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Simple Summary: In the era of precision medicine, novel targets have emerged on the surface of
cancer cells, which have been exploited for the purpose of radioligand therapy. However, there
have been variations in the way these receptors are expressed, especially in prostate cancers and
neuroendocrine tumors. This variable expression of receptors across the grades of cancers led
to the concept of ‘target heterogeneity’, which has not just impacted therapeutic decisions but
also their outcomes. Radiopharmaceuticals targeting receptors need to be used when there are
specific indicators—either clinical, radiological, or at molecular level—warranting their use. In
addition, response to these radioligands can be assessed using different techniques, whereby we can
prognosticate further outcomes. We shall also discuss, in this review, the conventional as well as
novel approaches of detecting heterogeneity in prostate cancers and neuroendocrine tumors.

Abstract: Tumor or target heterogeneity (TH) implies presence of variable cellular populations having
different genomic characteristics within the same tumor, or in different tumor sites of the same
patient. The challenge is to identify this heterogeneity, as it has emerged as the most common cause
of ‘treatment resistance’, to current therapeutic agents. We have focused our discussion on ‘Prostate
Cancer’ and ‘Neuroendocrine Tumors’, and looked at the established methods for demonstrating
heterogeneity, each with its advantages and drawbacks. Also, the available theranostic radiotracers
targeting PSMA and somatostatin receptors combined with targeted systemic agents, have been
described. Lu-177 labeled PSMA and DOTATATE are the ‘standard of care’ radionuclide therapeutic
tracers for management of progressive treatment-resistant prostate cancer and NET. These approved
therapies have shown reasonable benefit in treatment outcome, with improvement in quality of
life parameters. Various biomarkers and predictors of response to radionuclide therapies targeting
TH which are currently available and those which can be explored have been elaborated in details.
Imaging-based features using artificial intelligence (AI) need to be developed to further predict the
presence of TH. Also, novel theranostic tools binding to newer targets on surface of cancer cell should
be explored to overcome the treatment resistance to current treatment regimens.
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1. Introduction

At last gleams of light have come, and I am almost convinced that species are not
immutable, C. Darwin (letter to Joseph Dalton Hooker (11 January 1844). What Charles
Darwin wrote to Joseph Dalton Hooker holds a great degree of significance in the man-
agement of cancer patients. The transformation of normal cells of human beings into
a cancerous lesion takes place over the course of several years. During this process of
carcinogenesis, these cells adapt continuously to the inherent instinct of survival in adverse
situations. Not surprisingly, they behave like a different species, and by the time they
metastasize, they possess diverse dissimilar characters, termed as tumor heterogeneity.
The reasons for heterogeneity of tumor clones amongst patients and within metastases can
be several, guided primarily through activated and deactivated genes and genomes, either
due to intrinsic programming or through external therapeutic pressure. This had led to a
paradigm shift in the management of cancers i.e., from blanket treatment with ‘nonspecific’
chemotherapy to exploring treatment options for targeting cancer cells specifically and
tailored according to the need of a patient (personalized medicine). Radioligand therapy
(RLT) is one such promising treatment option, wherein therapeutic alpha, beta, or electron
ray emitting radiopharmaceuticals bind to specific receptors or antigens on tumor cell sur-
faces, thereby producing direct tumoricidal action with minimal/manageable side effects
and toxicity. The entire success of these therapies and their position in the current treatment
algorithm of respective cancers depend on the principles of good patient selection, robust
imaging biomarkers for response assessment, and its impact on quality of life parame-
ters [1]. Preliminary clinical trials on RLT in different types of cancer have been successful
and a number of clinical phase II and III trials are already being conducted to generate
robust evidence for the same. NETTER-1 trial did establish PRRT with Lu-177 DOTATATE
as ‘standard of care’ for management of metastatic or locally advanced well-differentiated
neuroendocrine neoplasms (NENs) [2]. Likewise, PSMA RLT with Lu-177 PSMA is gaining
firm ground in the diagnostic and therapeutic algorithm of prostate cancer (PC). Of late,
there has been a resurgence in radioimmunotherapies, e.g., with Y-90-labeled anti-CD66
antibodies for bone marrow ablation prior to bone marrow transplantation for leukemic
and myelodysplastic syndrome patients. Even the established RLTs such as I-131-MIBG and
I-131 radioactive iodine have been offered a relook in light of this concept of tumor target
heterogeneity. We, through this article, shall be exploring the evolution of the concept of
tumor heterogeneity, its extrapolation to the principles of RLT, and the current biomarkers
available to predict the success of RLTs in clinical practice today. As the current ‘standard
of care’ for radioligand therapy is well-established in NET and prostate cancer, this review
shall focus on these tumor types.

2. General Concept of Tumor Heterogeneity
2.1. Tumor Evolution and Its Non-Invasive Assessment

The biggest challenge in the treatment of cancers is the development of resistance to
therapies. This ability of cancer to adapt to pharmacologic pressures can be described in
terms of tumor evolution and stems from its intrinsic diversity or heterogeneity. Multi-
region sequencing is one of the techniques to study tumor evolution, which involves
parallel analysis of tissue derived from different regions of a single neoplastic mass, and
from distinct metastatic lesions from the same patient [3]. Clonal alterations, present in
all samples analyzed likely represent ‘ancestral’ events, occurred early in tumorigenesis,
whereas the ‘heterogenous events’ that have occurred later are a result of the subclonal
alterations [4]. Recently, the increase in sensitivity of DNA-sequencing techniques has
allowed genetic characterization of tumors from the analysis of circulating tumor DNA
(ctDNA) isolated from plasma and other biological fluids. Analysis of ctDNA is based on
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the identification of tumor-specific alterations, which accounts for its high specificity and
sensitivity and detection rates comparable with those of tissue biopsies [5]. Liquid biopsy
allows the tracking of the evolution of different cell subclones, and this was proven to be
particularly effective in the follow-up of patients with prostate cancer treated with targeted
therapy in the metastatic setting [6].

2.2. Target Heterogeneity in Cancers: Inter- and Intratumor Heterogeneity

Tumor or target heterogeneity refers to the coexistence of cellular populations bearing
different genetic or epigenetic alterations within the same lesion, or in different lesions
of the same patient. Intratumor heterogeneity is characterized by its dynamic changes.
Tumor initiation and progression are generated from stochastic to sequential mutations
that contribute to subsequent clonal expansion and intratumor heterogeneity [7]. Therefore,
a single biopsy is unlikely to capture the complete genomic landscape of a patient’s tumor
considering the spatiotemporal changes in tumor heterogeneity. Today, the knowledge
and the clinical evaluation of tumor heterogeneity are extremely important to improve
clinical oncology. Intertumor heterogeneity exceeds the boundaries of specific tumors
and also of their molecular classifications [8,9], which makes the clinical approach very
complex. However, the most complex issue is intratumor heterogeneity (ITH) as a spatial
and temporal phenomenon more or less distinct in every single patient [10]. This is closely
related with cancer progression, resistance to therapy, and recurrences. Because of ITH
in primary tumors and metastases, and because of the wide clinical heterogeneity among
patients, it is necessary to apply clinical research methods directly to patient material in
today’s clinical practice to be able to better define a specific effective treatment.

2.3. Heterogeneity and Grading of Cancers

As the cancer transforms or evolves from a low grade to intermediate to high grade,
the cell population undergoes transformation. This has been the most significant hall-
mark of cancers, which has led to development of grade-specific treatment strategies [11].
Well-differentiated NENs of intermediate grade (WHO Grade 2) demonstrate differential
expression of somatostatin and glucose transporter receptors, which are indicators of
co-existence of well and poorly differentiated components, respectively [12]. Similarly,
prostate carcinogenesis and progression to an androgen-independent state are dependent
on androgen receptor (AR) expression and function. Although somatic AR mutations are
rarely detected in early-stage prostate cancer, mutation frequency is significantly increased
in advanced androgen-independent tumors, suggesting that AR mutations have a role
in tumor progression. The highly heterogeneous nature of prostate cancer provides a
real challenge for clinical disease management, and it is becoming increasingly clear that
patients from different geographical and ethnic backgrounds harbor different genomic
alterations, suggesting that distinct pathways of prostate carcinogenesis exist [13].

3. Approaches to Assess Tumor Heterogeneity

As the grade of cancer progresses, the approach needs to be changed, and it is not often
that a treating physician recognizes this grade progression. Often, it is the imaging-based
progression that detects this or an increase in circulating biomarkers, and further provides
a target for re-biopsy, following which there is pathological and molecular evidence of
heterogeneity as a possible explanation for disease worsening.

3.1. In Vitro Molecular Pathology

In the context of PRRT, Ki-67 remains the strongest predictor of prognosis, as has been
demonstrated in patients with NET G1 and low G2 (3–10%) range showing significantly
improved PFS and OS compared to higher proliferating tumors. Several previous studies
have been constructed based on Ki-67 cutoff thresholds and NET grade was used for
its prognostic impact as stratification factor. This has also entered recommendations of
treatment strategies in international guidelines, e.g., the guidelines of European Neuroen-
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docrine Tumor Society (ENETS) and the North American Neuroendocrine Tumors Society
(NANETS) are mostly centered around Ki-67 [14,15]. Even though the Ki-67 index is most
commonly used for grading NETs worldwide, it is subject to sampling error because the
Ki-67 index is not uniform within the whole tumor or the metastases.

3.2. Serum-Based Biomarkers

Biomarkers include tools and technologies that can facilitate the diagnosis, cause,
progression, or regression, prediction of treatment of disease or reflect tumor burden. In
general, biological markers (biomarkers) are considered ‘cellular, biochemical or molecular
alterations that are measurable in biological media such as human tissues, cells, or fluids’.
The progress and challenges presented by these biomarkers assume a special relevance
given the heterogeneity of the neoplasia and diverse anatomical and cellular origins. As
a consequence, these tumors produce a wide range of measurable active and inactive
products and reflect a broad spectrum of tumor biological behavior. In neuroendocrine
tumors, plasma chromogranin A (CgA) is one of the most commonly evaluated biomarkers
in patients with neuroendocrine tumors. The sensitivity is around 70 percent but highly
variable depending on the used assays. The European Society for Medical Oncology
(ESMO) and ENETS guidelines recommends complementing imaging procedures with
plasma CgA measurement at baseline and for monitoring during treatment and follow-up
of patients with GEP-NETs if elevated at baseline [16]. The prognostic value of CgA has
been shown in multiple studies; however, the predictive value has been shown just for
SSA therapy in some studies, while the PRRT response does not correlate with CgA level
changes [17]. The use of plasma CgA levels is limited by elevation related to other diseases
or conditions (non-NET malignancies, hepatic impairment, or renal insufficiency, intake
of proton pump inhibitors [18]. Other monoanalyte biomarkers such as pancreastatin,
neurokinin A (NKA), neuron-specific enolase (NSE), pre-progastrin, pancreatic polypeptide
(PP), serotonin (5-HT), and urinary or plasma 5-HIAA also do not meet the accepted
standards of care for diagnosis, staging, and follow-up of patients [19]. In prostate cancer,
prostate-specific antigen has been used as the ‘standard of care’ marker for detection and
prognostication of prostate cancer since the 1990s. The fact that the significant association
between higher PSA and worse outcomes remains after years of clinical use suggests PSA
remains a robust prognostic variable among men with newly diagnosed prostate cancer.
However, lack of specificity and false positives have hampered its utility. Moreover, in
scenarios where the patient becomes castrate resistant, PSA may not be relied upon, e.g., in
patients with neuroendocrine differentiation prognostication, and in this regard, imaging
biomarkers have a significant impact (see Figure 1). Androgen-deprivation therapies (ADT)
are part of standard treatment algorithm for prostate cancers. ADT is effective initially
but a majority of tumors relapse with castration-resistant prostate cancer (CRPC). CRPC
is driven primarily by aberrant activation of AR in the milieu of castrate serum levels of
androgen. On the other hand, approximately 25% of the men who die of prostate cancer
have tumors with an associated neuroendocrine phenotype, which is also a harbinger of
poor prognosis. There are multiple molecular processes in play during this transformation.
ADT leads to activation of CREB (cAMP response element-binding protein) which, in turn,
promotes neuroendocrine differentiation (NED) of prostate cancer cells [20]. In AR-positive
prostate cancer cells, CREB-binding protein (CBP), a histone acetyltransferase, has been
shown to act as an AR coactivator in transcriptional activation of AR target genes. In
addition, ADT-activated CREB promotes angiogenesis and NED [21].
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µg/L, CgA 767 ng/mL, NSE 277 µg/L. PSMA PET/CT (left) was performed to assess the feasibility of performing Lu-177 

Figure 1. A 61-year-old patient, first diagnosed in 08/2015 with histological diagnosis of adeno-
carcinoma of prostate, Gleason score 5 + 4, was referred for radioligand therapy due to disease
progression after treatment with firmagon, docetaxel, lucrin, external beam radiation therapy and
1 cycle of cisplatin/cabazitaxel. His lab values showed PSA < 0.01 µg/L, CgA 767 ng/mL, NSE
277 µg/L. PSMA PET/CT (Left) was performed to assess the feasibility of performing Lu-177 PSMA
therapy. Because of his low PSA level and elevated tumor markers for neuroendocrine differentiation,
this patient was also examined with Ga-68 DOTATOC PET/CT (Right). The maximum projection
intensity images showed more somatostatin receptor positive lesions as compared to PSMA avid
lesions. Images provided by Rachelle Steyn from University of Cape Town, South Africa.

3.3. Molecular Imaging-Based Biomarkers

Even today, Krennings score has been used as a point of reference for selecting patients
for PRRT [22]. The NETPET score devised by Chan et al. has given some objectivity for
characterizing FDG- and Ga-68-PET-positive NETs; however it lacks prospective validation,
especially from the point of view of prognostication [23]. Metabolic parameters such as
SUV max, SUV mean, metabolic tumor volume (MTV), and total lesion glycolysis (TLG)
have failed to provide any consistent results from the point of view of prognostication [24].
As we go up the ladder of differentiation, there emerges an inherent heterogeneity, with
co-expression of SSTR and glucose-transporter (GLUT) receptors. Thus, addition of FDG
PET imaging in the well-differentiated intermediate or high-grade NETs identifies the het-
erogeneous components of disease. It has been documented that addition of chemotherapy
following ‘positive FDG PET’ study shows good response on short-term follow-up [25].
There still remains a significant subset of tumors which show absence of objective response
(or stable disease) in spite of showing high SSTR expression, low Ki-67, low liver tumor
burden, and absence of FDG uptake. Graf et al. have proposed that amongst all the known
relevant clinical and pathological parameters, the ‘quality’ of SSTR expression, assessed
visually on PET/CT, as a significant predictive as well as prognostic parameter [26]. Patient
selection based on visual SSTR expression on a maximum intensity projection (MIP) image
has been the accepted reference standard, though does not account for the differential SSTR
expression within the lesions. The short range of lutetium-177 can miss the volume of
tumor which has low SSTR expression and is beyond its range; it is very likely that these
components of the lesion or tumor progress faster although the other sites or lesions attain
good response. Hence, the quality of SSTR expression was visually assessed as follows:
lesions greater than 2 cm and definitely visible on CT (target lesions) were considered for
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the assessment. The variability of SSTR expression over three planes was analyzed, and
patients were attributed to having heterogeneous SSTR expression if ≥50% of their lesions
were heterogeneous. Median time-to-progression of patients with heterogeneous SSTR
expression, containing both grade 1 and grade 2 NET was 28 months and as such shorter
than in patients with homogeneous SSTR expression. Thus ‘quality’ of SSTR expression
has emerged as another independent parameter for predicting response to PRRT. A similar
conundrum is faced when functional imaging is used in prostate cancer. Typically, patients
with exhausted conventional therapy options are selected based on PSMA overexpression
(variably defined) as seen on a PSMA positron emission tomography (PET) scan. However,
as Current et al. also point out, a significant proportion of patients do not respond to PSMA
RLT despite using the theranostic approach [27]. Therefore, optimal patient selection is of
paramount importance for rationalization of PSMA RLT as treatment failures are seen in
roughly 30% which needs to be identified. This is routinely done using an imaging-based
approach. PSMA PET/CT helps in identifying lesions with high PSMA expression, as
the same receptor is targeted with therapeutic radiotracers by the principle of theranos-
tics. In a study by Ravikumar et al. [28], a subset of treated patient cohort underwent
dosimetry, wherein 1 of 11 patients with a whole-body tumor that absorbed a dose un-
der 10 Gy had a PSA response greater than 50%. As part of their phase 2 177Lu-PSMA
trial, Hofman et al. [29] performed FDG PET/CT alongside 68Ga-PSMA-11 PET/CT at
baseline to characterize imaging phenotypes and select patients who were best suited for
Lu-177-PSMA-617 therapy. Sixteen patients (median age 71 yr, range 58–88) who were
screened for the trial were excluded on the basis of low PSMA expression or discordant
FDG-avid disease. Fifteen of 16 patients died during the follow-up period, with a median
OS of 2.5 months. Subgroup analysis for patients with low PSMA expression or discordant
FDG-avid disease showed median OS of 2.3 and 3.9 months, respectively [30]. Thus, tracer
concentration of PSMA and FDG PET imaging has the potential to become an important
prognostic parameter to guide further management.

Schmidkonz et al. [31], in a study of 142 patients, performed a quantitative assess-
ment of all 641 PSMA-positive lesions in the field of view to calculate PSMA-derived
parameters, including whole-body PSMA tumor volume (PSMA-TV) and whole-body
total lesion PSMA (TL-PSMA) as well as the established SUVmax and SUVmean values.
All PET-derived parameters were tested for correlation with serum PSA levels and for
association with Gleason scores. PSMA-TV and TL-PSMA demonstrated a significant
correlation with serum PSA levels. Interestingly, TL-PSMA was the only PET-derived
parameter which was significantly different between patient groups with different Gleason
scores. Additionally, response-to-therapy assessment using TL-PSMA showed the highest
agreement to monitoring based on PSA levels, superior to SUVmax-based evaluation and
response assessment based on CT data and RECIST 1.1 criteria [31].

3.4. Liquid Biopsy

Liquid biopsies, in which DNA sequencing can be performed on tumor components
that are found circulating in the blood of cancer patients (including circulating tumor cells
and cell-free circulating tumor DNA) have rapidly gained popularity in the past couple of
years. These have given us a good opportunity to assess evolving tumor heterogeneity in
real-time. These assays have proved to be highly sensitive and specific, with a high degree
of concordance with tissue biopsy, they can identify both clonal and subclonal mutations,
and they can detect resistance much earlier than radiographic imaging, which could permit
earlier intervention, especially in lung cancer and hematolymphoid malignancies [32,33].
The first liquid biopsy-based companion diagnostic test was approved by the US Food
and Drug Administration, in 2016, for the detection of EGFR mutations associated with
NSCLC. A potential challenge with the application of ctDNA to NET absence of recurrent
mutations in comparison with other tumors. Molecular profiling of small bowel NETs
(SBNETs) revealed the most common recurrent mutations were in cyclin-dependent kinase
inhibitor CDKN1B, occurring in only 8% of cases [34]. Pancreatic NETs (pNETs) are also
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characterized by recurrent mutations in a relatively limited number of genes, which include
the tumor suppressor gene MEN1 as well as ATRX and DAXX, genes implicated in chro-
matin remodeling [35]. Yet, even liquid biopsy alone is not able to fully dissect the extent of
tumor heterogeneity. Truly effective assessment of tumor heterogeneity is likely to require a
combination of liquid biopsy, carefully selected tumor tissue biopsies, imaging diagnostics,
and biomarkers. The main therapeutic strategies for overcoming tumor heterogeneity are
focused on the mechanisms of resistance that it drives. It is becoming increasingly apparent
that rationally designed combinations of drugs are likely to be required and might need to
be administered early in the course of disease to prevent resistance. However, according to
mathematical modeling studies, combinations of at least 3 drugs may be necessary [33]. An
alternative strategy is to use checkpoint-inhibitor-based immunotherapy because a single
treatment can target multiple neoantigens simultaneously. Although immunotherapy has
proven to be a highly effective treatment paradigm in multiple tumor types, resistance still
arises through varied mechanisms with tumor heterogeneity at their core.

3.5. Pharmacogenomics-Based Markers

The current Delphic consensus is that an accurate circulating biomarker that captures
the biological activity of a NET and predicts its clinical behavior would provide an optimal
method for the early detection of disease progression [36]. The NETest is a 51 multigene
assay based on PCR analysis of specific NET circulating transcripts, and its results are
depicted in the form of a score. It portrays the circulating NET fingerprints and exhibits
a higher sensitivity and specificity (98 and 97%, respectively) than secretory markers for
identifying neoplasia [37,38]. The assay is standardized and highly reproducible (inter-
and intra-assay coefficient of variation <2%) and is postulated to be independent of tumor
heterogeneity. Gene expression is captured in a 0–8 score derived from 4 different prediction
algorithms that is mathematically scaled to disease activity (0–100%) by interpolating the
expression of ‘omic’ transcripts that define specific biological components (hallmarks)
of neoplasia. The clinical utility benefit has been documented in several independent
clinical studies using diverse therapeutic strategies. In addition, the NETest has been
demonstrated as an effective (85–90% accuracy) surrogate biomarker for tumor progression
measured with conventional imaging with CT/MRI. A short PFS is significantly correlated
(>95%) with increased blood biomarker levels > 40 (on a scale of 0–100). Similarly, RECIST
progression of patients on somatostatin receptor binding analogs is also significantly
associated (>90%) with increase in score. However, stabilization or response is associated
with no change or reduction in scores (NETest levels ≤ 40). These alterations (progression
NETest score > 40; disease stability ≤ 40) likely reflect the biological impact of treatment [39].
In neuroendocrine neoplasms of gastrointestinal tract, higher expression levels in tumor
relative to non-tumor tissue of > tenfold were found for CgA, 2—tenfold higher mRNA
levels were found for CD56, β-catenin, PDX1, CK20, and P53 and 1—twofold higher
mRNA levels were found in CD45 tumor tissue compared with the non-tumor tissue [40].
A similar approach of using ‘omics’-based prognostication can also be used in prostate
cancers, wherein the entire fulcrum of management is based on the biochemical value of
PSA. Dysregulation of miRNAs (miRs) has been reported in prostate malignancy from early-
to advanced stage and castration resistant disease progression [41]. Among differentially
expressed miRNAs, most interestingly, the expression of miR-301 was upregulated in
early-stage and CRPC progression, and this high expression of miR-301 was consistent in
both serum and tumor tissue in prostate cancer patients compared to patients with benign
prostate hyperplasia. In addition, miRNA regulatory genes during stage-specific prostate
cancer progression suggest the involvement of p53, EGFR-PI3K-Akt, IGF, interleukins,
TGFB, VEGF, JAK/STAT, WNT signaling and their effectors as the most critical genes in
prostate cancer via upregulation of growth factor receptors, specifically EGFR, or through
PTEN inactivation. An example of a patient with neuroendocrine differentiated prostate
cancer is shown in Figure 2.
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Figure 2. High heterogeneity among patients with metastasized CRPC after multiple different therapies at the stage when
they are referred for Lu-177-PSMA therapies. The diagram gives a short overview of the different potentially activated
signaling pathways on progression of prostate cancer cells that might become androgen-receptor- and prostate-specific
antigen-negative over time, which can lead to apoptosis resistance and tumor recurrence or progression. ADT = androgen
deprivation therapy, AR = androgen receptor, miRNA = microRNA, PSA = prostate-specific antigen.

4. Principles of Radioligand Therapy

A radioligand is made of two parts: a ligand, which can find cancer cells that have a
particular surface molecule, and a radioisotope, which emits therapeutic radiation to kill
these cells (Figure 3). The radioligand can target cells anywhere in the body. Radioligand
binding is an approach that makes use of a radioactively labeled compound, which binds
at the target binding site. These long-established assays are potentially suitable for purified
protein, tissue homogenates, cell lysates, and also even whole cells. The radioligand tool
compound should have a specific activity high enough to allow detection of the protein–
ligand complex (usually by a scintillation counting method) in the binding assay and
should demonstrate a high degree of selectivity and be pure and stable. The kinetics of
the binding interaction are measured by detecting the incorporation of the radiolabeled
peptides/antibodies over time. Radioligands should exhibit a high affinity for their targets,
preferably having a dissociation rate constant (Kd) in the subnanomolar to low nanomolar
range. The ideal affinity for a radioligand depends on the expression level of the target
receptor and should be at least 5- to 10-fold higher than the receptor expression (Bmax).
High selectivity for its target is also required, preferably 100-fold less affinity for any other
binding site which is expressed in the same level.
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surface. Specific receptor ligands to these receptors can be labeled with a radioactive isotope that can emit beta particles.
The specific receptor ligand binds to the receptors on the cancer cell and the beta particles come within close proximity to
the cancer cell so that the cancer cell can be treated with beta particles and be killed.

Moreover, the target-dependent model of radioligand therapy is the basic mecha-
nism of localization. However, it has been seen that not all patients show response to
treatment in spite of having the required number of receptors for binding of radioligands.
Cancer cells change their responsiveness to drugs by changing their interaction with the
surroundings. Earlier studies focused mainly on the cancer cell itself rather than on the
interactions between the cancer cells and their surroundings. However, the role of tumor
microenvironment (TME) in tumor progression and drug efficacy has recently attracted
much attention. TME is the earliest determinant of ligand binding, and if multiple factors
within the cancer cell such as immune response, hypoxic factors, etc., are not conductive
to action of the protein–radionuclide complex, the further action is hampered, thereby
affecting the therapeutic efficacy. Once the TME is favorable, the further course of action of
radioligand is then determined by the physicochemical factors such as biological t1/2 and
receptor density. This is a dynamic temporal process, as shown in Figure 4, and clarifies the
concept of differential responses to radioligand therapy, in spite of the current judicious
patient-selection-based criteria and guidelines.

In addition to the aforementioned factors, radioligand efficacy and toxicity also show
a temporal relationship. Response of radioligand therapy is generally not dose dependent,
is non-linear, and is delayed, sometimes manifesting itself 1–2 years after the last treatment
cycle. On the other hand, the therapeutic pressure on the tumor biology is also non-linear.
During treatment cycles, genetic alterations and the presence of different clones influences
the degree of expression of targets, thereby directly influencing treatment efficacy.

Radioligand Therapy and Tumor Heterogeneity

Radioligand therapy (RLT) focuses on targeting specific receptors on the surface of
cancer cells. As a cancer progresses, there is an inherent heterogeneity that sets in and
may lead to switching on and off of receptors. Selective receptor activation with changing
tumor grade needs to be established objectively. This is possible with molecular imaging
techniques; wherein receptor-specific radiopharmaceuticals provide us information about
the degree of receptor expression. This receptor map can be further used as a guide for
planning therapy using the same ligand which was used for imaging, by labeling it with a
therapeutic radionuclide or, in some cases, targeted pharmacologic or chemotherapeutic
agents can be used; this decision is based on the data supporting efficacy of therapy and
toxicity profiles from the existing literature.
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Figure 4. Radioligand therapy interaction with a cancer patient’s (closed) system. There are three ways in which a
radioligand interacts with a tumor: (a) spatial interaction may be direct binding of the radioligand to the specific target on
tumor or through interaction with tumor microenvironment e.g., vessels; (b) radioligand leads to modulation of tumor
microenvironment to immune system and thus contributes to the efficacy of the treatment; and (c) temporal interaction due
to differential physical and biological half-life, different rates of internationalization of the receptor–radioligand complex
and also through the influence of amount of tumor burden in a patient as it directly influences the pharmacokinetics of
the drug.

Neuroendocrine tumors (NETs) include a heterogeneous group of malignancies arising
in the diffuse neuroendocrine system and characterized by indolent growth. Complex
interactions take place among the cellular components of the microenvironment of these
tumors, and the recognition of the molecular mediators of their interplay and cross-talk
is crucial to discovering novel therapeutic targets [42]. This heterogeneity presents a
significant clinical challenge, a biopsy-proven WHO Grade 1 NET may sometimes behave
aggressively, whereas at times, a Grade 3 tumor may demonstrate indolent behavior. Tissue
biopsy has proven to be the ’tip of the iceberg’ as far as depiction of the cellular pattern
of NETs are concerned. This clinical need has driven the search for accurate, affordable,
and repeatable biomarkers to help inform prognosis and predict response to treatment.
If identified, these biomarkers would allow administration of the right treatment to the
right patient at the appropriate time—avoiding unnecessary side effects from therapy yet
administering effective clinical treatment before significant clinical deterioration occurs.
Apart from the prognostic implications, heterogeneity also makes it difficult to optimize
treatment in NETs.

Radioligand therapy (RLT) targeting the prostate-specific membrane antigen (PSMA)
is an emerging treatment modality for advanced prostate cancer, but 50% of patients with
PSMA-positive tumors experience treatment failure. In tumors with different levels of
PSMA expression for varying fractions of PSMA positive cells, PSMA expression correlates
with radioligand uptake and DNA damage and, thus, RLT efficacy [43]. Intra- and interle-
sion variations in PSMA might result in undertreatment which reduces RLT efficacy and
may select treatment resistant tumor clones [44]. One potential explanation for these dis-
crepancies is heterogeneity of PSMA expression (Figure 4). Immunohistochemistry studies
of mCRPC lesions have noted significant inter- and intrapatient heterogeneity of PSMA
expression [45]. An example of heterogeneity in a case of prostate cancer is illustrated
in Figure 5. Preclinical research has suggested that despite an overall increase in PSMA
expression during progression of PCa from androgen sensitivity to androgen independence,
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some metastatic cell lines lose PSMA expression [46]. A significant proportion of liver
metastases in CRPC patients may also lack PSMA expression [47]. Heterogeneity of PSMA
expression may partly explain why about 30% of patients do not respond to 177Lu-PSMA
RLT [48]. In contrast, low PSMA expression in patients with mCRPC who progress after
conventional therapies may be a negative prognostic indicator [49].
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Figure 5. Example of a patient with neuroendocrine differentiated prostate cancer. At the time of the staging PSMA-PET, the
patient had already tested positive for neuroendocrine differentiation of the prostate cancer. The PSA value had been below
the detection rate. In the PSMA scan, the liver metastases showed only a PSMA expression similar to the liver uptake or
only slightly above liver uptake (blue). A metastasis in the pancreas showed no PSMA expression (orange). An additional
SSTR-PET was performed where no SSTR expression of the liver metastases (blue), nor was the pancreas metastasis (orange)
detectable. After another biopsy of the marked liver metastasis, a BRCA2 mutation could be confirmed (green). The
patient underwent chemotherapy with etoposid and cisplatin as well as an immunotherapy with olaparib. In the follow-up
PSMA-PET, the patient presented with progressive disease, but the BRCA2-positive metastasis decreased in size (the lesion
was additionally treated with Gamma Knife) and showed a higher PSMA expression than before (blue, green). In contrast,
the metastasis of the pancreas increased in size and showed still no PSMA expression. CE-CT = contrast-enhancement
computed tomography, PSMA = prostate-specific membrane antigen, SSTR = somatostatin receptor.

5. Predictors of Response to Radioligand Therapy

Theranostics is the concept of patient selection for targeted radionuclide therapy
based on the imaging phenotype on a companion diagnostic scan. However, emergence of
heterogeneity in receptor expression across tumor grades has posed an imminent challenge
toward administration of treatments based on standard recommendations and guidelines.
There is an ‘unmet’ need to assign and implement targeted biomarkers which cover the
entire gamut of heterogeneity that is known in respective tumors. In addition, predictive
biomarkers, algorithms, and tools are the need of the hour, considering the cost of treatment,
high specificity, and toxicity profiles of the newer therapies. Although conventional
biomarkers are still used in clinics, such as serum chromogranin, 5-HIAA and neuron-
specific enolase for NET, and serum PSA for prostate cancer, these fall short when tumors
with mixed cellular patterns are presented to outpatient departments. We would therefore
prefer to illustrate the ‘response predictors’ based on the various modalities used to assess
treatment response.
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5.1. Imaging Features and Target Heterogeneity

Imaging has several major advantages in assessing tumor heterogeneity over random
tissue sampling, especially in patients with multiple metastases. First, it allows a full 3D
volume assessment of the tumor and the analysis of different metastases from a same organ
or from different organs. Secondly, it allows a longitudinal analysis over time. Finally,
imaging enables to assess heterogeneity between patients with similar tumors (interpatient
heterogeneity) as well as heterogeneity between different tumors within individual patient
(intertumor heterogeneity) and within each lesion (intratumor heterogeneity). The analysis
of spatial variation in architecture and/or function by imaging can provide benefit over
simple biomarkers commonly used such as tumor size and average density measurement.

5.2. Vascular Heterogeneity

Due to their particular arterial supply, neuroendocrine liver metastases (NELM) are
known to be hypervascular on arterial phase images and hypoattenuating on portal ve-
nous phase images in a majority of the patients (70–73%) [50–53]. Thus, dual phase CT
(with a combination of arterial and portal venous phases) is mandatory for detection of
NETs, both primary and metastatic [54]. However, about 30% of NELMs show a differ-
ent enhancing pattern, including hypoenhancement of both arterial and portal phase in
12%, which explains the variable lesion conspicuity seen with dynamic phases imaging
either with CT or MR. Finally, five different patterns of liver metastases from NET have
been described: hypervascular, hypovascular, pseudocystic, pseudoangiomatous, and the
military pattern [55–57]. The military pattern has been showed associated with higher
risk of underestimation of lesion detection on CT and somatostatin analog imaging [54].
Recognition of different NET metastases enhancement patterns can have clinical conse-
quences. First, it may be an indirect parameter in primary tumor identification. Indeed,
significant differences in intratumoral vascularization have been shown depending on
the primary tumor, as most enteric NET metastases (88%) showed a typical pattern, i.e.,
hypervascularity followed by washout on portal venous phase images, while this feature
was only observed in 56% of pNEN metastases that are more frequently isointense on
portal phase [50]. More interestingly, intratumoral vascular patterns were shown to be
an imaging biomarker of tumor aggressiveness that is correlated with the histological
grade of the tumor and the risk of metastases. On pathology, mean vascular density has
been reported to be higher in well differentiated benign endocrine tumor, small lesions
<2 cm, tumors with Ki-67 < 2%, non-metastatic tumors and in patients without disease
progression [58]. Similar findings have been reported on CT and MR images where a
well-circumscribed hypervascular mass with homogeneous enhancement is highly sug-
gestive of a low-grade tumor. At the opposite end, an ill-defined hypovascular tumor on
arterial and portal phase with heterogeneous enhancement is more common in grade 2 or
NEC [59–61]. In agreement, quantitative assessment of tumors perfusion using dynamic
contrast-enhanced CT technique (DCE-CT) has been shown to be significantly correlated
with prognostic histological characteristics of pNEN [62]. Indeed, significant correlations
existed between high blood flow and differentiation, proliferation index, or microvascular
density on the one hand, and longer mean transit time and lymph node or liver metastases
on the other hand. A link between blood flow and OS was also suggested but remains to
be confirmed [62–64].

Vascular heterogeneity assessment is also a parameter of importance in selecting
appropriate treatment of liver metastases. Indeed, intratumoral hypervascularization,
defined as arterial contrast enhancement on imaging, has been shown to be a predictive
factor of tumor response of hepatic intra-arterial therapy techniques such as transarterial
chemoembolization (TACE) [64,65]. In addition to the qualitative assessment of enhance-
ment on dual phase CT or MR images, a more reproducible quantitative approach with
volumetric measurements of tumor enhancement could be easily performed using auto-
matic segmentation of enhancing pixels. In general, volumetric analysis is applied on
a lesion-by-lesion basis. However, this is impractical in most patients with NELM who
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present with multifocal, bilobar disease and are treated with lobar TACE. That is why some
authors have proposed that volumetric assessment of the entire liver could be a more com-
prehensive biomarker for tumor response after TACE because it eliminates the subjectivity
associated with lesion-based analysis and accounts for both tumor heterogeneity and tumor
burden. Sahu et al. [66] evaluated the value of quantitative enhancing tumor burden in
51 patients with multifocal, bilobar NELM treated with TACE. The 50% cutoff in decrease of
enhancement provided the best survival model. Moreover, the tumor burden enhancement
response was the only biomarker associated with a survival difference between responders
and non-responders and an independent predictor of survival (HR: 0.2; 95% CI: 0.1–0.6).

5.3. Cellularity Heterogeneity

Tumor cellularity heterogeneity can be assessed through imaging using diffusion
weighted imaging (DWI) and the measured apparent diffusion coefficient (ADC), which
can be performed quickly without need for the administration of contrast medium. Indeed,
the diffusivity of water molecules is restricted in environments of high cellularity because
this cellularity reduces the ratio of extracellular to intracellular space in a given area of
tissue [67]. Studies conducted in vitro and in animal models show that the ADC is in-
versely correlated with tumor cellularity [68,69]. A quantitative assessment could be easily
performed using the apparent diffusion coefficient (ADC) measuring signal attenuation
being influenced by microscopic motion, including molecular diffusion of water as well
as blood microcirculation. in several different types of tumors, the ADC value has been
shown to be as a prognostic factor that can predict tumor grade [70,71].

On NETs, the addition of DWI sequences to morphological MRI revealed additional
metastases and led to modifications of patient management. Adding DWI to standard
liver MRI yielded additional findings for 45% of the patients with 1.78 times more new
lesions, mainly infracentimetric; it induced a management change for 18% of the patients.
DWI sequences added to whole-body MRI yielded additional findings for 71% of the
patients, with 1.72 times more lesions, mainly infracentimetric, and induced a change
in management for 19% of the patients [72]. Moreover, ADC values have been recently
identified as a biomarker of tumor aggressiveness correlated with the histological grade on
pNEN. Lotfalizadeh et al. found a significant inverse relation between ADC values and
tumor grade, meaning that tumors with a higher grade showed lower ADC values when
compared with those of lower grade. A cutoff of 1.19 × 103 mm2/s was associated with a
sensitivity of 100% and a specificity of 92% [73].

Another way to assess tumor cellularity in combination with tumor perfusion on
MR imaging is the intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI).
First described in 1986 by Le Bihan et al. in neurologic disorders, IVIM is based on the
fact that blood flow in capillaries mimics a diffusion process and impact diffusion MRI
measurements [74]. Hence, the measurement of the ADC value on standard DW-MRI
is biased by the effects of microcirculatory perfusion, which may impact the accuracy of
ADC in evaluating hypervascular tumors such as NENs [75]. IVIM-based perfusion MRI,
which does not require contrast agents but a specific acquisition of multiple b-value DWI
and the analysis of the bi-exponential signal decay, has the potential to provide a single
acquisition protocol for the non-invasive assessment of diffusion and perfusion in tissue.
IVIM-DWI allows the measurement of two parameters, one representative of the tumor
perfusion so-called fast apparent diffusion coefficient (Dfast) and one representative of
the tumor cellularity so-called slow apparent diffusion coefficient (Dslow). IVIM-DWI has
been used for differentiation of high-grade pancreatic ductal adenocarcinoma [76]. It was
shown that high-grade pNEN had a significantly higher mean Dslow value and lower mean
Dfast value in comparison to with pancreatic adenocarcinoma. Moreover, when Dslow and
Dfast was combined, the specificity and sensitivity for differentiating high-grade pNENs
from pancreatic adenocarcinoma were 77 and 100%, respectively. The translation of IVIM
to clinical adoption requires DWI-MRI with shorter acquisition time, a consensus on the
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number and choice of b values and requirements for a sufficient signal-to-noise ratio level
for accurate and reproducible post-processing.

5.4. Intratumoral Heterogeneity: The Radiomics Approach

Intratumor heterogeneity is near-ubiquitous in malignant tumors but varies between
cancer and patients [77]. Qualitative analysis of intratumor heterogeneity and complexity
is limited in morphological imaging, such as CT and MRI, and more often beyond the capa-
bility of human eyes. Radiomics is a new data-driven approach based on the assumption
that images are a phenotype reflecting underlying biology and revealing more information
than what the human eye would allow. Through dedicated software using mathematical
statistical analysis of pixels or voxels of a region of interest, radiomics provide extraction of
a large set of complex descriptors, so-called radiomics features [78]. Similarly to the ge-
nomic process, radiomics provide a radiological signature of the tumor with identification
of radiomics features that could be correlated to outcome and could establish links between
the imaging phenotype and genotypic and molecular characteristics of a tumor. The most
common radiomics features include tumor size and shape, first order radiomics features
based on the analysis of the voxel intensity histogram such as skewness, kurtosis, entropy,
and more complex parameters from second or third order analysis based on special analysis
of the relationship between voxels using a co-occurrence matrix and decomposition of the
original image into low and high frequencies (Wavelet radiomics features).

Only few papers have addressed the usefulness of texture analysis and radiomics
in NETs. Most of them focused on tumor grade prediction in pNEN [79–84]. The main
characteristics and results of these studies are summarized in Table 1. In 4 of these 6 studies,
only basic first order radiomics features were extracted from 2D ROI without independent
validation. Kurtosis and entropy were the two radiomics features that seemed more
relevant in predicting the pNEN grade. Two studies build a radiomics-based predictive
model to non-invasively achieve pNEN grading using CT images. In both studies, the
association of the radiomics signature (from either arterial or combined arterial + venous
phase images) with clinical data had good accuracy in predicting the tumor grade of
pNEN [80,83]. These promising results should not hide technical difficulties (influence of
image acquisition parameters and reconstruction protocols, absence of harmonization of
radiomics feature calculation methods) that still currently prevent the approach from being
widely clinically used [84,85].

Table 1. Published papers on the value of CT texture analysis in predicting the grade in pNEN.

No of Patients Images Phase/ROI/Sofware Type RF RF Correlated with G

D’Onofiro et al., 2019 [84],
Sci Rep 100

Pancreatic
2D ROI 1 slice

MaZda 4.6
1st order Kurtosis and entropy

Guo et al., 2018 [79],
Abdo Imaging 37

Arterial
2D Five slices
Matlab 2014a

1st order Mean grey level intensity

Canellas et al., 2018 [81], AJR 101 Portal TextRad
2D ROI 1st order Entropy

Choi et al., 2018 [82], Acta Radiol 66 Arterial + portal
2D ROI 1st order Sphericity, skewness, kurtosis

Gu et al., 2018 [80], Eur Radiol 104 training
34 validation

Arterial and portal
3D ROI

Pyradiomics 1.3.0

1st, 2nd, and 3rd order
radiomics signature:

15 arterial RF + 10 portal RF
from 853 RF

Radiomics signature on
arterial + portal images

Nomagram: Radiomics +
tumor margin

Liang et al., 2019 [83],
Clin Cancer Res

86 training
51 validation

Arterial 3D ROI
In-house software

1st, 2nd, and 3rd order
radiomics signature 8RF from

467 RF

Monogram: Radiomics
signature on arterial +

clinical stage

MRI-based radiomics in prostate cancer und neuroendocrine tumors.

5.5. Tumor Proliferation Heterogeneity

Another well-known cause of heterogeneity of NENs is the tumor growth. Tumor
growth is strongly correlated with the tumor proliferation index marker Ki-67, coming
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from the histopathological analysis of biopsy samples or surgical specimen, with low-Ki-67
tumors considered as slower-growing tumors compared to high-Ki-67 ones. However, this
dichotomization between low-grade slow-growing and high-grade fast-growing tumors
is not absolute since some histologic low-grade tumors may behave more like advanced
progressive carcinomas. Moreover, grade 2 NEN tumors represent a very heterogeneous
group of tumors with different growing profiles and aggressiveness potentials. Finally,
tumors of different grades can be present in a NET patient at the same time. In addi-
tion to radionuclide imaging, conventional imaging has an important role in assessing
tumor proliferation and potential heterogeneity between metastatic sites and between
metastatic lesions.

In the past, several studies in metastatic GEP tumors showed a significant correla-
tion between the tumor slope, assessed by tumor size measurement on consecutive CT
examinations, and the patient outcome [86–88]. In these studies, the tumor slope was
found to better reflect tumor aggressiveness than the disease-free interval or proliferative
index. However, tumor slope assessment is not yet standardized in the field of endocrine
tumors. Moreover, the period of time required for slope assessment delayed the prognostic
classification and the treatment management as most authors consider there to be a low
slope if the RECIST sum increases by <20% within one year. Another way to assess the
spontaneous tumor growth is to measure the tumor growth rate (TGR), defined as an
estimation of the increase/decrease of the tumor volume over time. TGR is expressed
as the percentage change in tumor volume over one month. In post hoc analyses, tumor
measurements from the CLARINET study (small bowel and pancreatic grade 1 and low
grade 2 (Ki-67 > 10%) tumors) were re-evaluated to explore the clinical utility of TGR. A
pretreatment TGR > 4%/month was associated with a 4.1-fold greater risk of progression
than TGR ≤ 4%/month in the overall population (HR 4.1) [89]. The benefit of the treatment
by lanreotide was also different depending on pretreatment TGR with intermediate TGR
patients (between 4 and 10%) being those who responded best. TGR can be measured as an
average for several metastatic lesions but can be also per lesion giving an opportunity to
assess the in-patient heterogeneity between tumors. Such an approach, which allows iden-
tifying some metastatic lesions with a higher proliferation rate, could be of clinical value
for the selection of treatments such as some local therapy. Moreover, one may hypothesize
that incorporating metabolic imaging features known to be correlated with tumor grade,
such as uptake on 68Ga-somatostatin receptor PET (SR-PET) and 18F-FDG-PET, may help
to better cope with tumor heterogeneity.

Patients with prostate cancer are a heterogeneous group with different morbidity and
mortality rates. Even with therapy, a significant proportion of patients show biochemi-
cal failure and subsequent metastatic progression, suggesting that additional strategies
for personalized disease management are urgently needed. Intratumor heterogeneity
(ITH) is considered to be one of the most important drivers of progression and resistance
to therapy [90]. The heterogeneity of prostate cancer can, of course, also be assessed
non-invasively using parameters from imaging with MRI. Radiomics application of mul-
tiparametric MRI in prostate cancer consist of high-resolution anatomic T2w sequences,
diffusion weighted imaging (DWI), and dynamic contrast-enhanced sequences, and is
occasionally supplemented by magnetic resonance spectroscopy. For local staging, prostate
MRI is the most accurate imaging modality and is included in many national guidelines.
However, most studies only include these 3 sequences (T2w, DWI, DCE) to build a model.

The applications for radiomics in prostate cancer [90–99] are summarized in Table 2.
Of note, multiparametric MRI has so far only been studied for judgement of the prostatic
gland/primary prostate cancer, but not for prostate cancer metastasis.

For NETs, MRI has been less frequently used for radiomics studies and has focused
mainly on grading. In contrast to prostate cancer, MRI radiomics have been also applied
to metastases and not only primary tumors. Table 3 shows the summary of applications
and results.
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Table 2. Summary of radiomics literature in prostate cancer using MR.

Author Study Type Application Number of Patients Results

Fehr et al., 2015 [90] Retrospective Cancer risk prediction 217

Textural features from T2WI and
ADC could distinguish between

different Gleason scores. Accuracy
of 93% after cross-validation for

discrimination of Gleason 6 (3 + 3)
vs. Gleason ≥ 7, and 92% for

discrimination of Gleason
3 + 4 = 7a vs. 4 + 3 = 7b.

Woźnicki et al., 2020 [91] Retrospective Cancer risk prediction 191

Radiomics characterizes prostatic
index lesions accurate and perform

comparable to radiologists for
prostate cancer characterization.

Prognostic machine learning
models could help in detection of

clinically significant prostate
cancer and patient selection for

MRI-guided fusion biopsy.

Li et al., 2020 [92] Retrospective Cancer risk prediction 381

3 models were developed: a
clinical model, a radiomics model

(T2WI and ADC), and a
clinical-radiomics combined

model. Radiomic (AUC 0.98) and
combined model (AUC 0.98)

perform better in prediction of
clinically significant cancer than

clinical model (AUC 0.79)

Xu et al., 2019 [93] Retrospective Cancer risk prediction 331

6 selected radiomics features of
MRI (T2WI and ADC) performed
better (AUC 0.92) than each alone
(T2WI: AUC 0.81, ADC: AUC 0.89).
Individual preoperative prediction

model performs better when
including clinical factors and

radiomic features (clinical model:
AUC 0.73; combined model:

AUC 0.93).

Ma et al., 2020 [94] Retrospective Staging 119

Radiomics signature based on
17 features on T2WIs has the

potential to predict preoperative
risk of extracapsular extension,

good performance in the
validation set (AUC 0.821).

Zhang et al., 2020 [95] Retrospective Tumor grading 166

Radiomics model with signatures
from T2WI, ADC and DCE

perform better than any single
sequence (AUC: radiomics model

0.87; AUC T2WI/ADC/DCE:
0.70/0.76/0.73). Combined model
with radiomics signature, clinical
stage, and time from biopsy to RP
outperformed the clinical model

and radiomics model (AUC:
combined model 0.91, clinical

model 0.65, radiomics model 0.87).
MpMRI had the potential to
predict tumor upgrade from

biopsy to RP.
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Table 2. Cont.

Author Study Type Application Number of Patients Results

Gnep et al., 2017 [96] Retrospective Therapy response
Biochemical recurrence 74

T2WI Haralick textural features
appear be strongly correlate with

biochemical recurrence
after radiotherapy.

Shiradkar et al., 2018 [97] Retrospective Therapy response
Biochemical recurrence 120

10 extracted radiomic features
from pretreatment T2WI and ADC

are significantly correlated with
BCR and could be used for BCR
prediction; after radiotherapy?

Stoyanova et al., 2016 [98] Retrospective Radiogenomics 17

Radiomic features extracted from
biopsy regions of primary tumors

(?) and normal tissues correlate
significant with gene signatures

associated with adverse outcome.

Fischer et al., 2019 [99] Retrospective Radiogenomics 298

Biomarkers that play critical roles
in PCa showed high correlation

with aggressiveness-related
imaging features extracted from

mp-MRI images. The use of
multi-omics data has the potential

of significantly improving
prediction of prostate
cancer aggressiveness.

Table 3. Summary of radiomics manuscripts in neuroendocrine tumors related to MRI.

Author Study Type Application Number of Patients Results

Shi et al., 2020 [100] Retrospective Cancer risk prediction 66

Radiomics model based on diffusion
kurtosis imaging (DKI) and T2 WI to

discriminate pancreatic
neuroendocrine tumors (PNETs)

from solid pseudopapillary tumors
(SPTs). 7 features of tumors were

used to build radiomics model; the
accuracy for diagnosis was higher

than the radiologist (radiomics
analysis 92.4%, radiologist 1 77.3%,
radiologist 2 78.8%) and perform

significantly better than of
subjective diagnosis.

Bian et al., 2020 [101] Retrospective Tumor grading
Primary or also mets? 157

7 final radiomic features was used
for rad-score calculation. Rad-score

correlate significantly with NF-pNET
grades. This radiomic model could
help to differentiate G1 and G2/3

non-invasive.

Guo et al., 2019 [102] Retrospective Tumor grading
Primary or also mets? 77

Preoperative T2WI and DWI was
used for texture feature extraction.
AUC of best predicting model on

T2WI was 0.99 (Grade 1 vs. Grade 3).
This radiomic model could help to

predict pNETs grading.

Weber et al., 2020 [103] Retrospective Therapy response
Primary or also mets? 18

In this small sample size, no
parameter from PET or ADC

predicted treatment response to
PRRT on pretherapeutic

68Ga-DOTATOC-PET/MRI.
Treatment responder showed a

significant decrease in lesion volume
on ADC maps, no other textural
feature from PET or ADC was

statistically significant for
differentiation between responders

and non-responders.
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In general, radiomics offers a cost-effective, non-invasive, and high-throughput ap-
proach in the analysis of image data, especially on MRI, which can lead to improved tumor
detection and personalized treatment.

5.6. Future Directions

The current landscape of theranostics and precision medicine revolves around identi-
fying ‘targets’ which can be harnessed for imaging as well as therapy; its earliest example
being use of iodine-131 for imaging and treatment of differentiated thyroid cancer. In
times to follow, with the development of peptides, these sophisticated targets were used
for neuroendocrine tumors and prostate cancer. However, resistance to these regimes
have forced us to look at the tumor ‘territory’ from a different perspective. There are
multiple pathways at play, and the need of the hour is to have a multi-pronged approach
to overcome resistance. As illustrated in Figure 6, ‘territorial management’ of cancers
involves using specific PET probes which identify the dominant pathways on tumor cells,
and subsequent use of the same ligands for targeting therapeutic radionuclides (Table 4).
Paschalis et al. [104] showed that deleterious DDR (DNA damage repair) aberrations are
associated with replication stress, placing increased demand for metabolic precursors such
as folate and glutamate, which are crucial to DNA synthesis and repair. As such, given the
enzymatic capability of PSMA to yield glutamate and folate monoglutamate from polyglu-
tamated folates and its reported role as a folate transporter, one possible explanation to
account for this association is that PSMA overexpression in cells with deleterious DDR
aberrations represents an adaptive cellular response. In this setting, PSMA overexpression
may be driven by the increased requirement of these cells for cellular metabolites such
as folate and glutamate. However, in all those patients who have shown non-response
to PSMA RLT, there is a possibility that the tumor territory has another active pathway.
Fibroblast activation protein (FAP) is a serine protease which is upregulated in several
tumor types, while its expression in healthy adult tissues is scarce. FAP molecules and
FAP+ stromal cells play an important although probably context-dependent and tumor
type-specific pathogenetic role in tumor progression [105]. Kratochwil et al. [106]. have
already used it as a target for imaging pancreas adenocarcinoma. These are the pathways
which have been studied and elevated to clinical practice; however, the vast expanse of
the tumor microenvironment provides us with even more opportunities to exploit several
other pathways, e.g., with several PET tracers (Table 4), and account for possible ‘resistant’
cancer types, thereby improving outcomes.

Apart from utilizing the unique capability of PET tracers to map different receptors
and metabolic/genetic pathways of tumors and their environment, there is also an urgent
need for using state of the art tumor segmentation software for objectifying tumor het-
erogeneity. Khurshid et al. have shown the possibility of analyzing spatial heterogeneity
of PSMA expression on mCRPC patients referred for Lu-177 PSMA therapy. A total of
328 bone, liver, and lymph node lesions from pretherapeutic PET/CT scans of 70 patients
were analyzed using Interview Fusion Workstation (Mediso Medical Imaging System,
Budapest, Hungary). The authors evaluated 5 heterogeneity parameters including entropy,
contrast, size variation, homogeneity, and COV. The results were compared with change
in PSA after RLT. Although not remarkably high, an area under curve of 0.695/0.683
for entropy/homogeneity showed promise for pre therapy image-based parameters for
predicting response to RLT [107]. Similarly, entropy of pretherapy somatostatin receptor
PET/CT was found to be an important prognostic marker for NET patients undergoing
PRRT [108]. There are several other parameters such as kurtosis, skewness, solidity, etc.,
which can be gleamed out of PET images. However, validation of such parameters requires
a significantly high number of patients. Therefore, it is equally important to integrate
this information with other serum and tissue biomarkers to make a meaningful algorithm
for individualized cancer treatment using artificial intelligence. This integration must go
beyond any geopolitical boundaries, e.g., by establishing open image network platforms.
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Figure 6. ‘Territorial management’ of cancers. This concept involves using specific PET probes which identify the dominant
pathways on tumor cells. The same ligands could then be used for targeting a therapeutic radionuclide for treatment of the
cancers. Effective and ‘ideal’ therapy strategies should/must target all the elements simultaneously and monitor genetic
mutations/signatures during therapy as well. CD44 = cluster of differentiation 44, DMPO = dimethylpyrrolineoxide, DNA
= deoxyribonucleic acid, FAP (I) = fibroblast-activation-protein (inhibitors), GRPR = gastrin-releasing peptide receptor,
MMP = matrix metalloproteinase, PD = programmed cell death protein, PDL-1 = programmed death-ligand 1, PSMA =
prostate-specific membrane antigen, RNA = ribonucleic acid, SSTR = somatostatin receptor, VEGF = vascular endothelial
growth factor.

Table 4. Overview of possible PET radiopharmaceuticals and their measured effects for functional imaging. AKT = ser-
ine/threonine protein kinase, CTLA-4 = cytotoxic T-lymphocyte-associated protein 4, CXCR-4 = chemokine receptor type 4,
DNA = deoxyribonucleic acid, EGFR = epidermal growth factor receptor, FAPI = fibroblast-activation-protein inhibitors,
GLP 1 = glucagon-like peptide 1, GRPR = gastrin-releasing peptide receptors, HER-2 = human epidermal growth factor
receptor, PD-1 = programmed cell death protein, PDL-1 = programmed death-ligand 1, PIK3 = phosphoinositide 3-kinase,
PSMA = prostate-specific membrane antigen.

PET Radiopharmaceuticals Measured Effect

F-18 fluorodeoxyglucose Aerobic and anaerobic glycolysis, glucose consumption or metabolism
C-11 thymidine, F-18 fluorothymidine DNA synthesis, tumor cell proliferation

C-11 methionine Protein synthesis, tumor cell proliferation
C-11 choline, F-18 fluorocholine Cell-membrane metabolism, tumor-cell proliferation

C-11 tyrosine, F-18 fluorotyrosine, F-18 fluoroethyltyrosine Natural amino acid transport
F-18 fluorodihydroxyphenylalanine Dopamine synthesis, natural amino acid transport

F-18 fluoromisonidazole Tissue hypoxia, identification of hypoxic tumor cells
F-18 fluoro-17-β-estradiol Estrogen-receptor status
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Table 4. Cont.

PET Radiopharmaceuticals Measured Effect

F-18 annexin V Apoptotic cell death
F-18 fluorouracil Accumulation of 5-fluorouracil in tumor

C-11 acetate Lipid synthesis
F-18 siTATE, Ga-68 DOTA-X, Cu-64 DOTA-X In-111-octreotide, Ga-68

somatostatin receptor antagonists Somatostatin receptor status

Ga-68/In-111 herceptin affibody HER-2 receptor status
Ga-68 NODAGA RGD Tumor neoangeogenesis

F-18 FEBM EGFR expression
Ga-68 exendin 4 GLP 1 imaging

Ga-68 DOTA-mAB-F(ab’)2 cetuximab or HER3mAB105 Receptor tyrosine kinases; resistance to PI3K and AKT inhibitors
F-18 PSMA, Ga-68 PSMA Prostate-specific membrane antigen

Zr-89 nivolumab, F-18 BMS 986192, Cu-64 pembrolizumab, C-64
ipilimumab, etc. PD-1, PDL-1, CTLA-4

F-18, Ga-68-labeled FAPI Tumor-associated fibroblast-activated protein
Ga-68 bombesin Bombesin receptor, gastrin-releasing peptide receptors (GRPR)
Ga-68 pentixafor CXCR-4
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