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Abstract 

Globally, Smallholder farming systems (SFS) are recognized as one of the most important pillars of 
rural economic development and poverty alleviation because of their contribution to food security. 
However, support for this agricultural sector is hampered by lack of reliable information on the 
distributions and acreage of smallholder fields. This information is essential in not only monitoring 
food security and informing markets but also in guiding the determination of levels of support required 
from government by individual farmers. There is urgent need for robust techniques that can be used 
to cost-effectively and time-efficiently map smallholder crop fields especially in Sub-Saharan Africa 
and Asia. This study attempts to do this by using an approach in which optical and Synthetic Aperture 
Radar (SAR) data are systematically combined and classified using Extreme Gradient Boosting 
(Xgboost). We also investigated model stacking as another technique to improve classification 
accuracy. We combined Xgboost with Random Forest (RF), Support Vector Machine (SVM), Artificial 
Neural Networks (ANN), and Naïve Bayes (NB). The combined use of multi-temporal Sentinel-2 
bands, spectral indices, and Sentinel-1 produced better results than exclusive use of optical data 
(α = 0.95, p = 0.0005). Furthermore, stacking of classification algorithms based on model 
comparisons achieved higher accuracy than stacking the algorithms indiscriminately (α = 0.95, p 
= 0.0100). Through systematic fusion of SAR and optical data and hyper-parameter tuning of 
Xgboost, we achieved a maximum classification accuracy of 97.71%, while achieving a maximum 
accuracy of 96.06% through model stacking. This highlights the importance of multi-sensor data 
fusion and multi-classifier systems when mapping fragmented agricultural landscapes. 

1. Introduction 

Smallholder farming systems (SFS) dominate the 570 million farms around the world (Graeub et al. 
2016; Lowder, Skoet, and Raney 2016; Samberg et al. 2016), and are increasingly seen as a pivotal 
niche for economic development and food security (Aliber and Hart 2009; Rapsomanikis 2015; 
UNCTAD 2015). However, the farmers’ capacity to enhance realization of this objective is undermined 
by numerous constraints. These include extreme weather events (Chapagain and Raizada 2017; 
Harvey et al. 2018; Manderson, Kubayi, and Drimie 2016; Mugambiwa and Tirivangasi 2017), 
ineffective response to shocks (Devereux 2007), infrastructural bottlenecks and limited capital (ASFG, 
2013; Khapayi and Celliers 2016; Von Fintel and Pienaar 2016), poor extension services (Akpalu 
2013; Fanadzo and Ncube 2018), inappropriate land tenure arrangements (Bembridge 2000), and 
lack of good quality data among many (Carletto, Jolliffe, and Banerjee 2013; Lowder, Skoet, and 
Raney 2016; Samberg et al. 2016). Data quality is very crucial because of the role of data in science, 
while NGOs, governments, creditors, policymakers, and insurers rely on agricultural statistics in 
allocating resources and providing services to farmers (Carletto, Jolliffe, and Banerjee 2013; Samberg 
et al. 2016). The most basic data required from crop production systems are spatial data, which 
include the amount of area under cultivation and the distribution of crop fields. 

Methods that have been used to locate and measure cropped areas include; soliciting information 
from farmers (FAO 2016), use of Global Positioning Systems (GPS) (Keita, Carfagna, and Mu’Ammar 
2010), digitization of high-resolution satellite and aerial images (FAO 2016), pixel-based and object-
based image classification (Dhumal et al. 2013). Amongst these, image classification is regarded as 
the most time-efficient, cost-effective, and objective technique. However, there are still unresolved 
complications using this method because of the difficulties involved in the spectral discrimination of 
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different crops and other vegetation types (Rao 2008), landscape heterogeneity in smallholder 
farming areas (Debats et al. 2016), irregular shapes and sizes of SFS (Persello et al. 2019) and the 
inter-annual fluctuation of cultivated land (Nieuwoudt and Groenewald 2003). To address these 
challenges, researchers are riding the wave of ‘big data’ and machine learning exploring ways in 
which multi-sensor and multi-temporal data can assist in producing reliable crop maps. Multi-temporal 
imagery improves accuracy in discriminating crops and other vegetation types because of its ability to 
model phenological differences between plants (Aguilar et al. 2018; Brisco, Ulaby, and Protz 1984; 
Debats et al. 2016; Useya and Chen 2019; Zurita-Milla, Izquierdo-Verdiguier, and De By 2017). Use 
of multi-sensor data produces improved results (Dimov et al. 2017; Forkuor et al. 2014; Van Tricht et 
al. 2018; Zhou et al. 2017) while Synthetic Aperture Radar (SAR), unlike optical data, is not limited by 
atmospheric conditions. 

The challenge in mapping SFS is not only in requiring optimum combinations of datasets but it is also 
in the optimization of mapping algorithms. While most research has been comparing different 
machine learning classifiers, there is also a growing interest in multi-classifier systems. The practice 
of combining classification algorithms is predicated on the hypothesis that integrating multiple 
classifiers produces a more powerful model. To the best of our knowledge, still very few studies have 
tested this approach in mapping SFS. Furthermore, Wu, Wang, and Wu (2012) noted that model 
stacking, in particular, is less popular in remote sensing applications. A few notable studies that used 
this approach include Aguilar et al. (2018)’s combination of Random Forest (RF), Maximum Entropy, 
and Support Vector Machines (SVM). Sonobe et al. (2018) combined SVM and RF for crop 
classification in Japan. Useya and Chen (2018) mapped SFS in Zimbabwe by combining Maximum 
Likelihood Classification, SVM, and Spectral Information Divergence. Salas et al. (2019) combined 
Generalized Linear Model, RF, Boosted Regression Trees, Maximum Entropy, and Multivariate 
Adaptive Regression Splines to map crop types in a highly fragmented landscape in India. All these 
studies reported that combining the models improved classification accuracy compared to using a 
single classifier. However, we observed that the authors combined the algorithms indiscriminately. 

In this study, we compare the effectiveness of image fusion and model stacking in improving mapping 
accuracy of a smallholder farming landscape. We take a slightly different approach in our 
classification experiments. From a stack of 40 multi-temporal Sentinel-2 bands, we filter out 
unimportant images using a variable importance algorithm. We then compute different optical indices, 
which are selected based on their sensitivities to different surface features. We combine these with 
the vertical transmit, horizontal receive (VH) and vertical transmit, vertical receive (VV) polarimetric 
bands of Sentinel-1 in a series of classification trials, searching for an optimum combination of these 
datasets. We use the Extreme Gradient Boosting (Xgboost) classifier partly because it is recently 
developed, and has been outperforming other algorithms in machine learning competitions (Nielsen 
2016). To perform model stacking, we combine Xgboost with RF, SVM, Artificial Neural Networks 
(ANN), and Naïve Bayes (NB). We first stack all the classifiers indiscriminately, and then compare this 
with stacking that is based on model comparisons. This is informed by the idea that model stacking 
should be an ensemble of sub-models that are weakly correlated (Džeroski and Ženko 2004; Merz 
1999). Essentially, the study is a search for optimum results through fusion of SAR and optical data, 
and through model stacking. 

2. Materials and methods 

2.1. Study area 

The O.R. Tambo District Municipality (ORTDM) is in the Eastern Cape Province of South Africa 
(Figure 1). 



3 
 

 

Figure 1. Location of (a) ORTDM in (b) Eastern Cape Province, (c) South Africa. 

The district is part of the former Transkei homelands and the majority (94%) of its 1 364 943 
population (2011 Census) live in villages. The major sources of livelihood include social grants from 
government, livestock farming, and crop production in the form of maize, tea, cannabis, and 
vegetables (ECSECC 2014; Municipality 2017). Agriculture is practised in an environment in which 
mean annual rainfall ranges between 900 mm and 1300 mm, with summer minimum and maximum 
temperatures that range between 14°C and 19°C and 14°C and 27°C, respectively (Jordaan et al. 
2017). Majority of the smallholder farms produce only maize, partly because they get inputs from the 
government, and because of the mielie-meal producing RED Hub project, which has a significant 
impact on rural income (Iortyom, Mazinyo, and Nel 2018). The crop fields range from a minimum of 
backyard – one hectare plots to bigger collective farms in which a number of individual smallholders 
own plots. Crop production intensifies during the wet season (October to April) with planting dates 
ranging between November and January depending on the commencement of the rainfall season. 
Although most of the farmers sell their produce to local supermarkets, animal feed retailers, and 
milling plants, part of this is usually destined for domestic consumption (DRDLR 2016) 

2.2. Image compilation and pre-processing 

The materials used comprise multi-date Sentinel-2 Level-1C and Sentinel-1 Level-1 Ground Range 
Detected (GRD) images. Table 1 provides the identity details, which include acquisition dates and 
percentages of cloud cover in the images, used to compile footprint coverages of the study area. 

Table 1. List of images providing footprint coverages of the study area. 

 

 All the Sentinel 2 images were cloud-free 

Sentinel-2 images consisted of four pairs of tiles, each of which provided a representative footprint 
coverage of crop-producing areas in the ORTDM. We purposely excluded the low-resolution bands of 
Sentinel-2 and proceeded to use the 20 m and 10 m resolution bands. Sentinel-2 images were pre-
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processed by using the Sen2Cor 2.5.5 plugin tool to correct Top-Of-Atmosphere (TOA) Level-1C 
reflectance to Bottom-Of-Atmosphere (BOA) surface reflectance. Thereafter, individual pairs of 
Sentinel-2 images were mosaicked in QGIS. Each of the four Sentinel-1 images were big enough to 
cover the study area and were acquired in the conflict-free VV and VH polarizations, with a 250 km 
Interferometric Wide (IW) swath mode, at 5 m by 20 m spatial resolution, projected to WGS84. Pre-
processing techniques applied on Sentinel-1 imagery included: 1) Orbit file application, 2) Radiometric 
calibration, 3) Speckle filtering, and 4) Geometric correction. Afterwards, both the Sentinel-1 and 
Sentinel-2 bands were co-registered to WGS84 UTM Zone 35 S and resampled to 10 m resolution. 

2.3. Field work 

Field data were collected between May and July 2018 with the location of crop fields being aided by a 
field guide map that was prepared from crop cultivation records of 2017 to 2018 season acquired from 
extension officers of the Department of Rural Development and Agrarian Reform (DRDAR). These 
records include geocoded lists of crop fields with contact details of all smallholder farmers who had 
planted maize, cannabis, and vegetables in the 2017 to 2018 season. Since there were very few legal 
cannabis farms at the time, we accessed the remote illegal farms with the assistance of farmers. 
While we visited most of the maize and vegetable farms, we confirmed the DRDAR-solicited 
information through telephone interviews for the few we could not visit. The tea farms are well known 
and easily identified on Sentinel-2 images and Google Earth. We recorded GPS coordinates of each 
crop field, which we then edited in Google Earth and ArcGIS to generate training polygons. We also 
collected GPS coordinates of other land use and land cover types in order to enhance confident 
discrimination of crop fields. Table 2 summarizes the information classes for which detailed 
information was compiled. 

Table 2. Information classes identified during field investigation. 

  

2.4. Image analysis 

The procedures applied for image analysis include 1) systematic compilation of predictor variables 
from the satellite images, 2) fusion of Sentinel-1 and Sentinel-2 in a systematically determined 
number of classification trials, and 3) classification through model stacking. 

2.4.1. Compilation of predictor variables and image classification 

We applied variable importance (VI) to rank 40 multitemporal Sentinel-2 bands. We used the Mean 
Decrease Accuracy (MDA), which is a variable ranking measure of RF to rank the explanatory power 
of each band. The MDA is computed as shown in Equation 1 by calculating and averaging predictor 
errors in out-of-bag (OOB) data before and after permutation (Hur, Ihm, and Park 2017; Souri and 
Vajedian 2015).  
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      (1)  

where 

  

(OOB)t is the out of bag sample for a tree t. 

This technique improves prediction by aiding the identification and elimination of redundant variables. 
The top 10 Sentinel-2 bands ranked as the most important were then used in further analyses. We 
selected four spectral indices because of their different sensitivities to different surface features. The 
Soil Adjusted Vegetation Index (SAVI) was computed using the Sentinel-2 image of January. SAVI 
minimizes the effects of soil reflectance on vegetation and is sensitive to leaf area index in the early 
stages of crop growth (Hatfield and Prueger 2010). SAVI is calculated according to Equation (2).  

         (2)  

RED and NIR are the red and near infrared wavelengths, respectively, while L is the canopy 
background (soil) adjustment factor. We computed Normalized Difference Vegetation Index (NDVI) 
using the Sentinel-2 image of February. NDVI performs best when vegetation density is low (Phadikar 

and Goswami 2016; Xue and Su 2017) and is calculated according to Equation (3).  

          (3)  

We computed the Two Band Enhanced Vegetation Index (EVI2) for March and April. EVI2 is more 
effective than NDVI when vegetation density is high and is less affected by canopy background signal 
and atmospheric influences (Jiang et al. 2008). It is calculated according to Equation (4).  

         (4)  

We computed the Normalized Difference Built-up Index (NDBI) using the Sentinel-2 image for March. 
NDBI includes the Short Wave Infrared (SWIR) band because urban surfaces have high reflectance in 
SWIR than other wavebands (Zha, Gao, and Ni 2003), and is calculated according to Equation (5).  

          (5)  

We included NDBI because in ORTDM, crops are cultivated in immediate vicinities of urban features. 
From Sentinel-1, we used the VH and VV polarimetric bands. We selected these variables in order to 
facilitate the identification of combinations potentially capable of improving mapping accuracy when 
used with optical data. We used these variables in different combinations as inputs for different 
classification trials (Table 3). 
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Table 3. Data combinations as used in six different classification trials. 

  

2.4.2. Classification 

Xgboost is an implementation of gradient boosting, which uses an additional regularization term in the 
objective function (Chen and Guestrin 2016). As in other ensemble tree-boosting algorithms, models 
are added in a sequential manner with the next predictor correcting errors made by previous 
predictors (weaker learners) until the training data are accurately predicted and no further 
improvements are made. This iterative process uses a gradient descent algorithm to optimize the loss 
function when adding new models by minimizing loss. The regularization term helps to avoid 
overfitting by controlling the complexity of the model. Using the caret package in R-Studio, we fine-
tuned seven Xgboost hyper-parameters to optimize the models. 

2.4.3. Model stacking 

Model stacking is an ensemble technique that takes predictions generated by multiple machine 
learning algorithms and uses them as inputs in a second level learning classifier (Wolpert 1992). We 
used this technique to stack Xgboost, RF (Breiman 2001), SVM (Cortez and Vapnik 1995), ANN 
(Ripley 1996), and NB (Solares and Sanz 2007). We used the caret package to compute correlation 
coefficients (r) between the classifiers, after which we compared stacking of all the algorithms against 
stacking only weakly correlated models (Džeroski and Ženko 2004; Merz 1999). 

2.4.4. Training and performance evaluation 

We split the field-collected data into three chunks of independent datasets. Firstly, we split the data 
into 70% model building data, and 30% for model evaluation. Following (Géron 2019), we further split 
the model-building chunk into two subsets; the first subset to train the individual classifiers, and the 
second subset to generate new predictions, which we used as level two training data for model 
stacking. All the models were evaluated using the validation set. We evaluated the performance of the 
models by computing four model performance metrics, namely overall accuracy, Kappa coefficient 
(K), and model sensitivity and specificity (Rwanga and Ndambuki 2017). We then computed statistical 
significance tests to evaluate if the differences made by data fusion and model stacking were chance 
events or real improvements. We performed the tests at 0.95 confidence level using a model 
comparison R-function developed from the works of (Hothorn et al. 2005) and (Eugster, Hothorn, and 
Leisch 2008). 

3. Results 

The results of this investigation are presented under three sub-sections: sub-section 3.1 presents 
importance rankings of the Sentinel-2 bands, sub-section 3.2 summarizes results of data fusion, and 
sub-section 3.3 summarizes results of model stacking. 

3.1. Variable rankings of the optical data 

To reduce data redundancy and noise, we subjected the Sentinel-2 images to VI analysis and 
thereafter selected the top 10 multi-date image bands. Figure 2 shows ranks of the top 10 out of the 
40 Sentinel-2 bands. 
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Figure 2. Top 10 of the 40 Sentinel-2 bands. 

The top 10 bands out of the 40 include four images from March, three from April, two from February, 
and one from January, with bands B2, B8A, B4 and B11 being the most important variables. 

3.2. Results of image fusion 

Table 4 shows overall accuracies (OA), per-class Sensitivity (SE) and Specificity (SP), and Kappa 
coefficients (K) that we obtained by using Sentinel-2 data in the first three trials. 

Table 4. Results of Sentinel-2 classification trials. 

  

The results in Table 4 can be briefly summarized as follows: 

We achieved the highest OA of Sentinel-2 through the exclusive use of the 10 multitemporal 
wavebands (89.85%) in trial 1. However, the spectral indices in trial 2 exhibited a superior sensitivity 
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to vegetables (18.18%) compared to the wavebands in trial 1 (4.55%) and the combination thereof 
(9.09%) in trial 3. The wavebands in trial 1 exhibited a superior sensitivity to cannabis (44.44%) than 
the spectral indices (16.67%) in trial 2 and the combination thereof (22.22%) in trial 3. The spectral 
indices exhibited less sensitivity (96.48%) to tea than the wavebands (99.76%) and the combination 
thereof (99.76%). Sensitivity to maize remained at 100% in all the Sentinel-2 trials. Figure 3 shows 
the classification maps we obtained from Sentinel-2 data. 

 

Figure 3. Classification of ORTDM with Sentinel-2 data: (a) Trial 1, (b) Trial 2, (c) Trial 3. 

 

Table 5 presents the results we obtained by fusing optical and SAR datasets in trials 4 to 6. 
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Table 5. Results of fusing Sentinel-1 and Sentinel-2 data. 

  

Highest OA with S2 = 89.85%, Highest OA with S1-S2 fusion = 97.71% 

Difference = 7.86%, p = 0.0005 

 

Combining optical data with both the VV and VH bands of SAR in trial 6 attained the highest OA 
(97.71%) compared to all the different combinations of SAR and optical data. Sensitivity to maize 
remained the same in all the trials (100%). Exclusive use of optical data in trial 2 exhibited more 
sensitivity to vegetables (18.18%) and cannabis (44.44%) compared to the optical and SAR 
combinations in Table 5. Amongst the optical and SAR combinations, the optical and VV fusion in trial 
5 exhibited the highest sensitivity to vegetables (13.64%), while the optical and VH fusion in trial 4 
exhibited the highest sensitivity to cannabis (33.33%). Fusion of optical data with both VV and VH in 
trial 6 exhibited superior sensitivity to tea (99.98%) compared to Optical and VH (99.88%) in trial 4, 
Optical and VV (99.84%) in trial 5, and exclusive use of optical data (99.76%) in trial 3. In order to 
ascertain whether the classification accuracy improvements obtained by combining optical and SAR 
were real or just chance events, we performed statistical significance tests at α = 0.95. Table 5 shows 
that combining optical and SAR data produced a statistically significant improvement as compared to 
using the best of optical data exclusively (p = 0.0005). Figure 4 presents the classification maps we 
obtained from fusing Sentinel-1 and Sentinel-2. 
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Figure 4. Classification of ORTDM with Sentinel-2 and Sentinel-1 fused: (a) Trial 4, (b) Trial 5, (c) Trial 6. 

3.3. Results of model stacking 

We investigated model stacking as another technique to improve mapping accuracy. To find the most 
efficient way to stack the models, we trained Xgboost, RF, SVM, ANN, and NB and then computed a 
correlation matrix comparing the algorithms. We performed this on the combined Sentinel-2 variables 
(bands + indices). Table 6 shows how the models correlated. 

Table 6. Model correlation matrix. 

 

The levels of correlation between Xgboost and the other algorithms were not too strong (0.55, 0.49, 
0.71, and 0.42). RF and SVM correlated strongly (0.94) while SVM and NB also had high correlation 
(0.79). We observed that Xgboost and ANN (0.71) had high correlation as compared to Xgboost and 
RF (55), Xgboost and SVM (0.49), Xgboost and NB (0.42). Based on the correlation matrix, we 
concluded, in the final analysis, that the least correlated models were Xgboost, RF, and NB. We 
therefore ran two model-stacking trials, one including all the algorithms, and the other one including 
Xgboost, RF, and NB only. Table 7 is a summary of the model stacking results. 
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Table 7. Results of model stacking vs. individual models. 

  

Amongst the five individual algorithms, Xgboost achieved the highest overall accuracy (89.09%). 
Stacking the algorithms without ANN and SVM attained higher accuracy (96.06%) than stacking all 
the algorithms indiscriminately (93.97%). The improvement attained by stacking the models based on 
correlation tests was statistically significant (α = 0.95, p = 0.0242). Model stacking also produced 
better results as compared to using a single classifier (statistically significant at α = 0.95, p = 0.0100). 
Table 8 is a summary of per-class results obtained through model stacking. 

Table 8. Detailed results of model stacking compared to single-model classification. 

  

Sensitivity of the stacked models to maize and tea did not change as compared to the exclusive use 
of Xgboost. However, sensitivity to vegetables decreased to 0.00% with the 5 model ensemble, while 
remaining at 9.09% with the 3 model ensemble. The 5 model ensemble’s sensitivity to cannabis 
remained at 22.22% while increasing to 27.71% with the 3 model ensemble. The differences in OA 
between the single-model classification and the ensembles are mainly due to increase in sensitivity 
and specificity in the non-crop information classes. Figure 5 presents the classification maps obtained 
from model stacking. 
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Figure 5. Classification of ORTDM with model stacking: (a) Xgboost, (b) Xgboost, ANN, RF, SVM, NB, (c) 
Xgboost, RF, NB. 

4. Discussion and conclusions 

We fused optical and SAR data to map a smallholder agricultural landscape. Among the optical 
datasets, bands 2, 4, 8A, and 11 proved to be very crucial for discriminating surface features in a 
heterogeneous agricultural landscape, and were found to be equally effective in similar studies (De 
Olivier Santos et al. 2019; Zhang et al. 2019). This complementarity highlights the utility of combining 
NIR, red and red edge bands, which are sensitive to vegetation dynamics, with the SWIR, which 
highlights urban features. This underscores the importance of including the SWIR band when 
mapping crop fields that are proximal to urban features. In other studies, the SWIR band has also 
shown to improve vegetation mapping across urban and heterogeneous landscapes (Hartling et al. 
2019; Sidike et al. 2019). 

We elected to systematically add SAR data to the optical variables because most studies similar to 
ours have found the latter to attain higher accuracy than the former (Clerici, Valbuena Calderón, and 
Posada 2017; Denize et al. 2019; Fontanelli et al. 2014; Mercier et al. 2019; Tavares et al. 2019). 
Combining optical data with the VH bands improved overall accuracy and sensitivity to tea while 
reducing sensitivity to vegetables and cannabis. In overall, maize and tea were mapped with very high 
accuracy. Although most of the maize fields were smaller than 2 ha, maize is the majority class in the 
training data, while the tea fields are bigger in size. The misclassification of vegetables and cannabis 
can be attributed to various interacting factors including, the sizes of both cannabis and vegetable 
fields, most of which ranged between about 0.01 and 1.00 ha. Secondly, there was poor plant spacing 
and irregular planting patterns particularly in the cannabis fields, and big patches of bare soil in both 
cannabis and vegetable fields. In this situation, reflectance from crop canopy is hugely affected by 
background interference from soil, which has its own dynamic spectral properties, resulting in 
distortion of crop spectral reflectance (Prudnikova et al. 2019). Thirdly, due to the rarity of vegetable 
farming in the area, the number of training points for vegetables was small compared to the other 
classes. Imbalanced training data often lead to imbalanced learning, which can pose a challenge to 
classification (Douzas et al. 2019). Fourthly, the cannabis fields are located in obscure and remote 
locations because most of the cannabis farming in the area is unlicensed. 
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In any case, the VH polarized band proved more important than the VV channel. Although some 
studies report marginal differences between these polarimetric bands (Abdikan et al. 2016; Inglada et 
al. 2016; Van Tricht et al. 2018; Whelen and Siqueira 2018), the VH band has higher sensitivity to 
vegetation and other land cover types than the VV band (Ban 2016; Dimov et al. 2017; Rajah, Odindi, 
and Mutanga 2018). This can be explained by the fact that while VV backscatter is negatively affected 
by temporal changes in the scattering mechanism (Xu et al. 2019),VH backscatter is a better 
characterizer of vegetation because it is indicative of volume scattering (Brisco et al. 1992; 
Vreugdenhil et al. 2018). On the other hand, joint-use of the VH and VV polarimetric bands 
outperformed single-use of either bands. 

We applied model stacking to find the most effective way of combining classifiers and improving 
classification accuracy. Amongst the base-classifiers, Xgboost achieved higher classification 
accuracy, outperforming the second best classifier (ANN) by 2.21%. Model correlations between 
Xgboost and the other classifiers were low to moderate, warranting stacking of Xgboost with any of 
the four classifiers. However, we observed that SVM and RF (0.94), SVM and NB (0.79) correlations 
were high. We also observed that Xgboost and ANN correlated strongly as compared to Xgboost and 
RF, Xgboost and SVM, Xgboost and NB. Model stacking does not add much advantage in cases 
where base models have strongly correlated predictions. We therefore optimized ensemble modelling 
by stacking the models analytically. While stacking of all the models increased accuracy from 89.09% 
to 93.97%, exclusion of ANN and SVM increased classification accuracy from 89.09% to 96.06% 
(statistically significant at α = 0.95, p = 0.04). 

We learned from this study that successful mapping of a fragmented agricultural landscape is a 
function of objectively derived datasets, adapted to geographic context, and an informed optimization 
of mapping algorithms. Although both image fusion and model stacking improved classification 
accuracy, we observed that adding SAR to optical data achieved higher accuracy than merely 
applying model stacking to optical data. We recommend that future investigations should apply model 
stacking on fused SAR and optical data for even better results. Since this method produced a very 
high mapping accuracy of maize, we recommend that it be tested in the calculation of maize crop 
statistics in smallholder farming areas. The approach is objective and not limited to the study area in 
the sense that the datasets are adapted to the geographic context through variable ranking, while 
model stacking is informed by model comparison tests. We recommend that future investigations 
should consider experimentation with different image fusion techniques, SAR techniques, and 
different sets of machine learning/deep learning algorithms. We also recommend follow up studies 
including a wider test trying of the techniques provided in this paper by mapping the distributions of 
smallholder crop fields in other places. Embracing this recommendation is advisable because it is 
potentially capable of securitizing crop production by enabling smallholder farmer support from 
insurers, creditors and the government. 
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