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Executive summary

Health care, and especially access to health care, has always been a critical metric for countries. In 2017, South
Africa spent 9% of its GDP on health care. Despite the GDP health care allocation being 5% higher than recom-
mended by the World Health Organisation for a country of its socio-economic status, South Africa’s health status
is poor compared to similar countries. In 1994, South Africa implemented a health care policy to make health care
accessible to all South Africans. A primary health care facility within 5 km of the place of residence is deemed
accessible. There is still a significant gap between the actual and desired accessibility, especially for the lower-
income communities. There is a need to improve access to public health care for all South Africans. Cost-effective
and sustainable solutions are required to solve this problem. Therefore, an opportunity was identified to investigate
the location of low-cost container clinics in lower-income communities.

This report uses robust optimisation and goal programming to find robust sites for cost-effective container
clinics over multiple years in an uncertain environment using multiple future city development scenarios. The
study area of the report includes three metro municipalities (City of Tshwane, City of Johannesburg, and City of
Ekurhuleni) in Gauteng, South Africa. Three future development scenarios were created for this study using a
synthetic population and urban growth simulation model developed by the Council for Scientific and Industrial
Research (CSIR). The model provided the population distribution from 2018 to 2030 for all three of the scenarios.

The simulation model provides household attribute tables as an output. Household attributes that have a causal
relationship with health care demand were investigated during the literature review. Based on the literature and
the available household attributes, four attributes were selected to forecast the health care demand. The four
attributes are household income, the number of children in the household, the household size, and the nearest
clinic’s distance.

Using associative forecasting, the primary health care demand was forecasted from 2018 to 2030. These
forecasts were used as input into the facility location models. A p-median facility location model was developed
and implemented in Python. Since facility location problems are classified as NP-hard problems, heuristics and
metaheuristics were investigated to speed up the problem solving. A Genetic Algorithm (GA) selected as the
metaheuristic be used to determine a suitable configuration of facilities for each scenario. The model determined
good locations of clinics from a set of candidate locations. A good year to open each clinic is also determined by
the model. These decisions are made by minimising three variables: total distances travelled by the households to
their nearest clinics, the total distance from the selected distribution centre to the open clinics and the total building
cost. An accessibility target of 90% was added to the model to ensure that at least 90% of the households are within
5 km of the nearest clinic within the first five years. In these models, operating costs were not included. Therefore
all the results are skewed, with most of the clinics being opened in the first year when it is the cheapest since there
is no penalty for opening a clinic before it is needed — the exclusion of operating costs is a shortcoming to address
in future work.

A goal programming model was developed with the variables of the individual scenarios as the goals. The
goal programming model was implemented in Python and used to determine a robust configuration of where and
in what year to open container clinics. A difference of 25% was set as the upper limit for the difference between
the robust configuration variables and the good or acceptable variables for the individual scenarios as the scenarios
investigated are very different. This ensured that the robust solution would perform well for any of the three
scenarios. The model was able to find locations that provided a relatively good solution to all the scenarios. This
came with a cost increase, but that is a trade-off that must be made when dealing with uncertainty. This model
is a proof of concept to bridge the gap between urban planning with multiple development scenarios and facility
location, more specifically robust facility location.

The biggest rendement was achieved by constructing and placing the container clinics in the shortest space of
time because the 90% accessibility requirement can be addressed cost-effectively without an operating cost penalty
— this is unfortunately not possible in reality due to budget constraints. An accessibility analysis was conducted
to investigate the impact of the accessibility percentage on the variable values and to test the model in a scenario
closer resembling the real world by adding a budget constraint. The time limit of the accessibility requirement was
removed. In this case, a gradual improvement in the accessibility over the 12 years was observed due to the gradual
opening of clinics over the years. Based on the analyses results, it was concluded that the model is sensitive to
changes in parameters and that the model can be used for different scenarios.
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Chapter 1

Introduction

Health care, and especially access to health care, has always been a key metric for countries. In 2017, 9% of South
Africa’s Gross Domestic Product (GDP) was spent on health care. Despite this being 5% higher than recommended
by the World Health Organisation (WHO) for a country of its socio-economic status, the country’s health is poor
compared to similar countries. Two of the reasons for this imbalance are inequalities between the public and
private health care systems, and restricted access to health care in some communities (Africa Health, 2019).

South Africa has a two-tiered health care system. The first tier is the large public sector used by the majority
of citizens. These citizens are not members of medical aid schemes. According to Stats SA (2018), 83.6% of
South Africans are not part of a medical aid scheme. The second tier is the growing private sector, utilised mainly
by members of medical aid schemes (Africa Health, 2019). Due to the high costs of private health care, a large
percentage of the population is forced to use public health care. Over 80% of the lowest income quantile make use
of public health care facilities when ill, while more than 70% of the highest income quantile make use of private
health care facilities (Booysen, 2003).

According to the South African Constitution, access to health care is a constitutional right for all South Africans
(South Africa, 1996). Therefore, the government needs to ensure accessibility to decent health care for all South
Africans. There are significant differences in the various households’ proximity to a health care facility between
rural and urban areas as well as socio-economic groups (Booysen, 2003). Many people using public health care
are located far from hospitals or clinics, even within more urbanised areas. According to a survey done by Yantzi
et al. (2001), distance to hospitals and clinics is a crucial factor when selecting health services and whether to
visit. The convenience of access to a health care facility is a critical factor in deciding whether or not to visit a
health care facility. To make health care more accessible, mobile clinics are often proposed. Mobile clinics are
customised vehicles that can travel into communities to provide immediate but transient health care to the people
in these communities (Hill et al., 2014).

Another alternative for providing accessible health care is container clinics, i.e. shipping containers converted
into clinics. This is a more permanent alternative but without the extensive cost implications. These container
clinics adhere to the National Building Regulations (IUSS, 2014). Investing in container clinics rather than mobile
clinics can provide a sense of security; the community knows that it will not disappear overnight and can be
accessed regularly.

When an investment is made into container clinics, it should be noted that efficient facility location could
improve the utilisation of the facilities (Peng and Afshari, 2014). Therefore, locating clinics on commuter routes
are advantageous.

Once the facilities have been built, medicine is required to provide the patients with the needed health care.
Delivering medicine to a clinic is usually at the expense of the pharmaceutical company. The expertise of pharma-
ceutical companies relates to improving their product safety and quality. Logistics and distribution expertise are
often lacking in these companies (Ahmadi-Javid et al., 2017) and associated government departments. Distribution
network costs are continuously increasing and consume a significant amount of a company’s budget. Warehousing
and transportation costs comprise 15.2%, and 57% of logistics costs respectively (Havenga et al., 2016). Reducing
these costs is in the interest of the patients since these costs could ultimately be passed down to them through the
product cost (Ahmadi-Javid et al., 2017).

1



Considering these large and increasing distribution network costs, the need for urban distribution network
planning is more significant than ever. Considering distribution network planning and urban growth simultaneously
can assist in better strategic decision making for a company or government department. Distribution network
robustness is a crucial strategic consideration for all companies (Graham et al., 2015). A robust distribution
network’s configuration ensures that the performance level or accessibility level of the network stays at the desired
level irrespective of changes in the customer base, often due to changes in population growth rates or urbanisation.

The population growth of South Africa is roughly 1.4% per year (Macrotrends, 2020), which leads to densi-
fication and urban growth. Urban growth is a result of population growth in urban areas as well as the expansion
of cities in the surrounding areas. This growth results from general population growth and people relocating from
rural areas to urban areas, mainly for improved work opportunities. Urban growth directly influences a city’s
liveability, economic opportunities, and sustainability, as well as the demand for goods and services such as food,
pharmaceuticals, and medical services (Tank, 2017).

This report investigates robust clinic placement for container clinics in low-income and lower-middle-income
communities to improve access to primary health care and reduce total building cost, travelling and distribution
distances. According to the 2011 South African census, low-income households have an annual income between
R 1 and R 19 200. Middle-income households have an annual income of R 19 201 to R 307 200 (Stats SA, 2011).
The annual household income threshold for a lower-middle-income household is R 108 000. The households in
these income categories were selected for this study as it is these households that will most likely make use of
public health care. Container clinics are used in public health care to improve access to health care; therefore, they
were selected as the facility type used for this study.

The study area for this report includes three metros in Gauteng, South Africa. These three metros are the City
of Tshwane, the City of Johannesburg and the City of Ekurhuleni in Gauteng, South Africa, as shown in Figure 1.1.
These metros were selected for the study area since the data required for the investigation was readily available
for these three metros. Gauteng is home to just more than a quarter of the South African population (Stats SA,
2020). The three selected metros have the highest population density in the province. Therefore, the proportion of
the population can be maximised while keeping the case study areas relatively small.

All municipalities are required to do planning in the form of a master plan that includes the Integrated De-
velopment Plan (IDP) and the Metropolitan Spatial Development Framework (MSDF). This plan is a long-term
dynamic planning document providing a conceptual layout to guide future municipal development and growth
(The World Bank Group, 2015). Possible revenues, expenses and development projects are a few of the topics
included in these plans. Ekurhuleni Metropolitan Municipality (EMM) has an Aerotropolis master plan where all
their blueprints to become an aerotropolis (economic hub around the O.R. Tambo International Airport) are laid
out. In this plan, there are 21 development projects in priority areas to ensure growth and stimulate the economy
in the next 20 years (Ekurhuleni Metropolitan Municipality, 2015). These development projects are either housing
or job creation projects. The deployment sequence of these projects can affect the growth of the municipality. The
other two municipalities have similar documents, however, not in the same detail.

Although the municipalities have these development plans, not all projects realise for numerous reasons, such
as budget constraints and shifts in focus or importance. Development project deployment strategies are combi-
nations of implemented development projects. The realisation of deployment strategies ultimately determines the
development patterns of the municipality and the city form.

Urban growth simulation modelling is used as a tool to test the likely outcomes of development project de-
ployment strategies. These models show possible future city form scenarios based on the developments as well as
other models such as transportation and location choice models. A city’s form refers to the physical characteris-
tics of a city, including spatial distribution of households, work opportunities and other land use. To this extent,
the Council for Scientific and Industrial Research (CSIR) has implemented an urban growth simulation model
(UrbanSim) based on synthetic population data for the three metros of Gauteng.
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Figure 1.1: Three Gauteng metros used in the analysis

Three scenarios were developed and tested for the three metros with various development project alternatives
and schedules. The model is used to make predictions from 2019 to 2030, based on the validation done on data
from 2011 to 2018. The possible future city forms and results from the simulations were made available to work
from in this project. These simulation results consist of numerous tables of which one is the simulated synthetic
household table. This table contains the household’s location and attributes that will be used to derive the demand
for primary health care.

1.1 Research opportunity

South Africa implemented two health care policies in 1994. The first policy is free health care for pregnant women
and children under six years of age. The second is accessible primary health care for all South Africans. In
2001, the South African Department of Health developed a comprehensive primary health care service package.
This package aims to provide all South Africans with primary health care no more than 5 km from their place of
residence (Nteta et al., 2010). South Africans using public health care have restricted access to health care facilities
due to the distribution of the facilities across the country and public transportation challenges. This service plan
has improved accessibility to health care facilities, however, there is still a significant gap between the actual and
desired accessibility for the lower-income communities. There is a need to improve access to public health care for
all South Africans. Public health care is available to all citizens and is subsidised by the government. In contrast,
private health care is only available to a small percentage of the population who have the means to pay. Lower-
income households are more likely to make use of public health care since they do not have the means to pay
for private health care (Young, 2016). Cost-effective and sustainable solutions are required to solve this problem.
Therefore, an opportunity was identified to investigate the location of container clinics within walking distance to
lower-income communities that are more likely to use public health care than private health care.

The current distribution of household income per annum and accessibility to health care facilities in the three

3



metros are depicted in Figure 1.2. The income distribution of the three metros can be seen in Figure 1.2a. In
Figure 1.2b, the distance to the nearest public health care facility is illustrated.

By comparing these two figures side by side, the areas with the furthest distances to public health care facilities
are generally in lower-income areas. There is an exception in Johannesburg: In this metro, most households,
regardless of income, are within 5 km of a public health care facility. In contrast to this, there is still great
inequality in access to health care based on income. Ekurhuleni also has some inequality, however, not nearly as
much as Tshwane.

(a) Household income distribution across the three metros (b) Distance to nearest health care facility across the metros

Figure 1.2: Heatmaps of income distribution and distance to the nearest clinics for the three metros

Accessibility to public health care needs to be improved, especially for lower-income communities. Using
container clinics is a potential cost-effective solution. This accessibility improvement must happen in a financially
responsible manner and, therefore, a trade-off between cost and accessibility must be made during the decision to
locate container clinics.

From the research opportunity, the research question was formulated: Where and when should the container
clinics be placed given multiple possible future scenarios to minimise the total travel distance for patients, the
distribution companies and the building cost?

1.2 Research design

The main objective of this report is to find robust locations for container clinics in lower- to medium-income
and lower-income communities and determine the years in which they should be opened based on various future
development scenarios. For this health care demand, forecasts for the years in question are required. Based on the
knowledge gained from the literature study, associative forecasting can be used to forecast the primary health care
demand based on available household attributes for three scenarios. This demand forecast is done per scenario and
will be used as input into two models developed in this project. The first model is a scenario optimisation model.
In this model, the demand forecast per scenario can now be used as input to determine a good configuration of the
clinics by minimising the variable values for that scenario. The second model is the robust facility location model.
This model use demand forecast per scenario and the minimised variable values of the scenario optimisation
model as inputs to minimise the difference between the robust solution and the scenario solutions. The robust
model determines a configuration of clinics that will perform well in all three scenarios.

The methodology for this research design is discussed in the next section.
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1.3 Research approach

This project is defined as a multiple robust facility location project, focusing on finding robust locations for con-
tainer clinics for multiple possible future scenarios for the three metros. The word ’robust’ refers to a solution that
will perform well given any possible realisation of random parameters. The steps that will be followed to ensure
success are listed below. A detailed methodology is provided in Chapter 3 of this report.

1. Opportunity analysis: The research opportunity is identified in Section 1.1. There is a need to identify ro-
bust locations for container clinics in lower-income communities. For the development of a robust solution,
various future scenarios have to be considered.

2. Methodology: Literature is investigated in Chapter 2, to determine which household attributes can be used
to predict health care demand. In Chapter 3, the information gained from the literature study is used to
convert the available and relevant household attributes into health care demand. The demand is used as input
for the robust facility location model to determine the most robust locations for the container clinics.

3. Model development: A multiple facility location algorithm is developed to determine the good locations
for each scenario. Thereafter, a goal programming algorithm is developed to determine the most robust
locations. The model development is described in Chapter 4.

4. Evaluation: In this step, verification and validation of the model and solution is done. The evaluation of the
solution is discussed in Chapter 5.

5. Accessibility and budget analyses: Some of the constraints are altered in Chapter 6 to determine if the
model is useful for various cases.

1.4 Limitations

The scope of the project is inhibited by data availability. Only metros for which the synthetic population is available
could be used. The UrbanSim model outputs constrain this project. Numerous factors affect health care demand,
however, only the household attributes provided by the simulation model are considered in this project.

1.5 Expected contribution

This report aims to fill the gap in the literature between facility location, especially robust facility location and
urban planning. A proof of concept is developed, in the form of a python model, to determine robust locations,
specifically for container clinics, when urban planners and key role players consider multiple future development
strategies.

1.6 Document structure

In Chapter 2, a critical literature review is conducted on the correlation between household factors and health care
demand. Health care facility location models and robust solution alternatives are also investigated. Chapter 3
stipulates the process followed to forecast health care demand using household attributes as explanatory variables.
In this chapter, the methodology to determine robust locations is stipulated. The model is developed in Chapter 4.
In Chapter 5, the solutions for each of the scenarios as well as the robust solution are determined and investigated.
The results of the accessibility and budget analyses of the model are reflected in Chapter 6. Lastly, the report is
concluded in Chapter 7, and future work is described.
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Chapter 2

Literature review

This chapter contains a literature review of household factors that can be used in associative forecasting of health
care demand. After that, facility location models with and without uncertainty are explored. Methods to deal with
uncertainty and especially robust models and solution methods are investigated. Finally, heuristics are researched
to assist in solving the facility location model.

2.1 Health care demand forecasting

Forecasting can be done using one of two methods: qualitative forecasting and quantitative forecasting. Quantita-
tive forecasting relies on data, while qualitative forecasting relies more on estimates and opinions. The quantitative
method can be broken down into two categories: historical forecasts and associative forecasts. Historical forecasts
make use of historical data and trends to predict future demand. A study by Soebiyanto et al. (2010) made use of a
time series model, a historical forecasting technique, to predict seasonal influenza transmissions. Jones et al. (2008)
also made use of the time series model to forecast daily patient volumes in a hospital emergency department. It
was concluded that with enough data, historical forecasting methods and especially time series forecasting provides
relatively accurate forecasts for demand with seasonal or weekly patterns. Associative forecasts identify causal
relationships between variables (Jain, 2005). Actual demand data was not available to work from for historical
forecasts. However, synthetic household attribute data was made available and, therefore, associative forecasting
was selected to determine the health care demand. In this section, household attributes with a causal relationship
with health care demand are investigated.

2.1.1 Factors influencing health care utilisation

It is believed that the demand for health care is closely related to the health-seeking behaviour of individuals
(Sarma, 2009). There are many socio-economic characteristics of individuals that affect their health-seeking be-
haviour (Nahu, 2006) and some observable socio-economic characteristics were investigated to gain an under-
standing of how these factors can affect health care demand.

Availability and affordability are two of the critical decision influencers when it comes to seeking health care,
especially in developing countries. The effect of cost on health care demand is much higher in developing countries
because a large proportion of the population has a lower income and no medical aid (O’donnell, 2007).

Health care affordability is primarily influenced by two factors: household income and health care cost. In a
study done by Mwabu et al. (1993), a strong positive correlation between income and the probability of seeking
medical care compared to self-treatment was found. People in the upper and middle socio-economic classes are
more likely to seek medical help than people in the lower socio-economic class (Abera Abaerei et al., 2017).

Other factors related to income and affordability are investigated in the literature. Higher-income classes are
more likely to be part of a medical aid scheme. People who are part of a medical aid scheme are more likely to
seek medical care from a health care facility than people who are not (Abera Abaerei et al., 2017).

Even when free health care is provided, the monetary and time cost of travel to the local clinic is seen as a
health care cost (McLaren et al., 2014). Travelling cost is also identified as a reason why health care facilities are
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not visited. In some communities, residents do not have the finances to pay the travelling costs to far away clinics
as well as the out-of-pocket payments at the facility (Nteta et al., 2010).

In studies done by Mwabu et al. (1993) and Hotchkiss (1998), a negative correlation was found between
seeking medical care and the distance to the medical care facility. A study conducted in KwaZulu-Natal, South
Africa, found that households within 30 minutes from a clinic are ten times more likely to visit the facility when
ill than those further away (Booysen, 2003). The main contributors to this distance decay are gender, age, income,
access to transportation and other socio-economic factors. (Buor, 2003; Nemet and Bailey, 2000). Mitropoulos
et al. (2013) and Verter and Lapierre (2002) investigated the location of preventative health care facilities using an
exponential distance decay function to determine the probability of patients visiting a clinic. The distance decay
used in these studies can be seen in the graph in Figure 2.1. From this distance decay graph, it can be deduced that
distance indeed significantly impacts the probability of visiting a primary health care facility.

Figure 2.1: Distance decay function used by Mitropoulos et al. (2013) and Verter and Lapierre (2002)

Tanser et al. (2006) and Cooke et al. (2010) found that households further than 5 km from the health care facility
are half as likely to utilise the health care provided, even for life-saving anti-retroviral therapy for HIV/AIDS.
Therefore, if this is the case for life-saving treatment, the same or even worse statistics can be expected to treat
less life-threatening diseases or conditions.

Another factor identified in the literature is the age of the patient. According to Masiye and Kaonga (2016),
there is a slight negative correlation between age and the likelihood of seeking proper medical care rather than
self-medicating. The study done by Abera Abaerei et al. (2017) found that a one-year increase in age increases the
odds of seeking medical care by 2%. Similar results were found in a study done by Nteta et al. (2010); they found
a positive correlation between age and the utilisation of health care facilities in Tshwane municipality in Gauteng,
South Africa.

In 1994, a health care policy was implemented in South Africa to provide free health care for mothers and
children under the age of six years (Nteta et al., 2010). A study done by Abera Abaerei et al. (2017), found that
females are almost as likely as men to visit a health care facility.

When considering maternal health care visits, a study done by Wabiri et al. (2016) found that the probability
of a pregnant woman visiting the doctor four or more times while pregnant increases with age and an increase in
education level. In this study, the pregnant woman’s employment status also impacted the frequency of check-
ups. It was more likely for employed women to go for regular check-ups at a clinic or a doctor than unemployed
pregnant women.

Wellay et al. (2018) concluded that the perceived quality of health care provided was a statistically significant
variable when determining is a household will seek medical advice when ill. Abera Abaerei et al. (2017) found
that if a patient was satisfied with the quality of care provided, they were more likely to seek medical help again in
the future. Health care quality is often a subjective opinion and not necessarily a quantifiable household attribute
that can be used.

Various attributes contribute to health care utilisation. Most of these factors investigated are household at-
tributes. The highest correlation factors are distance to the facility and affordability. The other factors such as age,
gender, education, and employment status also have an impact, however, it is less significant. With the household

7



attributes that have the most significant impact on health care demand having been identified, facility location
models are investigated to serve the demand.

2.2 Facility location models

Facility location is an operations research branch concerned with locating at least one facility to optimise (max-
imise or minimise) at least one objective function such as cost, coverage, or travel distance (Farahani et al., 2010).
Facility location problems are generally classified as continuous or discrete. Continuous implies that facilities may
be placed anywhere in the feasible region. Discrete implies that facilities can only be located at candidate locations
(Ahmadi-Javid et al., 2017). In this study, the focus will be on discrete facility location models since these models
are most often used in the health care industry (Meskarian et al., 2017) and there is a fixed set of sites where the
facilities can be placed.

Discrete location modelling assumes that individual demand points can be grouped into selected discrete de-
mand points. This enables the modeller to represent a geographical area with a few hundred demand points, rather
than thousands of demand points. Another assumption made when using discrete location models is that there is a
finite set of candidate locations where the facilities can be placed (Meskarian et al., 2017).

In discrete location modelling, many models can be applied in the health care facilities industry. Discrete
location modelling is divided into three categories: covering-based problems, median-based problems and other
(Meskarian et al., 2017).

Covering-based models assume a critical coverage time or distance within which the demand must be served to
be considered covered. This class of discrete location models includes the p-centre model, the maximal-covering
model, and the set-covering model (Daskin, 2008). These models are min-max type of problems and are often
referred to as location-allocation problems since the facility location and demand allocation are done simultane-
ously. In the health care environment, covering-based models are most often used for locating emergency service
facilities (Ahmadi-Javid et al., 2017).

The set covering model was defined by ReVelle et al. (1976) and aims to minimise the number of sites needed
or total cost to cover all the demand points. However, in this model there is a limited set of facilities that can be
selected. This limitation can make it challenging to achieve full coverage (Peng and Afshari, 2014). The covering
model aims to maximise the number of demand points covered with a given set of sites (Daskin, 2008). A basic set
cover model will minimise the cost of the facilities needed to cover the demand point, with a constraint to ensure
that all demand points are covered (Ahmadi-Javid et al., 2017).

The maximal covering model aims to maximise coverage with a restrictive number of facilities that can be
located within a predefined maximum coverage distance (Church and ReVelle, 1974). This model is popular in
developing countries and rural areas since households are more widespread and it is not financially feasible to
locate a facility close to every household (Rahman and Smith, 2000). Marianov and Taborga (2001) applied this
maximal covering model in their study and the model located public health care facilities to maximise the coverage
of lower-income households, while still catering for the high-income population. Taiwo (2020) to identify optimal
or near optimal locations for COVID-19 in Nigeria.

The p-centre model aims to minimise the maximum distance to the facility for all demand points (Daskin,
2008). This model is often used when there are not enough facilities while the facility has to serve all the patients
in a specific area (Peng and Afshari, 2014). The p-centre model is suitable when equity for every patient is essential
(Du and Zhou, 2018). This model is often used in emergency health care planning (Hochbaum and Pathria, 1998).
The set covering problem can be used in a p-centre problem when the location of the facilities is restricted to nodes
of a network (Marianov and Taborga, 2001).

P-centre location problems are the third classical type of covering-based problems, which minimise the maxi-
mum travel distance (or time) among all demand points and the allocated facilities, considering that every demand
point is covered. When the facilities are uncapacitated, the demand points are assigned to the nearest open facili-
ties.

Median based models aim to minimise the demand-weighted average distance or distance cost between a de-
mand point and the assigned facility. These locations are referred to as the medians of the network. These problems
are also referred to as location-allocation problems as they try to solve facility location and demand allocation si-
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multaneously. These models are often used in distribution planning, where minimising the transportation cost is
essential. This class of discrete location models includes the p-median and fixed-charge model (Daskin, 2008).

The p-median model aims to minimise the total travelling distance from the demand node to the nearest fa-
cility by locating a number (p or less) of facilities. With an increase in average travelling distance, the facility’s
accessibility decreases and, therefore, the location’s efficiency decreases. An assumption made by this model is
that all patients choose the nearest facility. This model is one of the most popular, especially in locating public
facilities (Rahman and Smith, 2000). Some drawbacks of this type of model is that it may be inequitably forcing
some users to travel very far, and it does not consider the capacity of the facility (Meskarian et al., 2017). When
working with a median distance, having a few households travelling very far to reach a facility is cancelled out by
most of the households that have short distances to travel since the median is used and not the mean.

Fixed-charge facility location problems are similar to p-median problems. The main difference is that fixed-
charge facility location problems attempt to minimise the total travelling cost and the cost of opening the facilities.
In contrast, p-median problems disregard the cost difference at different candidate locations. All problems that do
not fit the abovementioned categories belong to the last category (other).

With an understanding of the various facility location models, the focus was placed on facility location models
in the primary health care environment.

2.2.1 Primary health care facility location problems

Primary health care is the first contact care given in hospitals and clinics. In this project, container clinics, which
are part of primary health care, are investigated. An investigation was done into primary care facility location
problems.

Selecting the criteria or objectives is a crucial aspect of location models. The objectives for private and public
facilities differ. Private entities make location decisions intending to increase the profit margin (Rahman and Smith,
2000). In contrast, for primary (public) health care facilities, ease of access for the community is one of the critical
considerations (Ahmadi-Javid et al., 2017). In recent years, cost minimisation has become a popular objective in
primary health care facility location problems.

When looking at the types of problems investigated in the primary health care environment, more than half of
the literature is on median-based location problems. Covering-based location problems have contributed to a large
portion of the literature in the last decade (Ahmadi-Javid et al., 2017).

Mestre et al. (2015) applied a p-median model in which the distance to a health care facility was set as the
constraint in an uncertain demand environment. Beheshtifar and Alimohammadi (2014) defined their p-median
problem with 4466 demand points and 100 candidate sites to find the optimal locations for clinics while minimising
the transportation cost and land cost. Kim and Kim (2013) determined the location of public health care facilities
within a given budget and by maximising the number of patients served in both private and public facilities, using
a Lagrangian heuristic for their p-median problem. Das et al. (2020) also made use of p-facility location model
to place new facilities amongst existing facilities while minimising the total transportation cost. citetDzator2019
did a comparison of optimisation models for placing ambulance stations in Queensland, Australia and found that
the p-medial model provides better solutions than the maximal covering models since it is not dependant on the
predetermined weights of the maximal covering models.

The problem solved in this report is similar to these p-median problems, intending to minimise cost and im-
prove accessibility. In the majority of these p-median health care-related problems, either transportation cost or
building costs are minimised; for this model, building costs, transportation costs and distribution costs are min-
imised.

Another critical distinction in facility location models is capacitated versus uncapacitated. With capacitated
facility location models, each facility has a specific capacity or limit, which it cannot exceed without penalties.
When using uncapacitated facility location models, there is no limit set on the capacity of the facility; therefore,
all facilities can serve an infinite demand (Sun, 2012). Many location-allocation problems in the literature incor-
porates a capacity constraint. Beheshtifar and Alimohammadi (2014); Güneş et al. (2014); Graber-Naidich et al.
(2015); Shishebori and Yousefi Babadi (2015) defined capacitated problems, limiting the maximum service ca-
pacity. Irawan et al. (2020) also incorporated capacities in their p-median problem by optimally locating facilities
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with optimal capacities as well. By including the capacity in the problem, these papers investigate more than the
accessibility; they also investigate the availability.

The problem addressed in this report has similarities with many of the problems solved in literature defined
as uncapacitated p-median problems. The objective is to minimise the total cost, with clinics being within a 5 km
radius for all residents of the areas investigated. The clinics in this report have a maximum capacity that they can
serve. Therefore, the problem in this report can be defined as an uncapacitated p-median problem with uncertainty.

2.2.2 Facility location decisions under uncertainty

Strategic planning of a health care network involves long-term decisions like facility location. These decisions
need to be robust to face future demand and supply pattern changes. The uncertainty in the environment increases
as the planning horizon moves forward (Mestre et al., 2015).

Rosenhead et al. (1972) divided decision-making environments into three categories: certainty, risk, and un-
certainty. In certainty environments, all the parameters are deterministic and known; this is not the case for the
risk and uncertainty environments. In risk environments, the uncertain parameter values are governed by known
probability distributions. Problems in the risk environment are usually solved using stochastic optimisation. Prob-
lems in an uncertain environment are solved with robust optimisation. Problems are considered uncertain when
the probability distributions of the random parameters are not known to the modeller. Both stochastic and robust
optimisation aims to find a solution that will perform well, given any possible realisation of the random parameters.
The definition of well differs from modeller to modeller and application to application. Defining the appropriate
performance level and measures is part of the modelling process (Snyder, 2006).

In the case where the probability distributions of the uncertain parameters are unknown, the parameters are
restricted. They lie in a pre-specified interval for continuous parameters or scenarios are developed using discrete
parameters. When dealing with scenarios, there are two common drawbacks. Developing these scenarios can be
a daunting task since nobody knows what will happen in the future and there is an unlimited number of possible
scenarios. Detailed planning documents and expert opinions are often required to develop plausible scenarios to
use (Kchaou Boujelben and Boulaksil, 2018; Snyder, 2006). The task of developing scenarios is less daunting
when using municipal planning documents. The second drawback is that a limited number of scenarios can be
considered due to computational restrictions. However, the scenario approach allows for more controllable models
and allows parameters to be statistically dependent, which is not always possible with continuous parameters
described by probability distributions (Snyder, 2006). This statistical dependence is required in the model since
the demand is correlated across geographical regions and time periods.

Two common approaches in scenario modelling are the min-max cost approach and the min-max regret ap-
proach. The min-max cost approach aims to minimise the maximum cost across all the scenarios. This is a very
conservative approach emphasising the worst-case scenario, therefore producing inadequate solutions for the other
scenarios. This model is best suited for problems when the solution should function well, even in the worst-case
scenario. Often it is more practical to plan based on a fractile target than the worst-case scenario. For example,
when a hospital tries to meet all the demand 90% of the time and therefore risks turning away patients in extreme
cases such as pandemics (Snyder, 2006).

A less conservative alternative approach was developed by Daskin et al. (1997): the α-reliability method.
This approach ensures that the set of scenarios used have a probability of occurring at least α. By including the
probability of the scenarios in the model, a more realistic solution can be provided (Mestre et al., 2015). In the
regret approach, the difference between the cost of each scenario’s optimal and the cost of the solution in a given
scenario is minimised.

Robust optimisation has been applied in various areas such as contracts in supply chain (Gumte et al., 2021),
electricity generation (Yang et al., 2021) and distribution networks (Xu et al., 2021). Baron et al. (2011) used robust
optimisation to locate multiple facilities in a network with uncertain demand over multiple periods. The locations
and capacities of the facilities are determined and the allocation of demand to these facilities is determined in
the study. The study consisted of 15 nodes and 20 periods. Baron et al. (2011) concluded that a problem of
this size would be difficult to solve using other stochastic methods. In robust optimisation, the linear programme
is converted into its robust counterpart by replacing the constraints with uncertainty coefficients to reflect the
uncertainty.
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When dealing with multiple objectives, which often occurs in robust optimisation, goal programming can be
used to find the most satisfactory solution in a feasible region (Chang, 2015). This technique has goals (desired
values) for each objective; the model then finds the solution that gets the modeller as close as possible to these
desired values. Goal programming minimises the deviation between the goal for each objective and the value of
the objective function.

Goal programming was used by Wichapa and Khokhajaikiat (2017) to find the best location for infectious
waste disposal from three candidate facilities serving 40 hospitals in sub-Northeastern Thailand. The total cost
(facility cost, operating cost, and transportation cost) of the solution was minimised and the priorities’ weights
were maximised. Miç et al. (2019) used a mixed integer weighted goal programming model to locate 42 primary
health care clinics out of 77 candidate sites in the north of Idleb. For the study, the total cost was minimised and
the number of people that have access to a clinic was maximised with a limited budget. The study focused on
facility location in conflict areas, but the framework can be used in different situations.

Ghodratnama et al. (2015) used goal programming in an uncertain environment to locate distribution hubs for
a two-echelon network. The uncertain parameters in the model were transportation costs, demand and opening
and closing costs. The objectives that were minimised are the total transportation and installation cost, the service
times, and the greenhouse gases. Goal programming assisted the authors in successfully finding robust locations for
the distribution hubs given the uncertain environment. The problem investigated in this report also seeks a robust
solution in an uncertain environment; goal programming is an efficient solution method for robust optimisation
since the problem has various conflicting objectives. The first objective of minimising the total building cost
will minimise the number of clinics placed. The second objective of minimising the travel distance to the clinics
for the households will push to as many as possible clinics as close as possible to the households for all three
scenarios. However, the households are not located in the same locations for all the scenarios. The last objective
of minimising the distribution distance will push the model to locate as few as possible clinics as close as possible
to the distribution centre.

There is a lack of dynamic location models in the literature that consider the changes in the problem environ-
ment over time, such as patient population and population migration (Ahmadi-Javid et al., 2017). This project
aims to assist in closing this gap in the literature, using robust optimisation and goal programming to locate health
care facilities in an uncertain environment using multiple scenarios.

2.3 Solution generation methods

A variety of tools and techniques are available to solve facility location problems. Exact methods or approximate
methods can be used. If the network is relatively small, exact methods can be used to find optimal solutions. These
methods are sure to find an optimal solution to the problem. If the problem gets too large, exact methods are no
longer feasible and approximate methods have to be used to obtain a reasonably good solution in a reasonable time
(Talbi, 2009).

Facility location problems are considered NP-hard problems. The NP-hardness of the problem is increased
with the size of the network. The aggregation level influence the size and the NP-hardness of the problem (Cebe-
cauer and Buzna, 2017). The network may have thousands of nodes, where each node represents a block or a zone
in a city. Since robust multi-facility location problems are classified as NP-hard problems, heuristics was the focus
of the research for the solution generation methods (Clarke and Wright, 1964).

Heuristics are used to find good solutions or a satisfactory feasible solution to the problem. A common heuristic
used in facility location problems is local search. This method proposed by Kuehn and Hamburger (1963) starts
with a feasible solution set and iteratively improves the solution by moving to the best neighbouring solution. The
neighbours of a feasible solution in facility location models are often obtained by adding or removing a facility or
changing the facility’s location. Kim and Kim (2013) used a heuristic algorithm based on the Lagrangian relaxation
to locate public health care facilities with a constrained budget while maximising the number of patients served.
This study was done for a small case study of 33 demand points; therefore, a good solution was reached in less
than 13 seconds. The problem addressed in this report is much larger than the problems solved with heuristics and,
therefore, metaheuristics are investigated.

Metaheuristics serve two primary purposes: solving problems faster and solving large problems. Various meta-
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heuristics are available. In recent years, Genetic Algorithm (GA)s, Tabu Search (TS), Simulated Annealing (SA)
have been most applied in facility location problems and are therefore further investigated in this section (Beheshti-
far and Alimohammadi, 2014). After an overview of these metaheuristics and an investigation into their application
in the facility location environment, a critical review is done to select the most appropriate metaheuristics to use
for this project.

2.3.1 Genetic algorithm

A GA is an evolutionary algorithm based on the adaptive process in nature. GAs take two possible solutions and
change aspects of the solutions to develop two new possible solutions. This process is done randomly to diversify
the solutions space. As the algorithm evolves, the better solutions have a higher chance of being selected again
(Katoch et al., 2020). The pseudocode of a typical GA as presented by Reeves (2003) can be seen in Algorithm 1.
A GA works with a set of solutions (population), with elements represented by individuals (chromosomes). The
first step is to select an initial population of chromosomes. These chromosomes evolve by applying crossover and
mutation operators. A new population is created each time these operators are applied. The new population is
evaluated against a fitness function to determine how good the solution is for the problem. In most cases, this
function is the objective function of the problem.

Typically, the larger the population size, the better the final solution. However, with an increase in the popu-
lation size, the computation time increases proportionally (Rajagopalan et al., 2007). Shariff et al. (2012) used a
GA to locate health care facilities using the maximal cover model. Aytug and Saydam (2002) applied a GA on a
maximum expected coverage location problem to locate ambulances. GAs produce high-quality solutions for set
cover location problems citepgazani2021capacitated. Beheshtifar and Alimohammadi (2014) used a GA to find
good sites for new clinics while minimising the total travel cost, inequality in access to the clinics and the total cost
of building the clinics. The length of the chromosome in this project varied depending on the number of clinics to
be opened. Different types and levels of relative importance for each objective were considered to obtain the best
solution for the case investigated in Tehran, Iran. This is a similar problem to the problem addressed in this report.
However, in this report, the placement is considered over 12 years and not only in a static environment. For the
problem investigated in this report, the individual is a list of all the possible sites. Each instance will represent a
zone and whether a clinic is opened in the zone in a given year.

Algorithm 1: Genetic algorithm

1 Create initial population of chromosomes;
2 while stopping condition is not satisfied
3 repeat;
4 if Crossover condition is satisfied
5 Select parent chromosomes;
6 Define parameters to crossover;
7 Apply the crossover operator;
8 end
9 if Mutation condition is satisfied

10 Choose mutation points;
11 Apply the mutation operator;
12 end
13 Evaluate fitness of offspring;
14 Until Sufficient offspring is created
15 end
16 return The best individual found
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2.3.2 Tabu search

A TS is based on the local search heuristic that restricts the feasible neighbourhood by neighbours that are ex-
cluded. This metaheuristic has a unique feature called a memory list. This list ensures that once a solution is
entered into the list, the solution cannot be revisited for some time (Rajagopalan et al., 2007). This short-term
memory, tabu list, stores recently visited solutions (or attributes of recently visited solutions) to avoid being stuck
in a local optimum. If all the neighbours are tabu, a move that worsens the objective value is accepted. The search
stops after a fixed number of iterations or after several consecutive iterations have been performed without any
improvement to the best-known solution (Gendreau, 2008). The pseudocode for a TS is shown in Algorithm 2, as
described by Talbi (2009). TS is a common heuristic used in facility location modelling.

Since the TS only uses one vector to search the space, the quality of the solution is highly dependent on the
quality of the initial vector. The best solution of the TS is not necessarily the final solution of the last vector since
the solutions are stored in the memory list (Rajagopalan et al., 2007). This memory list stores previous vectors
and their solutions to avoid cycling and keep the best vectors and their solutions. Once the algorithm has reached
its stop criteria, the memory lists can be viewed to find a good solution if the final solution was not good. The TS
algorithm has been successfully applied in numerous domains, including health care. Klein et al. (2020) used TS to
near optimally identify a network of dialysis facilities in rural areas. They were able to determine a good network
of facilites with a budget and capacity constraint. Sun (2012) used a TS algorithm to solve numerous capacitated
facility location problems. For small problems, the TS was able to find the optimal solutions. For larger problems
with more than 1000 nodes, the solutions were not the optimal solutions, however, they were close to optimal. Sun
(2012) concluded that TS performs well for capacitated p-median problems. Since the problem addressed in this
report is a p-median problem, the TS is a strong contender for the metaheuristic to be used.

Algorithm 2: Tabu Search

1 s = s0 ;
2 Initial solution Initialise the tabu list, medium-term and long-term memories;
3 Repeat
4 Find best admissible neighbour s′ non-tabu or aspiration criterion holds ;
5 s = s′ ;
6 Update tabu list, aspiration conditions, medium- and long-term memories ;
7 if intensification criterion holds
8 intensification;
9 end

10 if diversification criterion holds
11 diversification;
12 end
13 Until Stopping criteria satisfied
14 return Best solution found

2.3.3 Simulated annealing

The SA optimisation process is based on the heating and cooling of metals known as the annealing process. Similar
to the physical process, the results of the algorithm are gradually improved until a good solution is identified. A
SA algorithm can accept worse solutions, with some probability, as a mechanism to escape a local optimum. This
is a very time-efficient algorithm to run to get a reasonably good solution (Albright, 2007). The pseudocode for a
SA is shown in Algorithm 3, as described by Talbi (2009).

As in the TS, the SA algorithm uses a single vector to search for a solution. With this algorithm, the quality
of the final solution is also dependent on the initial vector. Rajagopalan et al. (2007) found that the SA algorithm
gets stuck in local optimas more frequently than any of the other metaheuristics when working with large data sets
of 1024 zones or more. The study found that setting the right temperature is crucial for not getting stuck in a local
optimum. Levanova and Gnusarev (2018) used a SA algorithm to solve a p-median problem with elastic demand
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and a cost constraint. The algorithm was successfully used to place supermarkets and hypermarkets to attract the
biggest demand share. Syam and Côté (2010) used SA to determine good location for traumatic brain injury units.
In the study, 100 candidate locations were considered, and 15 treatment units were opened while minimising the
total cost and service proportion requirements. The computation time increases exponentially as the number of
candidate locations increases. This is a crucial correlation to note as it is a large problem under investigation in this
project. Chiyoshi and Galvao (2000) tested a SA algorithm on multiple uncapacitated p-median problems with a
total number of vertices ranging from 100 to 900. The study found that the total number of vertices and the number
of facilities to be located have a strong correlation with the run time. An increase in the number of vertices or the
number of facilities to be located leads to an exponential increase in the run time.

Algorithm 3: Simulated annealing

1 Input: Cooling schedule
2 s = s0 (Generation of the initial solution)
3 T = Tmax (Starting temperature)
4 Repeat
5 Repeat (At a fixed temperature)
6 Generate a random neighbour s′ ;
7 4E = f(s′) - f(s) ;
8 if 4 E ≤ 0
9 s =s′;

10 else
11 Accept s with a probability e

−4E
T

12 end
13 Until Equilibrium condition
14 T = g(T);
15 Until Stopping criteria satisfied (e.g. T < Tmin)
16 return Best solution found

A comparison of these three algorithms was done by Arostegui et al. (2006), focusing on facility location
problems. These algorithms were evaluated on two aspects, the time to reach a good solution and the quality of
the solution. Regarding the time to reach a satisfactory solution, it was found that TS is the fastest, followed by
SA and then GA.

Rajagopalan et al. (2007) also did a comparison of these three algorithms and found that TS and SA have
faster times to a solution. However, all the investigated metaheuristics solved the larger problems within minutes.
Therefore, the time difference can be considered insignificant. When looking at the quality of the solutions between
the methods investigated in the study by Rajagopalan et al. (2007), the quality of the GA solutions were better than
the quality of the other two algorithms compared to the exact method solutions. This could be due to the fact that
the quality of the GA solution is not as dependent on the quality of the initial solution as with the TS and GA.
Since the time difference of the algorithms is considered insignificant and the quality of the GA is better than the
rest and not dependent on the initial solution, the GA was selected as the heuristic to solve the problems in this
report.

2.4 Concluding remarks

In the literature, many household attributes were found to correlate with health care demand and utilisation. The
main attributes are age, gender, income and distance to the health care facility. The research done on facility
location models led to the definition of the problem. Based on the literature, the problem of this report can
be classified as a p-median problem in an uncertain environment. Methods to deal with uncertainty in facility
location models were investigated. Robust optimisation was identified as the best solution method to deal with
the uncertainty faced in this problem. Scenarios and goal programming were selected as tools to assist in the
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robust optimisation. Finally, possible solution methods were investigated. As this is an NP-hard problem, several
heuristics and metaheuristics were considered. Based on comparisons found in the literature, the GA was selected
to solve the problem. Based on the information gained from the literature review, a detailed methodology is
developed in Chapter 3.
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Chapter 3

Methodology

This chapter unpacks the methodology employed to determine robust locations for the container clinics, given
three possible scenarios for the three metros. The methodology includes the unpacking and analysis of the data,
conversion of household attributes into health care demand and model development.

A brief outline of the methodology is explained in Figure 3.1. The first step was data preparation, followed by
solution generation. The last step was to conduct additional analyses.

Figure 3.1: Road map to identify robust locations for container clinics given multiple scenarios

3.1 Data unpacking

For this project, two data sets are required. The first is a data set of all the existing public clinics and hospitals
in the three metros under investigation. This data is required to calculate the initial accessibility measures. The
existing public health care facilities are used as the base facilities and all the container clinics built are added to
this set. The second data set required is the synthetic household distribution and attribute data. The household data
is necessary for the primary health care demand calculation in the model. The process of obtaining these data sets
is described in this section.

16



3.1.1 Public health care location data

The distribution of existing hospitals and clinics as per the Department of Health (2018) are illustrated in Fig-
ure 3.2. Johannesburg has 238 existing clinics, Ekurhuleni 174, and Tshwane 146. Even though Tshwane is the
largest metro, it has the least number of clinics. In Tshwane, 42% of the population is further than 5 km from an
existing clinic. In Ekurhuleni and Johannesburg, these percentages are much lower, 17% and 12% respectively.
Based on this, there is a clear need for primary health care facilities closer to the residents in all three metros.

Figure 3.2: Distribution of hospitals and clinics across the three metros

3.1.2 Scenario and household data

To identify vacant land, the combined area of all three municipalities were divided into 28 461 mostly homoge-
neous square zones of approximately 1km2 in size, as illustrated in Figure 3.3. Each zone comprises several
parcels, with varying size. Parcels refer to cadastral parcels — a representation of the individual erven. Parcels
are classified according to their underlying land-use and a parcel could either be built-up (having one or more
buildings present) or vacant (having no buildings). The built-up parcels can further be classified as commercial
or residential, depending on the building use. The difference between vacant and built-up parcels can be seen in
Figure 3.3. The dark blue dots represent commercial buildings and the light blue dots residential buildings. The
parcels with the dots are built-up and cannot be developed. The vacant parcels can be developed and, therefore,
only these parcels are considered when calculating the vacant area in the zone. Using this received zonal and
parcel data, the candidate zones were identified. For this project, only vacant zones that are 35 m2 or larger were
considered as candidate locations for the container clinics.

Urban growth modelling is an interdisciplinary field that encapsulates both scientific and technical research
areas. Various interrelated aspects are investigated simultaneously, such as transport models, geographical infor-
mation science, urban geography and complexity theory. The essence of urban modelling can be described as a
process of encoding part of the real world into a model system, running the model a number of times to simulate
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Figure 3.3: The three metros divided into zones and a zone divided into parcels to represent vacant and built-up
parcels

specific policy scenarios 30 years into the future, and then evaluating the relative success of each policy scenario
in achieving the stated objectives or performance measures of a city or region. The urban growth simulation model
developed and used by the Council for Scientific and Industrial Research (CSIR) aims to support cities in land use
planning and the optimisation of the location of facilities and services.

Three possible city forms and population distributions for the three metros were developed by the CSIR using
an urban growth simulation model. The scenarios reflect differences in household and economic growth in the
metros. The three scenarios are called: Trend, Economic spike and Relocation. These scenarios were developed
using various municipal planning documents such as the Metropolitan Spatial Development Framework (MSDF),
Integrated Development Plan (IDP), Built Environment Performance Plan (BEPP) and the Integrated Transport
Plan (ITP). These documents were used to identify development projects in the metros and the importance of the
projects to the municipalities.

All these scenarios started with the same synthetic population distribution in 2018. The distribution of house-
holds in 2018 can be seen in Figure 3.4. In 2018, there were 2 858 933 households in the lower-income categories
being investigated in this project. A description and unpacking of each scenario follow.

Figure 3.4: The distribution of households across the metros in 2018
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Trend scenario

The trend scenario is a continuation of the current development trend. The household growth and economic
development follow the current growth trends based on historical data from 2011 to 2018. Half of the planned
municipal development projects will be implemented in the years up until 2030. Figure 3.5 shows the distribution
of lower-income and lower-middle-income households by 2030. In this scenario, the households that fall into the
lower-income categories increased to 5 932 592 by 2030.

Figure 3.5: The distribution of households in the trend scenario in 2030

Economic spike scenario

The economic spike scenario is based on the trend scenario. The development follows the current trend, with one
exception, the development focus is on employment opportunities. This scenario sees an increase in the number
of jobs available and a decrease in the number of low-income and lower-middle-income households as a result
of an increase in jobs. The distribution of these households is displayed in Figure 3.6. There as significantly
fewer households in the investigated income classes in this scenario when compared to the trend scenario. In this
scenario, by 2030, the number of households earning R108 000 or less per year is 3 589 217.

Figure 3.6: The distribution of households in the economic spike scenario in 2030

Relocation scenario

This last scenario is once again based on the trend scenario. However, more housing development projects are
implemented, allowing households to relocate to these three metros from rural areas. In this scenario, the number of
households in the lower-income and lower-middle-income category increased. There are 7 563 688 households in
the lower-income and lower-middle-income categories by 2030. In Figure 3.7, the distribution of these households
is illustrated. The increase in households is mainly in the Tshwane municipality.

19



Figure 3.7: The distribution of households in the relocation scenario in 2030

For each of these scenarios, household attribute tables are available up until 2030. These attribute tables are
unpacked in the data preparation and used as input for the individual scenarios. Further analysis of the scenarios
with regard to the specific cases follows in the next section.

3.2 Data preparation and analysis

3.2.1 Identify vacant zones

With the public health care data and synthetic household information available, data preparation commenced. For
each of the scenarios, the zones with enough vacant space for a container clinic were identified. The dimensions of
the containers used are 12 m in length, 2.3 m in width and 2.4 m in height. Based on the typical container footprint
covering approximately 28 m2, vacant land of at least 35 m2 is deemed sufficient to locate a typical container
clinic (Cooke et al., 2010). To determine the vacant area in a zone, the area of all vacant parcels in the zone were
aggregated.

All zones with enough vacant space for container clinics were included in the set of candidate locations. The
location of these zones within the three metros are indicated in blue in Figure 3.8. A pharmaceutical distribution
centre was identified in Centurion and was used in this study. The distribution centre is illustrated with the red
dot in Figure 3.8. All deliveries to the clinics are made from this distribution centre. This distribution centre was
selected because it is an existing pharmaceutical distribution centre close to the centre of the three municipalities
and many of the other existing pharmaceutical distribution centres are located in other provinces. By selecting
a distribution centre in another province, the total distribution distance would increase significantly. The long
distance travelled to reach Gauteng from another province would make the shorter distances travelled within the
province to the clinics seem insignificant.

3.2.2 Demand conversion

The next step was to identify the available household attributes relevant to health care demand. For each scenario,
household attribute tables are available up until 2030. The household attributes available for the UrbanSim model
are listed in Table 3.1. Based on investigated literature, the household income, the number of children, distance to
nearest health care facility and household size can be used to determine health care demand.

The following three attributes were used with proportions: the number of children, income, and distance to
the nearest facility to convert the data into health care demand. For all households, the probability of visiting the
clinic if it is within a 5 km radius is one. This probability decreases exponentially with the increase in distance.
Following the distance decay functions used in the literature, the distance decay function used for this project was
calculated as y = 0.95x, where x is the distance (in km) to the nearest clinic and y is the probability of visiting
a clinic when ill. The scale used for this conversion is shown in Figure 3.9. In the model, the distance to the
nearest facility is a dynamic variable as the distance to the nearest facility depends on where the facilities are
placed. Figure 3.10 shows the proportion of the lower-middle-income households in each distance bracket for the
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Figure 3.8: Locations of candidate zones in the three metros and the location of the distribution centre

Table 3.1: Household attributes available

Explanatory variable Variable type
Number of children in the household Numerical
Number of workers in the household Numerical
Household income per year Numerical
Age of household head Numerical
Household size Numerical
Distance to nearest health care facility Numerical

base year (2018) and the three scenarios, where these distances are the distance to the nearest existing clinic. The
proportions in the trend scenario are slightly higher than in the base year. In the economic spike scenario, the
proportions are slightly lower than the base year. Lastly, the relocation scenario proportions are slightly higher
than those of the trend scenario. All these variations in proportions are simply due to the change in the number of
households in the investigated income categories.

Only lower-income and lower-middle-income households were investigated in this study. A total household
income of R 108 000 per year was the threshold used to differentiate lower-income and lower-middle-income
households from others. These lower-income and lower-middle-income classes were subdivided into income
classes used in the simulation model. For the rest of the report, the following classes are used: class 1 (R 0 -
R 9 600), class 2 (R 9 601 - R 42 000) and class 3 (R 42 001 - R 108 000). Each of the income classes had a
probability of an individual visiting a clinic when ill assigned to them. In line with findings in the literature, these
probabilities decrease as the income decreases. Exact proportions for a South African context were not found
during the literature study, therefore the proportions used in this study were selected using the knowledge gained
from the literature and applying it in the South African context. The probabilities used in this study are shown in
Table 3.2.

Table 3.2: Probability of individual visiting a clinic when ill based on annual household income

Income class Household income per year (R) Probability of visiting the facility when ill
1 0 - 9 600 0.6
2 9 601 - 42 000 0.7
3 42 001 - 108 000 0.75

A comparison of the number of households in each of these categories for all the scenarios is illustrated in
Figure 3.11. The distribution of households in the income categories remained more or less the same in all the
considered scenarios; only the number of households in the categories differed. The number of households in
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Figure 3.9: Distance decay function used Figure 3.10: Accessibility breakdown per income cate-
gory for the three scenarios

the income classes investigated in the economic spike scenario was significantly lower than in the trend scenario.
However, it was almost the same as in the base year. In the relocation scenario, there is an apparent increase in the
number of households in the lower-income classes compared to the trend and the economic spike scenario.

Figure 3.11: Income distribution comparison of the base year and three scenarios

Almost 40% of the population in these metros form part of the study based on the yearly household income
of R 108 000 or less. A breakdown of the income and distance to the nearest clinic for the base year and all
three scenarios only considering existing clinics is illustrated in the graphs in Figure 3.12. In the base year, the
trend scenario and the relocation scenario, income class 2 has the highest percentage of households further than
5 km away from a clinic. For the economic spike scenario, it is income class 1 that has the highest percentage of
households further than 5 km from the nearest clinic. This percentage is significantly higher than in any of the
other scenarios. The trend scenario graph looks similar to the base year graph, however, there is a reduction in the
percentage of households not within a 5 km radius of a clinic. About 40% of the households in the bottom two
income classes of the trend and relocation scenario are further than 5 km from the nearest clinic. In the relocation
scenario, access to clinics is spread more evenly across the income classes than in the other scenarios. These
graphs indicate the need for health care facilities closer to the community.

From the literature, it was identified that households with children are more likely to visit a health care facility.
Therefore, in this study, households with children are considered more likely to visit a health care facility than
households with no children. If a household has one or more children, the probability of visiting a health care
facility when ill is 0.85. For a family with no children, this probability reduces to 0.75. Exact probabilities for a
South African case study were not found, therefore these arbitrary values were selected based on the research done
during the literature study.
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(a) Base year (b) Trend scenario

(c) Economic spike scenario (d) Relocation scenario

Figure 3.12: Distance breakdown to existing clinics per income class for the base year and the three scenarios

In order to determine the health care demand per household, these probabilities were multiplied by the house-
hold size. This demand for each household was aggregated to a total demand per zone used in the model. Algorithm
4 depicts the pseudo algorithm used for demand conversion.

Algorithm 4: Health care demand per zone calculation without considering distances

1 for year in range(start year, end year) do
2 Calculate probability of visiting a clinic based on household income (p1)
3 Calculate probability of visiting a clinic based on the number of children in the household (p2)
4 Calculate demand per household: (household size ∗ p1) ∗ (p2)
5 Add the demand per household for all the households in the zone
6 end
7 return Demand per zone without considering distance

3.3 Model development

Once all the data sets have been prepared, the model is developed. The individual scenario models, as well as the
robust model, are developed. The model development is fully described in Chapter 4.

3.4 Verification and validation

Once a good configuration for each scenario and the robust configuration have been determined, the model ver-
ification and validation is done. The verification of the model is simply to confirm that the model does what it
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is supposed to do: find good scenario configurations and robust configurations. The validation determines if the
solutions from the model are valid. For this project, the robust configuration is deemed valid if the total difference
between the robust configuration and scenario configuration is no more than 25% for each of the scenarios. No
fixed percentages were found to determine if a solution is robust or not as it is subjective to every case, therefore
25% was selected since the three scenarios being investigated are very different. This robustness level can be
adjusted based on the similarity required in the solutions. The smaller the robustness level, the closer the solution
has to be to the original solutions.

With the methodology set out for this project, the last step was to select the tools to solve the problem.

3.5 Tools

A variety of software packages are available to solve the problem stated above. Standard software packages used
to solve these facility location problems include Lingo, R and Python. Lingo is a tool used to solve linear, non-
linear, and numerous other optimisation models. Python is a common programming language and it is often used
for optimisation models. R is also a programming language that can be used for solving the problems identified
in this report. Lingo has a free version with limited capabilities, however, with the scope of the problem, the full
version will be required. Both Python and R are open-source software. Any of these software packages could be
used, however, for compatibility reasons with the UrbanSim models, Python was selected as the tool to use for the
analysis models.

There are numerous packages available in Python to assist in solving the problem. A few of these optimisation
packages were investigated. Pyomo (Hart et al., 2017), DEAP (Fortin et al., 2012) and PuLP (Mitchell et al., 2011)
are the alternatives investigated for this project. PuLP is an open-source package used for linear programming.
Pyomo is an open-source Python package for formulating and analysing optimisation models. This package is
not restricted to linear programming; it can handle a wide range of problems, including quadratic and mixed
integer stochastic programming. DEAP is an evolutionary computational framework package that can be used to
solve a wide range of problems using evolutionary algorithms. Due to the size of the problem, heuristics such
as evolutionary algorithms will be required to solve the model in an acceptable time. DEAP and Pyeasyga are
both heuristic packages that can be used in Python, however, DEAP has more alternatives within the package and
more documentation for ease of use. Therefore, DEAP was the selected Python package to implement to solve the
problem.

3.6 Concluding remarks

The methodology followed in this project was laid out and the data sets used were unpacked. The investigation
of the current clinic network in the three metros made it clear that there is a need for improving the accessibility
to primary health care in all three metros, especially in Tshwane. Three scenarios with differences in locations
and number of households were created as test scenarios for this project. For each of these scenarios, household
attribute tables are available up until 2030. The number of children, household income and distance to the nearest
facility were then selected as the attributes to include in the demand calculations. A distance decay function was
derived from the literature to calculate the probability of a household member visiting a clinic when ill. For the
probabilities based on the household income and number of children, fixed intervals were used with probabilities
assigned to the intervals. Software to assist the modeller was investigated; Python was the software selected and
DEAP the package to assist with the Genetic Algorithm (GA). The model development is described in the next
chapter.
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Chapter 4

Model development

This chapter discusses the model developed to solve the problem and the assumptions made. To solve this problem,
two models were developed. The first is a facility location model and the second is a robust facility location model.
The first model was developed to determine a good configuration and variable values for each scenario. This model
determines when and where to locate the container clinics from a set of available locations. In this model, three
variables were minimised: the total building cost, the total travel distance from the households to the facility, and
the total distribution distance.

The results of the first model were used as input to the second model. The robust facility location model also
determines a good configuration and minimises the variable values. This model finds a configuration as close as
possible to the individual model results for the three scenarios. The three variables minimised in the first model
are also minimised in this model. However, the difference between the variable values for the different scenarios
of a given configuration are minimised and the difference between the scenario variable values of the scenario and
those of the selected configuration.

The assumptions made for the model and the mathematical models are described next.

4.1 Assumptions

Several assumptions were made for the model and are stated next.

• All deliveries to the clinics are made from the distribution centre identified in Chapter 3. The location of
the distribution facility will have a significant impact on the output of the model since the distribution costs
have an impact on the decision of where to locate the clinics.

• Only households with an annual income of R 108 00 or less are considered in this study. These are the
households that are more likely to make use of public clinics and do not necessarily have sufficient household
funds to travel far for medical care.

• At least 90% of the households must be within a 5 km radius of a clinic. It is not necessarily financially
feasible to have primary health care within 5 km from all households. The 90% ensures that a vast majority
of households have accessible health care.

• The accessibility goal has to be reached within the first five years. Since access to primary health care is a
right of all South Africans, a relatively short time frame was selected to improve the current accessibility to
health care.

• The cost of building a clinic in 2018 was R 171 794 (Big Box Containers, 2020).

• A yearly building cost inflation of 3.5% is applied as per the Building Cost Index (Bureau for economic
research, 2019). The building cost inflation will have an impact on when the buildings are built; if the
inflation is very high, it will force the model to open more clinics at the beginning to reduce the costs.

• The cost of building a clinic will be fixed, irrespective of the location. The building cost only includes
the actual cost of building and not the acquisition of land and many other factors traditionally included in
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the building cost. Having a fixed building cost will ensure that there is no bias against building in more
expensive areas or only building in remote areas where the cost of land is cheaper.

• No operating costs are considered in the model. The model only considers the cost of opening the clinics.
By not including operating costs, clinics will be built as soon as possible as only the initial construction cost
is minimised.

• The distance between the facilities and zones were considered as straight line distances multiplied by a crow-
fly factor of 1.265 (Barthelemy, 2011). Using this distance rather than actual road distances could mean that
the facility is not within 5 km travel distance due to geographical reasons such as mountains or rivers not
being part of the calculation. However, straight line distances with a crow-fly factor reduce the problem’s
size for not having to use a road network.

The model’s health care demand was considered a dynamic variable as the distance variable used to determine
the demand is a dynamic variable. All the other variables used to calculate the demand were static variables. A
mathematical model was developed with these assumptions to determine a robust configuration of when and where
to open clinics, given the three scenarios.

4.2 Mathematical model

This conceptual problem was converted into a more concrete problem by modelling it mathematically. The fol-
lowing sets and variables were defined for the model.
Let:
E be the set of existing clinics
L be the set of candidate locations for the container clinics
S be the set of scenarios, 1 = trend, 2 = economic spike, 3 relocation
Y be the set of years from 2018 to 2030
Z be the set of zones with possible patients

Let:

by , Cost of building a clinic in year y ∈ YYY
dzy , Demand per zone z ∈ ZZZ for year y ∈ YYY
g1f , The total cost of the good configuration for scenario f ∈ SSS
g2f , The total distance of the good configuration for scenario f ∈ SSS
mzi , Distance (km) between households in zone z ∈ ZZZ and health care facility i ∈ E,LE,LE,L

ni , Distance (km) between the distribution centre and health care facility i ∈ E,LE,LE,L

ozy , Number of households in zone z ∈ ZZZ for year y ∈ YYY
p1zy , Calculated number of households in zone z ∈ ZZZ that will visit a clinic for year y ∈ YYY

based on the probabilities

p2z , Probability of a household in zone z ∈ ZZZ visiting a clinic based on the distance to the nearest facility

v1f , The cost of a configuration for scenario f ∈ SSS
v2f , The distance of a configuration for scenario f ∈ SSS

wly ,

{
1 if clinic l ∈ LLL is opened in year y ∈ YYY
0 otherwise

xziy ,

{
1 if household in zone z ∈ ZZZ is served by clinic i ∈ E,LE,LE,L in year y ∈ YYY
0 otherwise

(4.1)
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For the individual scenarios, two objective functions are minimised. The first is the total building cost calcu-
lated in Equation (4.2). The second objective function (Equation (4.3)) is to minimise the total distance travelled
by the households to the nearest clinic and the total distance from the distribution centre to all the open clinics.

min z1 =
∑
y∈YYY

∑
l∈LLL

bywly (4.2)

min z2 =
∑
y∈YYY

∑
z∈ZZZ

∑
i∈E,LE,LE,L

xziymzi +
∑
y∈YYY

∑
l∈LLL

∑
i∈E,LE,LE,L

(12− y)wylni (4.3)

For the robust model, the two objective functions, as stated above, are minimised. The difference between the
good values of the scenarios and the objective value of the current configuration is minimised in Equation (4.4).
The difference between the total distance travelled for the scenarios’ good solutions and the current configura-
tion with a 90% accessibility constraint is minimised as well as the total travel distance variation of the current
configuration for the three scenarios using Equation (4.5).

min z3 =
∑
f∈SSS
|g1f − v1f | (4.4)

min z4 =
∑
f∈SSS
|g2f − v2f |+ σ(v21, v22, v23) (4.5)

The model is subject to the following constraints:∑
l∈LLL

∑
y∈YYY

wly ≥ 1 (4.6)

∑
y∈YYY

wly ≤ 1 ∀ l ∈ LLL (4.7)

P (min(mzixziy) ≤ 5) ≥ 0.9 ∀ z ∈ ZZZ, y ∈ YYY , i ∈ E,LE,LE,L (4.8)∑
i∈E,LE,LE,L

xziy ≥ 1 ∀ z ∈ ZZZ, y ∈ YYY (4.9)

∑
y∈YYY

xziy ≤ 13
∑
y∈YYY

wly −
∑
y∈YYY

y(wly) ∀ i, l ∈ LLL, z ∈ ZZZ (4.10)

p2z = 0.95mzi ∀ z ∈ ZZZ, i ∈ E,LE,LE,L (4.11)

dzy = ozypzyp2z ∀ z ∈ ZZZ, y ∈ YYY (4.12)

wly ∈ {0; 1} ∀ l ∈ LLL, y ∈ YYY (4.13)

xziy ∈ {0; 1} ∀ z ∈ ZZZ, i ∈ E,LE,LE,L, y ∈ YYY (4.14)

At least one clinic must be built; this is enforced by Equation (4.6). Equation (4.7) ensures that a clinic cannot
be built more than once. Equation (4.8) ensures that there is a clinic within 5 km of 90% of the households inves-
tigated in this study. Equation (4.9) ensures that all households are serviced by at least one clinic. Equation (4.10)
ensures that a clinic can only serve patients if it has been opened that year or in a previous year. The probability
of a household member going to a clinic when ill based on the distance to the nearest facility is calculated in
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Equation (4.11). The calculation of the health care demand based on the available household attributes and the
distance to the facility is given in Equation (4.12). Equation (4.13) - Equation (4.14) are the binary constraints for
the decision variables.

This mathematical model was solved using GA, which was coded in Python. The code used to solve the model
is shown in the next section.

4.3 Python code

This section is a breakdown of the code and functions developed in Python to solve this problem, starting with
the set-up for the GA parameters. These parameters are set using Algorithm 5. For this model, the values of the
parameters are as follow. A maximum number of 50 generations was selected to reduce the running time of the
model. A population size of 30 ensured a large enough population to get a wide range of solutions. The probability
of crossover occurring was set to 50% and the probability of a mutation occurring was set to 40%. µ is the number
of individuals to select for the next generation and λ is the number of children to reproduce at each generation.
The length of an individual was set to the number of possible locations for the clinics.

Algorithm 5: Genetic algorithm parameters

1 def set ga parameters():
2 global max generations,hall of fame size,population size,p crossover,p mutation,lambda ,mu
3 max generations = 50 hall of fame size = 50
4 population size = 30
5 p crossover = 0.5
6 p mutation = 0.4
7 λ = int(0.6 * population size)
8 µ = int(0.6 * population size)
9 individual length = n open zones

10 return max generations,hall of fame size,population size,p crossover,p mutation,λ,µ,individual length

With the parameters for the GA set, the functions to calculate the objective and variable values are developed.
Algorithm 6 was used to calculate the building cost of all the clinics that are opened between 2018 and 2030. This
calculation includes the building inflation of 3.5% per year. The total cost function works through the individual
and if a clinic is built, it calculates the building cost for that year with b as the building cost in the first year. These
building costs are added to calculate total building costs for the individual.

Algorithm 6: Total cost calculation

1 for j in range(len(individual)): do
2 for i in range(2018,2031): do
3 if individual[i] > 0:
4 building cost = b((1+0.035)(i));
5 total building cost += building cost
6 end
7 end
8 end
9 return total building cost

The code in Algorithm 7 shows the calculation for the total household travel distance for all the households to
the nearest clinic for all the years. This function loops through all the years to calculate the yearly and the total
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distance travelled. The first step is to identify all the clinics opened in the specific year or previous years and add
them to the list of open clinics. This list of open clinics is used to filter the distance matrix. The filtered distance
matrix is used to get the shortest distance to a clinic for all the households. These distances are stored for the
yearly distance and added together to get the total household travel distance.

Algorithm 7: Total travel distance calculation

1 for q in range(1,n years+1): do
2 zone travel dist = 0;
3 i list = set(list(range(1,q+1)));
4 indices = [z for z, y in enumerate(individual) if y in i list] ;
5 new zone indices = [] ;
6 new zone indices 2 = [] ;
7 for zz in indices: do
8 new zone indices.append(df open zones 2.loc[df open zones 2[’list index’] == zz].index[0])
9 end

10 for zz in new zone indices: do
11 new zone indices 2.append(centroids.loc[centroids[’zone id’] == zz].index[0])
12 end
13 keep = df.iloc[new zone indices 2];
14 keep = keep.append(existing df)
15 for col in keep.columns: do
16 if col in hh count df.index.values:
17 n hh = hh count df.loc[col,2017+q];
18 keep3 = keep[col];
19 acc min = min(keep3);
20 zone travel dist += n hh*acc min;
21 end
22 end
23 dist dict[”year 0”.format(q)] = zone travel dist;
24 total hh travel dist += zone travel dist
25 end
26 return dist dict, total hh travel dist

The total distance from the distribution centre to all the newly opened clinics for each year is calculated with
the code in Algorithm 8. This function systematically goes through the individual and the years to determine when
the clinic was opened. Once a clinic is opened, it is serviced by the distribution centre for the remainder of the
period. All these distances are added to calculate the total distribution distance for the newly opened clinics.

The accessibility of the households to the open clinics was calculated using the code in Algorithm 9. The
function loops through all the years and adds the newly opened clinics for that year and the previously opened
clinics to the list of existing clinics. This list is then again used to filter the distance matrix. The minimum distance
for the household to the clinic is determined; if it is further than 5 km, the household is added to ’not accessible’.
Once all the non-accessible households have been identified, the accessibility percentage for the year is calculated.
This accessibility is used in Algorithm 10 to enforce the accessibility constraint that 90% of the households must
be within 5 km of a clinic after the first five years. For the given individual, the yearly accessibility is calculated
as follows: If the accessibility is less than 90% after the first five years, the constraint is broken and therefore, the
solution will be deemed infeasible.
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Algorithm 8: Total distribution distance calculation

1 for j in range(len(individual)): do
2 for i in range(n years): do
3 if individual[j] == 1:
4 distribution dist += n[j] *n years
5 end
6 else if individual[j] == 2:
7 distribution dist += n[j] *(n years-1)
8 end
9 else if individual[j] == 3:

10 distribution dist += n[j] *(n years-2)
11 end
12 else if individual[j] == 4:
13 distribution dist += n[j] *(n years-3)
14 end
15 else if individual[j] == 5:
16 distribution dist += n[j] *(n years-4)
17 end
18 else if individual[j] == 6:
19 distribution dist += n[j] *(n years-5)
20 end
21 else if individual[j] == 7:
22 distribution dist += n[j] *(n years-6)
23 end
24 else if individual[j] == 8:
25 distribution dist += n[j] *(n years-7)
26 end
27 else if individual[j] == 9:
28 distribution dist += n[j] *(n years-8)
29 end
30 else if individual[j] == 10:
31 distribution dist += n[j] *(n years-9)
32 end
33 else if individual[j] == 11:
34 distribution dist += n[j] *(n years-10)
35 end
36 else if individual[j] == 12:
37 distribution dist += n[j]
38 end
39 end
40 end
41 return distribution dist
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Algorithm 9: Yearly accessibility calculation

1 def accessibility func(individual):
2 accessibility total = 0
3 d = {}
4 d percentage = {}
5 existing df = df.iloc[existing clinics zones,:]
6 for q in range(1,n years+1): do
7 accessibility = 0
8 i list = set(list(range(1,q+1)))
9 indices = [z for z, y in enumerate(individual) if y in i list]

10 new zone indices = []
11 new zone indices 2 = []
12 for zz in indices: do
13 new zone indices.append(df open zones 2.loc[df open zones 2[’list index’] == zz].index[0])
14 end
15 for zz in new zone indices: do
16 new zone indices 2.append(centroids.loc[centroids[’zone id’] == zz].index[0])
17 end
18 keep = df.iloc[new zone indices 2]
19 keep = keep.append(existing df)
20 for col in keep.columns: do
21 keep3 = keep[col]
22 acc min = min(keep3)
23 if acc min > 5:
24 no accessible += 1
25 end
26 accessibility total += accessibility
27 d[”accessibility 0”.format(q)] = no accessible
28 end
29 d percentage[q] = (100* ((n zones-list(d.values())[q-1])/n zones))
30 end
31 accessibility total = sum(d.values())
32 accessibility percentage = sum(d percentage.values()) / len(d percentage.values())
33 return float(accessibility percentage)

Algorithm 10: Accessibility constraint

1 def accessibility year(individual):
2 accessibility func(individual)
3 for key, value in d percentage.items(): do
4 if key > 5:
5 if value < 90:
6 return False
7 end
8 end
9 return True

10 end
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Algorithm 11: Evaluation function for the individual scenarios

1 def evaluate(individual):
2 accessibility percentage 1 = accessibility func(individual)
3 total cost 1 = cost func(individual)
4 dc travel dist 1 = dc travel distance(individual)
5 hh travel dist 1 = hh travel distance(individual)
6 total dist = dc travel dist 1+ hh travel dist 1
7 return total cost 1,accessibility percentage 1, dc travel dist 1, hh travel dist 1

Evaluation function in Algorithm 11 use all these functions to determine the variable values. Using the GA,
the total cost, total household travel distance and distribution travel distance were minimised while satisfying the
accessibility constraint to determine a good configuration for each scenario. The solutions obtained from the model
for each scenario are unpacked in the next chapter.

The robust model uses the same functions as the individual model; the only exception is the evaluation function.
The variable values minimised in the individual models are used in the goal programming function to minimise
the difference between the variable value in the robust model and the scenario solutions. The standard deviation of
the total household travel distances across the different scenarios with the robust configuration is minimised. The
variables calculated in this goal programming function are minimised and the accessibility is calculated to ensure
that the accessibility constraint is adhered to. Using Algorithm 12, a robust configuration is determined that will
perform well for multiple scenarios. The robust configuration is analysed in the next chapter.

Algorithm 12: Evaluation function of the robust model

1 def goal programming(individual):
2 total cost = cost func(individual)
3 total cost 2 diff base= total cost - total cost base
4 total cost 2 diff economic= total cost - total cost economic
5 total cost 2 diff reloc= total cost - total cost reloc
6

7 distribution dist 1 = dc travel cost(individual)
8 total dc dist diff base= distribution dist 1 - total dc dist base
9 total dc dist economic= distribution dist 1 - total dc dist economic

10 total dc dist reloc= distribution dist 1 - total dc dist reloc
11

12 hh travel dist trend = hh travel cost(individual,hh count df trend)
13 hh travel dist economic = hh travel cost(individual,hh count df economic)
14 hh travel dist relocation = hh travel cost(individual,hh count df relocation)
15

16 base diff = abs(base opt - hh travel dist trend)
17 economic diff = abs(economic opt - hh travel dist economic)
18 relocation diff = abs(relocation opt - hh travel dist relocation)
19

20 sd = statistics.stdev([hh travel dist trend, hh travel dist economic, hh travel dist relocation])
21 accessibility percentage = accessibility func(individual)
22 return base diff, economic diff, relocation diff, cost diff, sd, accessibiility percentage, total cost,

distribution dist 1, hh travel dist trend, hh travel dist economic, hh travel dist relocation
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4.4 Concluding remarks

The assumptions made in this project and the impact thereof on the model and solution are described. A few key
assumptions were made that will impact the results of the model. A fixed building cost irrespective of the clinic’s
location is assumed, however, inflation is included in the cost. Straight line distance with a crow-fly factor of 1.265
is used when calculating accessibility. The 90% accessibility goal has to be reached within the first five years of
the model and sustained from then onwards. With these assumptions, mathematical models were developed to
convey the problem: a model to find good solutions for the individual scenarios and a goal programming model to
find the robust solution. These models were converted into Python models to find a solution to the problem in this
report with a GA. The solutions of these models are discussed in the next chapter.
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Chapter 5

Solution

In this chapter, the solutions obtained from the models defined in Chapter 4 are unpacked. For each scenario,
good locations for the container clinics were identified using a genetic algorithm. The locations were selected by
minimising three variables: the total distances travelled by the households to their nearest clinics, the total distance
from the selected distribution centre to the open clinics and the total building cost. As there is no operating cost
included in the model that penalises the opening of clinics before it is required, the majority of clinics are opened
in the first year to minimise the building costs. This is a known shortcoming in the model based on the assumptions
made. An accessibility target of 90% was added to the model to ensure that at least 90% of the households are
within 5 km of the nearest clinic within the first five years. This accessibility target requires opening a large number
of clinics in the almost 10 000 km2 area investigated. To identify robust locations for the container clinics, goal
programming was used. The values of variables minimised in the scenario model were used as the goals.

The solutions for each scenario and the robust solution are described below. The placement of the clinics, the
total travel distance and the improvement in accessibility are analysed.

5.1 Trend scenario solution

For the trend scenario, most of the clinics were opened in the first year to respond to the immediate demand and
accessibility target that has to be reached within the first five years. Opening the facilities in the first year min-
imises the total building cost due to the building inflation incorporated in the model and alleviates the immediate
underserved demand. Since no operating costs were included, there are no incentives to open clinics at a later
stage. This skews the majority of clinics to be opened in the first year as there is no penalty for opening a clinic
a few years before it is required. The rest of the clinics are opened as the demand increases over the years. The
accessibility percentage and the variable values minimised by the model are provided in Table 5.1. From 2018 to
2019, there is a significant increase in accessibility from about 60% to 90%. The opening of the initial clinics also
led to a large decrease in total household distance travelled as the clinics are now much closer to the households.
There is also an increase in the total distribution distance from the distribution centre to all the open clinics as
there are 283 more clinics that have to be serviced. From 2022, the accessibility fluctuates between 90% and 91%.
This accessibility is influenced by the new households and the new clinics opened in that year. The total distance
travelled by the households slowly increases per year as the number of households increase per year based on the
scenario population growth and relocation rates.

The locations of opened clinics per year are indicated in red in Appendix A.1. The impact on the overall
accessibility of opening these clinics is depicted in Figure 5.1 through heat maps. By opening these clinics,
the accessibility to primary health care will improve significantly from the current 65% to 91% by 2030. The
improvement in accessibility can clearly be seen from the base year (2018) to 2023, the first five years. After that,
there are still improvements in accessibility, mainly in Tshwane, however, this change is much smaller than in the
first five years.

The most noticeable improvement is from the base year to 2019 since the majority of clinics were opened in
2019. In this scenario, the accessibility changes over the years after 2019 are minimal. This is due to the fact
that there is no drastic change in the population distribution and demand, given that the current growth trends are
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Table 5.1: Trend scenario yearly results

Year Number
of clinics
built

Accessibility Cost (R) Total distance trav-
elled by the house-
holds (km)

Distance from distri-
bution center to all
the opened clinics per
year (km)

2018 0 59.24% 0 16 689 239 0
2019 283 90.95% 50 319 322 6 607 751 1 693
2020 1 90.95% 184 030 6 901 770 1 693
2021 0 90.95% 0 7 225 002 1 704
2022 2 90.95% 394 275 7 607 755 1 704
2023 0 90.95% 0 8 005 960 1 711
2024 1 91.08% 211 178 8 296 643 1 711
2025 0 91.08% 0 8 603 728 1 711
2026 0 91.08% 0 8 915 802 1 713
2027 1 91.13% 234 137 9 243 259 1 715
2028 1 91.15% 242 332 9 572 436 1 716
2029 1 91.28% 250 814 9 923 322 1 716
2030 0 91.28% 250 814 9 923 322 1 716

followed. The majority of clinics opened from 2020 onwards are opened in Tshwane, which leads to an improve-
ment in the accessibility in the area. Minimal improvement can be seen in the accessibility of the households in
Johannesburg and Ekurhuleni after 2019. Some clinics are opened in later years to maintain the 90% accessibility.
However, there is not a drastic increase in population growth in this scenario, forcing households to relocate to the
outskirts of the municipality that would require new clinics to be built.

The mean distance to a clinic is 2.8 km. This means that the clinics are accessible even without spending
money on transport. A detailed breakdown of the accessibility per income class is shown in Figure 5.2. In income
class 1, less than 1% of the households are between 10 km and 15 km from the nearest clinic and more than 90%
within 5 km of the nearest clinics. For income class 2, just less than 90% of the households are within 5 km of
a clinic and for income class 3, it is just above 90%. From the breakdown, it is concluded that health care will
be much more accessible for the lowest income class. They will no longer have to pay transport fees to visit a
primary health care practitioner as the average distance to a clinic is well within walking distance. According to
the National Household Travel Survey conducted by Stats SA (2015), more than 20% of wages per capita of the
households in the lowest income quantile are spent on public transport. By eliminating the need for transportation
to health care facilities these households will have more money to spend on other essential goods and services.

When evaluating from the supplier’s point of view, the average distance to a clinic from the distribution centre
is 42 km. The distance from the distribution centre to the clinics follows a normal distribution, as shown in
Figure 5.3. This normal distribution implies that the clinics are well spread over the area and that the clinics
are indeed catering for all the communities, not just those close to the distribution centres. The supplier can use
this distance distribution to evaluate the location of their facilities and whether it would make sense to open new
facilities or close some facilities. In this case, the location of the facility is sufficient as it is situated practically in
the middle of the three municipalities. The maximum distance from the distribution centre to a clinic is 102 km,
implying that even the households on the peripheries are catered for.
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(a) 2018
(b) 2024

(c) 2030

Figure 5.1: Accessibility improvement to primary health care for the trend scenario
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Figure 5.2: Accessibility breakdown per income
category for the trend scenario by 2030

Figure 5.3: Distance distribution from the distribu-
tion centre to the clinics for the trend scenario by
2030

5.2 Economic spike scenario solution

In the economic spike scenario, the majority of clinics were opened in the first year, however, clinics were also
opened in all the other years. In this scenario, fewer clinics were opened from 2019 onward than in the trend
scenario. This decrease in clinics opened is due to the fact that in the economic spike scenario there is a decrease
in the lower-income households in the three municipalities and, therefore, a decrease in demand for primary health
care. The values of the variables minimised and the accessibility per year are summarised in Table 5.3. From 2018
to 2019, there was once again a drastic change in the accessibility and the total distance travelled by households
to their nearest clinic since a lot of clinics were opened in 2019. After 5 years, the 90% accessibility target had
been reached and the clinics opened from then onward was to maintain this accessibility level. The accessibility
fluctuates based on the number of new households and the number of new clinics opened. The total distance
travelled by households to the clinics dropped drastically in the first year as a lot of clinics were opened, reducing
the distance travelled to a clinic by the households. After that the total distance travelled by the households to
the clinics slowly increased per year as the number of households increased due to the population growth and
household relocation. The total distance from the distribution centre to the open clinics increased as new clinics
were opened.

Table 5.2: Economic spike scenario yearly results

Year Number
of clinics
built

Accessibility Cost (R) Total distance trav-
elled by the house-
holds (km)

Distance from distri-
bution centre to all
the opened clinics
(km)

2018 0 59.24% 0 16 689 239 0
2019 281 90.44% 49 963 708 10 701 071 1 713
2020 6 90.44% 1 104 180 11 129 124 1 713
2021 0 90.44% 0 11 482 942 1 717
2022 1 90.55% 197 137 11 829 994 1 735
2023 5 90.55% 1 020 187 12 215 885 1 735
2024 0 90.55% 0 12 584 012 1 743
2025 3 90.55% 655 709 12 996 574 1 747
2026 3 90.64% 678 659 13 348 939 1 750
2027 3 90.77% 702 412 13 621 233 1754
2028 3 90.77% 726 997 14 127 969 1 754
2029 0 90.81% 0 14 613 702 1 756
2030 0 90.83% 0 14 613 702 1 756
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The locations of the open clinics and their impact on the accessibility through the years from 2019 to 2030 is
depicted in Appendix B.1. he majority of the clinics opened from 2020 onward are located close to existing city
centres because lower-income households move closer to new work opportunities. Fewer clinics had to be built in
this scenario to achieve the 90% accessibility due to the reduction in the number of lower-income households.

An overview of the accessibility improvement is illustrated in Figure 5.4. By opening the clinics in the specified
year and location as provided by the model, the accessibility to primary health care was drastically improved for
the lower-income community while minimising the required investment. Opening these clinics led to a significant
improvement in the accessibility to 90%. This accessibility is the same as for the trend scenario as once the
accessibility constraint is satisfied, the model will not add additional clinics as it will only increase the cost. The
model will only open new clinics if there is new demand that causes the 90% accessibility constraint to be broken.

For this scenario, the mean distance to a clinic is 2.9 km, making it accessible by foot. A detailed breakdown
of the accessibility per income class for this scenario is shown in Figure 5.5. Income class 1 has the highest
percentage of households further than 5 km from the nearest clinic and about 2% that are further than 10 km from
the nearest clinic. For income class 2, about 90% of the households are within 5 km of the nearest clinic, and
for income class 3, it is almost 95%. In this scenario, the number of households in income class 1 is less than in
the other two income classes and, therefore, the overall accessibility can still be above 90%. Households in these
income categories will have easy access to primary health care without incurring additional costs to reach the clinic
as they will be able to travel by foot.

From a supplier’s point of view, this scenario is very similar to the trend scenario. The average distance from
the clinics to the distribution centres are slightly lower at 41 km as more clinics are located closer to the city centres.
The distance distribution once again follows a normal distribution, as shown in Figure 5.6, which confirms that the
distribution centre is located centrally with regard to all the clinics. The maximum distance from the distribution
centre to a clinic is 98 km. The maximum distance is not exceptionally far compared to the mean and the distance
distribution follows a normal curve. Therefore, there will not be a need to open a second distribution centre closer
to some of the clinics.

(a) 2018
(b) 2024
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(c) 2030

Figure 5.4: Accessibility improvement to primary health care for the economic spike scenario

Figure 5.5: Accessibility breakdown per income
category for the economic spike scenario by 2030

Figure 5.6: Distance distribution from the distribu-
tion centre to the clinics for the economic spike sce-
nario by 2030

5.3 Relocation scenario solution

Most of the clinics for this scenario were once again built in the first year as there was an immediate need for
clinics and it was the cheapest year to build the needed clinics. The rest were built as the demand created a need.
The clinics built in the first five years are located more towards the periphery of the municipalities due to the strong
spatial expansion focus to urban growth included in this scenario. The variables calculated and minimised in the
model are shown per year in Table 5.2. The total cost per year was the highest in 2019 as most of the clinics were
built in that year. The total distance travelled by households increased over the years even though the accessibility
is relatively constant, around 90%. This is a steady increase over the years that is linked to the population and
urban growth. The total distance travelled from the distribution centre to the open clinics increased each year. This
increase is expected as the total number of clinics serviced each year increased. In this scenario, the total distance
travelled by the households is noticeably higher than in the other two scenarios. This noticeable difference can
mainly be attributed to the fact that there are much more households in this scenario than in the other two.
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Table 5.3: Relocation scenario yearly results

Year Number
of clinics
built

Accessibility Cost (R) Total distance trav-
elled by the house-
holds (km)

Distance from distri-
bution center to all
the opened clinics
(km)

2018 0 59.24% 0 16 689 239 0
2019 226 88.21% 40 184 335 7 690 439 1 359
2020 8 89.54% 1 472 240 7 967 687 1 428
2021 11 89.54% 2 095 182 8 337 128 1 432
2022 1 90.50% 197 138 8 629 444 1 486
2023 14 90.80% 2 856 523 9 026 803 1 512
2024 6 91.00% 1 267 072 9 279 626 1 532
2025 9 91.00% 1 967 129 9 586 727 1 539
2026 3 91.35% 678 660 9 876 771 1 554
2027 7 90.11% 1 638 963 10 030 911 1 564
2028 8 90.30% 1 938 659 10 074 201 1 572
2029 7 90.50% 1 755 698 10 307 599 1 579
2030 0 90.50% 0 10 307 599 1 579

The population growth due to the relocation in this scenario led to some households being forced to move to
the outskirts of the municipalities. These were the lower-income households as they could no longer afford real
estate in the city centres. The location of all the clinics and the impact of opening these clinics for this scenario is
depicted in Appendix C.1. In this scenario, more clinics were built after 2019 than in the other two scenarios as
there was greater population growth and, therefore, greater demand. After the first five years, more clinics were
opened on the municipalities’ outskirts to cater to the overflow in the city centres, where in the first five years,
more clinics were opened closer to the city centres to cater to the existing demand points. Even though it was the
cheapest option to open all the clinics in the first year as no operating costs were considered, the trade-off with
the total distribution distance forced the model to open clinics in later years. The model added the distance from
the distribution centre to the clinic for all the years that it had been open. The clinics opened after the first five
years were on peripheries of the municipalities and were much further from the distribution centre than the clinics
closer to the centre of the municipalities. The total distribution distances were minimised by the model and these
unnecessary distances accumulated forced the model to open clinics in later years.

The impact of opening these clinics on the overall accessibility over the years is illustrated in Figure 5.7. Once
a clinic is opened, the area around it becomes a lighter shade of blue. More clinics were required to achieve the
desired accessibility since there is a greater demand due to the rapid population growth. The clinics opened after
2019 are spread across the three metropolises and not primarily in Tshwane as in the other two scenarios. The
rapid population growth created new demand everywhere and not only in the already dense areas.

The mean distance to a clinic is 2.8 km. This implies that the clinics are accessible even without spending
money on transport. For 90.8% of the investigated population, there is a clinic within 5 km from their homes
by 2030. A breakdown of accessibility per income class is shown in Figure 5.8. Income class 2 has the highest
percentage of households further than 5 km from the nearest clinic, with about 15%. For the other income classes,
this is only about 10%. Even though some households are further than 5 km from the nearest clinic, it is still
accessible for pedestrians. Having a clinic within 5 km makes health care accessible without incurring additional
travelling costs for those who cannot afford it. City planners and decision makers can use the model to plan the
budget and human resources required to realise their accessibility goal for this given scenario.

Even though the locations of the clinics opened in this scenario are more widespread, the distribution distance
also follows a normal distribution, as shown in Figure 5.9. Distribution companies can use this distance distribution
to determine if the current distribution network is sufficient for future development. The distribution centre is
centrally located to all the clinics that it serves.
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(a) 2018
(b) 2024

(c) 2030

Figure 5.7: Accessibility improvement to primary health care for the relocation scenario
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Figure 5.8: Accessibility breakdown per income
category for the relocation scenario by 2030

Figure 5.9: Distance distribution from the distribu-
tion centre to the clinics for the relocation scenario
by 2030

5.4 Scenario comparison

Each scenario has a specific configuration of when and where to open clinics. When comparing the configurations,
only 57 of the almost 300 clinics were opened in the same location and of those, 45 were opened in the same
year. The location of the 45 clinics with the same configuration across all the scenarios is illustrated in blue in
Figure 5.10. These clinics are in areas far away from an existing clinic and therefore high levels of unserved
demand. Between the trend scenario and the economic spike scenario, only 45 clinics were opened in the same
location and year. The trend and relocation scenarios have 51 clinics with the same configuration. The economic
spike and relocation scenario have an exact configuration match for 52 clinics. Almost 80% of the clinics are in
completely different locations. Therefore, a good solution for one scenario is not necessarily a good solution for
another scenario.

Figure 5.10: Clinic locations with the same configuration for all three scenarios

If the decision makers are confident which specific scenario will play out, they can optimise the most likely
scenario and base their decisions on the results thereof. Using the scenario solutions will work well for the given
scenario and the most cost-effective configuration can be determined while reaching the desired level of acces-
sibility. The model can be run with different accessibility or cost constraints to create a pareto frontier of the
accessibility, total cost, total or average travelling distance for the households to the clinics, and the total distribu-
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tion distance. The pareto frontier will allow the planners to compare the trade-off between the selected objectives
and therefore provide an evidence-based decision tool for a specific scenario. The frontier can also assist in deter-
mining the accessibility cut-off, when the additional costs incurred will have very little increase on the accessibility.
This tool can be used for strategic decision-making support to estimate the budget and human resources required
in the next 10 to 20 years. However, if, as in many real-world situations, multiple scenarios could play out, the
robust model will provide the decision makers with an evidence-based decision tool that caters for the different
scenarios and not just the one.

5.5 Robust solution

The robust model used goal programming to find an acceptable solution for all three scenarios while staying as
close as possible to the individual scenario solutions. The objectives of the individual scenarios were set as the
goals in the goal programming model to find a robust configuration. The robust model placed facilities over the
years in order to come as close to the individual scenarios as possible. It seeks the best compromise between the
three scenarios. For the robust scenario, the number of clinics opened is more than in the trend and economic
spike scenarios as there is a greater demand base in the relocation scenario. The locations and the year in which
the clinics were opened are shown in Appendix D.1. Once again, most of the clinics were opened in the first
year to meet the immediate need in all the scenarios. The clinics opened after the first five years is spread across
the municipalities and outskirts. A summary of the accessibility improvement is provided in Figure 5.11. Fewer
clinics were opened on the outskirts that cater for the relocation scenario demand, however, enough clinics are still
in operation that can cater for the demand, should it arise.

Since the majority of clinics were opened in the first year to minimise the cost and adhere to the accessibility
constraint, the most significant improvement was in 2019 from the base year. With these locations of the clinics, a
detailed breakdown of accessibility per income class per scenario can be seen in Figure 5.12. For all the scenarios,
the percentage of households within 5 km of a clinic given the robust configuration is above 90%. Therefore,
it shows that the robust configuration adheres to the accessibility constraint in all the scenarios. No households
are further than 10 km from a clinic in any of the scenarios given the robust configuration. The economic spike
scenario has the worst accessibility of the three scenarios given the robust configuration, but it is still within the
defined constraints. The economic spike scenario has the worst accessibility because the trend and relocation
scenarios add greater weight to the locations on the outskirts.

(a) 2018
(b) 2024
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(c) 2030

Figure 5.11: Accessibility improvement to primary health care for the robust scenario

(a) Trend scenario (b) Economic spike scenario

(c) Relocation scenario

Figure 5.12: Accessibility breakdown per income category for the three scenarios given the robust solution by
2030
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5.5.1 Objective values comparison

A comparison of the scenario solutions and the robust solution in each scenario is provided in Figure 5.13. The
total distance travelled for the households in each individual scenario is less than the total distance for the robust
configuration. This is expected since the robust configuration is not the optimal configuration for any of the
scenarios, but it is a better overall solution. The robust model tries to find an acceptable compromise between all
scenario; therefore, it will not be optimal for any of the scenarios but as close to scenario solutions as possible for
all the scenarios.

The total distance travelled by the households for the scenarios, given the robust configuration, is similar for
the trend and the relocation scenario. However, for the economic spike scenario, it is much less. This difference
in household travelling distance is due to the economic spike scenario having higher densities of people located
close to city centres. Therefore, more people have shorter distances to travel to clinics. When considering the
robust solution, there is a much greater difference between the relocation scenario and robust total household
travel distance than in the other two scenarios. This large difference is because the robust scenario does not
specifically cater for all the new households located on the outskirts of the municipalities as the relocation scenario
does. If a clinic is not opened within 5 km of a household, the households on the outskirts of the municipalities
will have a further distance to travel to the nearest clinics than in the city centres. Therefore, the total distance
of the relocation scenario quickly increases as the average total distance travelled to the nearest clinic for the
robust relocation scenario is larger than in the other scenarios. For the trend and the economic spike scenarios, the
total distance travelled by households for the robust configuration is close to the scenario solutions. This smaller
difference can be attributed to the fact that more households are located in their original locations, close to the city
centres, where the majority of the clinics are opened before any growth happens and, therefore, this ensures shorter
travel distances for the households. There is almost 1% difference between the economic spike scenario solution
and the robust configuration. The relocation also has a small difference of about 4%. The trend scenario has the
highest difference between the scenario configuration and robust configuration with almost 14%.

The total distribution distance of the three scenarios are all relatively close to each other. The small change can
be due to the fact that the distribution centre is located more or less in the centre between the three municipalities.
The total distance travelled from the distribution centre to the open clinics for the robust configuration is slightly
higher than the scenario solutions. The difference between the individual scenario solutions and the robust solution
are between 15% and 24%. The economic spike scenario has the biggest difference between the scenario solutions
and robust total distribution distance since in this scenario, there are not many clinics placed in the outskirts of the
municipalities. Most of the clinics are located close to the city centres and are closer to the distribution centre.
More clinics are located on the edges of the municipalities in the robust configuration, leading to an increase in
total distribution distance. As more clinics are opened in the robust solution than in the scenarios to cater for
the uncertain demand, the total distribution distance for the other two scenarios is also higher than with their
individual configurations. Distribution companies can use these differences in distance to determine whether or
not the distribution centre needs to be relocated or if a new distribution centre should be added. The current data
shows no significant need for an additional distribution centre as the distribution distance between the scenarios is
fairly similar and the difference between the scenario and robust distances is not significant.

The total costs for the individual scenarios are very similar. This is because the majority of the clinics were
opened in the first year and, therefore, inflation had a small effect on the total cost. The total cost for the robust
configuration is higher than the scenario total cost for each scenario, as seen in Figure 5.13c. This cost difference
can be attributed to the fact that more clinics were opened in the robust scenario than in the individual scenarios
to deal with the uncertainty. The difference in the total cost between the scenarios and for the robust configuration
is due the years in which the clinics were opened. The percentage change in the total cost between the scenario
solution to the robust solution for the investigated scenarios are very similar, 18% for the trend scenario, 14% for
the economic spike scenario and 16% for the relocation scenario. These differences are not really significant when
dealing with a robust solution for three totally different development and growth scenarios.

For all the variables, the difference between the robust configuration and the scenario configuration is within a
25% range. Thus, the robust configuration will perform well or at an acceptable level in all the scenarios. In this
case, if all three variables are considered, the solution is a good enough solution to combat the uncertainty of how
the metropolises will develop in the future. City planners can look specifically at the total household travel distance
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and the total cost to determine the feasibility of the robust solution, while pharmaceutical or logistics companies
can do their strategic planning using the total distribution distance.

(a) Total household travel dis-
tance to the allocated opened
clinics per scenario

(b) Total travel distance from
the distribution centre to the
open clinics per scenario

(c) Total cost to build the
opened clinics per scenario

Figure 5.13: Comparison of the scenario solutions and the robust solutions per scenario

5.5.2 Configuration overlap

This robust solution has a 36% configuration overlap, where clinics were opened in the same location and year, with
the trend scenario. For the economic spike scenario, the configuration overlap and the zone overlap are the same
with a 36% overlap. Lastly, for the relocation scenario, almost 40% of the clinics have the same configuration.
The robust solution has an almost 40% configuration overlap with all the individual scenarios. The similarities
between the robust configuration and the scenario configurations are much higher than the similarities between
only the scenario configurations. Therefore, it can be concluded that the robust configuration is a good compromise
between the different scenarios.

The zones that have the exact same configuration in the robust solution and the scenario solutions are mapped
in Figure 5.14. The majority of the overlapping is in the Tshwane municipality; this is the municipality that had
the lowest accessibility to clinics. The location of the overlapping zones shows that the model caters for this
lack of accessibility. The overlapping configuration in the Tshwane municipality is expected as there is a large
area with low accessibility and, therefore, the clinics open in the same place every time to cater to this lack in
initial accessibility. These overlapping zones should be noted as they are the zones that will definitely improve
accessibility. Decision makers can use these overlaps to prioritise the clinics to be built when there are time,
budget, or other constraints.

The variables investigated in this study and others can be used to provide quantitative decision support for the
Department of Health and other key role players when deciding where and when to open new clinics. Trade-offs
can be made between the accessibility for the communities and the cost of opening new clinics from a health care
provider perspective or between the average or total travel distance and the total cost of opening the clinics. These
trade-offs can be done by means of a pareto frontier. The pareto frontier will assist the decision maker to choose
a solution most suitable to their current strategic needs. The pareto frontier provides a visualisation of the impact
of changing the accessibility on all the other variables. The decision maker can easily see the magnitude of the
impact and make trade-offs between the accessibility percentages and the variable values to ultimately determine
a feasible accessibility strategy. The model provides a strategic plan of when and where to open new clinics given
an accessibility goal and uncertainty of the future demand. It allows the decision makers to plan the budget and
human resources for the next five to 15 years to achieve the desired health care-related goals.

Opening most of the clinics in the first year is not a realistic representation of reality, therefore, a budget
analysis was conducted to test the model in a scenario closer resembling reality. In the next chapter, an accessibility
analysis and a budget analysis are conducted to ensure that the model is not only sufficient for these scenarios but
also for other scenarios and changes.
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(a) Trend scenario (b) Economic spike scenario

(c) Relocation scenario

Figure 5.14: The zones with the exact same configuration in the robust solution and scenario solutions
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5.6 Concluding remarks

In this chapter, the solutions to the individual scenarios and the robust scenario were analysed. All the results
are skewed to locate as many as possible clinics in the first year when it is the cheapest as there is no penalty in
the form of operating costs added to the model. A good configuration for one scenario is nowhere near the good
configuration for the other scenarios with a maximum overlap of just under 20%. The robust solution has a 40%
overlap with each of the individual scenarios, which is a significant improvement. This improvement comes at a
cost; the total cost of the robust scenario is higher than all three of the individual scenarios. The total household
distance travelled is very similar in the trend scenario and the economic spike scenario, however, for the relocation
scenario it is much higher. This large difference in the relocation scenario can be worrisome if it is a highly
plausible scenario. These models can be used as tools by decision makers during strategic planning to make
informed decisions based on quantitative analyses of where and when to open clinics that will provide the desired
accessibility in any of the investigated scenarios.
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Chapter 6

Accessibility and budget analysis

Additional analyses were conducted to investigate the impact of different accessibility percentages and the impli-
cations of modelling a more realistic scenario on model results. The first analysis looks at the impact of changing
the accessibility level on the variables minimised in the model. The second analysis introduces a budget constraint
to get a more realistic placement of clinics.

6.1 Accessibility analysis

Three accessibility percentages were selected to determine the impact of accessibility on all the other variables.
The accessibility percentages used were 85%, 90% and 95%. The individual scenario model was run for all the
scenarios and accessibility percentages by only changing the accessibility constraint from 85% to 90% and, finally,
to 95% in the model. Once the scenario solutions and accessibility were determined, the variable values were put
into the robust model as the goals for each accessibility percentage where the accessibility constraint was once
again adjusted to the imposed accessibility percentage.

Ignoring operating cost in the model skewed the results to open most of the clinics in the first year to minimise
the total cost. However, minimising the total distribution distance ensured that some of the clinics, especially on
the outskirts, were opened in later years.

For the individual scenarios, all the variable values changed as expected. The results per scenario are shown
in Figure 6.1. The total cost for the relocation scenario is the highest as this scenario requires the most clinics
irrespective of the accessibility due to the number of households in this scenario. The total cost increases as
the accessibility percentage increases as more clinics are built to satisfy the higher accessibility constraint. The
increase in total cost for the relocation scenario from 85% to 90% and from 90% to 95% have similar gradients.
However, for the trend and economic spike scenarios, the jump from the 90% to 95% is much higher than from 85%
to 90%. When looking at the scenarios individually, the benefit of the additional cost to get the 95% accessibility
will have to be traded off with the benefits gained. For both the trend and the economic spike scenario, the
additional cost of moving from 85% accessibility to 90% is relatively small, however, for the relocation scenario,
it is a more considerable increase. Moving from 85% accessibility to 90% accessibility would be advisable when
only looking at the costs as it is only a slight increase in the total cost. The impact on the other variables will have
to be investigated further to make well-informed decisions on which accessibility percentage is the most beneficial.

With more clinics being built as the accessibility level is increased, the total distance travelled by households
to the nearest clinic reduces as more households have shorter distances to travel to the nearest clinic. Once again,
the relocation scenario has the longest total distance travelled by households mainly because this scenario has
much more households than the other two scenarios. Moving from 85% accessibility to 90% accessibility has
little impact on the total distance travelled for all three scenarios. However, when increasing the accessibility
level to 95%, there is a significant decrease in the total distance travelled by the households, especially in the
economic spike scenario and the relocation scenario. This drastic change is because the model places clinics in the
more dense areas first, where a larger group can be served, leaving the less dense communities further than 5 km
from clinics, which can significantly increase the total distance travelled by households. When moving to 95%
accessibility, the model is forced to locate clinics in these communities, which reduces the number of households
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that are more than 10 km from the nearest clinics. Therefore, a sharp decrease in the total distance travelled by
households can be seen.

The total distance travelled from the distribution centre to the clinics increases as the accessibility constraint is
tightened; this increase is mainly due to more clinics that have to be serviced. The distance travelled by households
to the nearest clinics is much higher in the relocation scenario than in the other scenarios. The main reason for this
large difference is the number of households, leading to more clinics that have to be opened, and the relocation
scenario has much more households in the investigated income classes than the other two scenarios.

(a) Total cost to build the clinics to be opened (b) Total household travel distance to the nearest clinic

(c) Total travel distance from the distribution centre to the open
clinic

Figure 6.1: The variable values of the individual scenario solutions given different accessibility percentages

When comparing the robust solutions of these different accessibility percentages, the change seen in the indi-
vidual scenarios is still present. The graphs in Figure 6.2 illustrate the impact of changing the accessibility target
on the variables for the robust solutions. To get from 85% to 90% requires a large jump in cost. The cost difference
between 90% accessibility and 95% accessibility is much smaller. Therefore, many more clinics are required to
move from 85% to 90% accessibility than from 90% to 95%. The feasibility of the large cost difference from
85% accessibility to 90% accessibility will have to be weighed up against the benefits gained for the community
members. The distance to the nearest clinic for the households further than 5 km has to be analysed to determine
the additional benefit to the community. If the households are further than 10 km from the nearest clinic, the
investment might be worthwhile. However, if the households are less than 10 km from the nearest clinic, the large
investment required will not necessarily have the same benefits for the community as the clinics are still relatively
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accessible by foot.
The total distance travelled by households reduces as the accessibility target increases. This decrease is ex-

pected as a smaller portion of the households have to travel more than 5 km to the nearest clinic. The relocation
scenario has the longest total distance travelled as it has the most households, followed by the trend scenario and
then lastly, the economic spike scenario, which has the least number of households. The benefit of moving from
85% accessibility to 90% is relatively small in all three scenarios and would not justify the significant cost increase.
There is a greater impact on the total distance travelled by households when moving from 90% accessibility to 95%
accessibility. This improvement will come at little cost if the accessibility is already at 90%. If the accessibility is
less than 90%, this reduction in the distance travelled by households would come at a much higher cost. The total
distance from the distribution centre to the clinics increases as more clinics are opened that have to be serviced as
the accessibility target increase. Moving from 85% accessibility to 90% accessibility leads to a steep increase in
the total distribution distance. This increase in the distribution distance can impact the prices paid by the patients
for medication as the distribution costs are ultimately passed on to them. This large increase in distance can be
attributed to the fact that more clinics are opened on the outskirts of the municipalities where the population is less
dense. These clinics on the outskirts are much further away from the distribution centre than clinics close to city
centres and, therefore, significantly impact the total distribution distance. Improving the accessibility to 95% has a
smaller impact on the total distribution distance as fewer clinics have to be opened to reach it when looking at the
total cost.

These graphs can be used as decision support to decide which accessibility target is feasible given the total
cost, household travel distance and distribution distance trade-offs. The benefits of each accessibility target can be
weighed up against the cost and impact.

(a) Total cost to build the clinics to be opened for the accessi-
bility robust configuration

(b) Total household travel distance to the nearest clinic for the
accessibility robust configuration
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(c) Total travel distance from the distribution center to the
open clinic for the accessibility robust configuration

Figure 6.2: The variable values of the robust solutions given different accessibility percentages

6.2 Budget analysis

For the budget analysis, a budget constraint was added to the model to test if the model is responsive to a restrictive
budget, limiting the number of clinics that can be built per year. A random generator was used to set a budget per
year. The budget that was used is provided in Table 6.1. An additional constraint was added to enforce the budget
where the total cost for the year has to be less than or equal to the budget for that year.

Table 6.1: Yearly budget

Year Budget (R)

2019 10 000 000
2020 11 400 000
2021 12 898 000
2022 14 500 860
2023 16 215 902
2024 18 051 003
2025 16 102 006
2026 15 014 600
2027 15 014 600
2028 12 115 620
2029 14 363 701
2030 16 706 918

As there is a constrained budget, the majority of clinics could not be opened in 2019, as in the original case,
therefore the year by which the accessibility goal has to be reached had to be changed to allow a gradual improve-
ment in the accessibility. In the model, the accessibility constraint was relaxed to be reached by the end of 2030
and no longer after the first five years as in the original case. By adding the budget constraint, the impact of the
omitted operating costs is less significant, forcing the model to open the clinics more gradually. However, some
clinics may still be opened sooner than necessary if the budget allows it and it is not far from the distribution
centre, keeping the distribution distance as small as possible.

The configuration for each scenario with the adjusted parameters was determined by running the model with
the budget constraint and the relaxed accessibility constraint. By adding a constrained budget, the facilities were
no longer primarily opened in the first year; the placement of facilities are spread more evenly across all 12 years.
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The total cost per year for the three scenarios is provided in Table 6.2. Spreading the opening of clinics over all
the years leads to an increase in the total cost due to inflation, however, it is more feasible to open 50 clinics per
year than almost 300 in one year. In this more realistic scenario, the relocation scenario still has the most clinics
opened to cater for the fast-growing demand, followed by the trend scenario. The economic spike scenario has the
least number of clinics opened as this scenario has a much slower lower-income population growth rate than the
other two scenarios. When comparing the actual costs against the budget, such a large budget is not necessary. A
maximum budget of about R 12 000 000 should be sufficient for all the years.

Table 6.2: Total cost per year of opening the clinics for the three scenarios

Year Trend scenario
total cost (R)

Economic spike scenario
total cost (R)

Relocation scenario
total cost (R)

2018 0 0 0
2019 9 601 567 8 890 339 9 423 760
2020 8 833 441 7 913 291 6 072 991
2021 8 380 727 4 952 248 8 761 670
2022 9 068 328 10 251 153 9 068 328
2023 8 569 570 9 181 682 7 549 383
2024 6 546 539 6 968 897 6 968 897
2025 5 027 109 8 742 798 7 649 948
2026 8 596 356 7 012 817 11 763 434
2027 8 428 953 7 258 265 11 472 742
2028 10 420 293 7 512 305 702 7640
2029 10 283 376 10 534 190 12 039 074
2030 0 0 0

Both the trend scenario and the economic spike scenario see a large initial decrease in the total distance trav-
elled by households to the nearest clinic. After the initial decrease, all the scenarios have a general downward trend
in the total distance travelled by households to the nearest clinic, with some fluctuation influenced by the number
of new households in an area and the number of new clinics built. These results can be found in Table 6.3. For
the relocation scenario, the decrease is much more gradual over the years. This gradual change can be attributed
to the restricted budget that limits the number of clinics that can be opened. When comparing the total distance
travelled by the households between the three scenarios, the values are as expected. The economic spike scenario
has the shortest distances, followed by the trend scenario and lastly, the relocation scenario. This difference in the
total distance travelled by households can mainly be attributed to the number of households in the lower-income
categories in the three scenarios, where the relocation scenario has the most households and the economic spike
scenario has the least households in the lower-income categories.

The accessibility improvement over the years for all three scenarios are depicted in Figure 6.3. By 2024, the
overall accessibility will have improved significantly in all three scenarios. Tshwane will have the most households
further than 5 km from the nearest clinic, however, this is also the municipality that had the worst accessibility to
start with. The accessibility heat maps of the trend and relocation scenarios in 2024 look similar as both have more
households on the peripheries of the municipalities than the economic spike scenario that has more households
located closer to the city centres. Therefore, the economic spike scenario first focuses on locating clinics where
the most households are and later cater for the less dense households further away. By 2030, the accessibility in
Tshwane will also have improved, leaving only a few households in the three metros further than 5 km from the
nearest clinics but closer than 10 km.

The distance from the distribution centre to the opened clinics in all three scenarios can be seen in Table 6.4.
The total distance is a function of the number of clinics opened and the distance from the distribution centre.
The total distance for the relocation scenario is the highest because this scenario has the most additional clinics
opened and more of the clinics are on the peripheries of the municipalities than in the other scenarios due to the
population growth and distribution. The economic spike scenario has the shortest total distance to the clinics as
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(a) 2018 (base line)
(b) 2024 (trend scenario) (c) 2030 (trend scenario)

(d) 2024 (economic spike scenario) (e) 2030 (economic spike scenario)

(f) 2024 (relocation scenario) (g) 2030 (relocation scenario)

Figure 6.3: Accessibility improvement over the years for the three scenarios with budget constraints
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Table 6.3: The total distance travelled by households to the nearest clinic per year for all three scenarios per year

Year Trend scenario
(km)

Economic
spike scenario
(km)

Relocation
scenario (km)

2018 16 689 16 689 16 689
2019 10 110 10 747 15 564
2020 9 199 9 320 13 916
2021 8 731 9 007 13 375
2022 8 538 8 524 12 556
2023 8 649 8 472 12 340
2024 8 691 8 350 12 198
2025 8 600 8 199 12 216
2026 8 591 7 941 12 240
2027 8 574 8 034 12 293
2028 8 628 8 107 12 217
2029 8 677 8 130 12 210
2030 8 677 8 130 12 210

the clinics in this scenario are closer to the city centres, and fewer clinics are opened in this scenario than in the
other two scenarios. All three scenarios follow a normal distribution for the distance from the distribution centre
to all the opened clinics. These normal distributions confirm that the distribution is centrally located with regard
to the clinics. The distribution centre is ideally located to service the clinics in the three metros. The mean travel
distance between the distribution centre and the open clinics for all the scenarios is between 40 km and 43 km.
These distances are very similar to the original case investigated as the location of the clinics have not changed
much; it is mostly the year in which the clinics are opened that changed by introducing the budget constraint. The
demand is still at the same nodes, and therefore clinics are still required in the same locations as the base case.

Table 6.4: Total distance from distribution centre to opened clinics for all three scenarios per year

Year Trend scenario
(km)

Economic
spike scenario
(km)

Relocation
scenario (km)

2018 0 0 0
2019 24 481 20 095 15 500
2020 23 277 12 968 23 476
2021 25 225 27 376 21 760
2022 19 227 22 565 18 116
2023 16 323 19 319 20 013
2024 11 922 18 631 21 630
2025 19 612 17 423 29 025
2026 19 686 16 183 28 077
2027 24 748 15 610 14 296
2028 19 795 23 363 24 230
2029 22 936 26 373 21 564
2030 0 0 0

The robust solution aimed to come as close as possible to all three the individual solutions, as described above.
The objectives of the individual scenarios were set as the goals in the goal programming model to find a robust
configuration. The robust model placed facilities over the years to come as close to the individual scenarios as
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possible. The robust model seeks the best compromise between the three scenarios. The results of the robust
solution are provided in Table 6.5. The robust model also adheres to the budget, forcing a more equal distribution
of clinics to be opened over the years. The total cost for the robust model is around 8% higher than the scenario
cost in any of the other scenarios, showing that robustness comes at a cost. The difference between the scenario
values and the values given the robust configuration are within 10%. This 10% difference between the scenario
values and the robust values is better than the 20% difference in the original case. The smaller difference is because
the restricting budget ensures a more even placement of the clinics over the years and not at a surge placement in
the first year. Therefore, even with additional constraints and changing parameters, the model can find a robust
solution.

Table 6.5: Budget scenario robust configuration yearly solutions

Year Total cost
(R)

Trend scenario to-
tal distance travelled
by households to the
nearest clinic (km)

Economic spike sce-
nario total distance
travelled by house-
holds to the nearest
clinic (km)

Relocation scenario
total distance trav-
elled by households
to the nearest clinic
(km)

Total distance from
distribution centre to
opened clinics (km)

2018 0 16 689 239 16 689 239 16 689 239 0
2019 7 823 499 10 019 787 10 129 638 15 542 152 42 867
2020 9 017 471 8 899 738 89 62 004 13 494 607 20 648
2021 7 999 785 8 572 304 8 553 000 12 727 732 23 265
2022 9 462 603 8 388 241 8 219 435 12 084 745 21 053
2023 7 957 458 8 564 024 8 279 381 12 067 717 25 034
2024 9 503 041 8 618 613 8 341 883 12 120 807 19 806
2025 6 775 668 8 452 000 8 223 803 11 872 826 26 207
2026 11 084 775 8 427 909 8 235 647 11 803 367 27 313
2027 11 472 742 8 214 731 8 036 109 11 505 891 22 793
2028 11 389 623 8 052 017 7 918 599 11 266 171 27 737
2029 14 547 214 8 010 768 7 886 244 11 162 252 27 589
2030 0 8 010 768 7 886 244 11 162 252 0

The model can find a robust configuration that is relatively close to the scenario solutions with a restrictive
budget constraint. The model can be used to provide decision support for the health care department to identify
feasible locations for clinics that will improve the overall accessibility of primary health care by finding the best
locations and years to open clinics to cope with the growing demand. With a constrained budget, the model
provides a strategic plan of when and where to open clinics in order to improve the overall accessibility of health
care for the lower-income households. The available budget for new clinics can be used as input in the models to
determine the best robust configuration of clinics to provide the desired level of accessibility.

6.3 Concluding remarks

Different accessibility constraints were tested and pareto frontiers were created with the associated variable val-
ues. The cost increased as the accessibility constraint was tightened. The total distance travelled by households
decreased as the accessibility percentage increased. Lastly, the total distance from the distribution centre to the
open clinics increased as the accessibility constraint was tightened as more clinics were opened. All these variables
performed as expected and these pareto frontiers can be used to select an appropriate accessibility percentage. A
budget analysis was done where a constraint was placed on the budget and the five-year accessibility constraint
was increased to 12 years. The model successfully adapted to the restrictive budget and spread the opening of
clinics across all the years. The robust model was within 10% of the scenario values, showing that the model can
find a robust solution with an additional budget constraint. Concluding remarks and recommendations are made in
Chapter 7.
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Chapter 7

Conclusion

Health care, and especially access to health care, has always been a key metric for countries. In 2017, 9% of South
Africa’s GDP was spent on health care. Despite this being 5% higher than recommended by the World Health
Organisation for a country of its socio-economic status, the country’s health care status is poor in comparison to
similar countries. In 1994, South Africa implemented a health care policy to make health care accessible to all
South Africans. Accessible is defined as primary health care no more than 5 km from a place of residence. There
is still a significant gap between the actual and desired accessibility for the lower-income communities and a need
to improve access to public health care for all South Africans. Cost-effective and sustainable solutions are required
to solve this problem. Therefore, an opportunity was identified to investigate the location of low-cost container
clinics in lower-income communities.

There is a lack of dynamic location models that consider the changes in the problem environment over time,
such as patient population and population migration. This project aimed to assist in closing this gap in the literature,
using robust optimisation and goal programming to locate health care facilities in an uncertain environment using
multiple scenarios.

This study investigated three development scenarios in the three metro municipalities (City of Tshwane, City of
Johannesburg, and City of Ekurhuleni) in Gauteng, South Africa. The first scenario is a continuation of the current
development and population growth trends. The second scenario sees a spike in economic development, leading to
a reduction in lower-income households. The last scenario sees a rapid increase in lower-income households due
to the relocation of households from rural areas to the three metros.

Associative forecasting methods were investigated to make more accurate health care demand forecasts based
on expected changes in major cities due to urbanisation and economic growth. Household income, number of
children, and the distance to the nearest clinics were the selected attributes for the demand forecasts. These factors
were used to calculate the probability of a household member visiting a clinic when ill.

This demand and the location of the households were used as input into the facility location models. A good
configuration of clinics was determined for each scenario using a Genetic Algorithm (GA). After that, the scenario
values of each scenario were used as the goals in the goal programming model to determine a robust configuration
that will work relatively well in all the scenarios given the uncertainty of the future development of the metros. A
deviation of 25% was defined as an acceptable deviation from the individual scenario values since the scenarios
investigated are so different.

For the individual scenarios, a good total distance to the nearest clinic for all the households has the same
proportions as the total number of households. The total distance from the distribution centre to the open clinics
are more or less the same in all the scenarios because the distribution centre is located centrally. The total costs
for the scenarios are also very similar as most of the clinics are opened in the first year to serve the immediate
need. There is a less than 20% configuration overlap between the different scenarios. Therefore, the solution for
one scenario is not good or even close to acceptable for another scenario.

The robust model, utilising goal programming, was run to determine a robust solution that is as close as
possible to the variable values of each scenario while minimising the standard deviation between the values. The
difference between the scenario values and the robust solution is within a 25% range in all the scenarios. This
overall variance is acceptable for a robust solution in an uncertain environment. The robust solution has an almost
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40% configuration overlap with all the individual scenarios. These configuration overlaps are significantly higher
than the just under 20% overlaps that are seen between the individual scenarios. Therefore, it was concluded that
the robust configuration is a good compromise between the different scenario.

City planners, the Department of Health and other key role players, can use these models as quantitative
decision support when deciding when and where to open new container clinics while they are still uncertain of
which development strategy will realise in the next 10 to 15 years to achieve their accessibility goal. City planners,
the Department of Health and other key role players, can look specifically at the total household travel distance
and the total cost to determine the feasibility of the robust solution, while pharmaceutical or logistics companies
can do their strategic planning using the total distribution distance.

An accessibility analysis was conducted to look at the impact of the accessibility target on model results.
Three accessibility targets were selected to run the model. The model produced results as expected. The total cost
increased as the accessibility increased. The household travel distance decreased as the accessibility increased as
fewer households are further than 5 km from the nearest clinic. The benefits gained from the changed accessibility
can be weighed up against the cost of reaching that accessibility target. These accessibility scenarios can be used
for decision support when choosing an acceptable accessibility target.

Another analysis was conducted where the number of clinics that can be built per year was constrained by
introducing a budget constraint. In this case, accessibility improvement is spread more evenly over the 12 years
as the opening of clinics is also spread more evenly over the years. By incorporating a budget constraint, the
model can assist decision makers in determining when to open which clinics while maximising the benefits to the
community. Based on the results of the analyses, it was concluded that the model is useful for different scenarios
with changes in parameters and that the model can be used for different scenarios.

7.1 Future work

The work in this report examines a simplified case of urban planning and robust facility location. Future work
can include removing some of the assumptions made to simplify the model. Instead of using straight line distance
between the households and clinics, actual road networks can be used. This will ensure greater accuracy in the
distances travelled by households to the clinics and the distance from the distribution centre to the clinics.

Another opportunity is to vary the building cost based on the location of the available land. The cost of land
in prominent areas or close to city centres is higher than land in less dense and rural areas. By adding a land
cost component to the building costs, a picture closer resembling reality can be created. This cost component will
definitely impact the location of clinics when the cost is one of the trade-off points.

In future work, research on container clinics’ operating costs can be done and the assumption of no operating
costs can be removed. By adding operating costs, clinics will be built only when needed to ensure that the total
cost is minimised. By including the operating costs in the model, it will be a closer representation of the real
world. The model will no longer place most of the clinics in the first year as there will be a penalty in the form of
operating costs if a clinic is opened before it is needed.

Further research that can be done includes incorporating different types of facilities such as hospitals and
community health centres. These different facilities have different capacities and services that they can provide.
Lastly, distribution centres and clinics can be located simultaneously to find the good locations or configurations
for the scenarios and robust locations or configurations.
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Appendices

A Trend scenario facility locations

(a) 2018
(b) 2019

(c) 2020 (d) 2022
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(e) 2024 (f) 2027

(g) 2028 (h) 2029

Figure A.1: Location of the clinics to opened for the trend scenario per year
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B Economic spike scenario facility locations

(a) 2018
(b) 2019

(c) 2020 (d) 2022
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(e) 2023 (f) 2025

(g) 2026 (h) 2027
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(i) 2028 (j) 2030

Figure B.1: Location of the clinics to be opened for the economic spike scenario per year
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C Relocation scenario facility locations

(a) 2018
(b) 2019

(c) 2020 (d) 2021
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(e) 2023 (f) 2024

(g) 2025 (h) 2026

65



(i) 2027 (j) 2028

(k) 2029 (l) 2030

Figure C.1: Location of the clinics to be opened for the relocation scenario per year
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D Robust facility locations

(a) 2018
(b) 2019

(c) 2020 (d) 2021
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(e) 2022 (f) 2023

(g) 2024 (h) 2025
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(i) 2026 (j) 2027

(k) 2028 (l) 2029

69



(m) 2030

Figure D.1: Locations of the opened clinics of robust configuration per year
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