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Abstract

A modelling framework for ultrasonic inspection of waveguides with arbitrary discontinuities, excited using
piezoelectric transducers, is developed. The framework accounts for multi-modal, dispersive and damped one
dimensional propagation over long distances. The proposed model is applied to simulate a realistic guided wave-
based inspection of a welded rail. The framework models the excitation, propagation and scattering of guided
waves from welds by respectively employing a hybrid model that couples a 3D FEM model of a piezoelectric
transducer with a 2D SAFE model of the rail; a 2D SAFE model of the rail; and another hybrid method which
couples a 3D FEM model of the arbitrary discontinuity (weld) with two SAFE models of the rail to represent
the semi-in�nite incoming and outgoing waveguides. Optimal damping parameters for hysteretic and viscous
damping, respectively, are determined using a model updating procedure to approximate attenuation in the
rail. Good agreement between the experimental measurement and simulation is demonstrated, even for weld
re�ections originating over 640m from the transducer location. The proposed physics-based framework can
be used to e�ciently perform multiple analyses considering di�erent numbers and locations of welds, di�erent
excitation signals or to investigate the e�ects of changes in parameters such as transducer geometry, or material
property variations caused by temperature �uctuations. The framework could therefore be used in future to
set up a digital twin of a section of rail track, or in the development of a rail monitoring system by predicting
re�ections from defects which cannot readily be measured, but which can be simulated.
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1. Introduction

The use of Guided Wave Ultrasound (GWU) for Non-Destructive Evaluation (NDE) and structural health
monitoring is receiving signi�cant research attention. This is because GWU has demonstrated the potential for
inspection or monitoring of structures which act as waveguides for elastic waves such as plates, pipes and railway
tracks [1, 2, 3]. One of the attractive properties of GWU is the ability to interrogate or monitor large volumes
of a structure from a single transducer location, especially when compared with the conventional ultrasonic
inspection. This feature is exploited in a permanent monitoring system for railway tracks which is currently
being used to monitor a heavy haul line in South Africa [4, 5]. GWU-based NDE systems can be designed
to distinguish benign structural features from defects, using knowledge of how modes interact with di�erent
geometrical features. Furthermore, GWU can be used to inspect or monitor the structural health of inaccessible
parts of structures, such as insulated or buried pipes [6, 7].

The design of GWU-based NDE systems is, however, complicated by the presence of multiple propagating
modes and the dispersive nature of these modes, especially when long-range propagation is involved. For this
reason, the development of GWU systems usually requires the use of mathematical modelling. Modelling can
be used to design transducers to preferentially excite desired modes, o�ering insights into how the location and
dynamics of a transducer in�uence the excitation of guided wave modes. It can also be used to predict and analyse
the dispersion and attenuation of propagating modes, required to develop signal processing strategies. Finally,
modelling is also necessary to simulate the very complex scattering of propagating modes from discontinuities
such as structural features or defects.
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The traditional 3D Finite Element Method (FEM) with an explicit time-domain solver could be adopted
to simulate the excitation, propagation and scattering of GWU if relatively short sections of waveguides are
considered [8, 9, 10]. The work in [8] does apply speci�cally to a rail problem; however, the �ne temporal
and spatial discretization required at frequencies employed in GWU-based rail monitoring systems and the
propagation distances achieved (kilometres in some cases) makes explicit solvers impractical for modelling the
entire rail section. To date, only a few authors have reported the implementation of numerical models to simulate
a complete guided wave-based inspection.

Jezzine et al. [11] developed a model to simulate guided wave-based inspection with a transducer mounted
at the end of a semi-�nite 1D waveguide. In this model the energy propagates in one direction only, making
this model inappropriate for long, continuous waveguides such as pipelines and rails. For these applications
transducers are generally attached to the circumference of the waveguide, and an inspection is carried out in
both directions. Furthermore, in [11] the transducer is modelled simply as a source of normal stresses, and
transducer dynamics are not taken into account. Loveday [12] developed a hybrid method to simulate wave
propagation excited by a piezoelectric transducer attached to a waveguide, accounting for transducer dynamics.
This method couples a 3D FEM model of a piezoelectric transducer with a 2D Semi-Analytical Finite Element
(SAFE) model of the elastic waveguide. The method has been re�ned, veri�ed and employed to design and
optimize resonant piezoelectric transducers for targeting speci�c propagating modes in rails [13, 14].

Furthermore, Jezzine et al. [11] considered only transverse cracks modelled using a SAFE-based [15, 16]
analysis. Baronian and co-workers [17, 18] have developed a method to compute scattering from more general
structural features and defects with complex geometry. This method has been implemented in the analysis
software, CIVA [19]. Benmeddour et al. [20] introduced a hybrid method which uses a 3D FEM model of an
arbitrary discontinuity and SAFE models to represent the semi-in�nite incoming and outgoing waveguides. This
method was used to predict re�ection amplitudes from discontinuities in rails such as aluminothermic welds and
defects such as cracks [3, 21], indicating that it should be possible to detect defects in rails at long-range before
complete breaks occur [3]. Baronian et al. [22] demonstrated the application of the CIVA software to simulate
an inspection with multiple local discontinuities. The scattering matrices for the coupled local discontinuities
were computed by considering the scattering from respective discontinuities and the propagation between them.
The method was successfully applied for short-range propagation (less than tens of metres) where a relatively
short time signal was required. This approach could be adopted for long-range propagation (over hundreds of
metres) but the e�ects of attenuation and dispersion in the time domain would need to be accounted for.

Although numerical modelling is a useful tool for the prediction and analysis of wave propagation, practical
GWU-based monitoring systems contain variations which cannot easily be simulated. When considering rail
track, some environmental operating conditions (EOCs) can be accounted for; for example, temperature, rail
tension e�ects, and wear [23]. Other e�ects, however, are far more complex and di�cult to model, for example,
e�ects of passing trains, rail track sinking into the ballast, scattering from metal clips securing the rail, and vari-
ous others. These e�ects introduce time-varying coherent noise into measured GWU signals, which potentially
obscure small defect signatures.

To overcome these issues for pipe monitoring systems, Liu et al. [24] proposed a method to quantify the
system performance in the presence of realistic EOCs. The scheme e�ectively combines the complex measured
signals from benign structural features accounting for EOCs, and simulated defect signals. For rail monitoring
systems, access to realistic measured defect signals is challenging since laboratory experiments introducing defects
are not possible due to the long-range propagation and defects in operational rail are repaired as soon as they
are detected. Therefore, this simple but powerful idea would allow researchers to estimate performance measures
which would otherwise be very di�cult or indeed impossible to estimate.

The accuracy of the proposed procedure is, of course, dependant on the accuracy of the simulated defect
signature. For rail monitoring applications, there are unique challenges which require consideration when com-
pared to other monitoring systems. In the pipe monitoring system, an array of transducers is used to transmit
and receive only the torsional mode of the pipe which has negligible dispersion. In the case of rail monitoring,
the system will probably employ an array of only a few transducers, and therefore multiple modes of propagation
will be transmitted and received. These modes are generally dispersive, and this must be taken into account as
long distances (thousands of metres) are involved. Also, the various modes of propagation attenuate di�erently
due to damping introduced by the rail support.
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Table 1: A summary of related research with their underlying physics and modelling considerations, which is compared to the
consolidated single modelling framework proposed in this study.

Excitation Propagation Scattering Validation

Reference

Transducer

Physics &

Dynamics

Attenuation
Dispersion

E�ects

Long-range

(� 100m)
Discontinuities

Multiple

Discontinuities

Experimental

Measurement

[8, 9, 10]

Explicit

solver

Point forces Low

Transverse

defect/end

re�ections

[11]
Normal

pressure
Low

Transverse

crack

[17, 18]
Normal

pressure
Low

Arbitrary
damage

�

[22]
Normal

pressure
Low

Arbitrary
damage

�

�

Modelling

aspects

consolidated

into a single

modelling

framework

Resonant
Transducer
[12, 13, 14]

�

Derived from
experimental
measure-
ments

�

Large

�
�

Arbitrary
damage
/welds

[3, 20, 21]

�

� �

The aim of this paper is, therefore, to develop a modelling framework to simulate guided wave-based in-
spection of a welded rail using piezoelectric transducers. The novelty of the paper lies in demonstrating the
simulation of an inspection where relevant modelling aspects which were separately considered in the previous
literature are now consolidated into a single modelling framework as summarized in Table 1. As outlined, other
researchers have simulated guided wave-based inspections in environments where propagation is over a relatively
short distance (less than tens of meters), and the e�ects of attenuation and dispersion are very low. These
authors excited the guided waves by employing simple nodal forces [8, 9, 10] or a normal pressure [11, 17, 18, 22]
and inspection was carried out only on one side of the source, ignoring re�ections from the opposite direction.
The contributions of this paper are therefore to (1) simulate guided wave-based inspection in both directions
from a single transducer source, (2) combine models of a resonant transducer and multiple discontinuities to
simulate a long-range inspection (hundreds of meters) while accounting for attenuation and dispersion, and (3)
validate the simulated inspection using the experimental measurement from an operational railway line.

Since experimental measurements containing real defect signatures are not available, re�ections from available
discontinuities on operational rail, speci�cally aluminothermic welds, will be used to evaluate the accuracy of
the proposed procedure. This novel framework e�ectively represents a procedure to initialise a digital twin of a
physical inspection setup by combining realistic models of excitation, propagation and scattering of GWU, as
shown in Figure 1. For this study, a digital twin refers to a digital replica of a physical inspection system. The
process of building a digital twin involves �rst setting up a digital model and after that collecting operational
data from a physical inspection system. Data is then transferred to the digital model, to improve and evolve
the digital inspection model. This process is illustrated in Figure 2. The focus of this paper is on the �rst
step, which is to setup a digital model of a GWU-based inspection system. In future, the digital twin modelling
framework will be employed to improve available inspection systems and also to design new inspection systems.
Furthermore, the digital twin could be employed to model unavailable damage scenarios.
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(a) Section of a welded rail from the �eld. (b) Modelling of guided wave excitation, propagation and scattering
in welded rails.

Figure 1: Proposed model of a physical inspection setup combining realistic models of the excitation, propagation and scattering of
GWU.
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Figure 2: The process of building a digital twin [25].

It is believed that if the proposed procedure can accurately simulate re�ections from welds, then it will
also be capable of modelling the re�ections from defects. In future, these simulated defect signatures can then
be superimposed on measured data for the evaluation of a monitoring system. As the proposed procedure
represents a physics-based simulation, it will be possible to modify input parameters to account for the in�uence
of environmental factors such as temperature. Furthermore, since a transducer model is included, system-level
evaluations, including evaluating the ability of di�erent transducer arrays to detect various defect types, will be
possible. Unlike 3D FEM models, signals from re�ectors can easily be isolated, allowing the re�ections from a
defect to be isolated even from re�ectors close by, as in the case of a defect close to a weld. The proposed model
of a section of rail track can also be used to interpret changes that are observed in the experimental signals
and to develop compensation techniques to mitigate the in�uence of these changes on the performance of the
monitoring system.

The techniques used to model the various elements of GWU in rails are described in Section 2. Section 3
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describes a guided wave-based inspection on a section of rail track and presents the situation to be modelled and
provides the experimental result. The simulation of the inspection is described in Section 4, where the di�erent
elements are combined to produce the simulation results presented in Section 5. The simulation results are
validated using an experimental measurement from an operational rail in Section 5 and conclusions are drawn
in Section 6.

2. Guided Wave Modelling

This paper presents a framework in which several existing numerical models are used in combination to
e�ectively create a numerical representation of a guided wave-based inspection system for rail, as depicted in
Figure 1. The system includes a piezoelectric transducer to excite propagating waves in the rail which acts as a
waveguide and aluminothermic welds which act as re�ectors of the propagating waves. This section presents a
summary of the numerical models which form the basis of the proposed modelling framework presented in detail
in Section 4. The SAFE method for modelling wave propagation is explained �rst, followed by the two hybrid
methods for modelling the excitation and the scattering of guided waves from discontinuities, respectively. Since
these methods are presented in detail elsewhere, only the salient points of each method will be presented here.

2.1. The Semi-Analytical Finite Element Method

The semi-analytical �nite element (SAFE) method for 1D propagation uses an analytic treatment for vari-
ations in the propagation direction and a discretized representation to describe variations in the cross-section.
In this case, we consider an in�nite elastic waveguide with an arbitrary but constant cross-section in the x− y
plane. For wave propagation in the z−direction, the time-varying displacement vector U is expressed in complex
exponential form as:

U(x, y, z, t) = [ux(x, y), uy(x, y), uz(x, y)]T e−j(κz−ωt) (1)

where ux, uy and uz represent the displacements in the x−, y− and z−directions respectively, κ is the wavenumber
and ω is the circular frequency [15]. A transformation of the displacements from a physical coordinate system to
a SAFE coordinate system is convenient to ensure that symmetric sti�ness matrices result [16, 26]. We employ
the proposal of Damljanovi¢ and Weaver [26] and de�ne:

U = TŪ (2)

where the transformation matrix T, is given by

T =

 1 0 0
0 1 0
0 0 j

 (3)

The transformation from SAFE coordinates to physical coordinates is similarly given by:

Ū = T∗TU (4)

where (·)∗T represents the complex conjugate transpose. For convenience, the remainder of this section will
present quantities in the physical coordinates since similar transformations are possible for all vector and tensor
properties.

2.1.1. Solution of the Free Vibration Problem

At a speci�c circular frequency ω, the mode shapes, as well as wavenumbers associated with each mode, can
be computed by solving the eigenvalue problem [13]:

[A− κiB] {Ψi} = {0} , with Ψi =

{
ψi
κiψi

}
(5)

and where A and B are matrices consisting of SAFE mass and sti�ness matrices.

A =

[
K0 − ω2M 0

0 −K2

]
and B =

[
−jK1 −K2

−K2 0

]
(6)
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Solving Equation (5) results in real, forward and backward propagating modes with wavenumbers κ+ and
κ−, respectively, and associated mode shapes ψ+ and ψ−. Also computed are a number of non-propagating
evanescent modes. Finally, for each wavenumber computed κi(ω), the phase velocity vp(ω) = ω

κ and group

velocity vg(ω) = dω
dκ can also be computed. For more detail regarding the implementation, the reader is referred

to [13, 16].

A procedure to determine the material and geometric parameters of a worn rail was proposed in [23]. The same
section of rail is considered in this work, and the geometry of the worn, non-symmetric UIC60 rail is depicted in
Figure 3, discretized using quadratic SAFE elements. Figures 4a-c depicts the frequency-dependent wavenumber,
phase velocity and group velocity curves in the frequency range of interest (between 30kHz and 50kHz). Modes
are numbered based on the strategy presented in [27]. Since the geometry is not symmetric, modes do not cross
in the wavenumber-frequency dispersion curves, resulting in several mode repulsions, which can clearly be seen
in the group velocity curves [27].

Figure 3: SAFE model of a worn non-symmetric UIC60 rail.

2.1.2. Solution of the Damped Free Vibration Problem

Guided waves attenuate as they propagate due to material damping. In the case of rail track, additional
attenuation results due to the track being continuously supported at the foot of the rail, which causes modes
with motion in the foot to be attenuated more strongly than modes which do not have energy concentrated in
the foot of the rail. A viscous material layer under the rail foot was previously used by Ryue et al. to account
for this damping [28].

Bartoli et al. [29] used the Kelvin-Voigt model and a hysteretic model to represent material damping by
allowing complex components in the material constitutive matrix relating stresses and strains. Allowing for
complex material laws results in a generally complex eigenvalue problem, and therefore the resulting propagat-
ing wavenumbers are also complex. This adds complexity when sorting modes and is not convenient for our
implementation.

We therefore propose to approximate the complex wavenumbers for a damped waveguide using the modes
solved from the real-valued problem without having to solve the eigenvalue problem again. Equation (5) is
modi�ed to include a hysteretic damping term proportional to the sti�ness and viscous damping under the foot
of the rail. The A and B matrices in Equation (6) thus become:

Ã =

[
(1 + jβ)K0 + c(jĨ)− ω2M 0

0 −(1 + jβ)K2

]
and B̃ =

[
−(1 + jβ)K1 −(1 + jβ)K2

−(1 + jβ)K2 0

]
(7)

where β is a proportional hysteretic damping factor added to all degrees of freedom, c is a viscous damping
factor, and Ĩ is a modi�ed identity matrix with ones at the foot degrees of freedom of the rail in contact with
the supports. The complex wavenumbers for a damped waveguide are then estimated from:

κ̃i ≈
ΨT
i ÃΨi

ΨT
i B̃Ψi

(8)
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where Ψi is the mode shape vector from the undamped problem in Equation (5). This estimate produced
accurate results for the damping values considered here since damping is relatively light. The attenuation curves
in units of dB/m obtained by multiplying imag (κ̃) with a factor of −8.686 as suggested by reference [28], are
plotted in Figure 4d. The damping parameters employed to approximate the attenuation were obtained from
an optimization procedure explained in Section 4.2.3.
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Figure 4: Dispersion properties of UIC60 rail.

2.2. Hybrid SAFE-3D Model for Transducer Excitation

Loveday [12, 30] proposed a method to couple a solid 3D FEM model of a piezoelectric transducer and a 2D
SAFE model of an elastic waveguide. This model properly accounts for transducer dynamics, which is important
when resonant transducers are employed, such as in this case. The model solves the modal amplitudes in the
elastic waveguide of the propagating modes, given a voltage applied to the piezoelectric transducer.

Figure 5 depicts the model used in this case. The piezoelectric transducer is �xed under the head of the rail
and is designed to preferentially excite modes with energy concentrated in the head of the rail as these modes
are known to propagate long distances. From reference [13], the modal amplitudes of the propagating modes,
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due to each of the transducer forces F t[n], can be computed using:

ᾱTx(ω) =

Nt∑
n=1

([ᾱe−jκzf ])NF t n) (9)

where ᾱ is an array of unit modal amplitudes resulting from unit forced responses computed using each waveguide
degree of freedom in contact with the piezoelectric transducer and propagated to the front face of the transducer
(a distance zf ). The array F t e�ectively scales these unit responses by computing the actual forces acting on the
waveguide due to the piezoelectric transducer, accounting for the voltage applied, the dynamics of the transducer
and the sti�ness of the waveguide to which the transducer is attached. Finally, the arrayN interpolates between
the waveguide nodes and the transducer nodes which are not necessarily coincident. For more detail regarding
this model, refer to [13]. It should be noted that ᾱTx(ω) is a complex vector containing the modal amplitudes
and phases of all excited propagating modes. Figure 6 depicts the modal amplitudes computed for a unit voltage
at each frequency. The resonant nature of the transducer is evident with the peak amplitude at approximately
35kHz.

Figure 5: The hybrid SAFE-3D model for exciting guided
waves in rail with a transducer.
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Figure 6: Modal amplitudes due to unit voltage excitation.

2.3. Hybrid SAFE-3D Model for Scattering from Discontinuities

This section presents the model used to simulate the scattering of propagating waves from discontinuities. As
depicted in Figure 1 we speci�cally consider aluminothermic welds as re�ectors in this case, but the procedure
also applies to other discontinuities such as cracks or other defects that may result in re�ections [3, 21].

The method proposed by Benmeddour et al. [20] is adopted and is presented in the notation proposed by
the authors. The scenario considered is of an interior volume (I) containing the discontinuity, bounded by a
semi-in�nite incoming waveguide (L) with constant cross-section and an outgoing semi-in�nite waveguide (R),
as shown in Figure 7. The volume considered is, therefore, the union of these three volumes. Both the incoming
waveguide and outgoing waveguides are modelled using SAFE, and the interior domain is modelled using solid
�nite elements. Enforcing continuity and equilibrium on the boundaries of L and R which intersect the interior
volume, the re�ected modal amplitudes ᾱ−

L in the incoming waveguide, the transmitted modal amplitudes ᾱ+
R

in the outgoing waveguide and the internal displacements U I , due to incident modal amplitudes in the incoming
waveguide ᾱ+

L , can be computed from the following linear system at each frequency considered [20]:

 ψ−T
L 0 0
0 I 0

0 0 ψ+T
R

 DLL DLI DLR

DIL DII DIR

DRL DRI DRR

 ψ−
L 0 0

0 I 0
0 0 ψ+

R

−
 F−

L 0 0
0 0 0
0 0 F+

R


×

 ᾱ−
L

U I

ᾱ+
R

 = −

 ψ−T
L 0 0
0 I 0

0 0 ψ+T
R

 DLL DLI DLR

DIL DII DIR

DRL DRI DRR

 ψ+
L

0
0

−
 F+

L

0
0

 ᾱ+
L (10)
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where ψL and ψR are the mode shapes in the incoming and outgoing waveguides, respectively and the
(·)+ and (·)− are used to indicate the forward direction and backward directions, respectively. The partitioned
dynamic sti�ness matrix is denoted D and F represents the force modes.

In our case, the incident modal amplitudes are those excited by the transducer ᾱTx, propagated to the weld.
Since the system is linear, instead of exciting all modes simultaneously, we can consider each mode individually
(excited by unit modal amplitude) and then later scale and superimpose the results. We will therefore introduce
R̄i,m and T̄ i,m as the arrays of unit re�ection and transmission modal amplitudes corresponding with the modal
amplitudes ᾱ−

L,i and ᾱ
+
R,i corresponding to unit incident modal amplitude ᾱ+

L,m.
The re�ection and transmission modal amplitudes when the target mode (mode 7) is incident to the weld,

R̄i,7 and T̄ i,7, are plotted in Figure 8. Only mode 7 was incident, but the other modes are re�ected from the
weld. This phenomenon is called mode coupling or mode conversion. Mode 7 transmitted strongly through the
weld, but the other modes were also transmitted due to mode conversion. The calculation accuracy of the hybrid
SAFE-3D model was veri�ed using conservation of energy.

Semi-infinite incoming 
waveguide (L) 

modelled with SAFE 

Semi-infinite outgoing 
waveguide (R)

modelled with SAFE 

Interior volume (I) 
 containing a weld

modelled with 3D FEM

Figure 7: The hybrid SAFE-3D model of a rail section with a weld joint for guided wave scattering.
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Figure 8: The re�ection and transmission modal amplitudes for incident mode 7.

3. Guided Wave Measurements on a Rail Track

A simple GWU-based inspection of a rail track would involve a single transducer operating in pulse-echo
mode. Such a measurement was performed on an operational heavy haul line, and the layout of this measurement
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is illustrated in Figure 1. This line uses the UIC60 rail pro�le and was installed in 240m long sections joined
together in the �eld by aluminothermic welding. The weld cap produced was ground o� the top and sides of the
railhead but remained around the remainder of the circumference of the rail. This change in cross-section of the
rail causes a re�ection of guided waves at the welds. The rail is clamped to concrete sleepers using steel clips,
as shown in Figure 9. Polymer pads are compressed between the rail and the sleeper.

A piezoelectric transducer was attached under the head of the rail at a distance of approximately 78m from
the nearest weld. The transducer was driven by a 17.5 cycle Hanning windowed tone burst voltage source with
a centre frequency of 35kHz, as shown in Figure 10. The voltage applied to the piezoelectric element induced
vibrations in the transducer, which in turn induced a guided wave �eld in the rail.

Steel Clips

Aluminothermic 

Weld

Figure 9: Steel clips in a rail with aluminothermic weld.
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Figure 10: Excitation signal in time and frequency domains.

The transducer transmits guided waves in both directions along the rail. After excitation, the transducer was
used to receive signals corresponding to the energy re�ected from welds located on either side of the transducer.
The measurement obtained from the �eld experiment which will be simulated in this paper is plotted in Figure
11a. The �rst part of the received signal is set to zero. This part of the signal includes the excitation signal
and complex re�ections of multiple modes from nearby re�ectors such as the rail clips, that fortunately are
not propagating modes. Hence, no attempt is made to simulate within this zone. The signal clearly shows
the six weld re�ections, with an exponential loss of energy from the weld closest to the transducer (weld A) to
the furthest weld (weld F). Note that Weld F is located to the left of Weld D, but is not shown in Figure 1a.
The time-domain signal shows that the propagating modes are highly dispersive. The frequency content of the
measurement is shown in Figure 11b.

The possible modes of propagation captured in the signal were investigated by comparing times of arrival of
di�erent frequencies with estimates based on the distances to the welds and the group velocity predictions from
a SAFE model. A short time Fourier Transform was applied to the measured time-domain signal to produce
a time-frequency spectrogram, as shown in Figure 12. We then used the group velocities computed from the
SAFE model to estimate the times of arrival for di�erent combinations of modes propagating to and back from
the welds. The predicted time of arrival as a function of frequency for a particular mode combination was then
plotted as a curve on the spectrogram. If this curve coincided with a domain of higher energy in the spectrogram,
then it was assumed that this mode combination was captured in the measurement. Figure 12 shows that there
could be combinations of six di�erent modes contributing to the �eld measurement. These mode shapes at two
di�erent frequencies are shown in Figure 13. The model of the rail pro�le included asymmetric rail wear, so
the geometry of the rail was not symmetric. The wavenumber versus frequency curves does not cross in this
situation. Instead, the curves may approach each other and then repel. The modes may, therefore, be numbered
from the highest wavenumber to lowest wavenumber at a particular frequency. The mode shapes swap from one
curve to the other in these mode repulsion regions [27]. The mode shape swapping between modes 15 and 16
and between modes 21 and 24 is evident in the �gure.
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Figure 12: A spectrogram of the �eld measurement showing the times of arrival of the propagating modes.

(a) Mode 7 at 32kHz. (b) Mode 8 at 32kHz. (c) Mode 15 at 32kHz.(d) Mode 16 at 32kHz.(e) Mode 21 at 32kHz.(f) Mode 24 at 32kHz.

(g) Mode 7 at 39kHz. (h) Mode 8 at 39kHz. (i) Mode 15 at 39kHz. (j) Mode 16 at 39kHz.(k) Mode 21 at 39kHz.(l) Mode 24 at 39kHz.

Figure 13: The mode shapes of the propagating modes at 32kHz and 39kHz.

Mode 7 appears to propagate with low attenuation, has relatively little dispersion and is not involved in
any mode repulsions, so the mode shape remains similar over the considered frequency range. This mode is

11



present in the spectrogram and propagates to a weld and re�ects as mode 7 (incident and re�ected modes the
same). Also, this mode can re�ect as a di�erent mode (mode conversion). At low frequencies (below 33kHz),
mode 7 converts to the very dispersive mode 15 which switches its mode shape with mode 16 at f > 33kHz.
These times of arrival are indicated on the spectrogram as curves denoted 7/15 and 7/16, and are referred to
as coupled modes. Note that if mode 15 was transmitted and converted to mode 7 at a re�ection, the time of
arrival would be identical to that of mode 7 when transmitted and converted to mode 15. Another mode which
propagates and re�ects as the same mode is mode 21. However, it is noted that this mode only propagated well
at f < 35kHz. Mode number 24, which becomes propagative at f > 38kHz, has a similar mode shape as mode
21 at the lower frequencies. Both modes appear to be non-propagative between 35khz < f < 38kHz as this
is the frequency range where the modes swap and are highly dispersive. A similar behaviour is noticed in the
coupling of modes 21 and 24 to mode 8.

Figure 14 plots the dispersion properties of the modes identi�ed in the �eld experiment to illustrate the
repulsion phenomenon. Two additional modes found to have a mode shape similar to mode 21 (at f < 35kHz)
and mode 24 (at f > 38kHz) were identi�ed and are also plotted. A frequency region where these two modes
(22 and 23) switch their mode shapes with modes 21 and 24 is highlighted in Figure 14a, and clearly shown in
Figure 14b where the repulsion behaviour is highlighted; the same mode shape switches from mode 21 to 22,
then to 23 and �nally to 24. The group velocity curves in Figure 14c further illustrates this phenomenon. In the
frequencies where the repulsions happen, there exist some discontinuities as the mode shape switches from mode
to mode. Furthermore, the repelling modes contain a large dispersion in that region. These discontinuities and
large dispersion cause a frequency gap seen in the spectrogram (Figure 12) where the repelling modes do not
show any energy.

Figures 15 and 16 interpret the modes identi�ed from the spectrogram in the time domain signal for re�ections
from welds A and B, respectively. All modes identi�ed can be seen in the time domain re�ections for both welds.
The re�ections from weld A show an additional pulse of energy arriving just before the coupled modes 8/21 and
8/24, which appears to be less dispersive. It is speculated that this unidenti�ed mode could be either mode 7
or 21 (or 24) coupled to some other mode with energy in the head. This pulse is not visible in the re�ections
from weld B, see Figure 16.
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(c) The group velocity curves showing the mode shapes of the selected repelling set.

Figure 14: Dispersion properties of the modes identi�ed in the �eld experiment.
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Figure 15: Re�ections from weld A.
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Figure 16: Re�ections from weld B.

The �eld measurement presented in this section is modelled and simulated in the next section.

4. Modelling Procedure

This section presents the proposed modelling framework illustrated in Figure 18 to simulate the experiment
depicted in Figure 1, intending to reproduce the experimental results presented in the previous section, as closely
as possible. Guided waves in rails are multi-modal, dispersive and can propagate hundreds (and sometimes
thousands) of metres, which complicates their modelling. The model will consider the excitation of guided
waves using a transducer, multi-modal propagation, including dispersion and attenuation e�ects and scattering
of guided waves from welds. The reception of guided waves using a transducer is not modelled and is instead
taken as the vertical displacement of a node in the railhead coincident with the centre node of the transducer
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front face. There are also several real-world events that will not be considered, e.g. coherent noise resulting from
re�ections from features such as rail clips which secure the rail to the sleepers, and other similar e�ects.

E�ects of EOCs are also not considered here. Liu et al. [2, 24] identi�ed temperature as the main EOC
in�uencing guided wave propagation in pipes. Temperature is known to have a signi�cant e�ect on GWU
propagation in rails [23], and methods to treat temperature have been proposed [31, 32]. Other EOCs which
may be more challenging to simulate include the e�ects of passing trains and ballast conditions. These will be
considered in future.

4.1. Computation of System Response

Guided wave propagation in welded rails is very complex due to the many possible re�ections and transmis-
sions caused by features in the rail. In this paper, we consider the direct re�ection propagation paths. Illustrated
in Figure 17, the guided waves induced by the transducer will propagate through to a speci�ed weld position
while transmitting through the prior welds. They will then re�ect from that speci�ed weld and transmit through
the prior welds in the opposite direction, back to the transducer.

Welds:     F                        D                          B                                                     A                         C                         E

Figure 17: Direct re�ection propagation paths.

The system response is most easily computed in the frequency domain, where the frequency response of
multiple elements may be multiplied together. The response in the frequency domain due to propagating guided
waves is given by:

U(z, ω) =

I∑
i=1

αi(z, ω)ψi(ω), (11)

and is a sum of all the propagating mode shapes multiplied by their e�ective modal amplitudes computed
at the distance where the response is sought. The mode shapes ψ, are frequency-dependent, while the modal
amplitudes α depends on both the frequency ω and propagation distance z. The solution thus requires the
computation of the modal amplitudes at the receiving location. In a constant cross-section waveguide without
any discontinuities, the modal amplitudes α at any distance z can easily be evaluated from the multiplication
of the transducer modal amplitudes αTx with the exponential term exp(−jκ̃(ω)z) .

From Figure 17, the modal amplitudes of the received guided wave re�ections from weld A, can be evaluated
as:

αA,i(z = 0) =

M∑
m=1

αTx,me
−jκ̃+

L,mzAR̄ime
−jκ̃−

L,i(−zA) (12)

where R̄im is the I byM re�ection matrix indicating the re�ection coe�cient of mode i for an incident mode
m of unit modal amplitude and κ̃+

L and κ̃−
L are the forward and backward propagation wavenumbers for the

incoming waveguide. Equation (12) gives the e�ective modal amplitudes of the received guided waves obtained
by �rst propagating the guided waves excited by the transducer (with modal amplitudes of αTx, Figure 19)
forward to weld A (�rst exponential in Equation (12)). They are then re�ected in the backward direction with
R̄im, whereafter they are propagated in the opposite direction from weld A back to the transducer (second
exponential in Equation (12)). Finally, summing all the individual amplitudes of each re�ected mode i resulting
from the interaction of each mode m with the weld, αA,i(z = 0) is obtained. The response at the receiving
point for re�ections coming from weld A can then be obtained by substituting αi with the modal amplitudes
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in Equation (12) and ψi with the mode shapes for backward propagation on the incoming waveguide, ψ−
L , in

Equation (11).
Equation (12) can be presented using vector and matrix multiplication notation as follows:

{αA(z = 0)}T =
{
{αTx} ◦

{
e−jκ̃

+
LzA
}}T [

R̄
]
◦
{
e−jκ̃

−
L (−zA)

}T
(13)

where (◦) is the Hadamard element by element multiplication between vectors.

To compute the re�ections coming from weld C, we consider the forward propagation to weld A, then
transmission through A followed by forward propagation to weld C, and then the re�ection from weld C followed
by backward propagation to weld A, the transmission through weld A and �nally the backward propagation of
the modes back to the transducer location. The re�ected modal amplitudes from weld C at the receiving point
are thus given by:

{αC(z = 0)}T =
{
{αTx} ◦

{
e−jκ̃

+
LzA
}}T [

T̄
]
◦
{
e−jκ̃

+
R(zC−zA)

}T [
R̄
]
◦
{
e−jκ̃

−
L (zA−zC)

}T [
T̄
]
◦
{
e−jκ̃

−
L (−zA)

}T
(14)

For re�ections coming from the wth weld, the guided waves will transmit forward and backward through the
preceding (w− 1)th welds, and the modal amplitudes received will be given by:

{αw(z = 0)}T =
{
{αTx} ◦

{
e−jκ̃

+
L(z1−z0)

}}T [
T̄
]
◦ ... ◦

{
e−jκ̃

+
R(zi−1−zi−2)

}
T̄ ◦

{
e−jκ̃

+
R(zi−zi−1)

} [
R̄
]

◦
{
e−jκ̃

−
L (zi−1−zi)

} [
T̄
]
◦ ... ◦

{
e−jκ̃

−
L (z0−z1)

} (15)

where w = 1, 2, 3 . . .W indicate the welds A,C,E . . .W.
The displacement response of the re�ections coming from the wth weld in the frequency domain is then:

Uw(ω) =

I∑
i=1

αw,iψ
−
L,i (16)

The solutions for welds situated to the left of the transducer (i.e. welds B, D, F...) can be computed
by employing positive/negative propagation wavenumbers at appropriate places in Equation (15), and positive
propagation ψ+

R in Equation (16).

The total displacement response in the frequency domain due to all the considered re�ection paths is obtained
by summing the individual weld responses:

U(ω) =

W∑
w=1

Uw(ω) (17)

and the time domain response may be computed as the inverse Fast Fourier Transform (IFFT) of the frequency
response:

U(t) = ifft(U(ω)). (18)

The complex multiple re�ection paths where guided waves can re�ect back and forth between any two welds
are not analysed in this paper as they are insigni�cant in the experiment which is simulated. The multiple
re�ection which will be expected to produce the largest signal is that between welds A and B, where excited
guided waves propagate forward to weld A, then re�ect and propagate backwards to weld B (assuming that the
transducer does not in�uence the propagating waves, i.e. no scattering from the transducer) where the second
re�ection happens causing the waves to propagate forward again and back to the transducer. The signal received
for this path was simulated, and as expected, the received re�ection was insigni�cant compared to re�ections
from weld A. A check can also be performed by evaluating the modal amplitudes of the received re�ections.

We demonstrate this for a single frequency (at 35kHz) for mode 7, which is the strongly excited and the least
attenuated mode. The guided wave properties for mode 7 at 35kHz are listed in Table 2 and used to evaluate the
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received modal amplitudes for the direct re�ection from weld A and the multiple re�ection path between welds A
and B. The received modal amplitude for the multiple re�ection path is 1.17% that of the direct re�ection from
weld A. The multiple re�ection would be expected at approximately 0.15s, and the coherent noise (see Figure
10a) is signi�cantly larger than the expected re�ection. Therefore, multiple re�ection paths are not expected to
be identi�ed in the measurement.

In situations involving geometries which re�ect waves more strongly, it may be necessary to include multiple
re�ection paths.

Table 2: Guided wave properties of mode 7 at 35kHz.

Property Value

Real valued wavenumber, real(κ̃+L) 82.81 rad/m
Attenuation 2.46e− 2 dB/m
imag(κ̃+L) 2.46e− 2 /− 8.686 = −0.0028 rad/m

Complex wavenumber, κ̃+L = −κ̃−L = κ̃+R 82.81− 0.0028j rad/m
Re�ection modal amplitude, R̄77 0.0199− 0.0208j

Magnitude of R̄77 0.0288

Received modal amplitude for the
αTxe

−jκ̃+
LzAR̄e−jκ̃

−
L (−zA) = 0.0183

direct re�ection from weld A, for αTx = 1
Received modal amplitude for the multiple

αTxe
−jκ̃+

LzAR̄e−jκ̃
−
L (zB−zA)R̄e−jκ̃

+
R(zB) = 0.000213

re�ection between welds A and B, for αTx = 1

4.2. Modelling Framework

The simulation framework is detailed in Figure 18. The process starts by selecting an excitation signal V (t).
In this paper, V (t) is selected as a 17.5 cycle Hanning windowed tone burst centred at 35kHz depicted in Figure
10, but is 0.5s in length to allow for re�ections up to 700m away from the transducer to be captured. The signal
is sampled at 500kHz and thus contain over 216 points in the time domain. A unit voltage is selected, but
since the system is linear, the response can be scaled appropriately to represent the actual voltage applied to
the transducer. This long time signal V (t) is converted to the frequency domain using a Fast Fourier Transform
(FFT), leading to a frequency signal V (ω) with 217 samples. Since it is impractical to solve the models at so
many frequency points, a reduced vector of frequencies ω̃ is selected covering the frequency range of interest,
which is usually selected to be where the excitation signal V (ω) has at least 0.05% of the energy at the centre
frequency of the tone burst. For this paper, the reduced frequency vector was selected to contain 56 points
between 30kHz and 50kHz, to allow for multiple analyses with di�erent centre frequencies. However, following
the proposed guideline to select the frequency range, the range between 30kHz and 40kHz would have been
appropriate for the results shown in this paper.
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Figure 18: A procedure for modelling guided wave behaviour in discontinuous damped waveguides excited by transducers.

The SAFE problem, as well as transducer and weld scattering problems, are solved at ω̃ frequencies as
indicated in Sections 2.1, 2.2 and 2.3. The accuracy of the elements used in the three numerical models has
been veri�ed in earlier studies and presented in reference [33]. Both the transducer response as well as the
re�ections and transmissions from welds are solved with unit constant forces V̄ (ω̃) and unit constant incident
modal amplitudes ᾱ+

L(ω̃), respectively. The results are stored in the computer and could later be used in the
modelling framework for di�erent analyses (i.e. di�erent rail setups and di�erent excitation signals) where the
actual excitation signals will be employed to perform appropriate scaling of results. It is thus possible to re-use
the stored data without extra computational e�ort.

4.2.1. Interpolation of Dispersion and Scattering Model Results

The �rst step in the modelling framework is to interpolate the wavenumbers κ+(ω̃) and κ−(ω̃) and associated
mode shapes ψ+(ω̃) and ψ−(ω̃) from the undamped free vibration SAFE problem; and the re�ection and
transmission modal amplitudes R̄ and T̄ from the weld scattering problem between the reduced frequencies ω̃
and the frequencies ω from the excitation voltage function. The interpolation of the mode shape vectors required
the mode shapes for all the ω̃ frequencies to have the same phase to avoid interpolation errors.
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4.2.2. Interpolation, Scaling and Filtering of Transducer Model Results

After interpolating the modal amplitudes ᾱTx(ω̃) from the transducer problem (Figure 6) to the �ne frequency
discretization ω, the transducer modal amplitudes are scaled based on the selected voltage frequency function
V (ω), to obtain αTx(ω) . To avoid unrealistic responses at cut-o� frequencies, αTx(ω) terms associated to phase
velocities of vp > 10000m/s are removed [13]. Figure 19 shows the magnitude of the complex modal amplitudes
excited by the transducer, scaled with the excitation voltage spectrum.
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Figure 19: The magnitude of the complex modal amplitudes of the transducer scaled with the excitation voltage spectrum.

4.2.3. Estimation of Damping Parameters

After the interpolation and scaling of data, the next step in the modelling framework is to estimate appropriate
damping parameters and use them to calculate the response signal U(t) that closely �ts the experimental
measured Um(t). The damping parameters (β and c for hysteretic and viscous damping, respectively) are
estimated using a model updating procedure which minimises the normalised root mean square (NRMS) error
between the simulated response signal and the experimental measurement. The initial damping parameters,
(β0, c0) = (5e − 5, 2e8) for model updating, were determined based on the experience of how the two damping
models in�uence modal attenuation, after several trial and error investigations. Hysteretic damping adds some
attenuation to all propagating modes, leading to an exponential decay of energy, whereas the viscous damping
applied in the bottom of the rail attenuates modes with high energy in the foot.

After choosing the initial damping parameters, the complex wavenumbers for forward and backward propaga-
tion, κ̃+ and κ̃− respectively, are approximated according to Section 2.1.2 at the analysis frequencies ω, and
thereafter the response signal U(ω) is computed in the frequency domain using the procedure outlined in Section
4.1. The response is then transformed to the time domain response U(t) using IFFT.

An unconstrained minimization algorithm from MATLAB, fminsearch, was adopted to solve the following
optimization problem:

Given damping parameters: β ∈ < and c ∈ <,

minimize:NRMS =

∑n
i=1(Ui − Umi)2/Ūmi

n
, (19)

where Umi = Um(t), Ūmi = Ūmi(t) and the simulated signal Ui = U(t) is a function of the damping
parameters β and c. Ūmi is the exponential envelope �tted to the experimental measurement Umi (see Figure
11a), used to normalise the errors and n is the number of time samples in the signals.
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After multiple function evaluations, the optimization converged to the optimal parameters (β, c) = (8.0499e−
5, 2.4126e8). The surface of the NRMS error was constructed to explore if other minima exist, and is plotted in
Figure 20 with the contour plot indicating how the surface values change. The error surface shows one minimum
in the explored domain, which coincides with the optimal solution (highlighted in red) from the optimization.
This con�rms that the optimization algorithm worked correctly and may be used in future.

These damping values were used to generate the results in the next section.
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Figure 20: NRMS error surface for varying damping parameters, with the optimal solution highlighted in red.

5. Results

In order to demonstrate the performance of the modelling framework described in Section 4, the experiment
depicted in Figure 1a is simulated with six identical welds included. The simulated time response is computed
by taking the IFFT of Equation 17. The response was computed by considering all the propagating modes,
using the steps described in Section 4. It is then shown that a similar result may be obtained by simulation with
a smaller set of selected modes.

5.1. Simulation with all Propagating Modes

Firstly, the resultant simulated time-domain signal computed using all propagating modes and only direct
re�ection paths is considered. Figure 21 depicts the simulated time-domain response, normalised with respect to
the maximum amplitude of the �rst weld re�ection, together with the measured signal normalised in the same
way. The re�ections from the simulated welds are annotated and clearly visible. The most notable characteristics,
namely times of arrival of the dominant re�ections and attenuation, are accurately captured in the simulated
result. This result is considered in more detail in Figure 22, which depicts the envelopes of the two signals and
details around each weld re�ection.

20



Time [s]
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
m

pl
itu

de

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Measured
Simulated

Weld A

Weld B

Weld C
Weld D

Weld E

Weld F

Figure 21: Simulated time domain signal compared to experimental measurement.

The behaviour of the uncoupled mode 7, which is the least dispersive mode and is known to propagate long
distance in rail, is captured very accurately by the model, even though the amplitude at weld D, Figure 22e,
is slightly overestimated. This could be due to slight variations in weld cap geometry which is not included
in the model, i.e. the geometry of each weld in the model is identical. The attenuation of the coupled mode
8/21 and 8/24 seems to have been slightly overestimated based on the re�ections from welds A to C, and the
ratio between the simulated amplitude of mode 7 and mode 8/21 and 8/24 at weld D. The re�ections from
the uncoupled modes 21 and 24, and the very dispersive coupled re�ections from 7/15 and 7/16 are relatively
accurately captured. Figure 22g also shows a large re�ection from a weld which was not included in the model.

The time-domain results presented in Figure 21 can be converted to the distance domain using a dispersion
compensation procedure proposed by Wilcox [34]. The dispersion compensation procedure uses the dispersion
characteristics of only one mode, and mode 7 was used in this case as it is the most prominent. The result in
the distance domain is plotted in Figure 23. This �gure shows that re�ections from distant welds, over 640m
from the transducer location, are still clearly visible. The regular (approximately 240m) spacing between welds
results in the repeating pattern of re�ections, apart from the identi�ed re�ection, which was not modelled. This
re�ection was found to be due to a weld approximately 100m to the right of weld E during a subsequent visual
inspection.

The spectrogram of the simulated time signal is plotted in Figure 24, with detailed views presented in Figure
25. These spectrograms may be compared to the spectrograms of the experimental measurement shown in
Section 3. It is noticed that the gaps due to mode repulsions are wider in the simulation, extending from
35.5kHz to 37.8kHz than in the experiment, which only ranges from 36.2kHz to 37.5kHz.

The simulated spectrogram has more de�ned re�ections when compared to the spectrograms of the exper-
imental signals due to the absence of the coherent noise which is present in the measured results. The main
re�ection from mode 7 is clearly visible together with the uncoupled mode 21 and coupled mode 8/21. The other
coupled modes with a similar mode shape to mode 21 (i.e. 22, 23 and 24) are not visible due to large dispersion
in the region of repulsion and the lack of energy in the excitation signal above 38kHz. The coupled mode 7/16
is also very prominent in the spectrogram as is the case with the spectrogram of the measured signal.

Figure 25 highlights an additional re�ection from an uncoupled mode 16, which was not identi�ed in the
experimental measurement. The presence of this mode in the simulated signal could imply that the mode was
too strongly excited by the transducer model, or the damping applied to mode 16 was too low. Alternatively,
this feature could be obscured in the spectrogram of the measured signal due to the presence of noise. Digital
twins often miss features which are present in experimental measurements due to simpli�cations as we will
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demonstrate in the next section. The results in this section, however, demonstrate that digital twins can also
introduce features which are not apparent in the experimental measurements, either due to carelessness and
poor modelling or by careful consideration of an analyst to highlight aspects hidden in the measured signals.
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Figure 22: Envelope comparison of the measured experiment and simulated time domain signals.
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Figure 25: Spectrogram sections showing the re�ection from welds A and B, respectively.

5.2. Simulation with Selected Modes

Instead of simulating the re�ection signals using all 34 modes supported by the waveguide in the frequency
range of interest, it is possible to construct the response by considering selected modes of interest only. To this
end, the response is recomputed using only the six modes identi�ed as contributing signi�cantly to the response,
namely modes 7, 8, 15, 16, 21 and 24. Figure 26a depicts the result computed using this reduced set of modes,
compared to the result when all modes are used, with the residual (the di�erence between the signals) plotted in
Figure 26b. The results are very similar since the modes neglected in the reduced problem are highly attenuated
and thus do not contribute signi�cantly to the response.

This simpli�ed model could be used to reduce the problem complexity and computational e�ort, and make
results easier to interpret. Figure 27 which is comparable to Figure 22b, shows the contribution of each selected
mode in the total response. It is clear that modes 7, 21 and 16 were more strongly excited than the other modes.
Furthermore, by considering each mode separately, it may be possible to apply di�erent damping parameters to
each mode in order to reproduce the experimental results better.
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Figure 26: The simulated time signal using reduced number of modes compared with the simulated experiment using all modes
(Full problem).
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Figure 27: Re�ections from the �rst weld simulated using the reduced number of modes.

6. Conclusion

The aim of this paper was to develop a modelling framework to simulate a realistic ultrasonic guided wave-
based inspection of a rail track with multiple discontinuities. The simulation considered re�ections from six
identical welds located at various distances on either side of the excitation by a piezoelectric transducer. The
e�ects of transducer dynamics as well as attenuation and dispersion, which are prominent due to the signi�cant
inspection range, were accounted for. Attenuation in the rail was approximated by determining the optimal
hysteretic and viscous damping parameters using a model updating procedure. The excitation, scattering and
propagation of guided waves were modelled using two di�erent hybrid models and the conventional SAFE
method, respectively. These three models were solved at discrete frequencies and results stored in a database.
It was demonstrated how time domain voltage signals, applied to the piezoelectric transducer, can be converted
to the frequency domain, and the database of model results can be interpolated at corresponding frequencies.
Frequency domain results can then in turn be transformed back to the time domain. Scattering results computed
for a speci�c discontinuity can be re-used, which allows for additional welds to be included or the positions of
the welds in the rail to be rearranged without signi�cant additional computational e�ort.

Overall good agreement between the simulated results and the experimental measurement was achieved.
The times of arrival of the dominant re�ections, the attenuation and the interaction of the multiple dispersive
propagating modes were all accurately captured. Re�ections from distant welds, over 640m from the transducer
location, were clearly visible in the simulated and experimental signal. Slight overestimations of some re�ec-
tion amplitudes could be attributed to slight variations in weld cap geometry, which is not modelled since all
welds were assumed to be identical. A re�ection from an uncoupled mode 16, which was not identi�ed in the
experimental measurement, was present in the simulation results. This could indicate that the mode was too
strongly excited by the transducer model, or that the damping applied to mode 16 was not accurately estim-
ated. Damping estimates could be improved by estimating parameters for each mode individually for example.
Alternatively, this feature could be obscured in the spectrogram of the measured signal due to the presence of
noise. This illustrates the point that a reliable numerical model can be useful when interpreting experimental
results, since it has the potential to simulate features which are not apparent in the experiment.

The proposed physics-based framework can be used to e�ciently investigate the e�ects of changes in para-
meters such as transducer geometry, or material property variations caused by temperature �uctuations. The
framework could be used in future to set up a digital twin of a section of rail track, or in the development of a
rail monitoring system by predicting re�ections from defects which can be readily simulated but not measured.
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Figure 11: The measurement obtained from the �eld experiment.
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