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Relative efficiency of using summary versus individual data
in random-effects meta-analysis

Abstract

Meta-analysis is a statistical methodology for combining information from diverse

sources so that a more reliable and efficient conclusion can be reached. It can be

conducted by either synthesizing study-level summary statistics or drawing inference

from an overarching model for individual participant data (IPD) if available. The

latter is often viewed as the “gold standard”. For random-effects models, however, it

remains not fully understood whether the use of IPD indeed gains efficiency over sum-

mary statistics. In this paper, we examine the relative efficiency of the two methods

under a general likelihood inference setting. We show theoretically and numerically

that summary-statistics-based analysis is at most as efficient as IPD analysis, provid-

ed that the random effects follow the Gaussian distribution and maximum likelihood

estimation is used to obtain summary statistics. More specifically, (i) the two meth-

ods are equivalent in an asymptotic sense; and (ii) summary-statistics-based inference

can incur an appreciable loss of efficiency if the sample sizes are not sufficiently large.

Our results are established under the assumption that the between-study heterogene-

ity parameter remains constant regardless of the sample sizes, which is different from

a previous study. Our findings are confirmed by the analyses of simulated data sets

and a real world study of alcohol interventions.

Key Words: Divide and conquer; evidence synthesis; individual participant data;

literature review; one-stage IPD; two-stage IPD.
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1 Introduction

In the big data era, it has become the norm, rather than the exception, that the data

collected to address the same/similar scientific question come from diverse sources. The

art and science of synthesizing information from diverse sources to draw a more effective

inference is generally referred to as meta-analysis. In the past thirty years, meta-analysis

has played an important role in health and medical sciences, and its applications have led

to numerous scientific discoveries. For example, meta-analysis results are reported in more

than six hundred articles in the New England Journal of Medicine in the past decade.

Although there is a rich literature on meta-analysis (e.g., Borenstein et al., 2009; Pigott,

2012; Chen and Peace, 2013), many important issues remain unsettled. One of them is:

Does analyzing individual participant data (IPD) from all studies indeed gain efficiency

over combining summary statistics from each study?

Traditional meta-analysis was confined to synthesis of research findings, such as reported

effect sizes, from publications. Given the estimates of a common effect size from several

studies, a meta-analyst combines these (summary) statistics, with the goal of achieving

a more efficient estimate. Nowadays, as data sharing has been increasingly encouraged,

original data at the individual level may be accessible on certain database platforms such

as dbGaP (2020). When individual data are available, it is generally believed that the so-

called IPD method may reduce bias and gain efficiency in inference. The IPD method refers

to building an overarching model for all individuals and drawing inference from the overall

likelihood using the maximum likelihood method. Despite several alleged advantages of

analyzing IPD (Sutton and Higgins, 2008), summary-statistics-based meta-analysis is still

prevalent in practice for several reasons. First, the retrieval of original data could be

unforeseeably time-consuming. Whether the benefits of using the IPD method can outweigh

the tremendous cost of obtaining original data is still under debate (Sutton and Higgins,
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2008). In certain scenarios, it is not unusual that IPD are inaccessible due to privacy issues

(Lee et al., 2017). In fact, the lack of data sharing regulations in many fields discourages

research institutes from making individual-level data available to the public. Second, having

access to IPD does not necessarily mean that we are able to analyze the entire data all at

once. When the data volume is too large to be analyzed on a single computer, as often seen

in computer science or machine learning problems, the only feasible solution is to conduct

statistical learning from each study and combine learning results (e.g., summary statistics)

at the end (Jordan et al., 2013; Chen and Xie, 2014; Cheung and Jak, 2016; Lee et al.,

2017). In health care and medical research, there is also an on-going discussion on when

the two-stage IPD method, which is easy to implement and interpret for practitioners,

may produce similar result to the one-stage IPD method, which nevertheless requires more

advanced statistical and computational support (see, e.g., Burke et al., 2017; Kontopantelis,

2018).

For the reasons discussed above, it is important to have a better understanding of how

much efficiency summary-statistics-based meta-analysis could potentially lose compared

to the IPD method. A series of works has rigorously examined their relative efficiency

(Olkin and Sampson, 1998; Mathew and Nordstrom, 1999; Simmonds and Higgins, 2007;

Lin and Zeng, 2010; Liu et al., 2015). Specifically, Olkin and Sampson (1998) and Mathew

and Nordstrom (1999) focused on analysis of variance (ANOVA). Simmonds and Higgins

(2007) examined a special case of linear regression models for continuous responses. Lin and

Zeng (2010) reached far beyond those special settings and considered a general likelihood

inference setting. Their result was further extended by Liu et al. (2015) to a more complex

setting of analyzing heterogenous studies and achieving complex evidence synthesis. These

studies are all restricted to common-effects models (also known as fixed-effects models),

which assume that the parameter of interest has a common value across all relevant studies.

This assumption, however, does not hold when the effect of interest exhibits between-study
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variations.

To accommodate between-study variations, random-effects models are often used and

they model the study-specific effects as realizations of a (normal) random variable. Al-

though random-effects models are widely used in the literature as well as in practice, the

relative efficiency of using IPD versus summary statistics has not been fully studied. Re-

cently, Zeng and Lin (2015) showed a surprising result; that is, summary-statistics-based

analysis is always at least as efficient as the IPD analysis. This conclusion relies on a crit-

ical assumption that the between-study variability is of order n−1, where n is the median

sample size of studies. In other words, the between-study variability will vanish as the

size of each study becomes larger. This assumption, however, may not hold in real world

problems. In clinical or psychiatric studies, for example, random effects may represent

differences between hospitals or other structural difference among subpopulations. The

variability of such random effects may be more appropriately assumed to be a constant,

rather than a diminishing term as the patient number in each hospital increases. Similarly,

in business fields, random effects often reflect the difference between corporations. The

heterogeneity will not disappear as the size of data from each corporation increases.

This paper focuses on the standard random-effects model used in meta-analysis, as op-

posed to the common-effects models. Assuming the between-study variability remains con-

stant, we systematically investigate the relative efficiency of IPD- and summary-statistics-

based meta-analyses. Under a general likelihood inference setting, we show theoretically

and numerically that summary-statistics-based analysis is at most as efficient as IPD anal-

ysis, provided that the random effects follow the Gaussian distribution and maximum

likelihood estimation is used to obtain summary statistics. More specifically, the two meta-

analysis methods are asymptotically equivalent. The asymptotics here refers to that both

the study size n and the number of studies K are sufficiently large, and n diverges at a

5



higher-order rate (i.e., Kn−1/2 → 0). On the other hand, given small or moderate n and

K, summary-statistics-based analysis may incur an appreciable loss of efficiency.

2 Theoretical Results

We consider a general likelihood inference setting similar to those examined in the literature

(Lin and Zeng, 2010; Liu et al., 2015; Zeng and Lin, 2015). Assume that there are K

independent studies with nk individuals in the k-th study (k = 1, . . . , K). For each study,

we let (Yki,Xki) (i = 1, . . . , nk) denote the original individual data, where Yki and p-

dimensional vector Xki may represent a response variable and p explanatory variables,

respectively. These variables are allowed to be either continuous or categorical. We assume

that in each study, the individual data (Yki,Xki) follow a general random-effects model:

• Across-study level: The random-effects βk | β ∼ N(β,T ).

• Within-study level: Given βk and a nuisance parameter vector ηk, (Yk,Xki) has

density function fk(Yk,Xki;βk,ηk).

At the across-study level, the parameter β represents the mean effect of the random-

effects βk’s, and T , a variance-covariance matrix, represents the between-study variability.

Oftentimes, of interest is the inference of β. At the within-study level, the density function

fk(Yki,Xki;βk,ηk) can be derived from parametric models.

In clinical or social research, for instance, often used in each study is a generalized linear

model as below:

g(E(Yk)) = β0k + β1kX1k + β2kX2k + β3kX1kX2k, (2.1)

where g(·) is the link function. Model (2.1) gives out a linear regression model when
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g(µ) = µ, a logistic regression model when g(µ) = log(µ/(1− µ)), and a probit regression

model when g(µ) = Φ−1(µ). The coefficients β1k, β2k, and β3k may represent the effects

of treatment, a covariate, and their interaction, respectively. In each individual study,

researchers may only report in their publication the summary statistics for the treatment

effect β1k and in some cases, the interaction effect β3k as well. Then, ηk = (β0k, β2k)
′ are

treated as nuisance parameters, for which summary statistics may not be available.

2.1 Summary-statistics-based inference

Let β̂k and η̂k be the maximum likelihood estimates of βk and ηk, respectively, by maxi-

mizing the log-likelihood function from the k-th study:

`k(βk,ηk) = logLk(βk,ηk) =

nk∑
i=1

log fk(Yki,Xki;βk,ηk).

Denote the observed information matrix by

Ik(βk,ηk) =

Ik,βkβk Ik,βkηk
Ik,ηkβk Ik,ηkηk

 =

 −∂2`k(βk,ηk)/∂β
2
k −∂2`k(βk,ηk)/∂βk∂ηk

−∂2`k(βk,ηk)/∂ηk∂βk −∂2`k(βk,ηk)/∂η
2
k

 .

When used for deriving statistics, Ik(βk,ηk) is evaluated by plugging in an estimate of the

parameters. In traditional meta-analyses, we retrieve β̂k and the estimate of its variance:

v̂ar(β̂k | βk,ηk) =
(
Ik,βkβk − Ik,βkηkI−1

k,ηkηk
Ik,ηkβk

)−1

|β̂k,η̂k

from each study, and use them for summary-statistics based meta-analytic inference. When

(βk,ηk)
′s are treated as random effects, v̂ar(β̂k | βk,ηk) is an estimate of β̂k’s conditional

variance, and we let v̂arC(β̂k) = v̂ar(β̂k | βk,ηk) for notational simplicity.

Specifically, traditional meta-analyses assume, at least approximately, that

β̂k | βk ∼ N
(
βk, v̂arC(β̂k)

)
.
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Coupled with the random-effects assumption βk | β ∼ N(β,T ), the unconditional distri-

bution of β̂k is

β̂k ∼ N
(
β, v̂arC(β̂k) + T

)
.

Averaging these β̂k’s using the inverse-variance weighting scheme leads to an overall esti-

mator β̂SS of β as follows

β̂SS =

[
K∑
k=1

{
v̂arC(β̂k) + T̂

}−1
]−1 K∑

k=1

{
v̂arC(β̂k) + T̂

}−1

β̂k, (2.2)

where T̂ is a consistent estimator of T . Such T̂ could be obtained from the method of

moments or the likelihood method (Whitehead, 2003, pp.90, 94-96). A consistent estimate

of the variance of β̂SS is

v̂ar(β̂SS) =

[
K∑
k=1

(
v̂arC(β̂k) + T̂

)−1

]−1

. (2.3)

For efficiency comparison, we also consider an asymptotic variance of β̂SS

aVar(β̂SS) =

[
K∑
k=1

{ (
Ik,βkβk − Ik,βkηkI−1

k,ηkηk
Ik,ηkβk

)−1
+ T

}−1

]−1

,

where the variance components Ik,βkβk , Ik,βkηk , I−1
k,ηkηk

and T are all evaluated using the

true values of the parameters.

2.2 Relative efficiency to IPD-based inference

When the individual-level data are available from all the K studies, we can perform max-

imum likelihood inference for β by pooling together the log-likelihood function `k(βk,ηk)

from each of the studies and integrating out the random effects βk. To implement this, we

assume that the nuisance parameters ηk’s are also random effects. More specifically, βk
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and ηk jointly follow a multivariate normal distribution(
βk

ηk

)
∼ N

((
β

η

)
,

(
T Ξ

Ξ> Φ

))
.

Taking Model (2.1) as an example, T is a 2×2 variance-covariance matrix for the treatment

and interaction effects βk = (β1k, β3k)
′, Φ is a 2 × 2 variance-covariance matrix for the

baseline and covariate effects ηk = (β0k, β2k)
′, and Ξ is a 2 × 2 matrix representing the

covariance between βk and ηk. In this example, the variance-covariance component at the

across-study level contains 4 variance parameters and 6 correlation parameters.

Integrating out the random effects βk and ηk using their joint distribution, we obtain

the log-likelihood function of β and η from the k-th study:

`k(β,η,T ,Φ,Ξ) = log

∫∫
Lk(βk,ηk)

∣∣∣∣∣ T Ξ

Ξ> Φ

∣∣∣∣∣
−1/2

exp

[
− 1

2

(
βk − β

ηk − η

)>(
T Ξ

Ξ> Φ

)−1(
βk − β

ηk − η

)]
dβkdηk. (2.4)

The overall log-likelihood function is `(β,η,T ,Φ,Ξ) =
∑K

k=1 `k(β,η,T ,Φ,Ξ).

In what follows, we show that `k(β,η,T ,Φ,Ξ) in (2.4) can be approximated by the

logarithm of a normal density function. To achieve this, we expand `k(βk,ηk) in a neigh-

borhood of the maximum likelihood estimates β̂k and η̂k:

`k(βk,ηk) = `k(β̂k, η̂k) −
1

2

(
βk − β̂k

ηk − η̂k

)>(Ik,βkβk Ik,βkηk
Ik,ηkβk Ik,ηkηk

)
|β̂k,η̂k

(
βk − β̂k

ηk − η̂k

)

+ op

(∥∥∥∥∥βk − β̂kηk − η̂k

∥∥∥∥∥
2)
. (2.5)

Although (2.5) is a local expansion, Laplace approximation theory ensures that plugging

this expansion into the global integral in (2.4) yields the following result.
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Lemma 1. Under the regularity conditions (C1)-(C6) specified in the Supplementary Ma-

terials A, we have, with probability 1,

`k(β,η,T ,Φ,Ξ) = −1

2

(
β − β̂k

η − η̂k

)>{(Ik,βkβk Ik,βkηk
Ik,ηkβk Ik,ηkηk

)−1

|β̂k,η̂k

+

(
T Ξ

Ξ> Φ

)}−1(
β − β̂k

η − η̂k

)

−1

2
log

∣∣∣∣∣
(
Ik,βkβk Ik,βkηk

Ik,ηkβk Ik,ηkηk

)
|β̂k,η̂k

+

(
T Ξ

Ξ> Φ

)−1∣∣∣∣∣+ ck +O(n
− 1

2
k ), (2.6)

as nk →∞, where ck is a statistic that does not depend on the parameters.

Note that (2.6) provides a point-wise approximation of `k. With the further assumption

that the parameter space is compact, this approximation becomes uniform in the sense that

the error term O(n
− 1

2
k ) in (2.6) does not rely on the values of the parameters as long as

they are in the compact space. As a result, we can discuss the properties of the maximum

likelihood estimator for β using (2.6). Hereafter, we assume that n is the median of

{n1, . . . , nK} and nk = npk where pk is a constant within a compact interval in (0,∞).

Lemma 2. Under conditions (C1)-(C7), for a fixed K, the maximizer of
∑K

k=1 `k(β,η,T ,Φ,Ξ)

for given (T ,Φ,Ξ) (satisfying

(
T Ξ

Ξ> Φ

)
is positive definite) is

(
β̂IPD

η̂IPD

)
=

{[ K∑
k=1

Mk(β̂k, η̂k,T ,Φ,Ξ)−1

]−1
[

K∑
k=1

Mk(β̂k, η̂k,T ,Φ,Ξ)−1

(
β̂k

η̂k

)]}
+op(1),

(2.7)

as n→∞ where

Mk(βk,ηk,T ,Φ,Ξ) =

Ik,βkβk Ik,βkηk
Ik,ηkβk Ik,ηkηk

−1

+

 T Ξ

Ξ> Φ

 .

Remark 1. For the approximation in Lemma 2 to hold as both K,n→∞ and Kn−1/2 → 0,

further uniformity conditions are needed to guarantee that the sum of the reminder terms in
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(2.6) over k’s still converges. Such conditions can be obtained by extending the conditions

for Theorem 7 in Kass et al. (1990).

Zeng and Lin (2015) suggested that directly maximizing with respect to T , Φ, and Ξ

might result in inconsistent estimators, which may in turn lead to less efficient estimators

for β. We consider maximizing
∑K

k=1 `k(β,η, T̂ , Φ̂, Ξ̂) for some consistent estimators T̂ ,

Φ̂, and Ξ̂. In that case, the variance of β̂IPD can be consistently estimated by

v̂ar
(
β̂IPD

)
=

{
K∑
k=1

Mk(β̂k, η̂k, T̂ , Φ̂, Ξ̂)−1

}−1

[β,β]

. (2.8)

The asymptotic variance of β̂IPD is

aVar
(
β̂IPD

)
=

{
K∑
k=1

Mk(βk,ηk,T ,Φ,Ξ)−1

}−1

[β,β]

.

To examine the relative efficiency of β̂IPD and β̂SS, we compare their estimated vari-

ances and asymptotic variances. The results are presented below, where for matrices A ≥ B

means that A−B is positive semi-definite.

Theorem 1. Under the conditions (C1)-(C7), we have the following results:

(a) For any fixed K and n, the variance estimates follow the inequality

v̂ar
(
β̂SS

)
≥ v̂ar

(
β̂IPD

)
provided that the same estimate T̂ of T is used for calculating v̂ar(β̂SS) in (2.3) and

v̂ar
(
β̂IPD

)
in (2.8).

(b) For any fixed K and n, the asymptotic variances follow the inequality

aVar
(
β̂SS

)
≥ aVar

(
β̂IPD

)
.

The strict inequality may hold even if Ξ = 0.

(c) As both K,n→∞ and Kn−1/2 → 0, the asymptotic variances follow

lim
n→∞,K→∞

K · aVar
(
β̂SS

)
= lim

n→∞,K→∞
K · aVar

(
β̂IPD

)
.
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The equality holds even if Ξ 6= 0.

Theorem 1 says that (a) for any fixed K and n, if we use the same variance component

estimate T̂ to evaluate the variances of β̂SS and β̂IPD, the variance estimates follow the

inequality v̂ar
(
β̂SS

)
≥ v̂ar

(
β̂IPD

)
. The same inequality holds if the true values of all the

parameters are used to evaluate the variances of β̂SS and β̂IPD, as stated in Theorem 1(b).

In this situation, even if Ξ = 0 (i.e., the two random effects βk and ηk are independent),

the strict inequality in (b) may hold, i.e., aVar
(
β̂SS

)
> aVar

(
β̂IPD

)
. The reason is that

within each study, β̂k and η̂k may correlate with each other, and thusMk in Lemma 2 may

not be a diagonal matrix even if Ξ = 0. The two inequalities in (a) and (b) are confirmed

in our simulation studies, where β̂SS incurs an appreciable loss of efficiency.

When n → ∞ at a higher-order rate of K, Theorem 1(c) shows that the asymptotic

variance of β̂SS is equal to that of β̂IPD. The equality holds even if the covariance Ξ between

the random effects βk and ηk is non-zero. This implies that asymptotically, summary-

statistics-based meta-analysis can achieve full efficiency without requiring the information

of nuisance parameters and correlation. This is different from the findings for the fixed-

effects models examined by Lin and Zeng (2010) and Liu et al. (2015). They proved

that meta-analysis of summary statistics can incur a substantial loss of efficiency if the

effects of interest are correlated with nuisance effects yet the correlation is not reported.

Our seemingly counterintuitive finding can be heuristically explained by (2.7), where the

IPD estimates (β̂IPD, η̂IPD)′ are approximated by a matrix-weighted average of the study-

specific estimates (β̂k, η̂k)
′. The weight matrix Mk is a sum of two components. The first

component will diminish as n→∞, while the second remains constant. Thus, if of interest

is merely the inference of β, the contribution of η̂k’s will diminish as well when n diverges

at a faster rate than K. Our findings here will be numerically demonstrated in Section 3.

Remark 2. The fact that (β̂IPD, η̂IPD)′ can be approximated by a matrix-weighted average
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of the study-specific estimates (β̂k, η̂k)
′ as seen in (2.7) also implies a weaker result; that

is, analyzing summary statistics will have no loss of efficiency asymptotically if (a) there

is no nuisance parameter; or (b) the estimates of all nuisance parameters as well as their

correlation estimates are reported and multivariate meta-analysis is conducted. A simi-

lar conclusion holds for fixed-effects models (Lin and Zeng, 2010; Liu et al., 2015). For

random-effects models, our conclusion is stronger as the asymptotic equivalence holds even

when nuisance parameters are present yet their summary statistics are not available.

2.3 A special case

In the Supplementary Materials C, we examine a special case where the likelihood function

in (2.5) is exact in the sense that there is no approximation error term O(n
− 1

2
k ). Specifically,

assume that the k-th log-likelihood function is of the following form

`k(βk,ηk) = −

(
βk − β̂k

ηk − η̂k

)>(Ik,11 Ik,12

Ik,21 Ik,22

)(
βk − β̂k

ηk − η̂k

)
+ ck,

where ck is a statistic that does not depend on any parameters. An example is that β and

η are coefficients in a linear regression model. The result indicates that we can establish an

inequality between the exact variances of β̂SS and β̂IPD, when each individual log-likelihood

function can be written as a quadratic form of (βk,ηk) without an approximation error. For

the general case where approximation errors may exist, the inequalities in Theorem 1(a)-(b)

are established between the variance estimates or between the asymptotic variances.
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3 Simulation Studies

We conduct simulation studies to numerically examine the relative efficiency of summary-

statistics-based and IPD meta-analyses in random-effects settings. To mimic meta-analyses

in the real world, our simulation follows a generalized linear model as in (2.1). This model

has been used widely to examine the treatment effect as well as its interaction with a

covariate (e.g., Burke et al., 2017; Kontopantelis, 2018). Specifically, we consider two

settings where (a) Yk’s are continuous and linear regression models (i.e., g(µ) = µ) are used

to produce summary statistics in each study; and (b) Yk’s are binary and probit regression

models (i.e., g(µ) = Φ−1(µ)) are used to produce summary statistics. We explore a variety

of scenarios by varying the number of studies, the sample size, the correlation between

explanatory variables, and the size of signal-to-noise ratio.

3.1 Continuous outcomes

We simulate a continuous outcome from the linear regression model

Yki = β0k + β1kX1ki + β2kX2ki + β3kX1kiX2ki + εki, k = 1, · · · , K, i = 1, · · · , nk, (3.1)

where εki ∼ N(0, σε). The binary variable X1ki may represent the treatment status, and

the continuous variable X2ki may represent a covariate of interest. They are simulated from

the following distribution

(X∗1ki, X2ki)
iid∼ N

((
0

0

)
,

(
1 ρx,k

ρx,k 1

))
,

X1ki = I(X∗1ki > 0).

The random effects βk ∼ N(1k,Σβ), where Σβ has 0.25 as its diagonal elements and 0.125

as its off-diagonals. In other words, the standard deviation of each of the random effects
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(βk0, βk1, βk2, βk3) is 0.5, and the correlation between them is 0.5.

Since our theory suggests that the weight matrix Mk in (2.7) plays a crucial role

in determining the relative efficiency, we consider the following settings that specify a

variety of its structure. For example, (A)Mk’s are homogeneous across the studies (ρx,k =

0) or heterogeneous (ρx,k ∼ Uniform(−0.3, 0.3) or ρx,k ∼ Uniform(0, 0.7)); (B) The first

component of Mk (i.e., the within-study variance-covariance) is comparable to the second

component (i.e. the between-study variance-covariance) or significantly smaller (σε = 1, 3

versus σε = 10, 30). We also consider various specifications for the number of studies (e.g.,

K = 5, 10, 30, 50, 100) and the sample size in each study (e.g., nk = 20, 50, 100, 200, 500).

All the results reported in this section are based on 1000 simulation replications.

We carry out meta-analysis for the interaction effect β3. Given all the individual-level

data, the IPD estimate β̂3,IPD is obtained using the function lmer in the R package lme4.

The summary-statistics-based estimate β̂3,SS is derived using (2.2), given only the estimate

of β3k and its variance from each study. Table 1 reports the bias and variance of the two

estimates when ρx,k ∼ Uniform(−0.3, 0.3), assuming the variance components (i.e., σε and

Σβ) are known. We observe that when the sample size of each study is small (e.g., nk = 20),

both the standard error (SE) and mean squared error (MSE) of β̂3,SS are consistently larger

than those of β̂3,IPD. This indicates an appreciable loss of efficiency in estimation using

only summary statistics. To better assess such a loss, we calculate the ratio of MSE(β̂3,SS)

and MSE(β̂3,IPD) as the measure of relative efficiency. We observe in Table 2 that the loss

of efficiency is as high as 38% when nk = 20 and σε = 30. As both nk and K increase,

the relative efficiency approaches one. When σε = 30, for example, the relative efficiency

is 1.03 for K = 50 studies, each with a sample size nk = 500. Such an efficiency difference

is minimal and likely ignorable in practice. These numerical results have confirmed our

theoretical conclusions in Section 2.4. In the Supplementary Materials, Tables 6-7 present
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the corresponding results when the variance components σε and Σβ are unknown and their

estimates are used. We observe similar patterns as described for Tables 1-2.

To examine the impact of within-study correlations, we vary the size of the correlation

between X1 and X2. Tables 8-9 in the Supplementary Materials present relative efficiency

when ρx,k = 0 and ρx,k ∼ Uniform(0, 0.7). It appears that the values in Table 8 (ρx,k = 0)

are closer to 1. This observation is consistent with our theoretical finding; that is, the

smaller the within-study correlation ofMk in (2.7), the smaller the difference between the

two methods. Across Tables 7-9, we also see that the smaller the within-study variance

(σε), the smaller the difference between the two methods. To demonstrate the inequality

of Theorem 1(b) when the between-study correlation Ξ = 0, we set Σβ = 0.25I. In other

words, the standard deviation of βjk is 0.5, and the correlation between them is 0. The

results are reported in Tables 10-11. The patterns are similar to what we have observed

when Ξ 6= 0; i.e., summary-statistics-based estimate incurs a significant loss of efficiency

when nk and K are small, but as both nk and K increase, the loss becomes ignorable.

3.2 Binary outcomes

Using the same simulation settings as the previous section, we obtain a binary outcome

Zki = I(Yki > 0) where Yki follows Model (3.1). As a result, Zki follows a probit model

Pr(Zki = 1) = Φ[(β0k + β1kX1ki + β2kX2ki + β3kX1kiX2ki)/σε].

As the dichotomization of the continuous outcome incurs a loss of information, we consider

larger sample size nk (= 100, 200, 500, 1000, 2000) for the efficiency comparison.

Table 3 reports the bias and variance of β̂3,SS and β̂3,IPD when ρx,k = 0. Similar to the

continuous case, we observe that both the SE and MSE of β̂3,SS are consistently larger than

those of β̂3,IPD when nk = 100 or 200. The loss of efficiency is about 7−10% when nk = 100
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as seen in Table 4. As the sample size increases to nk = 2000, the difference in MSEs falls

well below 1%, which is negligible in practice. As a further study of the relative efficiency,

we simulate studies with a mixture of sample sizes. Specifically, 20% of the K studies have

sample sizes three times larger than the others. The results are presented in Tables 12-13

when ρx,k = 0.7. We once again observe that summary-statistics-based inference incurs

an appreciable loss of efficiency when the sample size is small (e.g., nk = 100). But when

both nk and K are sufficiently large (e.g., nk = 2000, K = 50), the MSEs of the IPD- and

summary-statistics-based estimates become comparable. Similar patterns are observed in

our simulation of mixed sample sizes for continuous outcomes.

4 Meta-Analysis of the Alcohol Intervention Data

To reduce heavy drinking and related negative consequences, brief motivational interven-

tions have been implemented on college campuses over the last two decades. Huh et al.

(2019a) examined the effect of a new intervention using personalized feedback delivered by

mail, computer, or the Web (treatment), in comparison with the traditional intervention

such as in-person motivational interviews (control). A comprehensive comparison is pos-

sible by using the data from nine independent studies (reported in Table 1 of Huh et al.,

2019a). The sample sizes of these studies can be found in Table 5. Data availability is

described in the Data Availability Section.

To evaluate the effect of the new intervention, we consider the difference between the

number of drinks measured at the baseline and followup. It is a continuous outcome,

denoted as Y (1). Another outcome of interest is whether or not the difference is negative

(i.e. the number of drinks at followup is less than that at baseline). This is a binary

outcome, denoted as Y (2), with 1 for “yes” and 0 for “no”. We consider three explanatory
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variables: the treatment indicator X1 (1 for treatment and 0 for control), an individual’s

onset number of drinks X2, and the interaction between X1 and X2.

Assuming that all the regression coefficients are random effects, the IPD meta-analysis

fits GLMs (2.1) to the individual data. Specifically, we use linear models for the continuous

outcome Y (1) and logistic models for the binary outcome Y (2). The summary-statistics-

based inference only uses the estimates of the study-specific coefficients and their variances.

The analysis result is reported in Table 5. Overall, the analysis of summary statistics

produces similar estimates to those from the IPD analysis. Nevertheless, we should not

overlook a notable difference in the estimates of the treatment effect (β̂1,IPD = 0.396 versus

β̂1,SS = 0.187) for the binary outcome Y (2). As for the estimation of variability, we observe

that the two methods produce similar estimates of the standard errors. On the other hand,

those based on summary statistics are consistently larger than those based on individual

data, with an appreciable loss of efficiency (6 − 20%). These observations confirm our

theory, and they are consistent with our findings in simulation studies.

In the section of Discussion, we point out two factors that may alleviate the loss of

efficiency: (a) the smaller the ratio of the within-study variance versus the between-study

variance; and (b) the smaller the within-study correlation. In this example, the median of

such variance ratios is 4.76, meaning that on average the within-study variances are much

larger than the between-study variances. The median of the correlations is 0.68, indicating

strong a within-study association. These results show that neither of Factors (a) or (b) is

present. It is thus not surprising to see a notable loss of efficiency.

As seen in the footnote of Table 5, among the nine studies used for meta-analysis, two

studies (Study 8a and 8b) are considerably larger than the others. We therefore carry

out a further analysis by excluding these two studies and performing meta-analysis of the

remaining studies. The result is presented in Table 15. The conclusions are similar to those
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from the analysis of all the studies. In particular, (1) the onset number of drinks (X2) is

significant, and its effect size is similar to that with the two large studies included; and (2)

the standard errors based on summary statistics are consistently larger than those based

on individual data, with an appreciable loss of efficiency (5− 22%).

5 Discussion

This paper has examined the relative efficiency of using summary statistics to perform

random-effects meta-analysis as compared to the gold standard of using the IPD method.

Our theoretical and numerical findings can be summarized as follows:

(i) Asymptotically, summary-statistics-based meta-analysis is as efficient as the IPD

analysis. The asymptotics refers to that both the study size n and the number of stud-

ies K are sufficiently large, and n diverges at a higher-order rate (Kn−1/2 → 0). The

attainment of the full efficiency does not require information of nuisance parameters,

meaning that needed are summary statistics for the parameter of interest.

(ii) For small or moderate K and nk, summary-statistics-based meta-analysis may incur

an appreciable loss of efficiency. The following factors may generally alleviate the loss

of efficiency: (a) the smaller the within-study variance as compared to the between-

study variance; and (b) the smaller the within-study correlation.

Our findings are different from those reported in Zeng and Lin (2015) in which they assumed

that the between-study variability will diminish as the sample size n increases in each study.

We has adopted a more practical assumption that the between-study variability remains

constant, regardless of the the sample size n. Practitioners can decide which theory applies

contingent upon which assumption is more suitable for the case under consideration.
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Our result has implications for the comparison between one-stage and two-stage IPD

meta-analyses. The one-stage IPD method analyzes the individual data from all the studies

through a hierarchical model with random effects. The two-stage IPD method analyzes

the data in each study separately and then combines summary statistics using traditional

meta-analysis methods. In the second stage, univariate meta-analysis is often conducted

for the parameter of interest. Current literature provides empirical and numerical evidence

suggesting that these two IPD methods often give very similar results, and most differences

arise because of different modeling assumptions (Burke et al., 2017; Kontopantelis, 2018).

Our result theoretically confirms the asymptotic equivalence of the one-stage and two-stage

IPD methods when all the regression coefficients are modeled as random effects.

On the other hand, when the sample sizes of the studies are not sufficiently large, the

traditional two-stage IPD method may incur an appreciable loss of efficiency as evidenced

by our numerical results of summary-statistics-based inference. The reason is that when

the within-study variance-covariance (i.e., the first component of the weight matrixMk in

(2.7)) is comparable to the between-study variance-covariance (i.e., the second component

ofMk), the nuisance parameters ηk’s may also contribute to the inference of β through the

correlations. But this information is not used in the traditional two-stage method, which

carries out univariate meta-analysis in its second stage. Our result in (2.7) suggests that

multivariate meta-analysis be conducted in the second stage of the two-stage meta-analysis.

Under the same simulation setting of Table 4, Table 14 in the Supplementary Materials

presents the relative efficiency of multivariate analysis of summary statistics for (βk,ηk)

versus analysis of individual data. The comparison between Table 4 and Table 14 shows a

notable gain of efficiency, as a result of borrowing strength from nuisance parameters.

The correlations in (2.7) may come from multiple sources. For example, the correlation

between the treatment variable and the covariate will certainly contribute to the first
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component matrix ofMk. The stronger the correlation, the more information the covariate

may contribute to the IPD meta-analysis. In randomized trials, although such a correlation

should be zero, the effect sizes may still be correlated if the interaction term is included in

statistical modeling. This has been observed in our simulation studies. The correlations

in the second component matrix of Mk may result from the link between the treatment

effect and the baseline risk. Such a link is not unusual and often modeled in meta-analysis

of clinical trials; see McIntosh (1996); Guolo (2013); Ghidey et al. (2013).

Our investigation has focused on the standard random-effects models. Our prelimi-

nary study suggests that the conclusion may also hold for mixed-effects models, where the

nuisance coefficients are treated as fixed effects. But a further study is needed. In the

literature, other meta-analysis methods have been proposed for the case where the number

of available studies is moderate or small (Follmann and Proschan, 1999; Liu et al., 2018).

For such specific methods, it remains unknown whether or not our conclusion still holds

regarding the relative efficiency of using summary statistics versus individual data. Further

research is also needed to address a much weaker condition; i.e., the total sample size of all

the studies diverge while nk could be bounded for some studies. For example, there may

be a few very large studies and many others are much smaller.

Our discussion has addressed one of many relative benefits of meta-analysis of IPD

over summary statistics. Another crucial benefit is that the IPD analysis can avoid the

so-called “ecological fallacy” (Reade et al., 2008; Cooper and Patall, 2009). When study-

level moderators (e.g., average patient characteristics) are available, meta-regression is

commonly used in practice to examine the relationship between the treatment effect and the

moderators across studies. This relationship should not be confused with that relationship

within studies. The confusion will result in aggregation bias and incorrect conclusions

(Thompson and Higgins, 2002). The only way to eliminate this ecological fallacy is to
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model the within-study relationship appropriately using individual-level data.
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Table 1: The IPD- and summary-statistics-based meta-analysis estimates of the interaction

effect β3 for continuous outcomes when ρx,k ∼ Uniform(−0.3, 0.3) (with known variance

components σε = 10 and Σβ).

IPD Summary statistics

K nk Mean SE ESE
√

MSE CP Mean SE ESE
√

MSE CP

5 20 1.060 2.131 2.111 2.131 0.951 1.045 2.384 2.358 2.383 0.949

50 1.034 1.338 1.314 1.338 0.943 1.030 1.402 1.379 1.402 0.949

100 1.003 0.879 0.935 0.879 0.962 1.005 0.912 0.957 0.912 0.955

200 0.962 0.685 0.680 0.686 0.951 0.964 0.689 0.687 0.690 0.954

500 1.001 0.463 0.461 0.463 0.941 1.000 0.466 0.463 0.466 0.941

10 20 1.040 1.497 1.461 1.496 0.948 0.981 1.701 1.669 1.700 0.949

50 0.989 0.934 0.922 0.933 0.955 0.990 0.978 0.963 0.977 0.953

100 1.019 0.647 0.661 0.647 0.961 1.018 0.668 0.676 0.667 0.959

200 0.990 0.485 0.478 0.485 0.941 0.993 0.489 0.483 0.489 0.941

500 1.001 0.331 0.326 0.331 0.946 1.001 0.334 0.328 0.333 0.947

30 20 0.984 0.816 0.834 0.816 0.952 1.001 0.947 0.954 0.947 0.950

50 1.001 0.525 0.530 0.525 0.947 0.997 0.553 0.556 0.552 0.957

100 0.999 0.390 0.379 0.389 0.942 1.003 0.398 0.389 0.398 0.945

200 0.994 0.285 0.276 0.285 0.942 0.994 0.288 0.279 0.287 0.950

500 0.999 0.188 0.188 0.188 0.955 0.999 0.189 0.189 0.189 0.956

50 20 1.008 0.672 0.645 0.672 0.941 1.005 0.771 0.738 0.770 0.936

50 0.999 0.400 0.411 0.400 0.960 1.008 0.424 0.432 0.424 0.955

100 1.000 0.296 0.294 0.296 0.944 1.002 0.307 0.302 0.307 0.944

200 1.007 0.214 0.214 0.214 0.944 1.005 0.214 0.216 0.214 0.948

500 0.999 0.144 0.146 0.144 0.954 0.999 0.145 0.146 0.145 0.954

100 20 0.984 0.450 0.454 0.450 0.955 0.981 0.525 0.521 0.525 0.945

50 0.999 0.277 0.290 0.277 0.965 1.004 0.292 0.305 0.292 0.966

100 1.011 0.217 0.208 0.217 0.941 1.011 0.223 0.213 0.224 0.936

200 1.003 0.153 0.151 0.153 0.947 1.003 0.155 0.153 0.155 0.946

500 1.000 0.102 0.103 0.102 0.946 1.000 0.103 0.104 0.103 0.951

Mean– the average of estimates for 1000 simulation replicates; SE–standard error of the estimates from 1000 simulation

runs; ESE–estimated standard error of the estimate for each simulation run; MSE–mean squared error; CP–coverage

probability of 95% confidence intervals.
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Table 2: Relative efficiency of β̂3,SS versus β̂3,IPD for continuous outcomes when ρx,k ∼

Uniform(−0.3, 0.3) (with known variance components σε and Σβ).

σε nk \K 5 10 30 50 100

1 20 1.069 1.069 1.078 1.084 1.107

50 1.007 1.013 1.010 1.012 1.000

100 1.001 1.010 1.003 1.002 1.005

200 1.000 1.001 1.001 1.000 0.999

500 1.000 1.000 1.000 1.000 1.000

3 20 1.191 1.191 1.221 1.200 1.254

50 1.043 1.046 1.054 1.054 1.049

100 1.021 1.034 1.018 1.022 1.029

200 0.998 1.004 1.005 1.001 1.001

500 0.999 1.001 1.001 1.002 1.004

10 20 1.251 1.291 1.346 1.315 1.361

50 1.098 1.096 1.108 1.123 1.110

100 1.078 1.063 1.045 1.074 1.057

200 1.012 1.017 1.019 1.005 1.025

500 1.014 1.013 1.014 1.008 1.018

30 20 1.255 1.313 1.369 1.344 1.379

50 1.115 1.120 1.122 1.141 1.123

100 1.102 1.077 1.050 1.104 1.069

200 1.021 1.029 1.029 1.021 1.035

500 1.038 1.028 1.034 1.030 1.029
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Table 3: The IPD- and summary-statistics-based meta-analysis estimates of the interaction

effect β3 for binary outcomes when ρx,k = 0.

IPD Summary statistics

K nk Mean SE ESE
√

MSE CP Mean SE ESE
√

MSE CP

10 100 1.011 0.841 0.929 0.841 0.962 1.021 0.875 0.946 0.875 0.960

200 0.989 0.590 0.658 0.589 0.960 0.989 0.600 0.664 0.600 0.958

500 0.990 0.404 0.425 0.404 0.955 0.986 0.406 0.426 0.406 0.954

1, 000 0.998 0.302 0.317 0.302 0.958 0.993 0.302 0.317 0.302 0.957

2, 000 1.004 0.238 0.246 0.238 0.944 1.000 0.239 0.246 0.238 0.946

30 100 1.004 0.488 0.520 0.488 0.973 1.010 0.505 0.531 0.505 0.964

200 1.017 0.345 0.367 0.346 0.963 1.019 0.352 0.371 0.352 0.962

500 1.008 0.240 0.238 0.240 0.949 1.003 0.241 0.239 0.241 0.946

1, 000 1.013 0.170 0.179 0.171 0.960 1.006 0.170 0.179 0.170 0.961

2, 000 0.998 0.138 0.139 0.138 0.929 0.991 0.138 0.139 0.138 0.930

50 100 0.985 0.381 0.398 0.381 0.964 0.990 0.396 0.407 0.396 0.959

200 1.018 0.262 0.281 0.262 0.968 1.018 0.266 0.283 0.266 0.967

500 1.004 0.183 0.183 0.183 0.948 0.997 0.184 0.183 0.184 0.949

1, 000 1.009 0.133 0.137 0.133 0.957 1.001 0.133 0.137 0.133 0.956

2, 000 0.995 0.110 0.108 0.110 0.952 0.988 0.110 0.108 0.110 0.948

100 100 1.020 0.261 0.276 0.262 0.961 1.031 0.273 0.282 0.275 0.955

200 1.000 0.193 0.196 0.193 0.954 0.999 0.196 0.198 0.196 0.952

500 0.997 0.128 0.128 0.128 0.948 0.990 0.128 0.128 0.128 0.949

1, 000 1.001 0.099 0.096 0.099 0.930 0.993 0.100 0.096 0.100 0.933

2, 000 1.001 0.074 0.076 0.074 0.962 0.994 0.073 0.076 0.074 0.965

Mean– the average of estimates for 1000 simulation replicates; SE–standard error of the estimates from 1000 simulation

runs; ESE–estimated standard error of the estimate for each simulation run; MSE–mean squared error; CP–coverage

probability of 95% confidence intervals.
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Table 4: Relative efficiency of β̂3,SS versus β̂3,IPD for binary outcomes.

Correlation nk \K 10 30 50 100

ρx = 0 100 1.083 1.071 1.080 1.100

200 1.036 1.038 1.030 1.037

500 1.011 1.009 1.010 1.010

1, 000 1.004 0.996 0.994 1.007

2, 000 1.001 1.002 1.003 0.998

ρx ∼ Unif(-0.3,0.3) 100 1.066 1.092 1.109 1.087

200 1.037 1.026 1.058 1.066

500 1.015 1.005 0.989 0.997

1, 000 1.001 1.018 0.999 1.006

2, 000 0.994 0.991 1.003 0.992

Table 5: The IPD- and summary-statistics-based meta-analysis of nine independent studies

on the alcohol interventions.

IPD Summary Statistics

Parameter Estimate SE P-value Estimate SE P-value

Linear regression models for Y (1) (the change in the number of drinks)

β1 -0.087 0.092 0.346 -0.088 0.095 0.354

β2 -0.389 0.035 1.60× 10−28 -0.401 0.039 2.49× 10−25

β3 0.025 0.033 0.455 0.015 0.037 0.693

Logistic regression models for Y (2) (whether the number of drinks was reduced)

β1 0.396 0.206 0.054 0.187 0.218 0.391

β2 0.586 0.048 5.13× 10−34 0.531 0.052 8.49× 10−25

β3 -0.074 0.049 0.128 -0.023 0.052 0.652

The analysis is based on the following nine studies in Huh et al. (2019a) (control and treatment sample

sizes given in parentheses): Study 2 (102, 92), Study 8a (519, 512), Study 8b (754, 719), Study 8c (147,

127), Study 9 (91, 92), Study 11 (160, 150), Study 13/14 (24, 27), Study 18 (99, 93), Study 21 (70, 63).
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Supporting Information for “Relative efficiency of us-

ing summary versus individual data in random-effects

meta-analysis” by Ding-Geng Chen, Dungang Liu, Xi-

aoyi Min and Heping Zhang

A Conditions for the Laplace approximation

For simplicity, we denote θ = (β>,η>)> and θk = (β>k ,η
>
k )>, let pk be the dimension and

Θk be the domain of θk.

(C1) The parameter θk is identifiable. In other words, for any θk 6= θ′k in Θk, fk(yk,xk;θk) 6=

fk(yk,xk;θ
′
k) for some (yk,xk);

(C2) For all (yk,xk), the function fk(yk,xk;θk) is a three times continuous differentiable

function of θk and is positive for all θk;

(C3) For all θ∗k ∈ Θk, there exist a neighborhood N1(θ∗k), a positive number nk, and a

random variable Z1 such that Eθ∗
k
(Z1) <∞ and for all θk ∈ N1(θ∗k),

1

nk

nk∑
i=1

log
fk(yki,xki;θk)

fk(yki,xki;θ∗k)
< Z1;

(C4) For all θ∗k ∈ Θk, there exist a neighborhood N2(θ∗k) and a random variable Z2 such

that Eθ∗
k
(Z2) <∞ and for all θk ∈ N2(θ∗k), all 1 ≤ d ≤ 3, and all 1 ≤ ji, . . . , jd ≤ pk,

these is ∣∣∣∣∂d log fk(yk,xk;θk)

∂θkj1 · · · ∂θkjd

∣∣∣∣ < Z2;

(C5) For all θ∗k ∈ Θk, define M to be the Hessian matrix of Eθ∗
k
[log fk(Yk,Xk;θ

∗
k) −

log fk(Yk,Xk;θk)], then det(M) > 0;

1



(C6) For all θ∗k ∈ Θk, the maximum likelihood estimate is strongly consistent.

(C7) θ lies in the interior of a compact set within the parameter space.

B Proofs

Proof of Lemma 1. According to Theorems 7 and 8 in Kass et al. (1990), under condi-

tions (C1)-(C6) in Appendix A, the sequence of log-likelihood functions {`k(βk,ηk), nk =

1, . . .} is “Laplace regular” with probability one for any true value θ∗k in Θ. The proof

of Lemma 1 is then similar to Theorem 1 of Kass et al. (1990). In particular, we only

need to consider the integration in equation (2.4) over Bδ(θ̂k) ⊆ Θ for any 0 < δ < δ0 ,

where Bδ(θ̂k) is the open ball of radius δ centered at θ̂k. In equation (2.4), we expand `(θ)

around θ̂k to the third order and keep the other terms unchanged. With arguments similar

to those in Kass et al. (1990), the third order expansion from `(θ) leads to the following

leading term of (2.4) and an error term of O(n
−1/2
k )-order:

`k(θ̂k)−
1

2
log |Σ|+ log

∫
Bδ(θ̂k)

exp[−1

2
(θk − θ̂k)>Ik(θ̂k)(θk − θ̂k)−

1

2
(θk − θ)>Σ−1(θk − θ)]dθk

= log

∫
Bδ(θ̂k)

exp{−1

2
(θk − θ̃k)>[Ik(θ̂k) + Σ−1](θk − θ̃k)−

1

2
(θ − θ̂k)>[Ik(θ̂k)−1 + Σ]−1(θ − θ̂k)}dθk

+ `k(θ̂k)−
1

2
log |Σ|

≈ −1

2
log |Ik(θ̂k) + Σ−1| − 1

2
(θ − θ̂k)>[Ik(θ̂k)−1 + Σ]−1(θ − θ̂k) + `k(θ̂k)−

1

2
log |Σ|

(B.2)

where

Σ =

 T Ξ

Ξ> Φ

 ,

and

θ̃k = [Ik(θ̂k) + Σ−1]−1[Ik(θ̂k)θ̂k + Σ−1θ].
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Since θ̃k ∈ Bδ(θ̂k) when nk is large enough, we can expand the range of integration to the

whole parameter space in (B.2) as Kass et al. (1990), which leads to the approximation

with an error of exponential decreasing order. Lemma 1 is proved.

Proof of Lemma 2. Denote the leading term in approximation (2.6) as ˜̀
k(θ,T ,Φ,Ξ),

then

K∑
k=1

˜̀
k(θ,T ,Φ,Ξ)

= −1

2

K∑
k=1

(θ − θ̂k)>[Ik(θ̂k)−1 + Σ]−1(θ − θ̂k)−
1

2

K∑
k=1

log |Ik(θ̂k) + Σ−1|+ C

= −1

2
(θ − θ̃)>{

K∑
k=1

[Ik(θ̂k)−1 + Σ]−1}(θ − θ̃)− 1

2

K∑
k=1

θ̂>k [Ik(θ̂k)−1 + Σ]−1θ̂k

+
1

2
{
K∑
k=1

[Ik(θ̂k)−1 + Σ]−1θ̂k}>{
K∑
k=1

[Ik(θ̂k)−1 + Σ]−1}−1{
K∑
k=1

[Ik(θ̂k)−1 + Σ]−1θ̂k}

− 1

2

K∑
k=1

log |Ik(θ̂k) + Σ−1|+ C, (B.3)

where θ̃ = {
∑K

k=1[Ik(θ̂k)−1 + Σ]−1}−1{
∑K

k=1[Ik(θ̂k)−1 + Σ]−1θ̂k}. Thus, the leading term

in (2.7) maximizes
∑K

k=1
˜̀
k(θ,T ,Φ,Ξ). (2.7) can be proved by noticing that for any

ε > 0, for any sequence {θ(n)} such that ||θ(n) − θ̃(n)|| > ε,
∑K

k=1 `k(θ̃
(n),T ,Φ,Ξ) −∑K

k=1 `k(θ
(n),T ,Φ,Ξ) is greater than 0 with probability approaching 1.

Proof of Theorem 1. To prove Part (a), it suffices to show that

v̂ar
(
β̂SS

)
≥ v̂ar

(
β̂IPD

)
, (B.4)

i.e., the matrix v̂ar
(
β̂SS

)
− v̂ar

(
β̂IPD

)
is positive semi-definite. After some algebraic

calculations, we can show that

v̂ar
(
β̂SS

)
=

(
K∑
k=1

A−1
k

)−1

3



and

v̂ar
(
β̂IPD

)
=


K∑
k=1

Ak Bk

B>k Ck

−1

−1

[Ak]

,

where

Ak =
(
Ik,βkβk − Ik,βkηkI−1

k,ηkηk
Ik,ηkβk

)−1

|β̂k,η̂k
+ T̂ ,

Bk = −I−1
k,βkβk

Ik,βkηk
(
Ik,ηkηk − Ik,ηkβkI−1

k,βkβk
Ik,βkηk

)−1

|β̂k,η̂k
+ Ξ̂,

Ck =
(
Ik,ηkηk − Ik,ηkβkI−1

k,βkβk
Ik,βkηk

)−1

|β̂k,η̂k
+ Φ̂.

If we let Ak Bk

B>k Ck

−1

=

 Ãk B̃k

B̃>k C̃k

 ,

then the inequality (B.4) is equivalent to{
K∑
k=1

(
Ãk − B̃kC̃

−1
k B̃>k

)}−1

≥


K∑
k=1

Ãk −
K∑
k=1

B̃k

(
K∑
k=1

C̃k

)−1 K∑
k=1

B̃>k


−1

.

The above inequality could be further simplified as

K∑
k=1

B̃kC̃
−1
k B̃>k ≥

K∑
k=1

B̃k

(
K∑
k=1

C̃k

)−1 K∑
k=1

B̃>k ,

which holds according to Lemma 1 in the Appendix A of Lin and Zeng (2010). This in

turn establishes the inequality (B.4).

The proof of the inequality in Part (b) is similar to that of Part (a) except that we

use the true values of the parameters β,η,T ,Ξ,Φ to evaluate Ak, Bk, Ck. The equality is

achieved if and only if

B̃1C̃
−1
1 = B̃2C̃

−1
2 = · · · = B̃KC̃

−1
K .

Since B̃k = −A−1
k Bk(Ck −B>k A−1

k Bk)
−1 and C̃−1

k = Ck −B>k A−1
k Bk, the above condition is

equivalent to

A−1
1 B1 = A−1

2 B2 = · · · = A−1
K BK .
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Therefore, given Ξ = 0, the equality can be achieved only if the quantity{(
Ik,βkβk − Ik,βkηkI−1

k,ηkηk
Ik,ηkβk

)−1
+ T

}−1

I−1
k,βkβk

Ik,βkηk
(
Ik,ηkηk − Ik,ηkβkI−1

k,βkβk
Ik,βkηk

)−1

does not depend on the study index k. This condition will not hold except in special cases.

Therefore, the inequality may hold even if Ξ = 0.

Following the arguments in the proof of Part (b), the equality in Part (c) holds. To

see this, notice that A−1
i Bi → T−1Ξ as the sample size in each study n → ∞. Moreover,

|A−1
i Bi − A−1

j Bj| = O(1/n) for any i 6= j. Thus, as n → ∞, K → ∞ and Kn−1/2 → 0,∑
i 6=j |A

−1
i Bi−A−1

j Bj| → 0. This guarantees that the equality is achieved in the limit.

C A special case of Section 2.3

We consider a special case where the likelihood function in (2.5) is exact in the sense that

there is no approximation error term O(n
− 1

2
k ). Specifically, assume that in the k-th study,

the log-likelihood function is of the following form

`k(βk,ηk) = −

(
βk − β̂k

ηk − η̂k

)>(Ik,11 Ik,12

Ik,21 Ik,22

)(
βk − β̂k

ηk − η̂k

)
+ ck,

where ck is a statistic that does not depend on any parameters. For clarity, we assume that

all the variance components, including the within-study covariance Ik and the between-

study variance T , are known.

For this special case, the summary statistic

β̂k ∼ N
(
βk, varC(β̂k) + T

)
,

where the exact variance varC(β̂k) =
(
Ik,βkβk − Ik,βkηkI−1

k,ηkηk
Ik,ηkβk

)−1
. The combined
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estimator is

β̂SS =

[
K∑
k=1

{
varC(β̂k) + T

}−1
]−1 K∑

k=1

{
varC(β̂k) + T

}−1

β̂k.

The exact variance of β̂SS is

var(β̂SS) =

[
K∑
k=1

{ (
Ik,11 − Ik,12I−1

k,22Ik,21

)−1
+ T

}−1

]−1

.

To compare var(β̂SS) with var(β̂IPD), we derive the log-likelihood function of (β,η) in

(2.6), which simplifies to

`k(β,η) = −

(
β − β̂k

η − η̂k

)>[(Ik,11 Ik,12

Ik,21 Ik,22

)−1

+

(
T Ξ

Ξ> Φ

)]−1(
β − β̂k

η − η̂k

)
+ ck.

Therefore, the IPD estimator is(
β̂IPD

η̂IPD

)
=

{[
K∑
k=1

M−1
k

]−1 [ K∑
k=1

M−1
k

(
β̂k

η̂k

)]}
,

where

Mk =

(
Ik,11 Ik,12

Ik,21 Ik,22

)−1

+

(
T Ξ

Ξ> Φ

)
.

The exact variance of β̂IPD is

var
(
β̂IPD

)
=

{
K∑
k=1

M−1
k

}−1

[1,1]

.

Similar to the proof of Theorem 1, we can show that

var(β̂SS) ≥ var
(
β̂IPD

)
.

The equality can be achieved if (a) the within-study correlation Ik,12 = 0 and the between-

study correlation Ξ = 0; or (b) Mk is the same for all k’s. The above inequality is

6



established provided that all variance components are known. Given estimates of variance

components, the inequality still holds in the settings considered in our simulation studies.

The result in this subsection indicates that we can establish an inequality between

the exact variances of β̂SS and β̂IPD, when each individual log-likelihood function can be

written as a quadratic form of (βk,ηk) without an approximation error. For the general case

where approximation errors may exist, the inequalities in Theorem 1(a)-(b) are established

between the variance estimates or between the asymptotic variances.

D Supplementary tables for simulation studies
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Table 6: The IPD- and summary-statistics-based meta-analysis estimates of the interaction

effect β3 for continuous outcomes (with estimated variance components σε = 10 and Σβ).

IPD Summary statistics

K nk Mean SE ESE
√

MSE CP Mean SE ESE
√

MSE CP

5 20 1.058 2.184 2.295 2.184 0.959 1.043 2.393 2.503 2.392 0.952

50 1.030 1.354 1.440 1.354 0.958 1.030 1.401 1.499 1.400 0.961

100 1.003 0.885 1.022 0.885 0.971 1.003 0.913 1.044 0.913 0.971

200 0.963 0.683 0.743 0.684 0.968 0.965 0.689 0.752 0.689 0.965

500 1.001 0.466 0.488 0.466 0.950 1.000 0.466 0.491 0.466 0.953

10 20 1.021 1.521 1.593 1.520 0.953 0.966 1.699 1.775 1.699 0.959

50 0.991 0.939 0.998 0.939 0.961 0.990 0.977 1.037 0.976 0.958

100 1.020 0.653 0.717 0.653 0.969 1.017 0.669 0.732 0.669 0.969

200 0.991 0.485 0.516 0.485 0.956 0.993 0.490 0.521 0.489 0.953

500 1.001 0.333 0.343 0.332 0.947 1.001 0.333 0.345 0.333 0.952

30 20 0.984 0.823 0.881 0.823 0.958 1.000 0.946 0.991 0.945 0.954

50 1.002 0.525 0.560 0.524 0.962 0.996 0.553 0.584 0.552 0.962

100 1.001 0.391 0.400 0.390 0.944 1.004 0.398 0.409 0.398 0.954

200 0.994 0.286 0.289 0.285 0.944 0.994 0.288 0.293 0.288 0.949

500 1.000 0.188 0.194 0.188 0.951 0.999 0.189 0.195 0.189 0.954

50 20 1.008 0.676 0.675 0.676 0.940 1.005 0.772 0.762 0.771 0.944

50 0.998 0.403 0.429 0.402 0.961 1.009 0.425 0.450 0.425 0.962

100 0.999 0.296 0.307 0.296 0.954 1.002 0.307 0.315 0.307 0.949

200 1.007 0.215 0.222 0.215 0.957 1.005 0.214 0.224 0.214 0.955

500 0.998 0.145 0.148 0.145 0.951 0.999 0.145 0.148 0.145 0.953

100 20 0.983 0.450 0.470 0.451 0.963 0.980 0.525 0.533 0.525 0.953

50 1.000 0.278 0.299 0.278 0.968 1.003 0.292 0.314 0.292 0.971

100 1.010 0.218 0.213 0.218 0.941 1.011 0.223 0.219 0.224 0.943

200 1.002 0.153 0.155 0.153 0.953 1.003 0.155 0.157 0.155 0.949

500 1.000 0.102 0.104 0.102 0.948 1.000 0.103 0.105 0.103 0.952

Mean– the average of estimates for 1000 simulation replicates; SE–standard error of the estimates from 1000 simulation

runs; ESE–estimated standard error of the estimate for each simulation run; MSE–mean squared error; CP–coverage

probability of 95% confidence intervals.
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Table 7: Relative efficiency of β̂3,SS versus β̂3,IPD for continuous outcomes (with estimated

variance components σε and Σβ) when ρx,k ∼ Uniform(−0.3, 0.3).

σε nk \K 5 10 30 50 100

1 20 1.033 1.042 1.065 1.080 1.102

50 0.994 1.004 1.007 1.013 1.001

100 1.001 1.005 1.003 1.002 1.005

200 0.998 1.000 1.000 1.000 0.999

500 1.000 1.000 1.000 1.000 1.000

3 20 1.142 1.142 1.184 1.180 1.254

50 1.013 1.020 1.053 1.037 1.044

100 1.010 1.020 1.013 1.012 1.031

200 0.997 1.000 1.005 0.999 0.995

500 0.994 0.997 1.000 1.000 1.004

10 20 1.200 1.249 1.319 1.302 1.360

50 1.070 1.082 1.110 1.113 1.106

100 1.064 1.049 1.040 1.075 1.056

200 1.016 1.018 1.017 0.998 1.025

500 1.000 1.005 1.015 1.003 1.014

30 20 1.208 1.271 1.345 1.328 1.376

50 1.077 1.109 1.117 1.132 1.122

100 1.085 1.069 1.045 1.099 1.070

200 1.018 1.028 1.030 1.021 1.034

500 1.027 1.022 1.030 1.026 1.029
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Table 8: Relative efficiency of β̂3,SS versus β̂3,IPD for continuous outcomes when ρx,k = 0.

σε nk \K 5 10 30 50 100

1 20 1.051 1.024 1.047 1.023 1.039

50 1.005 1.001 1.011 1.003 1.010

100 1.000 1.005 1.001 1.003 1.003

200 0.999 0.999 1.002 1.000 1.001

500 1.000 1.000 1.000 1.000 1.000

3 20 1.164 1.134 1.174 1.134 1.141

50 1.021 1.034 1.053 1.054 1.033

100 1.007 1.010 0.989 1.017 1.004

200 1.006 0.998 1.006 1.002 1.001

500 1.002 1.002 0.998 1.002 1.002

10 20 1.227 1.260 1.288 1.269 1.257

50 1.047 1.089 1.112 1.109 1.084

100 1.034 1.022 1.018 1.028 1.024

200 1.011 1.002 1.014 1.022 1.008

500 1.002 1.004 0.994 1.013 1.003

30 20 1.229 1.276 1.309 1.303 1.282

50 1.052 1.093 1.130 1.122 1.105

100 1.042 1.035 1.036 1.043 1.033

200 1.019 1.011 1.021 1.030 1.017

500 1.002 1.010 0.995 1.015 1.006
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Table 9: Relative efficiency of β̂3,SS versus β̂3,IPD for continuous outcomes when ρx,k ∼

Uniform(0, 0.7).

σε nk \K 5 10 30 50 100

1 20 1.019 1.027 1.086 1.065 1.088

50 0.997 1.015 1.014 1.015 1.000

100 1.002 1.002 1.007 1.007 1.006

200 1.000 0.998 1.001 0.999 0.999

500 1.000 0.999 1.000 1.001 1.000

3 20 1.106 1.139 1.278 1.153 1.213

50 1.031 1.047 1.075 1.056 1.031

100 1.010 1.012 1.022 1.020 1.038

200 0.998 0.999 0.998 0.983 1.000

500 0.992 0.992 1.000 1.000 1.004

10 20 1.198 1.212 1.418 1.260 1.316

50 1.096 1.094 1.133 1.117 1.096

100 1.047 1.050 1.061 1.086 1.062

200 1.010 1.005 1.024 1.005 1.022

500 1.004 1.013 1.020 1.003 1.011

30 20 1.218 1.230 1.435 1.294 1.334

50 1.113 1.115 1.145 1.129 1.113

100 1.075 1.066 1.066 1.108 1.065

200 1.020 1.022 1.041 1.025 1.034

500 1.028 1.035 1.045 1.030 1.037
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Table 10: Relative efficiency of β̂3,SS versus β̂3,IPD for continuous outcomes when the

between-study correlation Ξ = 0 and ρx,k ∼ Uniform(−0.3, 0.3) (with known variance

components σε = 10 and Σβ).

σε nk\K 5 10 30 50 100

1 20 1.055 1.061 1.074 1.056 1.075

50 1.006 1.008 1.006 1.006 1.000

100 1.000 1.004 1.003 1.001 1.005

200 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000

3 20 1.192 1.201 1.235 1.204 1.245

50 1.038 1.043 1.055 1.051 1.048

100 1.014 1.026 1.019 1.020 1.029

200 0.998 1.001 1.002 0.997 1.004

500 1.000 1.001 1.000 1.000 1.003

10 20 1.253 1.300 1.357 1.325 1.364

50 1.097 1.104 1.115 1.126 1.115

100 1.074 1.065 1.047 1.078 1.062

200 1.009 1.017 1.015 1.003 1.023

500 1.012 1.011 1.012 1.007 1.017

30 20 1.255 1.316 1.371 1.346 1.379

50 1.115 1.122 1.124 1.141 1.124

100 1.100 1.078 1.050 1.105 1.071

200 1.021 1.030 1.028 1.022 1.032

500 1.040 1.029 1.032 1.030 1.030
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Table 11: Relative efficiency of β̂3,SS versus β̂3,IPD for continuous outcomes when the

between-study correlation Ξ = 0 and ρx,k ∼ Uniform(−0.3, 0.3) (with estimated variance

components σε and Σβ).

σε nk\K 5 10 30 50 100

1 20 1.024 1.036 1.056 1.055 1.071

50 0.992 1.000 1.005 1.008 1.001

100 0.998 1.001 1.003 1.001 1.004

200 1.000 0.999 1.000 1.000 1.001

500 1.000 1.000 1.000 1.000 1.000

3 20 1.154 1.171 1.187 1.185 1.236

50 0.999 1.021 1.053 1.038 1.042

100 1.001 1.007 1.018 1.019 1.029

200 0.996 0.997 1.000 0.996 1.002

500 0.994 1.000 0.999 0.999 1.002

10 20 1.200 1.264 1.331 1.311 1.365

50 1.063 1.088 1.115 1.114 1.109

100 1.067 1.055 1.039 1.076 1.060

200 1.014 1.018 1.016 1.001 1.022

500 1.007 1.002 1.013 1.002 1.011

30 20 1.209 1.274 1.344 1.328 1.376

50 1.079 1.109 1.118 1.131 1.123

100 1.085 1.071 1.045 1.098 1.072

200 1.019 1.031 1.028 1.021 1.034

500 1.030 1.025 1.029 1.027 1.032
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Table 12: The IPD- and summary-statistics-based meta-analysis estimates of the interac-

tion effect β3 for binary outcomes when 20% of the K studies have sample sizes 3nk.

IPD Summary statistics

K nk Mean SE ESE
√

MSE CP Mean SE ESE
√

MSE CP

10 100 0.999 0.874 0.947 0.874 0.967 1.012 0.890 0.968 0.889 0.963

200 0.969 0.652 0.681 0.652 0.958 0.966 0.655 0.691 0.655 0.961

500 1.018 0.430 0.441 0.430 0.961 1.014 0.425 0.447 0.425 0.961

1, 000 1.031 0.312 0.339 0.314 0.958 1.030 0.319 0.345 0.320 0.956

2, 000 1.013 0.252 0.271 0.252 0.947 1.006 0.247 0.276 0.247 0.949

30 100 0.969 0.500 0.531 0.500 0.966 0.976 0.507 0.542 0.508 0.968

200 0.989 0.353 0.379 0.353 0.954 0.987 0.358 0.384 0.358 0.962

500 1.007 0.243 0.253 0.243 0.968 1.002 0.247 0.257 0.247 0.961

1, 000 1.005 0.176 0.194 0.176 0.968 0.998 0.176 0.198 0.176 0.970

2, 000 0.997 0.142 0.161 0.142 0.978 0.992 0.142 0.164 0.142 0.973

50 100 1.016 0.376 0.406 0.376 0.965 1.018 0.385 0.414 0.385 0.963

200 1.015 0.274 0.290 0.274 0.960 1.012 0.277 0.294 0.277 0.964

500 1.007 0.184 0.195 0.184 0.962 0.998 0.187 0.198 0.187 0.968

1, 000 1.012 0.140 0.149 0.140 0.964 1.007 0.141 0.152 0.141 0.967

2, 000 1.005 0.110 0.124 0.110 0.962 0.999 0.111 0.126 0.110 0.965

100 100 1.005 0.269 0.283 0.269 0.958 1.006 0.279 0.289 0.279 0.952

200 1.013 0.196 0.203 0.196 0.962 1.008 0.198 0.205 0.198 0.962

500 1.005 0.126 0.137 0.126 0.970 0.998 0.126 0.139 0.126 0.972

1, 000 1.000 0.098 0.105 0.098 0.959 0.993 0.098 0.107 0.098 0.958

2, 000 0.997 0.081 0.088 0.081 0.962 0.991 0.080 0.090 0.081 0.966

Mean– the average of estimates for 1000 simulation replicates; SE–standard error of the estimates from

1000 simulation runs; ESE–estimated standard error of the estimate for each simulation run; MSE–mean

squared error; CP–coverage probability of 95% confidence intervals.
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Table 13: Relative efficiency of β̂3,SS versus β̂3,IPD for binary outcomes when 20% of the

K studies have sample sizes 3nk.

nk \K 10 30 50 100

100 1.036 1.030 1.051 1.077

200 1.010 1.027 1.026 1.019

500 0.978 1.028 1.025 0.992

1, 000 1.040 0.993 1.011 1.018

2, 000 0.960 0.995 1.004 0.994

15



Table 14: Relative efficiency of β̂3,SS versus β̂3,IPD for binary outcomes under the same

setting of Table 4. But β̂3,SS is obtained from a multivariate random-effects meta-analysis

using the summary statistics for (βk,ηk).

Correlation nk \K 10 30 50 100

ρx = 0 100 0.930 0.940 0.944 0.934

200 0.969 0.962 0.958 0.976

500 0.988 0.983 0.984 0.993

1, 000 0.991 0.986 0.988 0.992

2, 000 0.995 0.997 0.993 0.991

ρx ∼ Unif(-0.3,0.3) 100 0.932 0.929 0.941 0.945

200 0.974 0.971 0.966 0.956

500 0.987 0.981 0.983 0.975

1, 000 0.992 0.988 0.987 0.989

2, 000 0.996 0.993 0.995 0.991
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Table 15: The IPD- and summary-statistics-based meta-analysis of the alcohol intervention

data excluding two large studies (8a and 8b).

IPD Summary Statistics

Parameter Estimate SE P-value Estimate SE P-value

Linear regression models for Y (1) (the change in the number of drinks)

β1 0.065 0.183 0.722 0.012 0.188 0.950

β2 -0.370 0.049 4.80× 10−14 -0.401 0.054 1.06× 10−13

β3 -0.015 0.046 0.744 -0.030 0.052 0.559

Logistic regression models for Y (2) (whether the number of drinks was reduced)

β1 0.404 0.223 0.070 0.264 0.235 0.260

β2 0.538 0.066 2.35× 10−16 0.493 0.069 1.02× 10−12

β3 -0.072 0.050 0.153 -0.034 0.055 0.535

E Supplementary example

Beta-blockade was a major drug to reduce mortality after myocardial infarction in the

treatment of patients with myocardial infarction. Yusuf et al. (1985) presented an overview

of the effectiveness of beta-blockade during and after myocardial infarction from 22 clinical

trial centers. Since its publication, it has been widely cited for meta-analysis and other

applications. For example, Freemantle et al. (1999) used it for meta-analysis to assess the

effectiveness of beta-blockade in short term treatment for acute myocardial infarction and

in longer term secondary prevention.

As shown in Table 16, each center reported the number of deaths, along with the total

number of patients, in the “Control” and the “Treated” group (with beta-blocker). Table
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16 essentially provides individual-level data for a total of 20, 290 patients. Taking Center

1 for example, there are 3 deaths among the 39 patients in the “Control” group. This

corresponds to 39 observations with a treatment indicator variable being 0 (“Control”)

and a binary response variable being 1 for 3 subjects and 0 for the remaining 36. Following

this argument, we can “reconstruct” individual observations (IPD data) of all the patients.

To conduct IPD analysis of the treatment effect, we model the probability of “Death”

P (Y = 1) in terms of the treatment indicator variable X(= 0 or 1). Specifically, we use a

logistic regression model

P (Yki = 1|Xki) =
exp(αk + βkXki)

1 + exp(αk + βkXki)
(k = 1, . . . , 22; i = 1, . . . , nk).

To allow possible heterogeneity among the centers, we assume that both the intercepts

αk’s (i.e., the baseline effects) and the treatment effects βk’s are random and they follow a

bivariate normal distribution(
αk

βk

)
∼ N

((
α

β

)
,

(
τ 2
α ρτατβ

ρτατβ τ 2
β

))
.

The maximum likelihood inference yields β̂IPD = −0.247 (i.e., the log odds ratio) with an

estimated standard error of 0.057. This implies that the use of beta-blockade reduces the

probability of death, and this effect is significant with a p-value of 1.65× 10−5.

For summary-statistics-based meta-analysis, we assume that only the center-specific

treatment effect estimate β̂k and its variance estimate v̂ar(β̂k | βk) are given from each

center. These summary statistics are presented in Table 17. Plugging these statistic into

(2.2), we carry out meta-analysis. The estimated treatment effect is β̂SS = −0.250 with a

estimated standard error of 0.058, and we conclude that the treatment effect is significant

with a p-value of 1.44× 10−5. The analysis results here are quite similar to those obtained

from the IPD analysis. The similarity implies that our summary-statistics-based analysis

18



virtually does not lose any efficiency, even in the situation where we are not given any

information of the nuisance parameters αk’s. Our further examination shows that αk’s are,

in fact, correlated with the treatment effects βk’s with a correlation estimate ρ̂ = −0.45.

This result confirms our finding in Theorem 1(c), which says that meta-analysis using

merely summary statistics of βk’s is fully efficient without the knowledge of the nuisance

parameters αk’s even if the two random effects αk’s and βk’s are correlated.

Table 16: Beta-blocker data collected from 22 clinical centers

Control Treated Control Treated

Center Deaths Total Deaths Total Center Deaths Total Deaths Total

1 3 39 3 38 12 47 266 45 263

2 14 116 7 114 13 16 293 9 291

3 11 93 5 69 14 45 883 57 858

4 127 1520 102 1533 15 31 147 25 154

5 27 365 28 355 16 38 213 33 207

6 6 52 4 59 17 12 122 28 251

7 152 939 98 945 18 6 154 8 151

8 48 471 60 632 19 3 134 6 174

9 37 282 25 278 20 40 218 32 209

10 188 1921 138 1916 21 43 364 27 391

11 52 583 64 873 22 39 674 22 680
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Table 17: Summary statistics used in meta-analysis of the Beta-blocker data

Center β̂k v̂ar(β̂k | βk) Center β̂k v̂ar(β̂k | βk)

1 0.028 0.723 12 -0.039 0.053

2 -0.741 0.233 13 -0.593 0.181

3 -0.541 0.319 14 0.282 0.042

4 -0.246 0.019 15 -0.321 0.089

5 0.069 0.079 16 -0.135 0.068

6 -0.584 0.457 17 0.141 0.133

7 -0.512 0.019 18 0.322 0.305

8 -0.079 0.042 19 0.444 0.514

9 -0.424 0.075 20 -0.218 0.068

10 -0.335 0.014 21 -0.591 0.066

11 -0.213 0.038 22 -0.608 0.074
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