
Nonlinear Regression in Dynamic Environments using
Particle Swarm Optimization

Cry Kuranga1[0000-0002-2801-6974] and Nelishia Pillay2[0000-0003-3902-5582]
Department of Computer Science University of Pretoria, Lynnwood Road, Hillcrest, Preto-

ria, South Africa, 0002 (Phone 012 420 5242)
1kurangacry@gmail.com, 2npillay@cs.up.ac.za

Abstract. This paper extends a PSO-based nonlinear regression technique to dy-
namic environments whereby the induced model dynamically adjusts when an
environmental change is detected. As such, this work hybridizes a PSO designed
for dynamic environments with a least-squares approximation technique to in-
duce structurally optimal nonlinear regression models. The proposed model was
evaluated experimentally and compared with the dynamic PSOs, namely multi-
swarm, reinitialized, and charged PSOs, to optimize the model structure and the
regression parameters in the dynamic environment. The obtained results show
that the proposed model was adaptive to the changing environment to yield struc-
turally optimal models which consequently, outperformed the dynamic PSOs for
the given datasets.

Keywords: Dynamic PSO, Least-squares, Nonlinear Regression, Dynamic En-
vironments.

1 Introduction

Regression models can be classified as either linear or nonlinear. Nonlinear models can
be induced by either classical techniques such as Gauss-Newton [1] and Levenberg-
Marquardt methods [2] or machine learning techniques such as evolutionary computa-
tion [3], [4], [5] and artificial neural networks [6], [7].

Nonlinear regression-based prediction, in static environments, has been suc-
cessfully applied in the literature where a static prediction model is constructed once
and then used to predict for instances not used during training. The main objective is to
minimize the nonlinear least-squares error. Therefore, nonlinear regression-based pre-
diction can be considered as an optimization problem where the optimal parameters can
be estimated by either classical or heuristic optimization techniques. However, classical
techniques are usually trapped in local minima [8]. As such, metaheuristics have been
considered as an alternative [5], [3], [4].

Particle swarm optimization (PSO) has been successfully applied to nonlinear
regression problems, in static environments, w.r.t accuracy [9], [10]. However, the
structure of the approximator needs to be optimized as well. Usually, real-world non-
linear regression problems are dynamic. As such, the objective function in a dynamic
environment tends to change, which results in changes in the search space structure and

2

the position of optima. Therefore, the performance of the prediction model constructed
using the past environment is bound to deteriorate. Thus, making a continuous adapta-
tion of the prediction model becomes a necessity. However, a standard PSO in a chang-
ing environment is prune to outdated memory problem and diversity loss [11].

This work aims to extend a PSO-based nonlinear regression technique to dy-
namic environments whereby the induced model dynamically adjusts when an environ-
mental change is detected. As such, this work hybridizes a PSO designed for dynamic
environments with a least-squares approximation technique to induce structurally opti-
mal nonlinear regression models in dynamic environments. This hybridization de-
creases the performance deterioration that usually results from the environmental
changes and consequently, improves the algorithm’s performance. Also, this work eval-
uates experimentally and compared with dynamic PSO algorithms, namely multi-
swarm, reinitialized, and charged PSOs, to optimize the model structure and the regres-
sion parameters in the dynamic environment. Dynamic PSO algorithms are PSO vari-
ants that can adapt in dynamic environments.

This paper is structured as follows: Section 2 discusses related work. Section
3 discusses the proposed model whereas Section 4 discusses the experimental setup and
present the results. Section 5 provides a conclusion to the paper.

2 Related Work

Regression analysis is a statistical-based model induction technique that models a rela-
tionship between variables (quantitative), ideal to predict a selected variable from one
or more other variables [12]. Regression analysis uses equations to describe the given
dataset whereby a regression model consists of the following components [13]: a re-
sponse variable(s), i.e., a real-world output, 𝑦; a vector of predictor variables, i.e., an
input vector 𝒙 = 𝑥!; 𝑥"; … ; 𝑥#; and an unknown parameter, 𝜃, which can be a vector
or scalar.

Given that 𝒙 is an input vector and 𝑦 is a real-world output, a nonlinear model
between 𝒙	and 𝑦 is of the form:

																												𝑦 = 	𝑓(𝑥; 𝜃) 	+ 𝜀																				(1)

where 𝜀 is a random error. A process of fitting the best approximation to a dataset of
𝑛 = |𝑁| data points {(𝒙!, 𝑦!), … , (𝒙", 𝑦")} is commonly referred to as least-squares ap-
proximation [14] [15]. Least-squares approximation minimizes the least-squares error,
𝐸##, to an arbitrary set of m data points:

𝐸## =6 [𝑦$ − 𝑦%̇]&
'

$(!
																																						

where �̇�$ is the predicted output and 𝑦$ is the target value, e.g.

�̇�$ = 𝜏) + 𝜏!𝑥$ +⋯+ 𝜏*+!𝑥$*+! + 𝜏*𝑥$*

=6 𝜏,𝑥$,
*

,()
																										(2)

3

where 𝑝 is the maximum number of terms. The determination of coefficients
(𝜏),…	, 𝜏#) is realized through solving the linear system:

𝒚 ≈ 𝑋𝜏
where 𝜏% = [𝜏&, 𝜏!, … 𝜏'(!,𝜏'] and 𝑦% = [𝑦&, 𝑦!, … 𝑦'(!,𝑦'] .

Therefore, the solution to the least-squares problem can be obtained by solving the
overdetermined system:

(𝑋.𝑋)𝜏 = 𝑋.𝒚

Least-squares problems are usually solved using numerous techniques such as normal
equation, singular value decomposition and QR decomposition technique. The normal
equation technique is very fast though the least precise whereas singular value decom-
position is the most precise though the slowest. The QR decomposition technique
strikes the balance between precision and computational load [15]. QR decomposition
can be computed using several methods such as Givens rotations, Householder trans-
form, and Gram-Schmidt.

The implementation of PSO, in a static environment, for regression problems
has yielded favorable results [9],	[10]. However, since PSO in a changing environment
is prune to outdated memory problem and diversity loss [11], few PSO variants that can
adapt in dynamic environments were selected based on the classification given in
[16]: a memory scheme - reinitialized PSO; a multi-population scheme - multiPSO; and
a diversity maintenance scheme - charged PSO. A brief description of the selected al-
gorithms is provided below.

A charged PSO proposed by Blackwell and Branke, referred to as quantum
PSO (QPSO), is based on the model of an atom [17], [18], [19]. A swarm consists of
both quantum particles and non-quantum particles. For quantum particles, instead of
using the position equation as in the standard PSO, the position of each quantum parti-
cle is determined by a probability distribution. To preserve the swarm diversity, the
quantum particles are randomized at each iteration. The non-quantum particles behave
like standard PSO particles which use velocity and position equations to improve the
current solution. As such, quantum particles search for new solutions [17].

Multi-swarm PSO implements multiple populations, each optimizing a single
solution from the set of solutions [17]. The algorithm keeps the swarm diverse by using
anti-convergence methods and repulsion. The convergence of all sub-swarms is deter-
mined by a convergence radius whereby if all sub-swarm are within 𝑟/012 then one sub-
swarms, usually the one with the worst fitness, is reinitialized.

In reinitialized PSO, the swarm or part of it is randomly re-initialized within
the search space when a change in the environment occurs to enhance diversity	[20].	
Usually, the best particles are maintained within their neighborhood to monitor the best-
known positions. If a change is detected, the particle velocity is reset and the particle’s
current position becomes the particle’s best position. As such, particles are discouraged
to be attracted to their former position. In this work, a nonlinear regression model de-
signed for dynamic environments is proposed that hybridize a QR decomposition, com-
puted using Gram-Schmidt technique and a dynamic PSO algorithm.

4

3 Particle Swarm Optimization in Regression Analysis

The proposed dynamic PSO-based nonlinear regression model consists of a QR decom-
position technique to determine the coefficients of the model and a dynamic PSO to
induce an optimal model structure that can adapt whenever a change in the environment
occurs.

Considering a QR decomposition technique, the predicted output, �̇�$, in Equa-
tion (2), when the dimensionality of the input space, 𝑑, is taken into consideration, can
be rewritten as [5]:

�̇�$ =6 D𝜏(𝛽!, 𝛽&, … , 𝛽3)	F𝑥$,4
5!

3

4(!

G
*

∑ 5"()!
"#$

									(3)

where 𝜏(𝛽!, 𝛽&, … , 𝛽3) is a real-valued coefficient and 𝛽3 is the order of attribute
𝑥$,4. Considering 𝑑	 = 	2 and 𝑝	 = 	2, Equation (3) lets the representation of function
such as:

 �̇�$ = 𝜏(),)) + 𝜏(!,))𝑥$,! + 𝜏(),!)𝑥$,& + 𝜏(!,!)𝑥$,!𝑥$,& + 𝜏(&,))𝑥$,!& + 𝜏(),&)𝑥$,&&
As such, QR decomposition determines the value of the coefficients, 𝜏(𝛽!, 𝛽&, … , 𝛽3).
Therefore, the dynamic PSO is tasked to determine only the optimal model structure.

Each particle in dynamic PSO is a representation of Equation (3) and consists
of unique, term-coefficient mappings from a set, 𝑆: [5]

																														𝑆 = K(𝑡) → 𝜏9), … , N𝑡"% → 𝜏"%OP																		(4)

where 𝜏, , 𝑗 ∈ T0,… , 𝑛*V	is a real-valued coefficient and 𝑛* is the maximum number
of terms. Each term, 𝑡, , consists of a set, 𝑇, of unique, variable-order mappings e.g.

𝑇 = TX𝑥$,! → 𝛽!Y, … , X𝑥$,3 → 𝛽3YV

where 𝑥$,, , 𝑗 ∈ {1,… , 𝑛} is an input variable-integer representation, 𝑛 is the number
of input variables and 𝛽, 	is a natural-valued order. The coefficients of term-coefficient
mappings are determined by reducing 𝒚 ≈ 𝑋𝜏.	 Algorithm 1 summarizes a dynamic
PSO-based nonlinear regression technique.

Algorithm 1 Dynamic PSO-based Nonlinear Regression
BEGIN

Initialize particles using Eqn (3)
DO

 Run n iterations of the dynamic PSO algorithm
 IF an environment_change is detected
 Update the coefficients of term-coefficient mappings in each particle

 by reducing 𝒚 ≈ 𝑋𝑟.
 END

UNTIL termination condition satisfied;
END

5

3.1 Fitness Function

The adjusted coefficient of determination, 	𝑅:&, is used to measure the fitness of each
particle and is defined as:

𝑅:& = 1 −
∑ (𝑦$ − 𝑦;,$)&"
$(!
∑ (𝑦$ − 𝑦\)&"
$(!

×
𝑛 − 1
𝑛 − 𝑘

where the predicted output of particle 𝐼 for the pattern 𝑖 is 𝑦;,$, the target output is
𝑦$, n is a size of data patterns and k is the number of coefficients. The 	𝑅:& penalizes a
model that has a larger number of coefficients, k. Thus, the objective of 𝑅:& is to mini-
mize the model’s architecture, whereas maximizing the correlation between the dataset
and the induced model.

3.2 Detecting Environmental Changes

For an algorithm to efficiently optimize in a dynamic environment, there is a need for
the algorithm to detect an environmental change [21]. Various indicators can be used
to detect an environmental change in a dynamic environment such as the time-averaged
best performance or the deterioration of the population performance [22]. In this work,
a simple and efficient method to detect environment change used in [23] was adopted
that uses the personal Best position of each particle which is re-evaluated before being
updated. As such, fitness deterioration implies that an environmental change had oc-
curred.

4 Experimental Setup and Results

In this section, the multi-swarm, reinitialized and charged PSOs and the proposed
model were experimentally evaluated. All experiments were implemented in MATLAB
programming environment [24] on an Intel Core i7 processor (3.1 GHz) desktop with
16 GB of memory running on a Linux Centos 7 system. For reinitialized PSO, 50% of
the swarm was reinitialized when an environmental change was detected. The follow-
ing PSO parameters in the literature were used 𝑐! = 𝑐& = 1.496180, 𝜔 = 0.729844,
𝑟/012 = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚_𝑟𝑎𝑑𝑖𝑢𝑠 = 2 , 𝑠𝑤𝑎𝑟𝑚_𝑠𝑖𝑧𝑒 = 50 and QR decomposition: 𝑛* =
𝛽, = 10. For each experiment, 1000 iterations were executed for each algorithm.

The training algorithms were categorized into QR_PSOs and nonQR_PSOs.
The QR_PSOs consist of dynamic PSOs namely, charged PSO (QPSO), multi-swarm
PSO (mPSO) and re-initialized PSO (rePSO) that implemented the proposed Algorithm
1 and therefore, referred to as QR_QPSO, QR_mPSO and QR_rePSO respectively. To
benchmark, the performance of the proposed model, nonQR_PSOs (QPSO, mPSO and
rePSO) were implemented in all experiments. The initial swarm for each algorithm was
initialized using Equation (3).

To simulate dynamic environments, a windowing technique was used. A slid-
ing window of analysis was set to ws data patterns. A data pattern consists of the inputs

6

and target output for the given dataset. Each sliding window was split to training and
generalization datasets using the ratio 4:1 respectively.	

4.1 Performance Measure

The off-line performance was used to evaluate the performance of the algorithm, com-
puted at each time step as the best fitness found so far [22]. A total of 30 independent
runs were executed on each experiment for each algorithm and then averaged. The
Mann-Whitney U test was performed, at a significance level of	0.05,	to determine if
there was a statistically significant difference between the mean fitness values of the
training algorithms for each experiment [25]. A test was performed for the algorithms’
mean fitness values, µ! and µ& , whereby 	𝐻) ∶ 	 𝜇! 	= 	 𝜇& , and 𝐻! ∶ 	 𝜇! ≠ 𝜇& . These
tests were performed for every combination of algorithms and all problems. The num-
ber of wins and losses for each algorithm was determined using U-values. The overall
performances were ranked based on the difference between wins and losses of each
algorithm.

4.2 Dataset

Real-world nonlinear regression datasets in dynamic environments enable to evaluate
the performance of the induced model in real-world conditions. However, the existence
of a real drift in the data is unknown or if the drift exists, it may be unknown when
exactly it occurs. As such, it becomes difficult to have an in-depth analysis of the be-
havior of the predictive models. Therefore, an artificially generated dataset with in-
duced drifts becomes favorable.

a) Benchmark Dataset

Auto-generated datasets of 10	000 patterns with 100 timesteps were used in the exper-
iments conducted in this work on different types of change period. The datasets were
generated using the benchmark nonlinear Bennett5 function computed as [26]:

𝑓(𝑥, 𝜃) = 𝜃! + (𝜃& + 𝑥)
+ !
<&

The starting values for Bennett5 function were provided in the literature. An environ-
mental change is simulated by adding drift to each parameter, 𝜃$ = 𝜃$ + 𝛿𝜎 where 𝛿
is the drift and 𝜎 is the probability of altering the direction of change. The following
equation was used to simulate the drift:

𝑓(𝛿) = 0.6𝛿& + 0.02𝛿 + 0.01		

The impact of the drifts was smaller at the beginning and then improves along with an
increase in the frequency	(𝑓).

A sliding window of size of 100 patterns slides from one timestep, which con-
sists of 100 patterns, to the next. The change period occurs at severities and frequencies
of 1 to 5. The severity of change determines the probability of altering the direction of
change, 𝜎, where a value of 5 implies that the reverse direction of change is certain at

7

each change period. The timestep at which the change occurs is determined by the fre-
quency of change and was computed as:

𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑜𝑖𝑛𝑡 =
𝑓
10	× 𝑇

where 𝑇 is the total number of iteration and 𝑓 is the frequency. A high value of 𝑓
implies that fewer changes were occurring to the dataset.

b) Electricity Pricing

A real-world dataset, Electricity pricing that consists of 27552 data patterns, was also
implemented in this work [27]. The Electricity pricing dataset was built on the electric-
ity market in the Australian state of New South Wales. This dataset exhibits both long-
term regular changes happening as a result of seasonal changes and short-term irregular
changes happening as a result of weather fluctuations.

To determine the electricity price, the current electricity demand is matched
with the combination of all available power stations with the least expensive electricity.
The task of the proposed model was to induce a predictive model that determines the
electricity price from the given parameters.

The sliding window size (ws) was set to 100 data patterns. The training algo-
rithm requires 275 slides to traverse the complete dataset. Given that 100 iterations
were executed before the sliding window slides. Therefore, for the training algorithm
to traverse the complete dataset, 27 600 iterations were executed.

4.3 Results

The results were analyzed using mean squared errors (𝐸=>) and adjusted coefficient of
determination	(𝑅:&) on training and generalization for different severities and frequen-
cies. The p-values corresponding to the comparison of the training algorithms on 𝐸=>𝑇
(training) and 𝐸=>𝐺 (generalization) for 30 independent runs were reported in Appen-
dix 1 where 𝑝 ≤ 0.0001 was recorded as 0.0001 for convenience. Table 1 presents the
average (avgs) and standard deviation (SD at the 95% confidence interval) of Bennett5
dataset for 	𝑅:& and 𝐸=> on training and generalization for each algorithm.

The results presented in Table 1 show that QR_QPSO obtained the best 	𝑅:&
on both training and generalization whereas mPSO obtained the worst performance on
generalization and rePSO on training. As presented in Table 1, QR_PSOs yielded im-
proved performances compared to nonQR_PSOs on both 	𝑅:& and 𝐸=>, except for
QPSO on 	𝑅:&. This performance improvement could have been attributed by the capa-
bility of the proposed technique to track and adapt the nonlinear regression model as
the environment changes. Also, the value of 	𝑅:& above 0.7 suggests structurally optimal
models generated by QR_PSOs. Considering QR_PSOs only, QR_QPSO exhibit supe-
rior performance whereas QR_rePSO exhibit the worst performance.

The averages for 	𝑅:& and EMS on generalization per frequency and severity
are graphically illustrated in Figure 1. As illustrated in Figure 1, the performance of
all training algorithms improved as the frequency increased on both 	𝑅:& and 𝐸=>. How-
ever, QR_PSOs exhibit superior performance evident with high 	𝑅:& and low 𝐸=>. Also,

8

QR_QPSO outperformed all other algorithms on both 	𝑅:& and 𝐸=> for all frequencies
and severities

Table 1. Avgs and SD for 	𝑅*" and EMS for each algorithm

Algorithm
Training Generalization

R2 EMS R2 EMS

QR_QPSO 0.7075±0.0731 0.3106±0.0142 0.8236±0.0598 0.2183±0.0621
QPSO 0.4227±0.1782 0.3103±0.0097 0.7598±0.0699 0.4504±0.0954
QR_rePSO 0.6169±0.0901 0.3123±0.0099 0.8059±0.0762 0.4043±0.1150
rePSO 0.0769±0.0110 0.3507±0.0223 0.4237±0.0452 0.4992±0.0774
QR_mPSO 0.6407±0.0583 0.3141±0.0132 0.8121±0.0649 0.4807±0.0849
mPSO 0.0912±0.0973 0.3228±0.0192 0.4068±0.0527 0.4271±0.0326

.

Fig. 1. Averages for 	𝑅*" and EMS on Generalization per Frequency and Severity

The average ranks obtained on training algorithms for 	𝑅:& and 𝐸=> on both training and
generalization for the given frequencies and severities were illustrated in Figure 2 and

9

Figure 3. As illustrated in Figure 2, rePSO and mPSO exhibit the worst performance
on both 	𝑅:& and 𝐸=>. On training, QR_rePSO and QR_mPSO exhibit improved perfor-
mance on 𝐸=> . On generalization, QR_QPSO outperformed all other training algo-
rithms on both 	𝑅:& and 𝐸=>. Generally, as the frequency increased, the performance of
nonQR_PSOs deteriorated on both	𝑅:& and 𝐸=> especially for QPSO.

	 	

Fig. 2. Ranks of 	𝑅*" and EMS per frequency on training and testing

As illustrated in Figure 3, QR_QPSO also outperformed all other algorithms on both
	𝑅:& and 𝐸=> whereas rePSO and mPSO exhibit the worst performance on both 	𝑅:& and
𝐸=>. The performance of QR_mPSO improved as the severity increased to outperform
QR_rePSO on generalization on both	𝑅:& and 𝐸=>. This performance improvement for
QR_mPSO suggests the improved adaptive traits of QR_mPSO under severe changing
environment.

10

Fig. 3. Ranks of 	𝑅*" and EMS per severity on training and testing

Generally, the performance of nonQR_PSO on both 	𝑅:& and 𝐸=> deteriorated as the se-
verity increased whereas QR_PSOs exhibit an improved performance as the severity
increased which suggests improved adaptive traits to a changing environment.

Table 2 presents the average (avgs) and standard deviation (SD at the 95%
confidence interval) for 	𝑅:& and 𝐸=> on training and generalization for each algorithm
on Electricity pricing dataset.

As observed in Table 1, the results presented in Table 2 show that QR_QPSO
obtained the best 	𝑅:& on both training and generalization whereas rePSO obtained the
worst performance on generalization and training. Also, QR_PSOs yielded improved
performances compared to nonQR_PSOs on both 	𝑅:& and 𝐸=>. As already explained,
the performance improvement could have been attributed by the capability of the pro-
posed technique to track and adapt the nonlinear regression model as the environment
changes.

11

Table 2. Avgs and SD for 	𝑅*" and EMS for Electricity Pricing Dataset

Algorithm
Training Generalization

R2 EMS R2 EMS

QR_QPSO 0.8874±0.1794 0.0001±0.0004 0.8097±0.2979 0.0011±0.0005
QPSO 0.8646±0.1630 0.0001±0.0004 0.7316±0.3697 0.0041±0.0010
QR_rePSO 0.8671±0.1496 0.0001±0.0004 0.7744±0.3384 0.0032±0.0011
rePSO 0.6670±0.1931 0.0003±0.0012 0.7259±0.3234 0.0043±0.0007
QR_mPSO 0.8694±0.1712 0.0001±0.0003 0.7837±0.2649 0.0028±0.0008
mPSO 0.7108±0.1253 0.0002±0.0009 0.7305±0.3234 0.0042±0.0009

5 Conclusion

The obtained results suggest the capability of the proposed dynamic PSO-based non-
linear regression technique to track and adapt the induced model as the environment
changes. Therefore, yield improved performance and consequently, outperformed the
dynamic PSOs on the given datasets. The hybridization of the dynamic PSOs with QR
decomposition technique indeed decreased the performance deterioration of the in-
duced model that resulted from the environmental changes. The obtained values of	𝑅:&
suggests that the dynamic PSO-based nonlinear regression technique induced structur-
ally optimal nonlinear regression models.

Future work could extend the dynamic PSO-based nonlinear regression tech-
nique to induce the nonlinear regression models using the most recent and relevant data
points from the presented dataset by excluding the irrelevant data points provided in
the data window. Also, to perform a comparative study of dynamic PSO-based nonlin-
ear regression technique with non-PSO machine learning approaches and neural net-
works.

References

1. R.A. Gray, P.D. Docherty, L.M. Fisk, and R. Murray, "A modified approach to objective
surface generation within the Gauss-Newton parameter identification to ignore outlier data
points," Biomedical Signal Processing and Control, vol. 30, p. 162-169, (2016).

2. "Basics on Continuous Optimization," November (2019). [Online]. Available:
http://www.brnt.eu/phd/node10.html.

3. P. Erdoğmuş and S. Ekiz "Nonlinear Regression using Particle Swarm Optimization and
Genetic Algorithm," International Journal of Computer Applications, vol. 153, no.6, (2016).

4. G. Potgieter and A.P. Engelbrecht, "Genetic Algorithm for Structurally Optimisation of
Learned Polynomial Expressions," Applied Mathematics and Computation, vol. 186, p.
1441-1466, (2007).

5. T. Özel, and Y. Karpat, "Identification of constitutive material model parameters for high-
strain rate metal cutting conditions using evolutionary computational algorithms," Materials
and Manufacturing Processes, vol. 22, no. 5, p. 659-667, (2007).

6. K. Hornik, "Multilayer feedforward networks are universal approximators," Neural
Networks, vol. 2, p. 359–366, (1989).

12

7. U. Atici, "Prediction of the strength of mineral admixture concrete using multivariable
regression analysis and an artificial neural network.," Expert Systems with Applications, vol.
38, no. 8, p. 9609-9618, (2011).

8. Z. Lu, C. Yang, D. Qin, Y. Luo, and M. Momayez, "Estimating ultrasonic time-of-flight
through echo signal envelope and modified Gauss-Newton method," Measurement, vol. 94,
p. 355-363, (2016).

9. S. Cheng, C. Zhao, J. Wu, and Y. Shi, "Particle Swarm Optimization in Regression Analysis:
A Case Study," Lecture Notes in Computer Science ,(2013).

10. S.M. Abdullah, A. I. M. Yassin, and N. M. Tahir, "Particle Swarm Optimization and Least
Squares Estimation of NARMAX," ARPN Journal of Engineering and Applied Sciences,
vol. 10, no. 22, (2015).

11. T.M Blackwell, "Particle Swarm Optimization in Dynamic Environments," Evolutionary
Computation in Dynamic and Uncertain Environments, vol. 51, p. 29-49, (2007).

12. N.R. Draper, and H. Smith, Applied Regression Analysis, vol.326, John Wiley & Sons,
(1998).

13. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd ed., Springer Series in Statistics, Springer, (2009).

14. J.B. Fraleigh, and R.A. Beauregard, Linear Algebra, 3. edition, Ed., Upper Saddle River,
NJ: Addison-Wesley Publishing Company, (1995).

15. S. M. Stigler, "Gauss and the Invention of Least Squares," Ann. Stat., vol. 9, no. 3, p. 465–
474, (1981).

16. S. Yang and X. Yao, "A Comparative Study on Particle Swarm Optimization in Dynamic
Environments," in Evolutionary Computation for DOPs, Berlin Heidelberg, Springer-
Verlag, pp. 109-136, (2013).

17. T. Blackwell and J. Branke, "Multi-swarm Optimisation in Dynamic Environments,"
Applications of Evolutionary Computing, vol. 3005, pp. 489-500, (2004).

18. T.M. Blackwell and P.J. Bentley, "Don't Push Me! Collision-Avoidance Swarms,"
Proceedings of the IEE Congress on Evolutionary Computation, vol. 2, p. 1691-1696,
(2002).

19. T.M. Blackwell and P.J. Bentley, "Dynamic Search with Charged Swarms," Proceedings of
the Genetic and Evolutionary Computation Conference, vol. 2, p. 19-26, 2002.

20. T.M. Blackwell, and J. Branke, "Multiswarms, exclusion, and anti-convergence in dynamic
environments.," IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, p. 459–
472, (2006).

21. H. Richter, "Detecting change in dynamic fitness landscapes," in Proc. Congr. Evol.
Comput, p. 1613–1620 ,(2009).

22. J. Branke, Evolutionary Optimization in Dynamic Environments, Norwell, MA: Kluwer,
(2002).

23. D. Parrott and X. Li, "Locating and tracking multiple dynamic optima by a particle swarm
model using speciation," IEEE Trans. Evol. Comput., vol. 10, no. 4, p. 440–458, (2006).

24. "Mathworks," MATLAB, [Online]. Available: www.mathworks.com.
25. P.E. McKnight, and J. Najab, "Issues with Performance Measures for Dynamic Multi-

objective Optimization," Proceedings of IEEE Symposium on Computational Intelligence in
Dynamic and Uncertain Environments, p. 17-24, (2013).

26. L. Bennett, L. Swartzendruber, and H. Brown, "Superconductivity Magnetization
Modeling," NIST, (1994).

27. M. Harries, "Splice-2 comparative evaluation: Electricity pricing. Technical Report UNSW-
CSE-TR-9905," Artificial Intelligence Group, School of Computer Science and
Engineering, The University of New South Wales, Sydney 2052, Australia, (1999).

