
1

A New DEMO Modelling Tool that Facilitates Model Transformations

Thomas Gray1. Dominik Bork2 and Marné De Vries1

1Department of Industrial and Systems EngineeringUniversity of PretoriaPretoriaSouth
Africa

2Faculty of Computer ScienceUniversity of ViennaViennaAustria

Abstract

The age of digitization requires rapid design and re-design of enterprises. Rapid changes can
be realized using conceptual modelling. The design and engineering methodology for
organizations (DEMO) is an established modelling method for representing the organization
domain of an enterprise. However, heterogeneity in enterprise design stakeholders generally
demand for transformations between conceptual modelling languages. Specifically, in the
case of DEMO, a transformation into business process modelling and notation (BPMN)
models is desirable to account to both, the semantic sound foundation of the DEMO models,
and the wide adoption of the de-facto industry standard BPMN. Model transformation can
only be efficiently applied if tool support is available. Our research starts with a state-of-the-
art analysis, comparing existing DEMO modelling tools. Using a design science research
approach, our main contribution is the development of a DEMO modelling tool on the
ADOxx platform. One of the main features of our tool is that it addresses stakeholder
heterogeneity by enabling transformation of a DEMO organization construction diagram
(OCD) into a BPMN collaboration diagram. A demonstration case shows the feasibility of
our newly developed tool.

Keywords

DEMO; BPMN; ADOxx; Model transformation; Model consistency; Modelling tool

1 Introduction

The age of digitization requires rapid design and re-design of enterprises. In addition, the
agile design paradigm embraces the use of multiple modelling languages to represent design
knowledge. Unfortunately, this paradigm also has challenges regarding inconsistencies
between model types that represent knowledge from the same knowledge domain. Modelling
researchers should ensure to create models, languages, and methods that can be adapted to
changing requirements in the future [1, p. 3].

Domain-specific languages are created to provide insight and understanding within a
particular domain context and stakeholder group [2]. As an example, the design and
engineering methodology for organizations (DEMO) provides models that represent the
organization domain of an enterprise [3]. DEMO offers a unique design perspective, since its
four aspect models have the ability to represent organization design domain knowledge in a
concise and consistent way, removing technological realization and implementation details
[3]. One of DEMO’s aspect models, the construction model, incorporates an organization
construction diagram (OCD) that provides a concise representation of enterprise operations.

2

Managers value the OCD, since it becomes a blueprint that enables discussions on enterprise
(re-)design and strategic alignment [3, 4]. Recker et al. [5] and Van Nuffel et al. [6] indicated
that unguided use of the Business Process Modeling Notation (BPMN) constructs often leads
to inconsistent models. It is thus our goal to combine the strengths of DEMO and BPMN by
proposing a model transformation and modelling tool support.

Due to its characteristics of being consistent and concise, various authors experimented with
transformations between modelling languages, as discussed in the remaining paragraph. De
Kinderen, Gaaloul and Proper [7] indicated that “ArchiMate lacks specificity on how to
model different perspectives in-depth” while [8, 9] add that ArchiMate lacks in expressing
value exchange. As a solution to these deficiencies, [7] conducted a study to map concepts
from DEMO to concepts contained within the business layer of the ArchiMate meta-model
with the purpose of modelling the essential aspects of an enterprise first in DEMO, followed
by a transformation into an ArchiMate model, adding technological realization and
implementation details. Based on the work of Ceatano et al. [10] and Heller [11], Mraz et al.
[12] presented transformation specifications to generate BPMN models from DEMO models.
Yet, the specifications did not consider the complexity of hierarchical structures in DEMO
models. In addition, their transformation specifications were not supported by tooling to
automate DEMO-BPMN transformations.

This study starts with an evaluation of existing DEMO modelling tools. We conclude that
existing modelling tools do not support all of DEMO’s four aspect models. In addition, the
tools do not facilitate transformations to other languages, such as BPMN. The main objective
of this article is to address stakeholder heterogeneity by developing a DEMO modelling tool
on the ADOxx platform. We demonstrate one of the main features of our tool, namely to
transform a DEMO organization construction diagram (OCD) into a corresponding BPMN
collaboration diagram.

The article is structured as follows. Section 2 provides background on multi-view modelling,
as well as the existing knowledge on DEMO concepts that are explained via a demonstration
case. Using design science research, as presented in Sect. 3, we present the requirements for a
new DEMO tool in Sect. 4 and the DEMO constructional components that form part of the
OMiLAB ecosystem, in Sect. 5. We also demonstrate the key functionality of the new
DEMO tool, i.e. semi-automatic OCD-BPMN transformations for one out of four identified
transformation scenarios. Section 6 ends with conclusions and suggestions for future
research.

2 Background

Model-based development (MBD) approaches suggest separation of concerns, using multiple
views, to manage the complexity of modern software systems [13]. Yet, one of the challenges
of multi-view modelling is the lack of consistency management [14].

Bork [15] emphasised the need to develop consistent and concise conceptual models for
domain-specific languages. Prior to developing tool support and model transformation,
language specifications should at least consider to provide syntax, semantics, and notation for
the different viewpoints [16].

Mulder [17] also acknowledged the need to validate the existing DEMO specification
language (DEMOSL) prior to developing tool support. Using the meta-model definition

3

presented by [18], metamodels should be sufficiently complete to describe all set of models
(i.e. multiple viewpoints) that are allowed, rejecting models that are not valid. In addition, the
metamodel should enable partial transformation of the model (e.g. from ontological to
implementation level). With respect to the DEMO metamodels, Mulder [17] already
suggested improvements regarding the multiple viewpoints evident in four aspect models.
Since our first version of the DEMO-ADOxx tool only includes the construction model
(CM), we elaborate within the next section on the updated metamodel for the CM.

2.1 DEMO Models and Metamodels

DEMO uses four linguistically based aspect models to represent the ontological model of the
organisation domain of the enterprise, namely the construction model (CM), process model
(PM), action model (AM), and fact model (FM) that exclude technology implementation
details [19]. Each model is represented by different diagrams and tables, as illustrated in
Fig. 1.

Fig. 1. DEMO aspect models with diagram types and tables, based on [19] and [20]

The ontological model is based on a key discovery that forms the basis of the aspect models,
namely the identification of a complete transaction pattern that involves two actor roles, a
production act (and fact), and multiple coordination acts (and facts) that are performed in a
particular order [19]. Although it is possible to identify three different sorts of a transaction
kind (TK), i.e. original, informational and documental, the four aspect models primarily
focus on the original sort. A TK can also be classified as an elementary TK when it is
executed by only one actor role, or an aggregate TK (ATK) when it is executed by multiple
actor roles. Also, an actor role can be classified as either an elementary actor role (EAR)
when s/he executes one TK and a composite actor role (CAR) when s/he is the executor of
more than one TK [19, 20].

4

The concepts that were discussed so far, as well as the relationships between concepts, are
described via a metamodel presented in [19]. Mulder [17] identified several inconsistencies
with regards to the CM, addressing the issues in [21]. Figure 2 presents an updated
metamodel that incorporates the extensions suggested by Mulder [21]. Note that the Scope of
Interest (SoI) is not modelled as a separate concept, since Mulder [21] argues that the SoI is
equivalent to the CAR. The relationships and cardinalities in Fig. 2 signify modelling
constraints when a modeller composes a CM. The constraints should also be incorporated in
the modelling tool. As an example, a single relationship exists between Transaction Kind
(TK) and Aggregate Transaction Kind (ATK) in Fig. 2. The relationship can be interpreted in
a forward direction as: “One TK is contained in zero or many ATKs”. The relationship
interpretation of the reverse direction is: “One ATK contains one or many TKs”.

Fig. 2. DEMO construction model metamodel Version 3.7 [19] with extensions of [21]

2.2 The Demonstration Case

The demonstration case had to include the necessary complexity to ensure that a modeler
would be able to construct a TPT (illustrated in Fig. 3) and an OCD (illustrated in Fig. 4) with
all the relationships and cardinalities depicted in Fig. 2. Selecting a fictitious college as the
universe of discourse, some operations of the college regarding the presentation of a new
project-based module at the college, are incorporated, listed as transaction kinds in Fig. 3.

5

Fig. 3. The TPT for a college, based on [19]

Fig. 4. The OCD for a college, based on [19]

The reader is referred to [19] for a comprehensive introduction to the OCD and legend for
concepts included in Fig. 2 and Fig. 4. In our demonstrating OCD, portrayed in Fig. 4, we
assume that we only include TKs that are of the original transaction sort, in accordance with
the guidelines presented by Dietz [20] to focus on the essential TKs. Based on the concepts
declared in [19], we use bold style to indicate the type of construct and italics when referring
to an instance of the construct (see Fig. 4).

Scope of Interest (SoI) indicates that the modeler analyses a particular scope of operations,
namely some operations at a college. Given the SoI, Fig. 4 indicates that three
environmental actor roles are defined, see the grey-shaded constructs student, project
sponsor and HR of project sponsor that form part of the environment. Within the SoI,

6

multiple transaction kinds (TKs) are linked to different types of actor roles via initiation
links or executor links. As an example, supervisor allocation (T01) is a TK that is initiated
(via an initiation link) by the environmental actor role student (CA01). In accordance with
[20], the student (CA01) is by default also regarded to be a composite actor role “of which
one does not know (or want to know) the details”. Since T01 is linked to an environmental
actor role, it is also called a border transaction kind. T01 is executed (via the executor
link) by the elementary actor role named supervisor allocator (A01).

All the other actor roles in Fig. 4 within the SoI are elementary actor roles, since each of
them is only responsible for executing one transaction kind. A special case of is where an
elementary actor role is both the initiator and executor of a transaction kind, also called a
self-activating actor role. Figure 4 exemplifies the self-activating actor role with module
reviser (A04) and project controller (A05). Since actor roles need to use facts created and
stored in transaction banks, an information link is used to indicate access to facts. As an
example, Fig. 4 indicates that project controller (A05) has an information link to
transaction kind module revision (T04), indicating that the project controller (A05) uses
facts in the transaction bank of module revision (T04). It is also possible that actor roles
within the SoI need to use facts that are created via transaction kinds that are outside the
SoI. As an example, Fig. 4 indicates that actor roles within the SoI (called, some operations
at a college) need to use facts that are created outside the SoI and stored in the transaction
banks of aggregate transaction kinds, namely person facts of AT01, college facts of AT02,
accreditation facts of AT03, timetable facts of AT04 and student enrollment facts of AT05.
According to Fig. 4, the student enrollment facts of aggregate transaction kind AT05 are not
accessed by any actor roles, which should be possible (according to the meta-model depicted
in Fig. 2).

Even though Fig. 4 only includes elementary actor roles within the SoI, it is possible to
consolidate elementary actor roles within a composite actor role, where a composite actor
role “is a network of transaction kinds and (elementary) actor roles” [20]. Figure 4 illustrates
two composite actor roles within the SoI, namely College (CA0) and Controller (CA01).
Both CA00 and CA01 encapsulate a number of transaction kinds and elementary actor roles.

3 Research Method

Applying design science research (DSR), we developed the DEMO-ADOxx modelling tool.
According to Gregor & Hevner’s [22] knowledge contribution framework, the modelling tool
can be considered as an improvement, since the tool will be used for solving a known
problem. Referring to the DSR steps of Peffers et al. [23], this article addresses the five steps
of the DSR cycle in the following way:

Identify a Problem:

In Sect. 4.1 we present minimal requirements for a useful DEMO modelling tool. Based on
the requirements, we assess in Sect. 4.2 that existing DEMO modelling tools are inadequate.

Define Objectives of the Solution:

In Sects. 4.3 and 4.4 we specify a new DEMO-ADOxx tool to address the requirements. We
highlight that the DEMO-ADOxx tool only supports one of the four aspect models, namely

7

the CM. Furthermore, the tool only incorporates two of the three CM representations, namely
the OCD and TPT.

Design and Development:

In accordance with the specification, we developed a DEMO-ADOxx tool, whose
constructional components are presented in Sect. 5.

Demonstration:

In accordance with the demonstration case, discussed in Sect. 2.2, we demonstrate the tool,
highlighting its key feature, i.e. the transformation of a user-selected transaction kind of an
OCD into a corresponding BPMN diagram.

Evaluation:

Evaluation was restricted to internal testing, using the DEMO-ADOxx tool to model a more
extensive case (than the demonstration case in Sect. 2.2). Individual test scenarios were
created to validate each of the relationships and cardinalities illustrated in Fig. 2. The study
excluded further evaluation, but Sect. 6 provides suggestions on further evaluating and
extending the DEMO-ADOxx tool.

4 Requirements Elicitation and DEMO Tool Specification

A number of tools exist that support, to a limited extent, the creation of DEMO models.
Before we compare these tools, the next section presents three categories of tool requirements
from the perspective of a DEMO modeller.

4.1 DEMO Requirements

During the development of new software application systems, the analyst needs to consider
three main categories of requirements, namely functional requirements, non-functional
requirements, and design constraints [24]. In terms of the DEMO modelling tool, functional
requirements regard the inputs, outputs, functions and features that are needed [24] (see R1 to
R3 below). The non-functional requirements (see R4 and R5 below) incorporate the qualities
of a system, such as performance, cost, security, and usability. The design constraints pose
restrictions on the design of the system to meet technical, business, or contractual obligations.
Next, we present initial requirements for a DEMO tool, structured according to the first two
categories. The purpose is to compare and evaluate the existing DEMO tools in terms of the
following minimum requirements defined from the perspective of a lecturer teaching DEMO:

 R1: The DEMO tool should be comprehensive in supporting all of the DEMO aspect
models, namely the CM, PM, AM and FM (refer to Fig. 1).

 R2: The DEMO tool should support the most recent published language specification,
i.e. DEMOSL 3.7 (see [19]) and the extensions that have been published (see [21]).
The tool should be ready to accommodate future upgrades of the DEMO language.

 R3: The DEMO tool should facilitate model transformations to other modelling
languages such as BPMN.

 R4: The DEMO tool should be available at low cost, especially for educational
purposes.

8

 R5: The DEMO tool should be usable, i.e. user-friendly.

We used Nassar’s usability requirements [25] to perform initial usability tests on some of the
available DEMO tools:

 U1 Consistency: The system needs to be consistent in its actions, so that the modeller
can get used to the system without constantly having to adapt to a new way of doing
things. Consistency should apply to the way icons and commands are displayed and
used.

 U2 User Control: The system should offer the user control in the way the model is
built and run. This could include cancelling/pausing operations, undoing or redoing
steps. The modeller should be able to foresee or undo errors.

 U3 Ease of learning: The system should be easy to learn for a new modeller. This is
achieved by avoiding icons, layouts and terms that are unfamiliar to the modeller.

 U4 Flexibility: The system is expected to offer different ways to accomplish the same
task so that the user experiences maximum freedom. Examples include shortcut keys,
different icon options or even layout customisation.

 U5 Error Management: The system is expected to have built-in counter-measures to
prevent mistakes by displaying error messages, warning icons or simply preventing
incorrect placement of model elements.

 U6 Reduction of Excess: The system should avoid displaying unnecessary
information or adding unnecessary functionality to the tool. The program should be
functional and easy to understand.

 U7 Visibility of System Status: The user of the system should be aware of the status
of the system at all times. For example, if a command does not occur instantaneously,
then the system should inform the user of the delay.

Table 1. Evaluation results for functional and meta-model requirements

9

4.2 Evaluating Existing DEMO Tools

In this section, we provide an overview of the existing tools, starting with a list presented in
[26], adding Abacus and our ADOxx tool. In a first phase, we evaluated existing tools in
terms of requirements R1 to R4 (see Table 1) using the following methods in order of
preference: (1) experimenting with the tools that were available; (2) contacting the tool
owners for information about their tools; and (3) using the tool evaluation results of Mulder
[26]. During a second phase, we tested the usability (R5) of four tools that were openly
available (see Table 2).

Table 2. Evaluation of usability requirements

Phase 1 Evaluation:

In Table 1, we present evaluation results of existing DEMO tools with respect to R1 to R4,
indicating the extent to which a specific tool meets a requirement, as explained in the legend
of Table 1. R1, R2 and R4 were evaluated by Mulder [26] already. In his study he found that
only Plena (of the studied tools) complies with R1 (i.e. support all four DEMO aspect
models), none of the tools comply with R2 (i.e. supports the DEMOSL 3.7 specification
language with extensions), and only ModelWorld complies with R4 (i.e. is available free of
charge for academics and students).

Our ADOxx tool does not comply with R1, since the initial focus of the tool is to support the
CM. For R2, the ADOxx tool supports DEMOSL 3.7 and the extensions. For R3 only the
ADOxx tool supports transformations from DEMO models to other model types. Regarding
R4, the ADOxx tool is free of cost for education purposes.

Phase 2 Evaluation:

We had access to three of the existing DEMO modelling tools listed in Table 1, namely
Abacus, ModelWorld and Plena. Using Nassar’s usability requirements [25] listed in
Sect. 4.1, we evaluated each of the three tools, also adding the DEMO-ADOxx tool, to gain
some insights regarding their usability. The results are summarised in Table 2, indicating that
three of the tools have usability drawbacks:

 Modelworld scored very low on U2 (User Control), U4 (Flexibility) and U7
(Visibility on System Status). Regarding U2 and U4, the modeller is unable to cancel
any steps, undo any actions or navigate forwards and backwards. Basic keyboard
shortcuts are not available to the user, such as the delete key. With reference to U7,
ModelWorld offers no indication regarding the status of the system.

 Plena scored low on U3 (Ease of Learning), and U6 (Reduction of Excess). Plena is
initially a challenge to use as it needs to be installed separately from Enterprise

10

Architect and then imported as a plugin. Since Plena is a plugin to Enterprise
Architect, some functionality is not applicable to DEMO.

 DEMO-ADOxx scored low on U4 (Flexibility), since the tool deviates from the
standard drag-and-drop behaviour of other modelling tools. For this tool, a modeller
needs to “left-click” on the construct in the template, dropping the construct by “left-
clicking” within the modelling area on the right. It is possible to reason that the drag-
and-drop behaviour is merely a behaviour-preference of one modeller and that other
modellers will not highlight this as a usability deficiency.

The purpose of the evaluation was to provide an overview of the existing DEMO modelling
tools to establish whether a new DEMO tool was needed. Even though existing tools are
available, our main concern is that existing tools do not address requirements R2, R3 and R4.
The new DEMO-ADOxx tool has been developed as a main deliverable for this study to
address these three requirements. In terms of R1, the next section motivates the decision to
initially set the scope to the DEMO CM.

4.3 DEMO Tool Specifications for the OCD and TPT

A qualitative analysis on DEMO aspect models, indicate that the CM, detailed by the PM, are
useful for assigning responsibilities and duties to individuals [4]. The AM and FM “are
necessary if you are going to develop or select applications” [4]. Since the conceptual
knowledge embedded in the PM is similar to the BPMN collaboration diagram [12] and
BPMN is widely adopted by industry [27, 28], the initial DEMO-ADOxx tool focuses on the
CM. We exclude the PM, since the PM logic can be also represented by the industry-accepted
notation BPMN. Our tool ensures consistent OCD-derived BPMN collaboration diagrams
that incorporate the logic embedded in the DEMO standard transaction pattern as defined in
[19].

We incorporated recent specifications regarding the OCD and TPT, as stated in [19] and [21],
as well as BPMN 2.0 [29] for the first version of the DEMO-ADOxx tool. All of the
existence rules, shown in Fig. 2 were implemented, except for one. The rule “facts with fact
kind FK are contained in the bank of TK”, indicated on Fig. 2, has not been incorporated in
the DEMO-ADOxx tool, since it relates to the bank contents table (BCT), and the BCT
relates to concepts that are used as part of the FM.

4.4 OCD-BPMN Transformations Specification

We identified four transformation scenarios that should be addressed by the DEMO tool. The
specifications are excluded for the purpose of this article. Although the ADOxx-DEMO tool
incorporates all four scenarios, we only include the second scenario, since this scenario
already includes complexity of parent-and-part TKs. Referring back to the OCD depicted in
Fig. 4, the four scenarios are as follows:

 Scenario 1: Customer-initiated TK with no parts. For this scenario, an actor role that
is outside the scope-of-interest, initiates a TK. Also, the TK does not have any parts,
i.e., the executor of the TK, is not initiating other TKs. Referring to Fig. 4, the TK
labelled T01 (supervisor allocation) is an example of this scenario. T01 is initiated by
the actor role student. The executor of T01 is the supervisor allocator. Yet, the
supervisor allocator does not initiate any other TKs as parts.

11

 Scenario 2: TK is part of another TK. For this scenario, the selected TK forms part of
another TK. Referring to Fig. 4 the TK labelled T07 (project involvement) is initiated
by an actor role A06 (internal project sponsor). Since the internal project sponsor is
both the executor of T06 (internal project sponsoring) and the initiator of T07
(project involvement), T07 is a part of T06.

 Scenario 3: TK is self-initiating. For this scenario, the selected TK is initiated and
executed by the same actor role. Referring to Fig. 4, the TK labelled T04 (module
revision) is initiated and executed by A04 (module reviser).

 Scenario 4: TK has one or more parts. For this scenario, the selected TK has one or
more parts, i.e. the actor role that executes the TK, is also initiating one or more
other TKs. Referring to Fig. 4 the TK labelled T5 (project control) is executed by
actor role A05 (project controller). The same actor role A05 (project controller) also
initiates multiple other TKs, namely T02 (project sponsoring), T03 (IP clearance),
and T06 (internal project sponsoring).

5 Demonstration of the DEMO-ADOxx Tool in Use

The ADOxx platform, part the Open Models Laboratory (OMiLAB) digital ecosystem, is
designed to support conceptualization and operationalization of conceptual modelling
methods [30]. ADOxx allows a developer to create new modelling tools, or to extend existing
ones to cater for any number of user requirements and customizations. The DEMO-ADOxx
tool is realized as an OMiLAB project which enables free download1.

5.1 Modelling and Validation Features

Figure 5 illustrates two main tool sections: (1) Explorer section - models (created before) are
listed far left; and (2) Modelling section - OCD constructs are selected by “left-clicking” on
the construct in the template, dropping the construct by “left-clicking” within the modelling
area on the right. The relationships can be created either from dragging and dropping, or by
using the model assistant which allows one to create a relationship directly from an existing
construct in the model.

Fig. 5. The modelling interface for the DEMO-ADOxx tool

12

At the top of the screen are the menu options depicted. We implemented a Model Analysis
menu that provides the option to either generate a TPT such as the one in Fig. 3, or to validate
a model.

The Validation feature implemented each of the existence rules (relationships and
cardinalities) presented in Fig. 2, except for one, as indicated before in Sect. 4.3. Figure 6
illustrates a validation table that communicates to the modeller: (1) The nature of a mistake in
the model; and (2) The model constructs involved.

Fig. 6. Validation feature of the DEMO-ADOxx tool

Based on the demonstration case discussed in Sect. 2.2, we used the new tool to generate an
OCD (see Fig. 4) as well as a TPT (see Fig. 3) by utilizing the implemented semi-automatic
model transformations of the DEMO-ADOxx tool.

5.2 Transformation Features

Selecting the Model Transformation menu option, the modeller can select one of the
transaction kinds in the current OCD model. In our example the modeller selected T07
(project involvement) that represents a Scenario 2 transformation. The modeller also needs to
specify the detail of interaction between parent-and-part TK’s. In addition, cardinalities that
exist between relevant parent-part structures, have to be specified by the modeller. As an
example, Fig. 4 indicates that T07 is initiated by A06 (internal project sponsor). Yet, A06 is
also the executor of T06 (internal project sponsoring). Therefore, T06 can only be requested
when a T07 has made some progress through the sequence of coordination acts associated
with the universal transaction pattern.

As indicated in Fig. 7, the modeller needs to indicate how T07 (project involvement) is
initiated as a-part-of-T06 (internal project sponsoring), i.e. which one of the four basic
coordination facts for T06 (requested, promised, stated or accepted) is a prerequisite for
initiating T07. In addition, the modeller needs to indicate the cardinalities involved between
one instance of the parent (T06) that generates a number of instances of the part (T07). For
our demonstration (see Fig. 7), the modeller indicated that an instance of T06 has to be stated
before T07 is requested. Also, one instance of T06 initiates zero-to-many (0..*) instances of
T07. Since the transaction-progress of the parts may also regulate the transaction-progress of
the parent, the modeller also has to indicate how the zero-to-many (0..*) part-instances (T06
instances) should all be accepted before the parent instance (T07 instance) can be accepted.

13

Fig. 7. User-interface to specify cardinalities for parent-part structures

Based on the modeller selections illustrated in Fig. 7, the DEMO-ADOxx tool automatically
generates the corresponding BPMN collaboration diagram (see Fig. 8). The BPMN diagram
(Fig. 8) presents the initiating actor role (internal project sponsor) as a BPMN pool and the
executing actor role (student) as a BPMN pool. In accordance with transformation
specifications (not detailed in this article), transaction pattern detail for the standard pattern,
is depicted via BPMN concepts.

Fig. 8. BPMN collaboration diagram generated for T07 (project involvement)

14

6 Conclusions and Future Research

Our research indicated that existing DEMO modelling tools do not meet the minimum
requirements. One of the key requirements is that the modelling tool needs to allow for model
transformations, specifically transformations from a DEMO OCD to a BPMN collaboration
diagram.

We have used two sets of specifications, (1) recent DEMO specifications from [19] and [21],
and (2) OCD-BPMN transformation specifications, to develop a new DEMO-ADOxx tool to
demonstrate the modelling and validation features, as well as the OCD-BPMN transformation
feature.

The meta-model provided a good baseline for the DEMO-ADOxx tool. Yet, we accept that
the meta-model will change in the future and these changes need to be accommodated by our
tool in future. We still wait for feedback on the OCD-DEMO transformation specifications
that will require further work on the DEMO-ADOxx tool. Realizing the tool as an open
source project within the OMiLAB ensures that a community can take over future tool
enhancements.

The demonstration case was useful in presenting the key features of the new DEMO-ADOxx
tool. In terms of the usability requirements, additional evaluation is required. For future work,
DEMO modellers will be involved during usability tests to inform further tool enhancements.
In addition, a new version of DEMOSL will be released during 2020 and need to be
incorporated within the DEMO-ADOxx tool.

Footnotes

1.DEMO-ADOxx download: https://austria.omilab.org/psm/content/demo, last accessed:
09.04.2020.

References

1. Frank, U., Strecker, S., Fettke, P., Vom Brocke, J., Becker, J., Sinz, E.J.: The research
field: modelling business information systems. Bus. Inf. Syst. Eng. 6(1), 1–5
(2014). https://doi.org/10.1007/s12599-013-0301-5CrossRefGoogle Scholar

2. Karagiannis, D., Mayr, H.C., Mylopoulos, J.: Domain-specific Conceptual Modeling:
Concepts, Methods and Tools. Springer, Switzerland (2016). https://doi.org/10.1007/978-3-
319-39417-6CrossRefGoogle Scholar

3. Dietz, J.L.G.: Enterprise Ontology. Springer, Berlin (2006). https://doi.org/10.1007/3-540-
33149-2CrossRefGoogle Scholar

4. Décosse, C., Molnar, W.A., Proper, H.A.: What does DEMO do? A qualitative analysis
about DEMO in practice: founders, modellers and beneficiaries. In: Aveiro, D., Tribolet, J.,
Gouveia, D. (eds.) EEWC 2014. LNBIP, vol. 174, pp. 16–30. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06505-2_2

15

5. Recker, J., Indulska, M., Rosemann, M., Green, P.: How good is BPMN really? Insights
from theory and practice. In: Ljungberg, J., Andersson, M. (eds.) Proceedings 14th European
Conference on Information Systems, ECIS, pp. 1582–1593 (2006)

6. Van Nuffel, D., Mulder, H., Van Kervel, S.: Enhancing the formal foundations of BPMN
by enterprise ontology. In: Albani, A., Barjis, J., Dietz, J.L.G. (eds.) CIAO!/EOMAS -2009.
LNBIP, vol. 34, pp. 115–129. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01915-9_9

7. de Kinderen, S., Gaaloul, K., Proper, H.A.: On transforming DEMO models to ArchiMate.
In: Bider, I., et al. (eds.) BPMDS/EMMSAD -2012. LNBIP, vol. 113, pp. 270–284. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31072-0_19

8. Pijpers, V., Gordijn, G., Akkermans, H.: E3alignment: exploring inter-organizational
alignment in networked value constellations. Int. J. Comput. Sci. Appl. 6(5), 59–88 (2009)

9. Ettema, R., Dietz, J.L.G.: ArchiMate and DEMO – mates to date? In: Albani, A., Barjis, J.,
Dietz, J.L.G. (eds.) CIAO!/EOMAS -2009. LNBIP, vol. 34, pp. 172–186. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01915-9_13

10. Caetano, A., Assis, A., Tribolet, J.: Using DEMO to analyse the consistency of business
process models. In: Moller, C., Chaudhry, S. (eds.) Advances in Enterprise Information
Systems II, pp. 133–146. Taylor & Francis Group, London (2012)

11. Heller, S.: Usage of DEMO methods for BPMN models creation. Czech Technical
University in Prague (2016)

12. Mráz, O., Náplava, P., Pergl, R., Skotnica, M.: Converting DEMO PSI transaction pattern
into BPMN: a complete method. In: Aveiro, D., Pergl, R., Guizzardi, G., Almeida, J.P.,
Magalhães, R., Lekkerkerk, H. (eds.) EEWC 2017. LNBIP, vol. 284, pp. 85–98. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57955-9_7

13. France, R., Rumpe, B.: Model-based development. Softw. Syst. Model. 7(1), 1–2 (2008)

14. Cicchetti, A., Ciccozzi, F., Pierantonio, A.: Multi-view approaches for software and
system modelling: a systematic literature review. Softw. Syst. Model. 18(6), 3207–3233
(2019). https://doi.org/10.1007/s10270-018-00713-w

15. Bork, D.: A development method for conceptual design of multi-view modeling tools
with an emphasis on consistency requirements. University of Bamberg (2016)

16. Grundy, J., Hosking, J., Li, K.N., Ali, N.M., Huh, J., Li, R.L.: Generating domain-
specific visual language tools from abstract visual specifications. IEEE Trans. Softw. Eng.
39(4), 487–515 (2013)

17. Mulder, M.A.T.: Validating the DEMO specification language. In: Aveiro, D., Guizzardi,
G., Guerreiro, S., Guédria, W. (eds.) EEWC 2018. LNBIP, vol. 334, pp. 131–143. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-06097-8_8

16

18. Aßmann, U., Zschaler, S., Wagner, G.: Ontologies, meta-models, and the model driven
paradigm. In: Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering
and Software Technology, pp. 249–273. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-34518-3_9

19. Dietz, J.L.G., Mulder, M.A.T.: DEMOSL-3: demo specification language version 3.7.
SAPIO (2017)

20. Perinforma, A.P.C.: The Essence of Organisation, 3rd ed. Sapio (2017). www.sapio.nl

21. Mulder, M.A.T.: Towards a complete metamodel for DEMO CM. In: Debruyne, C.,
Panetto, H., Guédria, W., Bollen, P., Ciuciu, I., Meersman, R. (eds.) OTM 2018. LNCS, vol.
11231, pp. 97–106. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11683-5_10

22. Gregor, S., Hevner, A.: Positioning and presenting design science research for maximum
impact. MIS Q. 37(2), 337–355 (2013)

23. Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S.: A design science research
methodology for information systems research. J. MIS 24(3), 45–77 (2008)

24. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for Teams,
Programs, and the Enterprise. Addison-Wesley, New Jersey (2011)

25. Nassar, V.: Common criteria for usability review. Work 41(Suppl 1), 1053–1057 (2012)

26. Mulder, M.A.T.: Enabling the automatic verification and exchange of DEMO models.
Ph.D. thesis (n.d.)

27. Grigorova, K., Mironov, K.: Comparison of business process modeling standards. Int. J.
Eng. Sci. Manag. Res. 1(3), 1–8 (2014)

28. Recker, J., Wohed, P., Rosemann, M.: Representation theory versus workflow patterns –
the case of BPMN. In: Embley, David W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol.
4215, pp. 68–83. Springer, Heidelberg (2006). https://doi.org/10.1007/11901181_7

29. Object Management Group: Business process model & notation.
https://www.omg.org/bpmn/. Accessed 30 May 2019

30. Bork, D., Buchmann, R.A., Karagiannis, D., Lee, M., Miron, E.-T.: An open platform for
modeling method conceptualisation: the OMiLAB digital ecosystem. Commun. AIS 44(32),
673–697 (2019)

