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Abstract

Title: Appending GPS traces with road grade data to estimate driver be-
haviour risk

Student name: Jeanne-Marie Hugo
Student number: u15038832

Supervisor: Prof. Johan W. Joubert

Road gradients have various impacts when it comes to the performance of a vehicle
and its driver. Literature shows how steep grades can cause an increase in emission rates
and accident rates, but the actual behaviour and risk of a driver on different road grades
are neglected. To find reliable road grade values to use with a behavioural model, this
dissertation proposes a smoothing method to be used on the elevation profile of a freely
available Digital Elevation Model, namely the 1 Arc second Shuttle Radar Topography
Mission dataset.

A behavioural model from literature is used to determine the risk of the drivers within
an accelerometer dataset from 45 trucks for a day’s travel, using all the records and not
only those that fall within certain thresholds of harsh events. The model also allows for
road grade to be added as a contextual variable, where records are filtered on five different
grade categories ranging from steep downhill to steep uphill roads. These categories each
have their own risk space and ranking of driving performance. The majority of drivers
have relative constant rankings, but the results show that some drivers behave differently
with changes in gradient. Therefore, road grade can influence the behaviour of drivers and
can be a useful addition to defining and understanding the risk of a driver.
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Chapter 1

Introduction and background

The behaviour of a driver can be profiled and used in industries such as insurance or fleet
management, or in the areas of autonomous technologies or fuel economy analysis. This
section discusses how one can construct these driver behaviour profiles when a vehicle’s
Global Positioning System (GPS) traces and telematics data are obtained.

1.1 Introduction

Vehicle insurance premiums were historically largely based on static factors such as a
driver’s socio-demographic information, the type of vehicle, annual kilometres, and driving
record that includes accidents and violations (Hu et al., 2018). These static factors,
however, do not reflect dynamic factors such as distance travelled by a driver per trip,
speeding, aggressive driving, and road geometry. Static factors also have the implication
of increasing social inequality since lower income drivers tend to drive less (Litman, 2002).

Insurers started using driving patterns that are much more individualised for their
pricing schemes more recently, using an individual’s speed and erratic manoeuvring as
an indicator of behaviour. This agrees with Hu et al. (2018) who argue that speed and
pedal operations are the most important measures when characterising driving behaviour.
Bener et al. (2020) added that while factors such as speeding and aggressiveness are the
biggest predictors for road accidents, mobile phone usage is just as dangerous.

These accidents do not only carry the direct cost of injury or vehicle effectiveness, it
also carries insurance-related costs. Insurers always aim to better manage and price their
risk and the on-board sensors of a vehicle can provide them with the necessary information
to decide whether a driver is a high, medium, or low risk client. Not only can they better
quantify their insurance risk, but the drivers can have more information on their own
driving to modify their behaviour, ultimately making the roads safer and more efficient.

Two approaches are set out by Shinar and Oppenheim (2011) that can be used to model
driver behaviour: descriptive and functional. A descriptive model focusses on what the
driver is doing, as opposed to functional models that focus on why the driver is behaving
in a certain way. Acceleration and speed are used in a model to profile a driver’s risk in
a descriptive manner and provides some idea as to how fast and/or aggressive a person
normally drives. An accelerometer is the on-board sensor that measures acceleration on
three axes, whereby the GPS determines the position of the vehicle and derives the speed
from its change in position. The three-axis accelerometers used in this dissertation sense
dynamic forces of movements and vibrations within a vehicle, the vertical-axis data can
indicate the upward or downward movement a driver makes on the road, specifically when
encountering a pothole or speed bump. Acceleration’s measurement can be made in units
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of meters per second square (m/s2) or in G-forces (g). Gravitation impacts the magnitude
of a single G-force, but it is roughly equivalent to 9.8m/s2 and can be accounted for when
processing vertical acceleration. As with most sensors, the data generated is noisy and
needs to be smoothed. This dissertation proposes a useful smoothing method, one which
still finds importance in significant spikes in the signal. These spikes can represent, for
example, a car driving over a speed bump, or through a pothole.

Functional models are more focussed on the road geometry and traffic. These out-
side factors can also have a major impact on the behaviour of a driver. Joubert et al.
(2016) split up driver behaviour categories in different road type scenarios to analyse the
behaviour. One can use categories such as highways, urban roads, and rural roads as
different contextual variable categories.

The other aspect of road geometry is the slope of a road, also referred to as road grade,
and how driver behaviour changes when the geometry changes. The current practice is to
leave out road grade or assume it to be zero when studying driver behaviour. An example
of this is found with Sentoff et al. (2015) who purposefully left it out when the grade data
was not collected or was not available at the exact time of the rest of the data recording.
The complexity in determining the road grade is another reason why behavioural models
rather assume it to not have an impact.

Authors such as Glennon (1987) and Yu and Abdel-Aty (2014), on the other hand,
argue that road geometry does indeed impact driver behaviour. Their works show that
level sections of roads have less accidents than that of steeper roads. Hamdar et al. (2016)
also argue that the changes in slope or the angle of a road affects a driver’s behaviour
more than another outside factor like the weather would.

The collection of accurate elevation values for longitudinal and lateral coordinates
when calculating the slope causes the before-mentioned complexity, therefore road grade
is usually neglected. Capturing or calculating road grade accurately is generally expensive
as it requires sophisticated GPS devices or expensive measurement systems (Wood et al.,
2014a). The modern way to get the road grade of a roadway is by using a more automated
process. This process is a combination of consumer-grade GPS devices to determine
position and an automated model to determine road grade. Such models are, typically,
unsupervised machine-learning algorithms. The vertical accuracy of these GPS devices is
between 10 and 20 meters and therefore not enough for the automotive industry. This
forces one to use other types of elevation estimates to aid in the automated road grade
calculations.

The work of the National Renewable Energy Laboratory (NREL) extracted elevations
from a Digital Elevation Model (DEM) to determine road grades (Wood et al., 2015).
The authors produced large-scale road profiles of major United States (US) highways to
mainly assess energy usages on certain grades. Finding these road grades from elevations
is done by first extracting height values from each pixel in a DEM’s grid-like structure of
the surface terrain. Each pixel value represents the height/elevation of a squared area.
DEMs are assembled using remote sensing techniques like satellite sensors and used for a
multitude of scientific applications (Hawker et al., 2018). It seems to provide a reliable
representation of topography, often calming the user into a false sense of belief in the accu-
racy thereof (Wechsler, 2003). As a consequence, one has to be aware of the inaccuracies
of DEMs and how to combat them. Davis and Keller (1997) sum it up well saying that
“landscapes are not uncertain, but knowledge about them is ”.

The DEM that is used in this dissertation is that of the Shuttle Radar Topography Mis-
sion (SRTM) that is freely available. The global SRTM dataset is measured by synthetic-
aperture radar which produces high-resolution surface images from phase differences in
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radar waves that are emitted from an antennae attached to a satellite.
There are a few versions of SRTM datasets. To visualise how they can differ in accu-

racy, two datasets are illustrated in Figure 1.1 using the iconic Table Mountain in Cape
Town, South Africa, as a reference. Here the two different granularity scales are visible.
Figure 1.1a is of a 3 Arc second representation with 90m × 90m cells and the figure on
the right, Figure 1.1b, is the 1 Arc second with 30m × 30m cells. The latter is the most
recent version found in Africa and produces a rougher, more realistic surface with a more
refined granularity.

(a) 3 Arc second (b) 1 Arc second

Figure 1.1: Table Mountain topography when using different SRTM granularities.

The images not only show how the granularity differs, but they also show how some
elevation values are missing in Figure 1.1a – the older version. SRTM derives elevations
from synthetic aperture radar and can cause ‘voids’ or cells where no elevation value could
be found. This happens especially with water surfaces and patches of very rough terrain, as
seen in the steep inclines of Table Mountain’s top right corner. The newest version (with a
smaller cell size) of SRTM data in Figure 1.1b does not have these empty cells, producing
a more reliable representation of the surface that does not need to be interpolated by
multivariate interpolation if one wants a full surface area.

If one desires to have an accurate estimation of the road’s surface to use as a variable
in a driving behaviour model, the better option would be to use the newest version of a
DEM. Road grade can then be derived with much greater reliability.

1.2 Problem statement

Modern methods of determining driver behaviour do not have road grade as a variable.
The variables that are used and have a significant impact on behaviour are speed, lateral
acceleration, and longitudinal acceleration. Road grade does impact the behaviour of a
driver, but it is not clear by how much. The literature has mostly been revolving around
higher emission and accident rates on steep(er) road grades, but behavioural changes on
these same grades have not yet been quantified.

When one wants to add road grade to a behavioural model it is important to have
an accurate estimation or representation of the road profile. Historically, road grades are
found with the usage of consumer-grade GPS devices and software. This, however, does
not produce reliable elevation estimations and does not create a smooth road profile. Open
source DEM data is much more reliable, but introduces a new problem: granularity.

A step-wise elevation profile is the result of a DEM’s granularity. When a derivative
(road grade) is taken from this step-wise function or curve, the value can be unrealistic
because of steep drops and jumps in elevations. Using an unrealistic road grade estimate
within the behavioural model will result in an erroneous inference about a driver’s risk.
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1.3 Research design

In this dissertation, a risk model is built for driver behaviour with different types of road
grade on which the driver has driven: very steep uphill and downhill, medium steepness
uphill and downhill, and flat roads. This is not only done to profile a driver’s behaviour
on different road conditions, but is also an analysis as to how much impact slope has on
a driver’s behaviour.

Behaviour is measured and determined by using the vehicles on-board accelerometer
data: three-axis acceleration and speed. This on-board telemetry unit contains informa-
tion with each recording (more or less each second) that the vehicle is moving and/or is
stationary. The GPS that accompanies the accelerometer contains geographical informa-
tion on the vehicle such as lateral and longitudinal location.

When open source SRTM data is available, one only needs the on-board accelerometer
data (with its GPS traces) to profile a driver’s risk on different grades of roads. The model
provides the road grade values of each coordinate after smoothing the SRTM data. The
profiling is then done after a driver’s trip information is recorded – it is not instantaneous.
At the end, a driver is labelled as a low, medium, or high risk driver.

1.4 Research methodology

The first development to get to this dissertation’s behavioural model is finding a sample
road. This sample road’s purpose is to provide one with a reference of elevation values to
find the best model to use for the calculation of road grade. A 28km route in Pretoria
acts as the reference road profile to test which road grade calculation method is the closest
to the true road. The sample is made up of highways and urban areas having roughly a
60/40 composition. The true elevation values are measured by driving the road multiple
times in more than one vehicle and with more than one sensor.

The extracted sets of 1 Arc second (30m×30m) SRTM elevation data from the United
States Geological Survey (USGS) database is compared to the true road profile of the
28km. The sample road now has both the actual and the DEM estimated elevations.
Different road grade calculation methods are tested against the reference elevations to
find the closest representation of the road.

After slope estimation model is finalised, the next dataset is introduced while the
sample road dataset is not necessary any more. Accelerometer data from 45 different
long-haul interlink trucks is used to formulate a base behavioural model that calculates
a driver’s risk based on their planar (longitudinal and lateral) acceleration. These trucks
travelled across South Africa and the dataset is only from one month’s travelling. The
on-board recordings are available for every second the vehicles were running. The base
model follows the steps in Figure 1.2.

Step A:
Append DEM
to GPS traces

Step B:
Smooth

DEM data.

Step C:
Calculate

road grade

Step D:
Add accelerometer

data to Step C result

Step E:
Smooth accel-
eration data

Step F:
Profile driver
behaviour risk

Figure 1.2: Step-by-step generation process of the behavioural model.
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The GPS traces in Step A are extracted from the truck dataset. Using the smoothing
method, the stepwise SRTM elevations are smoothed on equidistant points in Step B.
After smaller equidistant points have been interpolated from the smoothed road profile
the road grades are calculated as a function of the distance travelled by the vehicles for
each point as set out in Step C.

From the equidistant points, the model interpolates road grade values for each GPS
trace of the original dataset. These road grade values are added to the rest of the ac-
celerometer’s parameters. The three-axis accelerations are still to be filtered as they are
sets of data from a sensor and have some digital noise, therefore, all three accelerations
are smoothed in Step E.

For each GPS trace one now has the following valuable parameters: a time stamp,
lateral and longitudinal coordinates, road grade, vehicle speed, speed limit, lateral accel-
eration, longitudinal acceleration, and vertical acceleration.

As Manson (2006) argues, one should evaluate the design against the expectations,
the behavioural model of this dissertation will be compared to the base model from the
work of Joubert et al. (2016). This is done to see if there is any difference when road
grade is introduced as a contextual variable. The expectation is reached if there is indeed
a noticeable difference in risk profiles of drivers with the addition of slope. For example,
if a risk space from the behavioural model of Joubert et al. (2016) is set up with the
contextual variable being a steep downhill, one expects to see more erratic behaviour and
more speeding.

The relationship between road grades and driver behaviour is analysed at the end of
the study, but this is not the only conclusion. The concept of adding road grade to the
model of Joubert et al. (2016) is also discussed and the impact it may have in industries
such as insurance.

1.5 Document outline

In Chapter 2, the significance of analysing driver behaviour is investigated in conjunction
with literature on the importance of road grade. The smoothing of digital signals as well
as the smoothing of elevation profiles are also investigated in this chapter.

Chapter 3 explores how the two sets of positioning data, namely GPS traces and a
DEM, can be merged. To find a reference road profile, true elevation values are collected
from a sample road. This chapter discusses the collection process in detail. After the
sample road is set up, the road grade calculation method is finalised.

The behavioural model is replicated in Chapter 4 after the truck data has been ap-
pended with road grade values. An analysis is done to see if an incline has an impact on
driver behaviour and whether it is at all worth it to add road grade to behavioural models.

Finally, in Chapter 5, a conclusion is reached on the success of the project. Thereafter
the appendix contains all relevant documentation for the proposed model.
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Chapter 2

Literature review

Literature is reviewed in three main sections. Firstly, the importance of driver behaviour is
analysed, and how road grade might have an impact on it. Different road grade calculation
methods are investigated thereafter. The final section is on how one can go about data
smoothing, making a decision on the best method for both acceleration and elevation
smoothing.

2.1 Driver behaviour

Insurance companies have two main categories to assess a driver’s risk: Pay As You Drive
(PAYD) and Pay How You Drive (PHYD). A PAYD strategy focusses on how someone
is travelling over distances, for example which roads they use and how often. PHYD
insurance strategies base their analysis purely on driver’s personal behaviour, looking at
aspects such as speeding, harsh braking and acceleration (Winlaw et al., 2019). In this
dissertation, we use a PHYD strategy when profiling the risk of a driver.

The behavioural model that forms the base of this study is of Joubert et al. (2016)
who classify risk profiles of drivers on three levels: good, average and bad performers.
Their model does not predefine extreme events, rather, the entire envelope of data is
observed and the model adapts to the pool of vehicles. The valuable information from
these datasets are in the following parameters: Global Positioning System (GPS) location,
time stamp, speed, lateral acceleration, longitudinal acceleration, speed limit. They show
that their model defines extreme events different than most literature. The big difference
is the discretisation since it does not consider a predefined threshold that is exceeded as
an extreme case of dangerous driver behaviour.

Data is discretised into a three dimensional risk space. Joubert et al. (2016) then use
horizontal slices to visualise how the three different risk levels look within the three dimen-
sional space. These horizontal slices are taken at a z-acceleration (or vertical acceleration)
of 1009mg where the most data entries are available.

Celaya-Padilla et al. (2018) state that road anomalies such as potholes and speed bumps
have a significant effect on accident rates. Speed bumps can also cause drivers to change
direction or even swerve to avoid reducing their speed on the bump (Xu et al., 2015).
These obstacles are not always labelled correctly on road maps, but can be recorded with
the use of sensors in a vehicle. Using the outputs of a gyroscope, an accelerometer and a
GPS sensor, Celaya-Padilla et al. (2018) developed a genetic algorithm that detects road
abnormalities. In this report the vertical acceleration from such sensors is examined, but
is not used as part of the risk profiling of drivers. It is only analysed to see how one might
be able to use road surface information in the context of driver behaviour – ultimately
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one can improve fuel consumption as well as the safety of drivers and pedestrians.
While the impact of longitudinal behaviour impacts the overall behaviour of a driver,

other studies such as that of Hamdar et al. (2016) show how the characteristics of a roadway
influences behaviour. These studies mostly focus on characteristics such as horizontal
alignment, road and shoulder width, and median barriers. This dissertation, however,
looks deeper into a road’s vertical gradient since it is known that accident rates are higher
with grade sections compared to level sections; steep grades compared to mild grades; and
downgrades compared to upgrades (Glennon, 1987).

While this dissertation does not investigate the performance (or vehicle specific power)
of a vehicle, it can be mentioned that it can have an influence on a driver’s behaviour. By
investigating speed and driving violations, Horswill and Coster (2002) show how there is
a significant relationship between a vehicle’s performance and the driver’s choice of speed
- a higher performance is associated with a higher choice of speed. This relationship is
ultimately shown in their study to influence the risk-taking behaviour of a driver - the
more power a vehicle has, the greater the risks a driver would usually take. The choice
within car-buying also correlates with risk-taking, i.e., buyers with risk-taking propensities
will place more value on a vehicle with increased performance. Horswill and Coster (2002)
also discuss how other factors such as smoothness, safety, and noise would influence the
risks a driver would take. Here they did not only look into speed and driving violations,
but also added gap acceptance and preferred car following distance. Gap acceptance refers
to the amount of space someone will be willing to pull into in a stream of traffic.

Because this study has a homogeneous dataset with heavy vehicles that have more or
less the same specifications, the impact of vehicle performance is not analysed - the scope
of analysis is kept at road geometry.

2.2 Elevation and road grade

Road grade is the change in elevation divided by the horizontal distance in the form of
percentage (Boroujeni and Frey, 2014). It quantifies the slope of a road, i.e. a negative
road grade value would indicate a downhill.

While this study only focusses on road grade’s impact on driver behaviour, it is quite
significant in other areas as well, especially in vehicle economics. Sentoff et al. (2015) found
that road grade has a notable effect on emissions when studying vehicle specific power. The
authors argue that neglecting road grade underestimates energy and emissions, with an
error of between 10% and 20% and fuel economy improves by 15% to 20% when a vehicle
is on a flat route. One can therefore investigate more than just a driver’s behaviour with
road grade.

To find road grade, one needs elevation and distance as mentioned above, but there
are other (instantaneous) methods as well. Different on-board equipment can be used
to measure the instantaneous elevation or even the road grade of a vehicle directly. Ac-
celerometers can provide the latter, but interference with unrelated vehicle movement
creates a profile that is very noisy (Rogers and Trayford, 1984). Another commonly used
measurement tool is a GPS logger (Boroujeni and Frey, 2014). However, the accuracy once
again presents a limitation with low resolution. Although horizontal errors with GPS are
low, vertical errors are much higher since buildings and trees interfere with signalling.
Changes in satellite locations will also affect the accuracy and resolution of the eleva-
tion. Condequently, GPS is most accurate when paired with other sensors and equipment.
When a GPS logger is used with a barometric altimeter, only then it is deemed accurate
enough (Boroujeni et al., 2013).
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Outside of a vehicle’s sensors, road grade can be found on original or revised road
design drawings, but these are only available for large building projects like a highways or
bridges. These elevation profiles might also differ from the actual roads since the drawings
sometimes only specify the original construction design and not all the changes that were
made during construction (Zhang and Frey, 2006).

There are various open-source elevation data sets available that do not use the above
mentioned collection methods. Digital Elevation Models (DEMs) can be used to esti-
mate elevation and will provide the most accurate road profile (Liu et al., 2018). Space-
borne Interferometric Synthetic Aperture Radar (InSAR) is the most popular method
used to create DEMs and is the technology behind the Shuttle Radar Topography Mis-
sion (SRTM); the biggest open-access global DEM. By 2015 the SRTMGL1 version covered
Africa, Europe, North America, South America, Asia, and Australia in 1◦ × 1◦ tiles at 1
Arc second (about 30 meters) resolution. To date, this is the most accurate DEM that
covers South Africa and most of the Southern Africa area.

DEMs are not a perfect representation of topography and like most measurement sys-
tems it has a few errors. These errors can be grouped in categories of cause: deficient
and/or old data; processing and numerical; faulty measurement errors from faulty equip-
ment or poor placement accuracy (Wise, 2000). Errors can have a ripple affect in the
accuracy of slope and curvature of the surface, and need to be tracked when elevation
values are used in calculations such as that of road grade. To combat the accuracy un-
certainty, this dissertation attempts to filter out DEM errors as well as smooth out the
spatial resolution errors of the 30 m SRTM.

The most accurate road grade calculation method according to literature is in the form
of a derivative of the elevation profile, but this report examines another option of using
the triple-axis data from an accelerometer to find road grade. Acceleration-based and
velocity-based slope measurements both fall into this option.

The three main parameters of a triple axis accelerometer are the lateral, longitudinal,
and vertical (x, y, and z) accelerations. Furthermore, the unit provides the measurements
of yaw, roll, and pitch angles when a vehicle is free to operate in three dimensions and
have motion on the orthogonal axes, all centred around its center of gravity. Yaw, roll, and
pitch are the motions about the perpendicular, longitudinal, and lateral axes respectively.
Yaw dynamics are present in vehicles and can be improved by the improvement of rear
wheel steering and control of brake torque. The roll dynamics are mainly present when
a vehicle’s suspension is analysed. Pitch is the motion affecting the vehicles considered
in this report the most and is a measurement of how far the nose of a car is tilted up or
down. It is present when there are motions of positive and negative acceleration or when
driving on irregular road conditions. Yaw and roll are more important in the analyses of
submarines or aeroplanes and will not be considered here.

When road grade is derived via the acceleration method as mentioned earlier, one does
not need knowledge of the vehicle and the method is independent of the signal from its
GPS. The accelerometer is fixed to the vehicle, and the road slope is added to the pitch to
measure the grade angle. Road grade, Θacc, is then calculated by on-board vehicle velocity
and acceleration as follows:

Θacc = sin−1

(
aacc − d

dtvwheel

g

)
(2.1)

where aacc denotes the longitudinal vehicle acceleration, vwheel the longitudinal wheel-
speed, and g the gravitational acceleration.

The second method uses GPS-velocity-based measurements and is not sensitive to
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motion that changes the vehicle pitch. Road grade, ΘGPS , calculated by the velocity of
the vehicle, as measured by GPS traces is as follows:

ΘGPS = tan−1

 vz√
v2x + v2y

 (2.2)

where vx, vy and vz denote the velocities on all three planes.
The acceleration-based estimation can only work in moving conditions, whereas the

GPS-based estimation can be used after recording the vehicle’s movement. Although the
latter is a better option when doing postprocessing on previously recorded data, it can
have an error in the road grade estimate that can increase by too much in low speed
regions of below 5m/s, or approximately 18km/h (Jo et al., 2013). With this difference in
mind, the two calculation methods are examined and compared further in Chapter 3.

The last two road grade estimation methods refer back to the fixed road profile and are
formulated by simple derivatives and linear regression of the DEM, respectively. Magrath
and Brady (2017) suggest that an 80 m interval is sufficient to measure road grade as a
derivative of distance travelled, but this argument will be investigated in Section 3.5 using
other interval length options that work best with the specific dataset used in this study.

2.3 Data smoothing techniques

For the risk model there are two parameters that need some kind of filtering or smoothing.
These parameters are elevation and acceleration. The latter will be discussed in the second
part of this section, and literature on elevation smoothing is investigated first.

To derive road grade, one needs elevation values that accurately represent the profile
of a road. To find this accurate representation, the stepwise elevations extracted from the
SRTM dataset need to be smoothed. The stepwise nature of the road profile can cause
derivatives to have completely incorrect slope estimations, but a smoothing model that is
fitted to the profile will remove these sudden spikes or drops.

Wood et al. (2014b) smooth elevations with a Savitzky-Golay (SG) filter. The method
uses local regression instead of the popular moving average,000 thereby flattening peaks
less than the moving average filter would. The SG filter is also a low-pass filter and uses a
local least-squares polynomial approximation (Schafer, 2011). It is another way to reduce
noise while keeping the shape and height of waveform peaks. SG filters are thereby known
to properly preserve the shape of peaks and will, in turn, preserve a road profile’s peak and
not remove it. Bromba and Ziegler (1981) define the filter operator, Af(k), using (2.3),

Af(k) =

∞∑
n=−∞

a(n)f(k − n) (2.3)

where f denotes the original dataset and a denotes the filter function. When a smoothing
degree of 2M (an even number) is desired, the smoothing filter is written as

D2Mf(k) =

N∑
n=−N

a2M (n)f(k − n) (2.4)

with a2M (n) = 0 if |n| > N .
Figure 2.1 illustrates how an original dataset is smoothed with a SG filter. It can be

seen how the shape of the peak is preserved during smoothing.
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Figure 2.1: Example of an SG filter on arbitrary points. Dots represent the original dataset
and the line represents the smoothed function fitted.

Another smoothing method that uses the square error of an approximation, is a natural
cubic spline. A spline function is a curve constructed out of independent polynomials that
are continuous at their joining points (Burden et al., 2011). If f is defined at a = x0 <
x1, x1 < · · · < xn = b, then f has a unique natural spline interpolant, s, on the nodes
x0, x1, . . . , xn; that is, a spline interpolant that satisfies the natural boundary conditions
s′′(a) = 0 and s′′(b) = 0. Figure 2.2 demonstrate how a spline is fitted to an original
dataset.

10 20 30 40
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10

y

Figure 2.2: Example of a cubic spline on arbitrary points. Dots represent the original
dataset and the line represents the smoothed function fitted.

Liu et al. (2018) use the spline s′′(xi) for the smoothing of an elevation profile of a
road. Since the curve is fitted on nodes, the degree of smoothness influences the actual fit
of the data points. To minimise the trade-off between the goodness-of-fit and smoothness,
the minimum trade-off, L, is calculated using (2.5),

L = α

xn∑
i=0

wi(yi − s(xi))2 + (1− α)

∫ xn

x0

(s′′(x))2dx (2.5)

where s(xi) denotes the smoothed elevation value at point xi; wi the weighting of each
individual point starting all equal to 1; and α the weight factor with α ∈ [0, 1].

A method that is worth noting, but is not relevant in this dissertation, is the one
by Chen et al. (2017). The authors present a local enhancement mechanism integrated
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with a Butterworth filter (BWF) to remove noises in raw elevation data. They compare
the statistical methods of Mean Standard Deviation (MSD) and Mean Average Deviation
(MAD) to a revised BWF and the results suggest that the BWF method remove noises in
the data most effectively. The filter is often referred to as a maximally flat magnitude filter.
Meaning, it always chooses the most flat response surface. The concept sounds attractive
when working with road profiles since most roads are flat, but the filter overshoots at high
orders. Chen et al. (2017) use a local enhancement mechanism to accompany the de-noising
of overshooting, but the enhancement only provides more computational challenges. As
this method is more popular in the analysis of audio circuits, it is disregarded as a possible
smoothing method in this report.

The acceleration data is considered more noisy as the elevation data and needs a
smoothing that can accommodate sudden spikes and turbulence of seemingly-straight lines.

Noise can be removed on various degrees, the most common methods to reduce such
noise are the popular moving average and exponentially-weighted moving average. They
are both sufficient when a process is close to a steady-state, but lack in capabilities when
a more dynamic state is present. A more sophisticated model that can handle dynamic
states is a Kalman filter – a filter widely used in the aerospace industry.

Kalman filtering is specialised to sensor data, adjusting current data to past data to
reduce noise in the measured value (Park et al., 2019). It is the first step to predict the
next value to be measured based on the previous readings. It then refines the estimated
point with the actual measurement to find a value closer to the latter. One of the input
parameters of a Kalman filter is the measurement noise variance, which an ordinary user
will find challenging to find without in-depth knowledge on the type of sensor. It often
happens that someone chooses a variance arbitrarily, resulting in a filter with poor per-
formance. Park et al. (2019) developed a framework to calculate the noise variance from
an original set of data. From their two methods to predict values, the use of a wavelet
transform is applicable here, since the second method is more inclined to neural networks.

The Kalman filter aims to correct noisy time-series data (Kalman, 1960). Probabilis-
tic estimations are applied to a state-space model that uses past data recursively. The
accuracy of the results are higher when compared to a generic smoothing filter using only
incoming values. The state equations are set up as follows:

xt = Ftxt−1 + wt (2.6)

zt = Htxt + vt (2.7)

to predict:

¯̂xt = Ftx̂t−1 (2.8)

P̄t = FtPt−1F
T
t +Qt (2.9)

for the correction:

Kt = P̄tH
T
t (HtP̄tH

T
t +Rt)

−1 (2.10)

x̂t = ¯̂xt +Kt(zt −Ht
¯̂xt) (2.11)

Pt = (I −KtHt)P̄t(I −KtHt)
T +KtRtK

T
t (2.12)

where xt is the true state at time t; zt is the measurement at time t; Ft is the state transition
model applied to xt−1; Ht is the observation model; and wt and vt are the process and
measurement noise variance respectively. Figure 2.3 illustrates how the Kalman filter
ultimately updates its predicted values to filter out the noise in the vertical acceleration.
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Figure 2.3: Example of applying a Kalman Filter on z-acceleration with predicted values
and final updated values.

Table 2.1 summarises the smoothing techniques reviewed. Since the accuracy of the
elevation profile is more important than that of the acceleration data, two methods will
be implemented and compared before calculating road grade profiles in Section 3.5. Only
the Kalman filter will be used in the smoothing of the acceleration data.
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Chapter 3

Model

This chapter sets out the process for the generation of the smoothed elevation model with
road grade estimations. It explains how the sensor and Digital Elevation Model (DEM)
data is extracted, processed and used in calculating road grade. Before the elevations can
be used in the road grade calculations, they are smoothed using two smoothing techniques:
the Savitzky-Golay (SG) filter and the cubic spline. After the smoothed elevation profile
is found with the most accurate technique, the method for determining road grade is
discussed and concluded.

3.1 Sample road

To test the elevation smoothing techniques, a true elevation profile can be established to
act as a gold standard. This is achieved by driving a road segment and measuring the
elevations of the road using high-accuracy, on-board equipment. A sample route is chosen
in Pretoria with a length of 28km, with 60% on highways and the rest on urban roads.
The absolute ground truth for the elevation profile is unknown.

To find the gold standard elevations, two sets of elevation profiles are found using two
different methods. Different vehicles are equipped with different measurement tools that
measure altitude differently. Sections 3.2 and 3.3 detail how these road profiles were found
and how they compare against each other. Both gold standard estimation methods have
the same base coordinates and their latitude and longitude points are generated 10m apart
along the sample route. The total of 2800 points are visualised on the route1 in Figure
3.1.

A base list of coordinates are now established and ready to be added onto with elevation
values. When a reliable set of elevations are available, only then can it be compared to
the DEM data with its applied smoothing techniques. Road grades can then ultimately
be calculated as a function of the DEM elevations and be used as a contextual variable in
analysing driver behaviour.

3.2 Road profile generation with VBOX

The first gold standard road profile is estimated using a Racelogic electronic measure-
ment system fitted to a highly sensorised Land Rover Defender, courtesy of Dr Herman
Hamersma of the Vehicle Dynamics Group, Department of Mechanical and Aeronautical

1Coordinate Reference System (CRS) of Hartbeesthoek94-Lo29, EPSG:2055, WGS84, revision date:
2019-01-14.
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Figure 3.1: 28km sample road route in Pretoria.

Engineering at the University of Pretoria. The vehicle was driven on the sample route
once to record the elevation profile. The measurement system also recorded some more
parameters that will be introduced later in this report.

Racelogic’s VBOX has an Inertial Measurement Unit (IMU) coupled with their VBOX
3i Global Positioning System (GPS) data logger to improve GPS accuracy when the sky’s
visibility is unfavourable. This allows for smoother velocity data and a pitch and roll
angle accurate to 0.06◦. The yaw rate and acceleration resolution is 0.0137◦/s and 1.5 mg
respectively. The IMU04 used by Racelogic gives pitch, roll, and yaw rates using three
gyroscopes, as well as providing acceleration on all three axes via three accelerometers.

The VBOX 3i data logger records at a rate of 100 Hz. With this data logger integrated
with the IMU, it uses a Kalman filter on the measurements made in real-time. Dynamic
overshoot is removed through lever arm correction by the addition of a dual antenna
system.

Examining the parameters of the system’s output, it was found that a Kalman filter is
used on the raw elevation values to produce the clean output elevation values. A Kalman
filter should primarily be used as a digital filter and a distorted elevation profile was
created because of it. The filter, therefore, should only be used on parameters such as
the three axis raw accelerations and pitch angles. The distorted elevation profile called
clean can be seen in Figure 3.2a. The raw values are the values of the VBOX before any
corrections took place.

To fix the big difference in the clean elevation profile, the elevations are re-estimated
from the raw values. Outliers are removed and high frequency recordings of the unit are
smoothed out by fitting a spline to the curve. The spline is fitted to smooth the raw values
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Figure 3.2: Two extracts showing the raw, clean, and new values of the VBOX elevations.

as close to the raw profile as possible. These elevation values are now the new clean values
and are also plotted in Figure 3.2a.

While the spline sits neatly on the raw elevation profile, a strange occurrence is found
in the first few kilometres of the trip taken with the Land Rover. This error is visualised in
Figure 3.2b. The strange elevation values cause the fitted spline to be greatly misshaped.
The incorrect raw values might be because of a loss of the GPS signal or caused by
obstructions on or next to the road.

The VBOX records the number of visible satellites on its trip and this data might
indicate whether there was indeed a loss of signal or if the strange values are caused by
something else. The number of visible satellites are plotted in Figure 3.3. The recom-
mended minimum number of satellites for a reliable GPS connection is three, and the
figure shows that there were a few points (1.8% of the entire trip) where the number of
visible satellites went below three, but only momentarily. In the problematic area of the
first two kilometres however, no big drop in the GPS signal was experienced.

Figure 3.3: GPS Signal investigation on trip.

In the figure on the right, the times of the VBOX recordings are plotted. If any break
in the recordings was present, it would show that there was a loss of signal or a momentary
break in the VBOX’s recordings, but the line is continuous with no signal complications
on the trip. This leads one to believe it could have been an error within the measurement
system, and not the signal. Other reasons might include bad satellite positioning, multi-
paths caused by buildings or bridges, or ellipsoid model errors of the GPS chip. Since one

16

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



cannot conclude what the reason might be, these error sections will just not be used in
the determination of smoothing techniques.

The new clean values are now used as the gold standard elevations from the VBOX.
This Data Logger records longitude and latitude with an accuracy of 3 m with a 95%
Circular Error Probable (CEP), meaning that the readings will fall within a circle of 3 m
radius 95% of the time. The height accuracy however, is lower at 6 m with a 95% CEP.
The new road profile is illustrated in Figure 3.4 with its CEP. Figure 3.1 is updated with
coloured elevation values and shown in Figure 3.5. Red and purple are the lowest and
highest points on the route, respectively.
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Figure 3.4: Elevation profile of trip with 95% CEP in light grey.
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Figure 3.5: Sample road route with elevation values.

With the confirmed road profile, road grade can now be calculated to test the profile
since additional data is available from the VBOX and its IMU. The 100 Hz measured
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parameters are: time, position (latitude and longitude), velocity, heading, height, vertical
velocity, lateral acceleration, longitudinal acceleration, radius of turn, centreline deviation,
pitch angle, roll angle, and yaw angle.

An assumption is that the travelled distance (interval) has a constant slope. The
accelerometer is installed in the center of the vehicle as illustrated in Figure 3.6. The
figure indicates all the important parameters that will be used in this study.

Figure 3.6: Vehicle movement on an incline with all its relevant measurements.

The longitudinal and vertical acceleration are denoted by ax and az, where a represents
the vehicle acceleration on the plane. The velocity, v, and acceleration, a, are parallel to
the road surface. The pitch angle, φ, is not necessary to use in this study since the only
angle that is needed is the road grade, but the vehicle inclination angle, α, is divided into
the vehicle pitch angle and the road gradient angle, θ,

α = φ+ θ. (3.1)

After determining that the filters used by the VBOX concerning the dynamic data are
valid, the clean data is used in two ways to calculate road grade. The first method uses
the on-board vehicle acceleration and velocity as in Equation (2.1). The second method
is chosen by using the GPS velocity and on-board velocities as in Equation (2.2).

These two methods are calculated with the VBOX parameters. Their grade distri-
butions are illustrated in Figure 3.7. It can be seen that the methods do not follow the
same distribution, with the second having too many values out of the tolerance of -0.15.
Between 8% and 5% a road is marginally steep and between 8% and 15% it is very steep.
Beyond 15% (or 0.15) is considered outside of reasonable bounds on a roadway (TxDot,
2018).

With both the velocity and acceleration methods there are shoulders in the far ends of
the distributions. While promoted in literature for certain applications, this dissertation’s
results indicate that they are not reliable for the the 100 Hz data because of the unrealistic
road grade estimates they produce.

To distinguish if this is in fact the equations that do not work well because of its
instantaneous nature, or if it might be the VBOX data’s unreliability, a second approach
is used to find an elevation profile of the sample road. This second approach is estimated
with a different device and does not only use one run on the route.

3.3 Road profile generation with 15 runs

The next method to find a true representation of the sample road’s elevation profile is done
by driving the same route 15 times. A commercial barometric (pressure-based) altimeter2

2Garmin Oregon 650.
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Figure 3.7: Histogram comparison of the first two road grade calculation methods.

was installed in the passenger vehicle to record all 15 runs’ GPS traces, along with the
elevations of all the points. These points, however, are not recorded as frequently as with
the VBOX, but combining data from 15 trips help increase the number of values and
minimise variability on the 28km route.

The variation in elevation recordings are illustrated in Figure 3.8. Here one can see

1350

1400

1450

1500

1550

0 10 20
Distance (km)

E
le

va
tio

n 
(m

)

Figure 3.8: Road profile as with recorded elevations of 15 runs.

that there is a range in elevation values of about 20 meters between all 15 recordings and
simply combining them would produce consecutive differences in elevations that are too
high to represent a credible road grade values. The combined data should thus be weighted
in order to find a smooth road profile. Removing the big jumps in elevations can be done
by the implementation of a k nearest-neighbour method. The sample route’s 28km with
±10m points from Section 3.1 are used again, where an elevation value is added to each
point using its k = 6 nearest-neighbours out of the combined trips. To find this nearest
value, one needs to use multivariate interpolation because there is more than one variable
that needs to be estimated namely, latitude, longitude, and height. This multivariate
interpolation is called Inverse Distance Weighting (IDW).

With IDW, the heights at the assigned points on the sample road are calculated with a
weighted average, using the values available from the known neighbours. The set of known
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points are those of all 15 trips together. The IDW creates a smooth continuous function
around the set of points different from the known points and the function then provides
the third variable of height for every sample point, leaving a set of 2800 points as needed.

To estimate road grade, Rogers and Trayford (1984) collected elevations with 10 trips
on a road segment and used the mean values to determine the final road grade. Here the
number of trips are more than 10, therefore using the median value can also be considered.
A mean is an average of the points selected, while the median is the middle value of all the
points. Both are used to find an elevation profile and to calculate road grade as derivatives
of 50 m intervals. The road grades for the trip are plotted in Figure 3.9 showing that the
median values in light grey create a more erratic road profile and the erratic nature does
not change if the IDW interval size is altered. The mean (as used by Rogers and Trayford
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Figure 3.9: Road grade values using the mean and median elevations of the runs.

(1984)), therefore, proves to be the better of the two options when constructing the road
profile.

What needs to be decided is whether the above method of multiple runs and their
mean elevation values are the best way to estimate the gold standard elevation profile of
the sample route, or if the VBOX (with all of its alterations) is better. The VBOX data
had to be adjusted quite a lot to fit into what is believed to be the true road, and the
multiple runs might seem redundant to find an accurate profile using a mean of 15 runs.
They both have quite an uncertainty to them.

Using more than 10 runs will remove any unwanted errors in values, which was achieved
with the multiple runs method, but was not attempted with the VBOX. It was assumed
that because of the unit’s accuracy and frequency of recordings, that it would be sufficient
to only drive one trip on the route. One more trip can be run on the same route with the
same Land Rover Defender and the same VBOX device, but it will need to be recalibrated
since it wasn’t known what caused the errors in the first few kilometres.

On the second run, all the same variables were measured and a gold standard elevation
profile was estimated on the sample points of the route. The profile is visualised in Figure
3.10 and the result is almost identical to the first run. There are no unrealistic dips in the
first few kilometres as before and one can now have more confidence in the CEP and its
height accuracy.

At this point, there are two estimations but it is still unclear as to which of the two are
closest to the true road profile. The mean values from the multiple runs can be compared

20

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



1350

1400

1450

1500

1550

0 5 10 15 20 25
Distance (km)

E
le

va
tio

n 
(m

)

Figure 3.10: Second run elevation profile of trip with 95% CEP in light grey.

to the VBOX values (the second run) using a DEM as reference. The sample route’s points
can again be used to add DEM height values onto to build a reference road profile.

3.4 Road profile generation with DEM and smoothing

The Shuttle Radar Topography Mission (SRTM) DEM elevations are extracted from the
open source United States Geological Survey (USGS) database, and a topographical visual
of a single coordinate block is shown in Figure A.1 in the Appendix. From the SRTM
raster the 30 m×30 m elevation block (pixel) is extracted for each coordinate of the sample
road. The elevation value for each block is the lowest measured elevation within the 900 m2

bounds, creating a stepwise nature when using roads that flow though these blocks.
To visualise the stepwise profile of a road, Figure 3.11 shows an arbitrary 2 km piece

of the sample route. Figure 3.11a on the left is the side profiles with the elevations as
a function of the 2 km distance. Figure 3.11b on the right is there to illustrate how the
30 m×30 m blocks can look from above with each block shaded by its respective elevation
value. The letters A and B denote points on the road to show the difference of two extreme
heights.
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Figure 3.11: Stepwise SRTM DEM of a piece of the sample road.

Although a DEM creates a realistic road profile, it can sometimes provide incorect
values when one has a bridge or overpass on the surface. At these points, the lowest
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elevation is wrongly presented (Wood et al., 2014a). Unrealistic drops in these cases can
cause incorrect road grades to be calculated.

To get rid of unwanted errors such as incorrect road grades from large elevation dif-
ferences, one can use a maximum difference in elevation to set a boundary of what is an
acceptable elevation value for a given point. TxDot (2018) provides a workable maximum
road grade since roads more or less do not exceed threshold road grades of 15% on lo-
cal roads and 8% on highways (not including ramps). The road grade Θ is calculated
using (3.2)

Θ =

∣∣∣∣ ∆Elvt
∆Distt

∣∣∣∣ < threshold (3.2)

where ∆Elvt is the elevation difference between point t and its preceding point t − 1;
∆Distt is the geographical distance between point t and t− 1.

The entire process to end up with smoothed DEM data follows the process illustrated in
Figure 3.12. After the SRTM DEM data is appended to the GPS traces, the raw elevations
are downsampled to have uniformly spaced intervals. Each point is represented by a mean
value since this will decrease the complexity of coordinates that are not equally spaced.
For example, the captured coordinates will have unnecessarily too much information when
a vehicle is moving slow or in rest.

Step 1:
Add raw DEM

to distance

Step 2:
Downsample
into intervals

Step 3:
Compute ba-
sic road grade

Road grade within
tolerance?

Step 4a:
Pass through

smoothing filter

Step 4b:
Remove those
points and fill

via interpolation

Step 5:
Compute road grade

for original (pre-
sampled) distances

yes

no

Figure 3.12: Step-by-step process of appending the smoothed DEM to coordinates.

Equation (3.2) provides an easy road grade calculation method as a derivative of eleva-
tion and can by used to easily find the erroneous points on the road. The loop from Step
4b is there to account for these instances where the tolerance is exceeded. Such points are
then discarded and filled via interpolation.

A quick examination of the sample road’s SRTM road grades finds 19.3% of the points
steeper than the 0.15 threshold. These occurrences may be because of bridges and over-
passes (both which occur a number of times along the 28km route) or caused by errors in
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the DEM capturing. A liberal 0.2 is used as the tolerance value in this report and Fig-
ure 3.13 shows how new elevations (in red) were added to the coordinates via interpolation
in Step 4b.
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Figure 3.13: Removing of bad points and filling via interpolation.

Before the two smoothing methods can be compared, the reference profile to which the
accuracy of the filter is tested should be determined. The VBOX and multiple runs both
have elevation profiles, but one of them is closer to the SRTM elevation profile than the
other. The VBOX is visually the closest to the SRTM profile as seen in Figure 3.14 and
is used to test the parameters of the two smoothing filters.
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Figure 3.14: Comparing the elevation profile of the VBOX, multiple runs, and SRTM on
a road segment.

The SG and spline are compared in Step 4a. With both these techniques, a polynomial
order of three is used. A third order polynomial is the lowest order that can approximate
linear, quadratic, and cubic relationships. For cubic splines, estimating elevation changes
between the top and bottom of roadways can be supported by the capability of a low third
order as well. The filter length is the tested parameter with the SG filter and the degrees
of freedom is the spline’s parameter.

Figure 3.15 illustrates how three different settings of parameters are tested against the
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Table 3.1: Parameter testing of three different levels of smoothing.

SG filter Cubic Spline
light medium high light medium high

Parameter value 31 101 201 200 90 20
RSS/1 000 41.688 36.613 41.825 41.991 35.660 44.087

VBOX elevations, producing three different levels of smoothing and Table 3.1 shows the
filter length or degrees of freedom versus the Residual Sum of Squares (RSS) it produces.
The RSS is calculated as the summed squares of all the points’ absolute differences between
the VBOX elevations and the smoothed DEM.

The lowest RSS with the SG filter is found with an interval length of 101. This interval
length can also be noted as being about 28 times smaller than the total length of the points
on the sample road. When the curves are visually compared, the same SG filter length
also produces the best curve next to the SRTM elevations.

The cubic spline gives the lowest RSS value overall, but the parameter is more sensitive
than that of the SG filter. This sensitivity can be seen in how much the spline curves in
Figure 3.15 differ when the amount of smoothing is altered.

Because of the cubic spline’s sensitivity, the better option would be the SG filter. A
medium amount of smoothing with the filter would also produce a curve that represents
the true elevation profile of a road most accurately.

3.5 Road grade calculation

Figure 3.12 ends with Step 5, determining road grade, now that the smoothing parameters
for the SRTM elevations are established. Two methods are discussed in this section to find
the most efficient technique. The interval sizes of the methods are evaluated aiming to
find the best size for road grade calculations. The first method is to derive a grade profile
as a simple derivative, similar to equation (3.2) and linear regression is implemented for
the second method.

3.5.1 Road grade as a simple derivative of elevation

Using the VBOX elevations, road grade can be calculated as a simple derivative of the
elevation as a function of the distance travelled between points. Studies such as the one by
Magrath and Brady (2017) suggest that 80m is the best interval size, but what happens
when it is decreased? Increasing the size will distort the derivative and valuable road
geometry might be lost, but the sample road’s dataset has a coordinate on every 10m so
a decreasing of the interval size might work well.

Equation (3.2) sets out the basic road grade calculation as a basic derivative of elevation
and distance. To test different distances (interval sizes denoted by int), the equation can
be adjusted using (3.3)

Θi =
ef − ei
int

∀ i ∈ {1, 2, . . . , 2800}, int ∈ {30m, 40m, . . . , 80m} (3.3)

where Θi is the road grade and ei is the elevation at the point of concern, i, and ef is the
elevation of the point on the road, int meters on.

All the points between i and f are given the same road grade value as point i. For
example, an interval size of 40m will provide a set of road grade data that look as follows:
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(b) Spline with little smoothing.
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(c) SG with medium smoothing.
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(d) Spline with medium smoothing.
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(e) SG with a lot of smoothing.
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(f) Spline with a lot of smoothing.

Figure 3.15: SG filter versus cubic spline. Both are compared to the VBOX and SRTM
elevations with a small, medium, and large amount of smoothing.
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[Θ1,Θ1,Θ1,Θ1,Θ5,Θ5,Θ5,Θ5,Θ9, . . . ]. The tested intervals are in steps of 10m and range
from 30m to 80m. For all six of these intervals, road grade values are calculated using (3.3).

The lowest number of points (at about 2%) fall in the flat road grade category when the
interval size is 80m. A road is regarded as more or less flat when its road grade is between
-0.05 and 0.05, typically represented by the highways. The sample road’s highways account
for 60% of the route and an interval of 80 m only having 2% within the flat group proves
that this derivative method significantly misrepresents the grade profile of the road.

Other distances are tested in the same manner and only two interval sizes prove to
accurately estimate the route’s elevation profile: 50 m and 60 m. Either of these will be
useful in road grade calculations.

3.5.2 Road grade with linear regression

Linear regression is similar to the derivative at a point, but is not so instantaneous in
nature. More than one point can be used to fit a regression line and then draw the
derivative off from that line for a road grade value. Here, a point is used with two points
before and two points after, each 10 m apart. A regression expression is fit to these five
points and the coefficient (road grade) is extracted. This is done for every equidistant
point on the road, not like the simple derivative where the original points were given the
same road grade as the interval they were in.

The set of all values is found in {1, . . . , I}, but the first two and last two grade values
are not calculated, therefore, a set is given as I, where I = {3, 4, . . . , I− 3, I− 2}. For each
elevation point in I a set of values X are used:

Xi = {xi−2, xi−1, xi, xi+1, xi+2} ∀i ∈ I (3.4)

Each linear regression yi is then calculated using (3.5)

yi = Bi + CiXi ∀i ∈ I (3.5)

where Bi and Ci denote the intercept and coefficient, respectively. The road grade is
represented by the coefficient Ci, providing a value for each coordinate with its elevation.

To decide if linear regression is a better option compared to a simple derivative, the
interval sizes are considered. A simple derivative will average out an interval’s road grade,
where the linear regression will provide each point with its own road grade value. This
provides a smoother and more precise road grade curve when surrounding points are not
averaged out, but rather used in a regression expression that changes. The choice is thus
to have linear regression be the method to use from this point onwards and will be used
on a different dataset in Chapter 4 hereafter.

To visualise how the final road grades pair with their respective elevations, the sample
road’s smoothed elevation profile is plotted in Figure 3.16. The smoothing is done by an
SG filter and the road grade is derived by linear regression using sampled points of 10 m
apart and afterwards interpolated for all the points in-between. To inspect the accuracy,
a quick glance at the zero-line of the road grade plot shows that downhill grades do indeed
produce negative road grade values and the same other way around. This road grade model
can now be used with any set of data that contains consecutive lateral and longitudinal
coordinates.
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Figure 3.16: Final smoothed SRTM elevation profile and road grades of the sample road.
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Chapter 4

Results and discussion

This chapter serves as an analysis of the results of the addition of road grade to a driver
behaviour model. The model is first discussed and ran as-is on the current truck ac-
celerometer data. After the road grade model has provided the coordinate traces with
slope values, the model is run again, but this time in categories of road grades. These cat-
egories allows one to study the differences in behaviour on different road steepness levels.
Individual driving performance scores and rankings are also calculated on the different
grade levels to analyse how performance can change when the road geometry changes.

4.1 Driver behaviour model from literature

The model of Joubert et al. (2016) measures relative performance of drivers, comparing a
driver’s behaviour to a pool of drivers and thereby defining their risk level. The authors
use speed and horizontal acceleration as determining factors to classify these risk levels.
Four risk levels are set out using a quantile vector as Q = {qnone, qlow, qmed, qhigh} and
range from 0 to 1. The risk space is the discretised volume using the three dimensions
of acceleration. In their model, a rhombic dodecahedron tessellation is used as the dis-
cretisation of choice. Each vehicle’s records are individually sorted into the discretised
cell in which its acceleration values are contained. When done, the cells are ranked from
highest (most records) to lowest (fewest records) and the cumulative percentage of the
representation records is calculated.

There is a comparison of a single driver to the population of drivers. The total number
of records is represented as R =

∑C
i=1 ri, where ri is the risk of cell i, or simply the

number of observed records in cell i. The argument holds that the more common a specific
acceleration profile (a high number of records in that cell), the lower the risk associated
with that cell. A decreasing order of risk is set, i.e. r1 > r2 > . . . > rC .

Each risk category is split at a, b, and c, all within the bigger set, C, that contains all
the drivers in the dataset. To find these three points, the cumulative number of records
for each risk space are set out as follows.

� No risk:∑a
i=1 ri
R

6 qnone and

∑a+1
i=1 ri
R

> qnone (4.1)

with i ∈ Cnone = {1 . . . a},Cnone ⊆ C

� Low risk:∑b
i=1 ri
R

6 qlow and

∑b+1
i=1 ri
R

> qlow (4.2)
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with i ∈ Clow = {a+ 1, a+ 2, . . . , b},Clow ⊆ C

� Medium risk:∑c
i=1 ri
R

6 qmed and

∑c+1
i=1 ri
R

> qmed (4.3)

with i ∈ Cmed = {b+ 1, b+ 2, . . . , c},Cmed ⊆ C

� High risk:

i ∈ Chigh = {c+ 1, c+ 2, . . . , C},Chigh ⊆ C

The levels Q mentioned before were tested by the authors to find a visual balance of
all four categories. They chose Q = {0.960, 0.994, 0.999, 1.000} because of its appropriate
balance between the levels. So, one can interpret that as “96% of records fall in those
(green) cells that are most commonly observed”. That means that 96% of all the records
make up the no risk portion of the risk space. Another parameter they had to choose
was the cell size since it affects the discretisation of the risk space, and 10mg was the size
they found to be ideal to have clear separation between risk categories yet capture the
true shape of the risk (sub)spaces. Figure 4.1 is extracted from their paper where the risk
space was constructed using light vehicle accelerometer data and a horizontal slice taken
at 1009mg for visualisation. Green, yellow, orange, and red represent no risk, low risk,
medium risk, and high risk records respectively.
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Figure 4.1: Risk space of light vehicles by Joubert et al. (2016).

Joubert et al. (2016) use the risk quantiles in Q to determine risk categories based on
acceleration. The authors do, however, also use speeding as a second determining factor,
but with specific speed thresholds, not quantiles. They give speed and acceleration each
a weight (for example 40% : 60%) and show that a weight below 20% for speed does not
affect any overall risk scoring of drivers. The opposite is also true when the weight of
acceleration is below 25%. Finding the risk space is ultimately a trade-off between speed
and acceleration, it is up to the insurer (as in the article) to decide what weight to give each
aspect. This dissertation only focusses on acceleration and does not incorporate speed as
well. It is done to investigate a behavioural change (if any) of a driver when the slope
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of a road changes, and erratic lateral and longitudinal movement is what will provide the
best indication of this behaviour. Horizontal speed can be distorted when a steep slope
is investigated since the vertical component can be lost when only using relative Global
Positioning System (GPS) speed.

When one has the accelerometer data and the risk quantiles and cell sizes, an individ-
ual’s proportion of records within each risk category can be determined. These proportions
within each category are represented relative to the total population as pnone, plow, pmed, phigh.
The weighting of each of these categories are then denoted by wnone = 0, wlow = 1, wmed =
2, whigh = 3.

Using the weightings and proportion of records, a score, si, is calculated for each
individual i as follows.

si = 3− (pnonewnone + plowwlow + pmedwmed + phighwhigh) ∀i ∈ P (4.4)

Each driver’s risk score is normalised to a range within [0,1] and thereafter sorted
against all the scores of the population from best to worst. The scoring on the data from
this report is done in Section 4.5.

The existing model of Joubert et al. (2016) is run on the truck dataset and the risk
space is visualised in Figure 4.2a. To visually balance the new risk space, the cancellation
of gravitational acceleration is changed by setting the slice height to z = 1 010mg and the
quantiles are changed to Q = {0.940, 0.985, 0.997, 1.000}. This new risk space of all the
records are seen in Figure 4.2b.

−600 −400 −200 0 200 400 600

−600

−400

−200

0

200

400

600

Lateral (y)

Lo
ng

itu
di

na
l (

x)

cell width: 10mgslice depth: 1009mg

(a) Q = {0.960, 0.994, 0.999, 1.000}
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(b) Q = {0.940, 0.985, 0.997, 1.000}

Figure 4.2: The changes in the risk space quantiles and slice depth to fit this study’s
vehicle data.

When the new risk space visualisation is compared to the one in Figure 4.1, one can
see that the extent of truck acceleration records is smaller and less spread out than that
of light vehicles. This is quite plausible given the size and weight of a truck. There is
much less harsh movement from a heavy vehicle than one would observe with a passenger
vehicle. The more inertia, the more power is needed to slow down or speed up.

Another reason for a smaller extent of the risk space is the homogeneous dataset. The
vehicles from the dataset are from the same company and are more or less the same age.
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Recorded behaviour would, therefore, be mostly impacted by the drivers and not by the
type of vehicle. A dataset of passenger vehicles would produce a dataset with a lot of
different types of vehicles, all with different capabilities of speed and acceleration.

These factors can all impact the risk profile of a group of drivers, or fleet of trucks in
this case. To find how much, if at all, road geometry impacts driver behaviour, one can
add another variable to the dataset: road grade.

4.2 Appending the smoothed Digital Elevation Model (DEM)
to the GPS traces from truck accelerometers

With the goal of having more information of the road geometry, in the form of slopes, one
can add elevations to the pool of variables in the dataset. This dissertation uses a dataset
with 45 trucks and their movement within a month. The useful variables of the dataset at
this point are: vehicle ID, time-stamp, longitude, latitude, x-acceleration, y-acceleration,
and z-acceleration.

Finding the road grades of the roads driven by the vehicles, one needs to first extract
elevation values from the digital Shuttle Radar Topography Mission (SRTM) dataset by
using the latitude and longitude of the traces. The final estimated elevation values are
found when the SRTM elevations are smoothed following the Savitzky-Golay (SG) filter
and its smoothing parameters of the previous chapter. When each truck has a set of final
smoothed elevations and coordinates, only then can road grades be derived.

The roads travelled are separated for each truck since start and end points should
not be mistaken between the trucks. For each road of each truck, the road grade values
are derived by linear regression as previously detailed in Section 3.5.2. The regression
expression is fitted to the elevation relative to the distance travelled, with two points
before and two points after each point.

After road grade values are appended to the original dataset, the following parame-
ters are available to formulate the drivers risk model: vehicle ID, time-stamp, longitude,
latitude, x-acceleration, y-acceleration, z-acceleration, and road grade.

4.3 Road grade as a variable

The behavioural model of Joubert et al. (2016) allows for one to analyse contextual vari-
ables and the impact they might have on the overall risk space of a dataset. Road grade
is used as the contextual variable here, and five different categories are split up to analyse
the results.

The five sets are set up as follows: steep downhill, medium downhill, flat, medium
uphill, and steep uphill. Because the dataset used in this study is from truck accelerom-
eters, one needs to consider how the steepness categories will be split up with this type
of vehicle, also remembering that these vehicles drove on highways for the most part. It
cannot simply be accepted that the threshold values given by literature (as in Equation
(3.2)) would be sufficient. TxDot (2018) states that anything between -8% and 8% can
be considered as medium steep and between 8% and 15% can be considered as steep, on
the negative side as well. What is considered as steep is not the same when the dataset is
mostly on highways, therefore, the threshold values of 8% and 15% are not applicable for
this study and new ones need to be defined.

A useful and common method to split a variable up into categories, is to separate the
variable at three standard deviations from the mean (which would be 0 in this case). This
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method is known as the empirical rule or the 68-95-99.7 rule. Rounding the standard
deviation of the dataset’s road grade values to a useful decimal, a value of 0.02 is found
to be sufficient to determine the different levels of steepness. Table 4.1 sets out the road
grade values and the percentages of records within those limits. The overall distribution

Table 4.1: Five categories of road grade on truck dataset.

Percentage of records

Category Road grades Medium smoothing High smoothing

Steep down θ ≤ −0.04 2.6% 2.2%
Medium down −0.04 < θ ≤ −0.02 8.1% 9.9%
Flat −0.02 < θ ≤ 0.02 72.6% 73.5%
Medium up 0.02 < θ ≤ 0.04 13.7% 11.1%
Steep up 0.04 < θ 3.0% 3.3%

of records between the different road grade categories might be impacted when the initial
smoothing parameters are changed within the SG filter. To test the model’s sensitivity
to the smoothing filter, the level of smoothing is changed to high, i.e. the filter length
is shortened. The distribution is shown in the last column of Table 4.1 and shows how
much the percentages of records change when the level of smoothing is adjusted too high.
Reducing the amount of smoothing is not added to the comparison as it proved, in the
previous chapter, to not be accurate enough when estimating the road profile.

An average difference of percentage of records of the two columns is 1.2% and is
not enough to conclude that the smoothing parameter has a significant effect on the
distribution. Since the distribution is not impacted as much, it is sufficient to continue
using a medium level of smoothing. Changing it to a high level of smoothing would mostly
just increase the computational cost of the model without being worth it.

4.4 Driver behaviour model with road grade as a contextual
variable

With five categories defined, they can be used within the risk model set out in Section 4.1.
The risk model filters the records to only use those that fall within each of the grade
categories, providing a risk space for each.

4.4.1 Flat roads

The first road grade level to be visualized is flat roads in Figure 4.3b. It is the largest
category and does not differ much from the risk space of entire population of records shown
in Figure 4.3a. The outer, higher risk rings of these two groups are seemingly identical
which is expected with 72.6% of records in the flat category.

4.4.2 Downhill roads

When a risk space is built from the records that associate with downhill roads, one sees
more braking and, consequently, a space that has more negative longitudinal acceleration
in Figure 4.4. For steep downhills, the majority of records lie in the negative acceleration
area and for medium steep road segments, there are even more records in this area. The
data, therefore, shows that the truck drivers are braking downhill for the most part. Again,
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(b) Risk profiles of entire population and flat
grades.

Figure 4.3: All vs flat.
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(a) Steep downhill.
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(b) Medium steep downhill.

Figure 4.4: Risk profiles of steep and medium steep downhill grades.
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this is quite plausible since heavy vehicles rely on engine braking and lower speeds. In
fact, in many cases it is regulatory that heavy goods vehicles change to lower gears when
going downhill.

Anticipation is a basic aspect for any driver, especially when you are more experi-
enced and braking with a heavy vehicle downhill can be wise when one anticipates a fast
downhill drive. Reducing your speed rather than trying to keep it constant might be an
overcompensation, but it can be the safer option.

Lots of trucks, if not all these days, are fitted with an endurance brake, that is designed
to keep the vehicle slow when going downhill over a longer period of time. This is to reduce
brake fade that is caused by manual foot-braking as brake-fade can cause a driver to loose
control when driving with a load downhill. Professional drivers also make use of engine
braking, keeping the truck at a lower gear at high engine revolutions that also limits the
speed. All of this compensates for the possible forward acceleration that can take place
downhill, but does not provide a reason for such a large number of records with negative
acceleration.

The braking is most likely due to overcompensation for the safety risks of a driving
downhill at high speeds with a heavy vehicle. Drivers might be decelerating even more to
start reducing their speed, rather than trying to keep it constant.

For the lateral movement of the vehicles, there are a few high risk records here and
there around the central blob and these records can be cases of drivers swerving sideways
to avoid collisions. They could have swerved around slower trucks to pass them downhill,
but passing downhill can cause problematic instances such as speeding or overheating of
the brakes. Both of these cases are unsafe with a large vehicle, especially if it has a heavy
load, and could result in a loss of control and an accident.

4.4.3 Uphill roads

The last behavioural comparison that is studied is that of drivers on steep and medium
steep uphill roads. Figure 4.5 illustrates the risk spaces of these two different types of
uphill grades and it is visible that both risk spaces have the majority of their records in
the positive forward acceleration area.

Sometimes it is wise to get out of optimal fuel or speed ranges for a while to anticipate
an event, in order to save fuel for an entire trip. For example, a driver can gather speed
before an important peak on the hill s/he is on and this will save the extra power that
would have been used to go over the peak if s/he was driving at a constant speed. This
idea of increasing speed before a very steep road segment is reflected in Figure 4.5b as the
number of forward accelerations are significantly higher.

When analysing the lateral movement, a tail of observations is found in Figure 4.5a.
These records come from vehicles that were accelerating faster to the right and might
be there because of them taking a gap in traffic to overtake other vehicles and, more
specifically, other trucks. A lighter or more powerful truck can overtake an older, heavier,
or less powerful truck. Passing on an uphill is much safer than on a downhill, so one would
expect more records that look like swerving in this section than that of downhills.

4.5 Scoring and ranking of drivers

In the previous section it was shown how road geometry impacts the overall behaviour
of drivers and that, indeed, the driver behaviour profile differs for different road grade
categories. This section focusses on the behaviour and performance of individual drivers
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Figure 4.5: Risk profiles of steep and medium steep uphill grades.

on different road grades. Their individual driving performance is scored and ranked against
one another and is then investigated to see how, if at all, their performance changes when
driving on different road grades.

Each driver is scored using Equation (4.4) and their scores are then normalised on a
range of [0; 1], where the individual with the lowest score and worst performance receives
a zero, and the individual with the highest score and best performance receives a 1. The
scores are then ranked from best to worst and the drivers each get a ranking number.
This scoring and ranking is done for the entire population of records, but the records are
also filtered on all five road grade categories and then modelled, scored, and ranked again.
All the ranking values are found in the appendix in Table A.1. By ranking drivers on the
different categories, one can see if a driver’s rank changes against the pool of drivers after
road grade is taken into consideration.

To examine the overall changes in performance, the rankings of individuals on the base
model (denoted by the x-value) are plotted against the rankings of the same person when
filtered on the five different road grade categories (denoted by the y-value), as with the
previous section.

The first comparison is between the base model and flat roads, as plotted in Figure 4.6.
Points on the diagonal line are those individuals who have constant ranking positions.
The points above the line represent those who have gained ranking by not applying any
filtering on road grades and using all the records. The points below the line represent
those who have gained ranking by including road grade in the risk model. The correlation
coefficient, R, in the comparison with flat grades is 0.89. This high R value shows that
the majority of drivers do not experience a change in rank positions. With more than
70% of the population of records on flat roads, this can be expected. The notable outlier
is the individual who, when we disregard the road grade, ranked 16th. When road grade
is taken into account, the same vehicle’s ranking drops to 43rd on flat road grades.

The same is done for the rankings on downhill road segments and the base rankings
as plotted in Figure 4.7. The R value is calculated as 0.58 and 0.38 on steep and medium
steep downhill grades, respectively. Both of these coefficient values are too low to represent
a relationship between the two ranking axes. For steep downhills, there are however little
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Figure 4.6: Comparing change when filtering on flat road grades.
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(a) Steep downhill grades.
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(b) Medium steep downhill grades.

Figure 4.7: Comparing change when filtering on downhill road grades.

to no points where an individual has a drastic change in position. On medium grades,
quite a few drastic changes are observed. Overall, one can see that an individual is not
bound to have the same ranking on downhill grades that they would have had on the base
risk model.

On uphill road segments, the R value becomes 0.54 and 0.66 on steep and medium
steep grades, respectively, and the plotted correlation is visualised in Figure 4.8. The
plots are very similar to that of downhill grades, showing almost no correlation between
the axes. The R values of uphill grades are however a bit higher than the values found
with downhill grades. Although a few individuals have a constant ranking, most of their
positions change.

While the above plots are visual representations of the individuals’ changes in rankings,
some people can be singled out for discussion. Table 4.2 sets out 10 drivers and their
rankings within all categories. In the table it can be seen how some drivers have one or
two categories that are significantly different to the rest.

For about a third of the drivers, their rankings would change when road grade is taken
into account during the ranking calculations. For example, individual 17 has a ranking
of 27 on the base model, but their rankings drop significantly on upward slopes. This
indicates that they drove worse than the rest of the drivers on uphill roads, and this
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(b) Medium steep uphill grades.

Figure 4.8: Comparing change when filtering on uphill road grades.

Table 4.2: Ranking of drivers in normal risk model and in all road grade categories.

Road grade considered

Id
Road grade

ignored
steep
down

medium
down flat

medium
up

steep
up

1 9 27 13 7 24 29
17 27 6 7 33 23 28
21 15 7 4 17 14 37
26 7 11 6 5 6 25
28 10 5 30 12 34 8
33 4 4 36 10 10 2
35 21 3 39 31 35 33
37 3 22 16 4 5 3
39 36 39 41 35 39 4
40 37 40 8 42 11 21

information is lost when only using the base model.
A few more examples of drastic changes in rankings are listed below:

� Individual 1 only performs well on flat roads, but receives a good overall base ranking;

� Individuals 28 and 33 have big differences in rankings, mostly because of their poor
performance on anything other than steep up- and downhill roads;

� Individual 35 performs exceptionally bad on all roads except steep downhills, and
39 the same, but for steep uphills;

� Individual 40 receives a very poor overall ranking, but has improved rankings on
medium steep up- and downhill roads

Again, it is seen that road grade impacts a driver’s risk score and ranking against other
drivers. This is not only reflected in the combined records of performance rankings, but
also when examining individual ranking differences when the model is run on data that
was filtered according to road grades.
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Chapter 5

Conclusion

The motivation to investigate the impact of slopes on driver behaviour comes from the
understanding that road geometry can influence a vehicle and its performance. Existing
literature does not show how much road grades can influence behaviour, but it does show
how it influences a vehicle’s performance. This performance can be anything from higher
emission rates to higher accident rates on inclines, leading to the question: how much, if
at all, do inclines influence the behaviour and risk of a driver?

To estimate the road grade values for a given road, Shuttle Radar Topography Mis-
sion (SRTM) elevation data is appended to a set of truck accelerometer traces from the
movement of 45 trucks over the course of a day. The step-wise nature of the SRTM el-
evation profile is smoothed by a Savitzky-Golay (SG) filter and then derived by linear
regression to find road grade values.

The road grade values are used within an existing risk model from the literature to
analyse the behaviour of truck drivers on different types of inclines. The input accelerom-
eter records of the risk model were filtered on different categories of road grade: flat,
medium steep uphills, steep uphills, medium steep downhills, and steep downhills. In
doing this, behavioural data was found for the five different grade types and individual
risk scores were determined for both the base model and for all five categories.

The visual risk spaces of all the records showed that drivers (of heavy goods vehicles)
tend to decelerate when on downhill roads and accelerate when on uphill roads. A reason
for these two occurrences can be because drivers anticipate the safety risk of speeding
downhill and would rather brake, and they anticipate the extra energy needed to push
through a steep peak on an uphill coming ahead and would rather pick up speed earlier to
avoid using more power on the peak. Section 5.1 sets out how one can approach the study
of lighter vehicles – one might expect the same behavioural occurrences as with heavy
vehicles, but the wide variety of vehicle types might influence this assumption.

Moving on from the behaviour of the entire group, individual driving performance was
also calculated in the form of rankings. An individual is ranked against all the other
drivers within the dataset to examine performance relative to the performance of others.
The rankings are calculated on the base model from literature as well as on all the different
road grade categories. The results show that the majority of drivers have relative constant
rankings, but that some drivers behave differently with changes in gradient. Therefore,
road grade does not only influence the overall behaviour of a group of drivers, but it can
also influence the behaviour of individuals in different ways.

The objective of this dissertation is not to decide how the risk of drivers on inclines
should be dealt with when profiling their risk in an industry such as insurance. Instead, it
shows successfully that discriminating on different road grades indeed affects the outcome
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of a driver’s risk behaviour. Ignoring road grade, therefore, implies that insurers may be
estimating driver risk incorrectly in a Pay How You Drive (PHYD) schema.

5.1 Future work

To find more opportunities of study within the areas of behaviour and road grade, one can
continue the investigation by adding more data, either by using the same vehicles over a
longer period of time or by using a larger number of vehicles. This dissertation only used
a day’s travel of 45 heavy goods vehicles, but using more data can be beneficial to better
understand the scale of the influence of inclines on a driver’s performance. One can perhaps
quantify this influence to a point where an insurer is able to include it in their risk analysis.
After finding the scale of influence of all the different types of inclines, the question still
remains: Should a driver be penalised/rewarded for their behaviour on different slopes, or
should they only be judged on their overall behaviour? This implementation is of course
up to an insurer, but can definitely change the way they quantify the risk of their drivers.

Another area that was not investigated in this dissertation is that of accidents and how
driver behaviour and/or road grade might be causes of accidents. Knowing the potential
correlation and relationship can be highly valuable for not only the insurance industry,
but for local road safety.

When accelerometer data of various types of drivers can be paired with accident statis-
tics, dangerous roads (or road types) can be identified. For example, if one finds a road
that has a very steep downhill where a lot of vehicles experience accidents, one can in-
vestigate their behaviour and determine if the cause lies with the drivers or if the road
geometry is the main cause. This steep road can then be flagged as potentially dangerous
and further safety measures can be taken if necessary.
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Appendix A

Data as appendix

Figure A.1: S26E028 coordinate block with SRTM elevations extracted from United States
Geological Survey (USGS)

43

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Table A.1: Ranking of drivers in base model and in all road grade categories.

ID no road grade steep down medium down flat medium up steep up st dev

1 9 27 13 7 24 29 9.54
10 30 25 27 22 33 20 5.03
11 11 17 18 13 8 14 3.94
12 14 28 33 11 18 16 9.04
13 6 9 5 6 7 7 1.48
14 38 35 42 38 31 38 4.09
15 23 2 35 34 32 35 14.36
16 22 10 34 20 13 10 10.14
17 27 6 7 33 23 28 12.3
18 24 31 31 21 29 19 5.76
19 2 36 3 2 1 - -
2 13 16 24 14 12 17 4.56
21 15 7 4 17 14 37 12.95
22 26 19 15 28 9 13 7.22
23 12 14 29 9 27 5 10.73
24 29 32 37 27 28 26 4.53
25 34 37 40 32 42 39 3.81
26 7 11 6 5 6 25 8.38
27 41 38 44 40 41 32 4.47
28 10 5 30 12 34 8 13.27
29 31 34 38 25 37 11 11.29
3 20 23 23 29 19 27 3.9
30 35 21 20 37 38 34 8.8
31 8 18 9 8 3 6 5.63
32 40 29 43 39 36 30 5.94
33 4 4 36 10 10 2 13.67
34 18 12 21 24 26 22 5.39
35 21 3 39 31 35 33 14.39
36 17 30 12 26 25 24 6.77
37 3 22 16 4 5 3 8.51
38 42 - 2 43 - - -
39 36 39 41 35 39 4 15.58
4 25 15 28 19 17 12 6.06
40 37 40 8 42 11 21 15.92
41 28 33 25 23 30 31 4.22
42 16 13 19 16 16 15 2.17
43 19 26 26 18 22 18 4
44 32 20 22 36 21 36 8.25
45 44 - 32 44 20 - -
5 33 24 14 30 40 - -
6 1 1 1 1 2 - -
7 39 - 11 41 4 - -
8 5 - 10 3 15 - -
9 43 - 17 15 - - -
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