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Web Appendix 1: Empirical Data 
 

The Transmission Study of XDR TB (TRAX Study) is a cross-sectional study that enrolled 404 
XDR TB cases from KwaZulu-Natal province, South Africa from 2011–2014. This study 
collected clinical, demographic and social network data from enrolled cases. The primary aim of 
this study was to estimate the proportion of XDR TB cases due to transmission, as compared to 
those due to acquired resistance. The major finding of this study was that at least 70% of XDR 
cases in this settings are due to transmission.1    

 
Briefly, the diagnostic XDR Mtb isolate was obtained for all participants and re‐cultured on 
Löwenstein‐Jensen slants. We conducted population sweeps, extracted genomic DNA, and 
prepared sequencing libraries using Nextera DNA kits (Illumina, San Diego, CA). Raw paired‐
end sequencing reads were generated on the Illumina (MiSeq) platform and aligned to the H37Rv 
reference genome (NC_000962.3) using the Burrows‐Wheeler Aligner. All isolates had reads 
covering >99% of the reference genome, and the lowest mean coverage depth for any isolate was 
15X. SNPs were detected using standard pairwise resequencing techniques (Samtools v0.1.19) 
against the reference and filtered for quality, read consensus (>75% reads for the alternate allele) 
and proximity to indels (>50 base-pairs from any indel). SNPs in or within 50 base pairs of 
hypervariable PPE/PE gene families, repeat regions, and mobile elements were excluded.2 The 
empirical transmission network was created from 344 cases with available whole genome 
sequencing results of their Mtb isolates. Sequencing data are available on the NCBI Sequence 
Read Archive (BioProject: PRJNA476470). 
 
We created sequencing-based networks using pairwise differences between Mtb sequences. We 
considered fewer than 5 single nucleotide polymorphisms a transmission link and constructed an 
undirected network in which each node represented a case and each edge represented a 
transmission link. We considered several SNP thresholds, as the appropriate threshold to define a 
direct transmission event between two cases may vary by setting, study design, and SNP calling 
pipeline used  (see Sensitivity Analyses section below).3 Notably, our empirical network also 
makes the assumption that individuals are infected with only the sequenced TB variant. While 
multiple infections are common in high TB incidence settings, this assumption is likely 
reasonable given the relatively low force of infection of XDR TB. 
 
In this empirical undirected network, the maximum degree was 62, there were 162 (47%) of cases 
with no links (degree = 0), and 62 (18%) of cases with 10 or more links (degree ≥ 10). See Web 
Tables 1 and 3 for more descriptive characteristics of the empirical network defined by 5 SNPs 
and 3 SNPs, respectively. 
 
To define the likelihood of being linked in the modeled networks based on a particular attribute, 
we defined the expected mean degree of cases with a given attribute as compared to a reference 
group. (For example, we defined the expected mean degree of HIV-positive relative to HIV-
negative cases based on estimates from the literature on the relative infectiousness of HIV-
positive as compared to HIV-negative cases.)  
 
To calculate the target statistics for each nodefactor term in the network model, we multiplied the 
relative mean degree for each attribute by the overall mean degree of the network. To scale this 
according to the number of nodes in the network, we multiplied that value by the proportion of 
nodes in that network with the attribute.  
 
As a brief example: Assume we want to model a network with 100 TB cases that has an overall 
mean degree of 5. Assume this network includes 75 HIV-positive and 25 HIV-negative TB cases. 
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Let’s assume the mean degree of HIV-positive cases is 2 and for HIV-negative cases is 1, giving 
a relative mean degree for HIV-positive cases of 2/3. We multiply: 5 × 100 to get the total 
number of edges in this network (n = 500 for a directed network, n = 250 for an undirected 
network).  Then, we know that HIV-positive cases are twice as likely to have an edge as HIV-
negative cases, so 250 × 2/3 gives 167 total number of edges associated with HIV-positive cases 
in the network.  
 
Models with target statistics specified for all levels of every attribute did not easily converge, so 
we reduced the number of target statistics for attributes with more than four categories. For these 
variables, we used the 3–4 categories corresponding to the highest number of edges as target 
statistics to parameterize models. Using these target statistics, we simulated full transmission 
networks from each model. 
 
In order to simulate using these target statistics, we had to specify a mean degree of the full 
transmission network. In theory, this mean degree would be the mean number of secondary 
transmissions per case, plus 1 (the link to their source case). The effective reproduction number 
of TB has been estimated to range from 1 to 5, and a recent study on superspreading in TB 
estimated the mean of the secondary case distribution to be.4-6 However, these studies have been 
done primarily in high-income countries with low TB incidence, and in South Africa, diagnostic 
delays may lead to long infectious periods and a higher rate of transmission. So, we simulated full 
transmission networks assuming a range of mean degrees from 1 to 10. In addition, we also 
examined networks with mean degrees of 15 and 20 to better understand how the network 
behaved under higher mean degrees. 
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Web Figure 1. Transmission of XDR TB study in KwaZulu-Natal, South Africa, 2011–2014, enrollment 

and study inclusion 
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Web Appendix 2: Model details 
 

This technical appendix describes the models used in the associated manuscript, including their 
conceptual basis and parameterization as well as simulation procedures and statistical analysis.  

 
1.1 Model framework 
The network models in this study were used to represent and simulate transmission networks of active 
tuberculosis (TB) cases. Links, or edges, in modeled networks represent a transmission event that 
occurred between two cases in the network. We considered the structure of the complete network as a 
joint function of the empirical data and assumptions about missingness. 
 
Modeled networks do not involve individuals (1) infected with TB but whom did not progress to 
active disease or (2) exposed contacts of TB cases. Rather, modeled networks reflect all transmission 
events observed from a sample of cases enrolled in our transmission study of XDR TB, which enrolled 
patients over a four-year period. Note that this network does not include transmission events that 
occurred either before the study period began or after it ended.  
 
Moreover, this network is comprised of cases with extensively drug-resistant (XDR) TB. Importantly, 
not all cases of XDR TB were infected with XDR TB; rather, they acquired resistance as a result of 
inadequate treatment of a more drug-susceptible strain of TB. For simplicity, we ignore this feature of 
drug-resistant TB epidemiology when modeling the transmission networks in this study. Moreover, it 
has been shown that the vast majority of XDR TB are due to transmission of already-resistant strains, 
rather than acquired resistance. Of note, the full networks that we modeled do include unconnected 
nodes, or cases, which could represent individuals who acquired their XDR through inadequate 
treatment and therefore would not be connected to a source case in the network. So, our models 
indirectly account for the possibility that some XDR TB is acquired rather than transmitted. 
 
In the model, each case in the network was assigned specific clinical and demographic attributes 
according to pre-defined distributions. Each attribute is represented by a ‘nodefactor’ term in the 
network model. (Some ‘nodefactor’ terms represented the joint distributions of two attributes, see 
Joint Distributions section.) This allowed the number of links to vary by an individual’s attributes. We 
defined ‘target statistics’ for the number of links, or edges, attributed to cases with a given attribute in 
the network. (For example, the target statistic for the HIV nodefactor term was the number of edges 
involving HIV-positive nodes, or the number of transmission events in the network involving HIV-
positive cases.) 
 
For attributes with well-studied effects on infectiousness (i.e., smear status), we used estimates from 
the literature to define target statistics for the corresponding nodefactor term in our models.  In the 
absence of available data from the literature, we used data collected from our transmission study. 
(Ultimately, we used data from our transmission study for only two parameters: the relationship 
between transmission risk and cough duration and the distribution of XDR TB strain type in 
KwaZulu-Natal. This information was not readily available outside our study.)  The attributes 
assigned to each case collectively influence the number of other cases to whom that case is connected 
in the network. (See the Empirical Data section for more detail.) 

 
1.2 Model software 
 
All models were programmed in R. The code used to create and analyze these models is available on 
GitHub (https://github.com/kbratnelson/tb-ergms). 
 
We used the ergm R package, which requires the statnet suite of software.  
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Web Appendix 3: Clinical measures  
 

3.1 Cough duration 
 
We categorized cough duration by month. The distribution of cough duration and target statistics 
for the mean degree in each group are below: 
 
Web Table 1. 

Cough Duration No. (%) Mean Degree 
(Source: TRAX) 

No cough* 128 (37) 5.0 

1 month* 60 (17) 6.5 

2 months* 51 (15) 8.1 

3 months* 72 (21) 8.1 

4 months 16 (5) 4.6 

5 months 17 (5) 3.7 

 
* Target statistics defined for these categories in ERGMs. 
 

 
As there was little information on the effect of cough duration on transmission in the literature, 
we used the mean degree from the empirical TRAX network to define target statistics for 
modeled networks. We used target statistics for the largest categories ‘No cough’, ‘1 month’, ‘2 
months’, and ‘3 months’ to fit models.  
 
3.2 Smear status 
 
Although information on both smear status and smear grade were available in TRAX, we chose to 
use only smear status (smear-positive and smear-negative) to reduce the number of parameters in 
the model. The marginal distribution of smear status that we used to parameterize models is 
below: 
 
Web Table 2. 
 
 
 

 
 

 
 
 
These parameters are based on relative infectiousness estimates by Abu-Raddad et al. that we 
normalized, assuming a mean degree of 1 in the smear-negative group. We used the joint 
distribution of age and smear status for model target statistics; see Joint Distributions section. 
 

Smear Status No. (%) Mean Degree 
(Source: Abu-Raddad et al.11) 

Negative 109 (32) 1 

Positive 235 (68) 4 
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3.3 HIV 
 
Although both HIV status and information on virologic suppression were available in TRAX, we 
chose to use only smear status (smear-positive and smear-negative) to reduce the number of 
parameters in the model. The marginal distribution of HIV status that we used to parameterize 
models is shown below. 
 
Web Table 3. 
 
 
 
 
 
 
 

 
Since there is conflicting evidence as to whether HIV-positive or HIV-negative individuals are 
more infectious, we chose to assume no difference in infectiousness and thus the mean degree for 
HIV-positive and HIV-negative individuals was assumed to be the same. We used the joint 
distribution of age and HIV status for model target statistics; see Joint Distributions section. 
  
3.4 Mtb strain type 
 
The dominant strain of XDR TB in KwaZulu-Natal is the LAM4 strain. There is some evidence 
that this strain may be unique from other in terms of its transmission and evolutionary rate, so we 
accounted for this in our models.12,13 We categorized Mtb strains into LAM4 or non-LAM4.  
 
Web Table 4. 
 

 
       

                  
 

 
 
 

* Target statistics defined for these categories in ERGMs. 
 
Since there was little direct evidence in the literature about the relative infectiousness of LAM4 
and non-LAM4 strains of XDR TB, we used the relative mean degrees estimated from the 
empirical TRAX network for modeled networks. 

 
  

HIV Status No. (%) Mean Degree 

Negative 78 (23) 1 

Positive 266 (77) 1 

Mtb Strain No. (%) Mean Degree 
(Source: TRAX) 

LAM4* 259 (75) 8.3 

Non-LAM4 85 (25) 0.2 



9 
 

Web Appendix 4: Demographic measures 
 

4.1 Age  
  

We categorized age into four groups: 0–15, 16–34, 35–54, and ≥55 years.   
 
 
Web Table 5. 
 
 
 

 
 
 
 
 
 
 
 
 
 
The mean degree parameters are based on relative infectiousness estimates by Wood et al. that we 
normalized assuming a mean degree of 1 in the 0–15 age group.14 We used the joint distribution 
of age/HIV status and age/smear status for model target statistics; see Joint Distributions section. 

 
 

  

Age Category No. (%) Mean Degree 
(Source: Wood et al.14) 

0–15 12 (3) 1 

16–34 171 (50) 1.58 

35–54 134 (39) 0.98 

≥55 27 (8) 0.75 



10 
 

Web Appendix 5: Joint distributions 
 

5.1 Age and smear status 
 
Web Table 6. 

 
 
 

 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
* Target statistics defined for these categories in ERGMs. 

 
We calculated the mean degree by multiplying the relative infectiousness measures for smear 
status and age group from the Tables in Section 5.2 and 6.1, respectively. (We assumed 
independence of the two measure of infectiousness.) We used target statistics for the largest 
categories, ‘16-34, smear-negative’, ‘35-54, smear-negative’, ‘16-34, smear-positive’, and ‘35-54, 
smear-positive’ as target statistics for network models. 

 
5.2 Age and HIV  
 
Web Table 7. 

Age Category HIV Status No. (%) Mean Degree 

0–15 Negative 5 (1) 1.00 

16–34 Negative 41 (12) 1.58 

35–54 Negative 15 (4) 0.98 

≥55 Negative 17 (5) 0.75 

0–15 Positive 7 (2) 1.00 

*16–34 Positive 130 (38) 1.58 

*35–54 Positive 119 (35) 0.98 

≥55 Positive 10 (3) 0.75 

 
* Target statistics defined for these categories in ERGMs. 

 

Age Category Smear Status No. (%) Mean Degree 

0–15 Negative 7 (2) 1.00 

16–34* Negative 44 (13) 1.58 

35–54* Negative 40 (12) 0.98 

≥55 Negative 18 (5) 0.75 

0–15 Positive 5 (1) 4.00 

16–34* Positive 107 (31) 6.32 

35–54* Positive 79 (23) 3.92 

≥55 Positive 7 (2) 3.00 
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We calculated the mean degree by multiplying the relative infectiousness measures for HIV status 
and age group from the Tables in Section 5.3 and 6.1, respectively. (We assumed independence 
of the two measure of infectiousness.) We used target statistics for the largest categories, ‘16-34, 
HIV-positive’, and ‘35-54, HIV-positive’ as target statistics for network models. 
 
5.3 Other (Smear status and HIV) 
 
Although smear-negative disease tends to be more common among HIV-positive TB cases, we 
did not find this association in the empirical data. The proportion of cases with HIV was nearly 
equivalent among smear-positive and smear-negative cases and the proportion of smear-positive 
cases was nearly equivalent among HIV-positive and HIV-negative cases. Thus, we chose not to 
represent the joint distribution of smear status and HIV in model target statistics. 
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Web Appendix 6: Sensitivity analyses 
 
 6.1 Genomic threshold for transmission 
 

Since the threshold for defining genomic evidence of transmission is not well-defined, we also 
defined an empirical network using a more stringent threshold of 3 pairwise SNP differences. 
This resulted in no changes to modeled networks but did change the target statistics we attempted 
to ‘match’ with modeled, sampled networks. The differences in the empirical networks defined 
by different SNP thresholds can be examined by comparing Table 1 in the main manuscript (5-
SNP threshold) and Web Table 1 (3-SNP threshold). The target statistics for both networks are 
shown in Tables 3 and 4. 
 

 6.2 Full network size 
 

To simulate full networks, we needed to make assumptions about the true size of the full network, 
that is, the number of cases involved in XDR TB transmission over the time period 2011–2014. 
We estimated the number of diagnosed and undiagnosed XDR TB cases in KwaZulu-Natal 
province using data from the South African National Tuberculosis Drug Resistance Survey.9 We 
then used active case-finding studies to estimate the proportion of TB cases in South Africa that 
are undiagnosed.10  
 

332,783 TB cases in South Africa in 2014 
Proportion of cases with pulmonary TB (infectious form) = 0.89 
Proportion of cases in KwaZulu-Natal Province (area of study) = 0.31 
Proportion of cases with XDR = 0.005 

 
332,783 × (0.31) × (0.89) × (0.005) × 4 years = 1,836 cases (736 – 2,572)  

 
Accounting for underdiagnosis of TB cases10, multiply by a factor of 2:  
 

1,836 cases × 2 = 3,672 cases (1,472 – 5,144)  
 
For our primary analysis, we estimated a total number of XDR TB cases on the lower end of this 
range (n = 2,000) but explored the impact of changing network size (see Sensitivity Analyses 
section below). 
 
Given the uncertainty around the total number of XDR TB cases contributing to transmission, we 
considered several other sizes for the full network. We assumed that the full network may be 
larger than 2,000 cases (n = 4,000 cases), or that it may be smaller (n = 1,500 cases, n = 500 
cases). We compared the results from these networks to our main models, which assumed a full 
network size of 2,000 cases. 
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Web Appendix 7: Defining models using missing case assumptions 
  

We defined models and simulated full transmission networks under scenarios which made 
different assumptions about cases missing from the empirical TRAX network.  

 
7.1 Cases missing at random 
 

We assumed that cases missing at random would result in missing transmission links randomly 
across the network. We simulated full networks with mean degrees of 2, 5, 8, 10, 15, 20, 50, 100, 
and 200. Results from models of networks with mean degree of 2 through 20 are presented in the 
main manuscript and models with mean degree greater than 20 are presented in the supplemental 
results. 
 

The degree of a given case in the network is the sum of the links to that case, (in theory, one, 
representing the source case), and all forward transmission links from that case. Since only cases 
of active disease are represented in the network, the mean degree therefore roughly corresponds 
to the mean number of secondary cases caused by a TB case in the network (less one, 
corresponding to the source case of their infection) who progressed to disease during the study 
period.  
 
It is important to note that the modeled and simulated networks are undirected, meaning that the 
direction of transmission is not indicated. Parameterizing models to include both risk factors for 
infection and transmission was beyond the scope of this project but would be a useful extension 
of the current model framework. 
 
7.2 Cases missing by level of connectivity 
 
We assumed two opposing scenarios: that cases who were highly connected in the full network 
were more likely to be sampled, and that cases that were poorly connected in the full network 
were more likely to be sampled. To simulate the former scenario, we created and used sampling 
weights proportional to each cases’ degree in the full network; to simulate the latter scenario, we 
created and used sampling weights inversely proportional to degree in the full network. 
 
We sampled cases using this method in full networks with various mean degrees (2, 5, 8, 10, 15, 
20). 
 
7.3 Differential sampling by smear status 
 
We assumed that smear-positive cases were more likely to be sampled. To do this, we modified 
the distribution of smear status in the full network relative to the empirical TRAX network. In 
the TRAX Study, 68% of XDR TB cases were smear-positive. To estimate the effect of 
oversampling smear-positive cases, we assumed that the proportion of smear-positive was 
smaller in the full network than we observed in TRAX.  
 
We modeled full networks in line with this scenario at various mean degrees (2, 5, 8, 10, 15, 20) 
and sampled 350 cases from each modeled network. 
 
7.4 Unmeasured factor contributing to transmission 
 
We hypothesized that a factor contributing strongly to transmission risk but that was not 
accounted for in our model (a ‘superspreading’ factor) might have a substantial impact on full 
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and sampled network structure.7,8 In a recent study examining superspreading behavior among 
TB cases, the mean number of secondary infections per index case was 0.77, and the 90th 
percentile of the distribution of secondary infections was 10 infections per index.4 Consistent 
with these findings, we hypothesized that a ‘superspreading’ factor present in a minority of the 
population might increase transmission by at least 10 times (10x), that is, cases with this factor 
would be responsible for 10 times as many transmission events as those lacking this factor.  
 
We created a ‘nodefactor’ term in the model for this unmeasured, superspreading factor. We 
tested superspreading factors ranging from 10x to 40x. To define the strength of a factor, we 
increased the degree in the network of cases with this factor relative to cases without the latent 
factor. The number of links in the overall network remained the same, but adding a latent factor 
caused them to be distributed differently (more among ‘superspreaders’, fewer among non-
superspreaders.) We varied the strength of the superspreading factor up to 40x to explore the 
effects on the distribution at higher values for latent factor strength. 
 
In addition, we varied the prevalence (0.10-0.30) of this latent factor. In the same study 
referenced above, approximately 10% of TB cases were associated with superspreading events. 
Thus, we varied prevalence starting at 10% to account for the possibility of high-transmitting 
cases may be undersampled, consistent with our findings from this analysis. 

 
The results of models assuming the strongest effect of the factor (x40) in the smallest proportion 
(10%) of cases are presented in the main manuscript.  
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Web Appendix 8: Simulation and sampling methods 
  

From each network model, we simulated 1,000 networks. We specified the following parameters 
of the Markov Chain Monte Carlo (MCMC) algorithm: we set the number of burn-in simulations 
as 100,000, the MCMC interval as 5,000, and the MCMC sample size as 10,000. 
 
We ensured that the MCMC algorithm used to estimate parameters for each model converged 
appropriately by checking for adequate mixing of the MCMC chain and sufficient exploration of 
parameter space using the mcmc.diagnostics function in the ergm package. 
 
We sampled 350 cases from each simulated, full network, mimicking sampling 350 cases in our 
TRAX Study from the larger population of XDR TB cases. We compared the degree distributions 
of modeled, sampled networks to that of the empirical TRAX network.  
 
We attempted to ‘match’ the following quantiles of the empirical degree distribution: (1) 10th 
percentile; (2) 25th percentile; (3) median (50th percentile), (4) 75th percentile, and (5) maximum 
(100th percentile).  
 
To statistically compare the degree distributions of the modeled and empirical networks, we used 
a modified Kolmogorov-Smirnov (K-S) test statistic calculated by bootstrapping techniques using 
the ks.boot function (in the Matching package) in R. We considered a two-sided alternative 
hypothesis and used 1,000 bootstraps to calculate P values. 15{Janssen, 1994 #935} 
 
We calculated a P value comparing each of 1,000 simulated networks against the empirical 
network, creating a distribution of K-S P values. We report the median P value from this 
distribution in Tables 2 and 3. 
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Web Table 8. Descriptive characteristics, sequencing-based network of XDR TB cases in the TRAX 

Study (≤5-SNP threshold), 2011–2014 

 No. (%) Mean 
By attribute    
HIV status    
    HIV-negative 78 (23) 6.2 
    HIV-positive, undetectable viral load 133 (39) 6.7 
    HIV-positive, detectable viral load 133 (39) 5.9 

    
Cough duration    
    No cough 128 (37) 5.0 
    1 month 60 (17) 6.5 
    2 months 51 (15) 8.1 
    3 months 72 (21) 8.1 
    4 months 16 (5) 4.6 
     ≥5 months 17 (5) 3.7 

    
Smear status/grade    
    Negative 109 (32) 6.9 

    Scanty positive 37 (11) 8.4 

    Positive, grade 1 59 (17) 4.6 

    Positive, grade 2 51 (15) 6.4 

    Positive, grade 3+ 88 (26) 5.7 

    
Sex    
    Female 202 (59) 6.1 

    Male 142 (41) 6.4 

    
Age category    
    ≤15 12 (3) 7.8 

    16–34 171 (50) 5.9 

    35–54 134 (39) 6.4 

    ≥55 27 (8) 7.9 

    
TB Strain    
   LAM4 259 (75) 8.3 

   Other 85 (25) 0.2 
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Year    
   2011 58 (17) 8.1 

   2012 107 (31) 5.6 

   2013 82 (24) 5.8 

   2014 97 (28) 6.4 
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Web Figure 2. Mean degree required to reproduce the maximum degree in the empirical network of 

XDR TB cases, 2011–2014 

 

 
Mean degree required to reproduce the maximum degree in the empirical network. Gray bars show the 

distribution of the number of links per case, or the degree distribution, of the empirical network (≤5 

SNPs) from the TRAX transmission study. Each colored line shows the median degree distribution across 

1,000 modeled, sampled networks for the corresponding model. Line color indicates the mean degree, or 

the average number of transmissions per case, assumed in the complete, simulated network. 
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Web Figure 3. Degree Distributions of Modeled, Sampled Networks Under Scenarios 1 and 2 Compared 

to Empirical Network of XDR TB cases, 2011–2014: Figure 2E with zoom (gray box) to show detail. 
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Web Figure 4. Effect of Modifying Complete Network Size on Modeled, Sampled Networks Under Random Sampling 

Compared to Empirical Network of XDR TB Cases, 2011–2014. 

 

Degree distributions of empirical (≤5 SNPs) and modeled, sampled networks under different scenarios. Gray bars show 

the distribution of the number of links per case, or the degree distribution, of the empirical network (≤ 5 SNPs) from the 

TRAX transmission study; colored lines show the median degree distribution across 1,000 modeled, randomly sampled 

networks for the corresponding model. Each model makes a different assumption about the total number of XDR TB 

cases involved in the transmission network during the time period of our transmission study (2011–2014), or the size of 

the complete transmission network. The model shown has a mean degree in the complete network of 10. 
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Web Table 9. Effect of modifying network size on modeled, sampled networks compared to the empirical network of XDR TB cases, 2011–2014 

Mean Degree 
Degree, 10th Percentile 
of Degree Distribution; 

Median (IQR) 

Degree, 25th Percentile 
of Degree Distribution; 

Median (IQR) 

Degree, 50th Percentile 
(Median) of Degree 

Distribution; 
Median (IQR) 

Degree, 75th Percentile 
of Degree Distribution; 

Median (IQR) 

Degree, 100th Percentile 
(Maximum) of Degree Distribution; 

Median (IQR) 

P Value 
(Median)4 

P Value 
(IQR)4 

Target (5-SNP) 0 0 1 7 62 — — 
Target (3-SNP) 0 0 0 1 22 — — 
Random sampling (scenario 1) with network size = 4,000 

2 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 3 (2, 3) 0 (0, 0) 

5 0 (0, 0) 0 (0, 0) 0 (0, 0) 1.(1, 1) 4 (4, 5) 0 (0, 0) 

10 0 (0, 0) 0 (0,0) 0.5 (0, 1) 1.75 (1, 2) 6 (6, 7) 0 (0, 0) 

20 0 (0, 0) 0 (0, 0) 1 (1, 1) 3 (3, 3) 10 (9, 10) 0 (0, 0) 
Random sampling (scenario 1) with network size = 2,000 (From Table 3) 

2 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 1) 4 (4, 5) 0 (0, 0) 

5 0 (0, 0) 0 (0, 0) 0 (0, 0) 1.(1, 0) 7 (6, 8) 0 (0, 0) 

10 0 (0, 0) 0 (0,0) 1 (1, 1) 3 (3, 3) 11 (10, 12) 0 (0, 0) 

20 0 (0, 0) 0 (0, 0) 2 (2, 3) 6 (6, 6) 21 (19, 22) 0 (0, 0.00001) 
Random sampling (scenario 1) with network size = 1,500 

2 0 (0, 0) 0 (0, 0) 0 (0, 0) 1 (1, 1) 5 (5, 6) 0 (0, 0) 

5 0 (0, 0) 0 (0, 0) 0.5 (0, 1) 2 (2, 2) 9 (8, 10) 0 (0, 0) 

10 0 (0, 0) 0 (0, 0) 1 (1, 1) 4 (4, 4) 14 (13, 15) 0 (0, 0) 

20 0 (0, 0) 0 (0, 0) 3 (3, 3) 8 (8, 8) 23 (22, 25) 0 (0, 0) 

Random sampling (scenario 1) with network size = 500   

2 0 (0, 0) 0 (0, 0) 1 (1, 1) 2 (2, 2) 11 (10, 12) 0 (0, 0) 

5 0 (0, 0) 0 (0, 0) 2 (2, 2) 6 (5.75, 6) 22 (21, 24) 0 (0, 0) 

10 0 (0, 0) 1 (1, 1) 4 (4, 5) 11 (11, 12) 39 (37, 41) 0 (0, 0) 

20 0 (0, 0) 2 (2, 2) 9 (9, 9) 23 (23, 24) 65 (63, 68) 0 (0, 0) 
 

1 1,000 networks were simulated from each model, each simulated network was sampled once. 
2 Note that target statistics for both the 5-SNP and 3-SNP empirical networks are shown. These are independent of the results from the modeled networks under 
scenarios 1 and 2, which are shown in the body of the table. 
3 Median of the 10th percentile of the degree distribution from 1,000 simulated, sampled networks. 
4 P values are from a Kolmogorov-Smirnov test with a two-sided alternative hypothesis, calculated using 1,000 bootstrap samples.
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Web Table 10. Descriptive Characteristics, Sequencing-Based Network of XDR TB Cases in the TRAX 

Study (≤3-SNP Threshold), 2011–2014 

 
No. (%) Mean 

Total network   — 

Edges (genomic links) 240 — 

Isolates (unlinked cases) 228 (66)  

Overall mean degree — 1.4 

10th percentile 0  

Median degree (IQR) 0 (0,1)  

Maximum degree 22  

Nodes with degree ≥ 10 9 (3)  

 
  

By attribute    

HIV status    

    HIV- 78 (23) 1.15 

    HIV+, undetectable VL 133 (39) 1.50 

    HIV+, detectable VL 133 (39) 1.37 

 
   

Cough duration    

    No cough 128 (37) 1.30 

    1 month 60 (17) 1.35 

    2 months 51 (15) 1.75 

    3 months 72 (21) 1.69 

    4 months 16 (5) 0.06 

    5 months 17 (5) 0.71 

 
   

Smear status/grade    

    Negative 109 (32) 1.49 

    Scanty + 37 (11) 1.73 

    Positive, grade 1 59 (17) 1.05 

    Positive, grade 2 51 (15) 1.35 

    Positive, grade 3+ 88 (26) 1.31 

 
   

Sex    

    Female 202 (59) 1.34 

    Male 142 (41) 1.42 

 
   



23 
 

Age category    

    <15 12 (3) 1.25 

    16–34 171 (50) 1.19 

    35–54 134 (39) 1.53 

    ≥55 27 (8) 1.78 

 
   

TB strain    

   HP 259 (75) 1.79 

   Other 85 (25) 0.09 

 
   

Year    

2011 58 (17) 1.84 

2012 107 (31) 1.36 

2013 82 (24) 1.10 

2014 97 (28) 1.34 
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Web Figure 5. Effect of Reducing SNP Threshold (≤3 SNPs) in the Empirical Network of XDR TB 

Cases, 2011–2014 

 

Degree distributions of empirical (≤3 SNPs) and modeled, sampled networks under scenario 1. Gray bars 

show the distribution of the number of links per case, or the degree distribution, of the empirical network 

(≤3 SNPs) from the TRAX transmission study. Each colored line shows the median degree distribution 

across 1,000 modeled, randomly sampled networks for the corresponding model. Line color indicates the 

mean degree, or the average number of transmissions per case, assumed in the complete, modeled 

network. 
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