
Introduction 
 

Remote sensing is the acquisition of information and the 

identification of Earth-surface features or phenomena using 
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Abstract 
 

Multispectral sensors, along with common and advanced algorithms, have become efficient tools for routine lithological 

discrimination and mineral potential mapping. It is with this paradigm in mind that this paper sought to evaluate and 

discuss the detection and mapping of magnetite on the Eastern Limb of the Bushveld Complex, using high spectral 

resolution multispectral remote sensing imagery and GIS techniques. Despite the wide distribution of magnetite, its 

economic importance, and its potential as an indicator of many important geological processes, not many studies 

had looked at the detection and exploration of magnetite using remote sensing in this region. The Maximum 

Likelihood and Support Vector Machine classification algorithms were assessed for their respective ability to detect 

and map magnetite using the PlanetScope Analytic data. A K-fold cross-validation analysis was used to measure the 

performance of the training as well as the test data. For each classification algorithm, a thematic landcover map was 

created and an error matrix, depicting the user’s and producer’s accuracies as well as kappa statistics, was derived.  

A pairwise comparison test of the image classification algorithms was conducted to determine whether the two 

classification algorithms were significantly different from each other. The Maximum Likelihood Classifier significantly 

outperformed the Support Vector Machine algorithm, achieving an overall classification accuracy of 84.58% and an 

overall kappa value of 0.79. Magnetite was accurately discriminated from the other thematic landcover classes with a 

user’s accuracy of 76.41% and a producer’s accuracy of 88.66%. The overall results of this study illustrated that remote 

sensing techniques are effective instruments for geological mapping and mineral investigation, especially iron oxide 

mineralization in the Eastern Limb of the Bushveld Complex.  

reflected and emitted electromagnetic radiation (from the 

surface-features), measured by sensors on airborne or 

https://doi.org/10.25131/sajg.123.0041


DETECTION OF MAGNETITE IN THE ROOSSENEKAL AREA OF THE EASTERN BUSHVELD COMPLEX, SOUTH AFRICA,  

USING MULTISPECTRAL REMOTE SENSING DATA

574 SOUTH AFRICAN JOURNAL OF GEOLOGY

spaceborne platforms (Drury, 2001; Agar and Coulter, 2007; 

Ngcofe and Van Niekerk, 2016; Joseph and Bamidele, 2018). 

Remote sensing provides quantitative observational parameters 

for large areas and hence, is an essential source of information 

for many geological investigations  (Abrams et al., 1983; Clark 

and Roush, 1984; Chung and Rencz, 1994; Agar and Coulter, 

2007; Rajendran et al., 2007; Li et al., 2016; Manuel et al., 2017; 

Joseph and Bamidele, 2018; Izawa et al., 2019). In the last 

century, remote sensing has been extensively used in many 

geological applications. Most notably in geological mapping, 

mineral exploration, and geotechnical investigations, where it 

saves both time and initial investments, by giving a synoptic 

view of the sites of interest, which are often difficult to obtain 

from field-based observation alone (Ngcofe and Van Niekerk, 

2016; Manuel et al., 2017). 

The advantages and disadvantages of remote sensing in 

mineral exploration have been extensively studied (Cloutis, 

1996; Agar and Coulter, 2007; Gupta, 2017). For similar reasons 

which impede field geology, the application of remote sensing 

for mapping geological features is fraught with both practical 

as well as conceptual difficulties such as: inadequate sensor 

spatial resolutions, the reliance on exposed lithologies for direct 

sensing or outcrops, and the erroneous detection of spectrally 

composite spectral signatures as a result of the mixing of pure 

end-member signatures of vegetation, soil, and regolith 

(Metternicht and Zinck, 2003; Kemp et al., 2005; Wang and  

Qu, 2009; Campbell and Wynne, 2011). Indeed, it is worth 

noting that satellite remote sensing is not a replacement for 

direct fieldwork and laboratory studies; on the contrary, the 

best analysis of the results is reliably acquired from the 

amalgamation of different data and even from analysis at 

different scales and perspectives. Despite satellite remote 

sensing not being a replacement for direct fieldwork and more 

traditional methods, remote sensing can provide additional and 

crucial information for preliminary geological investigations 

(Kemp et al., 2005). Although remote sensing tools have been 

regularly utilized for diverse aspects of geosciences in South 

Africa, with the notable exception of a handful of publications, 

there is a lack of studies regarding its specific use in iron oxide 

exploration, especially in the Bushveld Complex. 

The significant progress made in multispectral remote 

sensing, has led to a vast variety of supervised and unsupervised 

classification algorithms evolving, with each algorithm used with 

the intent of accurately and efficiently detecting and classifying 

lithological features (Schetselaar et al., 2000; Inzana et al., 2003; 

Rowan and Mars, 2003; Kemp et al., 2005; Rowan et al., 2005; 

Fatima et al., 2013; Babakan and Oskouei, 2014; Shirazi et al., 

2018). Supervised classification, which entails the assigning of 

samples of identical pixels to classes that exhibit the same 

tonality, texture, and shape to each class has been met with 

tremendous success in geological mapping. The image 

classification algorithm Maximum Likelihood has wide-ranging 

popularity in its application in remote sensing image 

classification ( Jensen, 2005). The classification algorithm is 

based on a parametric approach that assumes a normal Gaussian 

distribution of the selected classes (Kavzoglu and Reis, 2008; 

Mondal et al., 2012).  

Decision Trees, Fuzzy C-Mean, Support Vector Machines, 

and Artificial Neural Networks are just some of the few  

well-known non-parametric classification algorithms. The 

predominately used non-parametric algorithm is the Support 

Vector Machine classification algorithm. Support Vector 

Machines are a group of supervised classification algorithms that 

compare favourably with more established common remote 

sensing algorithms. Support Vector Machines are considered to 

be heuristic algorithms based on statistical theory, which is used 

for classification and regression problems (Vapnik, 1999; Vapnik, 

2013). The classification accuracy of Support Vector Machines 

may vary depending on the choice of the kernel function and 

its parameters (Kavzoglu and Colkesen, 2009; Yu et al., 2012). 

To further increase the landcover discrimination ability of 

classification algorithms, various high-resolution satellite sensors 

have been launched, with some having the capability of 

generating remote sensing imagery with a spatial resolution of 

4 m or less in multispectral mode. Table 1, briefly lists some 

characteristics of known satellites and sensors predominately 

used for lithological mapping and mineral detection.  

Spatial resolution specifies the dimensions of the satellite 

image pixels, i.e. the higher or finer the spatial resolution, the 

more detail the sensor is able to provide for the ground cover. 

The spatial resolution is contingent on the desired object of 

observation. The spectral resolution determines the number 

of spectral bands reflected radiance that can be collected by 

the sensor or the range of wavelengths a single band covers. 

Table 1. Characteristics of satellite and sensors frequently used for lithological mapping and mineral detection. 

 

Satellite                Sensor           Launch     Spectral resolution                                                                       Spatial        Country of 

                                                                                                                                                                  resolution     ownership 

                                                                                                                                                                       (m) 

 

LANDSAT                TM, MSS           1976       7 visible and 1 thermal IR band; 0.50- 12.5 μm spectral resolution             30 - 80              USA 

SPOT                      HRV                 1986       3 visible and 1 IR band; 0.50- 0.73 μm spectral resolution                        10 - 20              France 

RapidEye                 Jena-Optronik    2008       4 visible and 1 IR band; 0.44- 0.88 μm spectral resolution                        5                      USA 

LANDSAT-7             ETM                1999       8 visible and 1 thermal IR band; 0.45- 12.5 μm spectral resolution             15 - 60              USA 

LANDSAT-8             OLI, TIRS          2013       9 visible, 1 and thermal IR band; 0.433- 12.50 μm spectral resolution         15, 30, 100         USA 

SPOT-5                   HRS, HRG         2002       4 visible and 1 IR band; 0.50- 0.71 μm spectral resolution                        10, 20               France  

TERRA (EOS AM-1)   ASTER              1999       14 visible and 5 IR bands; 0.53- 11.65 μm spectral resolution                    15 - 90              USA 
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The more bands a sensor has, the better equipped it is to 

identify and characterise natural materials (Congalton, 2001; 

Gupta, 2017). 

Radiometric resolution refers how fine a sensor divides up 

the radiance it receives in each band and therefore is an 

indicator of the amount of information is in contained in each 

pixel. The finer the radiometric resolution the greater the 

sensitivity of radiation the sensor is able to detect (Gupta, 

2017). However, owing to the difficulty and exorbitant costs of 

obtaining imagery with an extremely high resolution, it is often 

necessary to identify resolutions which are paramount for a 

project, in a process known as “trade-offs”. Either the spatial 

resolution is high, but the spectral and radiometric resolution 

are low or vice versa. Since the dimensions of the smallest 

magnetite bodies recorded for this study were approximately  

3 m (7.07 m2), a sensor with spatial resolution of 3 m with a fine 

spectral and radiometric resolution to distinguish and detect the 

slightest changes in radiance from magnetite and other 

geological material was required. However, as conveyed in 

Table 1, it is not plausible to have a sensor with high spatial, 

spectral, and radiometric resolution. 

However, for this study, offerings from an American based 

private company provided the some of the best trade-offs for 

the detection of magnetite relative to the sensor in Table 1. 

Planet Team (2018) offers three earth observation products:  

a Basic Scene product, an Ortho Scene product, and an Ortho 

Tile. Planet Team (2018) has a complete constellation of over 

150 satellites imaging the entire surface of the earth every day 

with a spatial resolution of 3 m, a spectral resolution of four  

bands (blue, green, red and NIR), and a radiometric resolution 

of 16-bits, with a position accuracy of less than 10 m residual 

standard error (RSE) and a daily revisit capability. 

This paper sought to evaluate and discuss the detection and 

mapping of magnetite on the Eastern Limb of the Bushveld 

Complex, with the aid of supervised classification algorithms, 

Maximum Likelihood and Support Vector Machines, based on 

awareness of previous successes and performance. Furthermore, 

this paper sought to contrast the overall efficiency of the 

different classification algorithms using PlanetScope imagery. 

The accuracy of each algorithm was assessed using the collected 

reference data. User’s and producer’s accuracy, and errors of 

commission and omission are used as comparative indices of 

measure of the efficiencies of each of the two supervised 

classification algorithms. The user’s accuracy is an indicator of 

how well the training data was accurately distinguished. On  

the other hand, the producer’s accuracy is an indicator of the 

model’s ability to predict itself. 

 
Geological setting 
 
The Rustenburg Layered Suite, from henceforth referred to as 

the Eastern Limb of the Bushveld Complex, consists of a ca.  

7 to 9 km thick basic and ultrabasic cumulate sequence 

outcropping in three limbs (Northern, Eastern, and Western 

Limb) (Eales and Cawthorn, 1996; Fischer et al., 2016). This 

thesis focuses on the Eastern Limb. In each limb, these 

cumulates are divided into: Marginal, Lower, Critical, Main, and 

Upper Zones (Figure 1, Von Gruenewaldt, 1971; SACS, 1980; 

Fischer et al., 2016).  

The area northeast of Roossenekal, is one of the relatively 

few areas where rocks of the Upper Zone are well exposed (Von 

Gruenewaldt, 1971). It is comprised of a  ca. 2 km thick 

stratigraphic layer, which hosts the largest vanadium deposit in 

the world (Willemse, 1969). Furthermore, the Upper Zone is 

renowned for the occurrence of numerous layers of magnetite 

and nelsonite (Tegner et al., 2006). Magnetite is a striking feature 

and a common constituent in virtually all the rock types found 

in the Upper Zone. It constitutes, on average, between 8 to  

10 % by volume of the rocks (Grant, 2015).  

Twenty-five magnetitite layers have been identified in the 

Eastern Limb, with a combined thickness of approximately 20.4 

m (Tegner et al., 2006). The individual magnetitite layers range 

from 0.1 m to 10 m in thickness (Harne and Von Gruenewaldt, 

1995). The lower three magnetitite layers (layers 1 to -3) are 

located below the Main Magnetitite Layer, and Magnetite Layers 

4 to -21 are located above the Main Magnetitite Layer (Figure 2) 

(Maila, 2015). The magnetitite layers extend laterally 

approximately 100 km in the Eastern Limb of the Bushveld 

Complex, illustrating remarkable continuity (Cawthorn, 1994). 

In comparison to the upper contacts of the magnetitite layers, 

which undergo a gradational change to anorthosite, the lower 

contacts of the magnetitite layers and the host rocks and the 

underlying anorthosite are typically sharp (McCarthy et al., 1985; 

Reynolds, 1985). The gradational change from magnetitite to 

anorthosite on the upper contacts of the magnetitite layers could 

be a result of crystal sedimentation.  

The Upper Zone has been divided into sub-zones, namely; 

A, B, and C. The base of the Upper Zone (sub-zone A) has been 

defined by the South African Committee for Stratigraphy (SACs) 

(SACS, 1980; Grant 2015) as being the level where magnetite 

makes its appearance in the succession. Magnetite-bearing 

leucogabbronorite, gabbronorite, gabbro and anorthosite 

dominate this sub-zone. 

The base of sub-zone B is marked by the appearance of iron-

rich olivine and magnetite bearing gabbro (Harne and Von 

Gruenewaldt, 1995). The appearance of cumulus apatite marks 

the base of sub-zone C, which is dominated by magnetite bearing 

gabbro and magnetite bearing olivine and diorite; however, 

olivine-free rocks are present in the vicinity of magnetitite layers 

(Von Gruenewaldt, 1976). Apatite appears cyclically in Upper 

Zone (C) has a sub-rounded texture, with grain sizes varying 

from ca. 0 to 2 mm embedded in Fe-Ti oxides. Throughout the 

Upper Zone, sulphides are few and far between but may occur 

with magnetitite layers (Von Gruenewaldt, 1976). 

 

Data description and pre-processing 
 

The PlanetScope Analytic Ortho Tiles used for the creation of 

the thematic map of the study site and for the detection of 

magnetite were sourced from Planet Explorer (Planet Team, 

2018), for the date 03 December 2018, which had the highest 

image quality and the lowest land and scene cloud cover  

closest to the date of sampling. Furthermore, the choice of the 

PlanetScope Analytic Ortho Tiles was contingent on the 
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vegetation cover on the chosen magnetite sites (explained in  

the next section). The PlanetScope Analytic Ortho Tiles are 

corrected for geometric-, sensor-, and radiometric interferences 

and have been aligned to a cartographic map projection (UTM 

WGS 84). Image mosaicking was applied, using a pixel-based 

mosaicking function, for the ortho-tiles covering the area 

interest. 

 

Field sampling 
 
The regions of interest for the different classes of training and 

validation data used for this study were collected at known or 

previously visited localities on the 19 March 2019 to 23 March 

2019. A variety of localities covering the different types of 

magnetite and landcover types were visited, those which were 

accessible by road and were well exposed (i.e. not covered by 

 

Figure 2. Detailed stratigraphic sequence of the Upper Zone in the Eastern Limb of the Bushveld Complex (Harne and Von Gruenewaldt, 1995;  

Maila, 2015). 
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vegetation and or soil- especially for magnetite) were chosen 

(Figure 3). Each region of interest for each class were sampled 

a minimum of 300 m apart, to avoid spatial autocorrelational. 

Although seasonal vegetation changes may have influenced 

some activities such as farming in the area, fieldwork was merely 

constrained by logistical and scheduling constraints. 

Global Positioning System (GPS) coordinates covering the 

circumference of the region of interest were collected together 

with a brief description of the setting of the land-cover type and 

sample number. The GPS data collected was converted to 

ground reference areas or polygon delineations of the shape  

of each of the areas of interest, using QGIS 2.18 (QGIS 

Development Team, 2015). The ground reference data were 

used to train the algorithms used in ENVI (Exelis Visual 

Information Solutions, 2017) and python (Continuum Analytics, 

2019). Accessibility to certain areas of interest and time were the 

main limitations in attaining a vast array of ground reference 

data. Hence, auxiliary GPS coordinate data were acquired from 

Google Earth (2018) images. The 120 areas of interest were 

combined into seven classes (Agricultural land, Grassland and 

trees, Residential areas, Waterbodies, Mining activities, regolith, 

and magnetite) and divided into training data and validation 

data. The pixel count from the regions of interest were log 

transformed in R 3.3.3 (R Core Team, 2016) (for the data to be 

normally distributed and to meet algorithm assumptions) and 

used in the Maximum Likelihood classification algorithms. 

Untransformed pixel count data was used for Support Vector 

Machines classification algorithm to catalogue the range of 

spectral data in the entire satellite image. 

A K-fold cross-validation analysis (with the data divided into 

ten equal segments i.e. K = 10) was used to measure the 

performance of the training as well as the test data. The seed 

function, which randomizes the values, was set to 123. The  

K-value (K = 10) was chosen based on its ability to empirically 

yield test error rate estimates whose performance was not 

affected by excessively high bias and variance. The K-fold cross-

validation analysis yields more accurate estimates of the test 

error rate than other cross-validation methods, such as Leave 

Out One Cross-validation ( James et al., 2014). The analysis was 

performed in R 3.3.3 (R Core Team, 2016) using the basic 

packages ‘car’ (Fox and Weisberg, 2011), ‘dplyr’ (Wickham et al., 

2015), ‘tidyr’ (Wickham and Henry, 2018), and ‘readr’ (Wickham 

et al., 2017). The analysis was evaluated using the R2, Root Mean 

Squared Error (RSME), and Mean Absolute Error (MAE) statistics, 

which were outputs attained from the K-fold cross-validation 

analysis. 

 

Description of classification algorithms 

 

The Maximum Likelihood classification algorithm has been the 

most frequently used data-driven parametric classifier in remote 

sensing data classification (Foody et al., 1992; Jia et al., 2011). 

The Maximum Likelihood classification algorithm assumes  

that a hyper-ellipsoid decision volume can be utilized in 

approximating the shape of the data clusters. Moreover, for a 

given unidentified pixel, the likelihood of membership in each 

class is premeditated using the mean feature vectors of the 

classes, the covariance matrix and the prior probability (Chien, 

1974). For normally distributed data, the Maximum Likelihood 

classification algorithm provides better predictive accuracy than 

the other parametric classifiers; however, for data that is not 

normally distributed the predictive accuracy may be 

unsatisfactory (ERDAS, 2005; Otukei and Blaschke, 2010). 

The Support Vector Machine supervised classification 

algorithm is a data-driven technique that is based on statistical 

learning theory (Vapnik, 1999), and has been further developed 

in many other classification applications in the past decade. The 

algorithm aims to determine the location of decision boundaries 

that optimizes the greatest separation between the different 

classes (Pal and Mather, 2005; Vapnik, 1999; 2013). Considering 

the example of two classes which are linearly separated, the 

Support Vector Machine selects the linear decision boundary 

that minimizes the generalization error and leaves the greatest 

distance from the hyperplane or margin between the two classes 

(Vapnik, 1999; 2013). The data points closest to the hyperplane 

that are used to measure the distance from the hyperplane or 

margin are termed ‘support vectors’. A Support Vector Machine 

tries to find the hyperplane that maximizes the margin, while 

minimizing the generalization error or the number of 

misclassifications (Pal and Mather, 2005). The choice of kernel 

function of Support Vector Machine classification algorithm 

(linear kernel, polynomial kernel, radial basis function kernel, 

and sigmoid kernel) is integral to its accuracy training and 

classifying remote sensing imagery. In this study, the radial basis 

function kernel was used because the remote sensing data was 

not linearly distributed. 

 

Algorithm evaluation  

 

The assessment of the accuracy and fitness of image 

classification algorithms has become a central component of 

studies that have sought to compare the abilities of the different 

algorithms in discriminating different classes (Congalton et al., 

1983; Congalton, 2001; Congalton and Green, 2002; Mather and 

Koch, 2011; Mather and Tso, 2016). The aim of performing an 

accuracy assessment is to assess the fitness for use of the 

classified data. The classified map is compared to reference 

points where the classes of the landcover have already been 

determined. The accuracy of the classification is then calculated. 

Most often the error matrix technique is used as a method for 

assessing the accuracy and fitness of the thematic map for a 

particular purpose. Accuracy assessments determines the quality 

and accuracy of the information derived from remotely sensed 

data. The accuracy of the thematic map needs to be evaluated 

so that the user is made conscious of any potential problems 

that may be associated with the use of the thematic map. The 

end-product of the image classification process is a landcover 

or thematic map.  

As previously introduced, an error matrix is a matrix that 

expresses the number of pixels or sample units that were 

correctly classified to a particular category in comparison to 

pixels or sample units belonging to another particular category 

being assigned to a different category or class (Congalton and 

Green, 2002). The columns represent the reference data or 
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validation data (normally generated from ground observations 

and measurements and or ancillary remote imagery), and the 

rows represent the data attained from the classification of the 

remotely sensed imagery. The error matrix not only depicts the 

map accuracy but the error as well (Congalton, 2001; Congalton 

and Green, 2002). Commission errors (Type II error) occur when 

pixels or sampling units are included in a category that it does 

not belong to, and omission errors (Type I error) are the 

exclusion of pixels or sampling units from the correct category 

(Congalton and Green, 2002). In addition to clearly depicting 

the errors of commission and omission and overall accuracy, the 

error matrix shows both the producer’s accuracy (the accuracy 

of the map from the map maker’s point of view) and the user’s 

accuracy (the accuracy of the map from the user’s point of view) 

(Story and Congalton, 1986). 

To authenticate the landcover classification performance on 

the PlanetScope Analytic Ortho Tile, the classification algorithms 

were assessed using visual observations (using a reference map) 

and quantitative classification accuracy indicators. The overall 

classification algorithm accuracy, producer’s accuracy, user’s 

accuracy, and Kappa statistics were calculated in ENVI (Exelis 

Visual Information Solutions, 2017) for quantitative classification 

performance analysis. The Kappa statistic is a discrete 

multivariate technique (similar in function as the Chi-square 

analysis), used to evaluate the accuracy of a classification by 

comparing the level of agreement between the training data  

and the reference data (Cohen, 1960). The Kappa coefficient 

(attained from the Kappa statistic) is a value ranging from -1 to 1. 

A Kappa value 1 implies that there is a perfect agreement 

between the training and the reference or validation data and 

values less than 1 are indicative of less than perfect agreement 

(Cohen, 1960; Congalton and Green, 2002). See Cohen (1960); 

Congalton and Green (2002) for full formula sheet. Additionally, 

the significance of each classification algorithm was tested using 

the Z statistics denote by the formula found in Cohen (1960); 

Congalton and Green (2002). 

The classification error matrices were further subjected to a 

pairwise comparison analysis, to determine if any two error 

matrices were significantly dissimilar from one another using the 

formula found in Cohen (1960); Congalton and Green (2002). 

The critical value is 1.96 at a 95% confidence level. Therefore, if 

the Z-value for error matrix is greater than 1.96 the error matrix 

or matrices are significantly better than a random classification 

or significantly dissimilar from each other, respectively 

(Congalton and Green, 2002). 

 
Results  
 
The K-fold cross-validation analysis yielded an R2 value of 0.88 

(an R2 value close to 1 is an indicator a good match between 

the training and test data), an RMSE and an MAE of 5.57 and 

4.56. Both the RMSE and MAE values do not have absolute good 

or bad thresholds and are dependent on the size of the data, 

but a general rule of thumb is that smaller values are better.  

The training data was used in the classification of satellite 

imagery, using a common and an advanced algorithm, of the 

Eastern Limb of the Bushveld Complex and to detect and map 

magnetite. The test data was used to evaluate the performance 

of the classification. Tables 2 and 3 give a summary of the 

commission and omission errors and producers’ and users’ error 

for the Maximum Likelihood and Support Vector Machine 

classification algorithm. Figures 3 and 4 convey the landcover 

classification of the seven classes using the two different 

algorithms. Each is depicted in a different colour. Magnetite is 

depicted in navy blue in all the classification algorithms. 

The Maximum Likelihood classification algorithm, the 

algorithm that had the highest accuracy (Table 2 and Figure 4), 

conveyed a clearer distinction between classes compared to  

the mixture of classes noted in Figure 4. Irrespective of the 

Maximum Likelihood classification algorithm illustrating better 

class categorization, a large proportion of the mining activity 

pixels were incorrectly classified as agricultural land (Table 2). 

However, this observation was not merely limited to the 

Maximum Likelihood classification algorithm, as similar 

observations were noted with the Support Vector Machine 

classification algorithm (Table 3). The commission errors for 

mining activities (Table 2 and 3) were higher in both 

 

 

Table 2. Summary of commission and omission error and producer’s 

and user’s error for the Maximum Likelihood classification algorithm.  

The overall accuracy was 84.58%, the Kappa coefficient was 0.79 and 

the Z-value was 731.16. 

 

Class                  Commission  Omission  Producer’s    User’s  

                                (%)             (%)        accuracy   accuracy 

                                                                   (%)            (%) 

 

Agricultural land          18.09            6.65          93.35          81.91 

Grassland and trees        6.13            3.8            96.2           93.87 

Magnetite                    11.34          23.59          76.41          88.66 

Mining activities           54.54          91.98           8.02          45.46 

Regolith                       2.86            7.1            92.9           97.14 

Residential areas          88.28            4.75          95.25          11.72 

Waterbody                    0                1.71          98.29        100 

 

 

Table 3. Summary of commission and omission error and producer’s 

and user’s error for the Support Vector Machine learning algorithm.  

The overall accuracy was 80.89%, the Kappa coefficient was 0.73 and 

the Z-value was 606.60.  

 

Class                  Commission  Omission  Producer’s    User’s  

                                (%)             (%)        accuracy   accuracy 

                                                                   (%)            (%) 

 

Agricultural land          12.51            2.8            97.2           75.49 

Grassland and trees      12.08            0            100              87.92 

Magnetite                    31.09           83.88          16.12          68.91 

Mining activities           98.99           99.66            0.34           1.01 

Regolith                       8.84           21.61          78.39          91.16 

Residential areas            0               27.79          72.21        100 

Waterbody                    0                1.33          98.67        100 
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classification algorithms, indicating misclassifications for the 

class. This is an indication of the similarity in the spectral 

reflectance of mining activities and agricultural land. Agricultural 

land, water bodies, and grassland and trees were seldom 

misclassified in the thematic maps. Statistical analyses revealed 

that the two classification algorithms performed better than a 

random classification, with each classification attaining a Z-value 

significantly higher than 1.96 at a 95% confidence level.  

A pairwise comparison between the two algorithms revealed 

that the Maximum Likelihood classification algorithm was 

significantly different to the Support Vector Machine 

classification algorithm. The Maximum Likelihood classification 

 

Figure 4. Classification of study site using Maximum Likelihood classification algorithm. Different colours indicate different land class features. 

Magnetite is shown in navy blue. 



trees, as is evident from Table 3 and Figure 5. The main difference 

between the Maximum Likelihood (Figure 4) and Support Vector 

Machine (Figure 5) classification landcover map is the large 

proportion of the landscape that is classified as regolith and 

mining activities, which almost completely envelops areas that 

are agricultural land, grassland and trees, and residential areas, in 

the Support Vector Machine classification. Subsequently, the 

Support Vector classification algorithm has more errors of 

commission and errors of omission than the Maximum Likelihood 

classification algorithm, evident from Table 3. 

 

Discussion 
 
Although multispectral and hyperspectral imagery are two 

widely used components of remote sensing for lithological 

discrimination and classification, obtaining appropriate 

hyperspectral imagery for mineral and geological mapping is 

difficult because of the high costs and complexity of the 

treatment associated with hyperspectral remote sensing (Ge 

et  al., 2018). However, the combination of high spatial 

multispectral remote sensing data (such as PlanetScope) with 

reliable textural and reference data is very effective in achieving 

good results. 

This study aims at mapping magnetite potential areas  

using common and advanced classification algorithms on the 

Upper Zone of the Eastern Limb of the Bushveld Complex and 

to compare and contrast the performance of a common 

classification algorithm (Maximum Likelihood) over an advanced 

classification algorithms (Support Vector Machine). Of the two 

classification algorithms outputs evaluated in this study, the 

Maximum Likelihood classification algorithm performed best in 

the overall prediction accuracy of all seven classes (with an 

overall accuracy of 84.58%) and was the algorithm most fit for 

the detection and mapping of magnetite (with a producer’s 

accuracy of 76.41% and a user’s accuracy of 88.66%) in the 

Eastern Limb of the Bushveld Complex. The result was not in 

accordance to the expectations of the study, and additionally 

this result was in contrast to other studies that had compared 

the performance of common and advance classification 

algorithms (Pal and Mather, 2005; Joevivek and Chandrasekar, 

2010; Otukei and Blaschke, 2010; Yu et al., 2012; Omeer et al., 

2018). Szuster et al (2011), found the Support Vector Machine 

classification algorithm to be the best classification algorithm for 

separating man-made infrastructures from those of nature, 

irrespective of the similarity in spectral signatures. 

Though the Support Vector Machine did not yield acceptably 

accurate results for the detection of magnetite, its overall 

accuracies were unexpectedly high. There are two plausible 

factors that may have accounted for the high overall accuracy 

levels in Support Vector Machines classification algorithm in this 

study. First, and the most noteworthy, is the prevalence of 

extensive and easily differentiable classes (e.g. grassland trees, 

agricultural area, and waterbodies), which indubitably 

contributed to the consistently high overall accuracies (see  

Table S1 and S2.) (Supplementary data files are archived  

in the South African Journal of Geology repository 

(https://doi.org/10.25131/sajg.123.0041.sup-mat)). The spatial 

limitation of the other classes relative to the aforementioned 

classes with a greater spatial capacity (i.e. grassland and trees, 

agricultural areas, and waterbodies) contributed to a high overall 

performance values or scores by curbing both the amount and 

spectral diversity of the pixels belonging to the spatially 

constrained classes (e.g. mining areas, residential areas and 

magnetite). The later mentioned factor likely led to the 

overfitting of certain other classes noted in Figure 4. Lastly, 

single developed classes were used in this study, which 

encompassed some landcover pixels being categorized as 

residential areas, despite including roads and other non-

residential buildings.  

The Maximum Likelihood and the Support Vector Machine 

classification algorithms both attained a Kappa value above 70%, 

with an overall accuracy of over 80%, which is a result akin to 

that found by studies conducted by He et al. (2015); Karan and 

Samadder (2016); Moeletsi and Tesfamichael (2018); Mondal 

et al. (2020). However, it must be noted that the overall accuracy 

of the Support Vector Machine classification algorithm was 

relatively high due to the fact that the majority of non-geological 

classes with the highest number of pixels were the pixels that 

had the highest accuracies (e.g. agricultural land, water bodies, 

regolith, and grassland trees). Since the overall accuracy formula 

is based on the number of pixels of each class, classes with a 

high pixel count are likely to positively skew the overall 

accuracy. In fact, with the high pixel count classes removed, the 

Support Vector Machine classification algorithm merely had a 

meagre 20.95% overall accuracy. In comparison, with the 

removal of the non-geological classes, the Maximum Likelihood 

classification algorithm attained an overall accuracy of 64.35%. 

Despite prior successes of the Support Vector classification 

algorithm in lithological mapping, the Support Vector 

classification algorithm was not able to accurately detect 

exposed magnetite bodies. This may have been in part due to 

the spectral resolution of the imagery, the heterogeneity of the 

chemical mineralogical composition of the mining areas at the 

sub-pixel level, and algorithm high bias (when algorithms are 

underfitted, i.e. not having enough features for the target 

outputs). However, high bias algorithms do not benefit from 

more training data, but, they may benefit from more features or 

training data. The heterogeneity of chemical composition may 

have affected the resultant spectral purity of magnetite through 

the intimate or non-linear spectral combination of the spectra 

of end-members (Gupta, 2017). Other mineral or oxides (such 

hematite and limonite) found in association with weathered 

magnetite in magnetite bodies, may have contaminated the 

spectral response of magnetite causing it be correlated with  

the absorption bands of hematite and limonite.  

As previously found by Hunt (1971), the increase in the size 

of magnetite grains equates to an increase in the reflectance of 

incident photons of light and absorption features. The different 

spectral signature of magnetite, owing to an increase in spectral 

reflectance may have led to some magnetite bodies being 

misclassified. Regardless of the rigorous pre-processing, the 

above-mentioned factors could have very well affected the 

spectral responses of the magnetite bodies. The aforementioned 

shortcomings are a result of using a sensor with four bands, 
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algorithm producer’s accuracy was higher than the Support 

Vector Machine classification algorithm for magnetite, with a 

prediction percentage of 76.41. The Support Vector Machine 

classification algorithm had a prediction percentage of 16.12. 

Additionally, the Maximum Likelihood classification algorithm 

was able to accurately distinguish magnetite 88.66% of the time, 

whereas the Support Vector Machine classification algorithm 

could do so 68.91% of the time.  

The Support Vector classification algorithm was accurate in 

classifying most waterbodies, residential areas, and grassland and 

 

Figure 5. Classification of study site using Support Vector Machine learning algorithm. Different colours indicate different land class features. Magnetite 

is shown in navy blue.  
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which has broad wavelength ranges and therefore makes it 

difficult to distinguish the finer absorption characteristics of 

magnetite bodies. However, this was due to the trade-offs 

between spatial, spectral, and radiometric resolution of the 

sensor that was chosen and was a better fit for this undertaking. 

Hence, a sensor with a high or finer spectral resolution is 

essential when absorption lines of various geological features 

are located in the same spectral range with other geological 

features that interfere with each other. Using sensors with finer 

spectral resolutions (sensors with narrower band widths) thus 

creates the opportunity to identify some materials by 

their absorption-band characteristics (i.e. accurately discriminate 

some of the features that make up the remote sensing signal) 

and attenuate the interference.  

The overall high accuracy classification of the Maximum 

Likelihood classification algorithm in this study suggests the 

classification algorithm may be advantageous in the detection 

and mapping of exposed magnetite bodies and that remote 

sensing methods are effective tools for geological mapping and 

mineral exploration, especially in iron oxides (despite the other 

geological features obscuring the spectral reflectance of the  

focal substrate). Indeed, full knowledge of the performance 

differences of each classification algorithm is crucial for the 

choice of a classification algorithm for a particular scene and 

application. As with many remote sensing applications, the 

greater onus should be placed on the precision and accuracy of 

the dataset than the classification algorithms used for analysis. 

While the choice of classification algorithm will undoubtedly 

influence the success of mineral detection and mapping, the 

accessibility, quality, and processing of geology data will have 

an even greater stronger influence and impact on the results. 

This includes the size of the study area and the spatial and 

spectral resolution of the data. In essence, the choice of the most 

appropriate algorithm should be based on the characteristics of 

the data, as well as, the research objectives.  

 
Conclusion 
 
The present study focused on the remote sensing capability and 

Maximum Likelihood and Support Vector Machine classification 

algorithms in mapping the occurrence of magnetite in the 

Eastern Limb of the Bushveld Complex. This study revealed that 

the occurrence of magnetite could be successfully detected 

using the common traditional classification algorithms such as 

the Maximum Likelihood classifier. The results attained from the 

Maximum Likelihood classification algorithm indicated that the 

producer’s and a user’s accuracies were 76.41% and 88.66%, 

respectively. The computed kappa coefficient was 0.79, 

illustrating a high categorical and overall accuracy. The thematic 

map derived from the Maximum Likelihood classification 

algorithm had an overall accuracy of 84.58%. Overall, this study 

suggests the relevance and efficiency of using the common 

traditional classification algorithm – Maximum Likelihood over 

the advanced classification algorithms – Support Vector Machine, 

especially for studies with relatively small datasets. And despite 

the accuracy of common traditional classification algorithms and 

advanced classification algorithms, it is worth noting that remote 

sensing should not solely be used as decision-making tools or 

replacements for direct fieldwork but should be amalgamated 

with different datasets and the knowledge of a specialist. 
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