
Business Process Re-engineering and Agile Software
Development: Applying the Story-Card Method

Elijah Djan1, Marné de Vries2[0000-0002-1715-0430]
1,2 University of Pretoria, Pretoria, South Africa

1 djanic327@gmail.com
2 Marne.devries@up.ac.za

Abstract. Enterprise designers need to continuously re-design their enterprise,
re-evaluating the technologies that are available to digitize their operations.
Although light-weight agile software development approaches are favored by
software development service providers, additional requirements elicitation
practices should be incorporated when scaling factors apply, since design team
members need to have a shared understanding of the operating context and
high-level requirements. Research indicated that the organization construction
diagram (OCD) could be useful to create a shared context for enterprise opera-
tion, linking detailed functional requirements to this shared context during
software development. Although the OCD is concise, its associated concepts
are abstract and an additional story-card method (SCM) is needed to transform
existing enterprise implementations into an OCD. Since additional evaluation of
the SCM was required, this study focused on a real-world demonstration of the
SCM at a Fintech company where an agile software development approach is
applied. The results indicate that the SCM is useful when incorporated within
an agile software development approach.

Keywords: Enterprise engineering, story-card method, DEMO, agile software
development.

1 Introduction

Within a context of volatility, uncertainty, complexity and ambiguity, enterprise de-
signers need to continuously re-design the enterprise, re-evaluating the technologies
that are available to digitize their operations. In accordance with the agile paradigm
for information system design, enterprises need iterative design approaches to
(re-)design their systems incrementally [1]. During information systems design, agile
methods and practices may have to be tailored for contexts where scaling factors
apply, especially regarding the elicitation and management of requirements [2,3].

Since additional requirements elicitation practices should be incorporated when
scaling factors apply [4], the organization construction diagram (OCD), associated
with the design and engineering methodology for organizations (DEMO), could be
used to represent a blue print of enterprise operation, creating a foundation for re-
quirements elicitation and tracking during information systems development [5].
Research indicated that an additional story-card method (SCM) was needed to intro-

2

duce the abstract OCD concepts to agile development stakeholders [5]. Although
previous research experimented with the SCM, the method was applied in isolation,
i.e. not within a real-world agile software development context. The main contribu-
tion of this study is to demonstrate how the SCM is used within an agile software
development approach to solve existing deficiencies at a Fintech company.

Next, we briefly introduce the remaining sections of the article. Section 1 elabo-
rates on the OCD, SCM and other methods and practices that were used at the Fintech
company. Section 2 introduces Framework for Evaluation in Design Science (FEDS)
evaluation design process that guided further evaluation of the SCM within a real-
world context. In section 3 we present a demonstration of the SCM and in section 4
we present solution implementation- and evaluation results. Finally, we discuss our
findings in section 5 and conclude in section 6.

1.1 The SCM to Compile an OCD

The SCM incorporates collaborative and easy-to-use technologies, i.e. sticky notes as
story cards to facilitate collaboration and transformation of existing enterprise im-
plementations (i.e. a concrete world) into more abstract (and concise) concepts of the
OCD [5]. The 5 inputs and 10 method steps of the SCM is useful to transform a sub-
set of implemented processes into a consolidated view of enterprise operations, de-
picted by the OCD [5]. We briefly introduce the OCD, i.e. the main deliverable of the
SCM.

Dietz (in Perinforma [6]) acknowledges that a user’s needs for information system
support starts with an understanding of their day-to-day operations. He presents four
ontological aspect models that are coherent, comprehensive, consistent, and concise
and that are useful to represent the essence of enterprise operation [7]. The organiza-
tion construction model (OCM) is the most essential model and consists of three rep-
resentations, the organization construction diagram (OCD) and the transaction prod-
uct table (TPT) and the bank content table (BCT) [6,8].

The OCD provides a graphical representation of actor roles (implemented by hu-
man beings) that are involved in a number of transactions. Each transaction is an in-
stance of a particular transaction kind (TK), and every TK incorporates a single pro-
duction act and multiple coordination acts. Dietz [6,8] indicates that the coordination
acts and production act are arranged according to a pattern, called the complete trans-
action pattern. For every TK, two actor roles are involved, one is the initiating actor
role and the other one is the executing actor role. Although the executing actor role is
responsible to execute the production act, both actor roles perform several coordina-
tion acts.

We explain some of these concepts, referring to the OCD that is depicted in Fig. 1.
Every OCD represents some essential operations for a particular scope-of-interest.
Fig. 1 indicates that the benefits department was the scope-of-interest. Furthermore,
multiple actor roles may be involved (indicated as rectangles), acting as an initiator
(when linked to a solid line) or an executor (when linked to a solid line that ends in a
filled diamond). Actor roles interact with one another via several transaction kinds
(TKs). Fig. 1 includes two TKs, namely T01 (claim evaluation) and T02 (claim pay-
ment). The diamond-disc representation of the TK indicates that every TK consists of

3

a production act/fact (represented by a diamond) and multiple coordination acts/facts
(represented by a disc). The actor roles are either classified as elementary or compo-
site. An elementary actor role (indicated by a white rectangle) is the executor of only
one TK, as exemplified by the evaluator in Fig. 1. A composite actor role, indicated
by a grey-shaded rectangle, is the executor of more than one TK. By default, actor
roles that are outside the scope-of-interest, are modelled as composite actor roles [6].
Therefore, Fig. 1 indicates that the broker and finance department are composite actor
roles. The actor role within the scope-of-interest (i.e. the evaluator) may need to have
access to production facts and coordination facts that are produced outside the scope-
of-interest. Fig. 1 indicates that the evaluator needs information access (indicated
with a dotted line) to an in-house software system facts, i.e. production and coordina-
tion facts that are produced outside the scope-of-interest.

Fig. 1. An OCD for the benefits department

The OCD provides a consolidated view of enterprise operation. Every TK on the
OCD follows a transaction pattern. Fig. 2 depicts the complete pattern of behavior
that exists between an initiator and an executor when they perform a TK. Thus, the
pattern depicted in Fig. 2 applies to T01 with the initiator being the broker and the
executor being the evaluator. Yet, the same pattern is also followed for T02 where the
initiator is the evaluator and the executor is the finance department.

Dietz [6] indicates that a TK may be classified according to three categories. A TK
is original when the associated production act has the intent of creating an origi-
nal/new fact. A TK is classified as informational if its associated production act mere-
ly recalls/interprets a previously-created original production facts. Lastly, a TK is
documental when the associated production fact simply trans-
mits/copies/retrieves/destroys the original fact. Usually, the OCD only represents TKs
that are of the original sort [6], hence extracting only the essence of enterprise opera-
tion.
The OCD presented in Fig. 1 is the main deliverable of the SCM. Yet, the SCM starts
by identifying existing operational activities that are performed in a particular se-

4

quence at an enterprise. Operational activities include TKs of all sorts, i.e. original,
informational and documental. The SCM facilitates the process of analyzing the im-
plemented operational activities, re-structuring operational knowledge into a consoli-
dated OCD [5].

Fig. 2. The complete transaction pattern, from [8]

Once the SCM has been applied, every operational activity: (1) is traceable to a par-
ticular TK on the OCD, and (2) can be considered for semi-automation, transforming
the activity into a user story [5].

A user story is a “general-purpose agile substitute for what traditionally has been
referred to as software requirements” [3]. The next section presents a template to
elaborate on the software requirements associated with a user story.

1.2 User Story Cards and the INSERT criteria

Patel & Ramachandran [9] provided a template, called a user story card, that is based
on the INSERT validation criteria. The INSERT criteria ensures that every require-
ment is Independent, Negotiable, Small-enough-to-fit-into-iteration; Estimable, Rep-
resentative-of-user-functionality and Testable. Applying the INSERT criteria, the
analyst has to complete ten fields per story card: (1) story card number, (2) project

5

name, (3) estimation, (4) story name, (5) date, (6) story, (7), acceptance test, (8) note,
(9) risk, and (10) points to consider [9]. Later, in section 3.2, we also recommend that
another field is added on the user story card, tracing each user story back to a TK on
the OCD.

2 Research Methodology

The study applied the Framework for Evaluation in Design Science (FEDS) evalua-
tion design process [10], applying the four-step process as follows:

Explicate the goals of the evaluation: The main purpose of evaluating the SCM is
to determine how well it achieves its expected environmental utility, i.e. using the
OCD within an agile system development context within a scaled context to manage
and trace requirements.

Choose the evaluation strategy: In terms of the FEDS evaluation strategies, evalua-
tion of the SCM requires iterative episodes of formative evaluation that follows the
naturalistic paradigm, since the major risk of the SCM is social or user oriented. Ac-
cording to [10] naturalistic evaluation explores the performance of a solution technol-
ogy in its real environment, e.g. within a real-world enterprise.

Determine the properties to evaluate: As stated in [5], the SCM’s utility could be
evaluated in terms of ability to address requirements elicitation criteria for agile de-
velopment within scaled contexts. One of the utility properties, is the usefulness of the
SCM within a real-world context.

Design the individual evaluation episode(s): The first evaluation episode involved
21 participants to experiment with the SCM, providing survey feedback in terms of its
utility [5]. The positive feedback obtained in [5] gave the impetus to experiment fur-
ther on the usefulness of the SCM within a real-world agile software development
context as a second evaluation episode. The second evaluation episode was conducted
and presented in this article. We used user acceptance tests and structured interviews
to evaluate the usefulness of the SCM and to evaluate the newly-developed software
solution and its ability to address some of the deficiencies evident at the enterprise. In
addition, the participant-observer, experimenting with the SCM, provided some re-
flections on using and extending the SCM.

Additional evaluation episodes are needed to experiment with the SCM within dif-
ferent scaled agile contexts, as indicated in section 6.

3 Story Card Method Demonstration

This section demonstrates the use of the SCM as part of a software development pro-
ject. Section 3.1 provides background on the company and its problem context. Sec-
tion 3.2 presents the agile software development approach that incorporated the SCM
during the early phases of development, whereas section 3.3 presents an application
of the agile software development approach.

6

3.1 The Enterprise Context

A software development project was initiated by one of South Africa’s leading
Fintech companies of which the benefits department interacts with various brokers
that claim on behalf of claimants. The problem is that the benefits department used
MS Excel to track claim evaluations. Since employees used the desktop version of
Excel, worksheets could not be accessed simultaneously by the employees and the
worksheets contained duplicate entry fields. Rapid growth in business created an ur-
gency for digitizing all manual operations, reducing the lead time for claim payments
to beneficiaries, and reducing the number of erroneous claim payments. Even though
the benefits department used MS Excel, other departments used an in-house system to
automate their processes.

3.2 The Adapted Agile Approach

One of the core values of agile software development indicates a preference for indi-
viduals and interactions over processes and tools [11]. Tools and techniques should
encourage customer collaboration, enable change, ensure working software and min-
imize the use of documentation [12]. Yet, minimal documentation often creates prob-
lems in tracing requirements to their origin, especially when scaling factors apply
[13,14].

The software development team, working at the Fintech company, already fol-
lowed an agile software development approach. An opportunity existed to experiment
with the SCM, incorporating it within the existing agile development approach, ad-
dressing the deficiencies at the benefits department. Similar to the iterative and mod-
el-based agile software development approach presented by [15], the software devel-
opment approach started with a scope definition, followed by two stages: (1) a com-
bined problem analysis, requirements analysis and decision analysis; and (2) multiple
iterations of design, construction & testing, review and delivery. The next section
demonstrates the adapted agile software development approach, elaborating on the
first stage, emphasizing the use of the SCM and user story cards.

3.3 Demonstrating the Adapted Agile Approach

This section elaborates on the problem analysis, requirements analysis and decision
analysis of the adapted agile software development approach that was used at the
Fintech company.

Problem analysis phase. Whetherby’s [15] PIECES framework was used to extract
information-system related deficiencies in terms of Performance, Information (and
Data), Economics, Control (and Security) and Efficiencies. Additional problem analy-
sis was also incorporated as part of the next phase.

Requirements analysis phase. Identified deficiencies resulting from the PIECES
analysis, were converted into non-functional solution requirements. The functional
requirements were primarily derived via the SCM. The participant-observer applied
the 10-step SCM (see [5]) to extract the existing operational activities from enterprise

7

participants. We shortly discuss an application of the 10-step method and also indicate
two extensions for Step 1 and Step 10.
 Step 1: Inquire from a colleague to explain a short process (about 10 to 15 activi-

ties) that s/he is involved with. Fig. 3 illustrates the main output of Step 1. The par-
ticipant-observer extended this step, also mapping out the process represented in
Fig. 3 to a business process model, using the Business Process Model and Nota-
tion (BPMN) specification (see [16]). The extension allowed for critical analysis
of the existing process, highlighting inefficient interaction between participants.
Problem areas were identified, labelled (e.g. Problem A, Problem B) and de-
scribed.

 Step 2: Take a picture (photo) of the process. See Fig. 3.
 Step 3: Discuss with your colleague all the actors that are involved and write

down composite actors on yellow sticky notes, adding a smiley face, keeping ac-
tors aside. The smiley face sticky notes are illustrated on Fig. 4.

 Step 4: Explain Dietz's red-green-blue triangle of production acts, also explaining
the complete transaction pattern for actor-collaboration regarding production
acts. The participant observer briefly presented the concepts to the participants,
only explaining the red-green-blue triangle of production acts. The complete
transaction pattern was not explained, since it would be too time-consuming.

 Step 5: Have a discussion with your colleague as to identify original production
acts from his/her process (as mapped out with sticky notes in Step 1). The discus-
sion and classification followed.

 Step 6: Classify (in collaboration with your colleague) remaining acts as coordi-
nation acts vs. production acts. Additional classification was performed.

 Step 7: Remove the original production act notes from the flat surface and phrase
appropriate transaction kind descriptions (using adjective+noun) on red sticky
notes that are positioned as diamonds on your A1 paper. Collapse initial produc-
tion act notes underneath re-phrased transaction kind notes. Fig. 4 illustrates the
re-structuring of sticky notes according to the OCD-format.

 Step 8: The remaining activities on your working space should be coordination
acts or informational/documental production acts. Remove each of the remaining
notes on your working surface and collapse them underneath the appropriate re-
phrased transaction kind (red diamond notes) on your A1 paper. Fig. 4 illustrates
the re-structuring of sticky notes according to the OCD-format.

 Step 9: Position the yellow actor role notes on the A1 paper, drawing in (with a
black pen) the initiator actors (+initiating links) as well as the executing actors
(+executing links) to the transaction kinds, completing a composite OCD. Fig. 4
illustrates the re-structuring of sticky notes according to the OCD-format.

 Step 10: Validate your composite OCD with your colleague. Validation was per-
formed. The participant-observer extended this step, identifying those activities
that had to be automated, using a red dot as illustrated on Fig. 4. The TK with the
most red dots should be prioritized and had to form part of the same build cycle.

According to [5], the composite OCD, such as the one depicted in Fig. 4, needs fur-
ther tailoring as to ensure that composite actor roles that form part of the scope-of-

8

interest are converted into elementary actor roles. The final OCD was constructed and
is presented in Fig. 1.

Fig. 3. Example of a process to demonstrate method Step 1 of the SCM

Fig. 4. An OCD with composite actor roles is the deliverables of the SCM

9

Each of the activities, earmarked for automation, was converted into multiple user
story cards, adhering to the INSERT criteria and the user story card template present-
ed in section 1.2. The participant-observer also added a field called traceability. Each
story card had to be traceable to a TK on the OCD (represented in Fig. 1). One of the
user story cards, depicted in Fig. 5, linked to a Problem A and linked to TK T01
(claim evaluation) of Fig. 1.

Fig. 5. A user story card linked to TK T01

Decision analysis phase. During this phase, three alternative solutions were identi-
fied: (1) Extending the existing in-house software application to replace the existing
Excel sheets; (2) Using blockchain technology to create smart contracts to validate
and verify the details of the deceased and automate payment; and (3) Creating a web
app to replace the existing in-house software application that is currently used by the
company. A feasibility analysis matrix, used in accordance with [15], indicated that
the urgency of a solution favored the first alternative.

4 Results

Since agile software development approaches value working software over compre-
hensive documentation [11], we had to ensure that the adapted agile approach pro-
duced working software. Section 4.1 reports on the acceptance test results for four
implemented story cards. In addition, we wanted to reflect on the story-card-method
and its ease-of-use within a real-world project. Section 4.2 provides some reflections
on applying the SCM.

4.1 Acceptance Tests and Interview Results

As indicated in section 3.2 the software development approach consisted of two stag-
es. The second stage consists of multiple iterations of design, construction & testing,
review and delivery. For the first iteration, four out of eight story cards were priori-
tized and used to construct user interfaces. The newly-developed user-interfaces were
evaluated by four participants and acceptance tests were completed with positive re-
sults. Participants also had to answer five interview questions in terms of a five-point

10

scale: strongly agree, agree, unsure, disagree and strongly disagree. Participants were
encouraged to qualify their response. The results are presented per interview question.
 Do you believe that the previous process had too many manual steps? Three par-

ticipants strongly agreed, while the fourth participant agreed.
 Has the new solution reduced manual steps by 50%? Two participants strongly

agreed, whereas the other two participants agreed. Participants commented that the
consolidation of data capturing on a single system and the use of auto-fill func-
tionality for certain fields drastically decreased the number of manual steps.

 Do you believe that the new process has reduced processing time of claims? All
participants strongly agreed.

 Is the new process better than the old process? Three participants strongly agreed,
while the fourth participant agreed. Participants valued the automatic calculation
of benefit amounts, replacing the manual entries.

 Has the use of Microsoft Excel been eradicated? Three participants strongly
agreed, while the fourth participant agreed.

4.2 Reflecting on the SCM

The participant-observer facilitated the SCM and provided some reflections in terms
of the 10-step method presented in section 3.3:
 Steps 1 and 2: This step was easy to perform, since the participant-observer spent

ample time at the company to observe the process. A company participant (the
claim evaluator) confirmed the validity of the existing process as mapped out with
sticky notes.

 Step 3: This step was easy to perform and the company participant willingly pro-
vided inputs.

 Steps 4 to 7: The company participant was not so interested to participate during
the classification and re-structuring of activities, but preferred that the facilitator
(i.e. the participant-observer) performed these steps. Still, the participant validated
the classifications afterwards.

 Step 8: The participant-observer valued this step, since it allows for a consolidated
view of existing activities and a means to identify areas of improvement.

 Step 9: This step was easy to perform.
 Step 10: This step and its extension was easy to perform.
Although the participant-observer performed the SCM with ease, the company partic-
ipants had difficulty in understanding some of the concepts.

The demonstration of the SCM led to two further extensions. Step 1 was extended
representing the rudimentary sticky-note process flow with a process model according
to the BPMN specification, using swim lanes and pools to indicate existing work
allocation according to enterprise-specific roles. The extension also allowed for criti-
cal analysis of the existing process, especially in terms of inefficient interaction be-
tween company roles. The detailed process model helped to highlight problem areas
that were labelled (e.g. Problem A, Problem B) and described.

A second extension was applied in Step 10, namely to use red dots to earmark sto-
ry-cards for automation. The rationale is that story cards that belong to the same TK
and earmarked for automation, should also be built during the same build cycle.

11

5 Discussion

Enterprise designers need to continuously re-design their enterprise, re-evaluating the
technologies that are available to digitize their operations. Although light-weight agile
software development approaches are favored by software development service pro-
viders, additional requirements elicitation practices should be incorporated when scal-
ing factors apply, since design team members need to have a shared understanding of
the operating context and high-level requirements. Research indicated that OCD could
be useful to create a shared context for enterprise operation, linking detailed function-
al requirements to this shared context during software development. Although the
OCD is concise, its associated concepts are abstract and an additional SCM is needed
to transform existing enterprise implementations into an OCD. Since additional eval-
uation of the SCM was required, this study provided a real-world demonstration of
the SCM within an agile software development context.

The SCM was incorporated within an agile software development approach. Dur-
ing its application, the enterprise designer (also the participant-observer) identified the
need to further extend Step 1 and Step 10 of the SCM.

Two different methods were used for evaluation. First, we evaluated the agile soft-
ware development approach, with the embedded SCM, to assess whether the ap-
proach rendered working software. User acceptance tests indicated positive results.
We also used structured interviews, engaging with relevant participants at the benefits
department, to assess whether some of the previous information system deficiencies
have been addressed. Positive feedback was obtained.

The second evaluation method entailed some reflection on using the SCM. The
participant-observer indicated that the SCM was easy to use. Yet, he fast-tracked
some of the steps, reducing some of the explanations about OCD concepts. His reflec-
tions emphasized the conditional use of the SCM, i.e. that the facilitator needs suffi-
cient knowledge on the theoretical concepts to provide additional explanations where
needed.

6 Conclusion and Future Research

The SCM was useful when incorporated within an agile software development ap-
proach. Yet, as indicated by the demonstration and participant-observer’s feedback,
the method may need further adaptation (e.g. extending Step 1 and Step 10) to ensure
integration within an existing agile software development approach. In addition, the
enterprise designer that facilitates the SCM, may need to adapt the theoretical expla-
nations regarding OCD concepts, ensuring that participants will be able to validate the
final OCD.

Since the SCM was useful within a real-world context where an agile approach is
currently used, agile at scale projects, where different scaling factors apply should
further validate the usefulness of the SCM within the agile software development
context. The main deliverable of the SCM, the OCD, is useful to create a common
understanding of the essential operations at an enterprise. The implementation-free
OCD becomes the starting point for various different implementation options. Alt-

12

hough this study favored further development of the in-house information system, the
OCD can also be used as the starting point for implementing blockchain technology.

Acknowledgements. This work was demonstrated at a Fintech company. We are
grateful for all the assistance and feedback that we received from the company.

References

1. Beck K, Beedle M, Van Bennekum A, Cockburn A et al (2001) Manifesto for Agile
Software Development. www.agilemanifesto.org. Accessed 23 April 2018

2. Dikert K, Paasivaara M, Lassenius C (2016) Challenges and success factors for large-scale
agile transformations: A systematic literature review. J of Syst and Softw 119:87-108

3. Leffingwell D (2011) Agile software requirements: lean requirements practices for teams,
programs, and the enterprise. Addison-Wesley, New Jersey

4. Paasivaara M, Lassenius C (2016) Scaling scrum in a large globally distributed
organisation: A case study. In: IEEE 11th International Conference on Global Software
Engineering. IEEE Computer Society. doi:DOI 10.1109/ICGSE.2016.34

5. De Vries M (2018) DEMO and the Story-Card Method: Requirements Elicitation for Agile
Software Development at Scale. In: Buchmann R, Kirikova M (eds) 11th IFIP WG 8.1
Working Conference on the Practice of Enterprise Modelling. Springer.
doi:https://doi.org/10.1007/978-3-030-02302-7

6. Perinforma APC (2017) The essence of organisation. 3rd edn. Sapio, www.sapio.nl
7. Dietz JLG (2006) Enterprise ontology. Springer, Berlin
8. Dietz JLG, Mulder MAT (2017) DEMOSL-3: DEMO specification language version 3.7.

SAPIO,
9. Patel C, Ramachandran M (2009) Story card based agile software development. Int J of

Hybrid Inf Technol 2 (2):125-140
10. Venable J, Pries-Heje J, Baskerville R (2016) FEDS: A framework for evaluation in design

science research. Eur J of Inf Syst 25 (1):77-89
11. The Agile Manifesto (n.d.) Manifesto for Agile Software Development.

https://www.agilealliance.org/agile101/the-agile-manifesto/. Accessed 11 November 2019
12. Strode D (2006) Agile methods: a comparative analyis. In: Proceedings of the 19th annual

conference of the national advisory committee on computing qualifications, NACCQ.
13. Inayat I, Salim SS, Marczak S, Daneva M et al (2015) A systematic literature review on

agile requirements engineering practices and challenges. Comput in Hum Bahav 51
(PB):915-929. doi:10.1016/j.chb.2014.10.046

14. Heikkilä VT, Damian D, Lassenius C, Paasivaara M (2015) A mapping study on
requirements engineering in agile software development. In: 2015 41st Euromicro
Conference on Software Engineering and Advanced Applications. pp 199-207.
doi:10.1109/SEAA.2015.70

15. Bentley LD, Whitten JL (2007) Systems analysis and design for the global enterprise. 7th
edn. McGraw-Hill/Irwin, New York

16. Object Management Group (n.d.) Business process model & notation.
https://www.omg.org/bpmn/. Accessed 30 May 2019

