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ABSTRACT 

Millions of consumer sport and fitness wearables (CSFWs) are used worldwide, and millions of 

datapoints are generated by each device. Moreover, these numbers are rapidly growing, and they 

contain a heterogeneity of devices, data types, and contexts for data collection. Companies and 

consumers would benefit from guiding standards on device quality and data formats. To address 

this growing need, we convened a virtual panel of industry and academic stakeholders, and this 

manuscript summarizes the outcomes of the discussion.  Our objectives were to identify: (1) key 

facilitators and barriers to participation by CSFW manufacturers in guiding standards and (2) 

stakeholder priorities. The venues were the Yale Center for Biomedical Data Science Digital 

Health Monthly Seminar Series (62 participants) and the New England Chapter of the American 

College of Sports Medicine Annual Meeting (59 participants). In the discussion, stakeholders 

outlined both facilitators (e.g., commercial return on investment in device quality, lucrative 

research partnerships, and transparent and multilevel evaluation of device quality) and barriers 

(e.g., competitive advantage conflict, lack of flexibility in previously developed devices) to 

participation in guiding standards. There was general agreement to adopt Keadle et al.’s standard 

pathway for testing devices (i.e., benchtop, laboratory, field-based, implementation) without 

consensus on the prioritization of these steps. Overall, there was enthusiasm not to add 

prescriptive or regulatory steps, but instead create a networking hub that connects companies to 

consumers and researchers for flexible guidance navigating the heterogeneity, multi-tiered 

development, dynamicity, and nebulousness of the CSFW field. 
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KEY POINTS 

 We convened a virtual panel of industry and academic stakeholders to discuss the need 

for guiding standards of device quality and data formatting in the rapidly expanding 

market of consumer sport and fitness wearables. 

 Stakeholders agree that such standards could add value to commercial return on 

investment and provide constructive critiques to manufacturers, especially when focused 

on the benchtop testing stage. 

 The large company representative noted limited flexibility to unveil or modify devices at 

this basic level and suggested the alternative of analytics on big data generated by widely 

used devices (e.g., within-person consistency).  

 Stakeholders recommended providing a networking hub that helps companies and 

researchers acquaint and synergistically navigate the concerns with the CSFW field. 



 
 

1. SCOPE AND OBJECTIVE 

The Internet of Things, a.k.a. the online connectivity of physical devices, has grown to 

encompass 35 billion devices worldwide [1]. Around 1 billion of these devices are wearables, 

defined by the European Commission as “body-borne computational and sensory devices which 

can sense the person who wears them and/or their environment” [2]. The wearables market is 

driven by the subset for consumer sport and fitness (CSFWs); fitness watches alone shipped over 

100 million units in 2020 [3]. An increasing number of health care professionals, sport scientists 

and other employees within international sports and medical federations, at rehabilitation centers, 

sports clubs, and sporting events use some form of CSFWs. 

 
Among these millions of CSFWs, each generates millions of biometric datapoints per year if 

used regularly. A typical smartwatch, for example provides the user with minute-by-minute 

readings of step counts, active energy expenditure, heart rate, and other variables. The raw data 

metrics that produce these minute-by-minute readings are even denser. For example, energy 

expenditure is derived from acceleration counts sampled several thousand times per minute. 

 

This landscape is not only large but also heterogeneous. First, while smartwatches are common 

examples, there are many available CSFW devices and data types. Maintaining comprehensive 

lists is a massive undertaking beyond our scope that others have completed periodically [4], but 

we have shown some examples of types of devices in Table 1. Second, these freely marketed 

products can be used by anyone anywhere, creating a limitless number of contexts for data 

collection in terms of user demographics, health characteristics, ambient weather, air quality, 

magnetic fields, and other factors.   

 



 
 

CSFWs bear some key differences from research-grade devices such as ActiwatchesTM or 

ActigraphTM accelerometers. First, CSFWs present their data through software that can be 

operated and viewed by a lay user, whereas research devices recommend that a technician 

process the data before sharing with the consumer. An example is using ActiwatchTM software to 

manually adjust the automatically detected sleep times based on other indicators like light and 

user-marked bedtime [5]. Second, CSFWs typically issue data reports with a single (averaged) 

value for each minute, whereas research devices can include raw values which are sampled 

thousands of times per minute. Third, CSFWs each have a set method for converting raw data to 

health outcome metrics, whereas research devices offer the operator flexibility. An example is 

choosing the equation for converting actigraphy counts to activity intensity from various options 

that have been validated in various studies.



 
 

 

 

Table 1. Examples of CSFWs. 
Product Category Example Product Technical characteristics 
Position Apple WatchTM Accelerometer detects arm movement indicative of standing versus sitting. 
Motion or activity Apple WatchTM, EmpaticaTM E4, 

GarminTM 
Accelerometer detects arm movement indicative of body movement. 

Location Apple WatchTM, GarminTM Global positioning system. 
Biomechanics IMeasureU, LeomoTM    Inertial measurement unit measures 9 axes (i.e., x-y-z directions of accelerometer, 

gyroscope, magnetometer) attached to each limb of interest. 
Heart rate Apple WatchTM, GarminTM, 

EmpaticaTM E4, BiostrapTM,WhoopTM, 
OuraTM,   

Photoplethysmography: shines light upon the skin surface and a photodetector 
measures arterial pulsatile flow. 

Blood oxygen saturation BiostrapTM Photoplethysmography as above with a photodetector measuring blood color as an 
index of saturation. 

Muscle tissue oxygen saturation MoxyTM Near-infrared spectroscopy: similar to photoplethysmography except light 
penetrates skin deeper, which allows comparison of arterial to capillaries and 
venous saturation to infer muscle tissue oxygen saturation.    

Autonomic function Apple WatchTM, BiostrapTM,  
WhoopTM, OuraTM,    

Photoplethysmography as above, followed by time-series analysis of heart rate 
variability. 

Sweat composition and sweat 
lactate concentration 

Xsensio Lab-on-SkinTM A system of microfluidic channels transports sweat across electrodes which register 
pH and mineral contents, transmitting results by Bluetooth to a smartphone 
application. The system is held against the skin by a hydrophilic patch that powers 
the microfluidic motion.  

Galvanic skin response (i.e., 
electrodermal activity) 

EmpaticaTM E4 The watch measures skin conductivity indicated by the conductance of a current it 
runs between two electrodes that are pressed against the skin. Higher levels are 
associated with greater stress. 

Body temperature EmpaticaTM E4 Infrared thermopile sensor detects infrared energy emitted by the skin, which is 
directly associated with skin temperature. 

Sleep WhoopTM, OuraTM Algorithm integrates accelerometer, gyroscope, and photoplethysmography heart 
rate. 



 
 

2. QUALITY ASSURANCE, PRIVACY, AND DATA INTERPRETATION  

As the CSFW market has rapidly expanded there has been increased focus on the quality 

assurance of CSFWs. For example, in an early study, researchers assessed the validity of two 

commercial wearables and determined that Fitbit™ heart monitoring was inaccurate, particularly 

with higher exercise intensity [7], resulting in two class action lawsuits [8, 9]. More recently, 

Peake and colleagues evaluated 61 wearables and found that only 5% matched their marketing 

claims according to accepted reference standards [4]. The validity and reliability of these devices 

also tend to vary depending on the variables that are measured. A review of 158 publications in 

which nine brands were examined, revealed that steps were generally measured accurately across 

brands in the laboratory but less so in field settings, and no device accurately measured energy 

expenditure [10]. A primary study of energy expenditure from 4 of these sensors and 8 others 

worn simultaneously by 19 adults drew a similar conclusion [11]. Moreover, variable gait 

patterns [12] (Figure 1) suggest the need for population-specific validations, which are currently 

lacking. Another concern is these studies likely use new or well-maintained devices thus leaving 

possible durability concerns such as the possibility of a dislodged accelerometer or faded 

photoplethysmography light understudied [13, 14]. Because the device market evolves rapidly, 

quickly outpacing the above studies of validity [10, 11], gait patterns [12] and other related 

research, this market necessitates fast and frequent, well informed comparisons to provide 

objective quality metrics. In this way, users can maximally benefit from CSFWs to monitor and 

understand their health behaviors. 

 

Wearable devices typically lack the security that is afforded most personal data, thereby 

threatening an individual’s privacy, which is often unbeknownst to them [15]. Privacy policies 



 
 

are often ambiguous or extensive, so CSFW users may be largely unaware of the security 

policies of their data storage and sharing, including who may access, own, or sell their health 

data [16]. Data obtained from these devices generally do not fall under the regulatory purview of 

health privacy statutes. Consequently, workplace wellness programs could furnish wearable data 

to insurance companies, who may then choose to raise premiums or deny coverage for 

individuals exhibiting higher-risk behavior patterns (e.g., poor sleep, physical inactivity) [17, 

18]. These decisions are particularly problematic when based on inaccurate data (e.g., periods of 

restful wakefulness may be interpreted as sleep) [19]. There is also the potential for data access 

and threats to confidentiality from outside parties, legally (sale of the company or its data) or 

illegally (hacking of databases or wireless transmissions) [20]. This disclosure is particularly 

concerning as Global Positioning System data can easily infer home address and 24 h biodata 

could theoretically carry a unique signature, akin to DNA and can be used for commercial 

purposes [21]. Many companies claim that data they share with outside parties are deidentified, 

but the United States Health Insurance Portability and Accountability Act (HIPAA) does not 

specify how to deidentify these data and there are several clear threats to privacy. Some 

protection against these threats may begin emerging in the European Union due to the recent 

General Data Protection Regulation (GDPR) designed to protect personal information. 

Unfortunately, a preliminary analysis suggests most consumer health applications fail to comply 

with the GDPR on numerous levels, especially regarding opaque privacy policies [22].  

 

The best practices for interpreting and presenting CSFW data to consumers remain unclear and 

controversial. For instance, sleep watch data can harm consumers first by eliciting 

“preoccupation or concern with improving or perfecting wearable sleep data” and second by 



 
 

accepting and believing wearable sleep data more readily than medical advice, standard sleep 

hygiene education, or validated laboratory sleep assessments [23].  Some research has addressed 

this problem by optimizing the timing of data presentation (i.e., just-in-time adaptive 

interventions) [24]. For example, if a night of sleep is inadequate, the WhoopTM smartwatch 

(Boston, MA) alerts the consumer to this problem when they should start getting ready for bed 

the next night [25]. A criticism of such an approach, however, is that it conveys paternalism, and 

furthermore, may impose overly generic sleep and physical activity requirements if their 

algorithms fail to capture individual physiological and psychological needs (e.g., benefit from 

positive versus negative reinforcement). In addition, brief message prompts may be an 

inadequate substitute for providing more comprehensive wellness education, in which consumer 

literacy and numeracy are considered. The latter, along with the relatively high cost of CSFWs, 

limits the diversity of consumers reached and subsequent research. A recent systematic review of 

463 scientific papers found the most important research gap in the CSFW field was 

understanding the human-information interaction that determines the adoption, acceptance, and 

health impact of CSFWs [26].  

 

In addition to issues surrounding data presentation to consumers, standardization of data for 

technical purposes is also a prominent concern. Various CSFWs collect data using different raw 

units, timescales, and coding languages. Data are also stored in different formats. Even the 

Coordinated Universal Time format for date and time stamping is often not followed. The United 

States’ National Institutes of Health solved similar problems in the field of genomics with the 

Genomic Data Sharing Policy. Based on the Policy, federally funded researchers are required to 

format their data according to standards of the Genbank database, an annotated collection of all 



 
 

publicly available DNA sequences that exchanges data with similar entities in Europe and Asia 

[27]. This requirement streamlines the process for other researchers and coders to download and 

integrate data. A similar process is needed for the large datasets derived from CSFWs to 

facilitate research, encourage market competition, and interoperability between devices and other 

systems such as the electronic health or medical record.  

 

One body that could address these concerns is the United States Food and Drug Administration 

(FDA, Washington, DC) which is responsible for regulating medical devices. In the current 

digital age, this effort requires regulating not only the devices, but also their cybersecurity, 

software, artificial intelligence, and machine learning algorithms. This scope has led to an 

unprecedented focus on grey areas, such as defining the extent to which software can be updated 

before requiring reapproval. The FDA responded to these challenges by issuing dozens of formal 

guidance documents and recently launching the Digital Health Center of Excellence in 

September 2020. FDA has pledged extensive resources to develop the Center by raising 

awareness, engagement, and partnership with stakeholders [28]. However, the FDA does not 

oversee low risk products that are intended for general wellness use and unrelated to diagnosing 

or treating a chronic disease (i.e., most CSFWs) [29]. The FDA Digital Health Center of 

Excellence exemplifies the level of investment that is needed to keep regulatory processes 

abreast of the digital health revolution but does not offer tangible support to the CSFW field for 

issues like those described in the previous section. Tighter regulation could emerge in the 

European Union, which recently expanded the scope of its Medical Device Regulations (EU 

MDR), but legal opinions are mixed as to whether CSFWs will fall within the new scope [30-32] 

and the changes are too recent (May 26, 2021) to have judicial precedent. 



 
 

3. PANEL LOGISTICS AND RECRUITMENT 

The panel discussion topics were: (1) key facilitators and barriers to participation by CSFW 

manufacturers in global guiding standards and (2) stakeholder priorities. It was hosted on 

September 16, 2020, by the Yale Center for Biomedical Data Science Digital Health monthly 

seminar series using the ZoomTM video call platform (San Jose, CA). The seminar series 

previously has included panels, and we adopted their suggested maximum number of panelists (n 

= 5) and format: moderator introduction (7 min), 5 panelists giving self-introductions and 

explaining their company’s or organization’s profile (4 min each), audience questions (33 min).  

 

The moderator introduced the meeting by briefly summarizing concerns with CSFWs (Sect. 2) 

and interest in guiding standards revealed by our previous panel discussion [6]. The moderator 

also introduced the International Federation of Sports Medicine (FIMS, Lausanne, Switzerland) 

and the European Federation of Sports Medicine Associations (EFSMA) noting both have 

pledged commitment to support guiding standards. FIMS advocates for both the consumers of 

CSFWs and the sports medicine researchers extracting data from CSFWs. This objective aligns 

with their overall mission to promote the well-being of all who are engaged in sports and 

exercise, to assist athletes in achieving optimal performance, and to promote the study and 

development of sports medicine throughout the world. A number of leaders from FIMS 

collaborating centers (A.D., N.B., F.P., F.H., D.A.R., D.C.J.V.M., B.W., S.R., M.B., J.A.C., 

A.G., J.S., Y.P.P.) some also having EFSMA memberships participated.   

 

To fill the panelist spaces, we executed a recruitment strategy focused on attracting a mixture of 

large and small international and national companies. We invited the four largest worldwide 



 
 

CSFW manufacturers [3], GoogleTM given their recent buy-in to CSFWs by acquiring FitbitTM, 

and five smaller companies within our professional network that we chose to cover critical 

categories of CSFWs (Table 1).  Invitations were sent electronically to the public relations 

departments and/or personal contacts within each company and followed up with a postal letter if 

there was no initial reply. Google HealthTM (Palo Alto, CA, represented by author L.G.) and 

XsensioTM (Lausanne, Switzerland, represented by author E.M.) accepted the invitation. One 

large company declined the invitation stating the following reasons: (1) the company is already 

involved in numerous research efforts so do not see the added value of data standardization; (2) 

they are concerned about protecting the privacy of their customers’ data; and (3) they have 

limited resources and would prefer to invest those resources once the strategy has come to 

fruition, versus in these early discussion stages. One small company also declined the invitation 

for this year but welcomed us to contact them in future years. The other 6 companies did not 

reply. Thus, 40% of companies expressed some interest, although only 20% agreed to 

participate. 

 

We interpreted this recruitment result to mean that the idea of guiding standards has the potential 

to gain industry stakeholder attention, but it was not possible to convene a large discussion at this 

time. Therefore, as a short-term strategy to increase scope, the last 3 panelist spaces were used to 

include individuals who have experience collaborating with a variety of CSFW companies. The 

first space was filled by VivoSenseTM (Denver, CO, represented by author K.L.) who consults 

with pharmaceutical companies by interpreting wearable sensor outcomes and has worked with 

hundreds of devices in this manner. The second panelist space was filled by a European 

Respiratory Society Digital Health Working Group (Lausanne, Switzerland) member (author 



 
 

I.V.), who evaluates the role of CSFWs to develop large research initiatives. The third space was 

filled by GlucoseZoneTM (author L.S.), a consumer mobile exercise app interfacing with CSFW 

wearables. Author L.S. also belonged to the Consumer Technology Association (CTATM) 

working groups for health technology standards on industry standards for product quality. 

 

The panel audience was recruited by mass advertising on the Yale Center for Biomedical Data 

Science listserv (n = 355 faculty and graduate students) as well as via personal invitations that 

were extended to researchers and clinicians working with wearable devices from Yale 

University, Yale-New Haven Hospital, the United States Veterans Affairs Healthcare System, 

the United States National Institutes of Health Mobile Health Shared Resource, the New England 

Chapter of the American College of Sports Medicine (NEACSM), FIMS, and EFSMA. In total, 

62 individuals attended the panel, among whom 43 have made substantive contributions and 

were invited to coauthor this manuscript (24 kinesiologists, 9 data scientists, 3 endocrinologists, 

1 nurse, 2 sleep researchers, 3 behavioral psychologists, 1 strategic advisor). A condensed 

summary of the proceedings was broadcast on-demand at the NEACSM Annual Meeting 

(October 1-15, 2020) followed by a live discussion when attendees were invited to ask questions 

and provide comments (October 16, 2020). The session recordings were professionally 

transcribed and circulated to all authors so they could review and edit their contributions as 

desired. Authors G.A. and Y.P. then reviewed the edited transcript and wrote the first draft of 

this manuscript. All authors commented on subsequent versions of the manuscript until all 

authors were able to approve the final manuscript.  

 

 



 
 

4. DISCUSSION TOPICS 

4.1. What could incentivize industry stakeholders to engage with guiding standards of 

device quality and data formatting?  

Individuals from both manufacturers in attendance (Google HealthTM, XsensioTM) were 

supportive of global guiding standards and expressed interest in joining. When these individuals 

were asked what incentivized them to join the panel, two themes emerged. The first theme was 

value with respect to consumer appeal and satisfaction. Third-party endorsement provided by 

global guiding standards could help them dispel stereotypes about poor quality of CSFWs 

created by controversies such as the Fitbit class action lawsuits [8, 9]. Also, user education 

provided by the central resource would promote more discerning selection of CSFWs and 

potentially increase appreciation of CSFWs that offer high validity, quality, and useful data. This 

education would increase the commercial value yielded by their development efforts. For 

example, user expectations of a tighter error margin will increase return on investment to achieve 

such expectations. 

 

The second theme that emerged from the panel discussion was value with respect to scientific 

endeavors. The two manufacturer panelists stated an interest to participate in data mining 

research that would be facilitated by data standardization. For example, it is very challenging to 

compile and interpret physical activity accelerometer information from different populations and 

datasets because of the myriad of inter-study and inter-device variations in protocols for 

converting raw to clinical units [33]. Some examples are epoch lengths, count thresholds 

demarcating activity intensity, and detection and handling of non-wear time. Data 



 
 

standardization would allow multicenter projects with data from thousands of individuals, thus, 

increasing the impact of associated research and potential health outcomes. 

 

Two of the consultant panelists also noted observing scenarios where companies benefit from 

having high quality and accessible data, as defined by an unambiguous list of endpoints and 

reference standards. The author from VivoSenseTM reported that device manufacturers often miss 

opportunities to collaborate on drug trials if they are incompatible with the analytic software the 

trial is using. Evidence presented at the 2020 Annual Congress of the European Respiratory 

Society suggested that within the new ecosystem of clinical trials when companies have 

validated and accessible data, this presents a number of business opportunities: they can supply 

data directly to researchers and pharmaceutical companies, collect data directly from hospitals 

and universities, and collaborate with leading bioinformaticians to improve their algorithms for 

data processing and interpretation. 

 

4.2. What stage of device development should the central resource target in order to 

achieve the quality assurance and data standardization objectives?  

Since Keadle et al.’s standard testing pathway for wearable technology has multiple steps 

(benchtop, laboratory, free-living, implementation) [34] (Table 2), the panel debated which of 

these steps should be the focus of guiding standards’ validation checks, quality assurance 

procedures, and standardization of data outputs. 



 
 

Table 2. Device evaluation stages using a wrist accelerometer as a case example.  
Step of 
Evaluation 

Definition Example Goal achieved for the guiding 
reference 

Desired Standard 

Benchtop Evaluate response to standardized 
synthetic signals. 

Attach accelerometer to 
calibrated shaker plate and 
compare its outputs to the 
expected accelerations.  

 

*Quality assurance by 
troubleshooting at the most basic 
level 
*Data formatting by developing 
common basic physical units 
*Interoperability of devices by 
standardizing units to facilitate 
algorithms that are transferable 

Agreement with shaker plate of 
3% (to match laboratory standard 
proposed below). 

Laboratory Compare device outputs against 
criterion measures, upon human 
participants wearing the device and 
a criterion instrument under 
conditions of controlled 
physiological inputs (e.g., 
controlled graded exercise).  

Energy expenditure 
outputs from the device are 
compared to oxygen 
consumption. 

 

*Quality assurance in laboratory 
context 
*Data formatting by reaching 
consensus on the best-validated 
equations for converting physical 
units to clinical metrics 
 

Agreement of 3% [10] 

Field-based Compare device outputs against a 
reference standard device, upon 
human participants wearing the 
device and a reference standard 
during naturalistic and variable 
conditions of daily living, to assess 
metrics like reliability and time 
delay from the reference standard.  

Participants wear the 
device concurrently with a 
reference standard hip 
accelerometer.   

*Quality assurance in field context 
*Data formatting by reaching 
consensus on the best-validated 
equations for converting physical 
units to clinical metrics 
 

Agreement of 10% [10] 

Implementation Follow consumers wearing the 
device post-marketing for metrics 
like user satisfaction and device 
durability, the latter assessed as 
consistency of readings within-
persons over time.  

Participants are tracked for 
consistency of smartwatch-
measured weekly energy 
expenditure, a known 
stable variable [35] 

*Quality assurance in 
implementation context 
 

Novel testing approaches 
proposed by this panel for which 
standard cutoffs should be 
developed 



 
 

Several members expressed support for focusing these efforts at the benchtop testing stage with 

the most basic physical units possible (e.g., gravitational force equivalents for accelerometry; 

precision of wavelength measurement through various media for photoplethysmography). 

Assuring the validity and quality of these basic units could, in turn, contribute to the evaluation 

of higher-level measures at later testing stages (e.g., estimated energy expenditure during free-

living testing) while still allowing for researchers and companies to pursue innovation. The 

standardization of these basic units would allow for algorithms that are transferable between 

devices needing only minor refinements such as a transfer function. For example, Fitbit’s 

formula to convert gravitational force equivalents to estimated energy expenditure could be 

tested with Apple Watch hardware. It would similarly allow the combination of datasets and 

interoperability of devices. Overall, these achievements would facilitate detailed, collaborative 

evaluation of each device at multiple levels, rather than a simplistic confirmation/refutation of 

the entire device. This process would yield transparency to troubleshoot poor performance and 

potential cost-savings during development, which would incentivize companies to participate. 

 

The lone author from a large company (Google HealthTM), however, pointed out that such 

collaboration may present a competitive advantage conflict for some companies. Thus, they may 

prefer to have non-standardized basic physical units and hardware-level data smoothing that are 

proprietary and novel. Furthermore, even those companies interested in having standardized 

basic units may be unable to comply because they have already completed downstream 

development around their existing units. Therefore, an alternative strategy was proposed: rather 

than focusing on the basic physical units (i.e., the earliest possible stage), to look at the other end 

of the testing pathway spectrum; i.e., analytics on big data generated by CSFWs that are widely 



 
 

used already (Figure 2). Panelists considered this request and formulated two possible evaluation 

strategies using these big data despite lacking a ground truth. First, evaluate within-person 

consistency of known stable variables such as weekly energy expenditure [35] to indicate device 

reliability and durability. Second, use implemented devices that do have benchtop testing validity 

as convergent validity standards for other devices worn by the same or clinically similar users 

(i.e., “virtual cohort”). In the case of multiple devices with varying degrees of benchtop testing 

validity, impose mathematical weighting according to the degree of validity. To utilize the 

information gained from these evaluations, circumvent the inability to modify the hardware of 

existing devices by calculating correction factors [38] that are released through a software update 

or a universal guide for researchers.  

 

4.3. Will clinical applications raise the stakes? 

CSFWs can unexpectedly evolve from end user consumer devices into high-risk regulated 

medical devices. For example, recent evidence suggests the high-risk artificial pancreas systems 

that automatically titrate insulin delivery (e.g., closed-loop insulin delivery systems) according to 

continuous glucose monitors benefit from additional input by CSFW smartwatches [36]. 

Incorporating the CSFW into the marketed high-risk system would require FDA or EU MDR 

authorization, so we propose CSFWs anticipate this step from their inception by utilizing global 

guiding standards. In fact even continuous glucose monitors were initially considered an end-

user consumer technology product, before the most successful versions passed FDA clearance as 

medical devices and were incorporated into the standard of care [37].  

 

 



 
 

4.4 Guidance on privacy 

Privacy concerns were not considered during the live discussion after being raised during 

introduction presentations, so participants with privacy expertise from the academic (G.G., D.G., 

M.B.G.) and industry cohorts (L.A.G.) led a written section presented here. They first 

recommended helping companies evaluate their CSFWs for the data’s level of identifiability and 

traceability to protected health information. For example, data with higher sampling frequency 

more readily identify users and predict health outcomes [38, 39]. External assessment tools or 

consultants could help companies evaluate their data relative to such concerns to inform 

decisions regarding the tradeoffs of risk versus costs of safeguards. Second, a similar perspective 

as the clinical applications (Sect. 4.3) emerged: evolving external regulations from bodies like 

the FDA and GDPR are likely to impact CSFW manufacturers soon, thus heightening the 

potential benefit of a low-cost pre-evaluation from CSFW guiding standards. 

 

4.5 Guidance on interpreting and presenting CSFW data to consumers  

Concerns about data interpretation and presentation to consumers were also not considered 

during live discussion after being raised during introduction presentations, so participants with 

behavioral science expertise from the academic (G.I.A., A.E.G., M.S.B., L.M.F., W.R., S.G.) and 

industry (L.A.G.) cohorts led a written section presented here. They first recommended 

developing a taxonomy tree of behavior change techniques specific to delivering CSFW data, to 

standardize and compare techniques across studies. Such taxonomy trees have long existed for 

older behavior change techniques [40]. Second, guiding standards could include best practice 

recommendations for devices to deliver CSFW feedback, if the present evidence gaps [26] could 

be filled and tailored to the user’s demographic and health profile. Third, quality assurance 



 
 

considerations (Sect. 4.2) should inform stated limitations of the data that qualify presentation. 

For example, consumers could be advised to consider sleep/wake data more seriously than sleep 

stages [41]. As with earlier points, participants did not favor enacting legal regulations but rather 

providing evidence-based recommendations to help companies optimize their CSFW products. 

 

5. POLL OF CSFW IMPROVEMENT PRIORITIES 

At the end of the session, we asked attendees to complete a poll, assigning a 1 to 4 priority score 

to each possible objective of the FIMS central standards. Results revealed that the majority of 

attendees were most concerned about quality assurance (Table 3). One participant justified this 

response by noting that “without high quality data none of the other priorities are meaningful”. 

These sentiments are consistent with the preference to deprioritize big data analytics on devices 

that have not completed earlier stages of quality testing (Sect. 4.2, paragraph #2). Furthermore, 

panelists noted that the greatest number of the goals are achieved at the earlier rather than later 

testing stages, as evident from the concentration of bullet items toward the top versus bottom of 

Table 2, column 4.  

 

Poll results also indicated marginally higher priority for devices to interoperate with the 

electronic health record rather than each other (Table 3).  However, the former was incidentally 

achieved by the overall strategy, as evident from its listing in the first row of Table 2, column 4).



 
 

Table 3. Results of a poll of consumer sport and fitness wearables improvement priorities.  
Median Priority 
Score 

Objective Definition Number of Top Priority 
Votes 

#1  
 

Quality assurance 
 

Data accuracy 18 (75%) 

#2 
 

Data standardization 
 

Formatting raw units, timescales, 
coding languages, and storage so 
that datasets can be more readily 
shared with other human 
researchers 

 5 (21%) 

#3 
 

Interoperability of 
devices with electronic 
health record 
 

Similar as above but with goal of 
sharing with medical record 

 1 (4%) 

#4 
 

Interoperability of 
devices with each 
other 

Similar as above but with goal of 
combining data and processing 
algorithms between devices 
within common software 

0 (0%) 

Participants were 24 of the 62 attendees from the Yale Center for Biomedical Data Science. 
The authors attribute the low response rate to ZoomTM lacking a direct audience poll feature at the time of the 
panel, forcing additional clicks to reach the poll.   
Poll options were set prior to the panel so do not necessarily align with all concerns that motivated the discussion, 
since some of the latter (privacy, interpreting and presenting CSFW data to consumers) were added by panelists 
during opening presentations. 

 

6. SUMMARY OF DISCUSSION 

Facilitators of industry participation in the global guiding standards were identified and agreed 

upon by all stakeholders: (1) consumer appeal and satisfaction by increasing the return on 

investment in device quality; (2) unambiguous targets regarding endpoints and reference 

standards; (3) lucrative research partnerships; (4) transparent, multilevel evaluation of device 

quality with specific, constructive criticisms to inform further development; and (5) priming for 

the more rigorous FDA and EU MDR requirements indicated should CSFWs become part of 

regulated medical devices. These facilitators (especially #4) can be best exploited if the guiding 

standards prioritize the benchtop stage of testing.  

 

Benchtop testing was the stage most affected by the barriers to industry participation that were 

identified: competitive advantage conflict and lack of flexibility in previously developed devices. 



 
 

These barriers are heavily pertinent to the benchtop stage of testing because it focuses upon basic 

physical units that are often proprietary. These barriers were all noted by the representative from 

a large manufacturer (Google HealthTM) rather than the small one (XsensioTM), suggesting they 

may be most pertinent to larger companies market-wide.  

 

7. RECOMMENDED ADDITIONS TO EXISTING EFFORTS 

Several other international working groups have begun assembling knowledge that could address 

concerns in the CSFW field. The CTATM has standard guidelines for testing protocols and 

performance criteria of CSFWs, including those that measure energy expenditure, heart rate, step 

counting, sleep, and stress indicators such as autonomic function [42]. These guidelines were 

developed by panels of experts (vendors, regulators, other industry leaders), to establish a 

common understanding that sets a foundation for the industry to develop. In the case of step 

counting and heart rate, the Towards Intelligent Health and Well-Being Network of Physical 

Activity Assessment (INTERLIVE) consortium has refined guidelines via expert panel 

discussion supported by a systematic literature review of existing validation protocols and 

possible sources of bias [43, 44]. Turning from quality assurance to data standardization, the 

Personal Connected Health Alliance (PCHA) Continua Design Guidelines [45] and the Institute 

of Electrical and Electronics Engineers (IEEE) P1752 Open Mobile Health Working Group [46] 

have specifications and open-source codes for standardization of mobile health data.  

 

These protocols are targeted to make a large dent in concerns about CSFWs. By focusing on 

metrics that account for the largest share of CSFW sales (step counting, heart rate) and validation 

among the general population without chronic disease under controlled laboratory conditions, 



 
 

they have maximized the coverage that can be attained from concise published documents. 

Nonetheless, such documents cannot fully respond to needs created by unique aspects of the 

CSFW field. Specifically, there is a need to accommodate: 

1) Heterogeneity of devices, data types, and contexts of data collection (Sect. 1) 

2) Engagement of companies that is pragmatic and appealing for them (Sect. 4.1) 

3) Development in multiple tiers that must be unified (Sect. 4.2) 

4) Constructive and low-cost guidance while products are in early development stages 

and/or have not yet reached a space of regulation by FDA, EU MDR, or GDPR (Sect. 

4.2-4.4). When it comes time to engage those regulators, fees are much higher, and the 

only feedback is a binary approval or disapproval.  

5) Nebulous areas that lack even basic taxonomic standardization, such as best practices for 

CSFW data presentation to consumers (Sect. 4.5) 

 

These nuances would be overwhelming to capture in stagnant published documents. We propose 

instead a dynamic networking “hub” that connects companies with consumers and researchers. 

The hub would amalgamate input from consumers and researchers about desired standards for 

CSFW quality and data formats, then provide companies with networking introductions to 

prospective colleagues that have the needed resources. These resources may include laboratories 

that have essential experts (e.g., a pharmacologist to advise on developing 

photoplethysmography that works for users taking beta blockers), the needed overhead resources 

so companies would only support incremental costs, or clinical trials that could add additional 

devices and surveys for validation sub-studies. For example, a Yale clinical trial recruited a 

cohort from a hard-to-reach population (heavy-drinking young adults) to wear reference standard 



 
 

alcohol sensor devices for two weeks at a cost of US $722,000 but added an experimental 

alcohol sensor for a supplement cost of just $31,000 [47]. Other similar trials are available from 

other panelists [48-50]. Connections made in a networking hub would pass these savings to 

CSFW companies.  

 

8. CONCLUSIONS AND RECOMMENDED NEXT STEPS 

Potential strategies to develop the hub include networking events, peer-reviewed journals for the 

resulting studies, webinars and consultations providing companies with a needs assessment and 

initial networking introductions.   

 

We also considered how to start eliciting company buy-in. Altogether, our panel discussion 

revealed a disconnect between optimizing the full potential of a global guiding reference 

(benchtop testing, for large and small companies) and more immediately achievable steps (field-

based and implementation testing, for forthcoming small companies). Therefore, the panel 

recommended that immediate future endeavors should prioritize field-based testing with 

forthcoming small manufacturers, to subsequently attract larger manufacturers and begin to offer 

benchtop testing.  

 

Finally, we acknowledged there is uncertainty over which endpoints should underlie the testing 

we have outlined (Table 2). Therefore, there is a need to meta-analyze the literature for the 

CSFW endpoints to examine in future testing that are most clinically relevant (i.e., surrogate 

endpoints) [51] and grounded (e.g., pressure-sending treadmill to validate foot-worn inertial 

sensors), leading to a white paper with input from academic and industry stakeholders. These 



 
 

would parallel the efforts of INTERLIVE [43, 44] but extend beyond step counting and heart rate 

to other outputs such as those enumerated in Table 1. Overall, we recommend that guiding 

standards for CSFWs provide companies feedback that is 1) constructive, 2) minimal cost, and 3) 

facilitates flexibility in future directions. Companies should use the standards to the extent that 

they find this feedback beneficial; the aim is not to introduce mandatory regulatory costs. We 

envision a non-profit venture that benefits companies, researchers, and consumers. 
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FIGURE CAPTIONS 

Fig 1 Graphical representation of the step sequence in people with and without classical gait 
disorders [reprinted from [12], Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/)] 

Fig 2 Discussion of where to focus testing efforts, based upon Keadle et al.’s standard testing 
pathway for wearable technology [34]  

  


