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Abstract

A non-linear model is developed to capture the transient flow and pressure behaviour of methane-rich gas (MRG) in industrial
pipelines for the use in simulation and control applications. Hyperbolic partial differential equations describe the pipe pressure
and flow profiles, and composition analyses are used to develop the physical properties of the gas appearing in the pipe segment
equations. The spectral element method (SEM) is used to numerically solve the spatial profiles within the pipeline, and a model
verification is done on the SEM tuning parameter choices. The model is developed into a compact state-space description for
improved usability. Furthermore, the developed model achieves good accuracy when validated on real process data of an industrial
MRG network and can be used for simulation and model-based control applications.
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1. Introduction

Industrial pipelines are used to transfer gas between suppliers
and consumers. This may consist of a single pipe connecting
two nodes or a network of pipes and nodes.

Gas pipelines are traditionally controlled by regulatory con-
trol loops which experience various control challenges such as
varying disturbance sizes due to upsets and changing operat-
ing regions. Regulatory control loops generally have difficulty
in meeting pressure set-point control and flow stability objec-
tives simultaneously over large operating regions. Additionally,
these pipe-line networks are multivariate with multiple inter-
active suppliers and consumers with different control priorities
depending on their associated economic value.

Methane-rich gas (MRG) and natural gas (NG) are both used
as a feedstock to the pipeline network in this study. They
are similar in composition but originate from different sources.
MRG is a product of upstream cryogenic distillation units and
the Fischer—Tropsch reaction which receives gasified coal as a
feedstock [2]]. NG is a fossil fuel extracted from underground
reservoirs and is the secondary feedstock in the network. MRG
is used as the primary feedstock in autothermal reforming and
as a utility for make-up in fuel gas blending to maintain a spec-
ified Wobbe index [3], [4]. MRG is also sold as an end product
to external consumers.

Due to pressure set-point control, the regulatory control
scheme uses flaring for over-pressure control during fast dis-
turbances to protect the downstream units from flow upsets.

* A subset of this work was presented at the European Control Conference
2019, Naples, Italy. [1]
*Corresponding author. Address: Department of Electrical, Electronic, and
Computer Engineering, University of Pretoria, South Africa.
Tel.: +27 12 420 2172; fax: +27 12 362 5000.
Email address: ian.craig@up.ac.za (I.K. Craig)

Preprint submitted to Journal of Process Control

This wastes valuable feedstock and causes expensive economic
penalties. It is therefore advisable to utilise the buffering ca-
pabilities of the header inventory by manipulating all available
controlled flows in a co-ordinated manner to meet control and
economic objectives.

Model predictive control (MPC) is an attractive and widely
accepted solution which may address these challenges [4].
However, a suitable MPC requires a dynamic model which is
accurate over large operating regions, can accurately predict
fast transients, and can appropriately compensate for changes
in gas composition. The development of such a model is the
main focus of this study.

The gas composition is usually assumed to be constant in
literature [S], [6l], [7]. This in turn implicitly assumes constant
standard values for the composition dependant gas properties.
In contrast, this study has access to online analysers on the feed
streams which provide composition measurements and are used
to calculate the gas properties as inputs to the model.

The pressure and flow profiles within the pipelines can vary
considerably due to the compressible nature of gasses. Such
conditions are difficult to model truthfully over large non-linear
regions and require accurate numerically convergent schemes
to solve the relevant partial differential equations. In order to
accurately represent the spatial profile, short spatial steps are
needed and in turn, due to the strict Courant-Friedrichs-Lewy
(CFL) condition [8]], it is important to discretise the temporal
steps appropriately which can be computationally expensive.

There are numerous numerical methods for solving partial
differential equations, such as finite difference [9], finite volume
[LOl], spectral [11], and finite element methods (FEM) [12]]. The
spectral element method (SEM) [13] is particularly attractive
for spatial discretisation because of the following: the solution
algorithms are inherently stable, high numerical accuracy can
be achieved, relatively few elements are required, and it is valid
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over a broad range of conditions. It achieves this by combin-
ing the adaptivity of the finite element method and the accuracy
and high convergence rate of spectral methods. In practice, it
is important for models used in the simulation and control of
gas pipeline networks to be computationally efficient [[14], [[15],
[16l], [L7]. To aid this consideration, methods employed to in-
crease the computational efficiency of the proposed model will
be highlighted during the model development.

The modelling of NG pipelines has been approached in vari-
ous ways. [[15] uses radial basis function surrogates and proper
orthogonal decomposition reduction techniques to reduce the
computational cost and complexity of the network models. A
rough discretisation method is employed together with steady-
state mass balances around the pressure nodes. The methods
used are compared to the isothermal governing equations. [16]]
uses electronic circuit concepts of resistance, capacitance, and
inductance to reduce the governing equations into first order or-
dinary differential equations which reduces the computational
effort and model complexity. [18] developed a linear state-
space description using a lumped-parameter model and Tay-
lor approximations in order to reduce the computational effort
and complexity while retaining sufficient accuracy for large net-
works. [S], [19] uses third-degree Hermite polynomials to spa-
tially discretise the pipelines and use complementaries to model
the non-smooth absolute flow and friction terms in the momen-
tum balance. [20] linearises the governing equations and im-
plements the Laplace transform to solve the temporal problem.
The pipeline is then spatially discretised and solved using ex-
plicit finite difference methods. [6] uses the non-isothermal
governing equations which includes the energy balance and
uses the orthogonal collocation method to solve the partial
differential equations. [21] accounts for pipe inclinations in
the governing equations and uses the method of characteristics
and the Crank-Nicolson method to solve the partial differential
equations in a Matlab-Simulink simulation environment. [7]]
uses a totally implicit method to discretise the governing equa-
tions and particle-swarm optimisation to calculate solutions for
flow rates. [22] uses a least squares spectral method to model
NG pipeline transients. [23]], [24] use a high order FEM and an
implicit time discretisation scheme on large NG pipelines. [25]]
uses traditional volume-based approaches to solve the govern-
ing equations and developed an energy formulation based on
the gas heating value which also allows for variable gas compo-
sition in pipes which result from gas mixing. [26] uses implicit
finite difference methods to solve the non-isothermal governing
equations and accounts for variable composition due to hydro-
gen injection. [27] uses a finite difference scheme to discretise
the pipeline and an implicit Euler method for the temporal so-
lution which is also used in [28]]. The model is then used to
dynamically optimise a gas network under composition and de-
mand uncertainty. [29]] uses a pseudo-spectral discretisation of
the governing equations and reduces the model using lumped
elements. The model is used for optimal control. [17] provides
a thorough study of different gas pipeline models, the impact of
simplifying assumptions, and specifically compares isothermal
and non-isothermal models.

The work developed in this study is a continuation of [1] in

which the development of a non-linear model for MRG net-
works is described and validated on an industrial MRG net-
work. A trapezoidal spatial approximation was used for the
pipelines and dynamic mass balances around the nodes were
used to model the pressures. This model can be numerically
sensitive to fast dynamics due to the CFL condition not being
accounted for. As an improvement the SEM proposed by [8]]
for hydraulic simulations is applied to the MRG network in [[1]]
and explicitly discretised in time. This improvement implicitly
incorporates the CFL condition and allows for bi-directional
flow due to the inclusion of the absolute term in the momentum
equation which is not possible in [1]. In contrast, [1] uses an
equivalent length [30] as a fitting parameter by fitting a steady-
state pressure drop equation to plant data with a least squares
minimisation algorithm [31]. This results in exaggerated pipe
lengths to compensate for the pressure drop due to pipe compo-
nents which influences the pipe volume and therefore induces
additional lag into the dynamic flow profiles. This is reason-
able in [1] due to the simplification of the momentum equa-
tion where the flow differentials are neglected. However, the
momentum equation is not similarly simplified in the current
work. As an improvement a resistance coeflicient [32] is used
as an additional fitting parameter. The parameters are estimated
in the current work by minimising the output error prediction
with a single shooting technique [33]], [34].

The contribution of this paper is the presentation of an ac-
curate and numerically robust model which can be applied to
MRG and NG pipelines, and is validated on an industrial MRG
network. The development of reasonable models which are
complex enough to accurately represent real systems but are
simple enough to be practically applied is difficult. This study
aims to capture many of the physical parameter variations ob-
served in real world systems and presents the final model as
a practically implementable solution. To this end the model
is developed into an explicit state-space representation which
is ideal for simulation and control applications. Assumptions
made in the modelling process are stated so that the model can
be adapted to individual applications.

The paper is organised as follows: Section 2 introduces the
governing equations, defines the gas properties required for the
component model derivations, and describes the various com-
ponents models. The SEM is used in Section 3 to spatially solve
the governing equations given in Section 2. A state-space de-
scription of the overall system of equations is derived in Section
4 from the equations given in Section 3. In addition, discretised
temporal variables are used to develop a time propagation algo-
rithm, and a model verification is done on the SEM. Section 5
describes the model validation, and the parameter estimation on
an industrial MRG network using real data as inputs. Section 6
concludes the paper and outlines future work.

2. Pipeline Model Development

In this section the governing equations, gas properties and
model components are described which are used in subsequent
sections. The nomenclature that is used in the model develop-
ment is given in Table[T]



Table 1: Nomenclature.

Symbol Description Units Symbol Description Units
P Pressure Pa vy Linear velocity m/s
Q0 Flow kg/s U Viscosity cP
Z  Compressibility - p  Density kg/m®
R Gas constant J/kmolK  Re  Reynolds number -
T  Temperature K f  Friction factor -
Kc  Resistance coeff. m™! y Molar fraction -
A Cross section area m? VvV Volume m?
M,, Molecular weight kg/kmol L Pipe length m
D  Diameter m &  Pipe roughness mm
W,  Compressor power W C,  Specific heat capacity J/kgK
v Specific heats ratio - n.  Compressor efficiency -
m  Gas mass kg Q. Compressor flow kg/s

2.1. Governing Equations

The temporal (¢) and spatial (z) profiles of pressure P and
flow Q within a well-insulated pipe segment are described by,

OP ZRT Q

E + AMW a_z =0, (13)
00 OP fZRTQ|Q|

a T4 T pam,p - (1%)
pAL - TZRT _ (I¢)

w

where (Ta) and (Tb) represent the continuity and momentum
equations respectively [5], [20]. The gas properties are related
to each other within the pipe with an equation of state (Ic), in
particular, the ideal gas law compensated for compressibility is
used. Parameter R is the gas constant, A is the cross sectional
area of the pipe, Z is the gas compressibility, T is the temper-
ature, f is the coefficient of friction, D the pipe diameter, M,,
is the mixed gas molecular weight, m the gas mass, and L the
pipe length. For ease of presentation, the spatial and temporal
dependencies of the variables are suppressed in the text.

This formulation of the governing equations was simplified
by excluding the contribution of convective inertia to the spatial
pressure losses in because the contribution of convective
inertia is negligible compared to the pipe frictional losses [[16],
[20]]. The contribution of the gas inertia term % can also be ex-
cluded [5]] but was included in this work to capture the transient
flow behaviour. Additionally, the energy governing equation is
excluded because the pipes are assumed to be well insulated
such that temperature losses are negligible.

2.2. Gas Properties

The composition analysis of the MRG and NG streams are
used to calculate the gas properties needed in future calcula-
tions. The mole fraction weighted average molar mass of the
mixed gas is defined as,

N
M, = Z Moy, 2)

where y; is the molar fraction and M; the molar mass of the
i™ gas component. The pseudo-critical temperatures 7', pres-
sures P, and volumes V), are similarly calculated as [35]], [36],

N N N
Tpc = ZyiTci’ Ppc = ZyiPcia Vpc = Z}G‘Vci, (3)
i i i

where T, P;, and V,; is the critical temperature, pressure, and
volume of gas component i respectively. The pseudo-reduced
temperatures T, pressures P, and volumes V. are calculated
as,

T P Vv
- s Ppr =5 Vpr = (4’)
TPC PPC V[’C

The pseudo-critical gas density p,. and pseudo-reduced gas
density p, can be calculated as,

M, p
. = 5)
Vpc r Ppc

Ppc =

The pseudo-critical properties of the pure components are di-
mensionless constants which can be found in literature [37]].
The gas density p can be derived from as,

- m _ M,P
T AL~ ZRT’

p (6)

2.3. Gas Compressibility

To avoid an iterative approach to estimating the gas proper-
ties, an empirical equation is used to calculate Z as opposed
to an equation of state. The pseudo reduced temperature and
pressure of the mixed gas are given as inputs to infer the com-
pressibility explicitly from an equation correlated with exper-
imental data. The equation is valid for P,. € [0.2 : 15] and
T, €[1.05: 3] [35],

DZPpr(l +yz +y% —)’%)

Z= > o T (7a)
(DZPpr + EZyZ - FZyZ )(1 - yZ)
DsP,,
YT AT azs, (7b)
[ [l

The terms Az, Bz, Cz, Dz, Ez, Fz, and G are tuning constants
used to fit experimental data. The terms denoted by Z to in-
dicate the relation to compressibility terms are given in [35]].
Equation (7)) was chosen because it correlates well with exper-
imental data, is applicable over large ranges, can be explicitly
implemented, and it is continuous.

2.4. Viscosity

The equation for gas viscosity yu is based on the kinetic theory
of gasses (see e.g. [36]), and is given by,

0+ (Ah + AkTpr)plrl ) (8)

M= B/l Vqurt Tpr exp( T

pr



where,

N
Vqurt:Z \/ﬁz% 9)

The parameters By, 6, Ap, Ay, and « are tuning parameters used
to fit the first principles model to experimental data and is fully
described in [36]].

2.5. Coefficient of Friction
The Darcy-Weisbach friction factor fp is given in [38]],

fo=l(ze) m) (102
Ar=(-2457m (é)o'g + 0.27(%))16, (10b)

where Re is the Reynolds number. The pipe roughness ¢ is cho-
sen to be 0.0457 mm [39]]. The advantage of using is that it
is an explicit formula and holds for both the laminar and turbu-
lent flow regimes, and gives unique and reasonable results in the
transitional regime [39]]. This eliminates the need to confirm the
flow regime and then choose an appropriate friction factor. Ad-
ditionally, the need to use complementaries to smooth out the
calculation between flow regimes is eliminated. The Reynolds
number is calculated as,

Re = P0L an

7

2.6. Equivalent Length and Resistance Coefficient

The pipe architecture components (e.g. bends, T-pieces, and
reducers), and utility components (e.g. block valves, measure-
ment orifices, and check-valves) should be considered in the
modelling as these components have an impact on the total fric-
tional resistance in the pipe. There are generally two methods
to compensate for the additional resistance due to the pipe com-
ponents: the equivalent length method and the equivalent resis-
tance coefficient method [32]. The equivalent length method
calculates the length of a pipe section which will render the
same pressure loss as a given restriction. The equivalent re-
sistance coefficient method determines the additional frictional
resistance that a given component generates. Equivalent pipe
lengths and resistance coefficients are determined experimen-
tally for various pipe components and given literature [30],
[32].

The pipe lengths used in the model are calculated as the
global equivalent pipe length L added to the real pipe length
L,

L=1L, +Lg. (12)

The friction factor used in the model is the sum of the Darcy-
Weisbach friction factor fp calculated in (I0), and the resis-
tance due to pipe components fg,

f=Ji+Jc. (13)

The subscript G refers to the global contribution of all the indi-

vidual components. f; is dependent on flow and is calculated
as,

2

=Ke——, 14

fo =Ko 5, (14)

where K is the resistance coefficient due to the pipe compo-

nents, and g is the gravitational acceleration. Ls and Kg can

be calculated if the pipe components are known but are used as

fitting parameters to fit the model to data as done in this study.

2.7. Compressors
Compressor power consumption is calculated as [J5],

W, = QcipT;((%)yyl B 1)’ (15)

where W, is the power consumption, C,, is the specific heat ca-
pacity of the gas, Q. is the mass flow rate through the compres-
sor, T; is the inlet temperature, 7. is the compressor efficiency,
P, is the discharge pressure, P; is the suction pressure, and 7y is
the ratio of specific heats. The flow direction is fixed and it is
assumed that the compressor has negligible volume.

3. Spatial Solution: Spectral Element Method

The analytic equations in Section 2 will now be solved spa-
tially by means of the SEM. This is done in Section [3.1] by
obtaining the weak formulation of (Ta) and (Ib) as per the
Galerkin Method. The weak formulation is discretised spatially
in Section [3.2] and mapped to an appropriate co-ordinate sys-
tem in Section Lagrange polynomials are used as basis
functions in Section [3.4]to approximate the analytical functions
in Section[3.1] The integrals of the discretised pipe segments in
Section [3.2] are approximated in Section [3.5| using the quadra-
ture rule. The mass and stiffness matrices are assembled in
Section followed by a description of the global system of
equations in Section and boundary conditions in Section

B3

3.1. Weak Formulation of Governing Equations

The pipe segment equations (Ta) and (Ib) can be written in
conservative form as,

d(kP| 0|0 1/o|[«P]| _ 0
a‘r[aQ*a_z[l/K OHUQ]“[T@)]’ (1o

AM,, 1 o fZRT Q10|
K==y, O=—, T= 0=

ZRT’ A’ T 2DAM,’ P
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To obtain the weak formulation, the Galerkin projection
methodology is followed where (I6) is integrated and multi-
plied by a suitable set of test functions v on the interval [0, L].
The weak formulation is,

L1 o [kP 010 1/ol||l«P 0
L kel &l wllse]+[fole-0 av



Applying integration by parts, (I8) can be expressed as,
L
0 | kP Q| ov
— dz = —d
[ il se]vee= [ 5] 5
L
0 Q
Lol 7

3.2. Spatial Discretisation into Elements
The weak formulation in is partitioned into n elements
denoted by Q¢ such that Q¢ = [z,-1,2,], with 0 = 79 < z; <
-+ < z, = L. This results in,

fear[ dz:fe[g}?

for e = {1,...,n}. The number of elements chosen is a tuning
factor known as h-refinement. For a homogeneous medium the
elements are chosen to be the same length. It is computation-
ally advantageous to vary the element segment lengths along
a heterogeneous medium by adapting the spatial mesh to the
wave velocities, thereby achieving the same accuracy for less
computational effort [40]. If the pipes are sufficiently long and
the properties change substantially along the pipe due to com-
pressibility, it can be exploited by increasing the element length
as the linear velocity decreases. Mathematically this is done by
defining [12],

19)

v.

[T()@] vdz, (20)

Az =a* VAz, for k=1,...,n, (1)
where,
1/(n=1) _ Az,
a=r , and r= . (22)
Az
The first element size is calculated explicitly as,
1-
Ay = ——1 (23)
1-a"

By choosing the tuning factor r as the ratio between the first
and last element lengths, the desired spatial mesh is generated
over the pipe length.

3.3. Mapping of Element Functions
By making use of the mapping function described as,

F(é:)e — Zn 2Zn—lé:_’_ n 2Zn—l ,
where the element global co-ordinates, z, and z,—; for each el-
ement, are mapped to a local co-ordinate system & € A in the
interval A = [—1,1]. To account for the co-ordinate transfor-
mation inside the integral in @I), the functions have to be mul-
tiplied by the Jacobian which, for the one-dimensional case and
varying element lengths, can be defined as,

(24)

% _ Zn — An-1
)
The co-ordinate transforms of the spatial dependant element

functions, f(z) € {P,Q, ’Z’ ,'Z?,@ and v}, are e.g. integrated
as,

Jo = (25)

f FQdz = f Fe% S - f F@IFdE (26)

The points & are chosen as the collocatlon points of the Gauss-
Lobatto-Legendre (GLL) quadrature [12].

3.4. Interpolation of Element Functions

To approximate the analytical functions in (I9), Lagrange
polynomials are used as interpolating functions which are, for
a polynomial of order N, defined as,

ﬁ f—fj’ for
&i—¢&j

J#i

N = i,j=0,...,N. 27)

In order to improve the performance of the numerical scheme,
Barycentric Lagrange interpolation is used [4 1],

N
i
rel e @

where the Barycentric weights w; are defined by,

MO

1
= 29
Wi [Tizj&i— ék )

It is important to note the following property of Lagrange poly-
nomials,
M) = 6;j, for j=0,...,N. (30)

where ¢, ; is the Kronecker Delta. Exploiting this property is
one of the reasons why the SEM is computationally attractive.
The superscript N remains the same and will be omitted for ease
of presentation. The element functions f¢(¢) are approximated
using the interpolation scheme as,

N
RGEDWRGLI} (31)
i=0

where f¢ is restricted to the segment [zx, zx+1]. Similarly the
spatial derivatives are approximated using,

dfe o
f (f) ~ ) FE©), (32)
i=0

where the first derivative of the Lagrange polynomial £/(¢) can
be derived from the Barycentric Lagrange interpolation defini-
tion as,

ey ==

—, (&) =— C(&)). 33
nEg (e Dy 33

i

Computationally it is advantageous to compile the differentia-
tion matrix DV once and reference the row-column location as
needed. DU is defined as,

DY = £(&). (34)

3.5. Integration of Functions over Elements

Integration over each element in the interval [-1, 1] is per-
formed by making use of the GLL quadrature of integration by
approximating the integral as a weighted sum defined as,

N
f F@dE~ ) o fl&, (35)
A k=0



where & and wy are the collocation points and integration
weights of the GLL quadrature of order N respectively. A Leg-
endre polynomial of degree N is used to derive the collocation
points,

dN
2NN déN
The collocation points used in the interpolation and integration
can be calculated as the zeros of,

Py(é) = & - DV (36)

P& - &3, (37)

where P}, is the derivative of Py. The integration weights, wy,
are the weights of the GLL quadrature calculated as,
2[N? + NT7%, S =1,
Wi = | 2 : 2 (311 ; (38)
2N+ NPyEDI™, & # 1.

The integration weights and collocation points are pre-
calculated and tabulated to improve computational efficiency.
Calculated values are also available in literature [12], [40]. Us-
ing the same collocation points for the interpolation and inte-
gration is one of the computational advantages of the SEM.

3.6. Matrix Assembly

The results from Sections 3.3, 3.4 and 3.5 can be applied to
(20) to derive the elemental mass matrices as,

N N

(Mp)5; = D" g€ (€S for j=0,...,N. (39)
i=0 k=0

where ¢ € {«k,o,7}. The mass matrices are diagonal and non-

singular. Therefore, the mass matrices can be inverted and

stored as vectors to improve computational efficiency. Simi-

lar to the mass matrices, the elemental stiffness matrices can be

derived as,

e _
S¢ =

N
i=0

N
Zwkfg(gk)(sj,k, for j=0,...,N.  (40)
k=0

The global mass and stiffness matrices are assembled by diago-
nally combining n elemental matrices of size [(N + 1) X (N + 1)]
into one [(nN + 1) X (nN + 1)] sized global matrix. This is
illustrated using the assembly operator A,

My = AMyg), S = AS°). 41)

e=1 e=1
The elemental matrices overlap at the diagonal positions
iet! je*!' =0andi®, j¢=Nforee{l,...,n—1}. The values

at these locations are added.

3.7. Global System
The final global system of equations are,

dP

MKE =SS0+ 0:bo— OLbyL, (42a)
a0

MO-E ZSP—MT@+PZb0—PLbL. (42b)

where the vectors indicated in bold are defined as,

P=[Py,....P]", (43a)

0=10...,0]1", (43b)
ool ool

0= PR | (43¢c)

and j is equal to the total number of collocation points. The
boundary vectors are of the same length and are defined as,

by = [1,0,...,01",
b.=10,...,0,1]".

(44a)
(44b)

The boundary conditions Q,, Oy, P,, and P for a pipe segment
of length L is defined as,

0.=00,n) and Qp = QO(L1),
P.=P0,1) and P;=P(L,0.

(45a)
(45b)

3.8. Boundary Conditions

Direchlet boundary conditions are used at the pipe end
points. The authors of [8]] recommend that the Lax-Friedrichs
flux be used when solving (I9) and give appropriate substitu-
tions based on if the pressures or flows are chosen as boundary
conditions. The following substitutions are made if the pipe in-
let and outlet flows, Qy,(¥) and Q,,(¢) respectively, are chosen
as inputs,

0; = On(), (46a)
[ZRT AM,

P, =P - M, 2ZR T(Ql - On(), (46b)

01 = Qou(d), (46¢)
ZRT AM,,

PL="Pj— 4 TWW(QOM(t) - 0j). (46d)

It is important to note that either the pressure or flow must be
specified at the boundary. The unspecified inputs are calculated
using the numerical flux to improve numerical convergence as
described by [8]].

4. Temporal Solution

The equations in (@2) are temporally discretised and devel-
oped into a state-space description.

4.1. State-Space Description

The temporal and spatial dependencies are shown in the input
and output vector definitions for clarity. The model inputs are
given by the input vector u as,

u = [P.(1), Q(0), Pr(t), Qr(D), yL, T.1". (47)

The measured temperature at the pipe inlet 7,, and composi-
tion analysis y_ are used in the model calculations and govern-
ing equations at each sample interval. The measurements are



assumed to be constant with respect to pipe length and time be-

tween sample intervals. Note that y, is a vector containing the
molar fractions of the i pure components at the pipe inlet,

T

yz = [Yl,---,)’i] .

The spatial flow and pressure vectors in (43) are grouped into
the state vector,

x=[Pn".06n "1 (48)
Additionally the model parameter vector p is defined as,
p=1Z fo,M,1, (49)

and calculated from the inputs as described in Section 2. The
state derivatives are written as,

dpP _
E = MKI[SQ+ Q.by— Q1by],
% :MO__I[SP—MT@'FPZbO_PLbL]’

and in condensed form,

X = f(x,u,p). (50)

The outputs are the pipe inlet and outlet pressures extracted as
the first and last values in the vector P,

y =[P, P = gx). (51)

4.2. Temporal Discretisation

The model in (50) is discretised in time by making use of
the fourth order explicit Runge-Kutta method with a zero-order
hold on the inputs and parameters between sampling intervals.
The Runge-Kutta time step size s is a constant enforced by the
CFL condition which can be defined for the one-dimensional

case as,
C Zmin

s , (52)

- v pin
where the Courant number ¢ has a value of 1 in the strict sense,
but is often chosen to be smaller in practice for improved nu-
meric stability. zm, is the smallest spatially discretised element
length z, — z,-1, and vp"” is the pipe inlet linear gas velocity.
The CFL condition, in the simplest sense, ensures that the fluid
in the pipe does not travel over multiple discretised adjacent
space-time grid segments per iteration. The step size s is not
varied during the time propagation in this study but chosen to
be constant subject to (52). The Courant number ¢ is conserva-

tively chosen to be 0.8.

4.3. SEM Model Verification in Simulation

The verification of models is useful to provide insights into
possible approximation errors and neglected dynamics [42].
The choice of pipe segments and polynomial order in the SEM
will be verified in a simulation following a procedure recom-
mended by [40]. The choice of pipe segments and polynomial

Table 2: SEM model verification parameters.

Parameter Value Units
Initial Inlet Pressure (P;) 3x10° Pa
Initial Outlet Pressure (Pz) P, — % Pa
Initial Mass Flow (Q) 5 kg/s
Friction (f) 04 -
Compressibility (Z) 0.95 -

Gas Constant (R) 8314.47 J/kmolK
Temperature (7') 300 K
Molecular Weight (M,,) 17.2 kg/kmol
Pipe length (L) 5000 m

Pipe Diameter (D) 0.38 m

order is chosen at the values of n = 1 and N = 2, and iteratively
increased until the model output error between iterations be-
comes sufficiently small. The non-linear model is initialised at
the conditions shown in Table 2] and provided with a sequence
of inputs to Q. and Q;. Py is initialised from P, using a simpli-
fication of (Tb) 1.

It is typically required in practice to increase spatial discreti-
sation for a pipe length longer than 5000m [[15]. Therefore, a
pipe length of 5000m was chosen for then SEM model verifi-
cation. The rest of the parameters are chosen to reflect a typ-
ical header used for the model validation in Section 5. The
states are initialised by interpolating between the boundary con-
ditions. The simulation is propagated using the fourth order
Runge-Kutta explicit time discretization scheme. The model
parameters f, Z, T, and M,, are assumed constant for the SEM
model verification. These assumptions can be made without
significant loss in model accuracy (see e.g. [7]) depending on
process operating region variability [[17].
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Figure 1: Dynamic responses of the pressure outputs P,y and
P, given flow inputs to Q. and Q; for different choices of n
and N.



The flow input changes Q, and Qj, and pressure output re-
sponses Py, and P;, for the choice of n and N are shown
in Fig. [T} The following qualitative conclusions can be made.
A difference in the mass balance leads to a constant change in
pressure. The pipe pressure loss is determined by the flow rate
magnitude. This tends to zero at low flow rates and increases
at higher flow rates. Mass balance off-set, when Q, and Q,
are not the same, has an integrating pressure response, and flow
rate changes have self-regulatory pressure and flow responses.
The model accommodates bi-directional flow which inverts the
pressure profile. The model outputs are very similar visually,
therefore Table [3|has been provided to show quantitative infor-
mation.

Table 3: Model verification results.

n N States A MOE (Pa) A States (s)
1 2 6 - - 494
2 2 10 851 4 247

2 3 14 33 4 137
3 3 20 18 6 91

3 4 26 15 6 57

Table [3| shows the choice of n and N, the number of result-
ing states calculated as 2(nN + 1), the change in the mean out-
put error (AMOE) between iterations, the change in the num-
ber of states between iterations, and the CFL restriction (52).
An increase in discretisation improves the model accuracy but
also increases computational effort by increasing the amount of
states, and decreasing the required time step size. n = 2, and
N = 3is chosen as a good trade-off between the improved accu-
racy indicated by the small AMOE of 18 Pa in the next iteration,
and the increase of 4 states in the chosen iteration as opposed
to 6 states in the next iteration. The improvement in accuracy
relative to the choice of pipe segments and polynomial order is
dependent on pipe length.

5. Validation on an Industrial Network

In this section the developed model is validated on an indus-
trial MRG network using all the property calculations described
in Section 2, then discretised spatially using the SEM in Section
3, and simulated in time as described in Section 4.

5.1. Methane-Rich Gas Network Description

The MRG network consists of three headers, Header A, B
and C, which are shown in Fig[2] Fig[3] and Fig[4]respectively.
Flows which can be manipulated are shown by dashed lines, un-
controlled flows are indicated by thin solid lines and the headers
are indicated by thick solid lines. The network has four suppli-
ers of MRG and two suppliers of NG which are divided equally
between headers A and B. Header A has two consumers and
Header B has three consumers. Both Headers A and B may
flare gas with the option of flaring gas on the low pressure side
before the MRG supply compressors or after the compressors

Pa,z
I:, Supply <> Flare D Compressor © Consumer

MG: Methane Rich Gas  NG: Natural Gas HC: Header C . Pressure Node

Figure 2: Header A.

on the high pressure side. Header C has 4 consumers and is sup-
plied by both headers A and B but does not have a flare stream.
The primary function of the NG is to provide additional gas in
low pressure scenarios.

As shown in Fig. 2]and Fig. [3] the header inlet temperatures
Ta1, Tan, Tpy, and Ty, are measured at the MRG compressor
discharges. The composition analyses y, and y;, are measured
at header inlets. The unknown parameters are the header inlet
and outlet flow rates Qu 3, Qu6> Quss Qa9> Ob.3> Oi6» Ob.8> Ob.95
Qc2,and Q. 3.

5.2. Network Simplification

Simplifying assumptions were made to improve the usability
of the MRG network for validation purposes.

e Pressure nodes on opposite sides of short pipe segments
with small pressure drops were combined into a single
pressure node. This eliminates short pipes with fast dy-
namics and also erroneous flow direction predictions due
to the difference in pressure transmitter readings that fall
within the measurement error band.

e Uncontrolled consumer flows originating at the same com-
bined pressure node were grouped into a singled uncon-
trolled consumer flow which reduces the amount of inputs
to the model.

NG

D Supply Q Flare D

MG: Methane Rich Gas

Compressor @ Consumer

NG: Natural Gas HC: Header C . Pressure Node

Figure 3: Header B.
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Figure 4: Header C.

e The supplier and consumer flow lines are fitted with non-
return valves ensuring one-directional flow.

e The natural gas streams enter the network such that they
do not enter Header C.

e In this work, the gas properties in (), (3), @), (), (6). (7).
and are calculated using the pipe inlet conditions and
assumed constant for the pipe length and between sam-
ple intervals. This was done because the properties do not
change substantially along the pipe length or between sam-
ple intervals and reduces the computational effort.

e The control valves and compressors are governed by base-
layer controllers and it is assumed that they reach set-point
adequately fast and are therefore not directly included in
the transient modelling.

e The compressors are not directly included in the model
because all the needed header measurements at the suc-
tion and discharge ends of the compressors are available.
The compressors will need to be considered if economic
optimisation is applied to the network because the power
consumption will need to be considered as shown by (I5).
This is because the power consumption is dependent on the
suction and discharge header pressures, and flows through
the compressors which are used as model inputs.

The flow transmitters are susceptible to measurement, flow-
compensation, and instrument calibration errors which cause
non-closure in the mass balance of up to 5 percent. To en-
sure mass balance closure, a pseudo-uncontrolled stream was
created which has a calculated value equal to the averaged
mass balance closure error with a rolling value greater than the
longest time to steady-state of any flow rate. This still allows
for dynamic changes to be observed while ensuring steady-state
closure for validation purposes. This stream is only used dur-
ing dynamic validation with real measurements and is not used
in a simulation environment. This method is only viable due
to the a priori information that the header pressures are con-
trolled at set-point, and therefore the mass balance is automati-
cally closed.

5.3. Network Equations

The I flows into and K flows out of each pressure node at
steady-state can be related by making use of a mass balance,

K

!
0= 0 (53)

i=1 k=1
The pressure continuity over the nodes is given by,

P = Pt = Py, (54)
fori ={0,...,I},and k = {0,...,K}. Pj; indicates the outlet
pressures of the I pipes flowing into the node and P‘l’f‘.’ indicates
the inlet pressures of the K pipes flowing out of the node at a
pressure of P"%. The node temperature 7"°% of a node is a
function of the 7 inlet flow temperatures and their correspond-
ing flow rates,

1 . .
Tnode — g}(QéTl) (55)
i=1 i

To simplify the validation process, (53) is used to calculate the
inlet and outlet flows for Header A as,

Qa,8 = Qa,l - Qu,Z + Qa,4 - Qa,S - Qa,7’
049 = Qa1+ Qu12 + Qu13 — Qa0

(56a)
(56b)

Similarly to Header A with the exception of an additional flow,
the inlet and outlet flows for Header B are calculated as,

Obs = Op1— Op2+ Opa—Ops— Op7— Op s
Ob9 = Op11 + Op12 + Ob13 — Op,10

(57a)
(57b)

and the inlet and outlet flows for Header C are calculated as,

Qo= 0p11 = Qe
Oc3=0ca+0cs5+0c6— Qatr-

(58a)
(58b)

5.4. Parameter Estimation

The unknown parameters used in the validation are the
header equivalent pipe lengths and resistance coefficients. The
parameters are estimated by making use of an output prediction
error method [33], [34], by minimising the objective function
V(©),

M
minl V(o) = - ZO] s = 52 (59)

where the fitting parameters are grouped into the vector 6 =
[Lg, K517, and ¥; and y; are the M predicted outputs and mea-
sured outputs at sample time #; respectively. The estimation was
done for a period of 800 minutes on plant data from a different
time period than the time period shown in Section 5.5 The
fitted constants, and real pipe lengths L, are shown in Table 4}

It is possible to only use Ks to compensate for component
friction, but the combination with L; provides flexibility in ac-
counting for network volume lost due to the combination of
pressure nodes described in Section[5.2]



Table 4: Model validation parameters.

Header L,(m) Lg(m) Kg(@m™"
A 800 358 9.3x 10°
B 800 384 8.9x 10°
C 4000 3468 9.5x 10°

5.5. Validation Results

The inputs used for the model validation are shown in Fig.
[Bl These are the inlet and outlet flow rates of each header, the
molecular weights y, and y, of Headers A and B respectively,
and the header temperatures 7, and T}, calculated using @,
of Headers A and B respectively. Header C does not have tem-
perature measurements or composition analyses and therefore
these parameters are calculated from the inlet flow streams. The
molecular weights M,, , and M,, , shown in Fig. E]are not direct
inputs but provide a good indication of the mixed gas compo-
sition variability. Table E] shows the values used to scale, for
commercial reasons, the inputs and outputs in Fig. [5] and Fig.
[6] respectively to be between 0 and 1 relative to their operating
ranges. Therefore, as an hypothetical example, if the operating
range of the temperatures is 285K to 300K, 285K is scaled to 0
and 300K is scaled to 1. Table[5]also gives an indication of the
variation in the inputs and validated outputs.

Table 5: Input and output operating ranges.

Parameter Operating range size Unit
Pressures 200 kPa
Flows 20 kg/s
Temperatures 15 K
Molecular Weight 1.5 kg/kmol

The pressures were predicted for a period of 800 minutes
with the inputs sampled at one minute intervals. Fig. [6] shows
the scaled predictions for P, 4, P,4 and P, using the method
described in this paper and that of [1]], compared to the scaled
actual plant measurements. These outputs are chosen because
they are the real measurements from which the industrial MRG
headers are currently controlled in closed-loop.

The prediction is done using the real plant measurements of
the inputs. An operating period was chosen where Header A
experienced set-point changes, Header B remained at a constant
set-point while experiencing input disturbances, and Header C’s
set-point was allowed to drift within limits. This was done to
showcase the ability of the model to accurately predict different
operating scenarios.

The states are initialised using the real plant measurements
by equating the pipe boundary flows and pressures to the start-
ing conditions at ¢ = 0, and linearly interpolating between them
to initialise the states at the collocation points. The states are
not updated with the real measured values throughout the simu-
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lation. The SEM tuning parameters used to produce the results
are given in Table[6]

Table 6: Simulation tuning parameters per header.

Parameter Description Value
n Number of pipe elements 2

N Polynomial order 3

r Ratio between element lengths vp"”/ v,

The ratio between the element lengths r was chosen as the
ratio between the typical inlet and outlet linear gas flow ve-
locities. However, this is small because the influence of gas
compressibility on the linear velocity is not substantial for the
length of the pipes in this study. It was included for the sake of
completeness.

The Pearson correlation and normalised root mean squared
error (NRMSE) of the predicted values compared to the actual
pressure measurements are shown in Table

Table 7: Current work compared to measured data.

Figure Pearson Correlation = NRMSE
6 0.93 16.3x107°
6b, 0.57 7.3x1073
6¢ 0.94 14.5x107°

The strong positive correlations indicate that the predicted
values follow the same linear directional movements when
compared to the actual pressure measurements. The low
NRMSE values indicate that the model-plant offset is low and
that the model gains are accurate. Header B has a lower Pearson
correlation and a lower NRMSE relative to the other headers.
This is due to P., not changing substantially during the simu-
lation. The Pearson correlation and NRMSE of the predicted
values compared to [[1]] are shown in Table

Table 8: Current work compared to [1]].

Figure Pearson Correlation NRMSE
6 0.99 3.3x107°
6b 0.89 5.4x107°
6C 0.99 3.4x107°

As seen from Fig. [6] and Table 8] the predictions of the cur-
rent work compared to [1]] are very similar. This shows that the
same accuracy is obtained while addressing the shortcomings of
[L], which is implicitly adhering to the CFL condition for sta-
bility. Additionally, the current work allows for bi-directional
flow, and generates pipe pressure and flow profiles. The similar-
ity in results supports the validity of the current work because
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Figure 6: Scaled header predictions using the method described
in this work compared to the method in [1/] and measured plant
data.

the model of [1]] and the one developed here behave similarly
given the same inputs although they were developed differently.

The model-plant mismatch [43], [44] present in Fig. E] can
be attributed to the simplifying model assumptions made ear-
lier and unknown plant disturbances. The error is acceptable as
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measurement feedback will be able to correct for the error in
control applications. The validated model is shown to be able
to predict the header pressures accurately.

6. Conclusion

A non-linear model for control applications was developed
for an MRG network and validated using real plant measure-
ments. The developed MRG network model uses first prin-
ciples and empirical models found in literature to model the
main components which are combined into a single state-space
model. Modelling assumptions made are given to enable mod-
ification of the model to fit individual applications. The model
accounts for changes in pressure, temperature and composition,
as well as changes in consumer and supplier flow rates. As-
sumptions about the physical layout of the network are used to
simplify the model. The SEM was used to spatially discretise
the pipelines and develop a system of partial differential equa-
tions. The model was developed for an MRG network but, due
to the similarity in composition, can also be applied to NG net-
works. The non-linear model provides accurate predictions of
the pressure dynamics over time which can be used to predict
the buffering capacity available to reduce flaring and achieve
stability in consumer flows.

Future work involves designing and building a multi-variable
controller to exploit the buffering capacity of the headers. It
was found that parameter estimates are sensitive to initial con-
ditions that can lead to numeric instability if the initial guess is
not sufficiently close to a feasible value. A multiple shooting
technique [33], [34]], as opposed to a single shooting technique
used in this article, can be applied to mitigate the sensitivity
to initial values in the parameter estimation. The gas temper-
ature as well as the gas properties calculated in Section
Section[2.3] and Section 2.4 are assumed constant for the entire
pipe lengths in the current work. The methodology used in the
current work may be expanded to include the energy govern-
ing equation for non-insulated pipes, and also to calculate the
gas properties at the collocation points for improved accuracy.
This will also increase the computational effort and complex-
ity which can be investigated further against the trade-off with
accuracy. The model states, that consist of the flows and pres-
sures at the collocation points, provide information regarding
the pipe profiles. Applications may exist where the pipe profile
information can be made available through suitably designed
state estimators.
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