial PSI) by incorporating the vehicle forward speed, which should be constant throughout the measuring proress.

The result would be a spatial PSD as illustrated in figure 3.2. Classification of the ierrain roughness proceeds cxactly as for the previous method, viz, utilizing the methods of ISO/TC 105 .
3.3 MEASURING THE STRAIN HISTORY OF A VEHICIE COMPONENT

In this case a strain or load history on a vehicle component is analyzed. Attention is focused on the fatigue life of the velicle structure and how the terrain roughess influences this life. The criteria is, therefore, the amount of damage imparted is the velicle structure by the rough terrain or road. The strain or load signal is analyzed with respect to the size of the amplitudes occuring in the signal and this is done using appropriate amplitude counting techniques developed for fatigue damage calculation procedures.

A clear distinction needs to be made between iwo applications of the fatiguc cycle counting algorithms found in the literature. Because of the ability of these algorithms to reveal the number of cycles contained in any random signal. this property is also used to find the namber of occurences of the amplitudes of a surface profile. This would directly indicate the length of the profile measured and is done because the spectral amalysis described in the previous two paragraphs furnishes no information regarding the length of the sample measured. This fact would become clear with investigation of the methodology of the spectral analyses procedures and the ceyle counting algorithms. For a detail description of tie fatigue civele counting and damage calcuiation method, the reader is refered to appendix F.

In order to find a vehicie's response to a given terrain profilc. it is usually necessary to instrument critical or stitable components. 'Suitable components' implies chassis parts subjected to torsional and bending load modes, suspension or axle displacements and accelerations. 'Critical components' are usually engine mountings. suspension links, wheel hubs and stub axles, springs. etc. In order to get an adequate picture of vehicle response. it would be necessary to have quite a number of monitoring positions. the minimum being at least three, being the front and back axle vertical displacement and the relative displacement of the loft and right hand wheels. (Murphy (1982)).

When investigating the loads on critical components. the criteria is the amount of damage inflicted by the random loading on the component, with the assumption that fatigue damage is cumulative. Usualiy a plot is generated of size of amplitudes is the mumber of occurences. From this data the damage calculation is done which results in a figure indicating life spent or remaining life. (Sere Helfman, Collins 1981, Osgood 1982).

With a surface profile, the plos of amplitude size is number of occurences is directly used as characteristic of the profile. A typical example of such a plot is the level crossed and the range pair phot of the counted cycles. Contrary to the PSD roughness characterization, a one figure classification of the profile roughness is not possible with this method.

This method of surface charactcrization is however severely vehicie dependent and is usually employed when a specific vehicie is deveioped or investigated. Some vehicle manufacturers have employed this method to design and build test tracks for testing of a definite vehicle configuration. The following chapter describes some of these techniques in detail.

4. METHODS FOR MFASLIRING SLIRFACE ROL (IHNESS

In the previous chapter the principles involved with the basic approaches to measuring ground roughness were discussed. What follows is a critical discussion of the actual measuring devices employed by investigators in this fied. Fivery method is judged according to the following aspects of importance:
(a) Cost.
(b) Vehicle independency.
(c) Post-processing of data. (To be kept to a minimum).
(d) The existence of a suitable reference planc.
(e) Whether the measuring technique incorporates various vehicle load modes, especially torsion.
(f) Whether the distortion of the ground because of the velicle's weight and wheels is incorported.
(g) The role of velicle forward speed.
(h) Resolution.
(i) Influcuce of measuring instruments on the accuracy of the data.
(j) Accuracy.

LEVEL, TAPE AND Y'ARDSTICK
This is the oldest and most primitive method but it might still be the most accurate. In principle the clevation $y^{(x)}(x)$ of the ground profile is directly measured relative to an arbitrary raference plane:

Figure 4.1
Level. tape and yardstick method

With the yardstick the elevation y is measured at predetermined positions $x+\Delta x$, measured with the tape. Increment size. Δx. is chosen with accuracy and purpose in mind and may be from 50 mm up to 10 feet (3000 mm) apart (Bekker 1969).

4.1.1 Advantages

(a) Fixellent accuracy, especiatly with decrease in size of increments. Δx.
(b) Insirument influence very small.
(c) Totally vehicle independent.

4.1.2 Disadvantages

(a) Extremely time consuming.
(b) Data available on clip board - processing time consuming.
(c) Measure unwanted long wavelengths and ircids.

4.2
 SLOPE INTEGRATION METHOI

The properties $\{$ and 0 (see figure $4, \underline{2}$) are mesiared in small increments from a contimous profile. The profile co-ordinates are then calculated as follows:

$$
\begin{align*}
y-y_{0} & =\int_{0}^{s} \sin 0 \mathrm{dl} \\
x & =\int_{0}^{5} \cos 0 \mathrm{dl} \tag{1,2}
\end{align*}
$$

This method was developed by the l'niversity of Michigan in 1961 and subsequently used ly several other researchers. (Ohmiya. 1986).

Figure $4.2 \quad$ Slope integration method parameters

Hardsare : liniversity of Nichigan (Bekker 1969)

Figure 4.3
University of Michigan jrofilometer
An electromagnetic odometer measures ile distanc 1 while a syncrosystem measures the angles a and .2. Ihe angle o is obtained by:

$$
0=900-(\beta-a)
$$

4.2.2 Harciware : Ohmiya (1986)

Ohmiya constructed his device in such a manner that the gyroscope was mounted direcly onto the swiveling wheelset and thus the angle 0 was measured directly by the gyro. The distance (was measured by the electronagnetic proximity sensor which was mounted beside one of t!e wheels and triggered by spokes on the whel.

Advantages
(a) Fast and uncomplicated.
(b) Gyro gives a good absolute reference plane.
(c) Accuracy is good.
(d) Output data is in useful format.
(c) Vehicle independent.
(f) Distortion of ground by vehicie is included if measurement is done in the vehicle's track.
4.2 .4
4.3.1 General Motors Corporation Profilomotor (Spangle © Kelly 196:?

The principle behind this system is to measure the relative displacement between the profile following wheel and a sprung mass. as well as the acceleration of the mass. The acceleration signal is then integrated twice and if combined with the measured displacement gives the road profile.

Figure 4.4
Gil Road Profilometer

4.3.1.1 Advantages

(a) Fast and uncomplicated.
(b) Profile available as an analogue time signal on magnetic tape.

4.3.1.2
 Disadvantages

(a) Not suitable for rough terrain (Designed only for roads).
(b) Limited to wavelengths the size of the vehicle i.c. reference platform not so stable.
(c) Dependent on another sourer for horizontal displacement measurement. (Vehicle's odometer).
(d) (oustant whiclo speed required.
4.3.2

Laib's mothod (Laib 197i)
Dr Laib of Hungary used an unsprum mass (10 kg) on a small 100 mm diameter measuring whel. with ath acrellerometer moumed on the :mass. (Ser figure f.5).

Figure 4.5 l.aib's measuring device
The acceleration signal was stored digitally and the profite was obtained by digitally integrating this signal iwice. From this data the power spectral density (PSD) was determined. He did not use a spatial PSD but left the data in time frequency.
4.3.2.1 Advantages
(a) Fast and very simple.
(b) Measures in the vehicle's track - incorporates distortion of the ground by the tyres.
(c) Suitable for medium rough terrains like ploughed lands. etc.
(d) Vehicle independent.
4.3.2.2 Disadivantages
(a) Horisontal distance measured by vehicle travel. IOdometer or time/distance).
(b) Constant vehicle speed is required and this uight be difficult to obtain ont very rough ground.
(c) Sensitivity of accelerometer might present a problem at iow specds.

AGM Ilunter of Scotland used a method where he towed a light metal frame with a rigid whed (dianuer 588 min) over the profile of a ploughed land. The vertical acceleration of the whed axle was measured.

Figure 4.6
Hunter's measuring device
He used the technique of transforming the acceleration PSI) to the spatial PSD. (See appendix E). The data was therefore never availabic as the coordinates of the profile.

4.3.3.1 Advantages

(a) Fast and uncomplicated.
(b) Inexpensive instrumentation.
(c) Accuracy is good.
(d) Vehicle independent.
4.3.3.2 Disadvantages
(a) Hard ground results in wheel bouncing because of light frame.
(b) Large wavelengths are omitted.
(c) Constant vehicle speed is required.
4.3.4 Fujimoto's Method (Fujimoto 1983)

Fujimoto used a pneumatic rubber fifth wheel towed at constant speed behind a light truck. An accelerometer was mounted on the wheel axle and a PSI) was obtained with the help of the transformation process deseribed in appendix F ..

Figure 4.7 Fujimoto's measuring device

4.3.4.1 Advantages

(a) Fast and uncomplicated.
(b) Inexpensive instrumentation.
(c) Vehicle independent.

Disadvantages
(a) Non-lineariy of rubber fifth whecl.
(b) Same as 4.3.3.2.

FATIGUE CYCLE (OUNT AND ('MIMATINE DAMAGE CALCULATION METHODS

Opel Kadett's Mcthod (Helfman)
In order to monitor different critical positions. 2.! transducers, which included displacement transducers and strain gauges. were fitted onto a vehicle. The measured signals were evaluated with the help of the level crossed and range pair counting methods (sce appendix F). Data for 5 different tracks were thus analyzed. and for each transducer the 5 tracks distributions were plotted on the same paper (see figure 4.8). One track was chosen as the reference for comparison.

Figure 4.8 Level crossed histograns of one transducer's data for each of 5 tracks

Every distribution was shifted along the "('umalative counts" axis until the deviation from the reference distribution became a minimum. The value of the deviation was linked to the specific track as a single number correlation for the specific transducer's data. A mean correlation figure for all 24 chanmels were calculated and this was used as the comparative number for a track.
4.4.1.1 Advantages
(a) Include ali modes of vehicle structural loading.
(b) Distortion of ground by tyres included.
(c) No reference plane reguired.

4.4.1.2 Disadvantages

(a) Cumbersome data processing with so many channels of data.
(b) Vehicle dependent.
(c) No indication of terrain profile is given.
4.4.2 Freightliner Cornoration's Method (Murphy 195:2)

Murphy utilized the response histograms, explained in appendix E. to obtain a desired sequence of routes on a test track in order to simulate a transcontinentai trip of a big transport truck.

The truck was instrumented as follows:
(a) An accelerometer on the front axle.
(b) An accelcrometer on the cross member between the two back axles.
(c) Linear potentioneters which were connected in such a way as to give the difference in displacement of the iwo front wheel suspension units.

The output from these three transducets were analyzed with rainflow counting and ploted in the form of the response histogram. The data from the test track was also ploted and the different curse fit cocfficients were compared. Test track data cxhibiting unwaned large accelerations were climinated from further consideration. The plot.s for the test track iucorporated multiple passes at various speeds. Thus a suitable selection of test track route sequences were chosen to represent the transcontinemal trip. The total length of t.hese sereuences were 2.61 miles.
4.4.2.1
4.4.3

Advantages
(a) Less data to process than with the previous method.
(b) Include torsion loading of vehicle's frame.
(c) Include distortion of ground by tyres.

1.4.2.2 Disadvantages

(a) Vehicle dependent and simulation rectuires jasses wer the same profile but at various speeds.
(b) Comparing 3 channels of data simultaneously,
(c) Vehicle speed required to remain constant or fixed for each routc.

Ford Motor ('ompany's Mothod (Smith. eit al. 1979)
The purpose was to design a synthetic test track simulating a specific gravel road called the Silver ('reek Road. $\mathbf{2}_{5}^{5}$ (hanmels of strain gauge data, covering the complete stracture of a Fens) pirk-up truck, were used to mat(') the cumulative fatigue damage imposed by the gravel road to that of the replacement iest track.

A one figure value for the cumulative damage at a certain position on the vehicle was obtained for the road at certain time intersals spaced over threc years. (See table 4.1). A strain based. Neuber type fatigue model employing Miner's rule for damage calculation was used (Suc appendix F). The a life curve equation (F5). was used togethe: with the stress intensity factor, K_{f}. to determine damage value:. All these values were then fitted to a lieibull distribution (sec appendix F) thus producing one unique distribution of damage over a period of time for each of the 25 positions on the vehicle. This procedure is illustrated in table 4.1 and figure 4.9. Similar data was obtained for certain events (cobblestones. potholes, ctc) at proving grounds accessible to Ford MC and this data was reduced to a cumulative damage number per pass of each event. Relative 50% median values for the distributions of data at each position on the vehicle for Silver Creek Road were set as the target values, setting as limits the historical range. The purpose was therefore to mathematically combine events from the proving grounds until the severity value for every position monitored on the vehicle falls within the historical damage limits on Silver ('reek Road or, that the final severity for all positions is as close ith possible to the median value of each distribution for each position.

30

Every permutation of combination of events was tested to this critcria until satisfied. Thus the final product was a damage equivalent route made up of X passes of event $\mathrm{A}, \mathrm{Y}^{Y}$ passes of event B, etc.

Figure 4.9 Silver Creek Road Relative Fatigue Damage Weibull Distribution

Table 4.1: Relative cumulative fatigue damage for $\mathrm{F}-250$ front axle on Silver Creek country road

Month/Year	Relative damage
$7 / 7$	4.61
$11 / 74$	169.49
$4 / 75$	68.02
$5 / 75$	14.6
$11 / 75$	42.02
$12 / 75$	13.76
$5 / 77$	17.83
$8 / 77$	3.01

Smith noticed that the "final replacement road may not look or feet like the original road because the damage is duplicated with relative short high damage content events".

The route was verified by testimg five Ford light truchs on it comparing incidences of thamge with historical testing on the Silser ('reed Road. The occurance of damage at certain mileages were consislant and no new damages were recordeci.
4.4.3.2
4.4.4

Advantages
(a) Most accurate for one specific test vehicle.
(b) Include all modes of velhicle structural loading.
(c) Include distortion of terrain by tyres.

This method seems to be quite accurate in the light of the fact that all 25 channels of data were compared simultaneously:

Disadvantages
(a) Huge amount of data to be processed.
(b) Vehicle dependent by being isolated in its application to the measured vehicle.
(c) No indiation of toad profile is given and the simulation route may aot even remotely resemble the actual terrain.

Method used by L, (il (Rejuort no Vi.(i si/0es.t)
A medium truck had ios travel a severe gravel road twice a day and developed cracks in the corners of the bin. A strain gauge was fitted at this position to determine the strain history during the ride. The purpose was to simulate the sperific strain history by driving over certain sections of a simulation test track.

A range pair count was done on the strain gauge data from the gravel road as well as the rarious sections of the test track. A certain sequence of the" sertons was chosen by visually studying each section's range pair matogram. bearing in mind how it would influence the summation of all the section's data. The data of the selected combined sequente was then analyzed with range pair counting and the resultant histogram was again compared with the gravel road's nistogram. The process was continued unti! satisfactorily visual correlation existed between the desired and the mathematically generated histogram.

The results were verified by driving an undanaged vehicle over the generated sequence of track sections. The same type of fatigue damage occured at the same location after several rounds of this route.

Although this method was very simple and proved to be accurate. it is necessary to notice that ihe sequence of sections would only simulate the load on one specific position of one specific vehicle.

4.5 OTHER METHODS

4.5.1 Photometric mothod (Rasch 1979)

This method is based on the tuman ability of spatiai vision or depth perception. Depth percepption resolution can be improved by widening the distance between the eyes. This can be done for instance with air photyraphs if a piece of countryside is photographed from two different positions in the air. The resuiting pieture, if viewed through a stereoscope, would appear three dimensional. This "appecarance" can be controlled so that it can accurately represent the actual surface to scale, and is thus used to obtain a model of the terrain surface. With the necessary equipment the surface texture can be measured by adjusting a marker above the model in the field of vision horisontally in the x and y axis just by operating a crank wheel, and in the vertical direction (z-axis) by means of a foot pedal. The operator secs the marker as a point in space and is to bring it to register with the various points on the model's "surface". The movement of the marker is plotted on rolling paper but digitizing equipment is also available to facilitate storage of a digitized version of the profile on computer disc. The resolution possible is 20 cm between points. depending on the terrain, vegetation. ctc.
4.5.1.1 Advantages
(a) Covers a wide range of wavelenghis. 01 - 1.50 m . without limitations of instrumentation.
(b) High resolution possible.
(c) Does not affect soil or terrain condition.

Raasch mentions some more advantage: ove: the measuring wheels methods viz, no restriction in the long wavelength range. whecls deforming terrain, damage to vegetation, etc. but these are cither not an advantage or not important in this work.
4.5.1.2 Disadvantages
(a) Altitude resoluting.
(b) Vegetation impairs measurement - this is the greatest disadvantage of this method which also disqualify it from consideration. (One does not want to measure the height of thick grass as being the ground proille).
(c) Expensive equipment.

Chrysler used two vehicles as stationary marking points for a horisontal reference. (See figure 4.10). A wire was stretched between the vehicles and a cart running along the wire sensed the ground profile.

Figure 4.10
Chrysler's profilometer
Distances are measured with displacement transducers. The angle θ is measured by a potentiometer of which the output voltage is proportional to $\sin 0$. The following calculations are done to obtain the ground profile height, h:

$$
\begin{align*}
& \mathrm{b}=\mathrm{c} \sin \theta \tag{4.3}\\
& \mathrm{H}=\frac{\mathrm{c}}{2}+\frac{\mathrm{d}}{2}+\mathrm{c} \sin \theta \tag{4,4}
\end{align*}
$$

It is performed by a simple voltage circuit giving as output an analogue signal of has a function of the horisontal distance.

4.5.2.1 Advantages

(a) Vehicle independent.
(b) No complicated data processing.
c) Good reference plane - platform stable.
(d) Inexpensive.

4.5.2.2 Disadvantages

(a) Cumbersome equipment.
(b) Torsion of vehicle frame not iucluded. (If parallel measurements are not done).
(c) Distortion of ground by tyres not included. (If measurement is not performed in a vehicle track).
(d) Sample length is restricted by lengti. of reference wire.

Bulnan ised the device as pictured in figure 4.11. The profile following, wherel conld be exchanged so as to investigate the enveloping effect of different tyres and the compressibility of the silil.

Figure $4.11 \quad$ Laser profile measuring device
The position of the light beam on the array of photocelis is sensed and thereby giving the vertical movement of the wheel, which is following the ground profile. Because the array is only 1 m long and the vehicle might deviate vertically more than this over rough terrain, a servo moto: keeps the array aligned with tise light beam. The position of the array above the whed is then added continousiy to the position of the light beam on the arraty.

4.5.3.1 Advantages

(a) Relative stable reference piatform.
(b) Includes distortion of ground by tyres and vehicle weight.

4.5.3.2 Disadvantages

(a) Constant vehicle speed required.
(b) Limitations of equipment to relative straight, flat profile.
(c) Vehicle dependent: Suspension is an influencing factor.
(d) Does not include torsion of vehicle frame.
4.5.4 As pronosed by University of Michigan Transportation Research Institute (Gillespie 1984)

The U of M represented the linited States in an international study to correlate methods of measuring road roughness. Although the emphases was on roads and not cross country terrains, we include the method for completeness.

The device is depicted in figure 4.12. It is similar ia principle to the device developed by the (SIR (Vaal der Merwe, et al, 19so). and is essentially a mechanical integrator. The rod passes through a hole in the body above the rear axle and is fixed onto the axpe. The movernent of the axle is then transferred onto the rod. The cumulative movement of each up and down stroke of the rod is used to give a single value of roughness related to the distance travelled. An international index was developed which specifies roughness numbers as well as required road speed. etc.

Figure 4.12
I: of M and (SIR ronghtess measuring device
The CSIR used a stiff steel wire rolled around a drum with some kind of odometer on the drum. The tratslation of the axlo is transterred to a rotation of the drum which is then integrated.

The measurement obtained by this method is called "average rectified slope" measured at a certain speed. The roughness number is expressed as inches per mile or meters per kilometer. where the inches or meters denote the total up and cowr movement of the rod.
The roughness index (also called the Quality Index (QI)) numbers range from $0 \quad \cdots 18 \mathrm{~m} / \mathrm{km}$. Gravel roads with potholes and transverse and longitudinal erosion gulleys have an index between 13 - 18. Travel speeds on these roads are limited to below $50 \mathrm{~km} / \mathrm{h}$.

This standard has been accepted among road engineers and all efforts by those concerned indicate that it may be adopted worldwide because of its simplicity: The method was. however. developed specificaily to give a simple numbered index for the condition of roads internationally, and in this respect it succecds in its purpose. Because of the output format of the measurement it would obviously not be of any use in the field of fatigue. vehicle dynamics, etc.

Hhe concept of the slope interratior arethod was adoptex atal rmployed in this study, the primary reasm being the probienn of kepping the vehicke's speed constant over very rough terrain. or aternatively measuring the reiicie speed and componsating for it afterwards in data processing, which is required for the accelozation method. This method therefore compares unfavourably to the mome simple and modalar slope imtegration method because of the effort invelved to measure, or compensate for the speed of the vehicele paralles to the mean of the surface irregularities.

A further reason is that the actual profile dimensions can bee the d successfuly in ride simulation, both on a compuer whic!. model is well as in the laboratory: with the vehicle mounted ons serve lyydraulic actuators. The vehicle's forward spered is consequently tire only variable whirla would need to be splected at will in the
 components was rejected becanse of its dependent: un ther typ, of vehicle and the limited application of the neratared shaid.

The igea of a two whecled derice was imphenemed :: orider to ubrain the two tracks of a velhide atal censerpemty beme able to investigate the transurerse siationarity. It somid also result in knowledge of the torsional loading on " sehiche frame durime movement over a rough terraits. In ortior to comifm the design it was decided to build a prototype devire firt, whici would be smat! enough to be cowed by a ligh passenger rohicie. Design changes could be implemented on the final version whith would follow affer qualification of the compleme sestem on the protosype model.

DFSCRIPTION OF THE: SYSTFM
The design of the experimental devier is siat.,: i: fignfe 5.1 and
 end of this paragraph. The systran comprizes . ":rdware side and also an instrumentation and software side. The harceare consists of the two wheod cart having a small singie whed following the left hand track of the vehicle and a wheelset following the right iand track of the volicle. The wheelset is constructed in such a way that there are always at least two wheels following the ground in the track profile. The pivot mevement of the wherlset with respect if the cart frame is measured be a potentiomenor guvise as what the aigle a betwen the wheelse frame and :he cart frame (figure
 a wosched plate. athached to ond of the wherts, with the res ilt that

FIGURE 5.1

FIGURE 5.2

This gives the sloped distance which the catt has covered. In order to ensure that this wheel constantly turns. eventhough it might not be in contact with the ground. the front and rear running wheels were connected by it chain and sprocket system. (It p)roved. however, to be a mistake, and will be discussed later on.) A gyroseope mounted on the cart frame measures the pitch angle θ and roll angle ${ }^{3}$ which the frame makes with the absolute horizontai plane as it moves behimf the towing vehicle. The output signals from every transducer are stored on an FM tape recorder.

After these signals have been transferred to a digital computer. calculations are performed on them to give the coordinates of the profile. The value of $0, \beta$ and α are sampled everytime the pulse occurs in the signal of the proximity switch. These pulses are. as mentioned earlier, always a fixed distance 'ds' apart and the coordinates, x and y of the measured profile can be calculated as follows:

The angle γ which the wheelset would make relative to the absolute horisontal can be calculated simply by

$$
\begin{equation*}
\gamma_{t}=0_{t}+\alpha_{t} \tag{.5.1}
\end{equation*}
$$

The righthand track profile height is then given by

$$
y_{\mathrm{r} t}=y_{\mathrm{r}(t-1)}+\mathrm{ds} \sin i_{t}
$$

and the leftland track by

$$
\begin{equation*}
y_{t t}=y_{\mathrm{r} t}+\gamma \sin s_{t} \tag{5.2}
\end{equation*}
$$

where ℓ is the track width.
For both tracks the horisontal displacenent is given by

$$
\begin{equation*}
x_{l}=x_{l-1} \div \mathrm{ds} \cos \gamma_{l} \tag{5.3}
\end{equation*}
$$

The coordinates are then converted to only the value of the height. y, at equally spaced horisontal distances. The result is an array of height values. y, starting at horisontal distance $x=0$.

The software developed for these calsulations need only be adapted for the increment distance 'ds' as well as the calibration curves of the angles θ, β and α, if a new wheelsize is implenented.

A wiring diagram of the complete hardware side is shown in appendix I.

REQUIRFMENTS AND (ONSIDERATIONS
The subsequent discussion refers to figure 5.2.
i.3.1 lengih 1 , should be such that the angle θ is measureable by the gyrescope and falls inside the resolution and accuracy specifications of the gyro.
5.3.2 y is the lecight of the smallest obstacle with wavelength of s. This is to be determined by tests and the wheelsize should be dictated by it as explained in 5.3.3.
5.3.3 The wheclsize of the wheelset should be such that the complete range of possible wavelengths is included in measurement. Care should be taken that the large obstacles do not stall the cart and that small obstacles are not bridged. Hence wheelsize directly influences resolution and accuracy.
5.3.4 Wheelbase s should tend towards the wheldiameter d.
5.3.5 The width of the ruming surface of the wheclset should approximate the width of the "average" tyre in the category of interest. This can be obtained by using two small whels runing side by side in the wheelset.
5.3.6 A compromise should be made between the requirement of soft rubber wheels to dampen high frequency shocks and the requirement that the rubber should be hard enough so that the frequency response function between the ground and the axle could be approximated by one.
5.3.7 The loading on the wheels should be such that the ground pressure of the average vehicle in the category concerned is approximated.
5.3.8 In the light of the decision to cater only for light passenger vehicles, the wavelength of obstacles and irregularities of interest are bounded at the lower end by approximately 0.05 m . This is because the enveloping effect of pneumatic tyres acts as a filter of vibrational inputs to the vehicle structure. At the high end it is bounded by approximately 20 m . The height of any abrupt obstacle should not be higher than approximately 100 mm . (ISO/TC 108).
5.3.9 A restriction is imposed on the maximum inclination of any large obstacle by the maximum possible swivel angle. α, of the wheelset. This angle in its' turn is restricted by the geometry of the design. The result would be that sharply inclined obstacles will be smoothed and measured as being smoother than in reality.
5.3.10 A certain amount of consideration should be given to the effect on the measuring system of grass tussocks spread among the obstacles on the terrain. The ground contact pressure should be such that these are flattened and measured as the vehicle sees them. Slippage of the wheels over the grass should be prevented.
5.3.11 The assumption is made that the profile which a vehicle "sces" or experiences, is the deformed profile after the vehicle has travelied over it. This is true for the rear wheels but not for the front wheels depending on the soil type and hardness. This assumption is, however. justified against the definition of the properties of the surfaces of interest, viz, hard ground roughness. The profile measuring whecls are therefore allowed to run in the tracks of the vehicle.

DETAIL DESIGN OF THE MEASURING CART

Frame
Refer to figure 5.2.
The angle 0 is detcrmined by the length L of the frame and the height y of the smallest obstacle of interest. The height y is actually also determined by the smallest possible wavelength s that will be accurately measured by the system.

For light commercial and passenger vehicles on rough terrain or dirt roads the smallest obstacle of interest would also dictate the wheelsize of the measuring system. A practical wheelsize was taken to be 75 mm diameter, therefore the lower limit of wavelengths which would be measured accurately is 0.075 m . The value of y was therefore decided to be approximately 1.5 mm .

$$
\begin{equation*}
\therefore \quad L=\frac{y}{\sin 0} \tag{5.4}
\end{equation*}
$$

But gyroscope accuracy $=0.83 \%$ of 90°
and gyroscope resolution $=0.2 \%$ of 90°

$$
\begin{aligned}
& \Rightarrow \quad 0 \geq 0.75^{\circ} \\
& \therefore \quad \mathrm{L} \leq \frac{0.015}{\sin \left(0.755^{\circ}\right)}
\end{aligned}
$$

$\mathrm{L} \leq 1.150 \mathrm{~m}$

5.4.2 Wheelsize

Wheelset configuratiur:

The smallest wavelength that will be measured accurately depends largely on the size of the obstacle:

It is clear in the figure above that the wavelengths are the same although the amplitudes differ. Wavelengths that will be measured accurately are therefore larger than d , depending on the shape of the obstacle. For simplicity it is assumed that the shape is always favourable and the lower limit wavelength is taken to be d and therefore $\mathrm{s} \approx \mathrm{d}$.

Assume a wavelength smaller than d :

The resulting measurement of α would be as shown below while θ would be measured to be constantly zero.

If this value of α in employed in equations 5.1 \& 5.2 the result would be an obstacle measured as having a wavelength of s , which is approximately equal to d:

5.4.3 Configuration of whocket

Out of a few aiternatives the configuration for the wheelset, in terms of swivel point, was selected to be as illustrated above. In this configuration the weight on the wheels would act as a suspension thus eliminating the need for such a system. A moment M is constantly generated by the reaction force of the ground on the wheels.

In order to accomodate large oistacles the following concept was adopted:

Where $\mathrm{y}_{\max }$ would be approximately $\mathrm{l}, 5 \mathrm{~d}$. The higher amplitude limit is therefore also dictated by the wheclsize.

In order to accomodate the tyre width. the concept of two whecls running side by side to simulate the effective tyre width was added to the design:

$W_{\mathrm{eff}} \approx \$ 0 \mathrm{~mm}$ for the 1.55 SR13 tyre used

In the light of these two factors, that of large obstacies and tyre width, it would be necessary to provide at least three measuring wheelsets. A smaller wheelset would water for commercial passenger vehicles with a certain tyre size. The tyre diameter would determine the largest obstacle which can be taken on by the vehicle. For trucks operating on off-road conditions another wheelset would have to be available with larger wheels resulting in an increase in lower limit wavelength but also an increased
capability for measuring larger obstacles. For larger wheeled cross country vchicles, like six wheeled military vehicies and construction machinery, a still larger wheelset would have to be used, typically in the region of 200 mm diameter, with the result that higher obstacles can be measured but with a sacrifice of resolution in the lower wavelengths. This sacrifice would not be serious because a large whed is itt any case insensitive to smaller obstacles. This statement is not completely true but would have to be accepted for practical reasons, otherwise a method would have to be devised which will be able 10 measure wavelengths from 50 nm as well as obstacle heights of 500 mm accurately:

Ground contact pressure

According to Bekker (1962), the equation for calculating the ground contact pressure of a pncumatic tyre includes such parameters as the mean vertical pressure within the tyre carcass, soil strength paraneters, etc. This results in a complicated calculation of which the result is largerly determined by choice of tyre and soil type.

For calculating the contact pressure of solid rubber wheels. such as those used on the whelset, the parameters are the real contact area, tyre deflection in the center and elastic constant of the rubber. These parameters can be obtained without any difficulty but what is still required are the soil deformation and soil strength parameters. As it would not be possible to cater for all iypes of soils, and in the light of the decision to measure only hard ground roughness, it was decided to find the correct contact pressure empirically. The weight on the wheelset should also be such that constant contact with the ground is ensured and no bouncing oecurs. A compromize would therefore be necessary between enough weight to ensure constant ground contact and not too much weight as to result in incorrect contact pressure. This would have to be optimized during the planned field tests of the systen. With the current design the ground was assumed to be hard and undeformable and the weight of the cart was made such as to function as a suspension system and keep the whecls of the wheelset constantly in contact with the ground.

SOFTWARE
In addition to the calculations necessary to give a set of profile heights at equally spaced horisontal distances (see paragraph 5.2). software had to be developed to perform the following:
5.5.1 Calculate the Power Spectral Density (PSD) according to the procedure described in appendix C, paragraph 5 . An existing subroutine was adapted to make use of profile data because this function is usually calculated for time data.
5.5.2 Smooth the PSD according to the procedure described in ISO/TC 108 and explained in appendix D, paragraph 2 . This smoothing is to be done io simplify the process of fitting a straight line to the data, which was done with the least squares techniq̧uc.
5.5.3 Calculate the roughness constant after ensuring the slope has a value of -2 (sec paragraph 3 earlier). This was obtained by varying the frequency limits between which the straight line was fitted to the data points. ISO/TC 108 suggests between 0.1 and $2.8 \mathrm{c} / \mathrm{m}$ which proved to be sufficient.
5.5.4 Various plotting software was adapted to provide for the format as required by the profle data. viz, spatial frequency. etc.

The detail of the mathematics employed in this software is discussed extensively in the appendices and a guideline for the use of the software is contained in appendix J .

FIGURE 5.3: The Measuring Device

FIGURE 5.4: The Gyroscope

FIGURE 5.5: The Measuring Device on Towing Vehicle

49

FIGURE 5.7: The wheelset configuration
Notice chain \& cabla system which transfers rotation of wheelset to potentiometer.

FIGURE 5.6: The wheelset movement as it negotiates an obstacle
6.1.1 The largest square obstacle should be smatler than the wheel radius (37,5 mm).
6.1.2 The largest round obstacle is in the range of 125 mm otherwise slippage of whecls occur.
6.1.3 More weight is needed on the wheelset to ensure constant ground contact.
6.1.4 The ground following wheels of the wheelset should be disconnected because they do not turn at the same speed when climbing an obstacle. This resulted in a false downward slope in all the measurements.
6.1.5 The optimum sample frequency for analogue to digital conversion was found to be 128 Hz by investigating sample points per pulse of the proximity switch. The pulse signal from the proximity switch was also filtered with a 64 Hz low pass filter and the other signals from the gyro and potentiometer were filtered by a similar 8 Hz low pass filter.
6.1.i I'nwanted transicnt vibrations occured on the gyro roil signal cansed le: bumps and also vibrations transmitted from the towing velicle. Although the instrument was mounted in it's original rubber mountings, it proved to have too much damping for this application. A stiffer mounting was devised which improved the results but would obsionsly decrease gyro ife expectancy.
6.1.7 Towing speed should be as low as possible, typically around 0.1 to $0.2 \mathrm{~m} / \mathrm{s}$, so that bouncing, sudden jerks and shocks, do not occur.
6.1.8 It is essential that the gyro be started in an absohute horizontal position. The zero value signals in this position are used in subseçuent conputor calculations as calibration values. If a value for an angle is assumed to be zero, but does not represent an actual zero angle, a false slope is induced into the calculated profile.
6.2 The second series of tests were made to prove the adherence to the initial specifications of the measuring system:
6.2.1 Obstacies smaller than the wheel cliameter are not measured with any reasonable amount of accuracy. See figure K.l, in appendix K. where a square obstacle of $8 \times 8 \mathrm{~mm}$ was incorrectiy measured to have a waveleugth of appro: "utely 70 mm . (Please note that horizontal and vertical scales are nut the same.)
6.2.2 The lowest obstarle to be measured is determined by gyroscope resolution which is $0,2 \%$ of 90°, and according to equation 2.4 it gives a minimum obstacle height of 3 mm . A 3 mm plate was measured and the result is shown in figure K.2 where the distorted shape can be seen.
6.2.3 The smallest obstacle to be measured with reasonable accuracy is the halfround obstacls with rarlius the same as the whect radius i.e. 37,5 nim. A comparison ts the actual shetpe is shown in figure K.3. A smailer 20 mu radias half romd obstacle was : measured its having a triangular shape as shown in figure k.t. This is severely influenced by the length of the sampling distance, ds. The principle is that of the Nyquist or cut-off frequency where the accuracy is influenced by the number of sample points per wavelength. In order to measure a wavclength of 37.5 mm accurately, at least t wo sample points are to occui during its' traversing.
6.2.4 Small square obstacies of size $20 \times 20 \mathrm{~mm}$ and $30 \times 30 \mathrm{~mm}$ weic measured to have the shape as stown in figure K.j and K.6. The downward slope in figure k .6 is due to the fact that the wheelset jammed behind the obstacke during which time the front and rear wheels are lifted into the air simultaneously until the front whee is able to climb the obstacle.
6.2.5 A sloped step obstacle was created and the measuring system proved itself capable of measuring it's shape quite accurately as shown in figure K.7.
6.2.6 Figure K. 8 shows the comparison between the actual profile of a simulation concrete rough track, as obtained by measuring the profile height with dumpy level and yardstick cvery 40 mm . and also by the measuring cart. The stretch of road was \& meters long with obstacle heights of approximately 150 mm. The phase difference which can be seen between the curves can be ascribed to two possibie reasons:
(a) The fact that the profife was measured every 40 mm with the dumpy level method and every $39,2 \mathrm{~mm}$ with the measuring device which results in a 160 mm phase shift because when plotting the two profiles it is assumed that both are measured at the same incremental distance.
(b) The probable arror with the dumpy level method because the measuring tape was not stretched absolutely horizontal over the obstacles when the incremental distances were measured.
6.2.7 With every measurement it was found that the lefthand track, or channel 2, is definitely not measured with the same accuracy as the right hand track. This is mainly due to two reasons:
6.2.7.1 (iyroscope roll resolution and accuracy
6.2.7.2 Susceptibility of the gyro to vibrations in the transverse or roll direction purcly because of it's mounting configuration.

7. THE FINAL MEASURING CART

7.1 DESIGN CHANGES

In order to produce a workable measuring cart a first prototype was subjected to the cualification tests as described in the previous chapter and the necessary design changes were implemented in a model which will be called the final measuring (art. The reader is refered to paragraph 5.4 for the discussion which is to foilow. The final device is shown in figures 7.1 to 7.7 .

7.1.1 Frame

The frame was made to be adjustable in order to cater for a wide range of towing vehicles:

Length: $L=2000 \mathrm{~mm}$.
Track width: $B=1400-2100$ (adjustable).
Height: $H=950$.
Towing hook height was made adjustable from 500 mm to 1400 mm .
7.1.2 Wheelsize

Wheelset wheels: 150 mm diametor (This is therefore atiso the lower wavelength limit).
Single wheel: 250 diameter.
The proximity switch was made to generate pulses evers 0.039 meters.

7.1.3 Configuration of the wheolse

The extra two top wheels, which were adopted in the prototype to cater for large obstacles, were rejected and the inclination and height of the larger obstacles are simply limited by the size of the wheelset wheel.

The two wheels running side by side to accomodate tyre width were also found to be superfluous and rejected in the final design. This was motivated by the fact that the exira possible measuring width is muly an asset with narrow projecting obstacles but is of no use with narrow indentations or holes in the measured profile.

7.1.4 Ground contact_pressure

During the field tests with the final device, an observation of the ground pressure was made. It soon became clear that the crushing effect of the device's wheels under it's own weight was about the same as that of the light four wheel drive towing velicie. This was observed over large grass tussocks and carth clocls.

7.1.5 Software and instrumentation

The software employed with the system, as well as the instrumentation. remained unchanged except for a change in the calibration curves of the angles $0, \beta$ and α, the value of 'ds' and the value of the track width. ℓ. These changes are to be implemented in the program before antalysis.

7.1.6 General

At the pivot point of the wheciset, iwo face to face tapered roller bearings were installed to prevent any other movement other than the required swiveling. The swivel angle was increased to just under 90° by making all protruding bolts and nuts flush with the swivel arm.

The chain and cable system for transfering the swivel movement of the wheelset to the potentiometer was replaced by a single chain over the sprockets.

All necessary instrumentation was shielded from the sun.

FIGURE 7.1 The Final Measuring Device.

FIGURE 7.2 The Adjustable Towing Hook.

FIGURE 7.3

Two views of the adjustable

FIGURE 7.4 The Gyroscope was shielded from tine sun wih a sniall roof

FIGURE 7.5 The Proximity Switch tigger plate can be seen mounted on the wheel.

59

FIGURE 7.6
The wheelset with the potentiometer mounted inside the leg.

FIGURE 7.7
The chain sprocket (uncovered) which transfers rotation of the potentiometer.

Fl"] 1) 1

$\therefore . \mathrm{i} \quad \therefore \mathrm{IM}$

 difference in romphess where survered with the fimal inerasuman

 terrains conld bre observed. Iln calculanex! roughenes catstant. K. (sex apperatix i)) should be a distiact one fienere characterization for a specif: terrain.

The three measured terrains are described as follows:
(a) Dirt road - A stretch of grated i:tack with stanl! home
 it comfortably at fil kim/h. It is illustrated in figure l. which is the measured profile.
 large bricks white exhibiting aisi lumps and :oc,so it is rougher than the ground roat: The tarigian parsan is illustrated in figure lid.

 figare 1.3.

R1:S"ITS

 trends were removed from tho data ds far de prsibine with a polymomial and linear tretad monosal process.

 side of the measuring cart. To illusurat: 'he vifect of the erequathe: smoothing process, the umanoothed PSD's for the ruugh trat's ar" included in figure I.10 and 1.1!.

The calculated value for the rowghess emstant. \mathbb{K}. an : :e ell as itre slope. a. for each terain is contained in cable s.l

Table s.l: Roughisess of measured merains

Terrain	Right wherl track		1.rf wher track	
	i	a	k	,
Dirl Ruand				
(1) $0.17-1.9^{*}$	$3.76 \times 11{ }^{3}$	-1.12		
(2) $0.2-2.0^{*}$ Bolgian Paving			30.18×10	-2.02
(1) $0.4-1.9^{*}$	82.67×10^{-57}	-1.s		
(2) $0.37-1.9^{\mathrm{x}}$ Rough Track			90.5x10	1.9.4
(1) $0.25-2.5^{*}$	53.7×10^{-5}	-2.02		
(2) $0.35-5.0 *$			19, $\times 10$	$-1 \cdot \%$

*The freguence limits it: c/m between which a straight ha," wat fitted to the data. Number in brackets indicates chanmel thander.

 crucial in the calcalaton of the roughess comatam. N

Pirstly, the effect of aliasing (explained in dupendix Hi_{i} during initial masurement shonk be considered. This will watally result in a relatively flatter PSD. It is obvious from the PSD's of all three terrains that the upswing in the tail ends of the curves mighin be caused be this. The bump at the frequencies $; \mathbf{- k}$ (im in the PSD) for the Belgian paving is however due to the hammat irregularity of the 100mm paving brick wed to constuct tha track. It might prove to be necessary to investigate the mater of dibasing in more detail before confident interpretations can be madr. Humer and Smith (19s0) did a study into this matter and their results (at. be fot:13d in their paper.

It is obvious that frequencies higher than the cut-off freçuenc: should be ignored: These are the frequencies higher that approximately $13 \mathrm{c} / \mathrm{m}$. and they also do not appear in the curves.

The second important aspect to remember is the trend remonal process. It did happern that :he polym,miat! fit with least squares sometimes proved to bo inasficiont ami kw freguepicies wertherefore included in the data. The elimination of low frepquincie: or large wawemghis are smely formodent on the vehiche si.e dat lype for whirl the terraill is sumperd. This prowes thonh therefore be hamded with sumal judge nemt and common semse. The
 therefore be detemmed by the sperefie purpow for which ife deld is colloced.

A raming average method for climinatiog low frequeriojes was mot applied to the data even though some authors suggested it. Ihp reason was that this process would climinate frequencios in the range of interest. This could however be investigated further.

The third aspect 10 consider is the success of the fremuenter smoothing technique (ser appendix (') It is evinen from 'he PSD's of the three terrains that the curves might still is. :s 'ithle tou rough in order to make a confident deduction from: it in ierms of the frequency content of the data. This applies specifically is the detection of harmonic components in the terrain. Suth
 Belgiall paving (Sce figure l.2). but (ath be wherewo wit: witit om diffrulty in the PSl) for this terrain. Ihe ;esibibl: ato vist. that frequencies of interest io vehicle. lowemmion mat in. wiminatent by the freguency smouthing proces Fisin. fint \& Bugthat. 196?).

The atecuracy of the calculatem l'SD)'s is nimen in the expresorn en the complete normalized error in appendix (i:

$$
\begin{equation*}
t_{T}=\frac{1}{\sqrt{B_{\mathrm{e}} \Gamma_{.}}} \tag{il0}
\end{equation*}
$$

For the average sample iength of $\mathrm{I} .=80 \mathrm{~m}$ and a frequerms resolution of $33_{\mu}=1 /(102 \cdot 4)(0.039)$ the error is in the chider of if \%. but if expression (ill) is used. derived for the ango in frequency resolution because of the frequency stroothing proces. the average value for the changed frequency resolution is found to be 0.1152 . The error given by equation ((il0) is then caiculated to be 32.9%. As mentioned in appentix (i. this error can be reduced by making the estimate more consistent (employing a larger number of samples) and by utilizing a frequenc: smuothing precess which gives a coarser frecuency resolution. These two aspects need to he investigated further.

It is definitely mecessary to consider the vibrations imduced into the measuring cart during lerrain surveying. These vibrations cause false shopes io be measured by the groseope ats this instrumem is extremoly sensitive 10 vibrations. The mraturing (art's tiffues rabber wherls and gatresope mombings all phay a major robe in (omtro)limg these vibrations. It was obvons during measurenemt that the gyroscope tends to vibrate at a damped matural frequency during traversing of certailn terrains. The sharp beaks at approximately 0.8 ($/ \mathrm{ml}$ ia all the PSi)'s are most probably dum in this. A stiffer gyroscoper momut resulted in premature failure of the instrment and this shows the compromise necessary in stiff mountings for ascurate measurement and soft mommings for instrument protection.

Figures 1,4 to $L 9$ as woll as table 8.1 indicate that the terrain characterization method with the PSl) and rougheres constat. K. is saccessfui. The position of the curves sliffer relative to theth other. which is an indication of the difference in roughess ite proditent be: the ISO/T' 108 . Inspection of the calculated valurs for the roughess suggests that tiae rough irack can be classified dis an F : or F terrain, actording io ISO/TC 10S, the Beigian pavity as a D ais E terrain whilst the smoother dirt road is a (o (1) terrain. These values compare favourably with ierrains clasified in a similar
 the PSD's of the various terrains would requre sumpe taperiten:"
 too hat due to the aspects mentioned eatier one This is exidens from the values for the skope a. in table v.l. Whath at, on the average lower that - -2. A major feasoll for bitiv ath be the
 cartier

The measuring cart itsolf proformed much better thata its' predecessor. This is largely due to more athemtion having bern paid to tolerances and clearances, sturdier whel construction. more rubber on the wheels, etc. The large vibrations noticed in the meraured roll data with the prototype model were redued. This call be noticed in the relatively smoother profiles generetiod for bio left hand track by the final system. (See figures L.i. L.2 and L.3).
9.1.1 Investigate the possibility of manually towing the device white say. two meter cables combect the device to a whicho which carrics the power supply and recording equipment. Thes might improve the controllability in terms of lowing spece:. especially over rongit terrain. where it is very diffirult to mamain a slow enough towing speed. Too high towing speed reaht: : B too fate pulses frem the proximity switeh which may br mis of durins atakge to digital conversion of the time data.
9.i.i Soft, pommatic. detachable road wheres fitex io the device would help a great deal in moving of the device betwern measured terrains.
9.1.2 The frequency response behaviour of the cart needs to optimized in order to eliminate all vibrational frequencies generated from the measured termin and the towing vedicle.
9.4.1 For light rough terrains and roads the atcelerometer mehod sere paragraph 3.2 and appendix F) would be more practical. This measuring system should be developerd as an integral part of the existing one which would create the posisibility of covering these 'not-so-rongh' tero, ins faster during neasurement. A device similar to the one discussed in paragraph 4.3 .2 could be integraterd with the current device. Additional software is reguired. hewewer. io preform the calculations described in appendix ℓ.
9.4.2 No record of the length of the measured terrain is stored it: the calculated PSD. An extensive investigat on is required into using fatigue cycle counting methods. in combination with the PSI). to determine the number of undulations in a stretch of terrain and thereby creating a reference for the length of terrain which was measured, that can be used in lifetme simulation of sehicles or vehicle components. Although studies imio ihis aspect have definitoly ween made (Murphy, i9ヶ2. Kaneshign. !969. etc) is is again perhatis necessary to developr a methed couperatine with thr

distributions (Van Densen) or rainflow commeing techniq̧ues to be employed instead of. or in addition to. the PSD profile characterization would be requirer!. Care should be exercised not to lose frequency information which is of importance in computer model ride simulation and suspension compoment testing.

In conclusion it is moticed that line sysim described in this report offers an excellent basclime for further studies and insestigations. It also suceecds in its' purpose of being a successful iool in measurinn and characterizing the profiles of rough terrain sirfaces.

APPENDIN: A

PIUNCIPLES OF THE FSTIMATION THEOR Y

Because it is much more casier to yizualize any phemonenon as a function of time than as a function of any other variable, the thenery presented here are all basced on processes which are functions of lime. Wiih minor modifications here and there they would apply exactly 10 any process or phemomenon which is a f:anton of any oblecr variable.
('onsider a random process with output value x which is a funtion of time. Because the process is random it is impossibie to predict the value of x at any time t in the future. It is though, possible to find the probability that the value of x will be between certain limits at time i . This is the basis of the estimation theory. This theory is used to estimate statistical preperties. which characterizes the randont process with any chosen level of confidener and they include the mean, variance, power density spectrum. etc.

When the random process is observed for a certain finite time interval l , a sample record or function $x(t)$ is obtained rejresenting the process concerned. It is obvious therefore that the complete process is made up of an infinite mumber of these sample records but it is not possible to observe theili ail. If a large number, say N , of these functions can be collected though. it wouid be "enough" to represent the random process sufficiently for estimation purposes. This collection of sample functions is called an ensemble. deno:ed by \{x,ti\}. and is an approximation of the random process.

To be able to describe the properties of the ratudom promess at any instant sdy t_{1}, be average of the value at t_{1} of all the s.timple factions is calculatiof. This is called the ansmble average Fisp and is illustrate! un fienre Al. This is also called the mean value μ_{x} or first moment of the rambun proxes at time t_{1} :

$$
\mu_{\mathrm{x}}\left(\mathrm{t}_{1}\right)=\frac{1}{\bar{N}} \underset{k}{\grave{y}} \mathrm{x}_{\mathrm{k}}\left(\mathrm{t}_{1}\right)
$$

The values of all the sample functions at l_{1} logether form the first-order probability distribution whereas additional valucs at t_{1} form the $i-$ th order probability distributions. A probability distribution can be described by a function which in turn is called the probability density function. If a rancionn process is said to be Gaussian ail the probability distributions must be Gaussian and therefore the density functions must all be of the form depicted in figure A2, and be doscribed by the following relation:

$$
\begin{equation*}
\mathrm{p}\left(\mathrm{x}_{\mathrm{k}}\right)=\left[\frac{1}{\sqrt{\overline{2 \pi}} \sigma}\right] \mathrm{e}^{\frac{-\left(\mathrm{x}_{\mathrm{k}}-\mu_{x}\right)^{2}}{2 \sigma^{2}}} \tag{A2}
\end{equation*}
$$

Th. standard deviation or variance is defined as follows.

$$
\begin{equation*}
\sigma^{2}=\frac{1}{\underset{N}{N}} \stackrel{\stackrel{N}{\mathrm{~N}}}{k-1}\left[x_{k}\left(t_{1}\right)-\mu_{\mathrm{x}}\right]^{2} \tag{A3}
\end{equation*}
$$

and is simpls the mean spuare value around the mean.
The correlation between values of the random process at two different times i_{1} and $t_{1}+\tau$ can be computed by takiug the ensemble average of the product of these two values. This is called the joint monent or auto correlation function and is gisen by

$$
\begin{equation*}
R_{x}\left(t_{1}, t_{1}+\tau\right)=\frac{1}{N}{\underset{\mathrm{~N}}{\mathrm{~N}}}_{\mathrm{N}} x_{k}\left(\mathrm{t}_{3}\right) \mathrm{x}_{k}\left(\mathrm{t}_{\mathrm{t}}+\tau\right) \tag{A!}
\end{equation*}
$$

Two additional concepts are now definel namely. stationarity and ergodicity. A random process is said to be stationary if all possible moments are independent of absolute time t and only dependent on the finm seperation - between the points. In other words if the first moment, viz the ascmbie mean walie (A2). is calculated at time 1_{1} it will have the same value if calculaters at any other time t_{i}. The same for the second moment. R_{x}. with the only whdition that docs not change with each calculation. Th., implis: that the statistical properties of the random process do not bi: wits lime for space. or . 4 , applicable variable other than time). A weath. sationary proctss is a pres cs in which only the first and secoud order probaibily distribution.s are invariant with time. For practical situations an assumphion of stationarity is made cem though the process is weakly stationary and therefore a veriffeatien of we..kly stationarity implies stationarity.

A process is said to be ergodic if it is stationary and additionally the time average of the values in one single sample function doos not differ when calcuitated over any other sample function. lastead of therefore deseribing the system by ensemble averages of the sample function. the mean and autocorrelation is calculated over say, the single sample function k. onls. The mean value and autocorrelation are iherefore given by

$$
\begin{align*}
& \mu_{\mathrm{x}}(\mathrm{k})=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} x_{\mathrm{k}}(\mathrm{t}) \mathrm{dt} \\
& \mathrm{R}_{\mathrm{x}}(\tau . \mathrm{k})=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \therefore \mathrm{k}(\mathrm{t}) x_{\mathrm{k}}(\mathrm{t}+\tau) \mathrm{dt} \tag{A.5}
\end{align*}
$$

In other words the time average and autocorrelation of the sample are the same as the ensemble average antocorrelation and any sample iunction therefore completely represent the random process. Ergodicity therefore implies stationarity but not visa versa. Ail the necessary statistical properties of an ergodic random procris can therefore be obtained from one single sampie fuartion.

Take a process which is stationary. To estimate some parameter, simply called p, which can be the mean. average or power density, a finite segment of a single sample function is used. There are thersfore T values of $\mathrm{x}(\mathrm{t})$ where $0 \leq i \leq 1-1$ which will be used to estimate p. Because x and t are in thenselves
raudom variables and the estimate p of p is a function of these sariables, p is ilso a randem variable and possess it's own probability density furction of which the form and sthape will be teecermined by the composition of 'ie estimator and the form of the probability density functiens of the random variable xit depicted in figure A2. The estimator used to "rstimatr p is "good" when the probability is high that p will be close to the true value of the desired parameter. A probability density function of an estimate" which is "narrow" (curve A in figure A3) implies a beter estimator than the less "narrow" function (curve \bar{B} in figure A3). This aspect can also be characterized by the confidence interval. This concept is not discussed in detail here and can be found in the appropriate literature. It is sufficient to note that for the same level of confidence the probability of p being close to p) is higher for a "goodi" estimator than for a "not-so-good" orie.

Two estimators are usually compared by their bias and variance. The bias is defined as the true value of thic parameter minus the expected value of the estimate:

$$
\text { bias }=p-E[p]
$$

An unbaised estimator's probability density function hatw it's sentre on the trus value of the cstimate, therefore the bias $\vdots=0$. Similarls ath cstimator is sidd to be consistent if the bias and variance, which is defined at in (A3), tend toward: zero if the number of observations increases. The estimate therefore becomes more accurate if a larger number of values in a sample record of the random process is employed. Furthermore an estimator is said to be efficient if the mean square error. given by

$$
E\left[\left(\dot{p}_{1}-p\right)^{2}\right]
$$

is smaller than the mean square error of any other estimator. These thres concepts viz bias, variance and efficiency define the "goolness" of an estimator.

To be able to make these deductions for a specific random process it is necessary to know the probability distribution of the variables $x(t)$. This is obviously not possibie with most natural phenomena and therefore a Gaussian distribution for these variables is assumed. It was also done during this study and this assumption validates the application of the theory discussed.

70

Figure Al The Concept of En...mble Areraging

Figure A2 Probability Density for Camsian Promes

Figure A3 The 'goodness' of an ewimator

APPENDAK B

 therefore stationary amb extibiting (ianssian santple functions (her appendia A). Because of these assumptions it is not neressary (o) ciserera a latse mumber of sample function in order to calculate the propertios of the process but these can be obtained from a single sample finction. Although ramdonn data in discretu form was used with the work discussed in this report. for thr sake uf simplicity and clarity. the relations derived here are for centinuens data. Tise denaii calculations for some of the properties. empheving discrete thata poutsts. are contained in appendix (?.

According to Bendat \& Piersol (1971) four main INpe of statistical functions ate used to describe the basic properties of reatom data:

Mcan square valuc (MS「)

Probability Density Function (P!)F)

Autocorrelation Function (AC'F)

Power Spectral Density liunction (psi)

- imficites ameral interisity n data
furnatian :afurnationi of bur

- ?
 t:11, :ionaiai:
- Pumaishod iafur:ataton oi :hu propertiacs of the data in the freguency domain

The ACF and PSD supply basically the same information concerning the diat because they are only fourier transforms of each other. The use of either ome of the two is colormined hy the format required ly the user for a specifir application.

The functions menrioned above are used to describe properties of single random processes and in order to describe the joimt F perties of two or more random processes three m in types of statistical funcian- were devized viz. Joint Probability Density functions (JI)F). Cross (orrefation function (CCF) and ('ross Spectral Density function (C'SD). The joint propertits are sometimes recquired where, for example. the proffle heights of the left and right hand track of is rough country road are to be investigated and the degree of infuence is io be established which the undulations on the right hatd track have ori the unduations on the left hand track at the same. and also future positions on the road.
 properties of linear systems as this theory is very mand appicabe io the art: discusard in this report.

1. PROPERTIFS OF A SIN(ILE IRANI)OM PROCFSS

1.1 MFAN SQL:UKE VALUK
 mean scumare :alue is цiven bỵ

$$
\begin{equation*}
\Psi_{x}^{2}=\frac{1}{T} \int_{0}^{T} x^{2}(t)(i t \tag{131}
\end{equation*}
$$

The square root of this being called the root meat sipuare of mus. The average of all values in the sample perord is denoted by the mean value μ_{x} and is given by

$$
\mu_{\mathrm{x}}=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} x(1) d t
$$

which is similar to (AD).
The mean square salue around the me:th :- when the berictue atui. in equation form, is given ly

$$
\begin{equation*}
\sigma_{\mathrm{x}}^{2}=\frac{1}{\mathrm{l}} \int_{0}^{\mathrm{T}}[\mathrm{x} 11] \quad \mu, \cdots, \dot{d} \tag{1331}
\end{equation*}
$$

1.2 PROBABHLY 1)NNSTY FN(NION

This function describes the probability that the data will asisume a value within some dinfined range at any insant of time. Beramse $x(t)$ is random, the values camot be predicted in advance hat : sample time record could be recorded. say starting at time r... for an interval $]^{1}$ and in the light of the assumption of ergedicity. we may use the statistical characteristics of this sample record :d predict what the value of $x(t)$ may be at any instant t where $-\infty<t<x$. The probability that x(t) assumes a value within the range x and $(x+\Delta x)$. may be caliulated by me rativ :.,IT where t_{x} is the mat time that xit) falls within the desighated range.

$$
\text { Proi }\left[x<x(1) \leq x-\Delta x^{\prime}=\frac{1 x}{T}\right.
$$

If J_{x} is small the PI)f (ian be dofined at

$$
j(x)=\quad \begin{array}{llll}
\lim & 1 & \vdots & 1-7 \tag{1351}\\
J x-1) & 1 & \vdots & 1
\end{array}
$$

AT'TOCORRELATION FIN('THON

This function indicates the infuence of values of the data at ome time on the values at a fulare tiane. The definition for the are was given for all emsemble aworage by equation (A!s) For an observation time ' F of a sampor listory the $\lambda(\mathrm{F}$ is given by (AB) which is

$$
\begin{equation*}
\mathrm{R}_{x}(\tau)=\frac{1}{T} \int_{0}^{T} x(t) x(t+\tau) d t \tag{136}
\end{equation*}
$$

where $\mathrm{R}_{\mathrm{x}}(-\tau)=\mathrm{R}^{2}(\tau)$ and $\mathrm{R}_{\mathrm{x}}(\tau)$ have a maximum at $-=0$ It is important to note at this stage the relation berwern the MSY and the ACF of $\mathrm{x}(\mathrm{t})$:

$$
\Psi_{x}^{2}=R_{x}(0)
$$

This function has a maximum at $-=0$ and is att eveth or symmetric function. It is used in the calculation of the P'il) at is illustrated in appeadix (' and also its the following paragrafh)

POWER SPECTRAI, DFNSITY $\because N(T I O N$
This function describes the gencral frepuenes wimposition of the data in terms of the spectral density of its meath spuate value. Vations methods exist to calculate this function and a few of those will be. discussed in detail later on in other apmondices. It is though necessary to explain the PSI) calculation in context with the other functions mentioned above. As mentioned earlier the PSQ). (\%.. is the fourier transform of the auto sorrolation function.

$$
G_{x}(f)=2 \int_{0}^{\infty} R_{x}(\tau) e^{-j 2 \pi f \tau} d \tau
$$

(13~)

This results in a one-sided PSD) which is dofined for frequencies in the interval ($0 . x$). the two-sided PSD being defined for the interval $(-\infty, x)$. The mean square value of $x(i)$ is equal to the total area under a plot of the power spectral density function is frequency. Therefore

$$
\Psi_{x}^{2}=\int_{0}^{x}\left(i_{x}(f) d f\right.
$$

and a more appropriate name for pely iv meati square suectral density. A detail discussion of the PSW) follews in appendix i:
2.

JOINT PROPERTIES OF RANDOM DAT:
JOINT PROBABMITY DENSITY FLN(TION
This function indicates the probability that two seperate sample records will simulatocously assume values within some defined pair of ranges at any specific time. In other words it describes the probability chat $x(1)$ would assume a value between x and $x+\Delta x$ while at the same time $y(1)$ assumes a value within the range y and $y+\Delta y$.
Hence

$$
p(x . y)=\lim _{\Delta x-0}^{\Delta y-0} \frac{1}{\Delta x \Delta y}\left[T^{\lim } x-\frac{1}{} \frac{x y}{1}\right]
$$

during an observed interval T with $t_{x y}$ indieating the time that xit and $y(t)$ fall within the respective ranges.

The JDF is used, among other things, In rolate the probability of occurence of a event to the probability of oxcurrian of amothe: event. In other words, what is the likelyhood of ath event it ihe likelyhood of another correlated event is knows:.

CROSS (ORIREATION FIN("HON
This function, in tura, describes the gemeral interdepedence of the values of two sample records. In is defleme in a smilar fashon as the ACF but instead utilizes two sets of random data. x and 3 The value of x at time t is compared to the value of y at lime $t+\tau$.

$$
\begin{equation*}
\left.\mathrm{R}_{\mathrm{xy}}(\tau)=\frac{1}{T} \int_{0}^{\mathrm{T}} \mathrm{x}(\mathrm{t}) \mathrm{y} \mathrm{it}+\tau\right) \mathrm{d} \mathrm{l} \tag{1311}
\end{equation*}
$$

As opposed to the ACF $R_{x y}$ does not uecresarily have a maximmm at $T=0$. nor is it an even function.

CROSS SPECTRAI, DENSITY FIN('TION
Because the JSD) is a fourier transform of the A('F, the ('SD) is defines as the fourier transform of the ('C'F. Bunt as the ('C'F is mot necessarily symmetric, the ('Si)f function is usually a comphen mumber. The (SSD can be described as bring the average product of $x(t)$ and $y(t)$, within a frequency band $f+\Delta f$. devided by Δf. The ('Sl) has the following form:

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{xy}}(\mathrm{f})=/ \mathrm{C}_{\mathrm{xy}}(\mathrm{f}) / \mathrm{c}^{-\mathrm{j} \delta_{x y}(\mathrm{f})}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and } \quad o_{x y}(f)=\tan ^{-1}\left[\begin{array}{l}
R e\left(i_{x} y\right) \\
\frac{1 m}{m}\left(i_{x}: y\right)
\end{array} \quad\right. \text { |B12! }
\end{aligned}
$$

The coherence function $\overline{\mathrm{xy}}$ is mosily wed in prationl simations:

$$
\begin{equation*}
\gamma_{x y}^{n}(f)=\frac{/ G_{x y}(f) / 2}{\mathrm{G}_{x}(\mathrm{f})(\mathrm{i}(\mathrm{f})} \tag{18131}
\end{equation*}
$$

When $\gamma_{x y}=0$ at a specific frequency it meats: ihat x(t) and $3 / 1$, are uncorrelated at that frequencr, where as if $\overline{x y}=1$ the iso sample records are said to be fully correlated at that frequency. This is a valuable quantity to calculate if the correlation betwen the profite heights of two parallel tracks on. a road are to be investigated.

FRFOLIENCY RESPONSE PROPERTIES

In addition to the properties above by which random data is characterized . the need exists to discus some principles of the dynamic behaviour of systems. In addition to the assumption of crgodicity, stationarity and Gaussian sample function, two further assumptions are made concerning the random ciata involved in this report namely that the systems involued have constant parameters and are linear. Constant parameters imply a șstem having propertics which are constant with time linearity implies the system has response characteristics which are additive. that is. the output io a sum of inputs are equal to the sum of outputs produced by each input individually. It also implies the responsic characteristics are homogencous. These two terms are explained ats follows:

$$
\begin{aligned}
\text { Adjitive: } & f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right) \\
\text { Homogermos: } & f(c x) \\
& =f(x)
\end{aligned}
$$

If a real system exhibit non-linear characteristics in certain extreme areas, it is assumed that the sistem always operates in the linear area so as to make the theory discussed here applicable.

With any input to a system, as definerl above. the output will occure after at certain time lag. r. This dynanic characteristic is described by a weighting function h(τ) which is the output of the system 1.0 any unit input applied time τ before. For any inpua $\mathrm{x}(\mathrm{t})$ lhe output of the system $\mathrm{v}(1)$ is given by the convolution integral defined in general as

$$
h * x=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau
$$

and more specific
therefore $y(t)=\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d ;$ (131:1

The lower limit of integration changes breatse a hienar siviont responds only to past inputs that is.

$$
\mathrm{h}(\tau)=0 \text { for } \tau<0 .
$$

The frequency response fanction (FRF) of a linear system is defined as the fourier transform of the weighting function hit T_{i} (sce kitz) p216)

$$
\begin{equation*}
H(f)=\int_{x}^{x} h(\tau) c^{-i 2 \pi f \tau} d \tau \tag{i315}
\end{equation*}
$$

A constant parameter linear system cannot cause any difference in frequency but only in amplitude and phase. Another important property of $\mathrm{II}(\mathrm{f})$ is obtained by taking the fourier transform of both sides of (B14).

$$
\begin{equation*}
Y(f)=H(f) X(f) \tag{316}
\end{equation*}
$$

where $Y(f)$ and $X(f)$ are the Fourier transforms of the output $\because(t)$ and input $x(t)$ respectively: Because of (B15) the FRRF is a complex quantity which can also be written as

$$
\begin{equation*}
H(f)=/ H(f) / e^{-t o(f)} \tag{B17}
\end{equation*}
$$

where / $11(\mathrm{f}) /$ is called the system gain facto: and (f) the system phase factor. The system gain factor indicates the difference in amplit the or the imput and ontput while the phase factor indicates the phase shiff indued by the system.

If (13:4; is rewriten for a pair of times 1 and $1+(\tau)$ the aroduct $y(1) y(f+r)$ is given by

$$
\mathrm{v}(\mathrm{t}) \mathrm{y}(\mathrm{t}+\tau)=\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{h}(c) \mathrm{h}(\eta) \times(1-c) \times(\mathrm{t}+\tau-\eta) \mathrm{d} \mathrm{~d}(\mathrm{~d} \eta
$$

and in terms of the auto-corselation. this wat beriten as

With the knowledge of Fourier (ransforms as well at the relationshap. defined by (B_{S}) the following equation is abtimat if the lamint transform of both sides of (B18) is ralculated:

$$
S_{y}(f)=/ H(f) /^{2} S_{x}(f)
$$

With similar manipulations for the (res-sorerelation propertins the following is obtained

$$
S_{x y}(f)=H(f) S_{x}^{\prime}(f) \quad 1 B_{2}^{2} 01
$$

Note that (B19) contains only the system gain factor while 1320 , contains phase information as well. For one-sided PSL) functions these two equations can be rewritten to be

$$
\begin{align*}
& \left.\mathrm{i}_{\mathrm{y}}(\mathrm{f})=/ H(\mathrm{f})\right)^{2}\left(i_{\mathrm{x}}(\mathrm{f})\right. \\
& \left.\mathrm{G}_{\mathrm{xy}}(\mathrm{f})=\mathrm{H}\right) \tag{B22}\\
& \mathrm{f}) \quad \mathrm{G}_{\mathrm{x}}(\mathrm{f})
\end{align*}
$$

where x indicates input and y oupht. If follows that the ousput mean square value is given by

$$
\Psi_{y}^{2}=\int_{0}^{x} G_{y}(f) d f=\int_{0}^{x} / i j(f) /^{2} C_{x}(f) d f
$$

according to the definition that the NSX is the area under the curve of spectral density ves frequency (139).

APPMND (

It is deenned meressary io discuss in somme dotail threy basic methods of calculating the PSI) of at random history. As in the previons appondices the data is again assumed to be ergotic, (iaussian ratojom processes and therefore statistical properties can be calculated from the time average and mean of a single sample record.

Analogue frequency analyzers operate on the priaciple of a narrow frepucucy bandwidth "scanner", the output of which is the mean square value of the amplitude at the frequency enclosed in the range. Calculation of the PSI) in this manner is called the Fiber-squaring-averaring method. Additional methods. more suitable for digital computors, are the PSS estimation via corrolation estimates and PSD estimation via FFl (omputations. Fiach of these mephols will be discussed seperately and a summary made at the end explaining the specific method used to estimate the PSD during the work deseriberi in this report.

1. FILTER SOLARNG-ALFRAGING METHOD

As mentioned above an analogue focquency andyer is ats instrument which is exsentialiv a varia!je. narron-foand freepurne: filter with an rus meter 10 display liue ompur. A spectrum analyer is a similar instrmusut except that it has more accurate filters and precisely calibrated filter inandwidiths.

Suppose the filter in the spectrum analyer have the theoretical FRF (see Appendix B) as depicted in figure (1.

Figure ('I

Assume an ingut $x(t)$ is a samjole funcion obreving the assumptions mentioned above and the output fromit the filter in the spectrum amalyzer is $y(t)$. This output is sequared and the time awerage calculated from (31):

$$
\begin{equation*}
w_{y}^{2}=\frac{1}{T} \int_{0}^{T} y^{2}(1) d t \tag{’1}
\end{equation*}
$$

From (1323), if assumed that T (ananot reach infinity, (C'il can also be approximaterd by

$$
\psi_{y}^{2}=\int_{0}^{\infty} / 11(f) /^{2}\left(i_{x}(f) d f\right.
$$

and with $\Delta \mathrm{f} \ll \mathrm{f}_{0}$ in figare ('l and calling $\| f f_{4}$, II, this relationship can be further approximated by

$$
\begin{equation*}
\Psi_{y}^{2} \simeq H_{0}^{2} \Delta f f_{x}\left(f_{o}\right) \tag{"3}
\end{equation*}
$$

If ($\$ 3$) is turned around, the value of tine spereral detast: at the specific frequency \mathfrak{r}_{0}. is approximated is

$$
i_{x}\left(f_{0}\right) \simeq \frac{\Psi_{y}^{2}}{\| \Gamma_{n}^{2} \Delta \gamma}
$$

It should be noted that the out pur from analogne frequency analyzers or spectrum analyzers produce the onc-sided PSD as in the above equation. The mean square value calculated over the bandwidth Δf is therefore normalized by deviding it with $J f$. in this manner the influence of Δf is reduced.

But the FRF in figure Cl is theoretical and applies to an infinitr averaging time with $\mathrm{T}=\infty$. This is lut at all practical and such an instrument usually have a finite average time T which results in the fact that spectral values are estimated from short pieces of data and it cannot be hoped to get accurate results. This problem of limited sample length available for calculating the PSD applies to both analogue as well as digital procedures. Discontinuities at the start and end of the record result in a certain loss of precision. This precision or accuracy depends on the record length T and the bandwidth 3 of the narrow band filter. This can be seen in the fundamental equation to determine the standard deviation σ of the the estimation

$$
\begin{equation*}
\sigma=\frac{\mathrm{m}}{\sqrt{\mathrm{~B} T}} \tag{C}
\end{equation*}
$$

where m is the mean output from the analyoer.

WINDOUS ANI SMOOTHIN(:

The conecept of spectrat window whichs is used to define the equivalent bandwidth 13 , of a spocital calcolation is introduced nows. The explanation wil! proered with the analwes an a sinusoidal history. Refering to figure ('2 it is clear that, if an infinite leagth record was used 10 calculate the PSil) of this history. the result in the fropuency domain would be a dirac delta function f(f) (to be discussed later in paragraph 4.2).

(a)

(b)

Figure ('2
Because of finite record lenght the sample can start and end at any value of the simusoidal history. with the result that parts of wavelengths, hence freguencies, are included in the PSit). If the sample length is perfectly the size of n waverngthsimen ubviously there would be no probilem. This romerept is illustrated in figure C3.

(a)

(b)

Figure ('3
The resulting PSD is of the shape shown in figure ('3(b). The small fluctuations adjacent to the main peak is called leakage and is because of the spurious frequencies included duc to the effect illustrated in figure (3(a). This leakage is obviously the cause of an inaccurate PSD and the aim would therefore be to clliminate or reduce leakage in the PSD estimation. It would not be possible to start the sampling record always precisely on the start and end of a wavelength but if the leakage magnitutie can be reduced to many times smaller than the main peak. a more accurate PSI) would result.

Taking the sample record shown in figure ('f(a) and multiplying it with some function, say $W(t)$, so that the result would be figure (:4(b), the effect of uncompleted wavelengits at the start and end of the record would be eliminated. The function W ' (t) is called a window function. Because the signat is made zero at the end points, the origimal data will be corrupted. With application of a window function, periodicity of the history is assumed with a period T', the record lengit.

(a)

(b)

Figure ('4
The effects of different window functions being imposed is illustrated in figure C5. If no window is used it implies in actual fact tho imposition of a rectangular window (figure C5ja) The Hanting and Cosine windows are used with comtinueut listories such as steady periodic or random vibration. The requirement for a good window would be that, for the perfect case where the record length starts precisely at the beginning of a wavelength. as well as for the worst case where the record length is a complete half wavelength too long or too short, the resulting leakage on the PSD should not differ to much in size and frequence: The width of the spectral peak should also be as narrow as possible and thereby approximating the delta function. The window function obeying these requirements sufficiently is the lianing window which was therefore used for the work in this report.

The application of a window function on the PSD is also called smoothing and. if the window function is multiplied in the time domain transformation to the freguency domain would imply a convolution integral with the resulting smoothed or eatimated PSD defined by

$$
\begin{equation*}
\dot{G}_{x}(f)=\int_{0}^{\infty} W(F-f) G_{x}(F) d F \tag{C6}
\end{equation*}
$$

where F is a dummy frequency and $W(F)$ the weighting function which satisfies the condition of the delta function. viz:

$$
\int_{0}^{\infty} W(F) d F=1
$$

Figure C5: Different types of window functions
(a) Rectangular
(b) Hanning
(c) Cosine Taper
(d) Exponential

The window function can either be applied to the data in the frequency or time domain, the result would be the same. The width of the function determines the band of frequencies over which the averaging is performed. For a rectangular window tio effective bandwidth B_{c}, is the full widul of the function. whereas with the Hatning window, which riss,: and falls off gradualls the effective bandwidth can be calculated as follows:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{e}}=\frac{1}{\int_{0}^{\infty} W_{\mathrm{b}}(1) \mathrm{df}} \tag{c7}
\end{equation*}
$$

with the Hanning window defined by

$$
\left.\begin{array}{rl}
& W_{h}(t) \\
\therefore \quad & W_{n}(t) \\
\therefore & =2 \sin ^{2}\left[\frac{2 \pi t}{T}\left[\frac{2 \pi t}{T}\right]\right. \\
\text { and } \quad & W_{h}(t)
\end{array}\right)=0 \text { everywhere else } 0 \leq i<T
$$

The effective bandwilth B_{e} is also callod the frequeacy re wiution on resolution bandwith. The narrowest possible value for be wonld be $1 / \mathrm{T}$.

Be can be seen as the narrow bandwithth of an analosue pectrum filter with a centre frecuency f which can be :aried vver the wotal freguency range of interest. This bandwidth should not be confused with the bandwith of frequencies contained in the infinite length history.

When the data is a random history the theory above would apply exactly if the assumption is made that the data is periodic with period T. Multiplying the true data with the window function would in effect imply multiplying every harmonic component in the history which can be obtained by Fourier analyses. by the window function. This would resul: in a narrow band PSD for every harmonic, or spectral line. in the total PSD. This total PSD would then consist of discrete spectral lines which were calculated by averaging over the nasrow band frequencies B_{e} situated symmetrically around the frequency of the spectral line. This concept is explained in more detail in paragraph 4 later on.

To avoid the loss of data during window application. due to the fact that windowed data are zere near lie boundaries. overlap? amalysis can be performed. Overlap ran be intuitively assessed and it is basically dofined as the size of the stop 10 the bext sample record on which to perform amalyses. In this instance a distimetion needs to be made between the total sample record used to obrain the statistical propertios of a infinite random listory and the smaller sample record which is again a subdevision of the total sample record. A PSD is calculated for ewery smater record and the average of these PSD's is accepted as the PSD of the complete record, and therefore as the PSS of the random histor: This process is called time averaging and will be discussed again later on. Subdividing the initial record into smaller records is done in the time domain before windowing, with the result that values in the original data which are made zero or mearly zero by windowing, are not changed with the next step in the analysis. dopronding on the measure of overlaj). The PSis of a simat are therefore (atculated by stepping throug tioe sighal with a record of size T dalculating the smoothed PSD of every satume reoort. The step ite is any
 the smaller step size. The averagn l'孔) of all 1 h, - amplen is then
 process is illustrated in figure ('f).

3. BSTIMATTNG THE BSO FROM ALTO-CORRELATION BTIMATES

This is the classical method which is called the "Blackman Tukey" method afor the men who developerd it. From appondix A the relation between the PSI) and the A('F is mentioned again:

$$
\begin{equation*}
i_{x}(f)=4 \int_{0}^{\infty} R_{x}(\tau) \cos 2 \pi[\tau\} T \tag{8}
\end{equation*}
$$

The equation 10 use with discrete rankion series on a diental computer in order to give the value of the PSi) at frequency f. is given by

(${ }^{\prime}!3$
where the parameters are denined as follows:
$\bar{G}_{x}(f)$ - raw unsmothed estimate of the PSils
h - time interval between sample values
R_{r} - estimate of ACF at lag r
in - maximum lag number
$\mathrm{f}_{\mathrm{c}}=1 / 2 \mathrm{~h}_{1}$ - cut off frequency
The autocorrelation estimate are first to be obtamed for discrete valucs by

$$
\begin{equation*}
\dot{R}_{r}=R_{x}(r h)=\frac{1}{N}{\underset{n=1}{N} x_{n} x_{n+r}, r}^{V_{n}} \tag{10}
\end{equation*}
$$

where r is the lag mmber and $\underset{\text { mat the total number of samples }}{ }$ used. The maximam time displacement of the estimate is given b: $\tau_{\mathrm{m}}=$ nth.

The value of $\dot{i}_{x}(f)$ should only be calculated at discrete frequencies: numbering $m+1$ calculated by

$$
\mathrm{f}=\frac{\mathrm{k} \mathrm{f}_{\mathrm{c}}}{\mathrm{~m}} \quad k=0.1 .2, \ldots . \mathrm{m}
$$

The index k is called the iarmonic number and the PSD is therefore estimated at m/2 independent spectral lines.

Because the data was analyzed wibiz a rectangular window (see paragrapht 2 above) it is necessary to do smoothing so as io climinate the side lobe fluetuations. As said earlier the liaming windew or woighting function is used for this and it is defined by

$$
\begin{aligned}
& W_{h_{r}}=W_{h_{1}}\left(r_{h}\right)=\frac{1}{2}\left\{1+\cos \left[\frac{\pi r}{m i n}\right]\right\}
\end{aligned}
$$

The final smoothed PSD ($\mathrm{ix}_{\mathrm{x}}(\mathrm{f})$ are given for the harmonics. k. hy utilizing (C11), (C0) and (C'10).
4. ESTMATING THE PSD FROM FFT (OMPL'1: ATIOAS
4.1 DIGITAL (ALCTATION OF TH: F.S" FOTRHER TRANSFROM (FFT)

The Discrete Fourier Transform (DFT) is to be explained before discussing the FFT because the FFF is essentially a computer algorithm to calcula a IDFT:

If $x(t)$ is a poriodic function with perion f (as is the assumption for PSI) (alculation) then $x(t)$ can be writen as a Fourier series

$$
\begin{equation*}
x(t)=a_{n}+\sum_{k=1}^{x}\left[a_{k} \cos \left[\frac{2 \pi k t}{r}\right]+b_{k} \sin \left[\frac{2 \pi k t}{T}\right]\right] \tag{Ci.1}
\end{equation*}
$$

where $a_{k}=\frac{2}{T} \int_{0}^{T} x(i) c o s\left[\frac{2 \pi k t}{T}\right] d t$
and $b_{h}=\frac{2}{T} \int_{0}^{T} x(t) \sin \left[\frac{2 \pi k t}{T}\right] d t$

In complex notation (Cli4) can be defined in a single equation by utilizing the liuler relation

$$
\begin{array}{ll}
& c^{\prime x}=\cos x+1 \sin x \\
\therefore & c^{\prime} x=\frac{1}{2}\left(e^{\prime x}+c^{-1 x}\right) \\
\text { andi } & e^{-1 x}=\cos x-1 \sin x \\
\therefore & \sin x=-\frac{1}{2}\left(c^{\prime x}-e^{-1 x}\right)
\end{array}
$$

Therefore :he Fouriel series can be writien as
$x(t)=a_{0}+\frac{1}{2} \sum_{k=1}^{\infty}\left[\left(a_{k}-\left(b_{k}\right) c^{\frac{2 \pi k t}{T}}+\left(a_{k}+i\right)_{k}\right) e^{-i \frac{2 \pi k t}{T}}\right]$
and by making $X_{k}=a_{k}-b_{k}$ the equation becomes

where X_{k}^{*} denotes the complex conjugate of X_{h}. Becatuse it, is $1!\mathrm{e}$ average or offset value of $x(1)$ it is removed seprately and therefore (C16) can be written as

$$
\begin{equation*}
x(t)=\frac{1}{2} \sum_{k=-\infty}^{\infty} x_{k} c^{\frac{i^{2}-k t}{T}} \tag{C17}
\end{equation*}
$$

But if only discrete time values are known. instead of a continuons time function $\mathrm{x}(\mathrm{t})$, they can be represented by the discrete series $\left\{\mathrm{x}_{\mathrm{n}}\right\}, \mathrm{n}=0,1, \ldots, \mathrm{~N}-\mathrm{l}$ where $\mathrm{t}=\mathrm{n} \Delta \mathrm{t}$ and $\mathrm{t}=\mathrm{T} / \mathrm{N}$. If now the discrete form of the coefficients a_{k} and b_{k} are employed to redefine X_{k} then (C17) may be written as
but substituting $T=N \Delta t$ then (C'l®) becomes

$$
\begin{equation*}
X_{k}=\frac{\sum_{n=1}^{n}}{\lambda} x_{n} \mathrm{C}^{-t}\left[\frac{2 \pi k}{N}\right] \tag{'19}
\end{equation*}
$$

with $k=0.1 .2 \ldots .(\times-1)$

This is the formal definition of the DPr and the inverse transformation gives every discrete value of $\left\{x_{\mathrm{n}}\right\}$. as in (C16). if the time is taken to be the discerete points n.

If the values of x_{h} is calculated by (('19) X multiplications of the form $x_{n} \exp \left[-t\left[\frac{2 \pi k n}{N}\right]\right]$ are to be performed for each of \cdots values of x_{k}, bringing the total calculations to \therefore^{2}. The FFT brings this total number of computations down to $N \log (\mathbb{N})$ which is a gain of $99,95 \%$. The FFT succeeds in this because it works by partitioning the full sequency $\left\{x_{11}\right\}$ into a number of shorter sequences. The DFT of the shorter sequences are then calculated and combined together to yield the complete DFT of $\left\{x_{\mathrm{n}}\right\}$. This process is called the "Cooley-Tukey" method after its developers (Cooley \& Tukey. 1964).

The sequence $\left\{x_{n}\right\}, n=0.1,2 \ldots(. . .-1)$ with \mathcal{N} even. is partitioned into two seperate shorter sequences $\left\{Y_{n}\right\}$ and $\left\{Z_{-n}\right\}$. as shown in figure CS where

(20)

The DF'T's of these shorter sequences are given by
with $\mathrm{k}=0,1,2, \ldots(N / 2-1)$
Rearranging the summation in ($\mathrm{Cl8}$) into two seperate sums. similiar to (C21) and (C22), and substituting (C20). the following is obtained
$X_{k}=\frac{1}{N}\left[\sum_{n=0}^{N / 2-1} y_{n c}^{-t}\left[\frac{2 \pi n k}{N / 2}\right]+e^{-t\left[\frac{2 \pi k}{N}\right]} \underset{n=1}{N / 2-1} Z_{n \mathrm{n}} e^{-\{ }\left[\frac{2 \pi n k}{N / 2}\right]\right)$

Comparing (${ }^{\prime} 23$) with (('21) and (${ }^{\prime 2} 22$) it follows that

$$
\begin{equation*}
X_{h}=\frac{1}{z}\left[Y_{k}+c^{\left.-t\left[\frac{2 \pi k^{2}}{N^{2}}\right]_{Z_{k}}\right]}\right] \tag{}
\end{equation*}
$$

for $k=0,1,2, \ldots,(N / 2-1)$, which is the recipe for combining the DF'I's of the two shorter sequences ζ and \% . The partitioning can actually be done even further ly partitioning the two sequences into further sequences and so on, with the only requirement being that the number of samples N in $\left\{x_{n}\right\}$ is a power of 2 .

-n (\%) Partitioning the sequence $\{x\}$ into secquences $\{0\}$ and $\{\mathrm{z}\}$

STING THE PSD

retimes necessary to resort back to an analytical explanation is to follow, because kerping to the discrete notation ?s the discussion unnecessary: it would make no difference 'ual computations, however.
from the definition of the PSD according to the analogue xanalyzer, where the power spectral density is defined as square spectral densiiy, a digital similarity is searched for. be the easiest to work with a random history $x(t)$ which fed by its Fourier series as follows
$(i)=\frac{1}{2} \sum_{k=1}^{x}\left[X_{h} c^{k \omega \omega t}+X_{k} k^{-t k \omega t}\right]$

This is exactly equation (($1 / 16$) without the mean value a_{0} and for simplicity the value $2 \pi / T^{\prime}$ is replaced by w. Here it is clear that the frequency, in IW\%, is given by k / T and therefore w is simply the ratiat frecquency in rad/s. Aceording to (131) the mean square value (MSV) of this history is given by

$$
\begin{equation*}
\psi_{x}^{2}=\frac{1}{T} \int_{0}^{T} x^{2}(t) d t \tag{13!}
\end{equation*}
$$

In orcier to be more correct, T is allowed to approach infinity which implies doing analysis on the complete history and not only a small sample thercof. Substituting (C'25) into (BI) therefore gives

$$
\begin{aligned}
& \Psi_{x}^{2}={\frac{x^{2}}{2}}^{2}=\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \frac{1}{4} \sum_{k=1}^{\infty}\left(x_{k} c^{k \omega t}+\dot{X}_{k} \mathrm{e}^{-k i \omega t}\right)^{2} \mathrm{dt} \\
& =\lim _{T \rightarrow \infty} \frac{1}{4} \sum_{k=1}^{\infty}\left[\frac{X_{k}^{2} e^{\iota 2 k \omega t}}{t 2 k \omega T}+\frac{2 X_{h} \dot{X}_{h}^{*}}{T}+\frac{\dot{X}_{h}^{2} e^{-t 2 k-1}}{-t 2 k \sim T}\right]_{0}^{T}
\end{aligned}
$$

which, when the definite integral is solved and l is matfe to approach infinity, results in the approximation

$$
\begin{equation*}
\bar{x}^{2}=\sum_{k=1}^{\infty} \frac{x_{k} x_{k}^{*}}{2} \tag{}
\end{equation*}
$$

The fact that the MSV is equivalent to the Fourier transform squared, can also easily be found from l'arseval's Theorem (Kaplan p 151, 244) which states that

$$
\int_{-\infty}^{\infty} x_{k}^{2}(t) d t=\int_{-\infty}^{\infty} / x_{k}(f) /^{2} d f
$$

where $X_{k}(f)$ is the Fourier traisform of $x(1)$ and therefore a complex quantity with

$$
/\left.X_{k}(\mathrm{f})\right|^{2}=X_{k} X_{k}^{*}
$$

The prove of this theorem is left to the interested reader.

If the discrete form of equation (B9) is empleyed, the relationship between the MSV and the PSI) is found to be

$$
\begin{equation*}
w_{x}^{2}=\ddot{x}^{2}=\sum_{k=1}^{\infty} \frac{X_{k} \dot{X}_{k}^{*}}{2}={\underset{y}{k=1}}_{\infty}^{\sum_{x}}\left(i_{k}\left(r_{k}\right) \Delta f\right. \tag{}
\end{equation*}
$$

where $\Delta f=1 / \mathrm{I}$. From this relationship it is clear that the power spectral density can be estimated by

$$
\begin{equation*}
\dot{\mathrm{G}}_{\mathrm{x}}\left(\mathrm{f}_{\mathrm{k}}\right)=\frac{\mathrm{X}_{\mathrm{k}} \mathrm{X}_{\mathrm{k}}^{*}}{2 \Delta \mathrm{f}} \tag{c'2s}
\end{equation*}
$$

with units [amplitude ${ }^{2} /$ frequency].
For discrete digital calculations Δf would be the step in frequence to obtain the next discrete spectral line at which to calculate the spectrum value. The value of X_{k} could be obtained by calculating the PFT of samples taken out of a certain finite time history. The length of the samples shoukd aot vary and should be taken as T. The value of Δf is caiculated therefore as $\Delta \hat{f}=1,7$ athi is :he narrowest possible value of the resolution B_{e}.

The PSD for each sampie is calculated from the lFT of that sample and the PSD characterizing the complete history is obtained by averaging the PSI's of all the samples. This is the time averaging process mentioned earlier. This procedure also improves the accuracy of the estimate and makes it consistent. that is the accuracy improve with increase in mumber of samples.

The form of equation (C28) can also be explained by assuming that a random time signal does not consist of a band of continuous frequencies but consists of very discrete frequencies df apari. Observing for simplicity only the k'th harmonic lodged in this time signal, which is also assumed to be periodic. it can be given bey (C14) that

$$
x(t)=a_{k} \cos \omega t+b_{k} \sin \omega t .
$$

the Fourier transform of which is

$$
X(f)=\frac{1}{2}\left[X_{k} \delta\left[f-\frac{k}{T}\right]+X_{k}^{*} \delta\left[f+\frac{k}{T}\right]\right]
$$

The concept of the dirac delta function, also called the unit impulse function \&(f), is introduced here. This function is defined as follows
$\delta(0)=+\infty$ and everywhere alse $\delta(f)=0$
and the density is $\int_{-\infty}^{\infty} k(f)$ ff $=1$
This leads to the following:
$\delta\left(\left(f=f_{k}\right)-f_{k}\right)=\infty$ with $\delta\left(f-f_{k}\right)=0$ everywhere else.
and $\int_{-\infty}^{\infty}\left(f-f_{k}\right) d f=1$
This function is illustrated in figure ('8

Figure CS
As can be seen from (C31) the area under this function is always unity and the Fourier transform for a single periodic wave. like a sinusoidal wave, is always a dirac delta function. If integration over all the frequencies is done. assuming that there exist no other harmonics except the k'th. then the vaiue of the Fourier transform at the k'th frequency is given by

$$
X(f)=\frac{1}{2} \sum_{k=-\infty}^{\infty} X_{k} \delta\left[\begin{array}{l}
\frac{k}{T}-r_{0}
\end{array}\right]
$$

where f_{0} is the fundamental frequency of the single harmonic history $x(t)$. This equation can be rearranged to give

$$
X(f)=\frac{1}{2} X_{k}\left[\sum_{k=-x}^{\infty} \delta\left(\frac{k}{\bar{T}}-f_{u}\right)\right] .
$$

where the term in brackets is equal io 1.

When working with discrete frequence increments. say Δf. the area of the rectagular pulse should be equal to unity: Refering to figure C9 it follows therefore that the height of the pulse should be $17 \Delta \mathrm{f}$. Should Δf becomes infinitely small the height should approach the delta function, therefore

$$
\begin{equation*}
\lim _{\Delta f \rightarrow 0} \frac{1}{\Delta f}=\delta\left(f-f_{6}\right) \tag{C.33}
\end{equation*}
$$

Substituting (C.33) into (C32) gives

$$
\begin{equation*}
X(f)=\frac{X_{k}}{2 \Delta f} \tag{C34}
\end{equation*}
$$

In order to obtain the value of the lourier transform at the frequency k, it is assumed that only the frequency k is lodged in the history. This is also the principle on which the analogue spectral analyzer operates. The delta function is approximated with a function $\frac{\sin \text { bf }}{\pi f}$ having the shape as shown in figure C10, the shape of which is also that of a window function showing the ieakage lobes adjacent to the main peak.

Figure ('10

If a different derivation for the mean square value is made it will be seen how the result (C34) can be used to calculate the PSD) according to (C28). Starting again from (B1)

$$
\begin{equation*}
\Psi_{x}^{2}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x_{k}^{2}(t) d t \tag{B1}
\end{equation*}
$$

Letting the integration be from $-\infty$ to x

$$
\Psi_{x}^{2}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty} x_{k}^{2}(t, T) d t
$$

which, after utilizing Parseval's Theorem as before. can be written as

$$
\begin{align*}
& \Psi_{\mathrm{x}}^{2}=\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{-\infty}^{\infty} / \mathrm{X}_{\mathrm{k}}(\mathrm{f}, \mathrm{~T}) /^{2} \mathrm{~d} \boldsymbol{I} \\
& \therefore \quad \Psi_{x}^{2}(k)=2 \lim _{\mathrm{T} \rightarrow \infty} \stackrel{1}{\mathrm{~T}} \int_{-0}^{\infty} / \chi_{k}\left(\mathrm{i}, \mathrm{~T}^{\prime}\right)^{2} d \mathfrak{} \tag{C3;}
\end{align*}
$$

But it is known that

$$
\Psi_{x}^{2}=E\left[\Psi_{x}^{2}(k)\right]=\int_{0}^{\infty} G_{x}(f) d f
$$

and therefore together with (C35) it results in

$$
\mathrm{G}_{\mathrm{x}}(\mathrm{f})=\underset{\mathrm{T} \rightarrow \infty}{2 \lim _{\mathrm{T}}} \frac{1}{\mathrm{~T}} / \mathrm{X}_{\mathrm{k}}(\mathrm{f}, \mathrm{~T}) /^{2}
$$

which, if the limiting term is ommited. gives an approximation for the PSD

$$
\begin{equation*}
\dot{\mathrm{G}}_{\mathrm{X}}(\mathrm{f})=\frac{2}{\mathrm{~T}} / \mathrm{X}_{\mathrm{k}}(\mathrm{f}) /^{2} \tag{C36}
\end{equation*}
$$

If digital calculation procedures are used, the PSD can be estimated using (C34) and (C36). This is against the background of assuming that the contimous time signal consists of discrete frequencies, which are evaluated as seperate entities as if each one is the only wat present in the signal. Thus combining (C34) and (C36), and remembering lidat $\Delta t=1 / \mathrm{T}$, the $\rho \mathrm{SD}$) is estimated by

$$
\begin{align*}
\dot{C}_{x}(f) & =\frac{2 \Delta f X_{h} \dot{X}_{k}^{*}}{4 \Delta \Gamma^{2}} \\
\therefore \quad \dot{G}_{x}(f) & =\frac{X_{k} \dot{X_{k}}}{2 \Delta f}
\end{align*}
$$

5. SUMMARY

At this stage it should be sensed that all the above dorivations should be summarized. The process of digitally calculating the PSD) is thus presented as follows:
5.1 Determine the highest frequency of interest in the data. Ihis is the cut-off frequency, f_{c}. and all frequencies above this value shoukd be filtered.
5.2 The sampling frequency f_{s}, is now determiner by f_{c} due io the fatt that in order to sampie the highest frequency accurately at least two observations need to be made of the signal in this freguency; Therefore $f_{S} \geq 2 f_{c}$ as explained in appendix H. The time interval between discrete points is therefore $\Delta \mathrm{t}=1 / \mathrm{f}_{\mathrm{s}}$.
5.3 Determine the number of data pe. ts reguired to calculate a fl l l . This should be any value $\underset{\sim}{N}$ where $\times 2 n$ and $n=1.2 .3 . .$. Normally 1024 data points are used.
5.4 The length of the sample record is now fixed by the relationship : $=\mathrm{N} \Delta \mathrm{t}$ and the frequency resoluton. B_{e} is given by $1 / \mathrm{T}$.
5.5 The accuracy of the estimated PSD can now be derermined by equation (C5) which is similar to (Gi10). If it is not possible to employ the time averaging procedure (See appendix G and par 3.1.1. in the main body of this report) because of the limited amount of data available, the error would be 100% but can be improved by smoothing of the PSD in the frequency domain (See appendix G). The error can then be calculated by equation (G11).

Execute the following calculation procedure:
(i) Generate the discrete time series by sampling the various records from the 'infinite' random sequence. (Appendix H). Multiply this disrrete series with the Hanning window function (Appendix C. par. 2).
(iii) ('alculate the FFP's (or more correctly the DF'T'si of the sample records (Appendix ('. par. 4.1).
(iv) Estimate the spectral cooffecients and thereafter calculate the complese spectritil at diserete frequencies according to cquation' (r'2s) for rach sample record. (Appondix ('. par. 1.2).
(v) If more that ome sample exists oblain the awrage pSi) for all the sellople records. ('Tisee averaging. Appendix (i).
(vi) If tame averaging is mot performed. do freguency smoothitg b averaging adjacent spereral values (Appendix (i) it order (i) improve the accuracy of the estimate.

The result of the above procedure is a set of courdinatrs of a
 Plots of typical PSD's are shown in figure ('11. Notice the differences in shape which can be utilized to characterige at rambom waveform simply by its' PSD.

Figure C 10: PSD plots for (a) Sine wive, (b) Sine wave plus randoriı noise,
(c) Narrow band random noise and (d) wide-band random noise

APPENDIX D

THF, SPATLAL, PSi)

1. DFPRLNITION OF THE SPATIAL, PSLD

Although ath the theory derived in the precereding appendices are for cither periodic or quazi-periodic random sequences, which are functions of time, it is actually applicable to any random sequence which is a function of any other variable. For rough surface irregularities as found on roads, runways. off-road terrain. etc. the spatial PSD is defined. Figure D1 shows the height y of surface undulations, above an arbitrary horizontal reference line. pioted as a function of horizontal distance x along the terrain.

Figure 1)!
Instead of varying with time. the heigh is a function of divance and it is clear that long wavelength irregularities correspond to low frequencies in the time dimain, whereas short wavelengths correspond to high frequency disturbances. The time frequency [cycles/second]. which was used so far. is now replaced by the spatial frequency [cycles/unit distance] defined as

$$
\begin{equation*}
\gamma=\frac{1}{\lambda} \tag{DI}
\end{equation*}
$$

where λ is the wavelength of the undulation. The spectral density of the height variable \dot{y} is therefore now a function of the spatial frequency which will be defined in Si units namely. cycles/meter. throughout this work. The PSD of a rough surface is thus called a spatial PSD and is given by G_{y} (7). This quantity is calculated exactly as prescribed in appendix (C. There is however a definite shape which is a characteristic of this PSD and this is shown in figure D 2 .

As can be seen the downward slope is characteristic of the spatial PSI) calculated for surface roughnesses. This is consistent with the observatiou that ligh frequency surface irregularitics have small amplitudes and low freçuency irregularities usually have higher amplitudes. 'This leads to the conclusion that the value of the spatial PSI) falls off with the square of the frequency. Therefore. if a straight line is fitted 10 such earses, as it figure 1)2, (he equation describing this straight line will have the following form

$$
\mathrm{G}_{\mathrm{x}}(\gamma)=\mathrm{K}^{j}{ }^{\mathrm{a}}
$$

Where K is called the roughness constant and a is the value of the slope.

ROUGHNFSS CONSTANT CALCULATION

Confirmation of the validity of equation (1):2) is done in section 3.1.5 of the text and for the discussion that folows here a value of -2 for the slope "a" is assumed. Values obtained by the various investigators inclicate the suitability of this assumption (Sayles \& Thomas 1975).

The constant K is termed the roughness constant and is the value of the PSD at a certain reference frequency: In order to be able to fit a straight line through the PSD log values it is necessary to smooth the curve. This is not to be confused with the windowing or "smoothing" process of the time data before spectral calculations (sec appendix (', paragraph 2). When unsmoothed data is nsed the high frequency values will be biased by statistical noise and experimental errors, and therefore it is suited to smooth the graph by calculating the mean PS! in a range of frepuency bands. This procedure was taken from the ISO/TC 108 and is used in the absence of any other confirmed method. The detail of the smoothing process is contained in the standard but is summarized here for completeness.

The applicable spatia! frequency range for natural surface roughness is devided into octave bandwidths and the mean PSD in the following bands are calculated

- Octave bands from the lowest frequency (not zero) up to a centre frequency of $0.0312 \mathrm{c} / \mathrm{m}$.
- Third-octave bands from the last octave band up to a centre frequency of $0.25 \mathrm{c} / \mathrm{m}$.
- Twelfth-octave bands up to the highest frequency:

The applicable frequencics are shown in table DI taken out of the ISO/TC' 108 standard. For simplicity more or less the same notation is employed.

The mean PSD in each bandwidth ℓ. is calculated as follows

$$
\begin{equation*}
\left.G_{x s}(t)=T_{1}+{ }_{j=n_{1}+1}^{n_{1} H^{-1}} \dot{G}_{x}(j) B_{e}+\left[n_{\left.h^{(}\right)}(t)-\left(n_{1} H^{-l}\right) .5\right) B_{e}\right] G_{x}\left(n_{H}\right) \tag{D3}
\end{equation*}
$$

where $\mathrm{G}_{\mathrm{xs}}(1)=$ smonthed estimated PSD is band 1

$$
\mathrm{T}_{1}=\left[\left(\mathrm{n}_{\mathrm{L}}+0.5\right) \mathrm{B}_{\mathrm{e}}-n_{f}(1)\right] \dot{\mathrm{G}}_{\mathrm{x}}\left(n_{\mathrm{L}}\right)
$$

(See appendix C par 2ıi
$\begin{aligned} & \therefore \quad B_{c}=\frac{1}{\mathrm{~L}} \\ & \text { Therefore } \quad{ }^{B_{e}}=\Delta \mathrm{f}\end{aligned} \quad$ where L , is the length of the record.
$n_{\ell}=$ lower limit of smoothing band t

$$
\mathrm{n}_{\ell}=\text { lower limit of smoothing band } \ell
$$

$$
\mathrm{n}_{\mathrm{h}}=\text { higher limit of smoothing band } t
$$

$$
\mathrm{n}_{\mathrm{HI}}=\operatorname{INT}\left[\frac{\mathrm{n}_{\mathrm{h}}(\imath)}{\mathrm{B}_{\mathrm{e}}}+0.5\right)
$$

$$
{ }^{n_{L}}=\operatorname{INT}\left[\frac{\mathrm{n}_{\ell}(l)}{\mathrm{B}_{\mathrm{e}}}+0.5\right]
$$

$$
\mathrm{B}_{\mathrm{c}}=\text { frecuency resolution. }
$$

Because the valuc of the PSD at the centre frequency of each band is the sole remaining PSD value in that band, it is necessary to interpolate between these points to obtain the smoothed curve for the complete bandwidth of frequencies. This curve is then used for fitting the straight line which would represent the PSD in such a way that it can be used in characterizing the specific surface.

Equation (D2) can now be rewritten as

$$
\begin{equation*}
\mathrm{G}_{\mathrm{x}}(\gamma)=\frac{\mathrm{G}_{\mathrm{x}}\left(\gamma_{0}\right) \gamma^{\mathrm{a}}}{\gamma_{\mathrm{o}}^{\mathrm{a}}} \tag{ID4}
\end{equation*}
$$

where $\hat{\gamma}_{0}$ is a reference frequency, determined by the specific surface measured and also the application of the user. According to the ISO/TC 108 standard this reference frequency is $0.1 \mathrm{c} / \mathrm{m}$ for on-road surfaces and in order to remain compatible with this international draft standard it was decided to accept this reference frequency as applicable to off-road surface. The roughness constant K is therefore calculated by

$$
\begin{equation*}
\mathrm{K}=\frac{\mathrm{G}_{\mathrm{x}}\left(\gamma_{\mathrm{o}}\right)}{\gamma_{\mathrm{o}} \mathrm{a}} \tag{D5}
\end{equation*}
$$

where the valuc of a is -2 , and $\gamma_{0}=0.1 \mathrm{c} / \mathrm{m}$.

TABLE DI: SMOOTIIING AANDWIDTHS USO/TC IOS]

OCTAVE BANDWIDTH

DXP	$1 / \mathrm{m}$	$1 / \mathrm{m}$	$1 / \mathrm{m}$
	$1 / \mathrm{m}$	$1 / \mathrm{m}$	0.0014
-9.020	000020	0.0020	0.0028
-5.000	0.0028	0.0039	0.0055
-7.000	0.0055	0.0078	0.0110
-6.000	0.0110	0.0156	0.0221
-5.000	0.0221	0.0312	0.0442

THIRD OCTAVE BANDWIDTH

ExP	$\frac{\mathrm{m}_{1}}{\mathrm{~m}}$	$\underline{n_{c}}$	1/m
-4.33	0.0442	0.0496	0.0557
-4.000	0.0557	0.0625	0.0702
-3.667	0.0702	0.0787	0.0884
-3.333	0.0884	0.0992	0.1114
-3.000	0.1114	0.1350	0.1403
-2.667	0.1403	0.1575	0.1768
-2.333	0.1768	0.1984	0.2227
-2.000	0.2227	0.2500	0.2806

CENTRE FRQUENCIES AND CUT-OFF FREQUENCIES FOR PSD SMOOTHING EXPRESSED IN SPATIAL FREQUENCY is
at: Lower cut-off frequency
nci rentre frequency
n_{c} - upper cut-off frequency
$\mathrm{n}_{\mathrm{c}}=2 \mathrm{ex}$
Nore:
A small overlap exists betwers the lowest twelfth octave bandwidth and the tighest third octave bandwidth. This overlap maintans the values 0.5.1.2.4 is centre frequences in the iwelft-octave bands. This nukes it convenient to calculate the road characterisation tey Amex B.3) immadiately from the twelfith xtave band smoothine

TWELFTH OCTAVE BANDWIDTH

SKT?	$\frac{m}{1 / m}$	$\frac{1 / \mathrm{m}}{1 / 2}$	1/6
-1.833	0.2768	0.8208	0.203
-1.750	0.2688	0.2973	$0.30 \% 0$
-1.667	0) 1080	0)der	0 13ter
-1.583	0.3242	0.,337	03483
-1.500	0.3435	0.3536	0.3639
-1.417	0.3639	0.3746	03856
-1.338	$01+56$	0.3509	0 ats
-1.550	0.4085	0.8204	0.1328
-1.167	0.4323	0.4454	0.4585
-1.083	0.4585	0.4719	0.4898
-1.009	0.485	0 0.09	dstor
-0.917	0.5147	0.5297	0.5453
-0.833	0.5453	0.5512	0.5777
-0.750	0.5777	0.5346	0.6123
-0.65	0.8180	0.8500	0.695
-0.583	0.6484	0.6674	0.6870
-0.500	0.6870	0.7071	0.7278
-0.417	0.7278	0.7492	0.7711
-0.333	0.7711	0.7937	08.70
-0.250	0.8170	0.8409	0.8655
-0.167	0.8655	0.8909	0.91 \%
0.000	0.9715	1.0000	1.0293
0.083	1.9293	1.9595	1.0905
0.167	1.0905	11225	1.1551
0.250	1.1554	1.1892	12241
0.333	1.2241	1.2599	1.2988
0.417	1.9088	1.3348	13740
0.500	1.3740	1.4142	1.455
0.583	1.4557	1.4983	1.5423
0.667 0.750	1.542	15854	16339
9. 750	+6399	198\%8	1-73t1
0.333	1.7311	1.7818	1.8340
0.917	1.8340	1.8377	1.9431
1.000 1.083	1.9431	20000	20586
1.168	20556	2.1189	1810
1.250	2.3107	2.449 23784	23107
1.373	2.4481	2.5198	2.5935
1.117	2.5937	26697	2.74%
1.500	$2.7+19$	$2 \mathrm{St9} 4$	19113
1.583	2.9113	2.9966	30844
1.667 +150	3.0844	3.1748	3.26\%
+750	3.2678	3.3636	14621
1.833	3.6821	3.9496	J fece
1917	3.6680	3.775	3.8861
3.000	38861	4.0000	11152
2083	4.1172	4.2339	1.3620
-197	+3699	4.1888	figlt
1.250 182	1.6214	1.7568	1.8902
2838	+.8962	5.0397	3.1574
7\%\%	51824	5.3394	25988
2.503	netests	518589	crame
2.667	6.1688	6.939	b) Itass
2.750	6. 315%	6 \% ${ }^{\text {c }}$	5.9241
+313	89843	7325	7 Hen
1417	7xam	7 c 110	7 7108
1000	7 7\%	3,0.ti0	C-371

APPENDIX E

DEIRIVATION OF SPATIAL PSD FROM PSD'S OF TUE TIME DATA

If a vehicle traverses a rough terrain at a certain speed ν, the situation at the whecl can be simplified by a simple spring and damper system as illustrated in figure E1. The translation and therefore acceleration of the mass is a function of the frequency response of the whole system.

Figure E!
Assuming a linear system, the frequency response function is given by

$$
\begin{equation*}
\mathrm{H}(\mathrm{f})=/ \mathrm{H}(\mathrm{f}) / \mathrm{e}^{-t \phi(\mathrm{f})} \tag{B1i}
\end{equation*}
$$

and it is known from (B19) that

$$
\begin{equation*}
\mathrm{G}_{\mathrm{y}_{\mathrm{m}}}(\mathrm{f})=/ \mathrm{H}(\mathrm{f}) /^{2} \mathrm{G}_{\mathrm{y}_{\mathrm{p}}}(\mathrm{f}) \tag{B19}
\end{equation*}
$$

with $G_{y_{m}}(f)$ being the PSD of the time signal $Y_{m}(t)$ and (y_{y}, fi the PSI) of the terrain profile at speed ν. The system gain factor is $/ \Pi(f) /$ as defined $i n$ appendix B.

1. CONSTANT VEHICLE SPEED

If the vehicle forward speed ν, is constant, the relation between the wavelength λ of the terrain profile and the applicable time frequency is the forward speed of the vehicle. The relation between the spatial frequency $?$, [cycles/meter], and the time frequency is therefore given by

$$
\begin{equation*}
\mathrm{f}=\nu \gamma \tag{E1}
\end{equation*}
$$

This also means that a time lag, τ, for calculating the ACF for the time signal , is equivalent to the space lag L. by the following

$$
\begin{equation*}
\tau=\frac{\mathrm{L}}{\nu} \tag{2}
\end{equation*}
$$

The PSD of the time signal is given in analogue form by (B8)

$$
\begin{equation*}
\mathrm{C}_{\mathrm{y}_{\mathrm{p}}}(\mathrm{f}) \quad=2 \int_{-\infty}^{\infty} \mathrm{R}_{y_{\mathrm{p}}}(\tau) \mathrm{e}^{-12 \pi \mathrm{f} \tau} \mathrm{~d} \tau \tag{B8}
\end{equation*}
$$

and the spatial PSI) should therefore be given by

$$
\begin{equation*}
\mathrm{G}_{\mathrm{y}_{\mathrm{p}}}(\gamma)=2 \int_{-\infty}^{\infty} \mathrm{R}_{\mathrm{y}_{\mathrm{p}}}(\mathrm{~L}) \mathrm{e}^{-l \gamma \mathrm{~L}} \mathrm{dL} \tag{E3}
\end{equation*}
$$

Substituting (E2) and (E1) into (B8) gives

$$
\begin{align*}
\mathrm{G}_{\mathrm{y}_{\mathrm{p}}}(\mathrm{f}=\nu \gamma)= & 2 \int_{-\infty}^{\infty} \mathrm{R}_{\mathrm{y}_{\mathrm{p}}}\left[\tau=\frac{\mathrm{L}}{\nu}\right] \mathrm{e}^{-t(\nu \gamma)}\left[\frac{\mathrm{L}}{\nu}\right] \frac{\mathrm{d} \mathrm{~L}}{\nu} \\
& =\frac{2}{\nu} \int_{-\infty}^{\infty} \mathrm{R} \quad(\mathrm{~L}) \mathrm{e}^{-\iota \gamma \mathrm{L}} \mathrm{dL} \tag{E4}
\end{align*}
$$

which is equivalent to writing

$$
\mathrm{G}_{\mathrm{y}_{\mathrm{p}}}(f)=\frac{\mathrm{I}}{\nu} \mathrm{G}_{\mathrm{y}_{\mathrm{p}}}(\gamma)
$$

It is therefore clear that the relation between the spatial and time PSD's is only the vehicle forward sjeed which is applied to the spectral value. The horisontal scalc need only to be adjusted for (E1).

2. ACCELERATIONS OF MASS IS KNOWN

If the acceleration history, with time, of the mass in figure El are available and not the translation with time the spatial PSD can also be obtained by rining the manipulations set out below. Assuming a unit impulse input to the syatem then the following applies. The DFT of the translations is given by (Cli^{i}):

$$
y_{m}(t)=\frac{1}{2}{\underset{k=\gamma_{x}}{\infty} Y_{k} e^{\frac{2 \pi k}{T} t}, ~}_{t}
$$

Differentiate with respect to time results in the speed and acceleration

$$
y_{m}(t)=\frac{1}{2} \sum_{k=-\infty}^{\infty} Y_{k}\left[\frac{\iota 2 \pi k}{T}\right]^{\frac{2 \pi k}{T} t}
$$

and $\quad y_{m}(t)=\frac{1}{2} \sum_{k=-\infty}^{\infty} Y_{k}\left[\frac{\ell 2 \pi k}{T}\right]^{2} e^{\frac{2 \pi k}{T} t}$
which can be rewritten to

$$
\mathrm{y}_{m}(\mathrm{t})=\frac{1}{2} \sum_{k=-\infty}^{\infty}\left[-\left[\frac{2 \pi k}{\mathrm{~T}}\right)^{2} Y_{k}\right] e^{\frac{2 \pi k}{T} i}
$$

The term in brackets is the Fourier cocfficient of the acceleration signal ${ }_{\mathrm{y}}^{\mathrm{m}} \mathrm{(t)}$, therefore

$$
\begin{equation*}
Y_{k_{y_{m}}}=-\left[\frac{2 \pi k}{T}\right]^{2} Y_{k_{y_{m}}}, k=0.1,2, \ldots, \dot{N}-1 \tag{5:8}
\end{equation*}
$$

With the definition of the PSD of the acceleration signal being

$$
\begin{equation*}
\mathrm{G}_{\mathrm{y}_{m}}(\mathrm{f})=\frac{2}{\overline{\mathrm{~T}}} / \mathrm{Y}_{\mathrm{k}_{\mathrm{y}_{\mathrm{m}}}} /{ }^{2} \tag{C36}
\end{equation*}
$$

it can be defined in terms of the translation data PSD by

$$
\mathrm{G}_{\mathrm{y}_{\mathrm{m}}}(\mathrm{f})=\left[\frac{2 \pi \mathrm{k}}{\mathrm{~T}}\right]^{4} \mathrm{G}_{\mathrm{y}_{\mathrm{m}}}(\mathrm{f})
$$

and with $\mathrm{f}=\frac{\mathrm{k}}{\overline{\mathrm{T}}}$ it becomes

$$
\begin{equation*}
G_{y_{m}}(f)=(2 \pi f)^{4} G_{y_{m}}(f) . \tag{E9}
\end{equation*}
$$

The spatial PSD can now be computed by using (B21) and (E5) which results in

$$
\begin{equation*}
\mathrm{G}_{\mathrm{y}_{\mathrm{p}}}(\gamma)=\frac{1}{\pi \Gamma(\Gamma) \Gamma^{2}} \frac{\nu}{(2 \pi \mathrm{f})^{4}} \mathrm{G}_{\mathrm{y}_{\mathrm{m}}}(\mathrm{f}) \tag{E10}
\end{equation*}
$$

APPENDIX F

FATIGUE ANALYSIS THEOIRY

This subject is obviously not to be covered in detail and the interested reader is refered to the list of references espectially Osgood (1982) and Collins (1981). A short summary is however necessary of those aspects of this subject which is applicable to the work discussed in this report.

1. CYCLE COUNTINC METUODS

It is quite simple to count the number of cycles in a constant amplitude load signal but when dealing with a random signal. exhibiting a mean value for most of the time the proress gets a bit more complicated. The counting aigorithms developed for these cases are based on various approaches and assumptions. The mosi accurate ones are accepted to be range pair and rainflow counting. (Figure F1 and F4). As can be seen in figure F4 the rainflow counting technique is based on the hysteris stress strain loops experienced by dynamically loaded material. It establishes the size of an amplitude as well as it's mean value and is stored in a matrix where the number of cycles is stored at a position corresponding to a size and mean value. It can therefore be used in consequent accurate fatigue prediction and lesting.

The output from the range pair counting method is a histogrann depicting amplitude size vs cumulative number of cycles (see figure F1). This format does not include any data of the mean value of a amplitude.

Murphy (1982) used another method to present the rainflow counting data. Accelerations were measured at critical locations and these signals were analyzed with the rainflow method. The data was then stored in the form of a response histogram as shown in figure F : .

The horisontal axis gives the magnitude of the occurence ($2 x$ amplitude) and the vertical axis gives the frequency of occurence of each magnitude per milc. The straight line is obtained by fitting an exponential equation to the data and coefficients of this equation can then be used to characterize the data.

FIGURE F 1

FIGURE F2

FIGURE F3

FIGURE F4

Figure Fry: Respense histogram of Rainflow comita lata

DAMAC: ('ALCLTATION MFHHOLS

It is usmally required to be able to prodict tipe i., igue lif. or. at least ralculate and predict the damage to ans waponent. whin the knowledge of the load cecle it experience. line variust methods available include almust witbout exeeption one or more empirical parameter to be determined by latoratory tesi:- A fres of these methods are listed below:
(a) Fatigue S.N curve and (icodman diagram. fimited to constant amplitude loading (sine wave).
(b) Miacr's Foule for cumulative damase calculation. A load spectrum consisting of sine wave blocks of varving amplisude size is to be lised.
(c) The local Strain Method use celic materiai properties. It accomodates prestrain. sequencer of loading. mean stress effects and emphos: the results of the rainflow cominting technique.
(1) The Nominal Stress Menhod is primarily concermed with low cycie fatigue and accomodates plastic ilew but ignore mean stress effrets.
(e) The Fracturn Mechatics approach is concerened with crack growilh and (ombined with the local train approach it also gives an indication of crack intiation.

130

Local Sirain Methood

The local stress and strains at the crack root are derived by Neubers' Rule from data on smooth specimens and as it is usually difficult to measure at the crack root the strain gauge data giving the nominal strain on the conponent is nised. The assumptien is made that the local damage dome on the component is equal to that done by the same loading imposed on at axial iest sperimemt. Valislity of a linear summation of damage as wod at Nembers' Rule is furthermore assmond.

To include work hardering/softening the cyclic or fatigue properties of the material are incended. but because of stabilization during cyclic loading the stable stress strain response is used instead of monotonic values and is given by

$$
\left.\frac{\Delta t}{2}=\frac{\Delta \sigma}{2 \mathrm{~F}}+\therefore \Delta \sigma / \sigma_{\mathrm{f}}^{\prime}\right)^{1 / 11^{\prime}}
$$

This relationship is illustrated in figure lif. The fatigue properties in equation (Fl) is:

$$
\begin{aligned}
& \frac{\Delta r}{2}=\text { strain amplitute } \\
& \frac{\Delta \sigma}{2}=\text { stress atmplitude } \\
& n^{\prime}=\text { cyclic strain hardening exponent }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\prime} f=\text { fatigue ductility coefficient approximated by iln } \\
& \text { monotonic fracture ductiliz.. 'f } \\
& \sigma_{\rho}=\text { fatigue strength eodficient atproximated by the } \\
& \text { monotonic true fracture strength. } \sigma_{\mathrm{f}} \\
& \mathrm{E}=\text { Modulus of elasticity }
\end{aligned}
$$

This data is readily available for most materials or cat either be obtained ${ }^{r} \mathrm{om}$ finite element analysis. or by extrapolating from existing stain data. If no data is available. iests should be done on specimens and the properties above are then derived from piots of the plastic strain, $(\Delta \rho / \mathrm{p} / 2)$. and stress $(\Delta \sigma / 2)$. versus the reversals to failure. $\log 2 \mathcal{N}_{\mathrm{f}}$ (a cycle is two reversals).

Figure F6: Stable cyclic stress/strain hesteresis behaviour
Additional effects to be catered for are pre-sirain. mean stress and geometry effects. For the grometric discrepancy betwen the laboratory test specimen and the actual component. :ome emperical expressions had been developed and K_{f} is demined at the fatigue notch factor.

$$
\begin{equation*}
\kappa_{r}=1+\frac{K_{i}-1}{1+{ }^{a} / r} \tag{F:2}
\end{equation*}
$$

where K_{t} is the theoretical stress concentration factor. ' a ' is a material constant relating the fatigue life of aotched specimens to that of unnotched specimens and r is the number of reversals.

The important thing, howerer, is to correctly estimate or determine K_{f} so that the nominal stress and strain values can be related to the local values with Neuber's Rule in the form of

$$
\begin{equation*}
\Delta \sigma \Delta r=K_{f}^{2}\left(\Delta s \Delta e^{\prime}\right) \tag{F3}
\end{equation*}
$$

where: $\Delta \sigma \Delta c=$ local si ress/st rain range
and $\Delta s \Delta e=$ nominal stress/sirain range
This relationship can be rewritten with the addition of the modulus of elasticity, F both sides and by taking the square root. it becomes

$$
\begin{equation*}
\sqrt{\Delta \sigma \Delta \kappa \mathrm{E}}=\mathrm{K}_{\mathrm{f}} \sqrt{\Delta s \Delta C \mathrm{~F}} \tag{F4}
\end{equation*}
$$

The a-life function is defined as

$$
\begin{equation*}
\alpha=\sqrt{\sigma_{\mathrm{m}: ~} \times \Delta \subset \mathrm{E}} \tag{F5}
\end{equation*}
$$

Equation (F4) can therefore also be writuen as

$$
\text { acritical }=K_{f^{\left(t_{\text {mominal }}\right.} \quad \text { i }}
$$

because it was found that a is independent of the mean stress.
When the nominal strains are clastic it follows that

$$
\begin{equation*}
\Delta \sigma \Delta r=\left(\mathrm{K}_{\uparrow} \Delta \rho\right)^{2} \mathrm{~F} \tag{6}
\end{equation*}
$$

and because the rainflow counting technique is directly related to the stress strain hysteresis loops experienced by a matcrial (see figure F 4). this counting technique is most suitable in determining the correct stress and strain ranges to be used in equation (F6).

I suitable cumuative damage summation which is usually used is the linear rule of Ainer:

$$
\begin{equation*}
\mathrm{D}=\Sigma \frac{\mathrm{r}}{2 \Gamma_{\mathrm{f}}} \tag{F}
\end{equation*}
$$

where r is the number of reversals and A_{r} is determined from the following empirical relations:

$$
\begin{equation*}
\frac{\Delta a}{2}=\sigma_{f}^{\prime}\left(2 N_{f}\right)^{b} \tag{FS}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\Delta c}{2}=\frac{\sigma_{\mathrm{f}}}{\mathrm{E}}\left(2 \mathrm{~N}_{\mathrm{f}}\right)^{b}+{ }_{c_{\mathrm{f}}}^{\prime}\left(2 \mathrm{~N}_{\mathrm{f}}\right)^{c} \tag{F9}
\end{equation*}
$$

where b and c are slopes of the respective curves and all the other variables are as defined earlier. These two relationships are usuaily defined for constant amplitude. completely reversed cycles and therefore prestrain, mean value, cle. are still to be compensated for.

The linear cumulative damage rule of Niner is usually used because of simplicity and because more complicated ones are stall reluctantly accepted in terms of accuracy: One succesful relationship to calculate fatigue life under random dymanic lodding was developed by (Corten and Dolan (Hofmeister j959. (Collins 19ヶ1):

where
$\mathrm{N}_{\mathrm{g}}=$ Desired answer of (yeles to failure
$N_{1}=$ Cucles to failure for stressing at σ_{1}
$\sigma_{1}=$ Maximum applied stress
$\sigma_{2}=$ Second largest applied stress
$n_{1}=$ Ratio of cycles ${\underset{1}{1}}^{1}$ at σ_{1} to
$\alpha_{i}=$ Ratio of cycles N_{i} at σ_{i} to !
$a=A$ parameter derived from an.$>-\lambda$ diagram for the material
Finally, it is accessary to mention shortly how fatigue damage or predicted life can be presented statistically. The Weibull three parameter distribation has been successfuly applied where remaining life. damage, strength, etc: are of interest. The Weib ill probability density function is given by
$f(N)=\frac{\beta}{N_{a}-N_{0}}\left[\overline{N_{a}-N_{0}}\right]^{, \beta-1} \exp -\left[\frac{\left(N-N_{0}\right)}{\left(N_{a}-N_{0}\right)}\right]^{3}$
where
$\mathrm{N}=$ Random variable namely speciment life. cumulative damage. ctc.
$\mathrm{N}_{0}=$ minimum value for random variable.
$N_{a}=$ characteristic value for random vatiable.
$\beta=$ Weibuli slope or shape parameter.
For various values of β the Weibull distribution has the shapu as depicted in figure li7.

Figure FT: Various Weibull distributions
Fatigue data, be it life cycles or damage values. can be plothed on Weibull probabilaty paper to yield a straight lime from whene the slope, β, the characteristic value. X_{a}. and the minimum value. $X_{\text {, }}$, can be read off directly. The mean and sariance can then be calculated to be

$$
\begin{equation*}
\mu=\dot{N}_{0}+\left(\dot{N}_{a}-N_{0}\right) \Gamma\left(i+\frac{1}{j}\right) \tag{F12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}=\left(\mathrm{N}_{\mathrm{a}}-\mathrm{N}_{0}\right)^{2}\left[\mathrm{C}\left(1+\frac{2}{3}\right)-\mathrm{r}\left(1+\frac{1}{3}\right)^{2}\right] \tag{F13}
\end{equation*}
$$

where I is the gamma function. These values can then be used for comparison or reference values or else the median value of the random variable can be read off at the 50% probability point. The median and mean value are not usually the same because the distribution is skewed to the right. (Figure Fi).

APPENDIX G

STATISTICAL ACCURACY AND IRRRORS

The accuracy of the estimated PSD) can be defined in terms of the mean square crror

$$
\begin{equation*}
\text { ruls crror }=\mathcal{B}\left[\left(\dot{i}_{x}-\left(i_{x}\right)^{2}\right]\right. \tag{G1}
\end{equation*}
$$

Where G_{x} is the estimate of the truc PSD, G_{x}. If this relation is expanded is is found that the mean square error is described by thes surs of the variance for the estimate and the bias of the estimate

$$
\begin{equation*}
\mathrm{E}\left[\left(\dot{\mathrm{G}}_{\mathrm{x}}-\mathrm{G}_{\mathrm{x}}\right)^{2}\right]=\operatorname{Var}\left[\dot{\mathrm{G}}_{\mathrm{x}}\right]+\mathrm{b}^{2}\left[\dot{\mathrm{G}}_{\mathrm{x}}\right] \tag{G2}
\end{equation*}
$$

This equation in turn can be manipulated to give the root mean squate of the error in terms of the standard deviation for the estimate and the biac error

$$
\begin{equation*}
\text { rms error }=\sqrt{\sigma^{2}\left[\mathrm{G}_{x}\right]+\mathrm{b}^{2}\left[\mathrm{G}_{x}\right]} \tag{i3}
\end{equation*}
$$

The standard deviation for the estimate is called the stamdaril brror ar rablum crror and is defined as follows

$$
\sigma\left[\dot{\mathrm{G}}_{\mathrm{x}}\right]=\sqrt{\mathrm{E}\left[\dot{(}_{x_{2}^{2}}\right]-\dot{B}^{2}\left[\dot{\dot{i}_{x}}\right]}
$$

which can be normalized by being exprosed as the froction of the ghatity. which is estimated.

$$
\begin{equation*}
\text { Normalized standard crror: } \quad c_{r}=\frac{\sigma\left[\overline{\mathrm{i}}_{\mathrm{x}}\right]}{\mathrm{i}_{\mathrm{x}}} \tag{C.4}
\end{equation*}
$$

In the same way the bias error can be expressed as a nermalized quantity.

$$
\begin{equation*}
\text { Normalized bias error: } \epsilon_{b}=\frac{b\left[\dot{G}_{x}\right]}{\hat{G}_{x}} \tag{i5}
\end{equation*}
$$

The total error or rather the normalized rms error can therefore be writen at

$$
\begin{align*}
c & =c_{\mathrm{r}}+\mathrm{c}_{\mathrm{b}} \\
& =\frac{\sqrt{\left.\sigma^{2}\left[\mathrm{G}_{x}\right]+\right)^{2}\left[\mathrm{G}_{x}\right]}}{\mathrm{G}_{x}} \\
& =\frac{\sqrt{\mathrm{E}\left[\left(\mathrm{G}_{x}-\mathrm{G}_{x}\right)^{2}\right]}}{G_{x}} \tag{Ci6}
\end{align*}
$$

For spectral density estimates the error can be compiled by defining the two relevant sources seperately and then combining it. Thus the variance of ihe estimate is derived from the definition of the PSD) similar to (C:2S).

$$
\begin{aligned}
\dot{C}_{x}(f) & =\frac{\dot{\Psi}_{x}{ }^{2}(f, \Delta f)}{\Delta f} \\
\text { with } \Delta f=B_{c} \dot{G}_{x}(f) & =\frac{\dot{\Psi}_{x}{ }^{2}\left(f, B_{e}\right)}{B_{e}} \quad \text { (See Appendix D) }
\end{aligned}
$$

Therefore $\mathrm{B}_{\mathrm{e}} \mathrm{G}_{\mathrm{x}}(\mathrm{f})=\Psi_{\mathrm{x}}{ }^{2}\left(f, \mathrm{~B}_{e}\right)$, but because of the relationship defined by (13 i) which is also interpreted as $\mathrm{R}_{\mathrm{x}}(0)=\mathrm{B}_{\mathrm{e}} \mathrm{G}_{\mathrm{x}}(\mathrm{f})$ the variance can be written as

$$
\begin{align*}
& \operatorname{Var}\left[B_{e} \dot{G}_{x}(f)\right] \simeq \frac{B_{e}{ }^{2} G_{x}^{2}(f)}{B_{e} L} \\
& \operatorname{Var}\left[B_{e} \dot{G}_{x}(f)\right] \simeq \frac{G_{x}{ }^{2}(f)}{B_{e} L} \tag{i}
\end{align*}
$$

where L , the record length in meter. replaces the time interval T which was used in Appendix C. The effective bandwidth B_{e} is defined as $\mathrm{B}_{\mathrm{e}}=1 / \mathrm{L}=$. If which is also the frequency resolution.

The bias error can be expressed by

$$
\begin{equation*}
\mathrm{b}\left[\mathrm{G}_{x}(\mathrm{f})\right] \simeq \frac{\mathrm{B}_{e}{ }^{2}}{24} \mathrm{G}_{x}{ }^{\prime \prime}(\mathrm{f}) \tag{is}
\end{equation*}
$$

where $G_{x}^{\prime \prime}(f)$ is the second derivative of $G_{x}(f)$ with respect $t o f$.
The total normalized mean square error of the PSD) estimate $G_{x}(f)$ is given by equation (G6)

$$
\begin{align*}
& t^{2}
\end{align*}=\frac{E\left[\left(\dot{G}_{x}(f)-G_{x}(f)\right)^{2}\right]}{G_{x}^{2}(f)}
$$

Because the bias error is a function of the second derivative of the PSI). (is" (f), it is pronounced by peaks being present in the spectral data. The result is that if higl: bias error exists, high peaks in the data are underestimated. Because no sharp peaks should exist in surface roughness spectral data, the bias error component would be small with respect to the raadom error component. For this reason the bias error are neglected in this work and the complete normalized standard error is thus defined by

$$
\begin{equation*}
c=c_{r}=\frac{1}{\sqrt{\mathrm{~B}_{r} \mathrm{l}}} \tag{G10}
\end{equation*}
$$

But now, if the PSD is estimated from the FFT as explaned in appendix (' paragraph 4, a smoothing operation is required in the data to make the estimate consistent. An estimate obtained through FFT estimates are independent of the sample record length and is thercfore an inconsistent estimate (Bendat \& Piersol 1979) (see also appendix A). Two ways of smoothing can be employed to obtain a consistent estimate, the first is ralled time averaging. The total sample length I, is devided into smailer recolds L^{\prime} and the PSD of each smailer sample is calculated afterwhich averaging of these 1'Si)'s over every fregurncy takes place. The effective bandwidth B_{e} is now defined as $\mathrm{B}_{\mathrm{e}}=1 / \mathrm{L}$. The length of L^{\prime} are determined by the number of data points required to calculate one PF'T of the sample. This number should always be a power of two becanse of the algorithm for the FFT as a method to calcilate the DFT of a waveform (See appendix C, par 4.1). This means that the total length I, should inn hideenough points so that a number of samples L ' conld be extracted from it. 'Sere appendix C , par. 5).

The second way of smoothing the data is by frequency smoothing. This prowes is explained in detail in appendix D , paragraph 2. which is to average the vinie of the PSD at frequencies in matrow bandwidhs. This is usually employed if the sample length cannot be devided into smaller records in order to do time averaging, because the cotal sample length includes just cuough data points for one PSD calculation. Mention is made by authors (Newland. 1054. Bendat \& Piersol, 1971) of a process where zeros can be added to a waveform in order to complete a second, tinird or subsequent sample record so that time averaging can be done. This ought to be done with care and not without a thorough knowledge of the implications involved.

If frequency snoothing is mployed the effective bandwidth B_{e} is differently defined namcly,

$$
\begin{equation*}
B_{t}=\frac{(2 n+1)}{1} \quad n=1,2,3 \ldots\left[\frac{\dot{x}_{x}}{2} 1\right) / 2 \tag{Cil1}
\end{equation*}
$$

where $2_{n}+1$ is the number of adjacent spectral values which are averaged. and N_{x} is the number of discrete sample values in the randon? history in question. The detail of one such averaging or smoothing procedure is contained in appendix D.

If either of these smoothing operations are not performed the standard crror equals 1 and this implies a 100% inaccuracy (Equation (G10)). In the work discussed in this report both techniques were used because it sometimes occured that the measured terrain sample was just not long enough to do more than one FFT calculation on it. Averaging adjacent spectral values had to be done in any case to obtain a smoothed curve for the calculation of the roughness constant. K.

APPENDIX II

DIGITIZING OF CONTINUOUS DAT A AND AMASING

A continuous signal can be stored digitally by observing successive wa'res of this signal at equally spaced intervals apart. This process is illustrated in figure HI.

Figure 11!
Sampling at points too close together will result in an unnec.esary high amount of digitized values. Sampling at points too far apart will lead to confusion between the low and high frequencies in the data. It is imperative therefore to select the correct value of the sample interval 'is'. fhis phemonomat is illustrated in figure il2 where the high frequenes waveform is seen dis the law frequency waveform when digitized. This is called aliasing.

Figure 112
The sampling frequency is defined as $\mathrm{f}_{\mathrm{S}}:=: / \mathrm{ds}$. It is clear from figure H 2 that one cycie is defined when at least two samples are made per cucle. Thus the highest frequency which can be ciefined when sampling at f_{s} is $f_{s} / 2$. This is called the cut-off or Nyuguist frequency and is defined by

$$
\mathrm{f}_{\mathrm{c}}=\frac{1}{2 \mathrm{~d} s}
$$

 hinh freguency is duphicated or fohded ower ds a predictable lower frevorios. This does haw a imfluence on the shape of tha D'Sl) as awo in figure It ia winch shows the !rue spertrim and figure i! 3 i) which show: lion aliased spertrint

 the data to contain any higher frequencios, or wectudly • f, matigitized datit wat

 i.ence the use of anti-aliasing filors bofore digitiang
 deviee described in this requrt. when the proximit! swith semerates pulses at steady intervals 'is' lut wavelengths smaller that 'os' exi-i in the data. It .-
 measurcusent exept when it happens in any went by line crushime effect of the towing sehicles' tures. When the profle is ursieltane the referi of diadoine

APPENDIX I

WTRING DIAGRAM ()F MEASCRRN(; S\}STRM

 BK +WT TWISTED PAIR. Y/GR MEANS Y AND GR STRIPED
\qquad
TILT
PDTENTIDI TITER 8
5
8

PRDFILE MEASURING SYSTEM WIRING DIAGRAM
ZAAYMAN / YOUNG / © SAUER
AUG. 1988
JI $1 \forall$ W3HOS-5NI
v-1 d

TILT

WIRING - LAYロUT
TDWING VEHICLE

> in
\&:

(PPI:Vidx J

 on compuater dise. ('hameis wer allewater ats follon.

$$
\begin{aligned}
& \text { Chan } 1 \Rightarrow \text { pruximity switch pulses } \\
& \text { Chan } 2 \Rightarrow \text { 厽ro pitch angle theta } \\
& \text { Chan } 3 \Rightarrow \text { gyro roll angle beta } \\
& \text { Chan } 4 \Rightarrow \text { wheciset swivel angle alfa }
\end{aligned}
$$

The data is processed by the program Ple(ofll,f: fo vield two arrats trighs am! left track) height values in mm, at equal spaced distances 'ds' man apart. These values are in integer format so that it can be furlher processed by f\%. Editor softwarn with respect to filtering of low frequencios or trend remowal. The data is then converted to real format by the program Fl.o.illilf: i calibration is introduced here to comert the profile heights to 'meter' valu's.

A type 1 data file is thus available wheh comann heghts de Rlinl. :aluse Every value is a measured profile height in meter. accurate io tise :man, shatery

 than 1024 REAL valucs io. s x $12 s$ real w blocks
\& $x 25(6$ integer blocks Ilf(fiks.

The procedure would be as follows:
 analysis functions are also avalable. The PSi) is storei in a fiac which is mamed by the user.
 read ollt of the file which it was stored in abowe and the smonihed PSD) is stored in anoher file. ("se the smothen PSD) to calculate the rombiness constant k. and the sloje. a. in the formula ($;=$ Kin**a. This is done by the same caling program.
3. A bardeopy file can be generated at any stage in the above iwh steps by selecting the appropriate softkey. This hard copy file is then ploted on the plotter by calling HARI)('OPY:

IO ('AiCLLATE PROFILF HEIGHTS FROM ORICHN:AL RAW I)ATA
Calling pregram: PROFiIF:
Load file: PROFILE.LOD
Forms: PROFILEI.FROM

Subroutines: none
TO ('ONUFRT NTECFR FILI: T() RIFAI, FII.l;
Cailing program: Fl(O)AFIIF,

TO ('ALC'LATF PROFILE SP'AIAI, PSI)
Callity program: SPECTRAL.FTN
Load file: SPEC'TRAE, LOD
Forms: SPRCTRALA..FORN
SPl: "lizi 2.FOHAM merm for I file

fuclucle files:
ANAINSISINC
PORDiSI)ATA.IN(:
SPEC'IRCOMY.IN(
Subroutiuss:
ANAIYSIS. FTN Do all spectral analysis am? screen display. This subroutine includes the sulbreutint PIOTSPE(TR in another format as below.

TO CALCULATE SMOCTHFD PSI) AND ROU(GHNESS (ONSTANT
Calling program: SMOOTHPSD.FT\%
Load file: SMOOTHPSID.IOI)
Forms: SMOOTHPSDI.FORM main memu
SMOOTIIPSD2.FORM one file name
SMOOTHPSD3.FORM two file names
SMOOTHPSD3.FORM fitting straightine (o 10
Include files:
ANALYSISINC
FORMSDAT:I.N(
SPECTR (O)PY.IN(
Subroutines: PLOTSPEC IR.FTX
TO PIOT HARDCOPIES ON PIOTETER

Load file: SPECTRCOPY:.OI)
Include files: SPECTR_COPY:NC

punot + [EH ww G. $\angle E$

punot \ddagger [eH ww s己

FIGURE K8

APPFNDIN L
FIKに TESTS ('RUFS

POWER SPECTRAL DENSITY
DIRT ROAD

POWER SPECTRAL DENSITY

figure l. 5
ய/コ/ル*ய

POWER SPECTRAL DENSITY

BELGAIN PAVING

POWER SPECTRAL DENSITY
BELGIAN PAVING

1.E+0 Frequency $[c / m]^{1 . E+1}$

FIGURE L7

ய/コ/ய*い
POWER SPECTRAL DENSITY
ROUGH TRACK

い／コ／ひ＊ル
$m * m / c / m$

	↔	$\stackrel{ }{-}$	＋	$\stackrel{ }{*}$	
	in	m	in	\dot{m}	m
H	1	1	IT	1	1
，	N	¢	01	－	\％

7ヨН月 7

＾」IISNヨG ᄀVHIJヨdS HヨMOd
$m * m / c / m$
017 sanold

หอvaц honox
人LISNBa 7VHLOヨdS yヨMOd
$m * m / c / m$

ITT มanDIA

7asiHM T

APPENDIX M

THE EFPECT OF CURVHS IN THE ROAD ()N THE MEASiRING PROCHS
Refer to figure 5.l. for at diagram of the mensuring ratt.
There are two obvious possibilities:

1. The wheelsed is the inside whed in the curve:
\Rightarrow The wheelset, with the proximity switch muti:nted beside one of it's wheels, will continne to sample at 'ds' distances.
\Rightarrow The other wheel will sample at ionger distances because it is moving at a faster specil.
2. The wheceset is the outsde whed in the curve.

The wheelset will continne to sample at 'dis' distanes.
\Rightarrow The other wheel will sample at shorter distances than 'ds'.
Important parameters in the sampling process are:

1. The wheel diameter - This dimension is also the size of the enatien wavelength to be measured with reasomable accuracy and is theretore 'her lower limit of the wavelength bandwidth.
2. The sampling distance - lt is necessary is sample the smathes wavclength at least iwice so as 10 reduce the aliasing offect.

In the light of these two parameters the wors case of the two possibilitien mentioned above is that where the whelsed is in the inside. The lower limit wavelength of the other wheel is the diancter of that whed, i). The sampling pulse is generated by the wheelset whed ewery 'ds; meter irrespective of the speed at which the wheelset wheels turn. Should the other wheel go at a faster speed then the sampling distance at this whed would increase 10 say diso. If ds_{o} would increase to more than the half of the other wheel diameter. $\mathrm{D} / 2$ then aliasing would occure and the smallest wavelength I) would te measured with error. It is necessary therefore io define the smallest curve radius which woukd be allowed in order to prevent this. The following parameters are defined:

Outer wheel diameter
Outer wheel speed
Wheclset wheel diameter
Wheclset wheei speed
Wheeldiameter ratio

$$
\begin{array}{ll}
\mathrm{D} & {[\mathrm{~m}]} \\
\nu_{0} & {[\mathrm{~m} / \mathrm{s}]} \\
\mathrm{d} & {[\mathrm{~d}]} \\
\nu_{l} & {[\mathrm{~m} / \mathrm{s}]} \\
\mathrm{d} / \mathrm{D}=\mathrm{r}
\end{array}
$$

Sampling distance:
Wheelset whed
Outer wherel

$$
\begin{aligned}
& \left.\mathrm{d} s_{,}=\frac{\pi \mathrm{d}}{\bar{i}} \quad \begin{array}{l}
{[\mathrm{m}]} \\
\mathrm{d} s_{,},
\end{array}\right][\mathrm{m}]
\end{aligned}
$$

Now $\nu_{0}=\frac{\mathrm{R}+\ell^{\ell} / 2}{\mathrm{R}} v$ and $\nu_{1}=\frac{\mathrm{R}-\ell / 2}{\mathrm{R}}$,
Therefore $\frac{\nu_{0}}{\nu_{t}}=\frac{\left(\mathrm{R}+{ }^{\ell} / 2\right)}{\left(\mathrm{R}-{ }^{\ell} / 2\right)}$
The relationship between the sampling distances ds,. and ds, is as explained above and therefore it can be writen that $\mathrm{ds}_{0}=\frac{\mu_{0}}{\mu_{i}}$ ds, where ds, is constant.

$$
\begin{array}{ll}
\therefore & \mathrm{ds}_{\mathrm{G}}=\frac{\nu_{0} \pi}{\nu_{\ell}} \frac{\pi}{7} \mathrm{~d} \\
\Rightarrow & \mathrm{ds}_{0}=\frac{\pi}{7} \frac{(\mathrm{R}+\ell / 2)}{\left(\mathrm{R}-\ell^{\ell} / 2\right)} \mathrm{d}
\end{array}
$$

The value of dso is restricted by the outer wheel diameter and should be less than D/2 as stated before. Therefore

$$
\begin{aligned}
& \frac{\mathrm{D}}{2} \geq \frac{\pi}{7} \frac{(\mathrm{R}+\ell / 2)}{(\mathrm{R}-\ell / 2)} \\
\Rightarrow & \frac{\mathrm{R}}{\ell}>\frac{\left[\frac{2 \pi \mathrm{~d}}{14}+\frac{\mathrm{D}}{2}\right]}{\left.[1)-\frac{2 \pi \mathrm{~d}}{7}\right]}
\end{aligned}
$$

Thus for the typical situation where $d=0.15 \mathrm{~m}$ and I$)=0.25 \mathrm{~m}$ the condition is that the curve radius should be 1.7 times larger that the track widtit f.

This implics a very sharp curse which is malikely io occur in a stretch of selected for measurement. The emolusion is therefore that gradual curves with radii greater than at least two times the track width wonld not influence the measured data notably.

RFFEREWCES

1. Beangard RS, Snodgrass KP. Stornant RI: (!97?)
'A Fiold Porformane I'rediction Techmigue for ligha Truck Stractura! (ombomonis'
Truck and Receration I'roducts ()proations, Ford Motor "umpany Sill: Teclonical Paper 79103.1, 1979.
2. Bekker MC (1962)
'Theory of Land Locomotion'
Ann Arbor, The University of Michigan Press.
3. Bekker MG (1969)
'Introduction to Terrain-Vehicle Svstems'
Ann Arbor, The University of Michigan Press.
4. Bendat JS, Piersol AG (1979)
'Random Data: Analusis and Moasuroment Procerhures'
Wiley-Interscience. 1971.
5. Bruei \& Kjacr
'Technical Review
No 3. 1987, No 4. 1987.
6. Bruel \& Kjacr
'Digital Signal Analvsis : ['sing 1)igital R"̈lors and FF"] lochnomes' Selected Reprints from Techmial Review.
7. Bulman DN (1979)
'Cross Country Vehicle Ride Simulation'
Automotive Engimer, vol 4. 1979.
8. Cebon D, Newland DE
'Artificial Gencration of Road Surface Topography by the Inverse FFI Mcthod'
IAVSD Extensive Summarics.
9. Collins WI (1981)
'Failure of Materials in Mechanical Desigu'
Wiley \& Sons, 1981.
10. Conover JC (1966)
'Simulation of Field Loading in Fatigue Testiug'
SAE Technical Paper 660102.
11. Cote L.J, Kozin F. Bogdanoff JL (196.5)
'Introduction 10 a Statistical Theorv of Land Locomotion - 1'
Journal of Terramechanics. Vol 2 no 2, 1965.
12. Cote L.J, Kozin F, Bugdanoff Jl, (1965)
'Introduction to a Statistical Theory of Land Locomotion - 11 - Ground Roughmess'

Journal of Terramechanics. Vol 2 No 3. 19(i5).
13. ('rolla DA, Maclaurin Bil3, (!986)

Theoretical and Practical Aspects of the Ride Dinamics of Off-road Vehicles - part 2^{\prime}
Journal of Torranechanics, Vol 23 No 1. 19s6.
14. Dodds C.J (1972)
'The Responsc of Vehicle Components io Random Road Surface undulations'
PhD Thesis, University of Glasgow.
15. Dowling NE (1982)
'A Discussion of Methods for Estimating Fatigue life'
SAE Technical Paper S20691.
16. Ewins DJ (1986)
'Modal Testing: Theory and Practice'
Research Studies Press Itd, Hertfordshire, Fngland.
17. Fujimoto Y (1983)
'Spectrum Analusis of Road Roughness for Earthonoving Machinery'
Journal of Terramechanics Vol 20 .No 1. 1983.
18. Gillespic TI) (198:4)
'Developing an Intermational Siandard for Deasuring Road Romghmena'An Interviey
TMTRI Reserarch Review. Vol 14 No (i. 19R.4.
19. Helfmann R
'World-wide Measuremeni of Operational Profiles and their True-time Shangation in the laboratory
Adam oped Ag.
20. Hofmeister WF (1959)

Application of the ('ummintixe Fatigue Damage Theory to Practical problens'
SAE fransactoms. Vol tir. I! Moto.
21. Hunter A(i.\ (19:3),
'Charactarisation of liongh (itumad taing an Accelerometer for Measuremen:

 Roughumes

23. Jackel IIR (1982)
'Design Validation Tcstine'
Ford Motor Company, SiA: Techical Paper s.20tigo.
2. J. Jenkins (iM (196i)
'Ceneral Comsiderations in Analysis of Sunctra'
Technometries Vol 3 No 2. 19661.
25. Kaneshige I (1969)
'Application of the Probability Theory to the Design Proceciure of an
Endurance Test Track Surface'
ISUZU Motors, SAE Technical Paper 690111.
26. Kaplan W (1980)
'Advanced Mathematics for Engincers.'
Addison-Wesley Publishing Company, Iniversity of Michigan.
27. Kozin F, Cote LJ, Bogdanuff JL (1963)
'Statistical Studies of Stable Ground Roughness'
US Army Tank-Automotive Center, Warren. Michigan.
28. Laib L
'Measurement and Mathematical Analvsis of Agriculural Torrain and Rodd Profiles'
Journal of Terramechanics, Vol 14 No 2. 1977.
29. Landgraf RW, La Pointe NR (197.1)
${ }^{\prime}$ Cyclic Stress-Strain Concents Apubied 10 ('ompoment Fatigue life Prediction'
Ford Motor Co. SAE Technical japer $7 \cdot 10230$.
30. Michelberger P, Gedieon J, Keresztes A (1980)
'Problems and Develonment in Commercial Road Vehicle Fatigue ami Testing'
University of Budapest, Hungary
Journal of Vehicle Design, Vol 1 no 5, 1980.
31. Murphy RW (1982)
'Endurance Testing of Heavy Duty Vehicles'
L Ray Buckendal Lecture
SAE Technical Paper 820001.
32. Nelson DV. Fuchs HO
'Predictions of Cumulative Fatigue Damage I'sing Condensed l.ard Histories'
Stanford University, based on SAE Paper 7.500.45.
33. Newland DE (1984)
'An Introduction to Random Vibrations aud Spectral Analwis'
Longman Group Lid, Essex. England.
34. Ohmiya $k(1986)$
'Characteristics of Farm Field Profiles as Soureses of 'ractor Vibration' Journal of Terramechanics vol 23 No $1,1986$.
35. ()sgood C(. (1982)
'Fatiguc Dosign'
Pergamon Press, 1982.
36. Raasch W (1979)
'Photometric Measurement of Terrain Roughness'
Journal of Terramechanics, Vol 16 No 2, 1979.
37. Sayles RS, Thomas TR (1978)
'Surface Tonography as a Non-stationarity Random Process' Nature, Vol 271, 1978.
38. Spangler EB, kiclly WJ (1964)
'GMR Road Profilometer
General Motors Research Laboratories. (iMR-45:2.
39. Smith KV. Stornant RF (1979)
'Cumulative Damage Approach io Durability Rumi. D enigu'
SAE Technical Paper 791033.
40. Strahler AN (1956)
'Quantitative Slone Analysis'
Bulletin of the Geological Society of America Vol tir. 1956.
41. Thomson WT, (1983)
'Theory of Vibration with Apolicatious'
George Allen \& Unwin, London, 2nd Edition.
42. Van Deusen BD
'A Statistical Technigue for the Dynamic Analws of Vehicles Traversing Rough Yielding and Non-vielding Surfaces'
Research Report, Chrysler Motor Corporation Lid.
43. Van Deusen BD, McCarren GE (1967)
'A New Technique for Classifving Random Surface Roughnoss'
Chrysler Corporation, SAE Technical Paper 670032.
44. Van der Merwe CJ, Grant MC
'A Simple Instrument for the Assessment of Road Riding Oualitu' Report RC/8/80, CSIR, 1980.
45. Wendenborn JG (1965/66)

The Irregularities of Farm Roads and Fields as sources of Farm Vehicle Vibrations
Journal of Terramechanics, Vol 3 No 3. 1966.

