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Autonomous mobile robots became an active research direction during the past few years, 

and they are emerging in different sectors such as companies, industries, hospital, 

institutions, agriculture and homes to improve services and daily activities. Due to 

technology advancement, the demand for mobile robot has increased due to the task they 

perform and services they render such as carrying heavy objects, monitoring, delivering of 

goods, search and rescue missions, performing dangerous tasks in places like underground 

mines. Instead of workers being exposed to hazardous chemicals or environments that could 

affect health and put lives at risk, humans are being replaced with mobile robot services. It 

is with these concerns that the enhancement of mobile robot operation is necessary, and the 

process is assisted through sensors. Sensors are used as instrument to collect data or 

information that aids the robot to navigate and localise in its environment. Each sensor type 
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has inherent strengths and weaknesses, therefore inappropriate combination of sensors could 

result into high cost of sensor deployment with low performance.  

 

Regardless, the potential and prospect of autonomous mobile robot, they are yet to attain 

optimal performance, this is because of integral challenges they are faced with most 

especially   localisation. Localisation is one the fundamental issues encountered in mobile 

robot which demands attention and the challenging part is estimating the robot position and 

orientation of which this information can be acquired from sensors and other relevant 

systems. To tackle the issue of localisation, a good technique should be proposed to deal 

with errors, downgrading factors, improper measurement and estimations. Different 

approaches are recommended in estimating the position of a mobile robot. Some studies 

estimated the trajectory of the mobile robot and indoor scene reconstruction using a 

monocular visual odmometry. This approach cannot be feasible for large zone and complex 

environment. Radio frequency identification (RFID) technology on the other hand provides 

accuracy and robustness, but the method depend on the distance between the tags, and the 

distance between the tags and the reader. To increase the localisation accuracy, the number 

of RFID tags per unit area has to be increased. Therefore, this technique may not result in 

economical and easily scalable solution because of the increasing number of required tags 

and the associated cost of their deployment. Global Positioning System (GPS) is another 

approach that offers proved results in most scenarios, however, indoor localization is one of 

the settings in which GPS cannot be used because the signal strength is not reliable inside a 

building. Most approaches are not able to precisely localise autonomous mobile robot even 

with the high cost of equipment and complex implementation. Most the devices and sensors 

either requires additional infrastructures or they are not suitable to be used in an indoor 

environment. Therefore, this study proposes using data from vision and inertial sensors 

which comprise 3-axis of accelerometer and 3-axis of gyroscope, also known as 6-degree of 

freedom (6-DOF) to determine pose estimation of mobile robot. The inertial measurement 

unit (IMU) based tracking provides fast response, therefore, they can be considered to assist 

vision whenever it fails due to loss of visual features. The use of vision sensor helps to 

overcome the characteristic limitation of the acoustic sensor for simultaneous multiple object 

tracking. With this merit, vision is capable of estimating pose with respect to the object of 

interest.  

 

A singular sensor or system is not reliable to estimate the pose of a mobile robot due to 

limitations, therefore, data acquired from sensors and sources are combined using data fusion 

 
 
 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  



algorithm to estimate position and orientation within specific environment. The resulting 

model is more accurate because it balances the strengths of the different sensors. Information 

provided through sensor or data fusion can be used to support more-intelligent actions. The 

proposed algorithms are expedient to combine data from each of the sensor types to provide 

the most comprehensive and accurate environmental model possible.  The algorithms use a 

set of mathematical equations that provides an efficient computational means to estimate the 

state of a process. This study investigates the state estimation methods to determine the state 

of a desired system that is continuously changing given some observations or measurements. 

From the performance and evaluation of the system, it can be observed that the integration 

of sources of information and sensors is necessary. This thesis has provided viable solutions 

to the challenging problem of localisation in autonomous mobile robot through its 

adaptability, accuracy, robustness and effectiveness. 
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INTRODUCTION 

1.1 BACKGROUND 

Autonomous mobile robots are becoming more prominent in recent time because of its 

relevance and applications to the world today. Their ability to navigate in an environment 

without need for physical or electro-mechanical guidance devices has made it more 

promising and useful for applications such as hospital, institutions, agriculture, industries etc 

[1]. According to the author in [2], mobile robot creation in 2020 will comprise of 26 Million 

mobile robots enabling autonomy in smart factories, unmanned transportation and connected 

homes. With their proficiency to navigate in a hazardous environment and even working 

beyond human capabilities using artificial intelligence [3], they are virtually applicable to 

most areas of operations  [4, 5] and this has cause a huge demand in production. Ways by 

which robots support humans include: safety, productivity and efficiency. The main goal of 

this study is therefore to improve and implement existing technologies to have a reliable and 

feasible system, which allows to precisely localise autonomous mobile robot in indoor 

environment. 

 

Despite the request to design and develop more mobile robots, some issues such as 

navigation and tracking [6], path planning, localisation, mapping [7], obstacle detection and 

avoidance [8] especially for an autonomous system in an uncertain and complex 

environment are encountered with. The major and crucial issue among the mentioned is 

localisation of mobile robot. Localisation is identified as a problem of estimating the position 

of a device or object such as aircraft, humans and robots, relative to a reference frame, based 

on sensor input [9, 10]. It is therefore more challenging to obtain current accurate estimate 

positioning of an object be it static or mobile. For the mobile robot location to be estimated, 

several devices or sensors are adopted, such devices include: inertial sensors, odometry, 
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infrared, radio frequency identification (RFID), ultrasonic, Wi-Fi, Global positioning system 

(GPS) [11], and laser and sonar ranging sensors [12-14]. Inertial sensor information is used 

to facilitate localisation and navigation. However, the measurement derived from inertial 

sensors are corrupted by errors such as time-variant sensor biases and measurement noise. 

This problem is addressed by combining inertial sensor measurement with complementary 

information provided by additional sensor. Odometry on the other hand is used to determine 

the position of mobile robot by integrating the velocity of the robot over the period of its 

motion to obtain distance. This method is subjected to errors caused by uncertainty in robot 

and unevenness of the surface. A good sensor to detect motion of reliability is the use of 

infrared, but this device can only give appropriate measurement for target which are of short 

range because its performance degrades with longer distances. It requires direct-line of sight 

and thus it is not suitable for indoor location sensing.  RFID is a very good system technology 

for indoor localisation because of reasonable system price and reader reliability, but it 

requires a large number of infrastructures to accurately determine the location. Another 

important device that has received a high rate of attention is Wi-Fi-based positioning system. 

This system is widely used to estimate location for indoor environment, but it requires Wi-

Fi modules which could incur more cost. Ultrasonic method usually requires either a 

transmitter or receiver in the target objects. The technology utilizes Time-of-Flight (ToF) 

method to obtain the location information. However, it requires a great deal of infrastructure 

to accurately determine the location. Laser and sonar ranging sensor are considered as one 

of the most reliable and commonly used sensor for localisation of a mobile robot. Quite a 

number of studies have shown that this scheme satisfy practical requirements. However, it 

is a still challenging problem to employ the technology for indoor localisation because the 

measurements are erroneous in an environment surrounded by transparent or reflective 

objects such as glass walls or mirrors. GPS is considered inappropriate for indoor 

localisation because it does not work properly due to the signal from satellite that are 

attenuated and scattered by roofs, walls and other objects. Despite the efficiency and 

importance of using these devices they have their shortcomings such as limited power, high 

cost, noise, error, unreliability, limited range, inflexibility etc. In certainty, the use of 

relatively cheap sensors is important from a practical point of view; however, low-cost 

sensors seldom provide good performance due to measurement inaccuracies in various 
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environments. Recently, augmented reality (AR) has been widely deployed to facilitate a new 

method for users to interact with their surroundings. Regardless of research carried out on 

current technologies for indoor environments to estimate the position and orientation of 

mobile devices, the high cost of deployment and inability to achieve minimised error in 

position and orientation are still major challenges. In recent times, with the Internet-of-things 

(IoT) and mobile devices enabling sensing [15, 16] for a variety of consumer, environmental 

and industrial applications [17-21], sensors and embedded intelligence have become cheaper 

and easier to integrate into systems, but they may not be suitable to present optimal 

performance [19, 22]. It is important to develop an effective system suitable to localise an 

autonomous mobile robot that works in an indoor or unstructured environment. Therefore, 

it is suggested that for a mobile robot to localise itself, the combination of sensors or other 

localisation devices will as well improve the efficiency. Recent research has proven that 

vision positioning techniques is becoming a promising approach that provides required 

information about positioning of object in an environment [23]. It aids to find an appropriate 

image process technique that is optimal for object detection within robot exploration 

application. The robot requires a vision system that employs some image analysis 

techniques, which are insensitive to environmental conditions such as lightning, texture etc. 

Though vision aid to computes object parameters from images acquired by the camera which 

is often uncomplicated and portable, however, it doesn’t give depth information estimation 

and as such inaccurate information can be provided especially for fast navigation. Therefore, 

the following are the problem to be solved: to provide a viable solution on how information 

can be extracted from necessary devices through algorithms and mathematical expression to 

improve the overall performance of the system, to develop a model that is most suitable to 

combine two or more data together and to estimate the position of the mobile object and to 

adopt a low-cost positioning system and still give an optimal result which can also be used 

in a larger zone. The main motivation of this research work is to identify the significant 

challenges of autonomous mobile robot and to address them and on the other hand balance 

the trade-off between accuracy and performance.  
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1.2 PROBLEM STATEMENT 

Autonomous mobile robots have not yet made much impact upon industrial and domestic 

applications, mainly due to the lack of robust, reliable, cheap and flexible localisation and 

behaviour mechanisms for robots operating in unmodified, semi-structured environments. 

There are sensors and devices that can be used by mobile robots to determine their location, 

but these sensors are not equipped with all it is required to satisfy accurate positioning 

because they are prone to noise, errors, vibrations and other factors that could degrade the 

performance. Therefore, these sensors and devices are required to be filtered, calibrated and 

fused to ascertain effective performance. More so, it is a challenging task to model a good, 

less complex and adaptive data fusion algorithm that could be updated in real time and have 

the capability to handle non-linearity. 

1.2.1 Context of the problem 

Localisation is very paramount in the performance of mobile robot navigation system but 

challenging.  The ability for a mobile robot to estimate its position in each environment 

during autonomous movement is an issue that must be dealt with. Considerable studies have 

been carried out [13, 24, 25] in the development of various method of extracting information 

from the environment. Their works have employed different mechanisms to know the 

position of mobile robot in relative to position of objects with the consideration of 

robustness, efficiency, accuracy, deployment and reliability as a workflow for their 

paradigm. 

 

Object identification is a fundamental workflow in computer vision to aid pose estimation. 

Most of the objects placed in the environment are of various sizes, shapes and colour. A 

high-level approach that can accurately detect or match objects in a clustered scene, 

unknown and known environment is required. Many robust local descriptors are stable under 

different viewpoints and lighting conditions; however, their computational requirement is 

stronger than methods that are dependent on artificial landmarks. Therefore, the use of 

artificial and natural landmarks is still a challenge for mobile devices [14]. To model a 3D 
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displacement in motion that has a 2D transformation, an adaptive model is required to handle 

appearance change due to effects and deformation. Therefore, the construction of 3D models 

from images in the context of mobile robot exploring indoor environment is still an open 

research.  

 

Sensors provide a robot with a capability of sensing its environment and handling 

environment uncertainty. No sensor works well in all situation and every sensor suffers from 

certain drawbacks [26]. The performance of sensors may degrade after a limited life span or 

under some conditions. It is therefore suggested that, the use of more than one sensor is 

encouraged while the limitation of one sensor could be compensated by another with better 

ability and improved performance [27]. 

 

It has been a huge challenge for researchers to develop diverse algorithms to interpret the 

data obtained by sensors especially in updating in real-time and handling non-linearity. This 

process can be established using sensor fusion algorithm. The algorithm fuses sensors 

together and thereby effectively reduce sensor inaccuracy and possible false sensor 

information. Without sensors and data fusion algorithm, the development of an autonomous 

and intelligent robotic system remains in the realms of science fiction, therefore no robot can 

function well in real world [26]. The main purpose of multi-sensor data fusion is to eradicate 

the limitations of individual sensors and as well produce accurate, robust, flexible and 

reliable estimate of the world based on multi-sensory information. 

1.2.2 Research gap 

The mobile robot may need to identify its absolute position but its relative position with 

respect to the target object is equally imperative. Sensors play an integral role in determining 

the position of the mobile robot, but the inexactness and incompleteness of these sensors 

poses difficult challenges in localisation. Noise from the sensors induces limitations as such 

they reduce the useful information contents and the consistency of the sensor readings. Data 

provided by sensors is always affected by some level of impreciseness as well as uncertainty 
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in the measurement. The solution is to take multiple readings into account or multi-sensor 

fusion to increase the overall information content of the robot input.  

 

For a mobile robot to know its location accurately in terms of coordinate, it is therefore 

suggested that using landmark-based method could be suitable to aid localisation. However, 

these methods are faced with some difficulties such as improper representations of markers, 

illuminate change, geometrical variations, lack of pattern quantity and computational 

complexity in the environment. Although landmark-based methods are simple and more 

efficient, but they still pose the problem of identifying robot position in relation to features 

[14]. 

 

The possibility of combining sensors to result in a basic system suitable for localisation is 

still open. Therefore, data fusion algorithm is the best method to be used to integrate the data 

acquired from diver’s sources or devices. The algorithm should be able to express such 

inadequacy effectively and to exploit the data redundancy to reduce their effects. This study 

proposes a model to fuse data obtain from multi-sensors for estimation of mobile robot 

location. The method is based on an effort to develop a generic robust system for mobile 

robot location [26].  

1.3 RESEARCH OBJECTIVES AND QUESTIONS 

The objectives of this research study are: 

 

 To investigate feasibility of autonomous robot localisation using light weight, low 

power consumption and low-cost sensors. 

 To investigate methods for determining mobile robot orientation and location using 

multiple sensors.   

 To develop a method for object identification and detection with the purpose of robot 

localisation. 

 To investigate a data fusion algorithm with minimum computation time.  
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The research questions these study aims to answer are: 

 

 Which sensors can be most reliably used for mobile robot localisation? 

 How can sensors be combined to determine the pose estimation of a mobile robot?  

 Does landmarks or objects place in the environment contribute to the effective 

estimation of robot localisation?  

 How will the performance of the developed model and solutions be measured and 

validated? 

 

1.4 HYPOTHESIS AND APPROACH 

Localisation is a challenge in mobile robot and as such the efficiency and performance is 

dependent on the approach developed. This study seeks to presents a suitable methodology 

to estimate the optimal precise position and orientation of the mobile robot considering the 

data acquired by sensors and other source of information.  

 

The use of a non-linear algorithm to fuse data obtained from sensors and devices tackles the 

issue of positioning. It is expected for the algorithm to show reduced error and overall 

improvement with good precision of localisation. This study can prove hypothetically that 

data acquired from sensors can determine mobile robot location and the use of fusion data 

algorithm to combine information from multiple sensor sources lead to accurate and efficient 

pose estimation.  

1.5 RESEARCH GOALS 

The goals that this research study seeks to achieve are to: 

 

1. To investigate low power consumption, low cost, portable and easy to use sensors 

and devices to acquire data and determine accurate localisation [28]. 
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2. To develop an algorithm that will consolidate the data collected from sensors and 

sources to adequately track and localise autonomous mobile robot in a dynamic 

indoor environment with the purpose of minimising errors and in all enhancing the 

performance of the system. 

1.6 RESEARCH CONTRIBUTION  

Recently, mobile robot is experiencing revolution and quite several autonomous objects are 

available to solve different tasks. One of the key problems that require intervention currently 

is the improvement of localisation of autonomous mobile robot. To this end, this work has 

addressed it. The following contributions have been made during this research work:  

 

 A detailed study on sensor base localisation in autonomous mobile robot uncovered 

the most substantial shortcomings of its reliability and usefulness. The identified 

challenges are vital to be addressed, if not, they stand as potential barrier to mobile 

robot achieving its promise to providing a viable solution to the community at large. 

In the study, the limitations to achieving optimality in localisation for autonomous 

mobile robot were exposed, and as well solutions that could mitigate the effects were 

recommended. The solution models developed prevailed as great contributions to the 

body of knowledge for autonomous mobile robot.  

 

 In addressing the enervating problem using IMU suffers from integration drift due to 

error and inaccuracy. To overcome this limitation, we propose the use of inertial 

system in combination with a vision-based system. These two sensors have shown to 

complement each other. For vision, both marker-based and markerless methods were 

revealed to be an effective approach for vision algorithm to aid localisation.  

 

 The combination or fusion of two or more sensors or information acquired from a 

device have shown to be an effective method to have a reliable and efficient 

performance of determining localisation of a mobile robot, but such method have 
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proven to be complex and difficult to understand because such systems are 

categorised as non-linear system which may require non-linear algorithms to tackle 

the problem. We proposed two simple data fusion algorithms that can be applicable 

to a non-linear system and the approach was able to estimate the pose estimation of 

a mobile robot which also can be applicable to other types of objects. 

 

 

1.7 RESEARCH OUTPUTS 

The outputs of this research study are as follows:  

 M. Alatise and G. P. Hancke, “Pose estimation of a mobile robot based on fusion of 

IMU data and vision data using an extended Kalman filter,” Sensors (Basel), vol. 17, 

pp. 1-22, Sept. 2017.  

 

 M. Alatise and G. P. Hancke, “Pose estimation of a mobile robot using monocular 

vision and inertial sensors data,” in Proc. IEEE AFRICON, Cape Town, South 

Africa, Sept. 2017, pp. 1552-1557. 

 

 M. Alatise and G. P. Hancke. “Indoor mobile robot localisation based on low-cost 

vision sensor” in Proc. Southern Africa Telecommunication Network and 

Applications Conference. (SATNAC), Ballito, South Africa, Sept. 2019, pp. 1-6.  

 

 M. Alatise and G. P. Hancke, “A review on challenges of autonomous mobile robot 

and sensor fusion methods,” IEEE Access, vol. 8, pp. 39830-39846, Feb. 2020. 

1.8 DELINEATION AND LIMITATIONS 

Delineation 

The evaluation of this study was based on experimental setup carried out in an indoor 

environment and simulation using Arduino IDE (integrated development 
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environment) and MATLAB as a software simulation for data analysis. The goal of this 

research is to improve the performance of mobile robot localisation most precisely to find 

the location and orientation of the mobile using a less complex algorithm to fuse data from 

different devices. In this study, the inertial sensor and vision are employed to estimate the 

movement of the mobile robot. Operations like obstacle avoidance, map analysis and 

predefined navigation pattern are not covered in this study. 

  

Limitations 

To ensure more precise location for the mobile robot, best quality hardware equipment need 

to be purchased. However, the acquisition of the equipment will jeopardize the goal of the 

research, therefore, cost is a constraint. Another limitation is that the experiment is required 

to be performed in a quite serenity that is, limited movement or else unnecessary noise and 

disturbance could affect the efficacy of the data collected. 

1.9 STRUCTURE OF THE STUDY 

The rest of the thesis is organised as follows: we commenced the work in Chapter 2 with a 

comprehensive review on challenges faced with autonomous mobile robot, more background 

about inertial sensors, vision sensors and the data fusion algorithms. Furthermore, the 

categories of landmarks (markers) method were explained with the specification and 

applications depending on what operation or task is to be carried out. Chapter 3 covers the 

necessary mathematical framework, definition of coordinate systems, general notations and 

transformation equations. The chapter further presents the layout for experimental set-up for 

autonomous mobile robot in an indoor environment. Chapter 4 further extend the work of 

improving the performance and minimizing sensor error by incorporating the use of image 

processing in combination with inertial sensor to track and estimate mobile robot. Finally, 

Chapter 5 covers concluding remarks, contributions and an outline of further work to be 

done in future. 
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 LITERATURE STUDY 

The use of mobile robot is emerging in different sectors such as companies, industries and 

homes to improve services and daily activities. Due to technology advancement the demand 

for mobile robot has increased because of the task they perform and services they render. 

Various studies have been carried out by researchers on the importance of mobile robot, its 

composition and challenges. This chapter unravel the current literature, the challenges 

mobile robot is faced with. A comprehensive study of devices/sensors and prevalent 

techniques developed for tackling issues in mobile robot are presented as well. They are 

organised according to relevance, their strengths and weaknesses. The study therefore gives 

good direction for further investigation on developing methods to tackle the discrepancies 

faced with autonomous mobile robot.  

 

The rest of the chapter is structured as follows: This chapter commences by providing an 

overview of autonomous mobile robot (AMR) in Section 2.1. This is followed by challenges 

mobile robot is faced with in Section 2.2. Section 2.3 highlighted the different types of 

sensors and techniques used to determine mobile robot positioning. Furthermore, related 

works were presented in Section 2.4 with the concentration on different types of sensor 

fusion methods addressing issues in mobile robot and their benefits. Future research areas 

and conclusion are given in Sections 2.5 and 2.6 respectively. 

 

2.1 OVERVIEW OF AN AUTONOMOUS MOBILE ROBOT 

An autonomous mobile robot is a system that operates in an unpredictable and partially 

unknown environment. This means the robot must have the ability to navigate without 
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disruption and having the capability to avoid any obstacle placed within the confinement of 

movement. Autonomous mobile robots (AMR) have little or no human intervention for its 

movement and it is designed in such a way to follow a predefined path be it in an indoor or 

outdoor environment. For indoor navigation, the mobile robot is based on floor plan, sonar 

sensing, inertial measurement unit (IMU) etc. The first autonomous navigation was based 

on planar sensors such as laser rangefinder such that they navigate without human 

supervision. For an autonomous mobile robot to perform its task, it must have a range of 

environmental sensors. These sensors are either mounted on the robot or serve as an external 

sensor positioned somewhere in the environment. The number of different type of sensors 

mounted on the mobile robot to perform complex tasks and to determine estimation and 

localisation makes the design of the overall system extremely challenging [29-31].  

 

Robot functionality is dependent on the composition of the robot. There are major 

components robot is made up with to perform some specified tasks such as movement and 

robot positioning. The basic parts are locomotion systems: to enable it to move through its 

environment either forward, backward, left, right, up and down [32]. Power supply unit is 

another paramount component. A direct current (DC) supply of 5V, 9V, 12V or more is 

required, and this is dependent on what the robot is to be used for. The most important thing 

to consider when choosing the voltage is that sufficient power should be supplied to drive 

all the loads connected [33]. Another cogent factor that ensures the effective performance of 

the robot is the selection of appropriate sensors. Sensors are one of the major components 

required in the configuration of robots. They perform a very significant role in localisation 

of robot be it controlled or uncontrolled robot. They measure robot condition and its 

environment and send such information to robot controller as electronic signals. Robot 

actuators utilise combinations of different electro-mechanical devices, synchronous motor, 

stepper motor, alternating current (AC) servo motor, DC servo motor and the microcontroller 

provides necessary intelligence to control the mobile robot. It processes the sensory 

information and computes the control commands for the actuators to carry out specific tasks. 

 

Applications: Mobile robots attract attention more because of the increase in applications in 

various areas such as surveillance for security and monitoring, home for health and 
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entertainment, research and education etc. [42]. Surveillance robots are now been installed 

in homes for monitoring activities, security purpose [43], by taking the responsibility of a 

security guard. Robot developed for domestic use is simple and easy to deploy, they are 

connected to Wi-Fi home network or smart environment to monitor and report activities 

going on in the environment. They have been designed further to engage in house cleaning, 

position objects where and when required. Recently, home robots are now been used by 

elderly people in a situation where emergency case arises. These robots have helped to 

promote technology that aids to detect and react to events that demand immediate response 

[44]. 

 

Another area where mobile robot is trending is the section of education. Educational robotics 

is primarily focused on creating a robot that will assist users to develop more practical, 

didactic, and cognitive skills. This approach is intended also to stimulate interest for research 

and science through set of different activities designed to support strengthening of specific 

areas of knowledge and skills. Introduction of mobile robot has increased not only on tertiary 

level and scientific research institutions, but also in lower grades such as secondary and 

primary schools [45]. These have therefore improved the knowledge of people about mobile 

robot worldwide.  

 

Furthermore, mobile robot is gaining more interest in the area of mining industry [46].  The 

use of mobile robot has increased the efficiency and safety of miners. The robot can help to 

track people, robots and machines as well as monitor environmental conditions in mines. 

The mobile robotic platform is coupled with a set of range finders, thermal imaging sensors, 

and acoustic systems, all of which are functioned with neural networks. The robot navigates 

into different environments and identifies potential risk areas before the workers go in. Other 

use of mobile robots as shown in Figure 2.1 are not limited to the areas mentioned, other 

applications includes: fire-fighter, museum guides, planetary exploration, underwater and 

offshore structure inspection, underground pipe condition assessment, security, warehouse 

distribution application, space and ocean exploration, transmission tower inspection, 

patrolling, reconnaissance, petrochemical applications as well as for both domestic and 

industrial applications [47] etc. The construction industry is another sector of concern which 
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is affected with low productivity and inefficiencies. Robots are now used to address the 

issues faced during the construction and maintenance of roads. Through the aid of robots, 

technologies are coupled into them to detect road defect and how to seal road cracks and 

potholes. The robotic system have proved to be effective in reducing labour, cost while 

improving productivity and quality. Moreover, robotics system can reduce injuries and free 

workers from conducting dangerous tasks. Beside construction sector, agriculture is another 

area where the application of robot is useful. Due to the rise in demand of food and human 

population growing rapidly, with same number of employees and the number even shrinking, 

a high demand is now placed on the use of robotic to ease the workload of workers. Robots 

are introduced to tap rubber, pick and harvest fruits and other farm produce. 

 

 

Figure 2.1. Applications of mobile robot taken from [1], © 2020 IEEE. 
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Locomotion system: Locomotion system is an important aspect of the mobile robot design 

which does not only rely on the medium in which the robot moves but also on other factors 

such as manoeuvrability, controllability, terrain conditions, efficiency, stability, and so on 

[34]. Locomotion of robots over surfaces and in various media can be based upon different 

principle. The types of locomotion are motions using special outer devices like wheels, legs, 

tracks and propellers. The design of mobile robot is dependent on the service to be rendered; 

therefore, a mobile robot can be designed to walk, run, jump, fly etc. With the requirement 

of the designed robot, they are categorised into stationary (arm and manipulator), land-based, 

air-based, water-based etc. Mobile robots especially autonomous are in high demand because 

of their ability and capacity to perform tasks that may seem difficult for humans. Examples 

of such mobile robots are wheeled, legged, walking or hybrid. Legged, wheeled, and 

articulated bodies are the main ways where mobile robot locomote [35]. The wheeled robots  

are one of the most vital systems of the robot locomotion and autonomous intelligent vehicle 

(AIVs) are part of the research field in mobile robotics which relies on principles such as 

pattern recognition, image process. They play an important role in logistics, transport and 

distribution. They are suited to ground either soft or hard ground while the legged and 

articulated bodies requires a certain degree of freedom and therefore greater mechanical 

complexity sets in [36]. The wheel has been by far the most popular locomotion mechanism 

in mobile robotics and in man-made vehicles in general. It can achieve very good efficiencies 

and does so with a relatively simple mechanical implementation. The use of wheels is 

simpler than using treads or legs and is easier to design, build, and program when the robot 

is moving on flat, non-rugged terrain. They also tend to be much cheaper than their legged 

counterparts. Wheel control is less complex, and they cause less wear and tear on the surface 

where they move in comparison with others. Another advantage is that they do not present 

any great difficulty in terms of balance issues, since the robot is usually in contact with a 

surface. The shortcoming of wheeled locomotion system is that they are not very good at 

navigating over obstacles, such as stony terrain, unsmooth surfaces, or areas with low 

friction [34]. The performance of a mobile robot can be improved by utilizing different 

modes in various terrain conditions. To design and develop the locomotion system, the 

terrain type for the mobile robot must be identified. The types of terrain are Uneven, Level 

Ground, Stair Up, Stair Down and Non-traversable  [35]. 
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Another factor to consider when designing a mobile robot is stability. Stability is not usually 

a great problem in wheeled robot, because they are designed in such that all the wheels are 

always in contact with the ground. The use of four-wheeled is more stable than three, two 

and one because the centre of gravity (COG) is located at the centre space of the wheels. 

These days, mobile robots are been designed to operate in two or more modes. In [37], the 

author proposed a mechanism structure for the mobile robot with the advantage of 

adaptability using hybrid modes with active wheels. On a rough terrain the robot locomote 

using the leg mode while for smooth terrain it makes use of the wheeled locomotion by 

roller-skating using the passive wheels. The challenging part is that the wheels are usually 

very heavy and bulky because they require driving actuators, steering and braking 

mechanisms. Therefore, installation of the active wheels usually increases the total weight 

of the walking vehicle which is already heavy enough limiting the versatility of the leg 

mechanism. To improve the localisation of a mobile robot irrespective of the terrain a 

technique is purpose to be employed. Dead reckoning has been already extended to the case 

of a mobile robot moving on uneven terrain. It provides the dynamic information of the pose 

for mobile robots by directly measuring the parameters such as position, velocity and 

orientation [38].  

 

Perception: Perception refers to the ability of an autonomous system to collect information 

and extract relevant knowledge from the environment. Based on the sensors implemented, 

the environment perception task can be tackled by any kind of sensor or fusion of sensors. 

Fusion of information from different sensors enable to overcome limitation of individual 

sensor, to minimise overall uncertainty and to increase reliability in case of sensor failure. 

On the other hand, the fusion of sensory data has different effects in the different 

circumstances and sometimes sensors may fail to obtain accurate information. The 

performance of a multisensory is not only related to the sensor control, the accuracy of 

sensory measurements and fusion algorithm, but also to the perception planning. Perception 

is intended to design perception techniques and to perform high level uncertainty 

management, including sensor and sensory data selection according to the environment and 

sensors features, sensor parameter, selection of different fusion techniques and decision 
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making in abnormal situations [40]. Perception is mostly concerned with map building and 

object recognition, specifically using LiDAR/laser range finders and vision sensors. For a 

map building problem, the challenge is how to construct a map with the minimum of time 

and energy, or minimum of the sensor readings so as to reduce the overload. A sensing 

strategy is added to acquire additional sensor data so as to maximize the amount of new 

information. In regard to object recognition, the problem is to develop a technique to sample 

the minimal sensor data that is sufficient to recognize and locate a known object. This 

decision involves sensor selection, view point determination as well as sensor parameter. In 

this regards, perception is being recognized as an important components and required to be 

focused more on mobile robotics. 

 

It is very important for an autonomous mobile robot to acquire information from its 

environment, sense objects around itself, or its relative position. Perception contributes to 

this important aspect in mobile robot research. If a mobile robot cannot perceive its 

environment correctly and efficiently, then it will not be able to perform tasks such as 

estimating the position of an object accurately [39]. To achieve this, information are 

perceived by the use of sensors and other related devices [18]. Sensors make it possible to 

autonomously perform robot localisation through mechanism such as data collection, object 

identification, mapping and representation. Sensors used in the area of data collection is 

categorised into two major aspects: Proprioceptive/exteroceptive sensors and active/passive 

sensors. Proprioceptive sensors measure values internally to the system (robot), e.g. battery 

level, wheel position, joint angle, motor speed etc. These sensors can be encoders, 

potentiometers, gyroscopes, compasses, etc. Exteroceptive sensors are used to extract 

information from the environments or objects. Sonar sensors, Infrared (IR) sensitive sensors, 

ultrasonic distance sensors are some examples of exteroceptive sensors. 

 

Active sensors emit energy into environment and then measure the environmental reaction. 

Because active sensors can manage more controlled interactions with the environment, they 

often achieve greater performance. However, for active sensor, the outbound energy may 

affect the very characteristics that the sensor is attempting to measure. Furthermore, an active 

sensor may suffer from interference between its signal and environment [40]. Examples of 
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active sensors include sonar sensors, radars etc. While passive sensors receive energy to 

make observation like camera such as Charge Coupled Device (CCD) or Complementary 

Metal Oxide Semiconductor (CMOS) cameras, temperature sensors, touch sensors etc. 

These sensors are most applicable in relation to specificity and achievement in the design of 

an autonomous mobile robot. Table 2.1 gives types of sensors used by an autonomous mobile 

robot indoor localisation. 

Pp= Proprioceptive, Ep= Exteroceptive, A=Active, P=Passive, A/P=Active and passive 

 

Table 2.1. Classification of sensor systems [40]. 

Classification Sensor system Category 

(Pp, Ep, 

A, P) 

Purpose 

Tactile sensors: Contact switches, 

bumpers 

Optical barriers 

Non-contact 

proximity sensors 

Ep, P 

 

 

Ep, A 

 

Ep, A 

They are designed to sense 

and determine the exact 

position of an object at a 

short distance via direct 

physical contact. They are 

also used to detect heat 

variations. 

 

Tactile sensors are mostly 

used to calculate the amount 

of force applied by the 

robot’s end-effectors.  

 

Wheel Encoders: 

 

Optic 

Magnetic 

Pp, A It helps to measure the 

distance or speed the robot 

has driven. The wheel 

encoders also count the 
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revolutions of each wheel 

and an orientation. 

Optical sensor: 

 

Infrared 

LiDAR 

Ep, A 

 

Ep, A 

These are light-based 

sensors which produces 

range estimate based on the 

time needed for the light to 

reach the target and return. 

Heading sensors 

 

Gyroscope PP It is a reliable rotation sensor 

that measures angular 

velocities and orientation. 

Vision-based 

sensors 

CCD/CMOS 

camera(s) 

Ep, P These sensors offer a vast 

sum of information about the 

environment and enables 

intelligent interaction in 

dynamic environments. 

Active ranging 

sensors 

Ultrasonic 

Laser rangefinder 

Optical triangulation 

Ep, A 

              

Ep, A 

 

Ep, A 

Active ranging sensors aid 

robot navigate and they 

usually originate as part of 

the localisation and 

environmental modelling. 

They are devices that 

generate highly precise 

distance measurement 

between sensor and target. 
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Navigation: Navigation is a fundamental problem in robotics and other important 

technologies. In order for the mobile robot to autonomously navigate, the robot has to know 

where it is at present, where the destination is, and how it can reach the destination [41]. The 

most important aspect in the design of a mobile robot is navigation abilities. The objective 

is for the robot to move from one place to another either in a known or unknown 

environment. Most of the time, the mobile robot cannot take the direct path from its initial 

position to the final goal, which means that motion planning techniques must be used. This 

means that the robot must rely on its other aspects, such as perception (the robot must use 

its sensors to obtain valuable data), localisation (the robot must know its position and 

configuration), cognition (the robot must decide what to do to achieve its goals), and motion 

control (the robot must calculate its input forces on the actuators to achieve the desired 

trajectory). Navigation in unfamiliar environment demand to give the robot the ability to 

generate its action plan and to track it. It is significant as they need to move through the 

environment to execute their tasks which maybe exploration, inspection transportation or 

any kind of interaction with the environment and the objects in it. There are basically two 

types of navigation problem. The local and global. The local navigation problem deals with 

navigation on the scale of a few distance, where the main issue is obstacle avoidance. A 

well-known solution to this problem is presented in where an occupancy grid map of the 

immediate surroundings of the robot is created and used to determine the navigation 

direction such that the robot is safely guided towards the goal. Since the map is local, and 

resembles a ‘sliding window’, mapping of the whole environment does not occur. As for the 

global navigation problem, it deals with navigation on a larger scale in which the robot 

cannot perceive the goal state from its initial position. A number of resolutions have been 

proposed in the literature [48] to address this problem. Most rely either on navigating using 

a pre-specified map or constructing a map on the fly. Most approaches also rely on some 

technique of localisation. Some work on robot navigation is landmark-based relying on 

topological maps which have a compact representation of the environment and do not depend 

on geometric accuracy. The downside of such approaches is that they suffer from sensors 

being noisy and the problem of sensor antialiasing (i.e. differentiating between similar 

landmarks) [52]. 
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When the navigation goal is specified (either the robot requests to be guided to a certain 

place, or a sensor node requires the robot's assistance), the node that is closest to the goal 

triggers the navigation field computation. The navigation field provides the robot with the 

‘best possible’ direction that has to be taken in order to reach the goal. Therefore, to have 

ascertain free collision path on the route of the robot to its destination, it is cogent to develop 

and implement a navigation system for a mobile robot with current technology sensors which 

clearly requires sophisticated algorithms which will handle uncertainty. More details on 

navigation are discussed in Section 2.2.1. 

 

In robotics, another area to consider is the use of computer vision applications to aid 

navigation and localisation. In computer vision, object recognition and feature matching are 

a significant task to be performed for accurate positioning. Object recognition has long been 

adopted in mobile robot to detect or identify objects present in an image. The technique can 

either be used to determine coordinates of the object detected or calculate in relative to a 

proposed object identified in an image. Feature matching or image matching on the other 

hand performs the task of establishing correspondence between two images of the same 

scene/object. Examples of features associated between the images could be points, edges or 

lines, and these features are often called keypoints features [13, 14]. To perform the task of 

object recognition and feature matching, several algorithms were adopted and some of the 

algorithms will be mentioned and discussed later in the chapter. 

 

2.2 AUTONOMOUS MOBILE ROBOT CHALLENGES 

Autonomous mobile robots have proven to be a system that cannot be without as result of 

increase in demand for diverse applications. Regardless, the potential and prospect, they are 

yet to attain optimal performance, this is because of inherent challenges that they are faced 

with. These challenges (see Figure 2.2) have enabled more researchers to develop more 

interest in recent time. Some of the main challenges are listed below: 
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Major Challenges of Mobile 

Robot

Navigation

Obstacle 

Avoidance
Path Planning

Localisation

 

Figure 2.2. Challenges of mobile robot taken from [1], © 2020 IEEE. 

2.2.1 Navigation 

As earlier said, navigation of an autonomous mobile robot is an issue in robotics field. There 

are majorly two ways by which navigation problem is categorised into: local and global 

navigation. The local and the global navigation problem vary in terms of distances, scales 

and obstacle avoidance and in ability for the goal state to be observed. For local navigation, 

occupancy grid of map is used to determine the navigation direction and for global 

navigation, landmark approach based on topological map is used. This has a compact 

representation of the environment and do not depend on the geometric accuracy. The 

limitation of this approach is that they are downgraded by the noise generated from the 

sensor.  
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2.2.1.1 Environmental representation  

Mobile robot navigation systems depend on the level of abstraction of the environment 

representation. To accurately determine the position and orientation of the mobile robot, it 

is imperative for the environment to be modelled in a simple and understandable structure. 

Three main techniques for representing the environment are given as: geometric, topological 

and semantic [48].  

 

Geometric: The geometric representation is used to describe robot environment by 

parameterizing primitive geometric object such as curves, lines and points. The geometric 

representation of the environment is closer to the sensor and actuator world and it is the best 

one to perform local navigation. In [49], the author proposed the use of principal components 

analysis (PCA) - Bayesian based method with grid map representation to compress images 

and reduce computational resources. The PCA was also use to reduce dimensionality and 

model the parameter of the environment by considering the pixels of an image as feature 

vectors of the data set [50]. In [51] Markov localisation method was proposed to provide 

accuracy and multimodality to represent probability distribution of diverse kind but require 

significant processing for update, hence it is impractical for large environment. 

 

Topological: A topological representation is characterized by defining reference elements of 

the environment according to the different relations between them. A conventional method 

for modelling the robot’s environment is to discretize the environmental model by using a 

topological representation of the belief state, where each probable poses of the mobile robot 

is linked to a node in a topological map [52].  In [53], the proposed approach uses visual 

features extracted from a pair of stereo images as landmarks. While the new landmarks are 

fused into the map and transient landmarks are removed from the map over time. Topological 

representation of the environment uses graphs to model the environment and it is used in 

large navigation tasks.   

 

Semantic: The current tendency in robotics is to move from representation models that are 

closest to the robot´s hardware such as geometric models to those models closer to the way 
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how humans’ reason, with which the robot will interact. It is intended to bring closer the 

models the way robots represent the environment and the way humans do. Robots that are 

provided with semantic models of the environments where they operate have a larger 

decision autonomy, and become more robust and more efficient [54]. An integrated approach 

for efficient online 3D semantic map building of urban environments and the subsequent 

extraction of qualitative spatial relationships between the different objects was presented, 

this enables efficient task planning [55]. Semantic information constitutes a better solution 

for interaction with humans [56], the representation is the most abstract representation model 

and adds concepts such as utilities or meanings of the environment elements in the map 

representation. Semantic navigation is considered as a navigation system that considers 

semantic information to model that includes conceptual and physical representation of 

objects and places, utilities of the objects, and semantic relation among objects and places. 

This model allows the robot to manage the environment and to make queries about the 

environment in order to do plans for navigation tasks [48].  

Environmental model requires improved representation to enable successful result, better 

accuracy and as well reduce the computational cost [57]. For this to prevail, the environment 

must be well represented, simple technique must be adopted and be incorporated in to the 

robot’s representation of its environment [58]. 

2.2.2 Localisation 

Localisation is one the essential issues encountered in mobile robot which demands 

attention. The challenging part of localisation is estimating the robot position and orientation 

of which this information can be acquired from sensors and other systems. So, to tackle the 

issue of localisation, a good technique should be proposed to deal with errors, downgrading 

factors, improper measurement and estimations. The techniques are divided into two 

categories [59-62]: relative and absolute localisation. 

 

Relative localisation techniques: This method estimate the position and orientation of the 

mobile robot by combining information produced by different sensors through the 

integration of information provided by diverse sensors, usually encoder or inertial sensors. 
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The integration starts from the initial position and continuously update in time. The relative 

positioning alone can be used only for a short period of time. 

Absolute localisation techniques: This method allows the mobile robot to search its location 

directly from the mobile system domain. Their numerous methods usually depend on 

navigation beacons, active or passive landmarks, maps matching or satellite-based signals 

such as the global positioning system (GPS). For absolute localisation, the error growth is 

mitigated when measurements are available. The position of the robot is externally 

determined, and its accuracy is usually time and location independent. In other words, 

integration of noisy data is not required and thus there is no accumulation of error with time 

or distance travelled. The limitation is that one cannot keep track of the robot for small 

distances (barring exceptionally accurate GPS estimates).   

2.2.3 Path planning 

In autonomous robotics, path planning is a central problem in robotics. The typical problem 

is to find a path for a robot from a starting position to its target position. Safe and effective 

mobile robot navigation needs an efficient path planning algorithm since the quality of the 

generated path affects enormously the robotic applications [63-65]. 

 

In an environment with various obstacles, finding a path without collision with obstacles 

from the starting point to the destination becomes an issue such as shortness and simplicity 

of route are important criteria affecting on the optimality of selected routes. Considering 

 the length of the path travelled by the robot, and energy consumption and its performance 

time, an algorithm that finds the shortest possible route [66] is the most appropriate. 

Basically, there are two types of environment: static and dynamic. While dynamic 

environment is divided into global and local path planning [64, 67]. Global navigation 

strategy deals with a completely known environment while local navigation strategy deals 

with the unknown and partially known environment.  

 

Quite a number of studies have been investigated on path planning in dynamic environments. 

Authors in [68] proposed a new method to decide the optimum route of the mobile robot in 
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an unknown dynamic environment, they used ant colony optimization (ACO) algorithm to 

decide the optimal rule table of the fuzzy system.  Other related algorithms are bacterial 

foraging optimization (BFO) [64], and  probabilistic cell decomposition (PCD) [69]. A new 

mathematical approach that is based on the concepts of 

 3-D geometry is proposed to generate the path of the mobile robot. The mobile robot decides 

its path in real time to avoid the randomly moving obstacles and to track randomly moving 

goal [70]. Other intelligent algorithms studied by researchers used by mobile robot to 

navigate in diverse environment are differential evolution (DE) algorithm [71, 72], harmony 

search (HS) algorithm [73], bat algorithm (BA) [74], and invasive weed optimization (IWO) 

[75]. 

2.2.4 Obstacle avoidance  

Another challenging issue is obstacle avoidance, it is important that the mobile robot get to 

its destination without being obstructed by any obstacle or collision on its path. To this effect, 

collision free algorithm is a requirement of autonomous mobile robot, since it provides the 

safe trajectory and proves convergence [76]. Some of the main algorithms that can be used 

for obstacle avoidance are discussed in this section. Bug algorithm  [77] is one of the earliest 

algorithms. It enables the robot to navigate the entire circumferences of the obstacle 

encountered and decide on the most appropriate point to leave toward the goal. The robot 

therefore moves to the best leaving position and later moves towards the object. The benefit 

of this algorithm is that it is easy to determine if an object is unreachable or not. However, 

the algorithm takes time to achieve its goal. Another algorithm is vector field histogram 

(VFH) [78] which is an improvement of the short coming of virtual force filed (VFF) 

algorithm [79]. VFH allows detection of unknown obstacle and avoids collision while 

simultaneously piloting the mobile robot towards the target. This algorithm employs a 2-

stage data reduction process in order to compute the desired control command for the robot. 

This ensures accurate computation of the robot path to the target, but it consumes more 

resources like memory, processor and power. Hybrid navigation algorithm with roaming 

trails (HNA) [80] is an algorithm that is able to deal very efficiently with  environments 

where obstacles are encountered by the robot during motion. During navigation the robot is 
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allowed to deviate from its path to avoid obstacles on the basis of reactive navigation 

strategies, but it is never allowed to exit from the area. Since the robot is constrained to move 

within a convex area which includes the location of the target node, in presence of static 

obstacles it is guaranteed to reach the target by following a straight line. In some cases, the 

mobile robot has to either avoid the obstacles or simply stop in front of the obstacle. Another 

method that is similar to HNA is the new hybrid navigation algorithms (NHNA) [81]. The 

algorithm uses D-H bug algorithm (Distance Histogram bug) to avoid obstacle. It enables 

the robot to rotate freely at angle less than 90 degrees to avoid obstacle. If the rotation of 90 

degrees or greater is required to avoid an obstacle, it acts as bug-2 algorithm [77] and start 

moving to destination when path is clear from obstacles. Conclusively, collision free 

algorithm is a requirement for autonomous mobile robot, since it provides safe trajectory. 

 

In conclusion, challenges faced by mobile robot must be tackled to ensure effective 

performance. Navigation is one of the most important aspects to be considered when it comes 

mobile robot because it requires planning algorithms and appropriate information about 

robot’s location. This will navigate the robot through its pre-defined path. In as much as 

navigation is important so also is trajectory planning. This will determine the path the robot 

must follow in order to reach its destination. Therefore, a path must be planned accordingly 

to avoid collision and obstacles. Different algorithms are considered for obstacle avoidance 

depending on the goal to be achieved.  Finally, the robot must know its position and direction 

per time. In this regard, an effective localisation technique and reliable sensors are required 

to gather precise information. 

2.3 SENSORS AND TECHNIQUES IN MOBILE ROBOT POSITIOING 

To ensure accuracy in localisation, sensors and effective positioning system has to be 

considered. Objects positioning [14], robotics, and augmented reality (AR) tracking [82] 

have been of interest in the literature of recent. This section will discuss the existing 

technologies that aim at finding a mobile robot’s position in its environment.  
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2.3.1 Inertial sensors 

Inertial based sensor methods as also known as IMU (Inertial Measurement Units) which is 

a combination of accelerometers, gyroscopes and sometimes magnetometers. These sensors 

have become ubiquitous because many devices and system depend on them to serve a large 

sum of applications. They rely on measurement of acceleration, heading and angular rates, 

which can be acquired without external reference. Each of these sensors are deployed in 

robots, mobile devices and navigation systems [83]. The importance of using these sensors 

is solely to determine the position and orientation of a device and/or object.  

 

Accelerometer: Accelerometer as a sensor measures the linear acceleration, which is the rate 

of change of velocity of an object. They measure in meters per second 
2( / )m s  or in gravity 

(g). They are useful for sensing vibration in system or for orientation applications [84]. 

Velocity is determined from it if integrated once and for position, integration is done twice. 

Using a standalone sensor like accelerometer could be simple and of low cost as stated by 

the author in [85], but the linear increasing error does not give a high-level of accuracy. 

Results produced by accelerometer for mobile robots have been unsuitable and of poor 

accuracy due to the fact that they suffer from extensive noise and accumulated drift. This 

can be compensated with the use of gyroscope. 

 

Gyroscope: Gyroscope sensor measures the angular velocity in degrees per second ( / )s   or 

revolution per second (RPS) and by integrating once, rotation angle can be calculated. 

Although gyroscope is small in size and inexpensive but run at a high rate in which they are 

able to track fast and abrupt movements. Another advantage of using gyroscope sensor is 

that it is not affected by illumination and visual occlusion [14]. However, they suffer from 

serious drift problem caused by accumulation of measurement errors for long period. 

Therefore, the fusion of both accelerometer and gyroscope sensor is suitable to determine 

the pose of an object and to make up for the weakness of one over the other.  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2  LITERATURE STUDY 

 

Department of Electrical, Electronic and Computer Engineering 29 

University of Pretoria 

Magnetometer: Magnetometer is another sensor used to determine the heading angle by 

sensing the earth magnetic field. They are combined with technologies to determine pose 

estimation [86]. However, magnetometer may not be so useful for indoor positioning 

because of the presence of metallic objects within the environments that could influence data 

collected through measurements [14]. Other methods that can be used to determine indoor 

localisation includes infrared, Wi-Fi, ultra-wideband (UWB), Bluetooth, wireless local area 

network (WLAN), fingerprinting etc. [87, 88]. However, these methods have their 

shortcomings, it is therefore necessary that two or more schemes be combined to achieve an 

accurate result.  

 

Nowadays, accelerometer and gyroscope are integrated into a unit. Example of such IMU is 

Arduino 101. This has made measurement to be simple and reduction in error to be attained 

to a certain level. With the two sensors used, a  six degree of freedom (6 DOF) were 

determined with the sides of X, Y and Z axes [89]. Acceleration can be measured 

independently in three axes: X, Y and Z as well as the angular rate by the gyroscope in X, Y 

and Z directions. Summary feature of accelerometer and gyroscope are given in Table 2.2. 

The table shows the ranges of measurement and with a digital resolution of 16 bits. The IMU 

unit combines the data captured from the tri-axis accelerometer and the tri-axis gyroscope. 

The 16-bit tri-axial accelerometer detects the linear motion and gravitational forces while 

the 16-bit tri-axial gyroscope measure the rate in space.  

2.3.1.1 Calibration of IMU 

Low cost micro-electromechanical (MEMS) used in many mobile robot applications still 

experiences, drifts, bias, repeatability, stability etc. [90, 91]. Therefore, it is necessary for 

IMU to be calibrated in the environments that they will operate in to improve performance. 

Several authors have proposed on how to calibrate sensor using different method. 

Traditionally the calibration of an IMU has been done by using special mechanical platforms 

such as a robotic manipulator, rolling shutter camera, moving the IMU with known rotational 

velocities in a set of precisely controlled orientations [92, 93]. However, the mechanical 

platforms used for calibration are usually very expensive; resulting in a calibration cost that 
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often exceeds the cost of the IMU's hardware. In [94], the author proposed a model called 

turntable errors to reduce error in IMU by calibration. The result presented shows that with 

calibration, IMU accuracy improved despite using the traditional method. Also, David et al. 

[95] proposed an easy and robust method to calibrate IMU without the use of external 

equipment. This method only requires the sensor to be moved by hand and positioned in a 

different static location. The method is similarly applicable to our method. Here, calibration 

of IMU was done using the application programming interfaces (API) runtime made 

available in the CurieIMU library of the Arduino microcontroller. The CurieIMU library has 

made some values available to calibrate the IMU. The advantage of this method is that no 

additional equipment was required, and this has enabled the process to be simple and faster. 

The main reason for IMU calibration is to compensate the offsets values for accelerometer 

and gyroscope along each one of the reference axes. During this procedure the board should 

be placed on a flat surface and motionless. When finished, this procedure writes the proper 

offset value in the IMU register that can be read with getGyroOffset and 

getAccelerometerOffset.  

2.3.2 Vision (Camera sensor) 

Vision sensors are one of the most suitable devices to be used for positioning. Areas of 

application of vision sensors include indoor, outdoor and even in underwater [96, 97]. In 

recent times, mobile robot localisation researches are now based on vision. This is because 

information acquired through vision sensor from the environment aids to interpret using 

features descriptors and as such data is analyzed easily.  In addition, the use of vision sensor 

is more accurate to estimate the relationship between 2D image and 3D scene. They also 

help to overcome the inherent limitation of the acoustic sensor for simultaneous multiple 

object tracking, while the acoustic sensor supports the estimation when the object is 

occluded. 
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Table 2.2. IMU feature summary [98]. 

 Accelerometer Gyroscope 

Digital 

Resolution 

16-bit 16-bit 

Measurement 

ranges 

(programmable) 

2 , 4 , 8 ,

16

g g g

g

  


 

125 / , 250 / , 500 / ,

1000 / , 2000 /

s s s

s s

   

 
 

Sensitivity 

(calibrated) 

2 :16384 /g LSB g

 

4 :8192 /g LSB g  

8 : 4096 /g LSB g  

16 : 2048 /g LSB g

 

125 / : 262.4 / /s LSB s    

250 / :131.2 / /s LSB s    

500 / : 65.6 / /s LSB s    

1000 / : 32.8 / /s LSB s    

2000 / :16.4 / /s LSB s    

Zero-g offset 40mg  10 / s   

 

2.3.2.1 Camera calibration 

The issue of camera calibration is a known problem in computer vision. It is a necessary step 

in 3D computer vision to extract metric information from 2D image. There are several 

techniques and toolboxes available for such. The purpose of camera calibration is to find the 

intrinsic and extrinsic parameters of cameras. The basic methods of camera calibration can 

be divided into the traditional camera calibration methods and the camera self-calibration 

methods [99]. The traditional calibration method has a high calibration precision but need 

specific calibration reference substance. The self-calibration method does not rely on 

calibration reference substance, but the calibration results are relatively unbalanced. These 

procedures typically require images at several angles and distances of a known calibration 

object. The author in [100] proposed a self-calibration method based on active vision. The 

calibration method is simple and can get linear solution, but it is inflexible and has a high 

cost. With the developing of optimisation algorithms, many techniques are applied to camera 
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calibration. References in [101-103] proposed schemes by which the problem of camera 

calibration can be solved using analytical solution and nonlinear optimisation techniques. It 

has fast convergence speed and good robustness. Zhang [73] proposed a camera calibration 

method based on planar template, which is flexible and very simple. A planar checkerboard 

pattern is a frequently used calibration object because it is very simple to produce, it can be 

printed with a standard printer, and has unique corners which are easy to detect [104]. 

 

2.3.3 Monocular vision positioning system 

Monocular vision positioning uses a single camera to determine the pose estimation of a 

mobile device or static objects. Another type of vision positioning system is called binocular 

vision.  Binocular stereo vision uses two cameras to estimate location of a mobile robot. 

Although it has the advantage of better performance in the regard of accuracy, but it is more 

expensive and complex to compute [105]. While monocular vision on the other hand is 

simple to set-up and of low cost. Information collected from the environment captured by 

the camera can be in form of an image or video. This information is therefore processed to 

estimate the position and orientation of the robot per time. This poses a spatial relationship 

between the 2D image captured and the 3D points in the scene. According to Navab [106], 

the use of marker in augmented reality (AR) is very efficient in the environment. It increases 

robustness and reduces computational requirement. However, there are exceptional cases 

where markers are placed in the area and they need re-calibration from time to time. 

Therefore, the use of scene features for tracking in place of markers is reasonable especially 

when certain parts of the workplace do not change over time. Placing fiducial markers [47] 

is a way to assist robot to navigate through its environments. In new environments, marker 

often need to be determined by the robot itself, using sensor data collected by IMU, sonar, 

laser and camera. Markers’ locations are known, but the robot position is unknown, and this 

is a challenge for tracking a mobile robot. From the sensor readings, the robot must be able 

to infer its most likely position in the environment. With monocular vision (one camera), a 

good solution in terms of scalability and accuracy is provided. With the aid of other sensors 

such as ultrasonic sensor or barometric altimeter, the monocular vision can also provide the 
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scale and depth information of the image frames. To calculate the pose of the mobile robot 

with respect to the camera based on the pinhole camera model,  the monocular vision 

positioning system [107], was used to estimate the 3D camera from 2D image plane [108]. 

The relationship between a point in the world frame and its projection in the image plane 

can be expressed as: 

 MPp   (2.1) 

where  is a scale factor, [ , , 1]Tp u v  and  [ , , , 1]T

w w wP X Y Z  homogenous coordinates 

of p and P , and M  is a 3 4  projection matrix.  

Equation (2.1) can further be expressed as: 
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The projection matrix depends on both camera intrinsic and extrinsic parameters. The 

intrinsic parameters contain five parameters: focal length f , principal point 0 0,u v and the 

skew coefficient between x  and y axis and is often zero. 
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Extrinsic parameters: ,R T defines the position of camera center and the camera’s heading in 

world coordinates. Camera calibration is to obtain the intrinsic and extrinsic parameters.  

Therefore, the projection matrix of a world point in the image is expressed as: 

 
1 TC R T R T     (2.4) 

where T is the position of the origin of the world coordinate, and R is the rotation matrix. 

For this research, camera calibration was done offline using MATLAB Calibration Toolbox 

[101] 
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2.3.4 Landmarks 

Landmark is the feature information recognized through robot's sensors perception. For an 

autonomous robot localisation and navigation, how to identify landmarks quickly and 

accurately plays an important role. Robot navigation system based on landmarks, research 

areas include landmark selection, landmark design, landmark detection, landmark 

navigation, environmental characterization and path planning, etc. Generally, landmarks are 

classified into two types: markerless (also known as natural landmark) and marker-based 

(also known as artificial landmark)  [109]. 

2.3.4.1 Artificial landmark  

Artificial landmarks refer to the special designs of the objects or markers, placed in an 

environment that can be detected by laser, infrared, sonar and vision sensors. The peculiarity 

of the marker is important with the features for quick recognition and high reliability, these 

landmarks can be identified accurately at various visual conditions [109, 110].  Localisation 

based on artificial landmarks is used more widely than other methods because the artificial 

landmarks are easy to detect which could enhance precision. An artificial landmark could be 

any object whether static or mobile which could vary in size, shape feature of color as long 

as it is placed in the environment with purpose of robot localisation. The author in [99] use 

a sticker and LED array as an artificial landmark. These makers are easier to detect and 

describe because the details of the objects used are known in advance. These methods are 

used because of their simplicity and easy setup. However, the possibility of adopting the 

method in a large environment may not be feasible because of the numerous number of 

markers identified in the area. 

2.3.4.2 Natural landmark  

Natural landmarks are objects or features that are part of the environment and have a function 

other than robot navigation. Examples of natural landmarks are corridors, edges, doors, wall, 

ceiling light, lines, etc. The choice of features is vital because it will determine the 
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complexity in the feature description, detection and matching [14].  Although the natural 

landmarks have little influence on the environment, it is rarely used in the practical 

applications for its low stability and bad adaptability. Visual features are divided into three 

categories: point feature, line feature, block feature. Point features are the easiest to extract, 

relatively stable and contain abundant information [111]. A lot of work has dealt with the 

issue of using natural landmarks to extract feature that will aid robot localisation using Scale-

Invariance feature Transform (SIFT) features [112] and Speeded Up Robust Feature (SURF) 

features [113, 114].  

2.3.5 Object recognition and feature matching 

In this subsection we presented the proposed method of object recognition and matching 

features. Object recognition under uncontrolled, real-world conditions is of vital importance 

in robotics. It is an essential ability for building object-based representations of the 

environment and for the manipulation of objects. Different methods of scale invariant 

descriptors and detectors are currently being used because of their scale flexible and affine 

transformations to detect, recognize and classify objects. Some of these methods are 

Oriented Fast and Rotated BRIEF (ORB), Binary Robust Invariant Scalable Keypoints 

(BRISK), Difference of Gaussians (DoG), FERNS [115] SIFT [24] and SURF [113]. More 

details of these method can be found in reference [116]. Object detection and recognition 

can be done using computer vision whereby an object will be detected in image or video 

sequence. The recognised object is used as a reference to determine the pose of a mobile 

device. Basically, object detection can be categorised into three aspects: appearance based, 

color based and features based. All these methods have their advantages and limitations 

[117]. 

Appearance based objects are recognised based on the changes in color, size and shape. The 

techniques used are edge matching, divide and conquer search, greyscale matching, gradient 

matching etc. The color based techniques are based on the RGB features to represent and 

match images. They provide cogent information for object recognition. While the feature-

based technique finds the interest points of an object in image and matches them to the find 
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object in another image of similar scene. Features extracted are surfaces, patches, corners 

and linear edges. The methods used to extract feature are interpretations trees, hypothesize 

and test, pose consistency, geometric hashing, SIFT, and SURF. 

Generally, finding the correspondences is a difficult image processing problem where two 

tasks have to be solved [118]. The first task consists of detecting the points of interest or 

features in the image. Features are distinct elements in the images; examples are corners, 

blobs, edges. The most widely used algorithm for detection includes the Harris corner 

detector [119]. It is based on the eigenvalues of the second moment matrix. Other types of 

detectors are correlation based: Kanade-Lucas-Tomasi tracker [120] and Laplace detector 

[121]. For feature matching, the two most popular methods for computing the geometric 

transformations are: Hough transform and RANSAC algorithm [113, 116, 122]. They could 

estimate parameter with a high degree of accuracy even when a substantial number of 

outliers are present in the data set. 

2.3.5.1 Speeded-Up Robust Features (SURF)  

SURF was first introduced by Herbert Bay et al. [113]. SURF outperforms formerly 

proposed scheme SIFT with respect to repeatability (reliability of a detector for finding the 

same physical interest points under different viewing conditions), distinctiveness, and 

robustness, yet can be computed and compared much faster. The descriptors are used to find 

correspondent features in the image. SURF detect interest points using (such as blob) using 

Hessian matrix because of its high level of accuracy (See (2.5) and (2.6)). This is achieved 

by relying on integral images for image convolutions; by building on the strengths of the 

leading existing detectors and descriptors (specifically, using a Hessian matrix-based 

measure for the detector, and a distribution-based descriptor); and by simplifying these 

methods is essential. This leads to a combination of novel detection, description, and 

matching steps. SURF is used to detect key points and to generate its descriptors. Its feature 

vector is based on the Haar Wavelet response around the interested features [117]. SURF is 

a scale-and rotation-invariant, that means, even with variations on the size and on the rotation 

of an image, SURF can find key points. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2  LITERATURE STUDY 

 

Department of Electrical, Electronic and Computer Engineering 37 

University of Pretoria 

 
0 0

( ) ( , )
j yi x

i j

I x I x y


 

  (2.5) 

There is a point ( , )X x y  in an image I , Hessian matrix ( , )H X   in X at scale   is 

defined as: 
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where ( , )xxL x   is the convolution of the Gaussian second order derivative 
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with 

the image I  in point X and derivative for  ( , )xyL x  and ( , )yyL x  . 

2.3.5.2 Random Sample Consensus (RANSAC) 

RANdom SAmple Consensus (RANSAC) is feature matcher which works well with SURF 

to match object detected by SURF in images. RANSAC was first published by Fischler and 

Bolles [122] in 1981 which is also often used in computer vision. For example, to 

simultaneously unravel the correspondence problem such as, fundamental matrix related to 

a pair of cameras, homograph estimation, motion estimation and image registration [123-

128]. It is an iterative method to estimate parameters of a mathematical model from a set of 

observed data which contains outliers. Standard RANSAC algorithm of this method is 

presented as follows: 

Assuming a 2D image corresponds to a 3D scene point.  (xi, wXi). Let us assume that some 

matches are wrong in the data. RANSAC uses the smallest set of possible correspondence 

and proceed iteratively to increase this set with consistent data.  

- draw a minimal number of randomly selected correspondences Sk (random sample) 

- compute the pose from these minimal set of point correspondences using () POSIT, 

() DLT  

- determine the number Ck of points from the whole set of all correspondence that are 

consistent with the estimated parameters with a predefined tolerance. If Ck>C* then 
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we retain the randomly selected set of correspondences Sk as the best one: S* equal 

Sk and C* equal Ck 

- repeat first step to third step. 

The correspondences that partakes to the consensus obtained from S* are the inliers. The 

outliers are the rest. It has to be noted that the number of iterations, which ensures a 

probability p that at least one sample with only inliers is drawn can be calculated. Let p be 

the probability that the RANSAC algorithm selects only inliers from the input data set in 

some iteration. The number of iterations is denoted as [129-131]: 

 
log(1 )

log(1 (1 ) )n

p
k

w




 
 (2.7) 

where w is the proportion of inliers and n is the size of the minimal subset from which the 

model parameters are estimated. Steps to detect and recognise object (marker) in a scene:  

- Load training image 

- Convert the image to grayscale 

- Remove lens distortions from images 

- Initialise match object 

- Detect feature points using SURF  

- Check the image pixels 

- Extract feature descriptor 

- Match query image with training image using RANSAC 

- If inliers > threshold then 

- Compute Homography transform Box 

- Draw box on object and display  

More details of the algorithm will be presented in Chapter 3 under result and discussion. 
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2.3.6 Rotation representations  

Several representations can be used to obtain object (body) orientation. The rotation 

representations are axis angle, rotation matrix, Euler angles and quaternion [132-134].   

 

Axis-angles: Axis angle is used to represent the rotation of an object in 3D. Rotation can be 

represented by a unit vector and an angle of revolution about that vector. Rodrigues' rotation 

formula is an efficient algorithm for rotating a Euclidean vector, given a rotation axis and an 

angle of rotation. It provides an algorithm to compute the exponential map without 

computing the full matrix exponential. 

If v  is a vector 3R and e  is a unit vector rooted at the origin, an axis of rotation about which 

v  is rotated by an angle , the Rodrigues' rotation formula to obtain the rotated vector is 

given as: 

 (cos ) (sin )( ) (1 cos )( . )rv v e v e v e        (2.8) 

Rotation matrix: Rotation matrix is a matrix whose multiplication with a vector rotates 

while preserving its length. The 3x3 rotation matric is denoted by (3)SO . Thus, if R 

(3)SO , then det R= 1   and 1 TR R    

For three dimensions, using the right-hand rule, the rotation is given as  

 

1 0 0

( ) 0 cos sin

0 sin cos

xR   

 

 
 

 
 
  

   (2.9) 

 

cos 0 sin

( ) 0 1 0

sin 0 cos

yR

 



 

 
 


 
  

  (2.10)            

  

cos sin 0

( ) sin cos 0

0 0 1

zR

 

  

 
 


 
  

   (2.11)      
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The general rotation can be obtained using matrix multiplication ( ) ( ) ( )z y xR R R R    

where , ,    are represented as yaw, pitch and roll respectively. 

 

Euler angles: Euler angles are intuitive to interpret and visualize and that’s why that they 

are still widely used today. Euler angles represent an orientation as a series of three 

sequential rotations from an initial frame. Each rotation is defined by an angle and a single 

axis of rotation chosen among the axes of the previously transformed frame. Definition of 

Euler angles consists in giving the order of three successive rotation axes. For instance, XYZ, 

ZXZ. In particular, the angles of classification XYZ are also named roll (rotation about the 

x-axis), pitch (rotation about the x-axis) and yaw (rotation about the x-axis). As such, there 

are six possible Euler angle conventions. When the three axes are different, one refers to the 

angle triplet as Tayt-Briant angles. Euler angles are mostly used because of simplicity and 

ease of understanding. However, they have singularities when compared to quaternion when 

used to integrate incremental changes in attitude.  

 

Quaternion: Quaternions are a number system that extends complex numbers applied to 3D 

space. When used to represent rotation, it is called rotation quaternion and if it is used for 

orientation it is called orientation quaternions or attitude quaternions. It can be expressed as: 

 a bi cj dk    (2.12) 

where , ,a b c  are real number and , ,i j k   are symbols as unit vectors. 

Although quaternion have no singularities and the representation is well-suited to integrating 

the angular velocity, but the quaternion parameters do not have intuitive physical meaning 

and a quaternion must have unity norm to be a pure rotation [133]. They are used for a sensor 

that can be oriented anywhere in space. Table 2.3 shows the advantages and disadvantages 

of rotation representations. 
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Table 2.3. Characteristics and applications of rotation representations. 

Rotation 

representation 

Advantages Disadvantages Applications 

Axis angle Relatively simple, 

uses very little storage, 

efficient to compute 

Still suffers from the 

“edge” and distance 

preserving problems of 

Euler Angles. The 

representation is very 

intuitive. Difficult to 

compose rotations and 

interpolate rotations. 

Rigid body 

dynamics 

Rotation 

matrices 

Easy to understand 

and compute 

Difficult to compose 

rotations and 

interpolate. 

Materials field 

and texture 

community, 

aeroplanes 

Euler angles Simple and easy to 

comprehend. Widely 

used. Good for 

decomposing rotations 

into individual DoF.  

Gimbal lock and 

ambiguity 

Material 

science, 

aviation, rigid 

bodies 

Quaternions Representation of 

rotation is numerically 

convenient. They 

don’t suffer from 

ambiguity since they 

only represent a single 

rotation with a well-

defined axis. 

Complex. They don’t 

have an intuitive 

representation 

Computer 

animation. 

Used to 

represent 

transformations 

of orientations 

of graphical 

object 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2  LITERATURE STUDY 

 

Department of Electrical, Electronic and Computer Engineering 42 

University of Pretoria 

2.4 RELATED WORK ON SENSOR FUSION TECHNIQUES 

Several definitions of sensor fusion are given in the literature. Sensor fusion or data fusion 

as defined by Joint Directors of Laboratories (JDL) workshop [134] is a multi-level process 

dealing with the association, correlation, combination of data and information from single 

and multiple sources to attain refined position, identify estimates and complete timely 

assessments of situations, threats and their significance. Also, Hall and Llinas [135] provided 

the following well-known definition of data fusion: “data fusion techniques combine data 

from multiple sensors and related information from associated databases to achieve 

improved accuracy and more specific inferences than could be achieved by the use of a single 

sensor alone”. According to the authors in [136, 137], sensor fusion was defined as the 

cooperative use of information provided by multiple sensors to aid on performing a function 

while several others authors [138, 139] defined data fusion algorithms as the combination of 

data from multiple sources in order to enhance the performance of mobile robot. Regardless 

of different definition given, sensor fusion is the integration of information from multiple 

sources to improve accuracy and quality content, also with the aim to reduce cost. The 

technique finds wide application in many areas of robotics such as object recognition, 

environment mapping, and localisation. Fusion techniques are therefore regarded as the most 

appropriate method to track objects and determine their locations. The advantages of sensor 

fusion are as follows: reduction in uncertainty, increase in accuracy and reduction of cost. It 

is therefore suggested by various researchers that to attain a level of accuracy, integration of 

more than one sensor is most suitable because the inadequacy of one sensor can be 

complemented by another. For example, the image captured by the camera was used to 

correct the abnormalities of inertial sensors [140, 141]. The data fusion techniques deployed 

is influenced by the objective of applications in which it aids in building a more accurate 

world model for the robot to navigate and behave more successfully. The three fundamental 

ways of combining sensor data are the following [138, 142]: 

 

Competitive: The sensors are configured competitively to produce independent 

measurements of the same property i.e. diverse kinds of sensors are used to measure same 
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environment characteristic. This means data from different sensors can be fused or 

measurement from a single sensor taken at different periods can be fused. A special case of 

competitive sensor fusion is fault tolerance. Fault tolerance requires an exact requirement of 

the service and the failure modes of the system. This configuration therefore reduces the risk 

of incorrect indication that could be caused by one of the sensors. Most importantly, this 

might result in an increase in the reliability, accuracy or confidence of data measured by the 

sensors. This technique can also provide robustness to a system by combining redundant 

information [105, 106]. However, the robust system provides degraded level of service in 

the presence of faults while this graceful degradation is weaker than the accomplishment of 

fault tolerance. The method performs better in terms of resource need and work well with 

heterogeneous data sources. Another name for competitive sensor configuration is also 

called a redundant configuration. An example of competitive is the reduction of noise by 

combining two overlaying camera images. 

 

Complementary: This type of sensor configuration ensures that the sensors do not depend 

on each other but rather complement themselves with different measurements. This resolves 

the incompleteness of sensor data. This type is the most common for localisation. Example 

is when vision is complemented by the short coming of accumulated errors in IMU. Another 

example of complementary configuration is the employment of several cameras each 

observing different area of the mobile robot surrounding to build up a picture of the 

environment. Generally, fusing complementary data is simple, since the data from 

independent sensors can be appended to each other, but the disadvantage is that under certain 

conditions the sensors maybe ineffective, such as when camera used in poor visibility [107]. 

 

Cooperative: This method uses the information made available by the two separate sensors 

to originate data that would not be obtainable from the single sensors. An example of a 

cooperative sensor configuration is stereoscopic vision by combining two dimensional 

images from two cameras at slightly dissimilar viewpoints in which 3D of the detected scene 

is derived. According [107], cooperative sensor configuration is the most difficult system to 

design due to their sensitivity to imprecisions in all individual participating sensors. Thus, 
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in contrast to competitive fusion, cooperative sensor fusion generally decreases accuracy and 

reliability. 

 

Conclusively, competitive fusion combinations increase the robustness of the perception, 

while cooperative and complementary fusion provides extended and more complete views. 

The methods particularly used in the fusion level are subject to the availability of 

components. Furthermore, these three combinations of sensor fusion are not mutually 

exclusive. Therefore, many applications implement aspects of more than one of the three 

types. 

2.4.1 Classification of sensor fusion algorithms 

Sensor fusion algorithms are needed to translate the different sensory inputs into reliable 

estimates and environment models that can be used by other navigation subsystems. The 

methods usually adopt iterative algorithms to deal with linear and non-linear models. In 

order to localise robot, many sensors have been adopted and fusion methods developed. 

These algorithms are a set of mathematical equations that provide an efficient computational 

means to estimates the state of a process. Some of the sensor algorithms used are categorised 

into the following [143]: 

2.4.1.1 State estimation method 

The state estimation methods are used to determine the state of a desired system that is 

continuously changing given some observations or measurements. State estimation phase is 

a common step in data fusion algorithms because the target’s observation could come from 

different sensors or sources, and the final goal is to obtain a global target state from the 

observations. Kalman filter, extended Kalman filter and particle filter are briefly discussed 

in this section and they are considered afterwards for this study.  
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Kalman filter 

Kalman filter (KF) is an efficient estimator used in various fields to estimate the unknown 

state of the system. Several applications were developed with the implementation of Kalman 

filter such applications include navigation, localisation and object tracking. It involves using 

vision camera to perform real time image processing for robot tracking. Kalman filter is 

established to estimate the positions and velocities of vehicles or any moving object and 

provide tracking on such objects at a visible condition. Kalman filter is an algorithm that 

estimates the state of a discrete time-controlled process described by the linear stochastic 

equation. It processes all available measurements, regardless of their precision, to estimate 

the current value of the variables of interest. Kalman filters are well-known tools in theory 

of stochastic dynamic systems, which can be used to improve the quality of estimates of 

unknown quantities [144]. It is one of the most useful and common estimation techniques 

where it is easy to implement on linear systems. Equations for Kalman filter are given as 

follows [145]: 

 1
ˆ ˆ

k k k k kx F x B u   (2.13) 

 1

T

k k k k kP F P F Q   (2.14) 

where vector ˆ
kx  is the estimate state of the system kx . kP  is the predicted covariance matrix. 

F is the matrix that denote the dynamics of the system. B is the control matrix and Q is the 

noise covariance. The Kalman filter equations are used to generate new estimates with the 

addition of an external unit for correction. KF involve another stage to update the estimate. 

This is given by equations below: 

 ˆ ˆ ˆ( )k k k k kx x K z H x     (2.15) 

 k k k kP P k H P    (2.16) 

where 
1( )T T

k k k k k kK P H H P H R     

From the above equations: kz is the measurement vector which is a reading from the sensors. 

H  is the transformation matrix, R is the covariance matrix of the measurement noise and k  

is the time interval. The Kalman gain (K) describes the amount of update needed at each 
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recursive estimation which can be as the weighting factor that considers the relationship 

between the accuracy of the predicted estimate and the measurement noise. In order to use 

Kalman filtering it is important to analyze the statistical behaviour of the value to be 

measured. They are optimal estimators, which mean the initial uncertainty is Gaussian and 

the observation model and system dynamics are linear functions of the state. Most of the real 

time problem the systems may not provide linear characteristic, so we use extended Kalman 

filter, which will linearize the system. The main advantage of Kalman filter is its 

computational efficiency but it can represent only unimodal distributions. So Kalman filters 

are best when the uncertainty is not too high.  

 

Extended Kalman Filter 

The modified Kalman filter known as the extended Kalman filter (EKF) is an optimal 

approach for implementing nonlinear systems. It is used widely for state estimation because 

it can estimates the states with a slight computational load. EKF is the most efficient 

probabilistic solution to simultaneously estimate the robot position and orientation based on 

some interoceptive and exteroceptive sensor information. Comparing Kalman filter to EKF, 

author [146] proves that that the EKF algorithm improves the performance of robot 

localisation, reduces error in the calculation of mobile robot pose and the combination of all 

available sensors gives optimal result [147]. This filter is used for intermittent measurement 

since it provides adequate information for the estimation method. More information is given 

in Chapter 3. 

Particle filter 

It is known that the Kalman type filters are not suitable for state estimation for systems with 

non-Gaussian noises and/or strong nonlinearities since the Gaussian assumption on the state 

posterior is no longer valid. Particle filtering (PF), with the capability of approximating 

probability density functions (PDFs) of any form, has received considerable attention among 

researchers. PF method is a sequential Monte Carlo (SMC) technique solution of the state 

estimation problem, using the so-called Sequential Importance Sampling (SIS) algorithm 

and including a resampling step at each instant. This method builds the subsequent density 
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function using numerous random samples called particles. Particles are propagated over time 

with a combination of sampling and resampling steps. At each iteration, sampling step is 

employed to discard some particles, increasing the relevance of regions with a higher 

posterior probability. The particle filter algorithm is comprised of the following steps [136, 

148-152]: 

 

Particle generation:  

Generate 1 2 3{ (0), (0), (0) ,..., (0)}NN x x x x initial particles according to the initial probability 

density function (PDF) ( (0))p x   

 

Prediction:  

For each particle ( )ix k , propagate the ( 1)ix k   particle according to the transition PDF 

( ( 1)| ( ))p x k x k . Here, each particle accounts for the sum of the random noise to simulate 

the noise effect. 

 

Sampling:  

For each particle ( 1)ix k  , generate ( 1) [ ( 1) | ( 1)]i iw k p z k x k     (2.17) 

 

Normalization and rejected sampling: 

Weights of the particles are normalized. Particles with low weight are removed and particles 

with high weight are duplicated such that each particle has the same weight. 

PF is considered as an alternative for real-time applications, which are typically approached 

by model based traditional Kalman filter technique implementations. With the advantages 

of accuracy and stability, PF is currently being considered in the field of traffic control (car 

or people video monitoring), military field (radar tracking, air-to-ground passive tracking), 

mobile robot positioning and self-localisation. 

 

KF is one of the most well-known and often-used tools for stochastic state estimation from 

noisy sensor measurements. Under certain assumptions, the KF is an optimal, recursive data 
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processing or filter algorithm. The filter takes into account the different uncertainties and 

error sources that disturb the robot system and measurements. It processes all available 

measurements to estimate the state, both accurate and inaccurate measurements. It uses 

knowledge of the system and sensor dynamics, probabilistic descriptions of the system and 

measurement noises, and any available data about the initial values of the state. Kalman filter 

addresses the problem of estimating the state of a noisy system that can be described by a 

linear system and a linear measurement model. It is implemented for combining the sensory 

data for estimating the state of the robot which is the location and current direction of the 

robot. In an iterative manner, KF considers the prior information of the noise features to 

compensate and to filter out the noise. But issues arise during localization when trying to 

model the noise that is only an approximation and does not specify the noise real distribution. 

KF is well effective for linear system, however the implementation introduces delay in the 

systems processing and it greatly depends on the prediction models, an error in creating 

prediction model will surely cause the output data to deviate from the required reference 

data.  For a nonlinear system, EKF is used to estimate the pose of the mobile robot employing 

the prediction and correction of a nonlinear system model. EKF has the benefits of 

simultaneously estimating the IMU sensor’s systematics errors and corrects the positioning 

errors. The algorithm can accurately predict and correct its state estimates. Since the system 

function that describes state transition of the location is nonlinear, it linearizes the system 

function around recent state estimates. EKF is used to correct the state estimates of the robot 

and thus bring it closer to the true states. When EKF corrects the states estimates, uncertainty 

decreases. EKF linearizes the nonlinear system and measurement function. The algorithm 

integrates a new state estimates once a measurement has been incorporated. This permits the 

EKF to make future state and measurement predictions more accurate. Since the 

nonlinearities in the measurement model are caused by the orientation of the robot, the EKF 

suffers from significant estimation problems caused by EKF linearization. The EKF is 

difficult to tune and often provides unreliable estimates if the system nonlinearities are 

severe, the reason being EKF relies on linearization to propagate the mean and covariance 

of the state. For this purpose, particle filter was presented. Particle filter copes much better 

with non-linear models and has no limitations when it comes to the non-linearity of the 

application including non-Gaussian noise. PF is considered to solve the issue of 
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measurement that is affected by non-Gaussian noise. Another benefit of PF is that it is easier 

to implement when compared to EKF, it allows the analysis of complex systems which are 

non-linear and non-Gaussian.  The goal is to deal with probability distributions and model 

them correctly. Particle filters are a non-parametric approach for solving complex models. 

The algorithm tackles the errors as long there are sufficient particles available, an optimal 

solution can be obtained effectively. Because of uncertainties in sensor data and 

environmental factors there is always the risk that the error of the pose estimation increases 

significantly or that it diverges completely. Very often navigation and other performances 

of robots rely on a valid pose estimation. The filter is much better suited than Kalman filter 

to represent ambiguities and to cope with localization failures. The realization of PF does 

not require the process of linearizing non-linear models. Large number of samples 

guarantees sure convergence to the true probability density function. These filters are 

considered because of their simplicity, consistency and provision of sufficient information 

of estimation process compared to others.  

 

2.4.1.2 Decision fusion method 

Decision fusion is one form of data fusion that combines the decisions of multiple classifiers 

into a common decision about the activity that occurred. All the fusion methods in this group 

try to reduce the level of uncertainty by maximizing a measure of evidence [153]. These 

techniques frequently use symbolic information, and the fusion process requires to reason 

while accounting for the uncertainties and constraints. The two types of decision method 

discussed here are Bayesian Approach and Dempster-Shafer Approach. 

Bayesian Approach 

Bayesian approach is a basic method to deal with conditional probability more precisely it 

relates the condition probability of more than two events. They are practically used for more 

complex relationship description [154]. The method provides a theoretical framework for 

dealing with this uncertainty using an underlying graphical structure. They are ideal for 

taking an event that occurred and predicting the likelihood that any one of several possible 
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known causes was the contributing factor. Bayesian method can be mathematically 

presented as [148]: 

 
( | ) ( )

( | )
( )

P C D P C
P C D

P D
  (2.18) 

where ( )P C is the probability of event C without any effect of any other event. ( )P D is the 

probability of the event D without any effect of any other event and ( | )P D C is the 

probability of event D given that event C is true. The result of ( | )P C D  condition probability 

will be in range between zero and one [1 0]. Which means either the event ( | )P C D will 

occur or not. Bayesian method is computationally simpler and has higher probabilities for 

correct decision and it provides point estimates and posterior PDF [120]. However, they have 

the following demerits: difficulty in describing the uncertainty of decision, complexity when 

there are multiple potential hypotheses and a substantial number of events that depend on 

conditions, difficulty in establishing the value of prior probabilities. Bayesian method is 

applicable to solve image fusion, where no prior knowledge in available. Also, it is applied 

in robotics learning by imitation. The approach enables the robot to study internal models of 

their environment through self-experience and employ the model for human intent 

recognition, skill acquisition from human observation.  [155]. 

Dempster-Shafer   

Dempster-Shafer (D-S) has become very famous in which its application extends to pattern 

recognition methods which are widely used in signal solving and recognition. The method 

has a better adaptability of grasping unknown and uncertain problem when it is regarded as 

an uncertainty method. It also provides a vital formula which fuse diverse evident of different 

sources. Evidential reasoning based on Dempster-Shafer theory is used in data fusion, and 

cooperation strategies presented to avoid invalid sensing information. Dempster-Shafer 

theory has been considered for a variety of perceptual activities including sensor fusion, 

scene interpretation, object target recognition, and object verification. In [144],  D-S theory 

was successfully used in building occupancy map to improve reliability. The approach is 

more robust to perturbations such as noise and imprecise prior information [155]. The 

method is based on concept of combining information from different sources such as sensors. 
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It is a fusion method that uses belief and plausibility values to represent the evidence and 

corresponding uncertainty [156] [157]. The method uses ‘belief' rather than probability. 

Belief function is used to represent the uncertainty of the hypothesis [158]. The hypothesis 

is represented by a probability mass function ‘m’. the amount of belief to a hypothesis (A) 

is denoted by a belief function [159]: 

 ( ) ( )
B A

Bel A m B


  (2.19) 

Equation (2.19) is the sum of the mass probabilities assigned to all subsets of A by m . The 

availability of two or more evidence is integrated using the combination rule in (2.20). 

 

1 2

,

( ). ( )

( )
1

i j

i j

i j

m B m C

B C A
m A

k

 






 (2.20) 

where 1 k is a normalization factor in which k is the total of all non-zero values given to the 

null set hypothesis . The decision on the class of a feature can be decided based on a 

maximum belief decision rule, which is assigned a feature to a class A  if the total amount 

of belief supporting A  is more than that supporting its negation: 

 ) ) ( )Bel A Bel A  (2.21) 

Table 2.4. Related work done on fusion algorithms. 

Fusion 

Algorithm 

Author Classification of 

Fusion method 

Contributions 

Kalman filter   Mahood et al. 

[160] 

State estimate 

 

The fusion of visual navigation 

system and inertial navigation 

system are integrated using 

Kalman filters to provide accurate 

localization information about the 

mobile robots. 

Extended 

Kalman filter  

Faisal et al. 

[161] 

The localisation system uses the 

extended Kalman filter combined 
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with Infrared sensor to solve the 

problems of dead-reckoning. 

Andre  et al. 

[162] 

The localisation system proposed 

was based on the fusion of 

odometry and landmark detection 

to determine the position. The 

result shows a better result than 

using a single sensor in terms of 

minimised error. 

Sasiadek et al. 

[163] 

EKF is applied to fuse odometry 

and sonar signals to solve the 

issue of navigation, control and 

guidance. The result shows the 

method was suitable to determine 

the estimation for autonomous 

mobile robot.  

Hoang et al.  

[164] 

Using the proposed algorithm, the 

study shows that the estimated 

output values are close to the true 

value when the measurement 

from all sensors (encoder, 

compass sensor, laser range 

finder and omni-direction 

camera) are fused together to 

determine the robot position.  

Particle filter  Raaj et al. [165] Particle filter fused optical 

camera, sonar and odometry 

measurement data to track and 

localise object.  This method was 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://www.sciencedirect.com/science/article/pii/S1474667017379648#!


CHAPTER 2  LITERATURE STUDY 

 

Department of Electrical, Electronic and Computer Engineering 53 

University of Pretoria 

used to deal with issues such as 

poor lighting conditions and 

hazing over large distances with 

insignificant features to track. 

 Wanfeng Ma et 

al. [166] 

The approach fused the inertial 

navigation systems and light 

detection and ranging (LiDAR) 

data to correct robot position 

error, velocity error and 

orientation error. 

 Jain et al. [167] The application of PF was 

introduced to give reliable 

estimation of the state vector of a 

mobile robot with the fusion of 

odometry and laser range finder 

sensors for efficient control. 

 Ren et al. [168] The approach was used to 

estimate object pose parameter 

from the fusion of inertial and 

GPS measurement data. The 

method further improve the 

stability and the accuracy objects 

between virtual and real world. 

Using PF achieves high tracking 

accuracy, stability and 

robustness. 

 Lee et al.  [169] The proposed algorithm 

combines the range information 

obtained from a low-cost IR 
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scanner with the SIFT-based 

vision information obtained from 

a monocular to robustly estimate 

the robot pose.  

Bayesian 

Network    

 Abdulhafiz et 

al. 

[170] 

Decision This approach was used to fuse 

sensor data to estimate the 

position of a mobile robot as well 

to handle the issue of data 

uncertainty and inconsistency. 

 Motomura et al. 

[171] 

 The study developed a system 

that combines local information 

for localisation using Bayesian 

Network 

 Hongjun et al. 

[172] 

 The author proposed the use of 

this method to represent and 

integrate the sensor information, 

the robot pose and the sensing 

actions. 

 Vladareanu et 

al. [173] 

 The study propose the use of 

Bayesian approach of SLAM to 

avoid obstacles and maintain 

dynamic stable control for motion 

on rough terrain in a non-

stationary and non-structured 

environment.  

 Premebida et al. 

[174] 

 The problem of semantic place 

categorization in mobile robotics 

is addressed with focus on a 
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probabilistic approach for 

classification using 2D laser 

scanner data. The method was 

successfully applied and from the 

performance it showed that the 

method has faster implementation 

and low complexity. 

Demptser-

Shafer  

Soleimanpour et 

al. [175] 

 

Decision With the integration of vision and 

encoder, the approach was able to 

reduce localization error and 

improve the performance. 

Hyunki et al. 

[176] 

To solve the problem of 

localisation, the author proposed 

the use of sensor fusion algorithm 

based on Dempster-Shafer to fuse 

laser range information and SIFT 

features. The uncertainty of the 

robot localisation decreases and 

the accuracy of the algorithm 

increased. Results from 

experiment confirms the 

usefulness and robustness of the 

fusion method. 

 Gören et al. 

[177] 

 With the application of D-S to 

sensor data, it is expected to have 

more reliable sensor data. The 

obtained result can be useful for 

autonomous mobile robot to 

decide its optimal path to the 
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target. Another contribution of 

the work is that it enables robot 

behaviour to be more stable 

during motion. 

 Valente et al. 

[178] 

 D-S was used to model the 

environment perception by the 

sensor. The author combined a 

2D laser scanner and a stereo 

camera to deal with the sensor 

uncertainty. From the result, the 

proposed method has more 

reliable representation of the 

environment. 

 Carlson et al. 

[179] 

 The study considered using the 

D-S to present a potential solution 

to the problem of detecting the 

use of inappropriate sensors to an 

impaired or unknown 

environment. 

 Erfani et al. 

[180] 

 D-S was used for the integration 

and processing of sensor data in 

robot location to achieve the best 

estimate of positioning according 

to the unstable environmental 

conditions. 
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2.4.2 Importance of sensor fusion techniques 

Techniques that employ sensor fusion methods expect several benefits over single sensor 

systems. Joint information reduces the set of ambiguous interpretations of the measured 

value. The following advantages can be expected from the fusion of sensor data [142]. 

Reduction in uncertainty 

Data provided by sensors is sometimes subjected to some level of uncertainty and 

discrepancy. Multi-sensor data fusion algorithms reduce the uncertainty by combining data 

from several sources [197]. It’s therefore imperative to compensate using other sensors by 

fusing their data together using data fusion algorithms. Authors in [198] was able to 

minimize uncertainty in robot localisation based on EKF and PF.  The measurement from 

the kinetic sensor was used to correct the error accumulated by odometry in order to estimate 

the pose of the mobile robot. 

Increase in accuracy and reliability 

Multiple sensor suites have an inherent redundancy which enables the system to provide 

information even in case of partial failure. 

Extended spatial and temporal coverage 

One sensor can look where others cannot respectively or perform a measurement while 

others cannot. An example is inertial sensor such as accelerometer or gyroscope and vision. 

The coverage of a camera as vision sensor cannot be compared to the use of accelerometer 

which only takes measurement about the navigation route. 

Improved resolution 

When multiple independent measurements of the same property are fused, the resolution of 

the resulting value is better than a single sensor’s measurement. 
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Reduce system complexity 

System where sensor data is preprocessed by fusion methods, the input to the controlling 

application can be standardized independently of the employed sensor types, thus facilitating 

application implementation and providing the possibility of modifications in the sensor 

system regarding number and type of employed sensors without modifications of the 

application software. 

Table 2.5. Review of different sensor fusion algorithms. 

Sensors  Fusion 

Method 

Contributions 

Visual and inertial [183] UKF The algorithm employs a fusion algorithm 

that provides accurate motion estimates of 

both calibration parameters and the local 

scene structure. The metric scene structure 

was recorded from the camera and the IMU 

alone. Their findings show that it is possible 

to accurately self-calibrate the sensors 

without using a known calibration target or 

another calibration object. 

Inertial and magnetic 

sensor [184] 

Variable 

State 

Dimension- 

EKF 

The algorithm fused IMU and magnetic 

sensor data to tackle the difficulties in 

tracking abrupt magnetic distortions. With 

the algorithm better accuracy and 

effectiveness of the estimated quaternion 

rotation and good compensation for 

magnetic disturbances was achieved. 

Visual, inertial and 

magnetic sensor [185] 

EKF The EKF algorithm was used to address the 

problem of estimating ego-motion of a hand-

held IMU-camera system to track position 

and orientation of human body segments. 
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The orientation was effectively achieved 

using EKF-based sensor fusion method 

based on inertial/magnetic measurement. 

Encoder, inertial sensor, 

active beacon [186] 

UKF UKF was proposed for vision tracking 

system. The fusion algorithm accurately 

estimates the pose estimate of the mobile 

robot by combining information received 

from encoder, inertial sensor and active 

beacons. The algorithm was also used as an 

advance filter to minimize the position and 

orientation errors of the sensors. 

Visual and inertial 

sensors [187] 

EKF The EKF algorithm integrated visual and 

inertial sensors measurement to tackle the 

issues of sensor noise and model inaccuracy 

in the area of human arm motion tracking 

system. 

Visual and inertial 

sensors [188] 

EKF 

&UKF 

EKF and UKF fusion algorithms were 

compared to estimate simultaneous motion 

and structure estimate by integrating vision 

and inertial sensors data was tested in robotic 

motions and less smooth handheld motions. 

Their result shows that EKF and UKF have 

similar accuracy, but UKF has higher 

computational power. 

Visual and inertial sensor 

[189] 

PF Computer vision and inertial sensors were 

combined to provide real-time position. 

Markov localisation using particle filter as a 

fusion algorithm was adopted to determine 

the location of the system. 

INS and VNS [190] KF The work presented a seven error states for 
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an accurate and stable data fusion filter 

which integrates the position of a mobile 

robot from VNS with the position from INS 

to accurately localize the robot using KF for 

data fusion. 

Visual system and robot 

odometry [191] 

KF Kalman filter was implemented to combine 

visual system and odometry measurement to 

compute robot’s actual position. The results 

proved more precise computation and 

improve localisation accuracy. 

 

2.5 FUTURE RESEARCH AREAS 

Navigation and localisation of a mobile robot in an arbitrary environment are a challenge 

due to the complexity and variety of environments, methods and sensors that are involved. 

It is therefore necessary to continue to research on new systems and new methods with the 

aim to solve specific sensor fusion problems for robot navigation and localisation. While not 

totally absent from the literature, several directions seem to call for further investigation. 

 

3D Indoor Environmental modelling: 3D models of indoor environments are significant in 

many applications, but they usually exist only for newly constructed buildings [191]. For 

robot navigation purpose, 3D models are required in an indoor operation environment to 

ensure safe movement. The model is also expected to be used for recognition and location 

by robots. To develop a method to model a 3D simplicity, accuracy must first be put into 

consideration. A 3D model can convey more useful information than 2D maps used in many 

applications. For example, in an indoor environment where additional features are present 

and are also unresolved problems in modelling. This kind of environment requires more 

sophisticated models in order to determine the ability characteristics of the environment. 

Several methods are adopted in modelling the environment. Reference in [192] proposed a 

method of acquiring 3D models by a mobile robot with a laser scanner and a panoramic 
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camera while Thrun et al. [193] developed a multi-planar model from dense range data and 

image data using an improved expectation-maximization (EM) algorithm. Some authors 

worked with generation of precise 3D models using a large amount of data and elaborate 

statistical and geometrical estimation technique. Environment models are required for 

localisation, object recognition, or manipulation. Recently, 3D models are usually obtained 

by hand-guided scanning which is very hard and time-consuming task for human operator. 

Therefore, a robotic system to obtain 3D models of environment is highly beneficial [194].  

 

Landmarks and feature extraction: Perception-based localisation methods using vision are 

very active research areas, especially in topics related with the identification of objects and 

the pose estimation of the identified objects [194]. Another aspect to investigate is the 

appearance changes of target objects over time; this also as a research area has gained much 

attention in the literature but with the limitation of robust detection algorithm. 

 

Distinct object: In order to cope with real situations, specific objects should be detected. This 

will also improve on localisation. Despite the work done, this is still and open problem.  

There are various objects and features the robot uses to assist in localisation, their attributes 

must be taken into consideration; specifically, size, color, height, width, edges, contours etc. 

because it affects how object can be recognized. When the images are captured an 

appropriate algorithm is required to detect the object in the image. The robustness of the 

algorithm is vital. The addition of visual view planning techniques give rise to viable 

approach for object detection and localisation in indoor environment. The approach should 

have the ability to simultaneously search for the object with distinct feature. 

 

Topological modelling and localisation: Most of the traditional localisation methods try to 

determine geometrically the position and the orientation of the robot. Recent approaches 

look for methods to build topological models once features and landmarks are detected and 

for the later topological estimation of the robot’s state. Landmark-based methods which rely 

on the topology of the environment can better handle the issues because they only have to 

conserve topological global consistency. One of the advantage of topology modelling is that 

it does not suffer incremental drift just like metric approaches to determine localisation. 
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Though, the approach for topological modelling are less precise than metric due to 

discretization of the location space or computationally inflexible for autonomous robots. 

Therefore, it is suggested that a hybrid approach to combine topological and metric method 

could be an appropriate technique to compensate for the weakness of each single approach. 

 

Planning for world modelling: Important too, and still open is the problem of determining a 

plan for the robot in order to build a model of the environment that permits a safe motion 

planning and a good localisation of the robot into the operations area. In addition, the 

smoothness of planned robot trajectory and capability of responsive to dynamic environment 

must be well structured. It is important to develop a method that generate safe paths. The 

algorithm shouldn’t only consider safe path, but collision-free paths.  

 

Perception planning. Perception refers to the ability of autonomous system to gather 

information and extract important knowledge from the environment while planning means 

the process of making purposeful decisions in order to achieve the robot’s goals. To 

overcome the uncertainty in robot position, some new approaches tend to determine motion 

plans which include the localisation requirements of the robot together with the path plan. 

Another important question seldom treated deals with determining what motion plan must 

be followed in case the robot gets lost (or the uncertainty becomes too big). A fundamental 

function to enable autonomous mobile robot is to provide the robot with vital information 

about the environment including area that are free of obstacles or to predict states of the 

future. In the planning goals, sensors or techniques to be implemented should consider using 

two or more devices to model the environment. 

2.6 CONCLUSION 

To determine the position and orientation of an autonomous mobile robot in an environment 

be it static or dynamic is a very challenging task. Accurate pose estimation is typically a 

requirement for robust robotic grasping and manipulation of objects placed in cluttered or 

dynamic environments. This chapter has been able to provide a background and identify the 

challenges aspect of an autonomous mobile robot. Using a single sensor to determine the 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2  LITERATURE STUDY 

 

Department of Electrical, Electronic and Computer Engineering 63 

University of Pretoria 

pose of an object may not be reliable and accurate therefore, the use of multi-sensor is 

encouraged. Vision is considered as one of the best alternatives to compensate for errors 

acquired by other kinds of sensors such as accelerometer and gyroscope. Methods used to 

extract information from environment were also presented. These methods are used to 

detect/identify objects and match with the training image. How to represent object attitude 

in an environment was also highlighted in this chapter because it is more reasonable to 

consider the environment and what is to be achieved before system can be modelled. 

Strengths and weaknesses of rotation representations which can be used for rigid bodies were 

as well presented.  

 

Furthermore, the chapter revealed the various sensor data fusion algorithm with the objective 

to multiple data sources to produce more consistent, accurate, and useful information than 

that provided by any individual data source. Exploring the conceptualizations and benefits, 

as well as existing methodologies, sensors are categorized into how they relate to one 

another, this is called configuration. They are cooperative, complementary and competitive. 

Finally, the chapter highlighted some of the research areas that can be investigated for further 

work. 
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 POSE ESTIMATION OF A 

MOBILE ROBOT BASED ON 

IMU AND VISION 

 

3.1 INTRODUCTION 

It is evident that mobile robots are currently gaining immense recognition because of their 

ever-increasing applications in recent years. As more attention is drawn on how mobile robot 

can improve our lives, it is therefore necessary to suggest appropriate mechanisms to 

improve challenges mobile robot are faced with [193]. Several studies have proposed 

different approaches on how to find an accurate mechanism to determine the pose estimation 

of a mobile robot by either developing new sensors to measure accurately or combine signals 

from several sensors to get information from different sources which can assist to estimate 

pose or by improving fusion algorithms [198]. The preliminaries on mobile robot have been 

well established and a fairly comprehensive overview has been provided in the previous 

chapter, as well as in references [130, 197-199]. Importantly from the literature study 

presented in the previous chapter, localization was identified as one of the cogent factor of 

mobile robot which therefore requires prompt intervention. There are certain work carried 

out in this regards [199]. However, there are still some challenges that are yet to be 

extensively addressed and one of such is measuring accurate quantities, but unfortunately 

there is no ideal sensor. Sensors are designed to work in specific environment with limited 

range as well as they are subject to noise. Due to the limitation of sensors, this chapter seek 
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to address such aspect. For example, using only camera to solve the issue of pose might seem 

superfluous, the reason therefore IMU is introduced to produce more robust estimate. Any 

single camera system may experience issue during periods with uninformative or no vision 

data. This could happen due to occlusions or fast motion, an IMU will assist to bridge the 

gaps. Reducing computational demands for image processing. Accurate short time pose 

estimates are available using this information from the IMU reducing the need for fast vision 

updates. Furthermore, an area of concern is how to develop an accurate vision techniques 

that can track the location of a mobile robot with the identification of object in image. 

Different approaches have been suggested in the literature [194] but some of this techniques 

care less about the robustness and accuracy. Therefore, in this chapter an object detection 

algorithm is considered to improve the performance of vision to determine mobile robot 

pose. 

 

 It has been proposed that the use of vision and IMU can significantly help in mitigating the 

challenges of mobile robot [204]. For this reason, researchers are searching on applying 

sensor fusion. Sensor fusion is a way to estimate specific quantity by fusing measurement 

from multi-sensors. An ample information has been given in the previous chapter on sensor 

fusion algorithms. A fusion sensor algorithm is applied to give a stable and accurate signal 

out of noisy signals. The fusion of inertial sensors and vision has been used previously in 

literature. Ref. [216] give an introduction to field and its application. Sensor fusion algorithm 

can also be applied to minimise uncertainty and noise reduction [215, 198], helps to integrate 

multiple sensors and also to localise mobile robot. This chapter seeks to employ the use of 

fusion sensor techniques to determine the state of the mobile robot under movement given 

observation or measurement. 

 

The main contributions of this chapter is summarized as follows: 

 

- A method is put forward to achieve pose estimation for mobile robot by employing 

landmarks (both artificial and natural). Object detection and random sample 

consensus algorithms were integrated and used to recognize a sample object and 

features in several images taken. The proposed technique uses an iterative method to 
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estimate the parameters of a mathematical model from a set of captured data which 

contains outliers. 

- A fusion method which relies on information from inertial sensor and vision system 

becomes complementary 

-  Simple implementation and low cost technologies to obtain accurate localisation. 

The method adopted was evaluated and validated on a user-friendly software 

Arduino environment and MATLAB.  

3.2 MODELING METHOD 

When working with sensor unit containing a camera and an inertial measurement unit 

(IMU) several reference coordinate systems have to be presented and this is given as 

Figure 3.1: 
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XW

YW

World

 coordinate 
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XO

ZO

Object

   

YC
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YB
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IMU

 

Figure 3.1. Reference coordinate system [205]. 

 

Reference frame for the system 

Global frame/world frame {w}: This frame aids the user to navigate and determine the 

pose estimation in relative to IMU and camera frames. 

IMU/body frame {b}: This frame is attached to the IMU (accelerometer and gyroscope) on 

the mobile robot. 

Object coordinate frame {o}: This frame is attached to the object; in this study it is a 4WD 

mobile robot. 
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Camera frame {c}: This frame is attached to the camera on the mobile robot with the x-axis 

pointing to the image plane in the right direction and z-axis pointing along the optical axis 

and origin located at the camera optical center. 

The IMU method provides orientation of the body {b} with respect to (wrt) world frame {w} 

Rwb and vision method provides orientation of the object{o} wrt to camera frame {c} Rco  

[205].  

3.3 POSE ESTIMTAION 

3.3.1 IMU-based pose estimation 

Accelerometer

Gyroscope

Kalman filter

Orientation

Velocity & Displacement

Angular Velocity

 

Figure 3.2. Block diagram for IMU [205].  

 

Figure 3.2 above shows the block diagram of the inertial sensors after calibration, the data 

have been passed through the Kalman filter (KF) to reduce drifts and errors [206]. KF is a 

set of mathematical equations that provides efficient computation means to estimates the 

state of a process. It is a recursive filter that is based on Bayesian approach and is used for 

state prediction and update of the system. This filter is also capable of estimating accurate 

orientation of the system, but basically used for linear system. For KF, theoretically it is an 

ideal filter for combining noisy sensors to acquire accurate and estimated output. It is 

accurate because it takes known physical properties of the system into account. However, it 

is mathematically complex to compute, and code as compared to complementary filters. The 

calibrated accelerometer and gyroscope were used to determine orientation, angular velocity, 
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linear velocity and displacement of the mobile robot with the use of KF. The KF was used 

as a prediction and correction model for the sensors.  

To express an object or mobile robot orientation, several representations are proposed to be 

used. Examples are: axis angle, Euler angles, Direct Cosine Matrix (DCM) and quaternions  

[14, 132] as earlier discussed in Chapter 2. For this aspect of study, Euler angle was adopted 

to solve for roll, pitch and yaw angles because of its simplicity. The gravity in the world 

frame can be obtained using coordinate information from the body frame.  

 

 w wb bg R g  (3.1) 

where g denotes the gravity and the subscripts b and w represents the body frame and 

world frame, respectively. To obtain the rotation matrix from the world frame {w} to the 

body frame {b}, )( wbR , the Euler angles, roll , pitch  , and yaw  can be obtain as: 

 ( )wb

c c c s s

R s s c c s s s s c c s c

c s c s s c s s s c c c

    

           

           

 
 

  
 
   

 (3.2)

 

 

where c is defined as cos (), and s is defined as sin (). 

The world frame provides the reference frame for the body frame, in which the x-axis and 

y-axis are tangential to the ground and the z-axis is in the downward direction (view 

direction). The initial gravity vector in the world frame is given as: 
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The 3-axis accelerometer gives the components of the gravitational accelerations expressed 

in the object reference frame ( ( [ ] )T

b bx by bzg g g g . Where the superscript T represents the 

transpose matrix. Hence, substituting the gravity vector is related through a rotation matrix, 

the relation is given as: 
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Equation (3.4), roll and pitch angles can be deduced from the gravity vectors as: 
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 (3.6)   

Equations to calculate the position and velocity are given as: 

 ( 1)b k bk bkV V a t     (3.7) 

 ( 1)b k bk bk w wb bS S V tS R S       (3.8) 

where ba , bV , bS , k , 1k   and  t  are acceleration, velocity, position, time intervals and 

sampling time. The angular rate is integrated to determine the orientation from gyroscope 

[207].  

3.3.2 Vision-based pose estimation 

The 3D vision-based tracking approach tracks the pose of the mobile robot with camera in 

relative to the referenced object. For effective tracking, fast and reliable feature vision 

algorithm is vital. The process of vision localisation is categorised into four major steps: 

acquire images via camera, detect object in the current images, match the object recognised 

with those contained in the database and finally, calculate the pose as a function of the 

recognised object. A forward looking single camera (monocular) was used because it 

provides a high number of markers thus allowing good motion estimation accuracy, if the 

objects are closers to the camera [23, 188]. 

 

Projection of object reference points to image plane 

 

With monocular vision (one camera), a good solution in terms of scalability and accuracy is 

provided [190]. The monocular vision demands less calculation than stereo vision (two 

cameras). With the aid of other sensors such as ultrasonic sensor or barometric altimeter, the 

monocular vision can also provide the scale and depth information of the image frames 

[108]. Vision method provides orientation of the object {o} with respect to (wrt) to camera 
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coordinate frame {c}, Rco. using the pinhole camera model [107] to calculate the pose of the 

mobile robot with respect to the camera [190]. The monocular vision positioning system was 

used to estimate the 3D camera from 2D image plane. The relationship between a point in 

world frame and its projection in the image plane can be expressed as: 

 MPp   (3.9) 

where  is a scale factor, [ , , 1]Tp u v  and [ , , , 1]T

w w wP X Y Z are homogenous 

coordinates of p and P , and M  is a 43  projection matrix. The above equation can further 

be expressed as: 
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The projection matrix depends on both camera intrinsic and extrinsic parameters. The 

intrinsic parameters contain five parameters: focal length f , principal point 0 0,u v and the 

skew coefficient between x  and y axis and is often zero. 
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Extrinsic parameters: TR, , defines the position of camera center and the camera’s heading 

in world coordinates.  Camera calibration is to obtain the intrinsic and extrinsic parameters.  

Therefore, the projection matrix of a world point in the image is expressed as: 

 1 TC R T R T     (3.12) 

where  T is the position of the origin of the world coordinate, and R is the rotation matrix.  

For this research, camera calibration used in this project is based on Zhang's calibration 

technique [101].  

3.3.3 Fusion of IMU and vision 

The objective of sensor fusion is to improve the performance acquired by each sensor taken 

individually and integrating their information. The use of vision alone fails to handle 
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occlusion, fast motion and not all areas are covered due to the field of view of the camera. 

Therefore, with the shortcoming of each sensor, it is mandatory to combine their data sources 

to provide a better pose estimation result. Velocity, position, angular velocity and orientation 

are given by IMU and so also is the position and orientation given by vision. The fusion of 

vision and IMU is carried out using EKF. The fused EKF computed the overall pose of the 

mobile robot with respect to the world {w} frame. Figure 3.3 shows the overview stages of 

IMU and Vision fusion adopted. In the figure, the IMU which is 6-DoF is comprised of the 

gyroscope and accelerometer to determine the position and orientation of the robot. The IMU 

was first calibrated before mounted on the mobile robot. The orientation was measured using 

gyroscope and the accelerometer gives the vector parameters for the robot in terms of 

positions. The process model was use to model inertial sensor error for gyroscope and this 

is fused with the vector measured by the accelerometer using Kalman filter. This filter is also 

capable of estimating accurate orientation, angular velocity and displacement of the system. 

For the vision, camera (monocular vision) that was mounted on the mobile robot was used 

to capture several images of the experiment scene (environment). Thereafter, the images 

were saved on a computer to analyze and perform necessary operation to determine the 

vision parameters. SURF algorithm was adopted to detect interest key points and generate 

its descriptors on the images using Hessian matrix because of its high level of accuracy. With 

the algorithm, strongest feature points were extracted from the query image to match with 

the training image in order to have sufficient points when matching the images. RANSAC 

algorithm as the feature matcher which works well with SURF to match object detected by 

SURF algorithm in images. RANSAC algorithm was used to determine the pose estimation 

of the camera in relative to the object. This was use to estimate the position and orientation 

of the object identified in the image in respect to the mobile robot location. To get optimal 

result, EKF was used to fuse both IMU and vision data to give the desire pose estimation.  
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Figure 3.3. Overview of the stages in fusion of IMU and vision [205]. 

3.3.4 Homography estimation based on natural landmark 

This section introduces a method for extracting natural landmark to estimate the position of 

mobile robot. The goal of homography estimation is to find an appropriate global 

transformation of images of the same scene taken at different viewpoints. Homography 

estimation can be classified into two categories: pixel-based approaches and feature-based 

approaches [212]. This study is based on features-based approach. The choice of features is 

vital because it will determine the complexity in the description, detection and matching. 

With the remarkable development of keypoint features such as SURF, feature-based 

approaches have gained great popularity in homography estimation. Using homography to 

estimate orientation of a camera relative to the planar surface of the image, from 

consecutives images, a point from the first image and second image is selected to represent 

the same object. A linear system is derived from homograph matrix that denotes a projective 

transformation between the first image and second image is provided and components of the 

normal vector in the camera coordinate system are estimated by solving the linear equation 

system and determining the orientation of the camera relative to the surface. The orientation 

of the camera to the image plane can be described by a homography which represents a 
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projective transformation between two different images of the same plane captured from two 

different positions of the camera. The determination of the orientation of the camera relative 

to the image plane may comprise determining a pitch and roll angles of the camera relative 

to the surface. The pitch and roll angles are filtered by KF because the extraction angle 

information from homography matrix could comprise parameter ambiguities. Rotation and 

translation of the camera between capturing the first image and second image are based on 

RANSAC algorithm. The homography between the two images captured sequentially from 

the mobile robot includes information about camera’s roll and pitch angles relative to image 

plane [213]. For the camera orthogonal coordinate x , y  and z  , the normal vector of the image 

is given as , ,x y zn n n n    . 

The Y Z plane of the coordinate system for the pitch angle is defined as the angle between 

the projection of the normal vector n onto the Y Z  plane and y-axis and the X Y  plane 

represents roll angle. Therefore, the pitch and roll angle are defined by: 

 arctan z

y

n

n
    (3.13) 

 arctan x

y

n

n
    (3.14)  

Information regarding the pitch angle and roll angle are incorporated in a homography which 

characterizes a projective transformation between two images. The pose from extracted 

features on the image was estimated by homography matrix. Homography matrix was 

calculated using (3.15) [194]. 

 
1( )

Ttn
H K R K

d

    (3.15) 

where H is the homography matrix, K is the intrinsic parameter d  the distance between 

the camera based origin and the closet point on the image plane, n  is normal vector, R  is 

the rotation matrix, t  is the translation of between two camera positions. The normal vector 

n is to estimate the pitch and roll angles and is conditioned by || || 1n  .  

The position of the points in the images is represented by homogenous vector 

1 2 3[ , , ]Tp p p p for the first image and 1 2 3[ , , ]Tq q q q  for the second image. Therefore, the 
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homograph matrix H , for homogenous vector can be calculated as q Hp and the  image 

coordinates ( , )u v  can be written as:  
1

3

q
u

q
 and 

2

3

q
v

q
 . 

Additional information is provided by the IMU and these sources are combined with 

extended Kalman filter. They are fused together to determine the position and orientation. 

3.3.5 EKF Implementation 

For sensor fusion, EKF was implemented to estimate position and orientation from IMU and 

vision. EKF is a classic approach for a nonlinear stochastic system; it uses discrete models 

with first-order approximation for nonlinear systems. The EKF algorithm enables 

complementary compensation for each sensor’s limitations, and the resulting performance 

of the sensor system is better than individual sensors [82, 83, 214]. The motion model and 

the observation model in EKF are established using kinematics. EKF gives reasonable 

performance mostly in conjunction with a long iterative tuning process. More details are 

given for Kalman filter [20, 56], particle filter [57], unscented Kalman filter  [58, 195, 196] 

for implementations and demonstrations of EKF.  

The general EKF equations are given as: 

  1
ˆ , ,k k k k kx f x w    0,k kw N Q  (3.16)

 

  ,k k k ky h x v   0,k kv N R  (3.17) 

where kx is the state vector, ku denotes a known control input, kw  denote the process noise, 

and kv   is the measurement noise. ky  is the measurement vector, kh  is the observation matrix 

all at time k. The process noise kw has a covariance matrix Q and measurement noise kv  

has a covariance matrix R, are assumed to be zero-mean white Gaussian noise processes 

independent of each other. EKF is a special case of Kalman filter that is used for nonlinear 

system. EKF is used to estimate the robot position and orientation by employing the 

prediction and correction of a nonlinear system model.  
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Time prediction update equation is given as: 

   1
ˆ ˆ

k kx Ax Bu

   (3.18) 

 1 1

T

k k kP AP A Q

    (3.19) 

where A is the transition matrix and B is the control matrix. 

 Measurement update equation is given as:  

 ˆ ˆ ˆ( ( ))k k kx x K z h x      (3.20) 

 ( )k k k kP I K H P    (3.21)
 

where the Kalman gain is given as: 

 
1( )T

k k k k k k kK P H H P H R     (3.22) 

The Jacobian matrix kH  with partial derivatives of the measurement function h(·) with 

respect to the state x is evaluated at the prior state estimate 
 
ˆ

kx 

 
, the equation is given as: 

 
1,| 0k

h
H X x v

X



  


 (3.23) 

For the fused filter method used in this study we adopted one of the model used in  [83].  We 

used accelerometer data as a control input, gyroscope data and vision data were used as 

measurements. This model is extensively explained in reference above, but the process noise 

and covariance noise are suitably tuned. The state vector is given as: 

  
T

x p v q   (3.24) 

where p   and v  stand for the state variables corresponding to the 3D position and velocity 

of the IMU in the world frame, q  denotes the orientation quaternion corresponding to the 

rotation matrix R  and   is the angular velocity from gyroscope. The fused transition 

matrix used here is given as: 
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7 6
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 (3.25) 

The state transition matrix can be written as: 
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 (3.27)        

where t is the sampling time between images captured. The process noise covariance is 

taken from the acceleration and is given as: 

 
1 6 31

1 1

7 3

x
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 (3.28) 
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 (3.29)  
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1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

t

Q t

 
 

  
 
 

 (3.30) 

where 
1 2

3 aq I   and 
2

1 aq I , are the process noise taken from accelerometer while the 

measurement noise is taken from the gyroscope and vision. nI  is the identity matrix 

dimension of n. R is the key matrix for sensor fusion, 1R  and 1R  are the covariance from 

gyroscope and vision. 
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1 1

3 4

x

x

R O
R

O R

 
  
 

, 
2

1 4 gR I  , 
1 2

3 vR I T  (3.31) 

Observation matrix is given as: 

  11

1 3 3 3 3

1

, x x

H
H H O I

H

 
  
 

, is the observation matrix from gyroscope,  

 1 21

2

T

TH t R R
 

  
 

, observation matrix from vision. The parameters used for filter 

tuning and experiments are given in Table 3.1. Most of the IMUs have acceleration and 

gyroscope range of ±16 g and ±2000 deg/s, respectively, and sampling rates up to a few 

hundred Hz. Sufficient information for data analysis is presented by using high sampling 

rate, but the system may be burden due to the large data size and computation load. 

Conversely, applying low sampling rate may fail to capture inherent attributes of each 

activity. Therefore, a sampling rate around 100 Hz is adequate for capturing daily life human 

activities [201]. The requirement of sampling rate also depends on the type of analysis. For 

example, using a sampling rate higher than necessary will increase the computation load 

without improving the results. In a distinctive system, the accelerometer and gyroscope in 

the IMU run at relatively high sample rates. The complexity of processing data from those 

sensors in the fusion algorithm is relatively low. Conversely, the camera sensor runs at a 

relatively low sample rate and the complexity associated with processing is high. In this 

fusion algorithm the camera samples between frames are processed at a low rate, and the 

accelerometer and gyroscope samples are processed together at the same high rate. A sample 

rate of 100 Hz up to 20,000 Hz is allowed. For IMU the sample rate is selectable in intervals 

of 1 Hz to 200 Hz. To simulate this configuration, the IMU (accelerometer and gyroscope) 

is sampled at 100 Hz (16 bits/sample), and the camera is sampled at 25 Hz. For the noise for 

camera, we chose 0.9 to give a more stable filter in our experiment. The covariance 

measurement noise is referred to the variance of the measurement. If it is too high the filter 

will react slowly as the new measurement has more uncertainty, on the other hands if the 

measurement noise is too small, the output result becomes noisy. Therefore, measurement 

noise has significant role to increase estimation error in the data fusion process. Allan 
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variance can be used to determine noise parameters of a MEMS gyroscope. The gyroscope 

measurement noise is assumed Gaussian with zero mean. The Gaussian distribution is more 

reasonable from several viewpoints because it is characterized by mean and standard 

deviation or variance. Refer to [202-203] on how to estimate noise parameters using power 

spectral density and Allan variance method. 

Table 3.1. Parameters and their values for filter tuning. 

Variables Meanings 

Sampling interval of IMU sensor 100 Hz 

Gyroscope measurement noise variance, g  0.001 rad2/s2 

Accelerometer measurement noise variance, a  0.001 m/s2 

Camera measurement noise variance, v  0.9 

Sampling interval between image frames 25 Hz 

 

3.4 SYSTEM HARDWARE AND EXPERIMENTAL SET-UP 

Figure 3.4 shows the major hardware used to carry out the experiment. Besides other types 

of components such as IR sensors, ultrasonic sensor etc which aided robot navigation and 

validated the proposed method. The mobile robot used in this experiment is a four-wheel 

drive (4WD) as shown in Figure 3.4c with a working voltage of 4.8 V. Four servo motor 

controllers were used which allowed the robot to move up to 40 cm/s (0.4 m/s) with 

microcontroller (Arduino/Genuino 101) which has built-in of Inertial Measurement Unit of 

3-axis accelerometer and 3-axis gyroscope, depicted in Figure 3.4a. To reduce the payload, 

the frame of the robot was built with aluminium alloy. The robot was equipped with a 6 V 

battery to power the servo motors and a 9 V battery for the microcontroller. The mobile robot 

is also installed with ultrasonic sensor to measure the object distance to the mobile robot in 
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real time. The performance issues related to reflections, occlusions, and maximum emitting 

angles limit independent use of ultrasonic sensors [63]. The camera was also mounted on the 

mobile robot to take several images from the environments. The type of camera used for this 

experiment is the LS-Y201-2MP LinkSprite’s new generation high-resolution serial port 

camera module. The pictorial representation is given in Figure 3.4b. Its resolution is 2 

million pixels which can capture high resolution images using the serial port. The camera is 

a modular design that outputs JPEG images through universal asynchronous receiver 

transmitter (UART) and can be easily integrated into existing design. It has a default baud 

rate of serial port of 115,200. More of its specification can be found in [72]. The camera was 

connected to the programmed microcontroller Arduino 101 mounted on the robot to capture 

images with a resolution of 1600 × 1200 at 6 frame per second (fps). Images captured with 

the programme written on Arduino environment are stored in an SD card and corresponding 

IMU transmitted to the PC, via the USB cord which processes the images and locates the 

references points in the captured images. The marker (box) used as a reference object has a 

size of 15 × 24 cm and was placed at a known position. The object was used to calculate the 

pose estimation of the mobile robot relative to the camera. The image processing and pose 

estimation process were analysed offline using MATLAB software. The mobile robot 

trajectory is designed in such a way that it moves on a flat terrain in a forward, left and right 

directions. The work area for the experiment is 4 m × 5.2 m. 

 

 

Figure 3.4. Hardware used for the experiment: (a) Arduino 101 microcontroller. (b) LinkSprite 

camera. (c) 4WD robot platform [205]. 
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3.5 RESULTS AND DISCUSSION 

In this section, the performance of the experiments and simulated results are evaluated and 

analysed. Firstly, the analysis of the images captured in MATLAB was presented. Secondly, 

the results of the experiments performed to determine the position and orientation of the 

mobile robot by fusing the inertial sensor and vision data was also presented afterwards. 

3.5.1 Simulated result of objects detection and recognition in an image 

In this subsection, details of the vision techniques used for detection and recognition in an 

image was presented; this was implemented in MATLAB using the computer vision toolboxes 

following the steps given in Chapter 2, Section 2.3.5 and with the brief introduction given 

of how images were captured and stored on an SD card and transferred to MATLAB for 

simulation. 

Figure 3.5 shows the detection of an object box placed in a known position to estimate the 

position of the mobile robot when moving in the confined area. The first step was to save 

the proposed object (which could also be called the query image); in this case a box was 

used, the image was saved in a database file. Thereafter the image was converted from RGB 

to grayscale after resizing the image so that it would not be too large to fit on a screen. 

             

(a) (b) 
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(c) (d) 

             

(e) (f) 

                

(g) (h) 

Figure 3.5. A box detected from two different images but in similar scenes [205]. (a) Query image. 

(b) Training image. (c) Conversion of RGB to grayscale. (d) Removal of lens distortion. (e) Image 

including outliers. (f) Image with inliers only. (g,h) Images with display box around the recognised 

object. 

 

The purpose of converting from RGB to grayscale is to acquire better results. Examples of 

such images are depicted in Figure 3.5b and c respectively. Figure 3.5b shows the RGB 

image, while Figure 3.5c shows the grayscale image. Some camera lenses are distorted, and 

therefore it is important that lens distortions are removed from images. The purpose of 

removing distortion in images is to correct any form of abnormalities and variations in the 
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images to give a good quality output. Figure 3.5d shows an image in which distortion has 

been removed. 

 

To detect features from images using SURF, Figure 3.5e shows a typical example of the 

outliers and inliers. For the simulation, 50 of the strongest feature points were extracted from 

the query image to match with the training image in order to have sufficient points when 

matching the images. The matching of images was done by RANSAC algorithm. With 

RANSAC algorithm, the inliers were computed in such that if the inliers points are more 

than the threshold then homograph transform will be estimated. This is shown in Figure 3.5f. 

The last step is for a bounding box to be designated and displayed around the recognised 

object as shown in Figure 3.5g, h. 

3.5.2 Simulated and experimental results of object positioning 

Figure 3.6 shows the experimental result of the Euler angles obtained from IMU and the 

filtered estimate. Various methods have been suggested to calculate Euler angles. Some 

methods considered using only data from a gyroscope to estimate Euler angles by integrating 

angular velocity to give orientation, while another uses only accelerometer data. Because 

gyroscope measures rotation and accelerometer does not, gyroscope seems to be the best 

option to determine orientation. However, both sensors have their limitations, and therefore 

it is suggested that the weakness of one sensor could be complemented by the other. For this 

study accelerometer and gyroscope data was integrated using Kalman filter. Figure 

3.2 shows the block diagram of the stages. Equations (3.5) and (3.6) were used to calculate 

the pitch and roll angles, while the yaw angle was calculated as an integration of angular 

velocity. From Figure 3.6, it can be noted that, for about 49 s, roll and pitch angles 

maintained a close-to-zero angle until there was a change in direction. At the point where 

the robot turned 90 degrees to the right, the yaw angle was 91.25 degrees. The maximum 

values obtained for pitch and roll angles are 15 degrees and 18 degrees, respectively. From 

the experiment carried out on IMU, it can be concluded that Euler angles are a good choice 

for the experiment performed because the pitch angles did not attain ±90 degrees to cause 

what is known as Gimbal lock. 
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Figure 3.6. Euler angles from IMU. Roll: red; pitch: green; yaw: blue [205]. 

Figure 3.7a-c shows the orientation result of the fused data from inertial sensor and vision. 

The IMU was able to abruptly determine the direction of mobile, but the vision slowly 

captured the images to determine the orientation of the mobile robot. With different sampling 

frequencies, computation time did not allow both estimates to run at the same time. The IMU 

was able to determine the direction of the robot within a specific path, but with the camera, 

the rotational axis was extended to capture more views; therefore, the range of direction was 

widened and areas which could not be covered by IMU were captured by the camera, 

although vision-based tracking is more accurate for slow movement than IMU. However, 

using only computer vision, tracking is lost almost immediately; it is therefore obvious that 

the addition of IMU is beneficial. EKF was used to fuse the inertial and visual measurement 

to estimate the state of the mobile robot. With EKF, corrections for pose estimation were 

made; this shows that the filter is efficient, specifically when fusing two or more sensors 

together. Equations (3.10) -(3.12) were used to calculate the camera pose in reference to the 

image plane. From the equations, the intrinsic and extrinsic parameters were estimated 

through the camera calibration. It should be noted that the described system is very sensitive 
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to calibration parameters. Errors in parameters used for calibration could deteriorate the 

tracking of the system. Hence, the design of accurate calibration methods is vital for proper 

operation. As observed from the figures, there is a slight difference between the data obtained 

from inertial sensor to that of vision. At the point where the robot made a 90 degrees right 

turn, the yaw value for IMU was 91.25 degrees, and 88 degrees for vision. Pitch and roll 

angles both have values of 1.2 degrees and 4 degrees. With the use of EKF data fusion, the 

proposed method was able to reduce accumulated errors and drifts, improvement was 

thereby achieved.  

 

A comparison of the three directions of the mobile robot taken from vision only was 

presented as Figure 3.8. The figure shows a distinctive estimation of position of the mobile 

robot. The position estimation based on the reference object in the image is relative to the 

position of the mobile robot and the world coordinate, with the median vector of the planar 

object for Z-axis close to 1 and −1. This shows that the feature selection method used is 

effective. Therefore, SURF and RANSAC algorithms combination can be used to determine 

the accurate position of an object through vision.  

 

 

    

 

 

              

(a) 

Figure 3.7a. Orientation results for fused sensors roll angles [205]. 
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(b) 

Figure 3.7b. Orientation results for fused sensors pitch angles [205]. 

 

(c) 

Figure 3.7c. Orientation results for fused sensors yaw angles 

Figure 3.7. Orientation results for fused sensors. Roll, pitch and yaw angles [205]. 
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Figure 3.8. Experimental position in XYZ directions from vision data [205]. 

3.5.3 Performance: Accuracy 

We estimated the performance of our algorithm using an external camera placed in the 

environment of experiment to capture data used as ground truth. The purpose of use of the 

camera was because of its availability and reliability to determine 6-DoF of position and 

orientation. The camera was positioned on a flat ground along with the mobile robot at a 

distance of 4.90 m between; the scenario is denoted as Figure 3.9. The camera adopted for 

the experiment wasn’t a motion camera, but it was ensured that the experimental area was 

covered.  

 

Figure 3.10a shows the trajectory of the mobile robot projected in the XY plane and Figure 

3.10b shows the corresponding positions of the mobile robot trajectory. From the same 

figure, it can be observed that our proposed method was close to the ground truth which 

therefore exhibits good performance. Further improvement on ground truth data collected 

could suggest using a motion capture camera or a laser ranging sensor. Though expensive, 

but an accurate result is guaranteed.  
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Figure 3.9. Ground truth system based on a camera [205]. 

 

 

 

(a) 
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(b) 

Figure 3.10. Comparing the proposed method with the ground truth. (a) Robot trajectory in the XY 

plane. (b) Position corresponding to the trajectory [205]. 

Furthermore, in order to investigate the performance and compare the accuracy of the 

proposed algorithm, we evaluated its effectiveness by the root mean squared error (RMSE) 

defined as: 
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 (3.32) 

where ,true true

t tx y denotes the ground truth measurement and ,est est

t tx y  represents the 

estimated filter algorithms and T is the total time variable.  

Figure 3.11a, b shows the results of error for position and orientation, which is the difference 

between the ground truth and proposed method. From the graph, it can be deduced that the 

maximum error value for position and orientation are 0.145 m and 0.95° respectively. These 

error values are still reasonable for indoor localisation. In Table 3.2, RMSE position and 

orientation are further stated for specific periods. It can be observed from the table that the 

position error slightly increases with increase in time. For RMSE orientation, both pitch and 

yaw error angles decrease as time increases while for roll, error was gradually increasing 
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from the start time to about 80 s and later decreases. The accuracy of the proposed method 

was improved, and better performances were achieved.  

 

 

 

 

 

 

 

 

 

 

 

(a)  

Figure 3.11a. Results of RMSE for position [185].  

 

 

(b) 

Figure 3.11b. Results of RMSE for orientation 

Figure 3.11. Results of RMSE for position and orientation [185].  
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Table 3.2. RMSE of position and orientation. 

Time (s) Position Error (m) Orientation Error (Degree) 

 X Y Roll Pitch Yaw 

20 0.05 0.08 0.78 0.62 0.62 

40 0.05 0.08 0.81 0.60 0.56 

60 0.07 0.09 0.85 0.56 0.55 

80 0.06 0.09 0.90 0.56 0.54 

100 0.07 0.09 0.62 0.50 0.53 

120 0.14 0.09 0.75 0.18 0.18 

 

 

3.5.4 Results of pose estimation based on natural landmarks 

In this section another experiment was performed based on natural landmarks using 

homography with EKF to estimate the pose estimation of a mobile robot. Figure 3.12 shows 

the experimental results for IMU, vision and fusion in the XY coordinates. From the results, 

it can be deduced that the coverage area of vision gave more detailed information than the 

IMU. The obvious spikes observed from the results, was due to the sudden drifts and 

imperfectness of the sensors, but it was corrected with the proposed scheme given minimised 

error when fused. Figure 3.13 depicts the orientation angles. From the same figure it can be 

seen that spines in vision could be as an effect of lighting changes and other changes in 

viewing angles. Figure 3.14 shows an illustration of how SURF feature points and FAST 

points of natural landmarks were extracted from the scene image. Using SURF and 

RANSAC algorithm, strongest points were extracted to calculate the pose estimation of the 

mobile robot using the homography estimation. The processing time for features extraction 

was done within 80 ms which runs more faster than other types of algorithms. This makes 

the method suitable for vision navigation and localisation.  
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Figure. 3.12. Experimental result in the X and Y position for IMU, vision and fusion taken from 

[114], © 2017 IEEE. 

 

Figure 3.13.  Experimental orientation of IMU, vision and fusion taken from [114], © 2017 IEEE. 

RMS error for position is shown as Figure 3.15a. The RMSE mean value for IMU as a single 

sensor is 0.655 m and for two sensor units is 0.183 m. Therefore, fusing two or more sensors 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 3  POSE ESTIMATION OF A MOBILE ROBOT BASED ON IMU AND VISION  

 

Department of Electrical, Electronic and Computer Engineering 92 

University of Pretoria 

reduces the error and as well complements the weakness of a single sensor. Comparing the 

position error of artificial landmark and natural landmark to estimate position, it can be 

deduced from Table 3.3 that the use of artificial landmark is more reliable and effective. The 

RMSE values for orientation were shown in Figure 3.15b. All three angles, roll, pitch and 

yaw have less than 0.9° error which is reasonable for an indoor localisation.  

 

Table 3.3. Comparison of artificial and natural landmark position error. 

Max. position error (Artificial landmark) Max.  position error (Natural landmark) 

X Y X Y 

0.147 m 0.09 m 0.18 m 0.65 m 

 

 

 

   

Figure 3.14. Illustration of SURF points extracted from scene image.  
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Figure 3.15a.  RMSE of position. 

 

 

Figure 3.15b.  RMSE of orientation. 

Figure 3.15. RMSE of position and orientation taken from [114], © 2017 IEEE. 
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3.6 CONCLUSION 

Fusion of vision and inertial measurements to obtain robust and accurate autonomous mobile 

robot pose estimation was presented for an indoor environment. The inertial sensor used is 

the 6-DoF, which was used to determine position and orientation. For the computer vision, 

a single forward-looking camera was used to generate 2D/3D correspondences. The purpose 

of data fusion is to produce reliable data that is not influenced by accelerometer noise and 

gyroscope drift. In respect to this, vision was proposed as the best fit to complement the 

weaknesses of inertial sensors. The inertial sensors and the camera were both mounted on 

the robot to give excellent performance of the robot estimate. 

For object recognition, SURF and RANSAC algorithms were used to detect and match 

features in images. SURF is used to detect key points and to generate its descriptors. It is 

scale-and rotation-invariant, which means that, even with differences on the size and on the 

rotation of an image, SURF can find key points. In addition, RANSAC is an algorithm to 

estimate the homograph matrix of an image; therefore, the combination of SURF and 

RANSAC gives robust, fast computation and accurate results for vision tracking scenarios. 

The experimental results have shown that a hybrid approach of using inertial sensors and 

vision is far better than using a single sensor. An extended Kalman filter was designed to 

correct each sensor hitches by fusing the inertial and vision data together to obtain accurate 

orientation and position. RMSE values for position and orientation were determined to 

evaluate the accuracy of the technique. As a result, the method shows reliable performance 

with improved accuracy.  

 

The study further presented an experimental outcome of using natural landmarks to 

determine location of a mobile robot. The results confirmed the familiar fact that the 

effectiveness of the homography estimation is heavily dependent on the appropriate choice 

of the sensors and robust with fast computation algorithm to improve localisation 

performance. This type of system proposed can practically be considered for most indoor 

applications.  
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 DATA FUSION TECHNIQUE 

BASED ON PARTICLE FILTER  

4.1 INTRODUCTION 

One of the most recently researched areas in simultaneous localisation and mapping (SLAM) 

is pose estimation as it is one of the key issues to be tackled in autonomous mobile robot 

(AMR) operation [217]. AMR have a range of potential applications such as home 

monitoring [218], space exploration, agriculture, medicine, automotive [219] etc. Great large 

of AMR are equipped with sensing and measurement systems with the purpose of 

determining its position and orientation accurately and robustly. The major challenge in 

localisation is based on how to correct error associated with measurement via sensors and 

its environmental models. As mentioned in the previous chapters, inertial measurement unit 

(IMU) is considered as one of the commonly used unit to calculate positioning because of 

its self-independence leading to its validity in all environments and its capability to quickly 

obtain good real-time estimation. The IMU unit is comprised of accelerometer and 

gyroscope sensor [185, 224]. To compensate for the weaknesses of IMU, vision is 

considered as the most suitable alternative to provide appropriate source of information 

about the robot and its environment [225]. Information acquired from the environment with 

the use of camera which could be in form of images or video can be interpreted with the use 

of computer vision mechanism. The method assists in tracking object identified in the image 

accurately. Generally, vision based methods are categorized into artificial and natural 

landmarks [14] and the use of vision can either be monocular (single camera) or binocular 

vision (two cameras). A single camera [222] could be considered as appropriate because of 
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its low cost and less complexity, however, the demerit of monocular vision is the absence of 

depth information when compared to the use of two or more cameras. 

 

To have precise positioning system, it is vital that the sensors complement themselves 

through integration to present better improvement in localisation accuracy. Quite several 

studies on the use of IMU and vision have been researched by some authors [140, 223]. 

These studies are mainly concerned with either accelerometer or gyroscope combined with 

vision using Kalman filter (KF) [224]. The images captured by monocular camera were used 

in ref. [225] to correct inherent errors acquired by the inertial sensors using decentralized 

Kalman filter algorithm to fuse data. Conventional Kalman filter could estimate states 

correctly for a linear system because it uses linearized model, but not appropriate for 

nonlinear system. For a nonlinear system, it is important to consider data fusion algorithm 

that is nonlinear based [226]. For this study, particle filter was considered to estimate the 

state of the mobile robot. The purpose of this experiment is to introduce an effective method 

that would fuse sources of sensor and thereby estimate accurate position and orientation of 

mobile robot. The contributions of this chapter are summarized as follows: 

- The particle filter based algorithm was adopted to effectively combine and estimate 

the pose estimation of an autonomous mobile robot using measurement from IMU 

sensor and camera.  

- The proposed particle filter employed the use of increased sample of particles. The 

algorithm shows a moderate computation load with minimised position errors.  

- At the end of the work, experimental results presented shows the benefit of the 

proposed algorithm.  

 

4.2 ACQUISITION OF SENSOR DATA 

This section explains how measurements are acquired from IMU and vision to determine the 

robot location and orientation.  
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4.2.1 IMU sensor   

Data acquired from IMU was fused together using Kalman filter. The combination of 

accelerometer and gyroscope from IMU achieves better performance on positioning 

accuracy in a longer time span. For the definition of reference frame system refer to Chapter 

3 Section 3.1.  The IMU method provides orientation of the body with respect to (wrt) world 

frame {w} Rwb and vision method provides orientation of the object {o} wrt to camera frame 

{c} Rco, this was obtained through image processing method. As mentioned in Chapter 3, 

examples of object representations are axis angle, direct cosine matrix (DCM), Euler angles 

and quaternions [14, 132]. In this study, quaternion was used to solve for roll, pitch and yaw 

angles. The quaternion is an extension of complex numbers to a four dimensional manifold 

[227]. The definition is given as: 

 0 1 2 3q q q i q j q k     (4.1) 

where 0 1 2 3, , ,q q q q    and the three imaginary components , ,i j k  are defined as: 

 
2 2 2 1i j k     (4.2) 

With the following properties  

 , , , , ,ij k jk i ki j ji k kj i ik j          (4.3) 

Therefore, the quaternion representation of rotation is written as a normalised four-

dimension vector 0 1 2 3
ˆ [ ]q q q q q .where 

2 2 2 2

0 1 2 3 1q q q q    . 

Unit quaternion provides a convenient mathematical rotation for representing rotation matrix 

The rotation quaternion wbQ  in relative to the world frame can be obtained using coordinate 

information from the body frame. To determine the robot pose, quaternion representation of 

the coordinate transformation matrix can be calculated as follows: 

 

2 2 2 2

0 1 2 3 0 3 1 2 1 3 0 2

2 2 2 2

1 2 0 3 0 1 2 3 0 1 2 3

2 2 2 2

0 2 1 3 2 3 0 1 0 1 2 3

2( ) 2( )

2( ) 2( )

2( ) 2( )

wb

q q q q q q q q q q q q

Q q q q q q q q q q q q q

q q q q q q q q q q q q

     
 

      
      

 (4.4) 
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The world coordinate system is fixed in inertial space and the body is rigidly attached to the 

mobile robot whose attitude is defined. The orientation estimation is obtained using 

quaternion because of its simplicity, mathematical elegance and lack of singularities, 

therefore, a unit quaternion is used to present the attitude of a rigid body. 

4.2.2 Image processing technique to obtain pose 

Image processing is considered as another technique that can be used to determine mobile 

robot pose in the aspect of computer vision. In [228], the authors adopted the use of image 

processing algorithm to calculate the position and orientation with a proposition of 

triangulation method for positioning and the implementation of second-order moment for 

orientation. Here, same scheme was adopted but with a slight difference in positioning 

method. As shown in Figure 4.1, the camera is placed with a height of 120 cm from the 

ground to scan the movement of the mobile robot within an actual environment of specified 

dimension of 255 cm by 250 cm. With the geometrical information extracted from the 

images captured, accuracy and less complexity is ascertained with the use of image 

processing method for a mobile robot [229, 230]. To implement the process, it is required to 

remove background noise and distortion through calibration process [101] especially to 

cameras that are of low-cost, less quality and poor resolution. To remove distortion and 

improve the accuracy for the webcam to localise, the camera was calibrated before 

positioning operation was performed. The following steps below were followed: 

 

 Webcam records the video of robot navigation 

 Convert the video to image frames 

 Convert original image to grey scale 

 Background subtraction 

 Binarization  

 Detection of the object in the image using SURF algorithm [114]. 

 Determine the object coordinates. 
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Web cam

120cm

255cm 250cm

Mobile 
robot

 

Figure 4.1. Illustration of how the experiment was performed. 

 

For binary image, moment summarize an object given image as ( , )I x y   

 , ( , )i j

i j

x y

M x y I x y   (4.5) 

The central moments are translation invariant:  

 ( ) ( ) ( , )p q

pq

x y

x x y y I x y     (4.6) 

where , 0, 1, 2...p q   

To calculate the horizontal and vertical direction, the equation below was used. 

 1, 0 0, 1

0, 0 0, 0

M M
x y

M M
   (4.7) 

where 0, 0M  is the total number of pixels in the object (object area), where 1, 0M  and 0, 1M  

are the first order moment. Therefore, to determine covariance matrix of the binary object 

this is given as: 

 

' '

2, 0 1, 1

' '

1, 1 0, 2

( )
u u

cov Obj
u u

 
  
  

 (4.8) 
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2, 0 1, 1' 2 '

2, 0 1, 1

0, 0 0, 0

0, 2' 2

0, 2

0, 0

.
M M

u x u x y
M M

M
u y

M

   

 

 (4.9) 

 where 2, 0M , 1, 1M and 0, 2M are the second order moments. The eigenvectors of the 

covariance matrix correspond to the major and minor axes of the equivalent ellipse. To 

determine the orientation   of the mobile robot [229]: 

  

'

1, 11

' '

2, 0 0, 2

21
.tan

2

u

u u
 

 
  

  
 (4.10) 

where the major and minor axes length is given as a  and b  respectively. 

 
' ' '2 ' ' 2

2, 0 0, 2 1, 1 2, 0 0, 26( 4 ( )a u u u u u      (4.11) 

 
' ' '2 ' ' 2

2, 0 0, 2 1, 1 2, 0 0, 26( 4 ( )b u u u u u      (4.12) 

 

Algorithm 1: Systematic sampling [231] 
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( ) ( )

1
, ,

m
m m

t t
m

x w N


 
  

 

   ( ) ( )

1 1

M M
m m

t t
m m

Q w
 

   
      

  

0i   

1m   

 0 0,1/u U N  
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4.3 DATA FUSION METHOD BASED ON PARTICLE FILTER 

In recent times, data fusion in mobile robots has become a dominant pattern due to its 

potential advantages like reduction in uncertainty, increase in reliability and accuracy [232]. 

Several methods have suggested the fusion of data from different sources improved 

performances. According to the authors in ref. [233], extended Kalman filter algorithm is 

one of the most suitable algorithms to fuse data because it converges fast and it works well 

for nonlinear systems unlike Kalman filter that is more likely to work better for linear 

systems. KF also has limited abilities in providing accurate estimation of such system 

parameters, because it is delimited to use only Gaussian linear models for these sensors’ 

stochastic errors. To ensure system availability and system’s authenticity that define the 

exactness of the objects perceived data fusion is most suitable. Unscented Kalman filter is 

considered as another algorithm that works efficiently well for integration of data with the 

advantage of low computational cost, but its accuracy is not as high as particle filter. In 

robotics community, PF has been developed into one of the most effective algorithms for 

solving robot localisation problem and to deal with non-Gaussian distribution. The basic 

variants of PF are the extended version of the sequential importance sampling (SIS) 

algorithm with an added sampling step known as the sequential importance resampling 

(SIR). Particle filter was proposed by Gordon [237] which chose prior probability function 

as proposal probability function and use sequential particle sampling. Particles filters can be 

applied with data from almost any type of sensor. It has become very famous as it can deliver 

a quick location estimate, while handling uncertainties in sensor data and supporting re-

localisation without adding algorithm complexity. This study seeks to implement on the 

basics of particle filter to determine the position and orientation of an autonomous mobile. 

The proposed particle filter is compared with three other existing methods which are EKF 

already explained in detail in the previous chapter, auxiliary particle filter (APF) and 

adaptive particle filter.  

Auxiliary particle filter was suggested to improve the weakness of PF which provides 

enhanced solution for effective sampling when the observation model is known. The 

algorithm is reliable to determine optimally sample from posterior initially given by Pitt and 
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Shephard [239]. The same algorithm was implemented by the authors in [240] to tackle the 

problem of robot localisation. The use of APF is associated with the fact that optimal 

importance function, the weight at time t  does not depend on the state tx . Therefore, it 

seems wasteful to resample particles at the end of iteration 1t  prior to consideration the 

observation ty . The essence of APF was that the sampling step could be modified to sample, 

for each particle, an auxiliary variable corresponding to a particle index according to a 

distribution which weighs each particle in terms of it compatibility with the observation. 

When APF is considers as a sequence of weighting and sampling, it becomes apparent that 

it also has an interpretation as mutation selection algorithm. For a fully adopted APF, the 

importance weights by which estimation are made are uniform resampling is carried out both 

before and after auxiliary weighting as in the original implementations. APF is likely to yield 

more stable estimates provided that a good approximation of the procedure likelihood is 

available. APF in the prediction step, favor particle that are likely to get high likelihoods 

after incorporating the measurement in the update step. The availability of the latest 

measurement is exploited in the prediction step, instead of unnecessarily employing more 

sample from the prior. It uses resampling on predicted particles to select which particle to 

use in the prediction and measurement update. The pseudo code of the algorithm is given as 

Algorithm 2 below and the complexity is O(N2). The steps below summaries the algorithm 

of auxiliary particle filter: 

1. Compute N point estimate that are used to characterise 1 1( | ) : ( | )i i i

t t t t tp x x p x x  . 

Different characteristics are possible leading to a different variation of the particle 

filter. Compute weights for the characterisations: 
( )

1( | )i i i

t t t tw p y u w  . Thereafter, 

normalise the weights of each kernel. A kernel is a symmetric pdf and is a function 

of the particle state. 

2. Use the weight 
i

tw  from step 1 in a resampling step. During resampling store the 

indices ij of the particle that would have been selected but do not perform the actual 

resampling. Each index ij refers to a particle at 1t   and the set if indices represent 

the set of particles that are expected to get high likelihoods.  
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3. Perform a prediction step for each of the N particle index from step 2. 

4. Compute the weights for the propagated particles from step 3. 

( ) ( | )

( | )

j
j t t

t ij

t t

p y x
w

p y u
      (4.13) 

In the algorithm described above the characterisations are used to predict a particle as 

expected to get a high likelihood given the measurement. 

 

Algorithm 2: APF algorithm [241, 248] 

Initialization. At time 0t   draw N  sample 
( )i

tx  from the distribution 0( )p x  

Set 
( )

0 1/ , ,...,iw N i N  

Let 
( )

1 1( )i N

t ix    be the particles (samples) generated at 1t   

Compute the mean of pdf 
( )

1( | )i

t tp x x  as 

1

( )

( | )
.[ ]i

t t

i

t tp x x
E x



  

Compute the normalised weight of each kernel in the mixture as 
( ) ( ) ( )

1
ˆ( | )i i i

t t t tp y x w   

Let the importance sampling (IS) be 

( ) ( )

1

1

( ) ( | )
N

i i

t t t t

i

q x p x x 



  

Draw N  samples from ( )tq x in two steps: 

Select the indexes , 1,...,ij i N  

Simulate 
( ) ( )

1( | )i ij

t t tx p x x   

Compute the weight as 

 
( )

( )

( )

( | )

( | )

i
i t t

t ij

t t

p y x
w

p y 
  

Normalise the weights 

 

( )
( )

1

i
i t

t N j

tj

w
w

w





 

 

Adaptive particle filter: Adaptive particle filter is also consider to improve the challenging 

issues standard particle filter is faced with. This method suggests to ensure that the number 

of particles is kept minimal as possible. The idea of adaptive particle filter is to use a small 

number of particles in a situation where particles are based on a small part of the space and 
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increased number of particles in case the particle filter uncertainty increases. For 

implementation purpose, the pseudo code is explain briefly.  

 Sample a particle index proportional to its weight at time 1t   

 Propagate the particle sample using the process model 

 Update the number of required particles 

 If the number of particle equal the number required particle (or the maximum number 

of particles), stop sampling new particle. For more information refer to [247]. 

4.3.1 Proposed particle filter  

When using PF, the prediction of the robot state is established on a set of samples, which are 

initiated at time t and they are allocated weights individually depending on the initial value 

of each particle in relation to the nonlinear function. The particle filter algorithm adopts 

Sequential Importance Resampling (SIR) and the SIR algorithm uses the resampling method 

by implementing a threshold to disregard sampled particles which fall outside of the 

threshold [151, 235]. Resampling is an essential component of PF, because it combats 

sample degeneracy. The following advantages also have encouraged PF to be preferred to 

other types of filter methods: high accuracy and stability, fast convergence rate and not 

difficult to implement. The proposed method utilized particle filter to localise the mobile 

robot by fusing IMU and vision. The distinct feature of the proposed method is using more 

particles with a novel distribution function with a higher likelihood in which it has a better 

chance of surviving. To estimate robot localisation, particles filters are a great method to 

track the state of a dynamic system using Bayesian model. Bayes’ rule is adopted to 

determine the state of a nonlinear dynamic system in respect to time. The robot seeks to 

estimate a posterior distribution over robot state space conditioned on the available sensor 

data. Therefore, the robot state at time t is denoted as, tx and the observation is ty . The 

system is represented as:  

 1 1 1 1( , ) ( | , )t t t t t tx f x u Q p x x u       (4.14) 

 ( ) ( | )t t t ty h x R p y x    (4.15) 
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where Q is the process noise and R is the measurement noise. tx  is estimated as the state 

vector and tu  is the control vector. f and h are assumed to be known functions. The 

fundamental idea of the system is to develop the posterior density by a random set of particles 

with associated weights and the estimate is evaluated based on samples. The samples drawn 

from the required distribution need no assumption to be made when the state space model is 

either nonlinear or linear [151]. Detailed explanation of particle filter is given in reference 

[236]. For this study, the implemented particle filter for data fusion is presented below: 

The state vector tx  of the fused filter consists of angular velocity  , quaternion for 

orientation q  accelerometer a and velocity v . 

[ ]tx a q v   (4.16) 

The measurement vector ty  consists of orientation  and position p from vision. 

[ ]ty p   (4.17) 

The relation between the measurement and the states is modelled by nonlinear function given 

in (4.14) and the initial a prior PDF 0( )p x  of the state vector is assumed to be known. Particle 

filters (PF) are capable of handling highly nonlinear models with any kind of noise 

distribution. The particle filter is a special version of the Bayesian filter, and is based on 

sequential Monte Carlo (SMC) sampling. 

Initialisation: The particle filter initialised by drawing sample 0 , 1 ,...,ix i N , from the 

prior density function 0( )p x and set weight 0

iw to 1/ N , N is the number of particles.  

Sampling: samples are not drawn according to 0( ( ) | )tp x t y but are drawn from importance 

probability density function. 

  0: 1 1:
ˆ ~ ( | , )i i

t t t tx q x x y  (4.18) 

Prediction: Prediction is drawn from the proposal which is the motion model centered on 

IMU data and it is exploited to predict the current position tx of the mobile robot in current 

step, given control input 1tu   and the previous posterior probability  1tx  . 
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( )

1 1~ ( | , )i

t t t tx p x x u    (4.19) 

Measurement Update: Measurement update is performed via the observation model in which 

the sensor measurement (i.e. vision) is incorporated into predicted density which leads to 

posterior probability density function (PDF) of the state tx .  

Considering conditional probability distribution of future states, given the present state and 

all past states, depends only upon the present state and not on any past states and the 

measurements are assumed to be conditionally independent given the states, the following 

recursive general equation for weights updating can be obtained: 

 
( ) ( )

( ) ( ) 1
1 ( ) ( )

0: 1 1:

ˆ( | ) ( | )

ˆ( | , )

i i i
i i t t t t

t t i i

t t t

p y x p x x
w w

q x x y






                                              (4.20) 

where 1

i

tw   represents the weight at the previous time step for particle i , ( | )i

tp y x is the 

likelihood function, 1( | )i i

t tp x y  transition prior function.  

The choice of importance density function 
( ) ( )

0: 1 1:
ˆ( | , )i i

t t tq x x y  is one of the most critical issues 

in the design of a particle filter. The reason of this is that the samples are drawn from the 

proposed distribution, and the proposed distribution is used to evaluate importance weights. 

The most popular suboptimal choice is to use the conditional prior of the state vector as the 

proposed distribution for importance density function  

( ) ( )

0: 1 1: 1
ˆ ˆ( | , ) ( | )i i i i

t t t t tq x x y p x x                                            (4.21) 

Therefore, substituting (4.21) in (4.20) the weight’s update equation will be  

1. ( | )i i i

t t t tw w p y x                                                  (4.22) 

The PF was invented to numerically implement the Bayesian estimator. Instead of applying 

prior probabilities in Bayes estimation, it employs a set of particle with values and weights 

to approximately represent ( | )t tp x y  through the Monte Carlo Sampling approach. This 

permits the PF to be integrated into Bayesian solution to sums of weighted sample draw from 

posterior distribution. The probability density function 1:( | )t tp x y of the estimated state can 

be represented by  
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( )

1:

1

( | ) ( )
N

i i

t t t t t

i

p x y w x x


      (4.23) 

This represents the discrete weighted approximation of the true posterior 1:( | ),t tp x y where 

( )  is the Dirac delta function. The weights’ values are always positive 
( ) 0i

tw  , and sum of 

weight is equal to 1. 

 
1

1
N

i

t

i

w


  (4.24) 

A common problem with the SIS particle filter is the degeneracy phenomenon, where after 

a few iterations all but one particle will have negligible weight. This degeneracy implies that 

a large computational effort is devoted to updating particles whose contribution to the 

approximation to 1:( | )t tp x y is almost zero. Of course, the degeneracy problem is an 

undesirable effect in PF. An approximate effective sample size ˆ
effN  can be used to detect 

the occurrence.  
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If  ( ˆ
effN < thrN ), a little effN indicate severe degeneracy. ThN is denoted as thresholds.  

Resampling: Resampling is proposed to reduce the effect of degeneracy. Resampling is 

necessary to limit samples with non-zero weights. It is a scheme to reject particle with small 

weight to concentrate and replace on particle with large weights [237]. Systematic sampling 

was used as resampling method because it is simple to implement, has computational 

complexity O(N) and reduces the variance of importance weight variation. Systematic 

sampling is given as Algorithm 1, more details are given in ref. [238]. 

 

Figure 4.2 shows the block diagram of the sensor fusion. It can be deduced from the figure 

that IMU and vision were used to determine the mobile robot pose estimate. Webcam was 

used to capture the moment of the mobile robot within the area of experiment. The acquire 

images is required to go through processing for removing noise and unnecessary 

information. Thereafter, the object detection such as SURF algorithm was used to identify 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4  DATA FUSION TECHNIQUE BASED ON PARTICLE FILTER FOR MOBILE 

ROBOT POSE ESTIMATION 

 

Department of Electrical, Electronic and Computer Engineering 108 

University of Pretoria 

the robot in the images and orders of moment technique was used to calculate the direction 

and orientation of the object in image. IMU which is comprised of accelerometer and 

gyroscope were fused by KF to estimate their position and orientation which was integrated 

to obtain the direction of the mobile robot. In this case, the attitude of the body was presented 

using quaternion. KF is used to estimate the IMU measurement because the state-space 

model is linear and noise distribution is considered to be zero-mean Gaussian. Instead of 

using the direct measurement of position and orientation from IMU, the KF estimations are 

used to reduce effect of measurement noise. Thereafter, the estimation from the IMU and 

vision are fused together using proposed particle filter to give output estimate. PF is used to 

estimate orientation and position because it neither requires the state-space model to be linear 

nor assumes that the noise is Gaussian unlike KF. When the initial state are unknown, they 

will be converged to the correct values in PF. PF approximates posteriors with a set of state 

samples, called particles instead of assuming that the posteriors are Gaussian every time step.  

Web cam
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Image processing
Position & orientation 
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Figure 4.2.  Block diagram of sensor fusion system. 
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4.4 RESULTS AND DISCUSSION 

4.4.1 Components used and experimental setup 

The components used to perform the experiment are: 4WD mobile robot, Arduino 101 IMU, 

webcam and pixy camera. The mobile robot used in this experiment is a four-wheel drive 

(4WD) with a working voltage of 4.8 V. Four servo motor controllers were used which 

allowed the robot to move up to 40 cm/s (0.4 m/s) with microcontroller (Arduino/Genuino 

101) which has built-in of Inertial Measurement Unit with the integration of accelerometer 

and gyroscope sensors which is also called 6-DoF. The robot was equipped with a 6 V battery 

to power the servo motors and a 9 V battery for the microcontroller [63]. To capture the 

video of the mobile robot, Sparkfun USB webcam was used. It’s a camera that can be 

plugged into computer or dev board. It has a resolution of 640x480 pixels, which is adequate 

for object detection and motion tracking. 8,000 frames were recorded at the above mentioned 

resolution at 30Hz. A software called honestech (ver 2) was installed on the personal 

computer (PC) to record video. The camera was elevated to a height as shown in Figure 4.1 

in which it was connected to a PC for the webcam to record the moments of the mobile robot 

navigating through a pre-defined path. Thereafter, the image processing technique was 

adopted to filter unnecessary information and extract vital information that could aid the 

robot positioning. The measurement from IMU and webcam were both estimated using 

proposed particle filter to estimate the pose estimation of the mobile robot. For the ground 

truth, we adopted the use of a Pixy camera which was connected to the microcontroller 

through the serial peripheral interface (SPI). The Pixy camera was positioned beside the 

webcam with a distance of 10 cm so as to have a close and clear field of view like the 

webcam. The data collected were saved on an SD card and later analysed offline in MATLAB. 

The Pixy camera has the proficiencies to remember seven different color signatures, detect 

hundreds of objects at the same time and also able to quickly determine the location of the 

objects detected. Several authors [242-244] have worked on Pixy camera because of its 

simplicity, low cost and reliability in usage majorly for projects based on robotics. Image 

processing takes time and limits frequency at which position can be obtained from a camera. 
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The sample rates for IMU and camera capture are 100 Hz and 30 Hz respectively. Because 

of the instabilities of the values for both width and heights of the image frame during the 

mobility of the robot, using the method proposed in [245], the center of the  image frame 

with the present position of the camera are used to determine the location of the mobile robot 

in relation to the world coordinate. The width and height are recalculated using (4.26) and 

(4.27). 

 ( ) /x dW M A D   (4.26) 

 ( ) /y dH M A D   (4.27) 

where xM  and yM  are the distance moved by mobile robot to the x  and y axes. dA is the 

measurement of the marker used which in this case is the mobile robot itself, while the 

distance from the preceding position to present position of the mobile robot is represented 

by D as shown in Figure 4.3. This is given as (4.28). The robot has a fixed reference of 

(XOY) in which the centre of the robot has coordinates X and Y, and O is the centre of the 

robot. From the same figure rx and ry are defined as reference related to the robot in which 

rx  either moves backward or forward and ry  is perpendicular to rx axis. 

    
2 2

2 1 2 1D X X Y Y     (4.28) 

Therefore, to convert to the current position of the mobile robot to real world state, we used 

(4.29) and (4.30): 

   /R c cX X A W   (4.29) 

   /R c cY Y A H   (4.30) 
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Figure 4.3.  Arbitrary motion of mobile robot. [245], © 2015 IEEE.  

To evaluate the performance of the proposed method we used (4.31) to calculate the position 

error as: 

     
2 2

true est true estE x x y y     (4.31) 

where  ,true truex y  is the true measurement obtained and  ,est estx y represents the estimated 

coordinate of data fusion methods.  

 

Table 4.1. Average error for data fusion algorithms. 

Method 
Average position error 

(cm) 

Average 

orientation error 

(deg) 

EKF 9.45 0.89 

PF 5.82 0.614 

APF 5.81 - 

PPF 3.64 0.644 

Adaptive  - 0.622 
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4.4.2 Performance analysis 

We illustrated the performance of the algorithm by adopting a simple motion model taking 

into account by adding an amount of random Gaussian noise to IMU. While the observation 

model is a function that measures the likelihood of the current ty  if the robot is in the pose 

tx .  In the first experiment we obtained the 2D trajectory plot of the mobile robot in an 

indoor environment as illustrated in Figure 4.4. The position estimation of the x  and y

direction of the mobile robot were acquired through the integration of accelerometer 

parameters and the the rotation of the mobile robot was derived from gyroscope. The fusion 

of the IMU and vision was determined by combining the process using (4.15).  The figure 

shows the result of IMU, ground truth and fused data from vision and IMU with PF. From 

the experiment, the IMU showed a quick response to the environment while the ground truth 

and fusion results had a slow response. This denote that IMU respond abruptly to factors 

such as errors or environmental noise. The second and the third experiments were performed 

to analyse the proposed scheme. The performance and the reliability of the algorithm can be 

assessed through the calculation of the positioning and orientation errors in the various 

schemes. The IMU was attached to the mobile robot to obtain the position along the x-axis 

in the body frame with the algorithm developed, if the IMU is unable to acquire the 

measurement, images of the robot location are captured to estimates the pose. This was 

implemented by estimating the set of normalized importance weights according to (4.22) 

basing on IMU measurement and vision measurement. The nonlinear measurement model 

( )th x R is directly used in PF, what is impossible for KF. In order to verify the performance 

of the proposed algorithm, this study compares with standard particle filter, auxiliary particle 

filter (APF) [236], EKF and adaptive particle filter. APF was considered to improve some 

deficiencies of SIR algorithm such as increase in variance. The algorithm is also is a 

nonlinear system model in which the particles are modified before resampling according to 

likelihood function. Unlike the standard particle filter, APF gets it particles from joint 

probability density.  
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Figure 4.4.  Trajectories of comparison robot’s movement (ground-truth, IMU, fusion). 

 

Figure 4.5. Position error (a) Proposed Particle filter (PPF) (red) (b) EKF (cyan) (c) APF (green) 

(d) PF (blue). 
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In Figure 4.5, to extract relevant information about the performance of the filters compared 

with the proposed method, 1000N   particles was used, and the simulation was carried in 

MATLAB with the duration of 50 seconds for each run. The simulation was carried out to 

estimate the performance of each filter. It can be inferred from the figure that the proposed 

particle filter has minimised position error. This is due to increase in number of particles, 

application of weight and likelihood observation and sampling method against the particle 

filter which used SIR algorithm. As these results suggests, the position errors at the starts for 

all the methods were low, but a sudden spike was noticed, and this continued for EKF due 

to measurement noise likewise for PF and APF. This signifies that the methods are less 

robust due to the spikes present. From the same figure, proposed particle filter (PPF) with 

the least maximum position error of 4.02 cm, PF 8.01 cm, APF 7.85 cm and EKF 12.05 cm 

proved enhanced method over others. This means that PPF recovers from erroneous position 

while other changes more slowly. 

 

 

Figure 4.6. Orientation error (a) Proposed Particle filter (red) (b) EKF (cyan) (c) PF (blue) (d) 

Adaptive particle filter (black). 
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For Figure 4.6, one of the factors that affected the orientation error was the high number of 

particles and the sensor noise. A significant change with sudden drop in error was observed 

when the robot takes a turn at time instances. This means a significant change in direction 

could enable the robot to respond with an effect on measurement. It can also be inferred that 

EKF has the highest degree of orientation error compared to the other three methods (PF, 

PPF and adaptive). This relate to the fact that the use of number samples can improve the 

efficiency of estimating robot localization. The overall performance of the pose estimation 

was given in Table 4.1. It can be concluded that the PPF has minimised position and 

orientation error compared to other existing methods, but for orientation error PF showed a 

better performance over PPF with an average of 0.614 degrees which is still considerable for 

an indoor localization. 

 

 

Figure 4.7. Comparison of processing time between PF, APF, Adaptive particle and PPF with 

different number of particles. 
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Figure 4.7 shows that as the number of particles increases the processing time also increases, 

however when the particle was 800 and above, the average time of PPF sporadically 

overshoot the average time of the other three methods.  This indicates that more time is 

required to process more particles and resampling stages. Therefore, the number of particles 

should be chosen carefully to attain a tradeoff between accuracy and computational 

efficiency. This experiment proves that PF shows a better filter for data fusion than EKF 

especially for nonlinear system. To deal with nonlinear system subjected to non-Gaussian 

system and measurement noise characteristics, PF is an improved tool. From the results 

presented, the proposed approach was able to determine an accurate position and maintain a 

reduced error for localisation when compared to the other existing methods. From the 

experiment and simulation performed, it is clear that more number of samples could increase 

processing time, but it is essential for samples to denote ambiguous circumstances happening 

due to increased uncertainty.  

 

 

Figure 4.8. Relationship between likelihood and robot position. 
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Figure 4.8 shows the relationship between likelihood and robot position. They are simulated 

with 50 time steps with 1000 particles. The relationship between likelihood and pose 

estimation is shown in (4.20) and (4.31). We plot the distribution of likelihood ( | )j

t tp y x  

for auxiliary particle filter and particle filter. APF got high likelihood after incorporating 

measurement in the update step rather than drawing samples from prior. The likelihood 

( | )t tp y x represent the conditional probability of a measurement given the predicted state

1: 1( | )t tp x y  . It is important to note that the observation model is a function that measures 

the likelihood of the current measurement ty if the robot is in the pose tx . With increase in 

likelihood the figure shows that more distances are covered within a time frame using APF 

over the proposed particle filter algorithm. The simulation was performed on Windown7 

Ultimate platform (64-bit operating system) with clock speed 2.20GHz and 2.00GB RAM. 

 

4.5 CONCLUSION 

This chapter investigated the issue of mobile robot localisation in an indoor environment. A 

system assembly that is comprised of low-cost monocular vision and IMU is considered. 

The contribution of this chapter is using image processing technique based on first and 

second order of moment to estimate the position and orientation of the mobile robot in the 

environment. Secondly, the method which was based on particle filter was used to fuse data 

from inertial sensor and vision sensor to improve accuracy of localisation. From the 

presented results, particle filter algorithm achieved reliable results when compared with 

other existing methods. 
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 CONCLUSIONS AND FUTURE 

WORK 

5.1 CONCLUSION  

Due to the services rendered to the community and globe at large, autonomous mobile robot 

(AMR) has attracted immense attention and recognition in recent times. Their application 

virtually in all sectors has set precedence for effectiveness and efficiency in their 

performances. It is with these requirements that the inherent challenges of autonomous robot 

mobile such as obstacle avoidance, navigation, localisation and path planning have to be 

tackled. As earlier mentioned in Chapter 1 that one of the most cogent issue is localisation. 

Therefore, a detailed investigation into essentials and intricacies of localisation in 

autonomous mobile robot is vital. Localisation or tracking is one of the fundamental 

competencies required by an autonomous robot as the knowledge of the robots’ location is 

a vital precursor in making decision about the future of the robot. For adequate tracking and 

accurate estimation of mobile robot pose (position and orientation), it is therefore very 

paramount to ensure that an effective, reliable and robust scheme is implemented, and this 

is the aim of the study. To determine location, the use of sensors is of crucial importance for 

efficient and accurate robot operation. Robots equipped with sensors are used to obtain data 

and collect necessary information from the environment through some embedded computer 

processing. However, these sensors are limited in one area or the other. This study had three 

major objectives: to investigate the feasibility of using light weight, low power consumption 

and low-cost sensors to determine localisation, to investigate a robust and effective algorithm 

appropriate for object identification and detection and finally to investigate an appropriate 

data fusion method that is most suitable to fuse multiple sensors with less complexity. 
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There are several types of sensors that can used to estimate the position of a robot but for the 

purpose of low cost devices and simplicity, this study considered the combination properties 

of accelerometer and gyroscope sensors to give accurate and reliable measurement of 

orientation and position and this is achieved through sensor fusion which was done by using 

Kalman filter. Robot localisation techniques need to be able to deal with noisy observations 

and generate not only an estimate of the robot location but also a measure of the uncertainty 

of the location estimate. Having identified the gap in knowledge faced with AMR in that 

enough study has not be investigated and several possible solutions have been ignored, the 

challenge to undertake the research study presented in this thesis emerged. One of the 

possible solutions to determine pose of a mobile robot is using more than one sensor because 

a singular sensor or system may not be sufficient to estimate appropriate location of mobile 

robot.  

 

In contrast to most sensory systems, visual system provides very rich information. To 

analyse the configuration of robotic vision system, it is therefore necessary to distinguish 

between possible placements of cameras. The camera can be placed in a fixed configuration 

where they are rigidly mounted in a specific place in the environment or in a mobile 

configuration where the camera is attached to a robot. In addition to the configuration, the 

number of cameras used can also contribute to the performance either monocular vision 

(single camera) or binocular vision (two cameras) can be adopted to determine robot 

location. Both configurations were considered in this study but using monocular vision 

method. Computer vision is another paradigm that can ensure reliable achievement for robot 

localisation. For object recognition and detection, speeded up robust features (SURF) and 

random sample consensus (RANSAC) algorithms were used to detect and match features in 

images. SURF is used to detect key points and to generate its descriptors. It is scale-and 

rotation-invariant, which means that, even with differences on the size and on the rotation of 

an image, SURF can find key points. In addition, RANSAC is an algorithm to estimate the 

homograph matrix of an image; therefore, the combination of SURF and RANSAC gives 

robust, fast computation and accurate results for vision tracking scenarios. 
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One such approach to localisation is the extraction and use of natural landmarks. Natural 

landmarks in mobile robot localisation poses a challenge due to the variances in shape, 

design and the effect of illumination circumstances. Therefore, we proposed the use of 

homograhies approach for the identification and recognition of natural landmarks to be 

implemented in mobile robots’ localisation. Such landmarks include corners, edges and lines 

in a known indoor environment. The algorithm is used to determine pose estimation between 

two relative images. The effectiveness of landmark detection is related with the existence of 

markers in the location, sensor accuracy, frame rate and with the capability of the robot 

system processing. Our approach was able to distinguish natural landmarks in front of the 

robot and determine its positioning.  

 

In order to maximize the working performance of the mobile robot, it is necessary to estimate 

and track the current pose of the mobile robot. Sensors and devices used to determine their 

poses are accumulated with errors and noises; therefore, the use of sensor fusion algorithms 

is applied to solve the problem. Fusion techniques are regarded as the most appropriate 

method to track objects and determine their locations. The advantages of using sensor fusion 

method include decrease in uncertainty, increase in accuracy and reduction of cost. 

Nonlinear sensor fusion based algorithm was considered as a state estimation method to 

determine mobile robot location and orientation in this study. The two most common 

techniques, extended Kalman filter (EKF) and particle filter (PF) was used to combine 

information from sensors (IMU and vision). These techniques are based on mathematical 

models used to describe the robot motion and observation from sensors. Proposed sensor 

fusion approaches correct the mobile robot pose and the error is limited within the best 

possible with the environmental model used. The EKF method produces high correction 

values, so that the mobile robot reacts more quickly to the increasing real and estimated pose 

incompatibility. The method contributes to a better performance regarding EKF convergence 

and stability to a more reliable feature matching process. The pose tracking and estimation 

performances of the non-linear model-based estimators were compared to each other. 

Although the EFK approach has less computational effort, the PF approach has been found 

to perform better in accuracy. Proposed particle filter had minimized pose estimation errors 

compared to other existing methods with increase in the number of samples and the use of 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

 

Department of Electrical, Electronic and Computer Engineering 121 

University of Pretoria 

systematic sampling. The experiment was carried out in a well-known indoor environment. 

We validated our approach with MATLAB by estimating the position and orientation of 

mobile robot. The core of our work, image processing, object recognition and detection and 

mathematical calculation on data fusion algorithms was done using MATLAB. MATLAB is a 

good fit for our research due to its simplicity and flexibility with embedded toolboxes and 

tutorial videos. The investigations conducted, as well as the findings presented in this thesis, 

thus form a cogent, concise and well-coordinated response to many glitches on localisation 

in mobile robot.  

5.1.1 Summary of contributions 

The major contributions of the study can be summarized as follows: 

 

1. A detailed survey of recent literature, challenges and techniques was researched on 

in mobile robot. This study formed part of the survey paper that was published in 

IEEE Access Journal which contributed to the community of research. The purpose 

of the literature was to unravel some of the problem’s autonomous mobile robot 

encounters and those factors that could degrade their performances. An extensive 

study was investigated on research gaps, issues associated with mobile robot and the 

suggestion and how to tackle the problem were presented. The study was able to 

present more information on the relevance, strengths and weaknesses on some of the 

method suggested to tackle challenges of mobile robot. The survey was also able to 

provide concise background information and the importance of each method through 

comparison.  

2. To establish that the selection of components, hardware, software and techniques 

meet the goals of the proposed project. With the in-depth knowledge about the 

problem and the approaches that works best for the applications, this study ensured 

that the most appropriate devices and schemes was used and applied. For example, 

using GPS and magnetometer are considered inappropriate for indoor localisation 

because of the presence of objects that could attenuate signals and thus cause 

inaccuracies in measurements. 
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3. Information is perceived using sensors and other related devices. The combination 

of sensors and sources of information does require effective methodology. Therefore, 

linear and nonlinear algorithms are considered to estimate the position and 

orientation of the mobile robot. IMU alone is not sufficient due to noise and 

environmental errors therefore, vision was considered to be more appropriate source 

combine and localise robot. Computer vision was developed using a suitable 

algorithm to detect and match features in an environment to overcome challenges of 

IMU and aid pose estimation. A nonlinear data fusion algorithm, extended Kalman 

filter was used to fuse data collected from sources to improve the effectiveness of 

positioning performance. This aspect show case the use of low-cost devices estimates 

good accuracy of localisation. This contribution formed a part of the published 

journal in MDPI. 

4. To establish that use of natural landmarks with homographies can also be used to 

determine the location a mobile robot in a known environment. This formed part of 

a published conference paper. The method achieved good results in certain scenes. 

5. To propose a novel method which is based on particle filter to fuse data from IMU 

and vision precisely using image processing method to improve accuracy of 

localisation. The goal of image processing is to obtain numerical information from 

the image which provides a robust description of the object in the scene. The 

proposed method reduces the average errors when compared with other existing 

methods. The approach takes advantage of fast response and accurate measurements. 

5.2 FUTURE RESEARCH WORK 

Due to the increasing demand and diver services required by mobile robot, quite a lot of 

work to be done are highlighted in Chapter 2. Location information is extremely important 

for robot and this has been a key challenge in the field of mobile robotics. To have a 

positioning system low in cost and still provide satisfactory positioning accuracy requires 

more research investigation and the experiment should be performed on a large scale. Object 

detection and identification is another area of interest that necessitates further research. 

Information of objects could be identified in real time video using binocular whereby the 
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two cameras are synchronized to capture more information about the environment through 

which more features can be extracted. Techniques on how features or information are 

extracted from sensors/devices demand more future work and further study should 

concentrate on the use of decision fusion, deep learning [246] or hybrid fusion method as a 

scheme to ensure robustness and improve pose estimation accuracy in addressing the issue 

of noisy and error measurements. 3D indoor environmental modelling is another aspect that 

requires further consideration of research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



 

 

REFERENCES 

 [1] M. B. Alatise and G. P. Hancke, “A review on challenges of autonomous mobile 

robot and sensor fusion methods,” IEEE Access, vol. 8, pp. 39830-39846, Feb. 2020. 

 [2] S. Kumar, “Mobile robotics market forecast, trends to 2020,” Grand View 

Research, Inc. California, United States, Nov. 2014. [Online]. Available: 

https://sites.google.com/site/electronicindustryhighlights/mobile-robotics-market. 

 [3] C. Supare and S. D. Adlinge, “Control of mobile robot using visual feedback and 

wireless communication,” in Proceedings of the 3rd International Conference for 

Convergence in Technology (I2CT), April 2018, pp. 1-5. 

 [4] Y. Kim, J. Kwak, D. Hong, J. Ahn, S. Wee and J. An, “Localization strategy based 

on multi-robot collaboration for indoor service robot applications,” in Proceedings 

of the 10th International Conference on Ubiquitous Robots Ambient Intelligence 

(URAI), Nov. 2013, pp. 225-226. 

 [5] W. Burgard, M. Moors, D. Fox, R. Simmons and S. Thrun, “Collaborative multi-

robot exploration,” in Proceedings of the ICRA Millennium Conference. IEEE 

International Conference on Robotics and Automation Symposia Proceedings, vol. 

1, April 2000, pp. 476-481. 

 [6] P. Benavidez and M. Jamshidi, “Mobile robot navigation and target tracking system,” 

in Proceedings of the 6th International Conference on System of Systems 

Engineering, June 2011, pp. 299-304. 

 [7] N. Kwok and K. Sam, “Path planning for mobile robot localisation and mapping,” in 

Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society ( 

IECON), Nov. 2004, pp. 603-608. 

 [8] R. Lagisetty, N. K. Philip, R. Padhi and M. S. Bhat, “Object detection and obstacle 

avoidance for mobile robot using stereo camera,” in Proceedings of the IEEE 

International Conference on Control Applications (CCA), Aug. 2013, pp. 605-610. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 125 

University of Pretoria 

 [9] J. Röwekämper, C. Sprunk, G. D. Tipaldi, C. Stachniss, P. Pfaff and W. Burgard, 

“On the position accuracy of mobile robot localization based on particle filters 

combined with scan matching,” in Proceedings of the IEEE/RSJ International 

Conference on Intelligence Robots and Systems, Oct. 2012, pp. 3158-3164. 

 [10] A. Alomari, W. Phillips, N. Aslam and F. Comeau, “Dynamic fuzzy-logic based path 

planning for mobility-assisted localization in wireless sensor networks,” Sensors, 

vol. 17, no. 8, pp. 1-26, Aug. 2017. 

 [11] G. Dudek and M. A. Jenkin, “Inertial sensors, GPS and odometry,” Springer 

Handbook of Robotics, B. Siciliano and O. Khatib, Eds., Berlin, Germany: Springer, 

2008, pp. 446-490. 

 [12] J. Shen, D. Tick and N. Gans “Localization through fusion of discrete and continuous 

epipolar geometry with wheel and IMU odometry,” in Proceedings of the American 

Control Conference, July 2011, pp. 1292-1298. 

 [13] E. N. G. Weng, R. U. Khan, S. A. Z. Adruce and O. Y. Bee, “Objects tracking from 

natural features in mobile augmented reality,” Procedia - Social and Behavioral 

Sciences, vol. 97, pp. 753-760, Nov. 2013.  

 [14] J. Li, J. A. Besada, A. M. Bernardos, P. Tarrio and J. R Casar, “A novel system for 

object pose estimation using fused vision and inertial data,” Information Fusion, vol. 

33, pp. 15-28, Jan. 2017. 

 [15] C. H. Potter, G. P. Hancke and B. J. Silva, “Machine-to-Machine: Possible 

applications in industrial networks,” in Proceedings of the IEEE International 

Conference on Industrial Technology (ICIT), Feb. 2013, pp. 1321-1326. 

 [16] C. A. Opperman and G. P. Hancke, “Using NFC-enabled phones for remote data 

acquisition and digital control,” in Proceedings of IEEE AFRICON, Sept. 2011, pp. 

1-6. 

 [17] A. Kumar and G. P. Hancke, “An energy-efficient smart comfort sensing system 

based on the IEEE 1451 standard for green buildings, ” IEEE Sensors Journal, vol. 

14, no. 12, pp. 4245-4252, Dec. 2014. 

 [18] B. Silva, R. M. Fisher, A. Kumar and G. P. Hancke, “Experimental link quality 

characterization of wireless sensor networks for underground monitoring,” IEEE 

Transactions on  Industrial Informatics, vol. 11, no. 5, pp. 1099-1110, Oct. 2015. 

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 126 

University of Pretoria 

 [19] C. P. Kruger, A. M. Abu-Mahfouz and G. P. Hancke, “Rapid prototyping of a 

wireless sensor network gateway for the internet of things using off-the-shelf 

components,” in Proceedings of the IEEE International Conference on Industrial 

Technology (ICIT), March 2015, pp. 1926-1931. 

 [20] K. S. E. Phala, A. Kumar and G. P. Hancke, “Air quality monitoring system based 

on ISO/IEC/IEEE 21451 standards,” IEEE Sensors Journal, vol. 16, no. 12, pp. 

5037-5045, April 2016. 

 [21] B. Cheng, L. Cui, W. Jia, W. Zhao and G. P. Hancke, “Multiple region of interest 

coverage in camera sensor networks for tele-intensive care units,” IEEE Transactions 

on Industrial Informatics, vol. 12, no. 6, pp. 2331-2341, May 2016. 

 [22] R. Fisher, L. Ledwaba, G. P. Hancke and C. Kruger, “Open hardware: A role to play 

in wireless sensor networks?,” Sensors, vol. 15, no. 3, pp. 6818-6844, March 2015.  

 [23] D. S. A. Ben-Afia, L. Deambrogio, A-C Esher, C. Macabiau, L Soulier V and Gay-

Bellile, “Review and classification of vision-based localisation techniques in 

unknown environments,” IET Radar, Sonar and Navigation, vol. 8, no. 9, pp. 1059-

1072, July 2014. 

 [24] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” 

International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, Nov. 2004. 

 [25] G. Dudek and M. Jenkin, “Inertial sensors, GPS, and odometry,” Springer Handbook 

of Robotics, B. Siciliano and O. Khatib, Ed., Berlin, Germany: Springer, 2008, pp. 

477-490. 

 [26] H. Hu and J. Q. Gan, “Sensors and data fusion algorithms in mobile robotics,” 

Department of Computer Science, University of Essex, Colchester, U. K., Technical 

Report CSM-422, pp. 1-12, Jan. 2005. 

 [27] Q. K. Dang and Y. S. Suh, “Trajectory generation of a mobile robot using inertial 

sensors and vision,” in Proceedings of the IEEE/SICE International Symposium on 

System Integration (SII), Dec. 2011, pp. 603-608. 

 [28] M. S. Ganeshmurthy and G. R. Suresh, “Path planning algorithm for autonomous 

mobile robot in dynamic environment,” in Proceedings of the 3rd International 

Conference on Signal Processing, Communication and Networking (ICSCN), March 

2015, pp. 1-6. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 127 

University of Pretoria 

 [29] D. D. Paola, A. Milella, G. Cicirelli and A. Distante, “An autonomous mobile robotic 

system for surveillance of indoor environments,” International Journal of  Advanced 

Robotic Systems, vol. 7, no. 1, pp. 019-026, March 2010. 

 [30] V. M. Murthy, S. Kumar, V. Singh, N. Kumar and C. Sain, “Autonomous mobile 

robots designing,” Journal Global Research in Computer Science, vol. 2, no. 4, pp. 

126-129, April 2011. 

 [31] M. Köseoğlu, O. M. Çelik and Ö. Pektaş, “Design of an autonomous mobile robot 

based on ROS,” in Proceedings of the International Artificial Intelligence and Data 

Processing Symposium (IDAP), Nov. 2017, pp. 1-5. 

 [32] D. G. Lee, H. Kim, K. Jeong and T. Seo, “Development of a robotic platform for 

amphibious locomotion on ground and water surfaces,” in Proceedings of the 11th 

International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 

Nov. 2014, pp. 417-418. 

 [33] W. L. J. Chen, Y. Wang and J. Guo, “Fusion of inertial and vision data for accurate 

tracking,” in Proceeding of the 4th International Conference on Machine and Vision, 

Image Processing, Pattern Analysis, vol. 8349, Jan. 2012. 

 [34] F. Rubio, F. Valero and C. Llopis-Albert, “A review of mobile robots: Concepts, 

methods, theoretical framework, and applications,” International Journal of 

Advanced Robotic Systems,  vol. 16, no. 2, April 2019, Art. no. 172988141983959.  

 [35] A. Saudabayev, F. Kungozhin, D. Nurseitov and H. A. Varol, “Locomotion strategy 

selection for a hybrid mobile robot using time of flight depth sensor,” Journal of 

Sensors, vol. 2015, pp.1- 14, March 2015. 

 [36] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza, Introduction to Autonomous 

Mobile Robot, 2nd ed. Cambridge, MA, USA: MIT Press, 2004, pp. 1-272. 

 [37] G. Endo and S. Hirose, “Study on roller-walker (multi-mode steering control and 

self-contained locomotion),” in Proceedings of ICRA. Millennium Conference. IEEE 

International Conference on Robotics and Automation Symposia Proceedings, vol. 

3, April 2000, pp. 2808-2814. 

 [38] Y. Jin-xia, C. Zi-xing, D. Zhuo-hua and Z. Xiao-bing, “Design of dead reckoning 

system for mobile robot,” Journal of Central South University of Technology, vol. 

13, no. 5,  pp. 542-547, Oct. 2006.  

 [39] D. Kortenkamp, “Perception for mobile robot navigation: A survey of the state of the 

art,” NASA, Houston, TX, USA, Tech. Rep. 576344779, May 1994, pp. 446-453. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 128 

University of Pretoria 

 [40] M. Gilmartin, “Introduction to autonomous mobile robots,” Robotica, vol. 23, pp. 

271-272, March 2005. 

 [41] L. Tang and S. Yuta, “Indoor navigation for mobile robots using memorized omni-

directional images and robot's motion,” in Proceedings of the IEEE/RSJ 

International Conference on Intelligence Robots and Systems, Oct. 2002, pp. 269-

274. 

 [42] G. Mester, “Motion control of wheeled mobile robot,” in Proceedings of the 4th 

Serbian-Hungarian Joint Symposium on Intelligent Systems, April 2006, pp. 119-

130. 

 [43] G. Marek and Š. Peter, “Design the Robot as Security System in the Home,” 

Procedia Engineering, vol. 96, pp. 126-130, Jan. 2014. 

 [44] K. Berns and S. A. Mehdi, “Use of an autonomous mobile robot for elderly care,” in 

Proceedings of Advanced Technologies for Enhancing Quality Life,  Dec. 2010, pp. 

121-126. 

 [45] B. Crnokic, T. Volaric and M. Grubisic, “Different applications of mobile robots in 

education,” International Journal on Integrating Technology in Education (IJITE), 

vol. 6, no. 3, pp. 15-28, Sep. 2017. 

 [46] P. Corke, J. Roberts, J. Cunningham and D. Hainsworth, Handbook of Robotics.  

Berlin, Germany: Springer, 2008, pp. 1127-1150. 

 [47] A. Babinec, L. Jurisica, P. Hubinsky and F. Duchon, “ Visual localization of mobile 

robot using artificial markers,” Procedia Engineering, vol. 96, pp. 1-9, Dec. 2014. 

 [48] R. Barber, J. Crespo, C. Gomez, A. C. Hernamdez and M. Galli, Mobile Robot 

Navigation in Indoor Environments: Geometric, Topological, and Semantic 

Navigation. London, U. K.: IntechOpen, Nov. 2018, pp. 1-25.  

 [49] J J. Rodrigues, C. Cardeira, F. Carreira, J. M. F. Calado and P. Oliveira, “A Bayesian 

grid method PCA-based for mobile robots localization in unstructured 

environments,” in Proceedings of the 16th International Conference on Advanced 

Robotics (ICAR), Nov. 2013, pp. 1-6. 

 [50] F F. Shamsfakhr, B. S. Bigham and A. Mohannadi, “Indoor mobile robot localization 

in dynamic and cluttered environments using artificial landmarks,” Engineering  

Computations, vol. 36, no. 2, pp. 400-419, March 2019. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 129 

University of Pretoria 

 [51] D. Fox and W. Burgard, “Markov Localization for mobile robots in dynamic 

environments,” Journal Artificial Intelligence Research, vol. 11, pp. 391-427, Nov. 

1999. 

 [52] K. Konolige and K. Chou, “Markov localization using correlation,” in Proceedings 

of the 16th International Joint Conference on Artificial Intelligence, vol. 2, Aug. 

1999, pp. 1154-1159. 

 [53] J. A. Cetto and A. Sanfeliu, “Topological map learning for a mobile robot in indoor 

environments,” in Proceedings of the Spanish Symposium on Pattern Recognition 

Image Analysis (SNRFAI), Jan. 2001, pp. 221-226. 

 [54] J. Crespo, R. Barber and O. M Mozos, “Relational model for robotic semantic 

navigation in indoor environments,” Journal of Intelligent and Robotic Systems, vol. 

86, nos. 3-4, pp. 617-639, Jan. 2017. 

 [55] N. Mitsou et al., “Online semantic mapping of urban environments,” in Proceedings 

of the International Conference on Spatial Cognition, Aug. 2012, pp. 54-73. 

 [56] L. Kostaveli and A. Gasteratos, “Semantic mapping for mobile robotics tasks: A 

survey,” Robotics and Autonomous Systems, vol. 66, pp. 86-103, April 2015.  

 [57] A. C. Murtra, E. Trulls, J. M. M. Tur and A. Sanfeliu, “Efficient use of 3D 

environment models for mobile robot simulation and localization,” in Proceedings 

of the International Conference on Simulation, Modeling, and Programming for 

Autonomous Robots (SIMPAR), vol. 6472, 2010, pp. 461-472. 

 [58] E. Nelson, M. Corah and N. Michael, “Environment model adaptation for mobile 

robot exploration,” Autonomous Robots, vol. 42, no. 2, pp. 257-272, Nov. 2017. 

 [59] J. Borenstein, H. R. Everett and L. Feng, Navigating Mobile robots: Systems and 

Techniques, Wellesley, MA, USA: A. K. Peters, 1996. 

 [60] S. Persa and P. P. Jonker, “Real-time computer vision system for mobile robot,” 

Intelligent Robots and Computer Vision XX: Algorithms, Techniques and Active  

Vision, Oct. 2001, pp. 1-10. 

 [61] P. Goel, S. I. Roumeliotis and G. S. Sukhatme, “Robust localization using relative 

and absolute position estimates,” in Proceedings of the IEEE/RSJ International 

Conference on Intelligent Robots and Systems, Oct. 1999, pp. 1134-1140. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 130 

University of Pretoria 

 [62] F. Kong, Y Cheng. J. Xie, G. Zhang and Z. Zhou, “Mobile robot localization based 

on extended Kalman filter,” in Proceedings of the 6th World Congress on Intelligent 

Control and Automation, Oct. 2006, pp. 9242-9246. 

 [63] A. Koubaa et al., “Introduction to mobile robot path planning,” in Proceedings of 

Robot Path Planning and Cooperation, Studies in Computational Intelligence, Jan. 

2018, pp. 3-12. 

 [64] M. A. Hossain and I. Ferdous, “Autonomous robot path planning in dynamic 

environment using a new optimization technique inspired by bacterial foraging 

technique,” in Proceedings of the International Conference on Electrical Information 

and Communication Technlogy (EICT),  vol. 64, pp. 137-141, Feb. 2015. 

 [65] J-H. Park and U-Y. Huh, “Path planning for autonomous mobile robot based on safe 

space,” Journal Electrical Engineering and Technology, vol. 11, no. 5, pp. 1441-

1448, Sep. 2016. 

 [66] D. Xin, C. Hua-hua and G. Wei-kang, “Neural network and genetic algorithm based 

global path planning in a static environment,” Journal of Zhejiang University.-

Science A, vol. 6, no. 6, pp. 549-554, June 2005.  

 [67] A. Reshamwala and D. Vinchurkar, “Robot path planning using an ant colony 

optimization approach: A survey,” Internal Journal of Advanced Research Artificial 

Intelligence, vol. 2, no. 3, pp. 65-71, 2013. 

 [68] F. K. Purian and E. Sadeghian, “Mobile robots path planning using ant colony 

optimization and fuzzy logic algorithms in unknown dynamic environments,” in  

Proceedings of the International Conference on Control, Automation Robotics and 

Embedded Systems (CARE), Dec. 2013, pp. 1-6. 

 [69] F. Lingelbach, “Path planning using probabilistic cell decomposition,” in 

Proceedings of the IEEE International Conference on Robotics and Automation 

(ICRA), vol. 1, July 2004, pp. 467-472. 

 [70] V. Aenugu and P-Y. Woo, “Mobile Robot path planning with randomly moving 

obstacles and goal,” International Journal Intelligent Systems and. Applications, vol. 

4, no. 2, pp. 1-15, March 2012. 

 [71] J. Chakraborty, A. Konar, U. K. Chakraborty and L. C. Jain, “Distributed cooperative 

multi-robot path planning using differential evolution,” in Proceedings of the IEEE 

Congress on Evolutionary  Computation (IEEE World Congress on Computational 

Intelligence), June 2008, pp. 718-725. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 131 

University of Pretoria 

 [72] D. R. Parhi and S. Kundu, “Navigational control of underwater mobile robot using 

dynamic differential evolution approach,” in Proceeding of the Institution of 

Mechanical Engineers, Part M: Journal of Engineering for the Maritime 

Environment, vol. 231, no. 1, Aug. 2016, pp. 284-301. 

 [73] S. Kundu and D. R. Parhi, “Navigation of underwater robot based on dynamically 

adaptive harmony search algorithm,” Memetic Computing, vol. 8, no. 2, pp. 125-146, 

April 2016.  

 [74] G-G. Wang, H. E. Chu and S. Mirjalili, “Three-dimensional path planning for UCAV 

using an improved bat algorithm,” in Aerospace Science and Technology, vol. 49, 

pp. 231-238, Feb. 2016. 

 [75] A. Sengupta, T. Chakraborti, A. Konar and A. Nagar, “Energy efficient trajectory 

planning by a robot arm using invasive weed optimization technique,” in 

Proceedings of the 3rd World Congress on Nature and Biological Inspired 

Computing, Oct. 2011, pp. 311-316. 

 [76] M. Mouad, L. Adouane, D. Khadraoui and P. Martinet, “Mobile robot navigation and 

obstacles avoidance based on planning and re-planning algorithm,” IFAC 

Proceedings Volumes, vol. 45, no. 22, pp. 622-628, Jan. 2012. 

 [77] K. Shahzad, S. Iqbal and P. Bloodsworth, “Points-based safe path planning of 

continuum robots,” International Journal of Advanced Robotic Systems, vol. 12, no. 

7, pp. 1-12, July 2015. 

 [78] W. J. Yim and J. B. Park, “Analysis of mobile robot navigation using vector field 

histogram according to the number of sectors, the robot speed and the width of the 

path,” in Proceedings of the 14th International Conference on Control, Automation 

and Systems (ICCAS),  Oct. 2014, pp. 1037-1040. 

 [79] G. Li, A. Yamashita, H. Asama and Y. Tamura, “An efficient improved artificial 

potential field based regression search method for robot path planning,” in 

Proceedings of the IEEE International Conference on Mechatronics and 

Automation, Aug. 2012, pp. 1227-1232. 

 [80] A. Sgorbissa and R. Zaccaria, “Planning and obstacle avoidance in mobile robotics,” 

Robotics and Autonomous Systems, vol. 60, no. 4, pp. 628–638, April 2012.  

 [81] Y. Zhu, T. Zhang, J. Song, and X. Li, “A new hybrid navigation algorithm for mobile 

robots in environments with incomplete knowledge,” Knowledge-Based Systems, 

vol. 27, pp. 302-313, March 2012.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 132 

University of Pretoria 

 [82] K. Kumar, A. Varghese, P. Reddy and N. Narendra, “An improved tracking using 

IMU and uision fusion for mobile augemented reality applications,” International 

Journal of Multimedia and its Applications (IJMA), vol. 6, no. 5, pp. 13-29, Oct. 

2014. 

 [83] A. T. Erdem and A. O. Ercan, “Fusing inertial sensor data in an extended Kalman 

filter for 3D camera tracking,” IEEE Transactions on Image Processing, vol. 24, no. 

2, pp. 538-548, Feb. 2015. 

 [84] S. Borik, B. Babusiak and I. Cap, “Device for accelerometer and gyroscope 

measurements,” Information Technologies in Biomedicine, vol. 4, pp. 139-146, Jan. 

2014. 

 [85] C. Hsu and C. Yu, “An accelerometer based approach for indoor localization,” in  

Proceedings of the Symposia and Workshops on Ubiquitous, Autonomic Trusted 

Computing, Nov. 2009, pp. 223-227. 

 [86] J J. Bird and D. Arden, “Indoor navigation with foot-mounted strapdown inertial 

navigation and magnetic sensors [emerging opportunities for localization and 

tracking],” IEEE Wireless Communications, vol. 18, no.2, pp. 28-35, April 2011. 

 [87] A. K. Nasir, C. Hille and H. Roth, “Data fusion of stereo vision and gyroscope for 

estimation of indoor mobile robot orientation,” IFAC Proceedings Volumes, vol. 45, 

no. 4, pp. 163-168, Jan. 2012. 

 [88] F. N. Sibai, H. Trigui, P. C. Zanini and A. R. Al-Odail, “Evaluation of indoor mobile 

robot localization techniques,” in Proceedings of the International Conference on 

Computer Systems and Industrial Informatics, Dec. 2012, pp. 1-6. 

 [89] N. Ahmad, R. A. Raja Ghazilla, N. Khairi and V. Kasi, “Reviews on various inertial 

measurement unit (IMU) sensor applications,” International Journal of Signal 

Processing Systems, vol. 1, no. 2, pp. 256-262, Dec. 2013. 

 [90] A. M. Sabatini, “Estimating three-dimensional orientation of human body parts by 

inertial/magnetic sensing,”  Sensors, vol. 11, no. 2, pp. 1489-1525, Jan. 2011. 

 [91] A. Olivares, G. Olivares, J. M. Górriz and J. Ramírez, “High-efficiency low-cost 

accelerometer-aided gyroscope calibration,” in Proceedings of the International 

Conference on Test and Measurement, Dec. 2009, pp. 354-360. 

 [92] V. Avrutov, M. D. Geraimchuk and X. Xiangming, “3D-calibration for IMU of the 

strapdown inertial navigation systems,” MATEC Web of Conferences, vol. 114,  July 

2017, pp. 1-7. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 133 

University of Pretoria 

 [93] C.-R. Lee, J. H. Yoon and K.-J. Yoon, “Calibration and noise identification of a 

rolling shutter camera and a low-cost inertial measurement unit,” Sensors, vol. 18, 

no. 7, pp. 1-24, July 2018. 

 [94] C.-M. Dong, S.-Q. Ren, X.-J. Chen and Z.-H. Wang, “A separated calibration method 

for inertial measurement units mounted on three-axis turntables, ” Sensors,  vol. 18, 

no. 9, pp. 1-14, Aug. 2018. 

 [95] D. Tedaldi, A. Pretto and E. Menegatti, “A robust and easy to implement method for 

IMU calibration without external equipments,” in Proceedings of the IEEE 

International Conference on Robotics and Automation (ICRA), June 2014, pp. 3042-

3049. 

 [96] F. Sun, J. Yu and D. Xu, “Visual measurement and control for underwater robots: A 

survey,”  in Proceedings of the 25th Chinese Control and Decision Conference 

(CCDC), May 2013, pp. 333-338. 

 [97] C. C. Liu, Z. M. Zhang and E. F. Sang, “A novel acoustical vision system design for 

automated underwater vehicles, ,” in Proceedings of the 7th World Congress on 

Intelligent Control  Automation, June 2008 pp. 7438-7443. 

 [98] Intel, “Intel Curie Module: Revision 1.3,” Intel Curie datasheet, March 2017. 

 [99] L. Song, W. Wu, J. Guo and X. Li, “Survey on camera calibration technique,” in 

Proceedings of the 5th International Conference on Intellengent Human-Machine 

Systems and Cybernetics, Aug. 2013, pp. 389-392. 

[100] S. De Ma, “A self-calibration technique for active vision systems,” IEEE 

Transactions on  Robotics Automation, vol. 12, pp. 114-120, Feb. 1996. 

[101] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, Nov. 

2000. 

[102] J.-Y. Bouguet, “Camera calibration toolbox for MATLAB,” Jan. 2010. [Online]. Available: 

http://www.vision.caltech.edu/bouguetj/calib_doc. [Accessed:  March  21,  2017] 

[103] J. Kannala and S. S. Brandt, “A generic camera model and calibration method for 

conventional, wide-angle, and fish-eye lenses,”  IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 28, pp. 1335-1340, Aug. 2006. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 134 

University of Pretoria 

[104] Z. Wang, W. Wu, X. Xu and D. Xue, “Recognition and location of the internal corners 

of planar checkerboard calibration pattern image,” Applied Mathematics and 

Computation, vol. 185, no.2, pp. 894-906, Feb. 2007.  

[105] Y. Yang, X. Meng and M. Gao, “Vision system of mobile robot combining binocular 

and depth cameras,” Journal of Sensors, vol. 2017, pp. 1-11, Sep. 2017. 

[106] Y. Genc, S. Riedel, F. Souvannavong, C. Akinlar and N. Navab, “Marker-less 

tracking for AR: A learning-based approach,” in Proceedings of the International 

Symposium on Mixed and Augmented Reality (ISMAR '02), Oct. 2002, pp. 1-10. 

[107] A. Ben-Afia et al., “Review and classification of vision-based localisation techniques 

in unknown environments,” IET Radar, Sonar and Navigation, vol. 8, no. 9, pp. 

1059-1072, Dec. 2004. 

[108] C. Wang, T. Wang, J. Liang, Y. Chen and Y. Wu, “Monocular vision and IMU based 

navigation for a small unmanned helicopter,” in Proceedings of the 7th IEEE 

Conference on Industrial Electronics and Applications (ICIEA), July 2012, pp. 1694-

1699. 

[109] L. Guanghui and J. Zhijian, "An artificial landmark design based on mobile robot 

localization and navigation,” in Proceedings of the 4th International Conference on 

Intelligent Computation Technology and  Automation, March 2011, pp. 588-591. 

[110] J. Seong, J. Kim and W. Chung, “Mobile robot localization using indistinguishable 

artificial landmarks,” in Proceedings of the 10th International Conference on 

Ubiquitous Robots Ambient Intelligence, Oct. 2013, pp. 222-224. 

[111] W. Hong, H. Xia, X. An and X. Liu, “Natural landmarks based localization algorithm 

for indoor robot with binocular vision,” in Proceedings of the 29th Chinese Control 

and Decision Conference (CCDC), May 2017, pp. 3313-3318. 

[112] J. Liu, M. Wan and J. Zhang, “Monocular robot navigation using invariant natural 

features,” in Proceedings of the 7th World Congress on Intelligent Control and 

Automation, July 2008, pp. 5733-5738. 

[113] H. Bay, A. Ess, T. Tuytelaars and L. V. Gool, “Speed-up robust feature (SURF),” 

Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346-359, June 2008. 

[114] M. Alatise and G. P. Hancke, “Pose estimation of a mobile robot using monocular 

vision and inertial sensors data,” in Proceedings of IEEE AFRICON, Sep. 2017, pp. 

1552-1557. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 135 

University of Pretoria 

[115] M. Ozuysal, P. Fua and V. Lepetit, “Fast keypoint recognition in ten lines of code,” 

in Proceedings of the IEEE International Conference on Computer Vision and 

Pattern Recognition, June 2007, pp. 1-8. 

[116] P. Loncomilla, J. Ruiz-del-Solar and L. Martinez, “Object recognition using local 

invariant features for robotic applications: A survey,” Pattern Recognition, vol. 60, 

pp. 499-514, Dec. 2016. 

[117] J. Farooq, “Object detection and identification using SURF and BoW model,” in 

Proceedings of the International Conference on Computing, Electronic and 

Electrical Engineering (ICE Cube), April 2016, pp. 318-323. 

[118] J. D. Hol, T. B. Schon and F. Gustafsson, “Modeling and calibration of inertial and 

vision sensors,” International Journal of Robotics Research, vol. 29, no. 2-3, pp. 

231-244, Jan. 2010. 

[119] C. Harris and M. Stephens, “A combined corner and edge detector,” in Proceedings 

of the 4th Alvey Vision Conference, May 1988, pp. 147-151. 

[120] C. Tomasi and T. Kanade, “Shape and motion from image streams: a factorization 

method,” in Proceedings of the National Academy of Sciences of the United State of  

America, vol. 90, no. 2, pp. 9795-9802, Nov. 1993. 

[121] K. Mikolajczyk and C. Schmid, “Scale and affine Invariant interest point detectors,” 

International Journal of Computer Vision, vol. 60, no. 1, pp. 63-86, Jan. 2004. 

[122] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model 

fitting with applications to image analysis and automated cartography,” 

Communications of ACM, vol. 24, no.6, pp. 381-395, June 1981. 

[123] E. Serradell, M. Ozuysal, V. Lepetit, P. Fua and F. Moreno-Noquer, “Combining 

geometric and appearance prioris for robust homography estimation,” in Proceedings 

of the 11th European Conference on Computer Vision, Sep. 2010, pp. 58-72. 

[124] S. Fu, “Homography estimation from planar contours in image sequence,” Optical  

Engineering, vol. 49, no. 3, March 2010, Art. no. 037202. 

[125] C-M. Cheng and S-H. Lai, “A consensus sampling technique for fast and robust 

model fitting,” Pattern Recognition, vol. 42, no. 7, pp. 1318-1329, July 2009. 

[126] P. H. S Torr and D. W. Murray, “The development and comparison of robust methods 

for estimating the fundamental matrix,” International Journal of Computer Vision, 

vol. 24, pp. 271-300, July 1997.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 136 

University of Pretoria 

[127] C-S. Chen, Y-P Hung and J-B. Cheng, “RANSAC-based DARCES: A new approach 

to fast automatic registration of partially range images,” IEEE Transaction on 

Pattern Analysis and Machine Intelligence, vol. 21, no. 11, pp. 1229-1234, Nov. 

1999. 

[128] D. Gonzalez-Aguilera, P. Rodriguez-Gonzalvez, D. Hermandez-Lopez and J. L. 

Lerma, “A robust and hierchical approach for the automatic co-registration of 

intensity and visible images,” Optics and Laser Technology, vol. 44, no. 6, pp. 1915-

1923, Sep. 2012.  

[129] Y. Lv, J. Feng, Z. Li, W. Liu and J. Cao, “A new robust 2D camera calibration method 

using RANSAC,” Optik International Journal for Light and Electron Optics, vol. 

126, no. 24, pp. 4910-4915, Dec. 2015. 

[130] H. Zhou, T. Zhang and W. Lu, “Vision-based pose estimation from points with 

unknown correspondences,” IEEE Transactions on Image Processing, vol. 23, no. 8, 

pp. 3468-3477, Aug. 2014. 

[131] E. Marchand, H. Uchiyama and F. Spindler “Pose estimation for augmented reality: 

a hands-on survey,” IEEE Transactions on Visualization Computer Graphics, vol. 

22, no. 12, pp. 2633-2651, Dec. 2016. 

[132] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors, 

” Matrix, vol. 58, no. 15, pp. 1-35, Jan. 2006. 

[133] K.-H. Yang, W.-S. Yu and X.-Q. Ji, “Rotation estimation for mobile robot based on 

single-axis gyroscope and monocular camera,” International Journal of Automation 

and Computing, vol. 9, pp. 292-298, June 2012. 

[134] F. E. White, “Data fusion lexicon,” JDL, Technology Panel For C3, San Diego, CA, 

USA, Tech. Rep. 144275, Jan. 1991. 

[135] D. L. Hall and J. Llinas, “An introduction to multisensor datafusion,” Proceedings 

of the IEEE, vol. 85, no. 1, pp. 6-23, Jan. 1997. 

[136] F. Castanedo, “A Review of data fusion techniques,” Scientific World Journal, vol. 

2013, pp. 1-19, Sep. 2013. 

[137] K. S. Nagla, M. Uddin and D. Singh, “Multisensor data fusion and integration for 

mobile robots: A review,” IAES International Journal of Robotics and Automation 

(IJRA), vol. 3,  no. 2,  pp. 131-138, June 2014. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 137 

University of Pretoria 

[138] H. F. Durrant-Whyte, “Sensor models and multisensor integration,” The 

International Journal of Robotics Research, vol. 7, no. 6, pp. 97-113, Dec. 1988. 

[139] R. C. Luo and M. G. Kay, “A tutorial on multisensor integration and fusion,” in 

Proceedings of the 16th Annual Conference of IEEE Industrial Electronics Society 

(IECON), vol. 1, Nov. 1990, pp. 707-722. 

[140] F. Coito, A. Eleuterio, S. Valtchev and F. Coito, “Tracking a mobile robot position 

using vision and inertial sensor,” IFIP Advances in Information and Communication 

Technology, vol. 423, April 2014, pp. 201-208. 

[141] J. D. Hol, T. B. Schon, H. Luinge, P. J. Slycke and F. Gustafsson, “Robust real-time 

tracking by fusing measurements from inertial and vision sensors,” Journal of  Real-

Time Image Processing, vol. 2, pp. 149-160, Oct. 2007. 

[142] W. Elmenreich, “An introduction to sensor fusion,” Institut für Technische 

Informatik, Vienna University of Technology, Austria, Research Report 47/2001, 

vol. 502, pp. 1-28, Nov. 2002. 

[143] A. Sinha, H.Chen, D. G. Danu, T. Kirubarajan and M. Farooq, “Estimation and 

decision fusion: A survey,” Neurocomputing, vol. 71, nos. 13-15, pp. 2650-2656, 

Aug. 2008. 

[144] J. Gu, M. Meng, A. Cook and P. X. Liu, “Sensor fusion in mobile robot: some 

perspectives,” in Proceedings of the 4th World Congress on Intelligent Control and 

Automation,  vol. 2, June 2002, pp. 1194-1199. 

[145] W. V. Drongelen, “Kalman filter,” in Signal Processing for Neuroscientist, 2nd ed. 

New York, NY, USA: Academic, 2018, ch. 19, pp. 361-374. 

[146] T. T. Hoang, P. M. Duong, N. T. Van, D. A. Viet and T. Q. Vinh, “Multi-sensor 

perceptual system for mobile robot and sensor fusion-based localization,” in 

Proceedings of the International Conference on Control, Automation and 

Information Sciences (ICCAIS), Nov. 2012, pp. 259-264. 

[147] D. Jeon, H. Choi and J. Kim, “UKF data fusion of odometry and magnetic sensor for 

a precise indoor localization system of an autonomous vehicle,” in Proceedings of 

the 13th International Conference on Ubiquitous Robots and Ambient Intelligence 

(URAI), Aug. 2016, pp. 47-52. 

[148] A. Alofi, A. Alghamdi, R. Alahmadi, N. Aljuaid and M. Hemalatha, “A review of 

data fusion techniques,” Internatinal Journal of Computer Applications, vol. 167, pp. 

37-41, June 2017. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 138 

University of Pretoria 

[149] A. Al‐Fuqaha, M. Elbes and A. Rayes, “An intelligent data fusion technique based 

on the particle filter to perform precise outdoor localization,” International Journal 

of Pervasive Computing and Communications, vol. 9, no. 2, pp. 163-183, June 2013. 

[150] Y. Ren and X. Ke, “Particle filter data fusion enhancements for MEMS-IMU/GPS,” 

Intelligent Information Management, vol. 2, no. 7, pp. 417-421, Jan. 2010.  

[151] F. Cappello, R. Sabatini, S. Ramasamy and M. Marino, “Particle filter based multi-

sensor data fusion techniques for RPAS navigation and guidance,” IEEE Metrology 

for Aerospace (MetroAeroSpace), June 2015, pp. 395-400. 

[152] W. Li, Z. Wang, Y. Yuan and L. Guo, “Particle filtering with applications in 

networked systems: A survey,” Complex and Intelligent Systems, vol. 2, no. 4, pp. 

293-315, Oct. 2016. 

[153] G. Texier, R. S. Allodji, L. Diop, J-B. Meynard, L. Pellegrin and H. Chaudet, “Using 

decision fusion methods to improve outbreak detection in disease surveillance,” 

BMC Medical Informatics and Decision Making, vol. 19, no. 1, pp. 1-11, March 

2019. 

[154] S. Vechet and J. Krejsa, “Sensors data fusion via Bayesian network,” Recent 

Advances in Mechatronics, T. Brezina and R. Jablonski, Eds., Berlin Germany: 

Springer, 2010, pp. 221-226. 

[155] X. Liu, H. Leung, P. Valin and E. Bosse, “Multisensor joint tracking and 

identification using particle filter and Dempster-Shafer fusion,” in Proceedings of 

the 15th International Conference on  Information Fusion, July 2012, pp. 902-909. 

[156] Y. Zhang, Q-A. Zeng, Y. Liu and B. Shen, “Integrated data fusion using Dempster-

Shafer theory,” in Proceedings of the 1st International Conference on Computational 

Intelligence Theory, Systems and Applications (CCITSA), Dec. 2015, pp. 98-103. 

[157] M. O. Oloyede and G. P. Hancke, “Unimodal and multimodal biometric sensing 

systems: A review,” IEEE Access, vol. 4, pp. 7532-7555, Sep. 2016. 

[158] N. Sghaier, R. B. Ayed, R. B. Marzoug and A. Rebai, “Dempster-Shafer theory for 

the prediction of auxin-response elements (AuxREs) in plant genomes,” BioMed 

Research International, vol. 2018, pp. 1-13, Nov. 2018. 

[159] K. Khoshelham, S. Nedkov and C. Nardinocchi, “A comparison of Bayesian and 

evidence-based fusion methods for automated building detection in aerial data,” 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, vol. 37, pp. 1183-1188, Dec. 2008. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 139 

University of Pretoria 

[160] A. Mahmood, A. Baig and Q. Ahsan, “Real time localization of mobile robotic 

platform via fusion of inertial and visual navigation system,”in Proceedings of the 

International Conference of Robotics and Artificial Intelligence, Oct. 2012, pp. 40-

44. 

[161]  M. Faisal, M. Alsulaiman, R. Hedjar et al., “Enhancement of mobile robot 

localization using extended Kalman filter”, Advances in Mechanical Engineering, 

vol., 8 no. 11, pp. 1–11, Nov. 2016. 

[162]  A. Sousa et al., “Localization of a mobile robot based in odometry and natural 

landmarks using extended Kalman filter”, in Proceedings of the 5th International 

Conference on Informatics, in control, Automation and Robotics, May 2008, pp. 1-

7. 

[163]  J. Z. Sasiadek and P. Hartana, “Odometry and sonar data fusion for mobile robot 

navigation,”  in Proceedings of IFAC Volumes, vol. 33, no. 27, pp. 411-416, Sep. 

2000. 

[164]  T. T. Hoang, P. M. Duong, N. T. T. Van, D. A. Viet and T. Q. Vinh, “Multi-sensor 

perceptual system for mobile robot and sensor fusion-based localization”, in 

Proceedings of International Conference on Control, Automation and Information 

Sciences (ICCAIS), Nov. 2012, pp. 259-264 

[165] Y. Raaj, A. John and T. Jin, “3D object localization using forward looking sonar 

(FLS) and optical camera via particle filter based calibration and fusion,” in  

Proceedings of  OCEANS 2016 MTS/IEEE Monterey, Sep. 2016, pp. 1-10. 

[166]  W. Ma, Y. Zhang, Q. Zhao and T. Liu, “Two particle filter-based INS/LiDAR-

integrated mobile robot localization,” in Proceedings of International Conference on 

Multimedia Technology and Enhanced Learning, June 2020,  pp. 349-358. 

[167]  S. Jain, S. Nandy, R. Ray and S. N. Shome, “Application of particle filtering 

technique for sensor fusion in mobile robotics,” in Proceeding of IEEE International 

Conference on Mechatronics and Automation,  Aug. 2011, pp. 2285-2290. 

[168] Y. Ren and X. Ke, “Particle filter data fusion enhancements for MEMS-IMU/GPS,” 

Intelligent Information Management, vol. 2, no. 7, pp. 417-421, Jan. 2010. 

[169]  Y. Lee, B. Yim, and J. Song, “Mobile robot localization based on effective  

combination of vision and range sensors,” International Journal of Control, 

Automation, and Systems, vol. 7, no. 1, pp. 97-104, March 2009. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 140 

University of Pretoria 

[170] W. A. Abdulhafiz and A. Khamis, “Bayesian approach with pre- and post-filtering 

to handle data uncertainty and inconsistency in mobile robot local positioning,” 

Journal of Intelligent Systems, vol. 23, no. 2, pp. 133–154, Jan. 2014. 

[171]  H. Asoh, Y. Motomura, I. Hara, S. Akaho, S. Hayamizu, and T. Matsui, “Combining 

probabilistic map and dialog for robust life-long office navigation,” in Proceedings 

International Conference Intelligent Robots System IROS, vol. 2, Nov. 1996 pp. 880–

885. 

[172] H. Zhou and S. Sakane, “Sensor planning for mobile robot localization---A 

hierarchical approach using a bayesian network and a particle filter,” IEEE 

Transactions on Robotics, vol. 24, no. 2, pp. 481-487, April 2008. 

[173]  L. Vladareanu, G. Tont, V. Vladareanu, F. Smarandache and L. Capitanu, “The 

navigation mobile robot systems using bayesian approach through the virtual 

projection method,” in Proceedings of International Conference on Advanced 

Mechatronic Systems, Sep. 2012, pp. 498-503. 

[174]  C. Premebida , D. R. Faria and U. Nunes, “Dynamic bayesian network for semantic 

place classification in mobile robotics, ” Autonomous Robots, vol. 41, pp. 1161-1172, 

July 2016. 

 [175] S. Soleimanpour, S. S. Ghidary and K. Meshgi, “Sensor fusion in robot localization 

using DS-evidence theory with conflict detection using mahalanobis distance,” in 

Proceedings of the 7th IEEE International Conference on Cybernetic Intelligent 

Systems, Sep. 2008, pp. 1-6. 

[176]  H. Lee, X. Song and H. Cho, “Mobile robot self-localization and local map alignment 

with a dempster shafer sensor fusion algorithm,” in Proceedings of the 17th World 

Congress. The International Federation of Automatic Control, July 2008, pp. 14663-

14668. 

[177]  A. Gören, E. Uyar, Ö. Başer and Z. Dicle, “Sensor fusion using dempster-shafer 

theory of evidence in autonomous robot navigation,” Mechanics, Automatic Control 

and Robotics, vol. 6, Nov. 2007, pp. 133 - 144. 

[178]  M. Valente, C. Joly and A. Fortelle, “Fusing laser scanner and stereo camera in 

evidential grid maps,”  in Proceedings of International Conference on Control, 

Automation, Robotics and Vision (ICARCV), Nov. 2018, pp. 990-997. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 141 

University of Pretoria 

[179]  J. Carlson and R. R. Murphy, “Use of dempster-shafer conflict metric to detect 

interpretation inconsistency,”  in Proceedings of the 21st Conference on Uncertainty 

in Artificial Intelligence July 2012, pp. 1-10. 

[180]  S. Erfani, A. Jafari and A. Hajiahmad, “Localization and controlling the mobile robot 

by sensory data fusion,” Agricultural Engineering International: CIGR Journal, vol. 

21, no. 2, pp. 86-97, July, 2019. 

[181] W. A. Abdulhafiz and A. Khamis, “Handling data uncertainty and inconsistency 

using multisensor data fusion,” Advances in Artificial Intelligence, vol. 2013, no. 11, 

pp. 1-12, Sep. 2013. 

[182] N. Ganganath and H. Leung, “Mobile robot localization using odometry and kinect 

sensor,” in Proceedings of the IEEE International Conference on Emerging Signal 

Processing Applications, Jan. 2012, pp. 91-94. 

[183] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: localization, mapping 

and Sensor-to-Sensor self-calibration,” International Journal of Robotics Research, 

vol. 30, no. 1, pp. 56-79, Jan. 2011. 

[184] A. M. Sabatini, “Variable-state-dimension Kalman-based filter for orientation 

determination using inertial and magnetic sensors,” Sensors, vol. 12, no. 7, pp. 8491-

8506, June 2012. 

[185] G. Ligorio and A. M. Sabatini, “Extended Kalman filter-based methods for pose 

estimation using visual, inertial and magnetic sensors: Comparative analysis and 

performance evaluation,” Sensors, vol. 13, no.2, pp. 1919-1941, Feb. 2013. 

[186] M. M. Shaikh et al., “Mobile robot vision tracking system using Unscented Kalman 

Filter,” in Proceedings of the IEEE/SICE International Symposium on System 

Integration (SII), Dec. 2011, pp. 1214-1219. 

[187] Y. Tao, H. Hu and H. Zhou, “Integration of vision and inertial sensors for 3D arm 

motion tracking in home-based rehabilitation,” International Journal of Robotics 

Research, vol. 26, no. 6, pp. 607-624, July 2016. 

[188] P. Gemeiner, P. Einramhof and M. Vincze, “Simultaneous motion and structure 

estimation by fusion of inertial and vision data,” International Journal of Robotics 

Research, vol. 26, no. 6, pp. 591-605, July 2016. 

[189] J. Durrie, T. Gerritsen, E. W. Frew and S. Pledgie, “Vision-aided inertial navigation 

on an uncertain map using a particle filter,” in Proceedings of the IEEE International 

Conference on Robotics and Automation, May 2009, pp. 4189-4194. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 142 

University of Pretoria 

[190] Z. Mikulová, F. Duchon, M. Dekan and A. Babinec, “Localization of mobile robot 

using visual system,” International Journal of Advanced Robotic Systems, vol. 14, 

no. 5, Oct. 2017, Art no.172988141773608. 

[191] K. Khoshelham and L. Diaz-Vilariño, “3D modelling of interior spaces: Learning the 

language of indoor architecture,” International Archives of Photogrammetry, Remote 

Sensing and Spatial Information Sciences, vol. 40, no. 5, pp. 321-326, June 2014. 

[192] P. Biber, H. Andreasson, T. Duckett and A. Schilling, “3D modeling of indoor 

environments by a mobile robot with a laser scanner and panoramic camera,” in  

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots 

Systems (IROS), vol. 4, Oct. 2004, pp. 3430-3435. 

[193] S. Thrun et al., “A real-time expectation-maximization algorithm for acquiring 

multiplanar maps of indoor environments with mobile robots,” IEEE Transactions 

on Robotics and Automation, vol. 20, no. 3, pp. 433-443, June 2004. 

[194] S. Kriegel, C. Rink, T. Bodenmuller and M. Suppa, “Efficient next-best-scan 

planning for autonomous 3D surface reconstruction of unknown objects,” Journal of 

Real-Time Image Processing, vol. 10, no. 4, pp. 611-631, Dec. 2013. 

[195] X. Chen and Y. Jia, “Indoor localization for mobile robots using lampshade corners 

as landmarks: Visual system calibration, feature extraction and experiments,” 

International Journal of Control, Automation and Systems, vol. 12, no. 6, pp. 1313-

1322, Oct. 2014. 

[196] G. Klančar, L. Teslić and I. Škrjanc, “Mobile-robot pose estimation and environment 

mapping using an extended Kalman filter,” International Journal of Systems Science, 

vol. 45, no. 12, pp. 2603-2618, Dec. 2014. 

[197] T. T. Q. Bui and K.-S. Hong, “A comparison of using probabilistic motion models 

for mobile robot pose estimation,” in Proceedings of the ICROS-SICE International 

Joint Conference 2009, Sep. 2009, pp. 528-532. 

[198] N. Kothari, M. Gupta, L. Vachhani and H. Arya, “Pose estimation for an autonomous 

vehicle using monocular vision, ” in Proceedings of the Indian Control Conference 

(ICC), Jan. 2017, pp. 424-431. 

[199] L. F. Lupián, A. Romay and A. Espínola, “Vision based localization of humanoid 

robots by inverse pose-estimation using a small set of fixed landmark features,” in  

Proceedings of the IX Latin American Robotics Symposium and IEEE Colombian 

Conference on Automatic Control, Oct. 2011, pp. 1-6. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 143 

University of Pretoria 

[200] C. López-Franco, J. Gomez-Avila, N. Arana-Daniel and A. Y. Alanis, “Robot pose 

estimation based on visual information and particle swarm optimization,” in 

Proceedings of the World Automation Congress (WAC), Oct. 2014, pp. 768-773. 

[201] A. Kim and M. F. Golnaraghi, “A quaternion-based orientation estimation algorithm 

using an inertial measurement unit,” in Proceedings of Position Location and 

Navigation Symposium, April 2004, pp. 268-272. 

[202] A. Foi, S. Alenius, V. Katkovnik and K. Egiazarian, “Noise measurement for raw-

data of digital imaging sensors by automatic segmentation of non-uniform targets,” 

IEEE Sensors Journal, vol. 7, no. 10, pp. 1456-1461, Oct. 2007.  

[203] M. Matejcek and M. Sostronek , “New experience with Allan variance: Noise 

analysis of accelerometers, ” in Proceedings of  Communication and Information 

Technologies (KIT), Oct. 2017, pp. 1-4. 

[204] J. Park et al., “High performance vision tracking system for mobile robot using 

sensor data fusion with Kalman filter,” in Proceedings of the IEEE/RSJ International 

Conference on Intelligent Robots and Systems, Oct. 2010, pp. 3778-3783. 

[205] M. B. Alatise and G. P. Hancke, “Pose estimation of a mobile robot based on fusion 

of IMU data and vision data using an extended Kalman filter”, Sensors, vol. 17, no. 

10,  pp. 1-17, Sep. 2017. 

[206] N. B. Ahmad, R. A. R. Ghazilla, N. M. Khairi and V. Kasi, “Reviews on various 

inertial measurement unit (IMU) sensor applications,” International Journal of 

Signal Processing Systems, vol. 1, no. 2,  pp. 265-262, Dec. 2013. 

[207] H. Zhao and Z. Wang, “Motion measurement using inertial sensors, ultrasonic 

sensors, and magnetometers with extended Kalman filter for data fusion,” IEEE 

Sensors Journal, vol. 12, no.5, pp. 943-953, May 2012. 

[208] S. Choi, J. H. Joung, W. Yu and J. I. Cho, “What does ground tell us? Monocular 

visual odometry under planar motion constraint,” in Proceedings of the 11th 

International Conference Control, Automation and Systems (ICCAS), 2011, Oct. 

2011,  pp. 1480-1485. 

[209] F. Caballero, L. Merino, J. Ferruz and A. Ollero, “Unmanned aerial vehicle 

localization based on monocular vision and online mosaicking,” Journal of 

Intelligent and Robotic Systems, vol. 55, pp. 323-343, Jan. 2009. 

[210] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines of code,” 

International Journal of Computer Vision, ” vol. 15, pp. 123-141, June 1995. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 144 

University of Pretoria 

[211] Q. Zhou and X. Li, “Deep homography estimation and its application to wall maps 

of wall-climbing robots, ” MDPI Applied Science, pp. 1-14, July 2019. 

[212] J. Westerhoff, “A method and a device for estimating an orientation of a camera 

relative to a road surface,” U.S. patent 3193306, Sep. 2017. 

[213] E. Montijano and C. Sagues, “Fast pose estimation for visual navigation using 

homographies,” in Proceedings of the IEEE/RSJ International Conference on 

Intelligent Robots and Systems, Oct. 2009, pp. 2704-2709. 

[214] J. Park, W. Hwang, H. Kwon, K. Kim and D. D. Cho, “A novel line of sight control 

system for a robot vision tracking system using vision feedback and motion-

disturbance feed forward compensation,” Robotica, vol. 31, no. 1, pp. 99-112,  Jan. 

2012. 

[215] J. Delaune, G. L. Besnerais, T. Voirin, J. L. Farges and C. Bourdarias, “Visual-

inertial navigation for pinpoint planetary landing using scale-based landmark 

matching,” Robotics and Autonomous Systems, vol. 78, pp. 63-82, April 2016. 

[216] G. Bleser and D. Stricker, “Advanced tracking through efficient image processing 

and visual–inertial sensor fusion,” Computer and Graphics, vol. 33, pp. 59-72, Feb. 

2009. 

[217] Y. Miao, Y. Liu, H. Ma and H. Jin, “The pose estimation of mobile robot based on 

improved point cloud registration,” International Journal of Advanced Robotic 

Systems, vol. 13, no. 2, pp. 1-10, March 2016. 

[218] E. D. Zubiete et al., “Evaluation of a home biomonitoring autonomous mobile robot,” 

Computational Intelligence and. Neuroscience, vol. 2016, pp.1- 8, April 2016.  

[219] B. C. Stahl and M. Coeckelbergh, “Ethics of healthcare robotics: Towards 

responsible research and innovation,” Robotics and Autonomous Systems, vol. 86, 

pp. 152-161, Dec. 2016. 

 [220] R. Mardiyanto, M. F. R. Utomo, D. Purwanto and H. Suryoatmojo, “Development 

of hand gesture recognition sensor based on accelerometer and gyroscope for 

controlling arm of underwater remotely operated robot,” in Proceedings of the 

International Seminar on Intelligent Technology and its Applications (ISITIA), Aug. 

2017, pp. 329-333. 

[221] V. Sazdovski and P. M. G. Silson, “Inertial navigation aided by vision-based 

simultaneous localization and mapping,” IEEE Sensors Journal, vol. 11, no. 8, pp. 

1646-1656, Jan. 2011. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 145 

University of Pretoria 

[222] E. Royer et al., “Outdoor autonomous navigation using monocular vision, ” in 

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots 

Systems, Aug. 2005, pp.3395-3400.  

[223] E. Royer, M. Lhuillier, M. Dhome and J.-M. Lavest, “Monocular vision for mobile 

robot localization and autonomous navigation,” International Journal of Computer 

Vision, vol. 74, pp. 237-260, Jan. 2007. 

[224] L. Cheng, Y. Dai, R. Peng and X. Nong, “Positioning and navigation of mobile robot 

with asynchronous fusion of binocular vision system and inertial navigation system,” 

International Journal of Advanced Robotic Systems, vol. 14, pp. 1-16, Dec. 2017. 

[225] D. I. B. Randeniya, S. Sarkar and M. Gunaratne, “Vision–IMU integration using a 

slow-frame-rate monocular vision system in an actual roadway setting,” IEEE 

Transactions on Intelligent Transportation Systems, vol. 11, no. 2,  pp. 256-266, Jan. 

2010. 

[226] D. H. Won, S. Sung and Y. J. Lee, “UKF based vision aided navigation system with 

low grade IMU,” in Proceedings of ICCAS 2010, Oct. 2010, pp. 2435-2438. 

[227]  P. Hoang-Lan, V. Perdereau, B. V. Adorno and P. Fraisse, “Position and orientation 

control of robot manipulators using dual quaternion feedback,” in Proceedings of the 

IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2010, 

pp. 658-663. 

[228] Taryudi and M. Wang, “3D object pose estimation using stereo vision for object 

manipulation system,” in Proceedings of the International Conference on Applied 

System Innovation (ICSAI), May 2017, pp. 1532-1535. 

[229] L. Rocha, L. Velho and P. C. P. Carvalho, “Image moments-based structuring and 

tracking of objects,” in Proceedings of the XV Brazilian Symposium on Computer 

Graphics and Image Processing, Jan. 2002, pp. 99-105. 

[230] T. S. Rilwanu Bello and U. S. Tunga, “Determination of object position and 

orientation using image processing technique,” Research and Reviews: Journal of 

Physics, vol. 7, no. 2,  pp. 18–24, 2018. 

[231] T. Li, M. Bolic and P. M. Djuric, “Resampling methods for particle filtering: 

Classification, implementation, and strategies,” IEEE Signal Processing Magazine, 

vol. 32, pp. 70-86, April 2015. 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 146 

University of Pretoria 

[232] K. Nagla, M Uddin, D Singh and R Kumar. “Object identification in dynamic 

environment using sensor fusion,” in Proceedings of the IEEE 39th Workshop on 

Applied Imagery Pattern Recognition, Oct. 2010. pp. 1-4. 

[233] T. T. Hoang, M. D. Phung, N. T. T. Van, D. A. Viet and T. Vinh, “Multi-sensor 

perceptual system for mobile robot and sensor fusion-based localization,” in 

Proceedings of the International Conference on Control, Automation and 

Information Sciences (ICCAIS), Nov. 2012, pp. 259-264. 

[234] N. J. Gordon, D. J. Salmond and A. F. M. Smith, “Novel approach to nonlinear/non-

Gaussian Bayesian state estimation,” IEEE Proceedings. F - Radar and Signal 

Processing, vol. 140, no. 2, pp. 107-113, April 1993. 

[235] Q.-B. Zhang, P. Wang and Z.-H. Chen, “An improved particle filter for mobile robot 

localization based on particle swarm optimization,” Expert Systems with 

Applications, vol. 135, pp. 181-193, Nov. 2019.  

[236] X. Yu, J. Bai, T. Zhang and S. Wei, “One practical data fusion algorithm applied in 

auxiliary particle filtering,” in Proceedings of the International Conference on 

Industrial Control and Electronics Engineering, Aug. 2012, pp. 1724-1727. 

[237] M. S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, “A tutorial on particle 

filters for on-line nonlinear/ non-Gaussian Bayesian tracking,” IEEE Transactions 

Signal Processing, vol. 50, no. 2, pp. 174–88, Aug. 2002. 

[238] R. Douc and O. Cappe, “Comparison of resampling schemes for particle filtering,”  

in Proceedings of the 4th International Symposium on Image Signal Processing and 

Analysis (ISPA), Sep. 2005, pp. 64-69. 

[239] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” 

Journal of the  American Statistical Association, vol. 94, no. 446, pp. 590-599, June 

1999. 

[240] N. Vlassis, B. Terwijn and B. Krose, “Auxiliary particle filter robot localization from 

high-dimensional sensor observations,” in Proceedings of the IEEE International 

Conference on Robotics and  Automation, vol. 1, May 2002, pp. 7-12. 

[241] K. Brzozowska-Rup and A. L. Dawidowicz, “A new approach to the construction of 

the APF algorithm by applying the Pearson curves technique,” Applied Mathematics 

and information Sciences, vol. 10, no. 3, pp. 833-840, May 2016.  

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



REFERENCES  

 

Department of Electrical, Electronic and Computer Engineering 147 

University of Pretoria 

[242] J. Li, Y. Ho and J. Huang, “Line tracking with Pixy cameras on a wheeled robot 

prototype,” in Proceedings of the IEEE International Conference on Consumer 

Electronics-Taiwan (ICCE-TW), May 2018, pp. 1-2. 

[243] M. F. Ahmad, H. J. Rong, S. S. N. Alhady, W. Rahiman and W. A. F. W. Othman, 

“Colour tracking technique by using pixy CMUcam5 for wheelchair luggage 

follower,” in Proceedings of the 7th IEEE International Conference on Control 

System, Computing and Engineering (ICCSCE), Nov. 2017, pp. 186-191. 

[244] S. Gandhi and N. Gandhi, “A CMUcam5 computer vision based Arduino wearable 

navigation system for the visually impaired,” in Proceedings of the International 

Conference on Advances in Computing, Communications and Informatics (ICACCI), 

Sep. 2018, pp. 1768-1774. 

[245] S. Lee, G. S. Tewolde, J. Lim and J. Kwon, “Vision based localization for multiple 

mobile robots using low-cost vision sensor,” in Proceedings of the IEEE 

International Conference on Electro/Information Technology (EIT), May 2015, pp. 

280-285. 

[246] M. S. Bahraini, A. Rad and M. Bozorg, “SLAM in dynamic environments: A deep 

learning approach for moving object tracking using ML-RANSAC algorithm,” 

Sensors, vol. 19, no. 17, pp. 1-20, Aug. 2019. 

[247] D. Fox, “Adapting the sample size in particle filter through KLD-sampling,” 

International Journal of Robotics Research, vol. 22, no. 12, pp. 985-1003, Dec. 2003. 

[248] V. Elvira, L. Martino, M. F. Bugallo and P. M. Djuric, “In search for Improved 

Auxiliary Partial Filters,” In proceeding of European Signal Processing Conference 

(EUSIPCO), Sept. 2018, pp. 1637-1641.  

 

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 




