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Abstract 

This paper examines the predictive power of oil supply, demand and risk shocks over the realized 
volatility of intraday oil returns. Utilizing the heterogeneous autoregressive realized volatility 
(HAR-RV) framework, we show that all shock terms on their own, and particularly financial 
market driven risk shocks, significantly improve the forecasting performance of the benchmark 
HAR-RV model, both in- and out-of-sample. Incorporating all three shocks simultaneously in the 
HAR-RV model yields the largest forecasting gains compared to all other variants of the HAR-
RV model, consistently at short-, medium-, and long forecasting horizons. The findings highlight 
the predictive information captured by disentangled oil price shocks in accurately forecasting oil 
market volatility, offering a valuable opening for investors and corporations to monitor oil market 
volatility using information on traded assets at high frequency.  
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1. Introduction 

There is now ample evidence in the literature suggesting that one has to account for the different 
sources of oil price fluctuations by distinguishing between supply and demand related shocks in 
order to get a more accurate assessment of oil price dynamics (Kilian, 2009) and studies that do 
not take into account the source of oil price shocks will be biased towards finding insignificant 
results and/or an effect which is unstable over time (Kilian and Park, 2009). Clearly, as Herrera et 
al. (2019) note, oil price shocks are not only caused by supply disruptions, but also by demand 
related factors and accordingly, a growing strand of the literature on the oil-stock market nexus 
has examined the effect of disentangled oil price shocks on stock market returns and volatility.1 
The general conclusion from these studies is that the relationship between stock returns and oil 
price shocks primarily depends on the nature of the shock and that demand shocks are far more 
relevant than supply side shocks in stock market behavior. 

Considering that oil supply shocks relate to unexpected changes in world oil production, perhaps 
driven by country specific or geopolitical factors, while oil demand shocks relate more to sentiment 
that drives their precautionary demand and/or the business cycle that drives aggregate demand, 
distinguishing between supply and demand driven components of oil price fluctuations can help 
improve the explanatory power of economic models. This is particularly important when it comes 
to forecasting applications, as accurate prediction of oil market volatility is not only vital for traders 
in their pricing and hedging models, but also for corporations in their earnings forecasts. The 
application of oil price shocks to econometric analysis, however, has largely been limited to low 
frequency models (i.e. monthly or quarterly) due to the availability of models that are designed to 
extract supply and demand driven components from oil price changes. In a recent study, Ready 
(2018) offers a high frequency alternative to disentangling oil price shocks into supply, demand 
and risk driven components obtained from traded asset prices on daily frequency. This opens up 
the opportunity to examine the relationship between daily oil price shocks and intraday dynamics 
in financial and commodity asset returns. This paper contributes to the literature by examining the 
predictive power of disentangled oil price shocks over oil market realized volatility obtained from 
intraday data. By doing so, the paper provides new insight to the relative roles of supply and 
demand driven factors over oil market volatility and whether distinguishing between these 
components improves the accuracy of forecasts for oil price fluctuations. 

Understandably, accurate forecasts of oil market volatility are crucial for correctly pricing 
derivative assets that underlie energy-based commodities. Accurate volatility forecasts are also 
important for hedging applications as expectation of volatility is directly used in the calculation of 
the optimal hedge ratios. This is especially important for corporations, particularly those with 
earnings that are highly sensitive to energy price fluctuations, as the size of the hedge positions 
and the implementation of conditional hedging strategies are determined by volatility forecasts. 

                                                            
1 See, for example, Kang et al. (2015), Basher et al. (2018), Thorbecke (2019), Demirer et al. (2020) for recent 
applications. 
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Not surprisingly, a large literature exists, which we summarize in the literature review section, on 
the predictability (both in- and out-of-sample) of daily oil-price volatility. Given that intraday data 
contains rich information and can lead to more accurate forecasts of daily volatility compared to 
models of conditional volatility based on daily data (McAleer and Medeiros, 2008), an increasing 
number of studies (for detailed reviews, see Mei et al., 2017 and Qiu et al., 2019) have used 
variations of the Heterogeneous Autoregressive (HAR) model of Corsi (2009) to forecast the 
realized volatility (RV) of various asset and commodity markets returns by utilizing the realized 
volatility estimates obtained from intraday data per Andersen and Bollerslev (1998). Against this 
backdrop, we aim to contribute to the existing research on oil market volatility based on high-
frequency data by forecasting RV of oil returns, computed from 5-minute-interval intraday data, 
using an extended version of the HAR-RV model. In particular, the HAR-RV model now 
incorporates information on the various components of oil price fluctuations due to demand and 
supply related factors in the oil market, as well as, the innovations associated with financial market 
risks. To the best of our knowledge, this study is the first to analyze the role of disentangled oil 
price and financial market risk shocks for in- and out-of-sample predictability of daily realized oil 
return volatility, derived from intraday data. 

Intuitively, one can expect disentangled oil price shocks to affect oil market volatility through 
various channels. As mentioned earlier, while oil supply shocks largely relate to geopolitical 
developments or country/region specific surprises, demand shocks reflect unexpected changes in 
the aggregate or precautionary demand for oil, driven by the market’s expectation of future 
economic conditions or concerns regarding future supply shortfalls. Accordingly, it may not be as 
clear-cut when it comes to infer in what direction oil demand and supply shocks can affect 
volatility in the oil market as the nature of news that drives the shock would be the critical factor 
that determines the direction of the effect. For instance, an increase in oil returns due to a supply 
shock, would be associated with the slowdown of the economy (as has been shown to be 
historically the case by Gupta and Wohar, 2017), and this recessionary impact is likely to reduce 
the demand and trading activity in the oil sector to result in lower volatility. In the case of demand 
shocks, however, one can argue that demand shocks associated with an increase in oil price, due 
to a rise in aggregate oil demand following an economic expansion, have been shown to reduce 
macroeconomic uncertainty, unlike supply shocks (Degiannakis et al., 2018). Furthermore, 
considering that uncertainty and oil market volatility are positively correlated (Hailemariam et al., 
2019), demand shocks can be expected to reduce volatility in the oil market due to positive 
underlying conditions. On the other hand, if demand shocks are driven by an unexpected rise in 
precautionary demand as traders become nervous about future supply shortfalls, it could have the 
opposite effect, driving up volatility in the oil market. Finally, risk shocks associated with 
unexpected fluctuations in financial market uncertainty can be expected to spill over to the oil 
market, thus resulting in an increase in oil price volatility (Bonaccolto et al., 2018). The spillover 
effects of financial risk shocks to the oil market could partially be driven by changes in investors’ 
risk appetite due to uncertainty shocks that are not necessarily related to the oil market. Such a 
spillover effect could be further strengthened due to the greater participation of financial investors 
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in the commodity market, so-called commodity financialization, creating a new channel that links 
financial trades to commodity trades. In sum, one can argue that while positive oil supply and 
demand shocks should generally reduce oil volatility, risk shocks associated with financial market 
uncertainty should have the opposite effect, driving up volatility in the oil market.   

Our tests show that all shock terms on their own, and particularly financial market driven risk 
shocks, significantly improve the forecasting performance of the benchmark HAR-RV model. The 
forecasting performance is found to significantly improve when we combine the information 
content of the three shock terms in an augmented model, suggesting that oil price demand/supply 
shocks as well as risk shocks individually capture marginal predictive information for oil market 
volatility. In particular, when we incorporate all three shocks simultaneously in the HAR-RV 
model, the framework significantly outperforms all the other variants of the HAR-RV model, 
consistently at short-, medium-, and long forecasting horizons, implied by greater forecasting gains 
against all other variants of the HAR-RV model. The findings highlight the predictive information 
captured by disentangled oil price shocks in accurately forecasting oil market volatility, offering a 
valuable opening for investors and corporations to monitor oil market volatility using information 
on traded assets at high frequency.  

The remainder of the paper is organized as follows: Section 2 provides a summary of the existing 
literature on forecasting oil market volatility, while Section 3 outlines the data and methodologies 
to compute oil price shocks as well as the HAR-RV model specification. Section 4 presents the 
empirical results and Section 5 concludes with a discussion of the implications of our results. 

2. Literature Review 
 
As pointed out earlier, due to the importance of accurate forecasts of oil market volatility from the 
perspective of investment decisions, a large number of studies has delved into the issue of 
predictability in the oil market. While providing an elaborate review is beyond the scope of this 
paper given its current objectives, we provide below a summary of the most important 
contributions in the strand of the literature that are most closely aligned with our particular study. 
The early studies on modelling and prediction of oil market volatility have largely relied on 
conditional volatility using different variants of univariate and multivariate models from the family 
of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) framework, and the 
Markov-switching multifractal (MSM) model (see Lux et al., 2016 for a detailed review). Overall, 
these studies find that while the univariate GARCH-type models are able to produce more accurate 
forecasts, relative to other forms of GARCH models, the MSM model in general is the most 
preferred approach compared to all the other models considered (across majority of forecast 
horizons and sub-samples). 
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More recently, with the availability of intraday data, a growing number of studies have utilized 
variations of the HAR-RV model to forecast the realized volatility of oil-price returns.2 The earlier 
studies of Haugom et al., (2014), Sévi (2014), Prokopczuk et al., (2015) have led to the conclusion 
that all models fail to beat the forecast accuracy of the simple HAR-RV model which utilizes only 
the information embedded in past realized volatility, while incorporating structural breaks to the 
model is found to help improve the predictive performance (Wen et al., 2016). Moreover, Gong 
and Lin (2017) indicate signed jumps contain forecasting information for good and bad RVs, 
derived from positive and negative oil returns respectively.  

More recent studies, however, highlight the important forecasting role of various predictors in 
extended HAR-RV models. For instance, Degiannakis and Filis (2017) show that incorporating 
information on the exogenous volatilities of four different asset classes (stocks, currencies, 
commodities and macroeconomic policy) improves the forecast accuracy of the standard HAR-
RV model. Similarly, Gkillas et al., (2020) argue that forecast accuracy is improved when the 
baseline linear HAR-RV model is extended to incorporate an index of financial stress since 
financial stress as an additional predictors helps to explain the possible asymmetry of the loss 
function of a forecaster. To some extent, under the same theme, the role of various metrics 
capturing financial and oil market uncertainty and sentiment, has been stressed by numerous other 
studies including Gong and Lin (2018a), Wen et al., (2019), Yang et al., (2019), and Bonato et al., 
(2020). Gong and Lin (2017) and Wen et al., (2016). At the same time, Liu et al., (2018) and Chen 
et al., (2019) argue that the benchmark HAR-RV model can be outperformed when considering 
the time-variation and asymmetric volatility jumps and co-jumps with the equity (S&P 500) 
market. 
 
Our paper aims to add to this burgeoning literature on oil market volatility using intraday data by 
looking at, for the first time, the role of oil demand and supply shocks, as well as financial market 
risk shocks, derived from a structural model, in forecasting oil returns RV. To the best of our 
knowledge, such a study of whether the shocks originating in the oil market itself can possibly be 
used to predict future high-frequency oil volatility has not been pursued before.3 
 
 
 
 
 
 

 
                                                            
2 See for example, Haugom et al. (2014), Sévi (2014), Prokopczuk et al. (2015), Wen et al., (2016, 2019), Degiannakis 
and Filis (2017), Gong and Lin (2017, 2018a), Liu et al. (2018), Chen et al. (2019), Yang et al., (2019), Bonato et al., 
(2020) and Gkillas et al. (2020). 
3 The study of Pan et al., (2017) is to some extent related to our study, whereby the authors looked at the role of low 
frequency macro variables related to oil market decisions in forecasting daily conditional volatility based on a regime-
switching GARCH model with mixed data sampling (MIDAS).  
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3. Data and Methodology 
3.1. Data 

Daily realized oil volatility (RV) values are computed from intraday data on oil futures traded on 
NYMEX over a 24 hour trading day (pit and electronic). The futures price data, in continuous 
format, is obtained from: www.disktrading.com and www.kibot.com. Close to expiration of a 
contract, the position is rolled over to the next available contract, provided that activity has 
increased. For intraday returns, last-tick interpolation gives 1-minute prices (if the price is not 
available at the 1-minute stamp, the previously available price is imputed) and we compute 5-
minute returns by taking the log-differences of these prices. These returns are then used to calculate 
the realized oil volatility estimate for the day, as formulated in Equation (4). Separately, daily 
returns are computed as the end of day (New York time) price difference (close to close). 

The information captured by demand and supply related oil factors is highlighted in an early study 
by Kilian (2009), noting that one has to account for the different sources of oil price fluctuations 
by distinguishing between supply and demand related shocks in order to get a more accurate 
assessment of oil price dynamics. Demirer et al. (2020) note that the decomposition method of 
Kilian (2009) has several shortcomings in that it tends to give too much weight to oil-specific 
demand shocks relative to supply shocks. The most limiting aspect of this decomposition method, 
however, is that it is limited to monthly frequency only and does not allow for higher frequency 
analysis. The decomposition method recently introduced by Ready (2018) overcomes these 
limitations by computing supply/demand related shocks based on traded asset prices, thus allowing 
us to perform our analysis at daily frequency. In our case, this framework offers an appropriate 
setting as it allows us to match daily oil price shocks with the daily realized volatility estimates 
obtained from intraday oil data. 

In order to compute oil price demand/supply as well as risk shocks per Ready (2018), we collect 
daily price data for the world integrated oil and gas producer index4, the nearest maturity NYMEX 
crude-light sweet oil futures contract, and the Chicago Board Options Exchange (CBOE) volatility 
index (VIX). These data are all derived from the Datastream database maintained by Thomson 
Reuters. Following Ready (2018), we use the first nearest maturity NYMEX crude-light sweet oil 
futures contract as a proxy for the price of crude oil. Finally, we use the innovations in VIX, 
obtained as the residuals from an ARMA (1,1) model estimated for the VIX index, to capture 
shocks related to changes in the market discount rate that tends to co-vary with attitudes towards 
risk. Our analysis covers the daily period of 5th January, 2000 to 30th May, 2017, with the start and 
end dates governed by the availability of data on price shocks and the intraday price data on oil 
futures.  

 

                                                            
4 The world integrated oil and gas producer index represents the stock prices of global oil producer companies and 
includes large publicly traded oil producing firms (i.e., BP, Chevron, Exxon, Petrobras or Repsol), but not nationalized 
oil producers (such as ADNOC or Saudi Aramco). 
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3.2. Methodologies 

The econometric framework we use in our empirical analysis consists of two components. First, 
we rely on the methodology introduced by Ready (2018) to decompose oil price changes into 
demand, supply and risk driven shocks. Second, we use the HAR-RV model developed by Corsi 
(2009) to forecast realized oil volatility by incorporating the information on the three shocks. 

3.2.1. Identification of Oil Price Shocks 

Ready (2018) defines demand shocks as the portion of returns on a global stock index of oil 
producing firms that is orthogonal to the innovations to the VIX. The  innovations to the VIX are 
considered to control for aggregate changes in market discount rates that affect stock returns of oil 
producing companies and are used as a proxy for risk shocks. Supply shocks, in turn, are 
represented by the residual component of oil-price changes that is orthogonal to both demand 
shocks and risk shocks. To be more specific, the decomposition model by Ready (2018) takes the 
following matrix form: 

𝑋 𝐴𝑍                   (1) 

where 𝑋 Δ𝑜𝑖𝑙 , 𝑅 , 𝜉 ,  is a 31 vector, Δ𝑜𝑖𝑙  denotes the change in oil price in period 
t, 𝑅  is the return on the global stock index of oil producing firms, and 𝜉 ,  stands for the 
innovation to the VIX, based on an ARMA(1,1) specification. Our focus is 𝑍 𝑠 , 𝑑 , 𝑣 , 
which is a 31 vector of oil supply, demand and risk shocks represented by 𝑠 , 𝑑  and 𝑣 , 
respectively. Finally, 𝐴 is a 33 matrix of coefficients defined as: 

𝐴
1 1 1
0 𝑎 𝑎
0 0 𝑎

                 (2) 

Ready (2018) imposes the following condition to achieve orthogonality among the three types of 
shocks as follows: 

𝐴 Σ 𝐴
𝜎 0 0
0 𝜎 0
0 0 𝜎

               (3) 

where Σ  denotes the covariance matrix of the variables in 𝑋 , while 𝜎 , 𝜎  and 𝜎  are the variance 
of the supply, demand and risk shocks, respectively. The specification in Eq. (3) represents a 
renormalization of the standard orthogonalization applied to construct structural shocks in an 
SVAR model. Note that the volatility of oil-price shocks is not normalized to one, but, instead, the 
sum of the three shocks has to be, by their very construction, equal to the total variation in the oil 
price. This method of decomposing oil-price shocks defines an oil supply shock as the component 
of oil-price fluctuations that cannot be explained by changes in global aggregate demand and 
changes in financial-market uncertainty.5 

 

                                                            
5 As Demirer et al. (2020) argue, supply shocks in this framework relate to region-specific or event-specific 
information that cannot be accounted for by stock-market related pricing effects.  
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3.2.2. Heterogeneous Autoregressive Realized Volatility (HAR-RV) Model 

Following Anderson et al., (2012), we measure the daily realized oil volatility by the median 
realized variance (MRV), constructed using intraday data. MRV is a jump-robust estimator of 
integrated variance computed as follows: 

𝑀𝑅𝑉
√

∑ 𝑚𝑒𝑑 𝑟 , , 𝑟 , , |𝑟 , |                    (4) 

where 𝑟 ,  denotes intraday oil return 𝑖 within day 𝑡, and 𝑖 1, … , 𝑇 is the number of intraday oil 

returns within a day. Anderson et al., (2012) argue that MRV is less biased in the presence of 
market-microstructure noise than other measures of realized volatility. 

In the case of forecasting analysis, we use variants of the widely-studied HAR-RV framework of 
Corsi (2009) to model and forecast daily realized oil volatility. While the HAR-RV model 
apparently has a simple structure, it has become increasingly popular in the literature because it is 
able to capture long memory and multi-scaling behaviour of commodity (oil) market volatility 
(Asai et al., 2019; 2020). In our application, the benchmark HAR-RV model is given by: 

𝑅𝑉 𝛽 𝛽 𝑅𝑉 𝛽 𝑅𝑉 , 𝛽 𝑅𝑉 , 𝜀                  (5) 

where the index ℎ denotes ℎ-days-ahead realized volatility, with ℎ  1, 5, and 22 in our context. 
In addition, 𝑅𝑉 ,  is the average 𝑅𝑉 from day 𝑡 5 to day 𝑡 1, while 𝑅𝑉 ,  denotes the average 

𝑅𝑉 from day 𝑡 22 to day 𝑡 1. The model in Equation (5) represents the benchmark HAR-RV 
model that we compare against the variants of the augmented model with various combinations of 
oil price shocks. When we augment the benchmark forecasting model with oil supply (s), demand 
(d) and risk shocks (v), we obtain the following extended HAR-RV model which includes the set 
of predictors (Q): 

𝑅𝑉 𝛽 𝛽 𝑅𝑉 𝛽 𝑅𝑉 , 𝛽 𝑅𝑉 , 𝜃′𝑄 𝜀                (6) 

where, θ and Q are p1 vectors. In our forecasting exercise, we set Qt = [st]; [dt]; [vt]; [st, dt]; [st, 
vt]; [dt, vt]; [st, dt, vt] to explore variants of the HAR-RV model with various combinations of 
shocks included in the model. 

4. Empirical Results 
Table 1 provides the summary statistics for the daily realized volatility estimates and the three oil 
shock series, with the time series plots presented in Figure 1. Clearly, the component of oil returns 
due to financial risk shocks are highly volatile compared to demand and supply driven components. 
Risk shocks have on average 1.62% contribution to oil price changes whereas the average 
contribution of supply and demand shocks are relatively smaller than risk shocks. While both 
supply and demand driven components of oil price changes are less volatile, we observe that both 
shock series have negative mean values, suggesting that, on average, demand and supply factors 
had a negative impact on oil price changes. Given that the sample period covers the post-global 
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financial crisis period, it is possible that the negative average contribution of supply/demand 
shocks on oil price changes is due to the slump in oil demand, particularly by OECD economies, 
observed following the global financial crash, while oil supply was largely unaffected.6 Not 
surprisingly, all the variables under consideration are non-normal – a standard feature of high-
frequency data. At the same time, daily realized volatility series presented in Figure 1 exhibit a 
rather volatile pattern with the RV estimates spiking to almost 50% during the 2007-2009 global 
crash period. Similar observation can also be drawn for the oil demand and supply shocks, while 
the risk shocks have been consistently higher since early 2006.  

  

Table 1. Summary Statistics. 

Statistic 
Realized 
Volatility 

Supply 
Shock

Demand 
Shock Risk Shock

Mean 4.9271 -0.0026 -0.0020 0.0162

Median 3.7278 -0.0031 0.0244 -0.4467

Maximum 49.9654 17.4887 9.4707 49.2950

Minimum 0.0521 -17.7642 -8.9221 -31.9383

S.D. 5.0391 2.1123 1.1788 6.5295

Skewness 3.4928 -0.0634 -0.0552 0.7867

Kurtosis 19.4241 8.4397 9.4929 7.4374

Jarque-Bera 59356.1500 5516.7420 7857.7220 4130.2120

p-value 0.0000 0.0000 0.0000 0.0000

Observations 4472
Note: S.D. stands for standard deviation; p-value corresponds to the null hypothesis of 
normality associated with the Jarque-Bera test. 
 

 

 

 

 

 

 

 

 

 

 

                                                            
6 For detailed statistics, see https://www.iea.org/reports/oil-information-2019 
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Figure 1. Data Plots. 
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Note: The figures present the time-series plots for the daily realized volatility estimates for oil as well oil supply, 
demand and risk shocks. 

 

Considering that the ultimate test of any predictive model (in terms of the econometric 
methodologies and predictors employed) is in its out-of-sample performance (Campbell, 2008), 
we focus on the forecasting exercise from an out-of-sample perspective. However, for the sake of 
completeness, we provide in Table 2 the full-sample estimation results for Eq. (6), with Q = [s, d, 
v] for h = 1, 5 and 22. Consistent with the empirical evidence on financial market returns, the 
persistence of the realized volatility series is confirmed by the highly significant and positive 𝛽 , 
𝛽  and 𝛽  estimates in the table. At the same time, all three types of oil price shocks are found to 
have a significant effect on oil realized volatility, implied by the highly significant 𝜃 , 𝜃 , and 𝜃  
estimates across all forecast horizons. Since we standardize the oil shock series with their 
respective standard deviations for the in-sample analysis, we see that, in absolute terms, financial 
risk shocks carry the highest strength in predicting oil market volatility, followed by demand 
shocks, barring the one-week-ahead horizon. Not surprisingly, financial market-related risk shocks 
are found to increase intraday return volatility in the oil market. One possible explanation for the 
positive effect of risk shocks on oil volatility could be that risk sentiment in financial markets, 
captured by the innovations in the volatility index, spill over to commodity markets as financial 
investors move funds in and out of the relatively riskier commodity positions. It is also possible 
that investors increase their hedge positions by taking on additional oil futures positions, thus 
contributing to volatility in the oil market as the sign of the hedge positions are driven by investors’ 
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underlying positions as well as risk expectations. At the same time, however, we observe that oil 
supply and demand shocks have a negative marginal effect on realized volatility, possibly as they 
capture information regarding future economic conditions or uncertainty, as discussed earlier. 

 

Table 2. In-Sample Predictability Results. 

 Parameter Estimates

Horizon 𝛽  𝛽  𝛽 𝛽 θ1 θ2 θ3 

h = 1 0.2117* 0.3225* 0.0841* 0.0097* -0.1977* -0.2133* 0.3006*

h = 5 0.2439** 0.6916* 0.8442* 0.0017* -0.2303* -0.1772* 0.2627*

h = 22 -0.0046 0.2649* 0.1874* 0.9453* -0.1647* -0.2351* 0.3117*

Note: The table presents the estimates for: 𝑅𝑉 𝛽 𝛽 𝑅𝑉 𝛽 𝑅𝑉 , 𝛽 𝑅𝑉 , 𝜃 𝑠
𝜃 𝑑 𝜃 𝑣 𝜀 , where s, d and v are oil supply, oil demand and risk shocks respectively. * 
and ** indicate significance at the 1 percent and 5 percent levels respectively.  

 

Having observed a significant in-sample effect of oil price shocks on realized volatility, we next 
turn our attention to the primary objective of our research, i.e., the role of oil supply/demand and 
risk shocks in forecasting the realized volatility of intraday oil price changes. Out-of-sample 
predictability is examined via a recursive estimation approach over the out-of-sample period, 
which covers the period of 24th March, 2003 to 26th May, 2017. In order to determine the out-of-
sample period, we first conduct the multiple structural break test of Bai and Perron (2003) on the 
HAR-RV model including all three oil shock series. Note that the importance of accounting for 
structural breaks in forecasting volatility, including that of commodity futures, is important to 
avoid model misspecification (Wen et al., 2016; Gong and Lin, 2018b). The structural break test 
yields the following breaks: (i) for h = 1, 24/03/2003, 20/03/2006, 18/12/2008, 05/08/2011, and 
30/09/2014; (ii) for h = 5, 27/03/2003, 06/03/2006, 18/12/2008, 05/08/2011, and 02/10/2014; and 
(iii) for h = 22, 17/04/2003, 20/03/2006, 01/01/2009, 03/08/2011, and 30/10/2014. Baumeister and 
Kilian (2016) note that the structural breaks in 2003 coincide with the heightening tensions in Iraq 
during this period, resulting in the U.S. invasion of Iraq in early 2003, while the regime changes 
in 2008 and 2014 coincide with sharp declines in oil prices due to weakening of global demand. 
Similarly, the breaks in 2006 are generally attributed to price increases due to a series of events 
such as Hurricane Katrina, supply disruptions in Iraq due to its ongoing conflict and geopolitical 
tensions resulting from North Korea's missile launch. Finally, the break in 2011 is likely to have 
resulted from the political turmoil due to the Arab Spring, which drove oil prices up. It must be 
noted that the breaks in 2008 and 2011 could also be driven by the financial market driven risk 
shocks as these were the periods corresponding to the peaks of the Global Financial and the 
European sovereign debt crises. Nevertheless, given that the earliest break occurred on 24th March, 
2003, we start our recursive estimation from this point onwards and compute the Mean Squared 
Forecast Errors (MSFEs) from the benchmark HAR-RV model and its seven possible extensions 
for h =1, 5 and 22. We then use the MSE-F test of McCracken (2007) to compare the forecast 
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accuracy of the extended versions of the HAR-RV models with the nested benchmark, i.e., the 
basic HAR-RV model in Eq. (5), which does not include any of the shock variables. 

Clearly, since our focus is on the forecast errors, a lower MSFE value implies a better performing 
forecasting model. In Table 3, we report the out-of-sample forecasting gains from a particular 
extended version of the HAR-RV model (MSFE1) augmented by the oil shocks as additional 
predictors, relative to the benchmark model (MSFE0). Forecasting Gains (FG) are formulated as: 

FG =  1 100                     (7) 

where MSFE0 and MSFE1 are the Mean Squared Forecast Errors (MSFEs) of the benchmark HAR-
RV model (without any shocks) and its extended version, given the general forecasting model 
presented in Eq. (6). As mentioned earlier, we examine seven different model variants with various 
predictor combinations where Qt = [st]; [dt]; [vt]; [st, dt]; [st, vt]; [dt, vt]; [st, dt, vt] for Models 1 to 
7, with s, d and v denoting oil supply, demand and risk shocks, respectively. Given the formulation 
in Eq. (7), a positive (negative) entry in the table indicates the forecasting gain (loss) in 
percentages.  

The first observation that strikes the eye in Table 3 is that all entries in the table are positive, 
indicating that all variants of the extended HAR-RV model with various combinations of oil and 
risk shocks incorporated to the model result in gains in forecasting accuracy. This means that HAR-
RV models that incorporate the information captured by oil price and risk shocks produce lower 
MSFEs relative to the benchmark HAR-RV specification.7 Clearly, each type of oil price shock 
captures valuable predictive information individually regarding the future pattern of oil market 
volatility. Second, comparing the forecasting power of each oil shock in Models 1-3, we see that 
financial risk shocks provide the greatest forecasting gain when incorporated into the benchmark 
model. Compared to the extended models that include only the supply (Model 1) or the demand 
(Model 2) shock, Model 3 that includes the risk shock results in the highest reduction in forecasting 
errors, consistently at all the three forecast horizons of h =1, 5 and 22. This suggests that financial 
market-related shocks tend to capture more predictive information over oil market volatility 
compared to oil market specific demand and supply factors. Although not entirely expected, this 
result is in fact in line with the recent finding by Qadan and Idilbi-Bayaa (2020) that financial 
market shocks are more important than fundamental oil supply and demand shocks in driving the 
first and second moments of oil price changes. The dominant role of financial risk shocks on oil 
market volatility is also consistent with a number of studies including Degiannakis and Filis 
(2017), Wen et al., (2019) and Gkillas et al., (2020), that also highlight the role of financial market 
volatility, uncertainty and stress, respectively in accurately forecasting the realized volatility of 
oil.   

                                                            
7 The absolute MSFEs from the benchmark HAR-RV model for h = 1, 5 and 22 are found to be 2.45 percent, 3.12 
percent and 3.71 percent, respectively. These values can, in turn, be used to recover the absolute MSFEs of the 
extended versions of the HAR-RV model by interested readers. 
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Table 3. Out-of-Sample Forecasting Gains.  

 Forecasting Models

Horizon Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

h = 1 0.6936* 0.8169* 2.0541* 1.4162* 2.7688* 2.7719* 3.3909*

h = 5 0.7562* 0.3019* 0.9967* 0.9996* 1.7660* 1.2483* 1.9600*

h = 22 0.1214* 0.4885* 0.8453* 0.5695* 0.9632* 1.2779* 1.3560*

Note: Entries correspond to forecasting gains, i.e., FG =  1 100, where MSFE0 and MSFE1 are Mean 

Squared Forecast Errors (MSFEs) of the benchmark HAR-RV model (excluding oil price shocks) and its extended 
version that includes oil shocks in various combinations, respectively. The general forecasting model takes the 
form: 𝑅𝑉 𝛽 𝛽 𝑅𝑉 𝛽 𝑅𝑉 , 𝛽 𝑅𝑉 , 𝜃′𝑄 𝜀 , where Qt = [st]; [dt]; [vt]; [st, dt]; [st, vt]; [dt, vt]; 
[st, dt, vt] for Models 1 to 7 with s, d and v denoting oil supply, demand and risk shocks, respectively. For the 
benchmark HAR-RV model, Q = []. * indicates significance of the MSE-F test statistic at the 1 percent level.  

 

Comparing Models 4-6 where we combine two shocks at a time with Models 1-3 that include only 
one shock at a time, we observe that including the additional shock terms indeed improves the 
forecasting performance. The best-performing models including two shock terms are found to 
produce higher forecasting gains than the best-performing one-shock models at respective 
forecasting horizons, clearly indicating that the oil market demand and supply shock terms provide 
additional forecasting power. Interestingly, the model that includes demand and risk shocks 
provide the best forecasting performance at the shortest and longest forecasting horizons, while 
the model with supply and risk shocks performs the best at h = 5. This is consistent with our in-
sample results, where the predictive power of risk shocks dominates in all horizons, followed by 
the demand shock at short- and medium-runs. Finally, we see that the model that incorporates all 
three shocks (Model 7) outperforms all other extended HAR-RV model variants, consistently at h 
=1, 5 and 22 although the gains diminish as the forecasting horizon increases. Clearly, both risk 
and oil price demand/supply shocks capture valuable predictive information over oil market 
volatility and including these shocks in the forecasting model results in smaller forecast errors at 
all forecasting horizons. 
 
Overall, our results suggest that disentangled oil price shocks carry significant predictive 
information regarding the future path of return volatility in the oil market. While financial market 
driven risk shocks are important on their own in forecasting realized oil volatility, the forecasting 
performance can be significantly improved by supplementing the model with the information 
captured by oil price shocks driven by supply- and demand-related factors. Finally, and more 
importantly, the forecasting gains from all seven variants of the extended HAR-RV model are 
statistically significant at the 1 percent level of significance using the MSE-F statistic, confirming 
the importance of the predictive information captured by these shocks. Although not explicitly 
reported in Table 3, when we compare the two best performing models at each forecast horizon, 
namely: (i) HAR-RV with s+d+v against HAR-RV with d+v for h=1; (ii) HAR-RV with s+d+v 
against HAR-RV with s+v for h=5; and (iii) HAR-RV with s+d+v against HAR-RV with d+v for 
h=22, we obtain the MSE-F statistics to be 22.0733, 6.9847, and 2.8285 respectively, which are 
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again significant at the 1 percent level for h=1, and 5, and at the 5 percent level for h=22.8 This 
result further supports our earlier conclusion that the model that incorporates all three shock terms 
not only statistically outperforms the benchmark HAR-RV model, but also dominates all other 
variants of the extended HAR-RV model. 

The finding that financial risk shocks contain significant predictive power over oil market realized 
volatility over and above that is contained in oil demand and supply shocks highlights the 
importance of spillover effects across the oil and stock markets. Considering the increasing 
participation of financial investors in commodity trades, one can argue that that predictive 
information captured by financial shocks reflects changes in investors’ risk appetite toward the 
risky commodity trades. Nevertheless, these findings have clear implications for not only oil 
traders, but also corporations in the implementation of their volatility forecasting models. From an 
investment perspective, the results suggest that traders can incorporate high frequency, 
disentangled oil price shocks based on traded asset prices to improve their volatility forecasts, 
which in turn can be used to price derivative contracts underlying oil related assets. These forecasts 
can also be used to determine optimal hedge positions as ignoring the information captured by oil 
price shocks can lead to sub-optimally hedged oil positions. At the corporate level, the results can 
be used to improve hedging strategies to mitigate the negative effect of oil price uncertainty on 
business operations, particularly for firms whose revenues are highly sensitive to oil price 
fluctuations (e.g. airlines, transportation companies). Finally, given the role of financial risk shocks 
as an important predictor of oil realized volatility, it is important for market regulators to consider 
cross-market spillover effects in their models to monitor unusual trading activity and excessive 
market volatility. Specifically, the role of financial traders as a possible driver of volatility in 
commodity markets could be closely monitored in order to avoid unusual fluctuations in 
commodity prices. 
 
5. Conclusion 

This paper explores the predictive power of oil demand/supply shocks as well as financial market 
risk shocks for the realized volatility of oil returns derived from intraday data. Utilizing a recently 
proposed model to decompose oil price shocks into supply and demand related components, as 
well as shocks due to financial market related risks, we examine the in- and out-of-sample 
forecasting performance of various HAR-RV models per Corsi (2009) by incorporating 
disentangled oil price shocks as predictors in various combinations. In the process, we extend the 
existing literature on forecasting of realized oil price volatility by accounting for fundamental 
shocks to the oil market over and above the shocks related to the financial market.  

We find that all shock terms on their own, and particularly financial market driven risk shocks, 
significantly improve the forecasting performance of the benchmark HAR-RV model. More 

                                                            
8 The critical values at 10 percent, 5 percent and 1 percent are 0.1270, 1.6120, and 4.1840 respectively, as derived 
from Table 4 of McCracken (2007, p. 732). 
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importantly, we show that the forecasting performance can be significantly improved when we 
combine the information content of the three shock terms in an augmented model, suggesting that 
oil price demand/supply shocks as well as risk shocks individually capture marginal predictive 
information for oil market volatility. In particular, when we incorporate all three shocks 
simultaneously in the HAR-RV model, the framework significantly outperforms all the other 
variants of the HAR-RV model, consistently at short-, medium-, and long forecasting horizons, 
implied by greater forecasting gains against all other variants of the HAR-RV model. The findings 
highlight the predictive information captured by disentangled oil price shocks in accurately 
forecasting oil market volatility, offering a valuable opening for investors and corporations to 
monitor oil market volatility using information on traded assets at high frequency.  

Given the importance of accurate volatility forecasts in the computation of optimal investment 
positions and pricing of derivatives, our findings suggest that incorporating supply and demand 
driven oil price shocks, over and above financial risk shocks in forecasting models, can help 
improve the design of portfolios that include oil as a hedge against financial market risks across 
various investment horizons. Such a predictability relationship is also important at the aggregate 
market level as oil market volatility (uncertainty) tends to negatively impact the macroeconomy 
(Elder and Serletis, 2010; van Eyden et al., 2019). Naturally, high-frequency forecasts of oil 
volatility can be incorporated into mixed data sampling (MIDAS) models by policymakers to 
predict the future path of low frequency real activity and nominal variables, and then accordingly 
undertake monetary and fiscal policy decisions to counteract the possible recessionary impact on 
the economy. In this regard, it must be noted that while we concentrate on the WTI oil market, 
given that oil volatility across the various regional markets are connected with each other (Liu and 
Gong, 2020), policy authorities around the world should closely monitor the importance of these 
shocks in determining uncertainty and associated negative impact on their respective domestic 
economies. 

As part of future research, it would be interesting to extend our study to other popular safe havens 
like U.S. Treasuries, the Swiss franc and Japanese yen, and even the cryptocurrency Bitcoin, which 
too has recently gained some popularity as a hedge against financial market risks. Another line of 
research can examine the hedging and pricing implications of our findings by comparing models 
that utilize volatility forecasts from a benchmark model with those obtained from an augmented 
forecasting model that incorporates disentangled oil price shocks. Finally, given the ongoing wide-
ranging impact of COVID-19, it would be interesting to extend our data set to the current period, 
and analyze the role of this pandemic on the recent volatility of the oil market. Understandably, 
the virus outbreak has affected oil demand and supply, and financial risks, and our model 
specification would be able to capture the current situation adequately. Based on intraday data 
availability, this would be a very relevant research question to venture in the future.    
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