Electronic supplementary material

Comparison of DAFH and FALDI-like approaches

David L. Cooper¹ • Jurgens de Lange² • Robert Ponec³

- ☑ David L. Cooper dlc@liverpool.ac.uk
- ✓ Jurgens de Lange jurgens.delange@up.ac.za
- □ Robert Ponec
 ponec@icpf.cas.cz
- 1 Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
- 2 Theoretical Chemistry, Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Gauteng, South Africa
- 3 Institute of Chemical Process Fundamentals, Czech Academy of Sciences Prague 6, Suchdol 2, 165 02 Czech Republic

Table of Contents

Section S1	Geometry for B ₂ H ₆	3	
Table S1	Cartesian coordinates for symmetry-unique atoms in B ₂ H ₆		
Section S2	Additional results for H ₂	3	
Figure S1	DAFH functions – one-electron approximation	3	
Figure S2	FALDI-like functions – one-electron approximation		
Section S3	Additional results for N ₂	5	
Figure S3	DAFH functions – one-electron approximation	5	
Figure S4	Scheme B FALDI-like functions – full calculation	6	
Figure S5	Scheme C FALDI-like functions – full calculation	7	
Figure S6	Scheme D FALDI-like functions – full calculation	8	
Figure S7	Scheme A FALDI-like functions – one-electron approximation	9	
Figure S8	Scheme B FALDI-like functions – one-electron approximation	10	
Figure S9	Scheme C FALDI-like functions – one-electron approximation	11	
Figure S10	Scheme D FALDI-like functions – one-electron approximation	12	
Section S4	Additional results for B ₂ H ₆	13	
Figure S11	DAFH and scheme B FALDI-like functions – full calculation	13	
Figure S12	DAFH and scheme C FALDI-like functions – full calculation	14	
Figure S13	DAFH and scheme D FALDI-like functions – full calculation	15	
Figure S14	DAFH and scheme A FALDI-like functions – one-electron approximation	16	
Figure S15	DAFH and scheme B FALDI-like functions – one-electron approximation	17	
Figure S16	DAFH and scheme C FALDI-like functions – one-electron approximation	18	
Figure S17	DAFH and scheme D FALDI-like functions – one-electron approximation	19	

Section S1. Geometry for B₂H₆

Table S1 Cartesian coordinates (in Å) used for symmetry-unique atoms in B_2H_6 (D_{2h}), with the inversion center taken as the origin. H_b is a bridging H atom and H_t is a terminal one.

Atom	х	у	z
В	0.888375	0	0
H_b	0	0	0.973751
H_t	1.463157	1.035737	0

Section S2. Additional results for H₂

Figure S1. Dominant DAFH functions associated with the domain of one of the H atoms in H_2 at three representative nuclear separations, generated using the one-electron approximation. Also shown for each function is the corresponding occupation number as well as the proportion of $k_{\rm HH'} = \frac{1}{2}$ SEDI(H, H') which can be assigned to a term P_i (see equation 6) that involves this function.

Figure S2. Dominant FALDI-like functions associated with the domain of one of the H atoms in H_2 at three representative nuclear separations, together with their eigenvalues and relative contributions to the relevant k values, calculated using the one-electron approximation. For each of these values of R, the first row corresponds to partitioning of $k_{\rm HH}$ and the second one to partitioning of $k_{\rm HH'}$. Columns are labelled A-D according to the variant of the approach, as described in the text.

Section S3. Additional results for N_2

Figure S3. Dominant DAFH functions associated with the domain of one of the N atoms in N_2 at three representative nuclear separations, generated using the one-electron approximation. Also shown for each function is the corresponding occupation number as well as the proportion of $k_{NN'} = \frac{1}{2} SEDI(N, N')$ which can be assigned to a term P_i (see equation 6) that involves this function.

Figure S4. Dominant Scheme B FALDI-like functions that can be associated (by visual inspection) with the domain of one of the N atoms in N_2 at three representative nuclear separations, together with their eigenvalues and relative contributions to the relevant k values, generated using the full calculation.

Figure S5. Dominant Scheme C FALDI-like functions that can be associated (by visual inspection) with the domain of one of the N atoms in N_2 at three representative nuclear separations, together with their eigenvalues and relative contributions to the relevant k values, generated using the full calculation.

Figure S6. Dominant Scheme D FALDI-like functions that can be associated (by visual inspection) with the domain of one of the N atoms in N_2 at three representative nuclear separations, together with their eigenvalues and relative contributions to the relevant k values, generated using the full calculation.

Figure S7. Dominant Scheme A FALDI-like functions that can be associated (by visual inspection) with the domain of one of the N atoms in N_2 at three representative nuclear separations, together with their eigenvalues and relative contributions to the relevant k values, calculated using the one-electron approximation.

Figure S8. Dominant Scheme B FALDI-like functions that can be associated (by visual inspection) with the domain of one of the N atoms in N_2 at three representative nuclear separations, together with their eigenvalues and relative contributions to the relevant k values, calculated using the one-electron approximation.

Figure S9. Dominant Scheme C FALDI-like functions that can be associated (by visual inspection) with the domain of one of the N atoms in N_2 at three representative nuclear separations, together with their eigenvalues and relative contributions to the relevant k values, calculated using the one-electron approximation.

Figure S10. Dominant Scheme D FALDI-like functions that can be associated (by visual inspection) with the domain of one of the N atoms in N_2 at three representative nuclear separations, together with their eigenvalues and relative contributions to the relevant k values, calculated using the one-electron approximation.

Section S4. Additional results for B₂H₆

Figure S11. Dominant DAFH functions (first column) and Scheme B FALDI-like functions (second and third columns) for B₂H₆, together with their eigenvalues and relative contributions to relevant *k* values, generated using the full calculation. The specific domains used for each of these functions are the same as those in Figure 5 and are identified in the main text, expect that the additional function depicted in the third column is associated with one of the B domains.

Figure S12. Dominant DAFH functions (first column) and Scheme C FALDI-like functions (second and third columns) for B₂H₆, together with their eigenvalues and relative contributions to relevant *k* values, generated using the full calculation. The specific domains used for each of these functions are the same as those in Figure 5 and are identified in the main text.

Figure S13. Dominant DAFH functions (first column) and Scheme D FALDI-like functions (second and third columns) for B₂H₆, together with their eigenvalues and relative contributions to relevant *k* values, generated using the full calculation. The specific domains used for each of these functions are the same as those in Figure 5 and are identified in the main text.

Figure S14. Dominant DAFH functions (first column) and Scheme A FALDI-like functions (second and third columns) for B_2H_6 , together with their eigenvalues and relative contributions to relevant k values, calculated using the one-electron approximation. The specific domains used for each of these functions are the same as those in Figure 5 and are identified in the main text.

Figure S15. Dominant DAFH functions (first column) and Scheme B FALDI-like functions (second and third columns) for B_2H_6 , together with their eigenvalues and relative contributions to relevant k values, calculated using the one-electron approximation. The specific domains used for each of these functions are the same as those in Figure 5 and are identified in the main text.

Figure S16. Dominant DAFH functions (first column) and Scheme C FALDI-like functions (second and third columns) for B_2H_6 , together with their eigenvalues and relative contributions to relevant k values, calculated using the one-electron approximation. The specific domains used for each of these functions are the same as those in Figure 5 and are identified in the main text.

Figure S17. Dominant DAFH functions (first column) and Scheme D FALDI-like functions (second and third columns) for B_2H_6 , together with their eigenvalues and relative contributions to relevant k values, calculated using the one-electron approximation. The specific domains used for each of these functions are the same as those in Figure 5 and are identified in the main text.

