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Since the popularisation of media streaming, a number of video streaming services are continually

buying new video content to mine the potential profit. As such, newly added content has to be

handled appropriately to be recommended to suitable users. In this dissertation, the new item cold-start

problem is addressed by exploring the potential of various deep learning features to provide video

recommendations. The deep learning features investigated include features that capture the visual-

appearance, as well as audio and motion information from video content. Different fusion methods

are also explored to evaluate how well these feature modalities can be combined to fully exploit the

complementary information captured by them. Experiments on a real-world video dataset for movie

recommendations show that deep learning features outperform hand-crafted features. In particular, it

is found that recommendations generated with deep learning audio features and action-centric deep

learning features are superior to Mel-frequency cepstral coefficients (MFCC) and state-of-the-art

improved dense trajectory (iDT) features. It was also found that the combination of various deep

learning features with textual metadata and hand-crafted features provide significant improvement in

recommendations, as compared to combining only deep learning and hand-crafted features.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

1.1.1 Context of the problem

Following the recent increase in the popularity of video streaming services, a large amount of video

data are continually uploaded to video sharing sites [1]. These sites depend heavily on video recom-

mendation systems to assist the users in discovering videos they would enjoy. A video recommendation

system is a user-level video filtering service that helps users explore the world of videos [2]. It offers a

more personalised experience to users by recommending the most relevant and appropriate videos for

them. This is performed by utilising algorithms to analyse the information about the videos and users,

as well as information on past interactions between the user and videos [3, 4].

Existing recommendation systems mainly use one of three approaches, namely the collaborative

filtering (CF) recommendation method, the content based (CB) recommendation method, and the

hybrid recommendation method. The latter is a combination of the CF and CB recommendation

approaches [2]. The CF recommendation method uses a user’s explicit or implicit feedback, such as

previous ratings and their watch history in order to predict the preference of the user. This is achieved

by recommending a video to a user if like-minded users have watched it or given it a positive rating

[2]. The CB recommendation method uses the target user’s profile and video content to predict their

preferences. Consequently, a video is recommended to a user if the content is similar to what the user

liked or watched before [5]. On the other hand, the hybrid recommendation methods combine both the

user’s feedback and the consumed video content in order to improve recommendations.

Most video streaming services that use a video recommendation system to compute video relevance,

based on user implicit feedback, use item-based CF methods because of their state-of-the-art accuracy

[6–9]. The implicit user feedback is used to model the user-video preference and to provide personalised

recommendations by computing video-to-video relevance scores. The main drawback of this strategy,
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is the cold-start problem, which occurs when the recommender system does not generate accurate

recommendations for users who have no historical interaction record (new user cold-start problem) or

when the system is not capable of recommending items in the catalogue to a user because these items

lack any interaction (new item cold-start problem) [7,10]. Given the current much higher rate for newly

uploaded videos than newly subscribed users in video streaming services [11], in this dissertation, the

new item cold-start problem is studied.

As a result of the tremendous increase in new video uploads, video streaming services have to deal with

unrated, unaudited, and completely new content, which they know nothing about [12]. This problem

is more severe for video streaming services that usually purchase new movies and TV series from

content providers to mine the potential profit [6, 13]. As such, the new item cold-start problem has to

be handled effectively to ensure that the purchased content is discovered by most of their users. This

dissertation addresses the new item cold-start problem by enhancing the recommendation task for video

streaming services, by combining various video content features in order to effectively recommend

newly added videos to users.

1.1.2 Research gap

Recent work on personalised video recommendation for streaming services has shown that recom-

mendation based on deep learning object features and hand-crafted audio features, combined with

collaborative filtering information have a higher recommendation quality compared to recommend-

ations based only on deep learning object features or metadata, such as genre or cast [7, 14]. This

is however still not the optimal solution, as deep learning action features that capture the motion

information in videos, and their complementariness to deep learning visual-appearance and audio

features, are not explored. This is important addition information that forms part of the rich and varied

information present in videos. Videos are characterised by actions and scenes that help their narrative

and pass on their message to the audience, which may have a significant influence on users’ preferences

[15–19]. For example, temporal sequencing of cars in a video where the cars in the scene might appear

stationary, yet the background is continually moving, could be an indicator of a car chase; an irregular

and complex kind of motion could be an indication of hand-held shot videos, which some people do

not like [20]. In addition, in the field of video recommendation, the utilisation of several deep learning

features that capture different aspects of the video content is still a rare, explored area compared to

hand-crafted features [21]. It is evident that there is a need to solve the new item cold-start problem by

implementing a hybrid video recommendation system, which uses the users’ past interactions with the

Department of Electrical, Electronic and Computer Engineering
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videos and considers the complementary information from different deep learning features, extracted

from the media contained in the videos. These features should capture the visual-appearance, as well

as audio and motion information in order to best exploit their presence and provide more accurate

personalised video recommendation to users in the new item cold-start scenario.

1.2 RESEARCH OBJECTIVE AND QUESTIONS

The objective of this research is to leverage deep learning action features extracted from videos and

its complementariness among deep learning visual-appearance and audio features to provide more

accurate personalised top-N video recommendations to users in the new item cold-start scenario given

the users’ implicit feedback. Top-N video recommendation is a method where N videos that a user

potentially likes but never watched are recommended. The video recommendation system should use

the users’ past interactions with the videos and various deep learning features extracted from the media

contained in the videos that capture their visual-appearance, audio and motion information. These

features should capture enough information from the videos necessary for video recommendation,

which should therefore play a noteworthy role in solving the new item cold-start problem. Accordingly,

a comprehensive investigation of how to effectively combine these features to further improve the

recommendation quality in terms of accuracy and beyond-accuracy metrics is conducted . Given the

identified gap in existing literature, this research work is intended to address the following research

questions:

1. Can the combination of the visual-appearance, audio, and action-related features, which capture

the visual, aural and motion information contained in the videos, provide better video recom-

mendation, with respect to accuracy and beyond accuracy metrics, than the visual-appearance

and audio features, which only capture visual and aural information?

2. What motion information from videos is the most predictive of users’ video preferences in new

item cold-start scenarios?

3. To what extent can the combination of hand-crafted features, deep learning features, and textual

features maximise the video recommendation performance?

1.3 HYPOTHESIS AND APPROACH

This research makes the following hypothesis: By finding, using, and augmenting existing video

recommendation models, with a combination of different video content features, a video recommenda-

tion system, will improve its recommendation with respect to accuracy and beyond accuracy metrics.

These features should capture visual-appearance, audio and motion information contained in the

Department of Electrical, Electronic and Computer Engineering
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videos. A combination of users’ implicit preferences with these features further improves the quality

of recommendation. In order to achieve this, the following approach was followed:

1. Investigate which audio, appearance and action-related features will best capture the multi-modal

information from the video content.

2. Investigate and implement video recommendation models that are most likely to work well with

these features.

3. Perform feature analyses to determine if these features are semantically meaningful before using

them as complementary information for recommendation models.

4. Perform a series of planned tests to find which of these features are most suitable for the task of

video recommendation.

5. Investigate and implement fusion methods in order to fully exploit the complementary informa-

tion from these features and enrich the recommendations.

1.4 RESEARCH GOALS

This research aims to show that the motion information captured by deep learning action features

and its complementariness among deep learning visual-appearance and audio features, in a video

recommendation system, provide more accurate personalised video recommendation to users. The aim

is to explore and implement different existing video recommendation models that use visual-appearance,

audio, and action-related features on their content description. These features, extracted from the

multi-modal and high dimensional information from videos, are combined into a single compact

fixed-length vector that represents information from all aspects of the video. This compact video

representation is used for the video recommendation in the item warm-start and cold-start scenarios.

This research also aims to understand whether motion information captured by deep learning action

features extracted with three-dimensional (3D) convolutional neural networks (CNNs) [15, 22], lead to

improved recommendations compared to hand-craft action-related features.

1.5 RESEARCH CONTRIBUTION

The implemented system best exploits the availability of different features that capture the visual,

aural, and motion information contained in videos in order to enhance the recommendation task and

improve the user experience. A performance comparison between different features and algorithms

is performed in this work in terms of accuracy and beyond-accuracy metrics in the item warm-start

and cold-start scenarios. This adds to the knowledge of using recommendation methods for videos, as

well as the selection and efficiency of techniques that fully exploit the complementary information

Department of Electrical, Electronic and Computer Engineering
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from the various feature modalities. This assists in understanding the role of action-related features

among visual and audio feature modalities in the video recommendation process. This research could

also enlighten various applications associated with the proposed system, such as recommendation

systems for movie theatrical releases, music to video retrieval, click-through rate prediction for videos,

personalised advertisement, and film distribution support.

1.6 RESEARCH OUTPUTS

1.6.1 Conference proceedings

The following conference paper was presented at the 23rd International Conference on Information

Fusion (FUSION) in 2020 and published in the peer reviewed proceedings of the conference.

1. A. Almeida, J.P. de Villiers, A. De Freitas and M. Velayudan, "Visual comparison of

statistical feature aggregation methods for video-based similarity applications," in 2020 IEEE

23rd International Conference on Information Fusion (FUSION), 2020, pp. 1-8.

1.6.2 Journal publications

The following article was submitted to a peer-reviewed journal for publication:

1. A. Almeida, J.P. de Villiers, A. De Freitas and M. Velayudan, "Multimodal deep learning

feature based information fusion for video recommendation," Information Fusion, submitted for

publication.

1.7 OVERVIEW OF STUDY

This dissertation is separated into 5 chapters, each dealing with different aspects of the work conducted

and is organised as follows:

• Chapter 2 presents a comprehensive literature survey of low-level and deep learning features

in the video domain, feature aggregation, fusion methods, and existing video recommendation

approaches that exploit video content. It underlines the theoretical background of different recom-

mender systems approaches. In addition, this chapter includes the advantages and disadvantages

of each method reviewed.

• Chapter 3 introduces the reader to the recommendation framework implemented in this work,

and describes the experimental setup.

• Chapter 4 presents the results obtained by using the experimental setup and recommendation

framework described in Chapter 3.

Department of Electrical, Electronic and Computer Engineering
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• Chapter 5 presents a detailed discussion of the results obtained.

• Chapter 6 draws conclusions about the research conducted and highlights recommendations for

future work.

Department of Electrical, Electronic and Computer Engineering
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CHAPTER 2 LITERATURE STUDY

2.1 CHAPTER OVERVIEW

The goal of this chapter is to provide an overview of the state-of-the-art research in video recom-

mendation approaches that exploit video content. This chapter begins by explaining and comparing

the various types of features used in the video domain to accomplish this objective. It discusses the

commonly used feature aggregation and fusion methods in video content analyses. In addition, the

fundamental concepts of recommender systems and their evaluations are discussed. Finally, existing

video recommendation approaches found in open literature, which exploit video content are reviewed

in detail.

2.2 FEATURE EXTRACTION IN VIDEO DOMAIN

Video recommendation systems typically exploit high-level features extracted from a video’s post-

release textual metadata such as plot, reviews, cast, genre, tags and director to generate recom-

mendations [5]. The metadata is generated by humans, which lead to features close to the humans’

interpretation and perception of the video, which is prone to errors, rare or unavailable for new videos,

biased, and might not fully represent the video [23–25]. For example, two videos can have similar

metadata, but their visuals and style can be considerably different, which can affect the users’ opinions

and feelings differently [26]. Consequently, relying on human-generated textual metadata may lead to

inaccurate recommendations and drastic degrading of system performance when this data is scarce

[24, 27]. In this regard, audio and visual features, extracted from the media contained in videos, are

likely to enhance the quality of recommendations as they generate valuable representations of the

videos. This is shown in video content analyses tasks such as video classification, indexing, and

retrieval [28–30].

In order to generate a video representation, features are extracted from the text, audio and visual
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modalities of the video content. While applying concepts from film theory, features useful for video

classification are usually extracted [20,31]. For example, the light level is a useful feature to distinguish

between horror and comedy films as they typically have low-light and high-light levels, respectively.

Whereas, the levels of motion are useful features to identify drama (low levels of motion), or sports

and action movies (high levels of motion). These features can be categorised into three classes, namely

text-based features, audio-based features, and visual-based features [31]. Regardless of which of these

are used, new metadata is generated by analysing video scenes to classify segments of video, such as

identifying horror scenes, violent scenes, car chase scenes, or specific types of sports in a video. In

this regard, this section reviews the hand-crafted low-level features and deep learning features used in

the video domain.

2.2.1 Hand-crafted low-level features in video domain

2.2.1.1 Text-based features

Text-based feature extraction is performed by extracting dialogue from speech, using speech recogni-

tion, or viewable text on screen [32–34]. It can also be provided in the form of closed captions, which

display the dialogue as well as the information about sound effects occurring in the video. These are

viewable text on the screen, which can be text on items that are recorded, for example, a street name on

a name plate. These are extracted using text detection methods and optical character recognition (OCR)

to convert the image of the text into machine-encoded text [35]. While working with text, a commonly

used method is to generate feature vectors, which represent the text, using a bag-of-words model [36].

In a bag-of-words model, the number of occurrences of any word is used; however, the information

about the order of these words is not kept.

The main advantage of text-based features in video classification, indexing, and retrieval tasks is the

simple comprehension between a specific genre and the features. For example, a transcript generated

from a news story weather report will have a lot of occurrence of the words cloud, weather, and

temperature. The disadvantages are that in general, most of the text extracted from videos is a

conversation between two or more people, which does not represent the plot well. Furthermore, not all

the videos have closed captions or dialogues available. Lastly, generating feature vectors to represent

text is computationally expensive since text can have a vast number of terms.

2.2.1.2 Audio-based features

Audio-based feature extraction is performed by first extracting the audio signals from the video. The

features are extracted from the time or frequency domain representation of the audio signal. The audio

Department of Electrical, Electronic and Computer Engineering
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signal is sampled at a certain frequency, and these samples are then combined into frames [37].

Some commonly used time domain features are the root mean square (RMS), the zero crossing

rate (ZCR), and the silence ratio [31, 38, 39]. RMS is a low level feature that represents the sound

loudness sensed by humans [39, 40]. For example, sports videos have a nearly constant level of noise

[41]. ZCR is a low level feature that represents the current frame by counting the number of times

the signal amplitude sign changed in it. Higher frequencies result in higher ZCR, for example music

has lower variability of ZCR compared to speech [42]. The silence ratio is a low level feature that

represents the amplitude values below some threshold within a frame [43]. Typically, the silence ratio

is lower in music than speech [44].

As mentioned, apart from the time domain features, frequency domain features are often extracted

as well. The commonly used frequency domain features, include energy distribution, bandwidth and

Mel-frequency cepstral coefficients (MFCC) [31, 44, 45]. The energy distribution is a low level feature

that represents the signal distribution across frequency components [46]. This feature is used to provide

the location in the frequency band where the frequency components are strong [39]. The frequency

centroid is typically lower in speech than in music [47]. Bandwidth is another low level feature, which

represents the frequency range of a signal [46,48]. Normally bandwidth is higher in music than speech

[48]. Lastly, MFCCs are low level features that are obtained using bins based on the Mel frequency

scale, which contain the logarithm of the spectral components. The discrete cosine transform (DCT) is

applied, and the coefficient values, in which most of the energy is concentrated are kept [49]. These

coefficients allow the original values to be approximated. The main advantage of audio features is that

they are not computationally expensive to extract, as they require less memory compared to textual or

visual features [31].

2.2.1.3 Visual-based features

Visual-based features are the most frequently used features in the video classification literature [28],

as humans perceive most of the information in the video based on their sense of vision [29]. These

features are commonly extracted from the scenes of a video or the frames of a video [29]. The scenes

of a video are the best way to segment a video. However, automatically identifying scenes and their

boundaries is very difficult [50]. Currently, the methods used in video content analysis tasks rely on

the extraction of frame-level and video-level features from consecutive frames where a video-level

descriptor is created by aggregating the features over time [22, 51]. As shown in Figure 2.1 a video
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is a collection of images that are called frames. A collection of frames is called a shot. A shot or a

collection of shots is called a scene.

Figure 2.1. The hierarchical division of a video where the smallest unit is a frame. These consecutive

frames then form a shot. Several shots combine to create a scene, and a video is then formed from one

or several scenes. (Adapted from [52])

Most of the visual features are extracted from videos according to the cinematic principles [20, 26].

These features are mostly colour based to provide information about light levels [20, 26, 53], object-

based to provide information about the specific types of objects [54, 55], motion based to provide

information about the action, and pace based to provide information about the length of shots in the

video [20, 56, 57].

A. Colour-based features are simple to obtain. They are extracted from a video frame by dividing

the video frame into regions. For each region the number of pixels are counted to obtain

a distribution. This distribution is represented using a colour histogram to capture spatial

information, and is used to compare two frames [58]. In order to make this feature robust to

different light conditions, before dividing the video frames into regions, the colour channel

of each frame is first normalised then converted to hue, saturation, value (HSV) colour space.

This feature is useful when using cinematic principles. For example, the mood of a user can be

affected by the amount of light and distribution of colour [59].

B. Object-based features can be computationally expensive and limited by the number of objects

in a video that are used to classify a video or retrieve videos that contain similar objects [60].
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These are features such as colour histograms, texton histograms, and mass variance and skewness

from objects [29, 61]. In order to extract these features, the objects in the videos have to be

identified, which may be difficult and time-consuming [29]. The object features commonly

used include scale-invariant feature transform (SIFT) [62], speeded-up robust feature (SURF)

[63], locally normalised histograms of oriented gradient (HOG) [64], deformable part based

features [65]. SIFT are features used for object detection and recognition. These features are

partially invariant to occlusion and illumination and completely invariant to basic geometric

transformation. It uses the general configuration of the image gradient. SURF are features

computed using integral images and an approximation of the Hessian matrix to detect the

interest points. The sum of the Haar wavelet transform around these points is calculated for

object detection and recognition. Locally normalised HOG are features extracted from localised

portions of an image by counting the number of occurrences of gradient orientation for object

detection. These features are robust to changes in light and colour and small changes in directions

and contour locations. Deformable part based features are features extracted by using a sliding-

window to detect objects and small picture segments to represent visual properties of the object

which are then arranged in a deformable configuration. This deformable configuration is used to

calculate the deformation cost for each pair of connected parts. An energy function is computed

by calculating the match cost for each part and deformation cost.

C. Motion-based features are usually extracted using moving picture experts group (MPEG)

motion vectors or by first calculating the optical flow. Optical flow is a dense field of displacement

vectors, which describes the translation of each pixel in a region. It is calculated using the

velocities of pixel brightness patterns in a sequence of frames. Some commonly used approaches

to extract optical flow are TV-L1 and MPEGFlow [66]. TV-L1 is the slowest to compute, but its

performance is significantly higher than that of MPEGFlow, which is faster by a large margin

[66]. Video motion can be categorised in two types, namely foreground and background motion.

The foreground motion is caused by object motion, while the background motion is caused by

camera motion. As a result, two types of motion features can be extracted and they generate

different stimuli to the observer [20].

Camera-based motion features are content attributes that describes different camera movement,

such as panning right or left, tilting down or up, and zooming in or out. Object-based motion

features are content attributes that describe the motion of objects in the video. They have attracted

much more interest in some recent video content analyses work [29]. Some of the most widely
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used ones are SIFT-3D [67], HOG-3D [68], motion scale-invariant feature transform (MoSIFT)

[69], spatio-temporal interest points (STIPs) [70], and improved dense trajectories (iDT) [71].

SIFT-3D and HOG-3D are extensions of SIFT [62] and HOG [64] descriptors into 3D. MoSIFT

is another extension of the SIFT descriptor and it captures substantial motion information along

with texture information by using optical flow to select SIFT features. STIPs is an extension of

the Harris corner detector [72] to 3D, where HOG and histogram of optical flows (HOF) [73] are

extracted and used as video features. The Harris corner detector is a combination of a corner and

edge detector using a local auto-correlation function. Lastly, iDT features are content attributes

that capture the motion of objects in the videos by using dense sampling and camera motion

removing techniques. They are an improved version of dense trajectory features [74] with the

difference being, the explicit computation of the estimation for the camera motion. iDT features,

aggregated using Fisher vectors (FV), are currently the state-of-the-art hand-crafted motion

features used on different video classification problems [75]. However, this performance comes

at the cost of high computational complexity that becomes difficult to deal with on large-scale

datasets.

D. Scene-based features are features that are extracted from a particular scene. Detecting scenes

are important since it segments the video, and most of the visual-based features are dependent

on it [29]. Scenes are detected and segmented before extracting the features. It is a challenging

task since the transition from one scene to another is performed in more than 100 different ways

[50]. The most used scene transitions are fades, hard cuts and dissolves. Fades are transitions in

which a scene gradually fades out to a monochrome frame and another scene gradually fades in

from a monochrome frame. Hard cuts are transitions in which a scene immediately stops and a

different scene starts. Dissolve is a transition in which a scene fades out while another scene

fades in.

Current strategies for scene-based features detect fade, hard cut and dissolve scene transitions

using a different method for each [76]. Fades are detected by calculating the first derivative of the

luminance mean for monochrome frames. Hard cuts are detected by first converting the frames

from the red, green, blue (RGB) colour space to HSV colour space in order to compute colour

histograms to obtain their intersection [59]. Next, a sliding window and an adaptive threshold to

frames with potential cuts are identified using a global threshold [76]. Dissolves are detected

using the luminance variances of the scene before and after the dissolve scene transition in order

to calculate a range from it. Thereafter, the first order difference of the luminance variance curve
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is computed in order to identify if the difference is within the range calculated [76].

Other approaches to detect scene transitions includes using an audio and vision integration-

based, as well as a fuzzy logic based approaches [77, 78]. The audio and vision integration-

based approach uses the visual and audio content to detect the scene transition by selecting a

scene boundary to be where the visual and audio content change simultaneously. The fuzzy

logic based approach uses the features to construct fuzzy rules. For example, hard cuts are

detected by computing colour histograms in the RGB colour space from frames and calculating

the intersections between them. Fades are detected using the edge-pixel difference between

consecutive frames, pixel differences, and intersection of colour histograms. Pixel differences

are calculated in the RGB colour space using the Euclidean distance. Edge-pixel counts are

calculated using a Sobel edge detector to detect edges [77].

2.2.1.4 Comparison of the low-level features in video domain

Table 2.1 summarises the advantages and disadvantages of the feature types described in this sec-

tion.

Table 2.1. Comparison of features

Approach Feature type Advantages Disadvantages

Text-based
OCR Can extract video text not

present in dialog

Computationally expens-

ive

Closed captions Easy to extract, high accur-

acy when not produced us-

ing speech recognition

High dimensionality

Audio-based
Time domain,

Frequency domain

Easy to extract, shorter in

length and size

Difficult to differentiate

similar sounds

Visual-based

Colour based Easy to extract, useful

when using cinematic prin-

ciples

No spatial information,

similar colour distribution

regardless of the actual

content

Object based Useful to describe the

video content

Costly and constrained to

a small set of objects
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Table 2.1 continued from previous page

Visual-based

Motion based Useful in a broad sense

when identifying action

movies

Difficult to distinguish

between object or camera

motion

Video Scene Not costly when pro-

cessing some frames

Difficult to identify scenes,

may not be accurate

2.2.2 Deep learning features in video domain

As a result of the massive number of videos being generated in modern times, it is unfeasible to rely on

manual processing of multimedia data to solve a wide variety of multimedia problems [79]. Therefore,

the task of automatically describing the content of a video has recently gained a lot of attention in

video research [79]. Recent studies on video content analyses use deep-learning features due to their

outstanding performance in different domains compared to hand-crafted features [22, 79]. These

are deep convolutional neural network (CNN) activations that represent the appearance information,

motion information, and sound information [22, 80–82]. These activations, also known as embeddings,

represent discrete categorical variables in a low-dimensional learned vector of continuous numbers.

They are extracted from two-dimensional (2D) or 3D deep CNNs that converts raw images into

compressed representations while removing any redundancy. These networks also require fewer

pre-processing steps compared to traditional methods [79], which makes it a practical solution for a

vast number of tasks, especially when dealing with large-scale video datasets.

In the video analysis literature, 2D CNNs are usually pre-trained on large-scale datasets before being

used on the target dataset. The datasets commonly used to pre-train these models are the ImageNet and

Places datasets [83, 84]. The ImageNet and Places datasets are large-scale labelled datasets used for

object and scene recognition. In particular, the ImageNet dataset contains images of generic objects,

while the Places dataset contains images of scenes and places encountered in the world. These datasets

are usually chosen for the models to learn generic object-centric or scene-centric features. Thereafter,

the pre-trained models are utilised in transfer learning strategies.

In video analysis tasks, three commonly used transfer learning strategies are fine-tuning the 2D CNN

models on the target dataset [85], knowledge transfer from the 2D CNN models to 3D CNN models

[86], and using pre-trained 2D CNN models as a feature extractor [30]. The fine-tuning approach trains

all layers or only the last layer of the target dataset. This is performed by using weights of the trained
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2D CNN as an initialisation step and then executing the training method. The knowledge transfer

approach uses the class probabilities of one model (2D CNN model) as a soft target for the other model

(3D CNN model). The feature extractor approach generates embeddings using the pre-trained 2D

CNN model given an input video file. These embeddings are used as a generic video descriptor. The

feature extractor approach is closely related to the fine-tuning method, which only trains the fully

connected layer (last layer) of the network, since the first layers remain intact. In contrast, the final

layer specialises to the classes of the input video. It is also the commonly used approach in video

retrieval and recommendation tasks that extracts and uses the non-textual video content features from

the videos.

Generally in video analysis tasks, 2D CNNs models receive the spatial stream (static images) or

temporal stream (multiple stacked optical flows) of the videos as input [80]. The spatial stream normally

contains the object appearance and the scene appearance in the video frames. This information is

represented by features extracted from the video frames, which is generated by the spatial convolutional

layers. The temporal stream explicitly describes local temporal movement between video frames.

The network, therefore, uses this stream to estimate the motion information present in the video

explicitly.

On the other hand, 3D CNNs are trained on multiple video frames or short video clips using spatio-

temporal convolutions [22]. These convolutional layers capture the spatial and temporal features of a

video without the need for multiple stacked optical flows or recurrent neural network layers to extract

temporal features. It is evident that the 2D and 3D CNN operations are very distinct, this is shown

in Figure 2.2.
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(a) 2D convolution (b) 2D convolution on multiple frames

(c) 3D convolution

Figure 2.2. Convolution operations with stride k performed by 2D and 3D CNNs models on a video.

a) The application of 2D convolution on a single frame with shape H×W , results in a frame. b) The

application of 2D convolution on multiple frames, L, with shape H×W , also results in a single frame.

c) The application of 3D convolution on a short snippet of a video, results in another short snippet, thus

preserving the temporal information contained in the original short snippet. (From [22], © 2015 IEEE)

A single frame or multiple frames from a video as input to a 2D CNN results in an image. On the other

hand, a video data volume (short snippets) as input to a 3D CNN, generates another video data volume

with the temporal information preserved.

One of the very first approaches exploiting CNNs to perform large-scale video classification tasks used

only 2D CNN architectures composed of spatial convolution layers [87]. The proposed CNN architec-

tures use as input multiple frames from the spatial stream of the videos. However, its performance is

relatively lower compared to state-of-the-art hand-crafted representations on a popular real-life action

recognition dataset, namely UCF-101 dataset [88]. The UCF-101 dataset comprises of 101 action

classes captured by different users in the wild. It is focused on human actions that can be divided into

five types, namely sports, body-motion only, person-person interactions, person-object interactions,

and playing musical instruments. The performance obtained using the proposed models was a clear

indication that given the nature of the 2D convolution operation, the models did not properly extract the

temporal information present in the videos. Therefore, 2D CNN models, which do not use the temporal

stream from videos, present significant limitations in video processing tasks on a motion-oriented

dataset [89]. They neglect the essential temporal information in the videos and only effectively capture

the spatial information of each frame.
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A video is beyond a simple set of static visual appearances. It is not only characterised by diverse and

complex visual information in each frame, but also carries embedded temporal information across

frames, such as long-term events and short-term actions [90–92]. This temporal information is the

very reason for cinema existence [26], and is a critical aspect for video analysis [93] and necessary to

accurately characterise videos aesthetically [20]. This notion is supported and proven in automatic

analysis of video content studies conducted over the past few years [15–19]. They show that the

temporal information is essential for accurate video understanding tasks since its unavailability leads

to a drop in performance. For example, the proposed two-stream CNN architecture in [89] uses single

video frames and multiple stacked optical flow frames as input. This architecture is composed of

two identical 2D CNN models, namely a spatial stream CNN model and a temporal stream CNN

model. The spatial stream CNN model extracts the spatial information present in the input video file

by learning it from individual video frames at a time. The temporal stream CNN model extracts the

temporal information present in the input video file by learning it from multi-frame optical flow. As

mentioned in Section 2.2.1.3, optical flow represents the motion information contained in the video

frames explicitly. As a result, the performance obtained by this approach shows that the temporal

information is indispensable when performing action recognition since the temporal stream CNN

model significantly outperforms the spatial stream CNN model. The fusion of these two models further

improves the performance of the system leading to competitive state-of-the-art accuracy. Although this

architecture showed promising results by using stacked optical flow to capture the motion information

of the video, there are still limitations because the architecture only uses 2D CNN models. For this

reason, later studies proposed to use spatial convolutions with recurrent neural network layers on

top [80]. The recurrent neural network layers are used to extract temporal features from the spatial

features that in turn model high-level variation of the video frames. However, fine low-level motion

information is critical in many cases and these models may not be able to capture them. In addition,

these models are also expensive to train, and the input should be pre-segmented.

Many recent studies adopted the use of 3D CNN architectures to effectively learn spatio-temporal

properties of videos [15]. This is due to their capability to simultaneously model the temporal and

spatial information contained in the video frames. Figure 2.3 shows the commonly used video

architectures to model a video for video analysis tasks.
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Figure 2.3. The commonly used video architectures to model a video where K is the total number of

frames, and N is the total number of neighbouring frames. (From [15], © 2017 IEEE)

As can be seen in Figure 2.3, the architectures that use 3D CNNs are just a natural extension of the

architectures that use 2D CNN. These architectures differ on the input stream that can be RGB or

optical flow frames. The architecture that is more related to how humans perceives videos is the

two-stream inflated 3D ConvNets (I3D) [15]. This architecture can handle multiple RGB frames from

videos along with multiple optical flow frames.

The study that proposes the I3D architecture performs an experimental evaluation of the generalisability

of the features generated by the model architectures shown in Figure 2.3 [15]. The models are first

pre-trained on split 1 of the kinetics human action video dataset [94] then fine-tuned on the split 1 of

UCF-101 dataset and human motion database (HMDB)-51 [95]. The kinetics dataset is a large-scaled

labelled dataset that includes a total of 400 action classes. It is focused on person actions such as

punching, person-person actions such as kissing, and person-object actions such as washing dishes [94].

The UCF-101 dataset is another large-scaled video action dataset that is smaller compared to the

kinetics dataset. Lastly, the smallest and the most complex dataset being used in the experiment is

the HMDB-51 dataset. This dataset is composed of 51 distinct action classes that occur in many

clips in the exact same scene. The distinct action classes can be divided into five types, namely

general body movements such as jump, general facial actions such as laugh, body movements with

object interactions such as shoot gun, facial actions with object manipulation such as smoke, and

body movements for human interaction such as sword fight [95]. The outcomes of the experimental

evaluation of features show that the video features generated by the two-stream I3D architecture

performs better than the features generated by the other four architectures shown in Figure 2.3. It is

worth noting that the number of frames used to train each model differs from model to model. The

I3D model has a high temporal resolution compared to other models in the study since it is trained
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on 64-RGB-frame and 64-flow-frame video snippets at 25 frames per second (fps). The other models

are trained with lower temporal footprint (input frames) because of their limitations to handle higher

number of frames. Additionally, the I3D model is much deeper compared to the other 3D CNN models

used in the comparison.

Aside from the experimental evaluation of features, the study in [15] also performed an experimental

comparison of the architectures shown in Figure 2.3. It trained the 3D CNN models from scratch and

the 2D CNN models were pre-trained on ImagedNet. The RGB I3D model performs better than the

optical flow I3D model on split 1 of the miniKinetics dataset, but performs worse on split 1 of the

other two datasets, namely, UCF-101 and HMDB-51. However, the RGB and optical flow I3D models

obtain better performance compared to the other architectures across the three datasets. Furthermore,

the best performance is obtained by late fusion of the RGB and flow I3D models prediction scores. It

should be pointed out that the performance obtained by the flow I3D model comes at a very expensive

cost of computing accurate optical flow. From the reported results, it is also noted that when videos

have much more camera motion, a model using optical flow frames performs worse than or equal to

its variant that uses RGB frames. This outcome is in line with results reported in previous studies

that found the optical flow to be noisy in such cases [80]. In addition, when the accuracy of the I3D

models are averaged over three splits of the UCF-101 and HMDB-51 datasets the performance of

the RGB I3D model is similar to the performance of the optical flow I3D model. Nevertheless, the

performance of the two I3D models are better than several state-of-the-art models, and once again the

best performance is attained by the two-stream I3D model.

A video representation is not perceptually complete if it does not contain the aural information from

the video. Recently, there has been an interest in large-scale audio classification using CNN model

architectures given as input the raw audio from videos or log-Mel spectrogram features extracted from

the audio stream [96, 97]. These studies have been motivated by the state-of-the-art performance of

CNNs in image classification when trained on large amounts of image data. A log-Mel spectrogram is

a visual frequency domain representation of the audio signal obtained using Fourier transforms and

converting the frequencies to Mel scale [97, 98]. This representation indicates how the frequencies of

the audio signal varies with time. It is a commonly used pre-processing step when using 2D CNNs

since audio signals are one dimensional (1D) signals (amplitude with respect to time), whereas, log-Mel

spectrograms are 2D signal (amplitude of a particular frequency at a particular time) [97].
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CNN architectures are usually used to perform acoustic action recognition, genre classification, and

object and scene classification [96–98]. These networks are also usually pre-trained on large datasets of

unlabelled or labelled sound data from videos to learn high-quality audio embeddings (features) [96,97].

For instance, audio embeddings from a VGGish model trained on the YouTube-8m (8 million videos)

dataset [97]. This model is a very deep 2D CNN that uses as input log-Mel spectrogram patches

extracted from the audio signal. The sound representation learnt by this model generalises well,

as evident by outstanding results reported in video retrieval and classification tasks [30]. Another

example is audio embeddings from a proposed audio-visual CNN architecture named SoundNet

architecture [96]. These embeddings have been used in video analysis tasks such as video ordering and

action recognition [99]. The SoundNet architecture is composed of two 2D CNN models for visual

recognition and one 1D CNN model for natural sound recognition [96]. This architecture is shown in

Figure 2.4.

Figure 2.4. SoundNet architecture trained by transferring object and scene discriminative knowledge

into the sound networks while optimising Kullback-Leibler (KL) divergence. The object and scene

distribution, are generated by 2D CNN models pre-trained on imageNet and Places205 datasets.

(Adapted from [96])

This architecture is a student-teacher network that transfers discriminative knowledge from the object

and scene recognition networks into a deep 1D CNN architecture, which performs natural sound

recognition. This is performed to exploit the natural audio-visual synchronisation. The SoundNet

architecture is trained using two-million (2M) unlabelled videos. The main objective of the proposed

study was to develop a neural network (NN) that learns a generic natural sound representation. The
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generalisation of this descriptor is proven to be effective given the performance obtained in several

applications such as action recognition and video ordering tasks [99].

The idea of learning a video representation, using the aural and visual signals separately, was

extended to learning hierarchical audiovisual concepts [98]. For example, the audiovisual Slow-

Fast (AVSlowFast) architecture proposed for video recognition tasks [98]. It is an architecture that

models vision and sound in a unified representation using a hierarchical audiovisual synchronisation

method. The architecture is shown in Figure 2.5.

Figure 2.5. Audiovisual SlowFast model architecture that is composed of two pathways for the visual

stream and one pathway for the audio stream from the video. The visual pathways are slow and fast

pathways that extract spatial and temporal features from the videos. The dimensions of their kernels

are denoted by the temporal T and channel C sizes, as well as the speed αF and channel βF ratios.

The audio pathway is an even faster pathway with respect to the visual pathways. The dimensions of

its kernel are denoted by the temporal T and channel C sizes as well as the speed αA and channel βA

ratios. (From [98], © 2019 IEEE)

As can be seen in Figure 2.5, the visual and aural features are fused at multiple CNN layers to obtain

a unified audiovisual representation. This architecture is composed of three pathways, namely a

slow visual pathway, a fast visual pathway, and an audio pathway. The slow visual pathway extracts
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features from the videos that capture the semantic contents that do not change at a fast rate. The fast

visual pathway extracts features from the videos that capture the fast motion information contained

in them. Lastly, the audio pathway extracts features that capture even finer temporal information

compared to the slow and fast visual pathways. This pathway is faster than the fast visual pathway.

Different from the SoundNet architecture but similar to the VGGish model, the 2D CNNs of the audio

pathway receives as input log-Mel spectrogram patches extracted from the audio signal. Various

experiments are carried out in the study that proposed the AVSlowFast model architecture. For action

classification experiments, the AVSlowFast model architecture achieves state-of-the-art accuracy on the

EPIC-Kitchens, Kinetics-Sounds, and Charades datasets. Additionally, the proposed architecture also

attained state-of-the-art accuracy in action detection experiments using the AVA dataset. Furthermore,

the generalisation of the features learnt by the AVSlowFast model is assessed on the HMDB-51 and

UCF-101 datasets, similar to the study that proposed the I3D model architecture. However, the model

is pre-trained on the Kinetics-400 dataset using a self-supervised learning (SSL) approach instead of a

supervised learning approach. This is chosen to investigate the quality of self-supervised audiovisual

features learnt with the AVSlowFast model. It was found that only fine-tuning the last fully connected

layer on the HMDB-51 and UCF-101 datasets, the AVSlowFast model provides features that obtain

significantly better performance compared to state-of-the-art SSL feature methods. Inversely, when

fine-tuning all layers on the datasets, the features learnt by AVTS model slightly outperform the

features learnt by the AVSlowFast model on the HMDB-51 dataset.

According to applied media aesthetic, the temporal and visual information from videos serve as crucial

elements that have aesthetic, informative, and emotional effects on users, which can consequently

influence user choices on videos [7, 12, 100]. It also produces a rhythm that is likely to stimulate

user preferences for movie trailers [101]. As a result of all these findings, the exploited features used

to represent the videos in this dissertation are neural network embeddings from pre-trained models.

These features capture the visual, aural, and temporal information from videos. A hybrid video

recommendation system uses the features comprehensively to exploit their availability and provide

more accurate personalised video recommendations to users.

2.2.3 The semantic gap

The semantic gap is the dissimilarity between the low-level features and the semantic properties of

the multimedia content that users interpret. This problem has recently received great attention in

multimedia retrieval systems, given the exponential growth of video content available online [102].
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Several studies conducted by the multimedia information retrieval community have shown that it

remains challenging to bridge the gap between low-level features and high-level features [103].

In the context of video recommender systems, as mentioned in Section 2.2, these systems typically

exploit high-level features extracted from post-release textual metadata of the videos for rating pre-

diction. These features are primarily chosen because of the semantic gap. These video recommender

systems assume that the stylistic properties of videos (such as the features mentioned in Section 2.2)

do not significantly influence the user preferences compared to the high-level semantic features of

the videos (such as genre and director metadata). Recent works carried out by the recommender

system community, however, indicates the complete opposite [102]. The user preferences are mainly

influenced by the visual properties of the items (low-level features) instead of their semantic properties

(high-level features). However, low-level features may not be semantically understandable which can

lead to recommendations that are difficult to explain [21].

Nevertheless, the semantic gap can be narrowed using low-level features, which achieve results that

are semantically understandable. It can also be narrowed by leveraging the features oriented in a

manner where the correlations between the human labels are learned as much as possible [102]. In

this dissertation, the low-level features are chosen according to these principles, however to quantify

the semantic gap it would be necessary to perform a user-centric online experiment [102], which is

out-of-the-scope of this research work.

2.3 FEATURE AGGREGATION METHODS

As mentioned in Section 2.2, current methods for video content analysis rely on the extraction of

frame-level and video-level features from consecutive frames. A video-level descriptor is created by

aggregating the frame-level and video-level set of features over time using several aggregation methods

[22, 51, 104–106]. Common temporal feature aggregation approaches are statistical summarisation,

bag-of-visual-words, vectors of locally aggregated descriptors (VLAD), FV and recurrent neural

network (RNN) [82, 104, 107–111]. Statistical summarisation is the simplest method to obtain a

video-level descriptor from the set of extracted features that represent the video content. It discards the

temporal ordering of the features in the video and only captures their distribution. The video-level

descriptor is obtained by calculating a statistic summary of the video features using statistical functions

such as maximum, mean, median, median absolute deviation, and variance [107].
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Bag-of-visual-words, FV, and VLAD are feature encoding methods that obtain a video-level descriptor

by quantising the video features. They are traditional orderless aggregation methods, which depend on

a codebook that can be learned in an unsupervised, discriminative, or end-to-end manner [112, 113].

Typically, the Bag-of-visual-words method quantises the features by generating visual words using the

k-means clustering algorithm [108]. The FV method quantises the features using a Gaussian mixture

model (GMM) [110], and the VLAD method quantises the features by generating centroids using the

k-means clustering algorithm [109]. Training these encoding modules in an end-to-end manner by

integrating them in a neural network has been gathering interest and gaining importance as significant

improvements have been noticed for a video-level descriptor and classification [51, 114].

Recent studies have been exploiting RNN models, such as long short-term memory (LSTM) and gated

recurrent unit (GRU) for sequential aggregation of the video features to obtain a video-level descriptor

[82, 105, 106, 115]. These models capture the temporal ordering of the video features explicitly,

given its ability to learn long-term correlations in the time domain [80]. However, the training of

RNN models require a large amount of data where the input must be pre-segmented. In addition, the

video-level descriptors obtained from these models show similar results to temporal mean or max

pooling methods [82, 105].

2.4 FEATURE FUSION METHODS

To further improve the video recommendation performance, visual, aural, and motion features that

are extracted from the video content, as well as the textual features extracted from the metadata

information, should be fused. This operation enriches the training and recommendations. In the

literature of video content analysis, two general fusion strategies are used, namely early fusion and late

fusion [116].

2.4.1 Early fusion

Early fusion is a scheme that combines unimodal features into a single multimodal representation

before training a model. This fusion strategy obtains a truly multimedia feature representation, since it

aims to map different video content features to a unified one [116]. Some of the commonly used early

fusion methods are concatenation (concat) of unimodal feature vectors, summation (sum) method and

maximum (max) method [14,85]. These methods combine unimodal feature vectors associated with the

same video to obtain a fused multimedia representation. The concatenation of unimodal feature vectors

combines different feature vectors to form one large video level descriptor, which is used as input

for model training. This enables the machine learning algorithm to model the concatenated features.
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The sum method averages the feature set in a homogeneous feature space in order to form the final

video-level descriptor [85]. The max method is similar to the sum technique, with the only difference

being the way the features are merged [85]. It selects the highest value from the corresponding features

to generate the final video-level descriptor.

The main advantage of early fusion techniques is that they take into account the correlation and

interactions among the features of each modality. Furthermore, they only require one training phase

and one single model for inference. The disadvantage is that it is a challenge to combine features

into a common representation, especially when working with features that represent information that

is diverse and heterogeneous. This is the case for multimodal information from video content. One

approach to solve this problem is to use correlation analysis methods such as canonical correlation

analysis (CCA) or its extensions [7,117,118]. CCA assumes that two sets of data have some underlying

correlation in order to jointly learn the shared latent factors and reduce the dimension across two

or more heterogeneous feature spaces [7]. This can close the heterogeneity gap encountered in

the multimedia information [118]. Consequently, correlation analysis methods have recently drawn

significant attention from the multimedia research community [118]. The general approach for early

fusion is illustrated in Figure 2.6.

Figure 2.6. The general approach for early fusion. Visual, motion, auditory, and textual features are

fused before training the model. (Adapted from [116])

2.4.2 Late fusion

Late fusion is a scheme that combines the prediction scores of separate models into a more accurate

final set of results. Each model is trained with a single modality . This method focuses on the strength

of the different modalities individually. Instead of obtaining a single multimodal representation at

feature level, this method obtains a multimodal semantic representation. Some of the commonly
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used late fusion methods are a simple or weighted score average, bilinear product, and learning-

to-rank techniques [119]. The major advantage of late fusion techniques is that the performance

divergence, usually encountered when working with heterogeneous content features, can easily be

addressed because it does not depend on the representations of different modalities [14]. The significant

disadvantage is that late fusion methods have the potential loss of correlation in mixed feature space

because they do not analyse the correlation across features. Moreover, the combination of the prediction

scores requires that each modality has a separate trained system, and that an additional learning stage

is necessary for the combination. Figure 2.7 shows the general approach for late fusion.

Figure 2.7. The general approach for late fusion. Different features are used by separate recommender

models where the rating prediction scores of each model is combined to yield a final prediction score.

(Adapted from [116])

2.5 RECOMMENDER SYSTEMS

Recommender systems are a subset of information filtering systems that aim to recommend the most

relevant and appropriate items to users [120]. This is achieved by predicting the preference or rating

a user would give to an unseen item. They can be used in different application domains such as

e-commerce, music and video recommendation. In this research study, the domain of interest is video

recommendation. Therefore, the term item will be used interchangeably with video, which refers to

the element recommended to users. Table 2.2 shows the commonly used symbols for recommender

models.
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Table 2.2. Common symbols for recommender models

Symbol Definition

U Set of users

I Set of items

F Set of features

rui Feedback of user u to item i

N Number of recommended items

In order to make predictions, recommender systems can use different types of prior information.

The most common types of prior information used in literature are user interactions with items, the

information about the content of the items, and when available, the demographic information about the

users [5]. This information is also known as profile. It is widely used in recommender system data

structures, such as matrices, where U , I and F are the sets of all users, items, and features, respectively

[121]:

A. User rating matrix (URM) is a |U |× |I| matrix used to represent the explicit or implicit user

feedback to items. Depending on the problem at hand, the values of each cell usually are real

numbers or binary (0 or 1). Real numbers are used when ratings that a user gave to items (explicit

feedback) are represented. Binary values are used when only the implicitly collected observation

of user interactions with the items (implicit feedback) are represented.

B. Item content matrix (ICM) is a |I| × |F | matrix used to represent the profiles of the items.

These profiles are composed of features, which represents the information about the content

of the items. These features can be of different types, such as real-valued, binary, or strings.

Usually for strings, such as video metadata, the values are encoded in a binary profile. This

means that for an item at row i and a feature at column j of the ICM, the value 1 or 0 represents

the presence or absence of that feature, respectively.

C. User content matrix (UCM) is similar to the ICM with the only difference being that instead

of the matrix being composed of the profiles of the items, it is composed of the profiles of the

users. Its shape is |U |× |F |, where in this case F is the set of all features attributed to users.

Usually, this matrix represents the age, gender or other demographic data of the users which are

encoded in a binary profile in the same fashion as the ICM.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

27



CHAPTER 2 LITERATURE STUDY

As described above, recommender systems can use different types of prior information to solve the

recommendation problem. For this reason, the availability of these types of prior information defines

which techniques to use in order to generate recommendations. When only past users interactions with

items are available, the CF approach is used. The CB approach is used when the available information

is limited to the content of the items and about the target user. Alternatively, hybrid techniques are

used when two or more types of prior information are available. For example, past user interactions

with items, and information about the content of the items or demographic information about the users,

or both. The hybrid approach is used to generate robust and higher quality recommendations. Figure

2.8 shows the structure of the different recommendation techniques.

Figure 2.8. The structure of the three recommendation filtering techniques, namely content-based,

collaborative, and hybrid filtering. (Adapted from [121])

2.5.1 Collaborative filtering (CF)

CF is a domain-independent prediction technique that evaluates and filters items according to the

opinions of different users [122]. It assumes that items are rated similarly by users with similar

preferences. Therefore, it does not require information about the content of the items since the URM

is enough to predict the ratings and generate recommendations. This technique is the most frequently

used in the recommendation literature [6–8, 122]. It usually achieves state-of-the-art accuracy due to

the high correlation of the observed ratings across multiple users and items [6–8].
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Ratings in a CF system can be gathered explicitly, implicitly, or both. They are user feedback obtained

when the user rates an item according to a defined rating score through the interface of the system

(explicit ratings); or inferred from user’s actions during their interactions with the system (implicit

ratings). For example, the playback times of videos watched by the user. Often explicit feedback is

more reliable compared to implicit feedback. However, in many real world systems, the ratings can

only be inferred from the user’s implicit feedback. Furthermore, the type of rating gathered from

this feedback influences the design of the recommendation model. These ratings can be defined as

follows [122]:

A. Scalar ratings: consists of numerical ratings or categorical ratings. For example, 0.5 to 5 star

rating and text opinions such as neural, agree, or disagree.

B. Binary ratings: represent disliked and liked values defined as 0 and 1, respectively.

C. Unary ratings: indicates if a user observed, or consumed, or liked the item. When this rating is

absent in a cell at position (u, i) of the URM, where u and i are the user and item, respectively, it

means that the user has not interacted with the item yet.

There are two main approaches to collaborative filtering, namely memory-based and model-based

collaborative filtering.

2.5.1.1 Memory-based collaborative filtering

Memory-based collaborative filtering is a technique that performs predictions using all the stored ratings

and similarity coefficients directly [123]. This method is also known as the neighbourhood-based

method, because the relevance scores for any user-item pair are based on the user neighbourhoods.

A very popular and widely used algorithm to perform this task is the k-nearest neighbours (kNN)

algorithm. This algorithm can be implemented in two different ways [123]:

A. User-based: user-based recommendation methods predict the ratings and generate recommend-

ations to a target user, u, by finding a set of similar users based on their item preferences. The

idea is that if two users, u and v, are similar, then user v known preferences for item i can be

used to predict the unobserved preference of item i for user u. Hence, it is necessary to define a

similarity function, sim(u,v), that computes a similarity score, which represents how much a

user u and a user v have similar tastes. This score is usually stored in a user-user matrix. The

prediction of the rating of user u for item i is obtained by using the calculated scores to obtain
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the contributions of the ratings of the k most similar users on this item. This can be defined as

r̂u,i = ∑
v∈U

rv,i · sim(u,v)
|sim(u,v)|

, (2.1)

where r̂u,i is the predicted rating for user u and item i .

B. Item-based: item-based recommendation methods are similar to the user-based approach. The

only difference is that instead of finding a set of similar users, a set of similar items is determined

based on the preferences of other users to the items. This method assumes that if various users

have rated two items i and j together, then these items might be similar. Therefore, a similarity

function, sim(i, j), that computes a similarity score between the target item i and another item j

should be defined. This score is usually stored in an item-item matrix. After that, the predicted

rating r̂u,i for user u and item i is calculated by taking the weighted average of the k most similar

items based on the computed similarity scores as

r̂u,i = ∑
j∈I

ru, j · sim(i, j)
|sim(i, j)|

. (2.2)

2.5.1.2 Model-based collaborative filtering

In some application domains, it is necessary to handle a large-scale dataset, which makes memory-

based methods an impracticable approach [123]. To solve such problems, model-based methods

that do not need the whole dataset to generate recommendations are chosen. This method builds a

predictive model of user rating to provide item recommendation. Such models use machine learning

and data mining techniques to extract general behavioural patterns from the dataset. Predictions for

missing values in the URM are produced and recommendations to users are generated. Some of the

commonly used models, include Bayesian methods, decision trees, latent factor models, and rule-based

models [121]. When necessary, the parameters of these models are learned and tuned within the context

of an optimisation framework.

2.5.2 Content-based filtering

In contrast to collaborative filtering, content-based approaches analyse information about the users,

such as age and location, or information about the content of the items such as video metadata and

video-level descriptors, or both to generate the most relevant recommendations [5]. This is performed

by using only the target user’s interactions on other items. It is assumed that the user choice is

influenced by a combination of individual user attributes and certain features extracted from the content

of the items previously consulted [5]. For example, if it is known that a user has rated the movie

Batman highly, it is likely that user may prefer the movies Superman and Spider-Man because the item

descriptors of these movies contain similar genre metadata keywords.
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The CB approach typically is structured in three main steps namely [124]

1. Pre-processing and feature extraction: pre-processing data and extracting discriminative

features that captures the item information is the most important step in order to generate high-

quality recommendations to users based on their past behaviour. Discriminative features are

the highly predictive item features of user interests. These features are used to build the ICM

presented in Section 2.5.

2. Learning user profiles: the preferences of the users are extracted from the user’s preference

data and a model is used to learn these preferences along with the item’s features. One of

the most commonly used models is the Item-based k-nearest neighbors content-based filtering

(ItemKNN-CBF) algorithm. Similar to the memory-based collaborative filtering, this algorithm

only requires defining a similarity function sim(i, j), with the only difference being that in the

CB approach the function describes how close two items i and j are in terms of their descriptors.

Alongside the ItemKNN-CBF algorithm, the most widely used similarity function is the cosine

similarity, due to its high performance when working with any type of features (binary or dense

features).

3. Filtering and recommendation: the learned model from the previous step is used to predict

the preference or rating users would give to items and recommend these items. For user u and

item i this prediction is computed as

r̂u,i = ∑
j∈I

ru, j · sim(i, j)
|sim(i, j)|

, (2.3)

where r̂u,i is the predicted rating.

The main advantage of the CB approach is the ability to overcome the biggest challenge of CF, namely

the item cold start problem. As seen in Section 1.1.1, the item cold start problem occurs when the

preference data of an item is entirely unavailable, making the CF approach inapplicable. Hence, when

using the CB approach as long as all the discriminative features that represent the items have been

extracted, any item can be recommended, even if any user did not previously watch it. However,

this recommendation approach suffers from various problems, such as high sensitivity to user input,

limited content analyses, and over-specialisation. This results in recommendations that are too similar

to what the user liked in the past which consequently are not the most useful because they are not

novel [2].
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2.5.3 Hybrid filtering

In order to overcome some of the limitations of the CF and CB approaches, and improve recommend-

ations not only in item warm-start scenarios but also in item cold-start scenarios, the CF and CB

approaches are combined within a single model [7]. This combination is performed using hybrid

approaches, as used in many successful recommender systems. The hybridisation takes place in two

phases [125]:

1. Performing item filtering using CF and CB models to generate candidate recommendations

2. Use of hybridisation methods to combine these sets of recommendations in order to generate the

final recommendations for users

Some of the commonly used hybridisation methods are implemented in the following

ways [125]:

A. Weighted: This method is similar to ensemble analysis in standard classification tasks where

the predictions of different recommendation techniques are fused by calculating the weighted

aggregates of the predictions to generate a single recommendation.

B. Switching: This method chooses the recommendation technique to be used at any given point in

time based on several criteria in order to adapt and change in case of failure. Hence, the system

must define a switching criteria that reflects the recommender’s ability to generate good results.

For example, switching between CF and CB approaches in order to avoid the item cold-start

problem.

C. Cascade: This technique is a step-by-step process where a recommendation technique refines

the recommendation list generated by another recommendation technique.

D. Mixed: Recommendation lists generated by different recommendation techniques are presented

to users at the same time. Each item has various recommendations associated with it.

E. Feature combination: This technique treats the data from different recommendation techniques

as an additional feature within a unified recommendation model. For example, using CB filtering

features namely the information about the content of the items as one of the features in a CF

model.

F. Feature augmentation: The predictions from one recommender model are used as an additional

input by another recommender model.
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G. Meta-level: This method uses the internal model built by one recommender algorithm as input

for another recommender model. For instance, a CF model, which uses a model learnt using

content-based features, in order to compute predictions while solving the sparsity problem.

2.5.4 Comparison of the recommendation filtering techniques

Table 2.3 summarise the advantages and disadvantages of the recommendation filtering techniques

discussed above.

Table 2.3. Comparison of recommendation approaches

Approach Advantages Disadvantages

Collaborative approach

Not dependent on the content information

Can work with any type of item whose

information is unavailable or difficult

to analyse

No overspecialisation problem

Requires enough users to

provide satisfactory results

Suffers from the cold start problem

Content-based approach

Not dependent in the number of users

to make recommendations

No item cold start problem

Easy to explain why the items

were recommended

Adjust the recommendations quickly

according to changes in user preference

Ensures privacy

Overspecialisation problem

Knowledge of the field is

often necessary

Suffers from the limited content

analysis problem

Hybrid approach
Can solve the cold start and

overspecialisation problems altogether

Complexity is increased

since it requires additional settings

Often cannot explain why an item

was recommended to a user
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2.5.5 Similarity function

As presented in Section 2.5.1 and 2.5.2, often collaborative and content-based filtering recommender

systems require the computation of the similarity between two profiles. Some of the most commonly

used similarity functions are the cosine similarity, the asymmetric cosine similarity, the Dice-Sørensen

similarity coefficient, the Jaccard coefficient, the Tversk similarity, and lastly the Euclidean similarity

function [126]. The choice of the similarity function to be used depends on the item or user profiles

at hand. As for example, set based similarities such as Dice-Sørensen similarity coefficient, Jaccard

coefficient and Tversk similarity are only applicable to profiles composed of binary attributes. On

the other hand, cosine based similarities are applicable to any type of data, and Euclidean similarity

performs better when working with dense and continuous data.

2.5.6 Evaluation of recommender systems

In order to implement a reliable recommender system that works well in both laboratory and production

environments, it is fundamental to design a suitable evaluation workflow and use an adequate quality

measure to assess the performance of recommender systems. There are three main approaches to eval-

uate recommendation systems, namely online evaluations, user studies, and offline evaluations [127].

The most reliable evaluations of the quality of the recommendations generated by a recommender sys-

tem are user studies and online evaluations. These two types of evaluations involve users, and the main

difference between them is in how the users are recruited for the studies. Although these evaluations

are the most reliable, it is hard and costly to enrol a substantial number of users for evaluation purposes.

Secondly, deployed systems are usually not publicly available and are limited to some scenarios that it

can handle. Lastly, the generalisability of the system is limited because the actions of the test users in

the evaluation process cannot be fully controlled [127]. For these reasons, offline evaluations are the

most popular evaluation techniques used to assess the quality of recommendation systems. A range of

standardised frameworks and well-established evaluation measures have been proposed for this case.

However, one major drawback of offline evaluations are that they do not measure future interactions of

the users that should reflect the constantly changing user preferences. In fact, various user studies and

industry reports indicate that maximised offline performance does not necessarily lead to better value

for users or providers [3,128]. Nevertheless, despite of these disadvantages, offline evaluations are still

broadly used and accepted because they can be used to reduce the list of candidate algorithms that will

be assessed in actual online experiments [3, 127]. This allows for faster innovations. In addition, the

metrics are easy to understand and statistically robust. In this research study, offline evaluation metrics

are presented and described in detail as well as used in later sections.
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2.5.6.1 Accuracy metrics

In the literature, different methods have been used to assess the performance of recommender systems

in terms of accuracy measures [129]. The challenge faced in this field by researchers is to select the

best metric to measure the quality of their recommender systems in a specific context. However, in

most cases, the main goal is to generate a ranked list of top-n relevant items. Accuracy metrics such as

predictive, classification, and rank-aware accuracy metrics are the most used metrics in literature [129].

They measure the fraction of correctly predicted values.

1. Predictive accuracy metrics: measure how close the ratings, predicted by the recommender

system, are to the real ratings given by users. Some of the commonly used error-based metrics

are the mean absolute error (MAE), the mean square error (MSE), and the root-mean-square

error (RMSE) [130].

2. Classification accuracy metrics: measure how often the recommendation system generates

correct or incorrect recommendations through ground-truth values as in binary classification

problems. These metrics are useful when evaluating a recommender system that uses implicit

feedback to infer user preferences. In such systems, the positive class 1 represents the relevant

items to the user and the negative class 0 represents the items that are not relevant. Some of

the most commonly used classification metrics are the precision at top-N recommendations

(P@N) and the recall at top-n recommendations (R@N) [129, 130]. These metrics provide the

probability that a recommended item at top-N is relevant and the probability that a relevant item

at top-N is recommended.

3. Rank-aware accuracy metrics: quantify the ability of the recommendation system to generate

an ordered list of items to recommend, which corresponds to how the users would have arranged

the same items according to their preferences. These metrics are more suitable to evaluate

recommender systems in a domain where the relevance of the recommendations are non-binary.

These metrics may be excessively sensitive in domains where the user will not be interested in

the ranking of the items, apart from their relevance. Some of the most common and widely used

rank-aware metrics are the mean average precision (MAP), mean reciprocal ranking (MRR),

and normalised discounted cumulative gain (NDCG) [7, 130]. In addition, when the number of

items is large, sampled rank-aware accuracy metrics that provides a good estimate of the exact

metrics can also be used at the cost of increased variance [131].
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2.5.6.2 Beyond-accuracy metrics

It is important to emphasise that even though accuracy metrics are the most straightforward and quite

applicable measurement of quality, there are many important aspects beyond recommendation accuracy

which relate to both business goals and user experiments [132]. Accuracy metrics, when used alone,

may lead to a design and implementation of recommender systems that do not provide to the users an

effective and satisfying experience [7]. For instance, a recommender system that only recommends

popular items. This system often achieves a very high accuracy. However, it is not a very useful

recommender since it does not simplify the exploration of the catalogue, by assisting the users to

find new items. For this reason, complementary metrics such as beyond-accuracy metrics have been

proposed to help understand the actual quality of the recommender systems. They are measurements

that evaluate if the recommender system is only recommending relevant items that are highly popular,

or if it can leverage the whole catalogue while diversifying its recommendations for different users.

Some of the most common and widely used beyond-accuracy metrics are diversity, novelty, coverage,

and business indicators, such as the total generated revenue [132].

2.5.7 Existing video recommendation approaches that exploit video content

The inspiration behind the video recommendation system stems from the recent gain in popularity

of video streaming services [3]. Large amounts of video data are uploaded to video sharing sites

that rely heavily on the video recommender system to help users discover videos that they would

enjoy [2]. For most video streaming services, the computation of video relevance is based on user

implicit feedback [3]. For example, search and watch user behaviours. This feedback is used with

collaborative filtering to model the user-video preference in order to compute the video relevance.

While collaborative filtering is very efficient in the execution of the recommendation task, it suffers

from the new item cold-start problem [7, 10]. This problem can be divided into incomplete new

item cold-start problem and complete new item cold-start problem [10]. The incomplete new item

cold-start problem occurs when old videos have a limited number of records of user-video interaction.

Generally, in this scenario, the sparsity of the URM is higher than 85% [10]. The complete new item

cold-start problem occurs when a new video is added to the catalogue, and consequently no user-video

interaction records are available for it. The sparsity of the URM in this scenario is 100%; otherwise, it

is a warm-start scenario. As such, the system cannot make accurate recommendations for users since it

has not yet gathered sufficient user-video interactions. In most video streaming services, new videos

are continuously added at a very fast rate [3, 23]. Owing to this reason, it is crucial to discover and

recommend these new videos to users to increase user satisfaction and discourage them from moving
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to the competitor’s platform. However, CF models are unable to achieve this [7].

The most straightforward approach is to use CB recommendation methods to compute video relevance

directly from video content to address this problem [5, 12, 24, 27, 133–138]. It is possible to obtain

almost all the information about a video from its content, from which a video relevance table can be

generated, even without user feedback [6, 139]. Classic CB video recommendation systems typically

exploit high-level features extracted from the post-release textual metadata of the videos [5,24,134,135].

However, when this data is scarce, there is a significant performance drop in these systems. Owing to

this problem, video recommendation systems that do not resort to the metadata provided in textual

form, but instead exploit non-textual content features have been proposed to counteract the new item

cold-start problem [12, 27, 136–138]. They use manually engineered visual low-level features [136],

deep learning visual features [12, 137, 138], and deep learning visual and audio features [27] extracted

directly from the media contained in the videos. In this regard, CB recommendation systems and

hybrid recommendation systems, which use these features, are presented in detail below.

A video recommender system named Video Reach [140–142] is one of the earliest approaches that

leverage the rich multimodal information from the video content, namely audio, visual, and textual

modalities for video recommendation. It is based on multimodal content relevance and user feedback.

It calculates the similarity between two videos given their textual, visual, and aural features along

with weights to balance the contribution of each modality to the relevance. The textual features

used by the system are query, keywords and metadata as well as text obtained using automated

speech recognition (ASR) and OCR. The visual features used are normalised colour histogram (64

features), motion intensity (1 feature), shot frequency (1 feature), and automatically recognised video

concepts (36 features). Lastly, the audio features used are the average and standard deviation of

aural tempos extracted for the entire video. It is found that video and audio content analyses improve

video recommendations. This system, however, has some drawbacks. Firstly, videos with low textual

similarity are filtered out to ensure that only valid videos exist before visual similarities are determined.

Secondly, there is a limit to the number and form of visual and audio features. Only colour histogram

is used and this feature has a range of possible drawbacks, as stated in Section 2.2. Motion and audio

information are represented by only one and two features, respectively. Thirdly, weights are chosen to

balance the contribution of each modality to the relevance calculation; however, textual features are

given a much higher weight without investigating other arrangements. Because of these limitations,

the generalisability of the findings using this system is not clear.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

37



CHAPTER 2 LITERATURE STUDY

Other proposals use a content-based video recommendation system that utilises an ItemKNN-CBF

algorithm with low-level visual features. These visual features are extracted from colour, motion, and

video’s shot to predict and generate top-N recommendations [26]. They have been proven to influence

the audience preference presented by like or dislike of videos [101]. The proposed system first extracts

the videos’ keyframes. Secondly, the average length of the shots, the mean lightening key, colour

variance across all keyframes, as well as the motion standard deviation and its average estimated across

all frames are determined and used as the video content features. Thirdly, the ItemKNN-CBF algorithm

is used where the cosine similarity between the videos is calculated. This algorithm recommends a

video to a user if it is similar to what the user liked before [26]. Finally, the performance of the system

is assessed using a small-scale dataset of complete movies and movie trailers obtained from Youtube,

by calculating the precision and recall metrics through 5-fold cross-validation. A significantly higher

accuracy is obtained compared to an ItemKNN-CBF recommendation system, which uses high-level

semantic features based on metadata, such as genre. Therefore, the main finding is that low-level

visual features can represent the stylistic characteristics of a movie, which are applied by the director

to invoke specific emotions in the user. These effects are likely to affect the experience, opinions,

and feelings of the users about the movie. Another very important finding is that in the absence of

full-length movies to extract low-level features for recommendation task, features extracted from

movie trailers may be utilised as a substitute since they are highly correlated with their corresponding

full-length movies.

As pointed out in Section 2.2.2, deep learning approaches are being used to automate the learning of

features from the original data, aiming to capture a more accurate representation. Inspired by this

finding, a content-based movie recommendation system called DeepRecVi is proposed [139]. This

system uses visual features extracted by a pre-trained CNN to provide relevant recommendations.

These features are extracted from keyframes of movie trailers and represent objects and environments

since the model used is trained using the concatenation of ImageNet and Places-365 datasets. The

system requires a single feature vector that represents the whole movie trailer. This is obtained by

performing aggregation of the keyframe features using a scene categorisation approach. This scene

categorisation approach combines the vectors computed by assigning them to scene categories in an

unsupervised manner using k-means clustering. The final video-level representation is used as input to

the profile learner component of the system, which builds the user profile. Next, the user profile is sent

to the filtering component where it is exploited to generate top-N recommendation lists. The system is

evaluated using 9408 movie trailers from the Labelled Movie Trailer Dataset. The MAE, precision,
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and recall metrics show that the deep learning features extracted using a CNN model outperform the

low-level visual features [26]. This implies that the semantic representation by the former is more

robust compared to the latter. However, the performance of this system could be further improved by

extracting audio features to obtain a video representation that is perceptually complete. This, in turn,

could lead to the best overall performance.

Subsequently, given the outstanding performance obtained by the deep learning features in video

recommendation tasks, more video recommendation systems that use deep learning features have

been proposed [12, 143]. These systems provide recommendations based solely on the implicit visual

content in the videos. A content-based video recommendation system that uses pre-extracted visual

features of videos and three fused long short-term memory (fusedLSTM) networks is developed to

tackle the new item cold-start problem [143]. The three networks are combined to form a triplet

network [144]. The pre-extracted visual features of the videos are frame-level and video-level features

generated by a pre-trained inception-V3 network and a 3D CNN, respectively. These features are

combined and passed as input to a fully connected layer that gives as output fused embeddings. These

fused embeddings are passed to a similarity Kernel and triplet loss function. Three similarity kernels

are used in the experiments, namely the radial basis function, the shifted cosine function, and the

softmax function. The system is evaluated using the dataset provided by the content based video

relevance prediction (CBVRP) challenge, which contains pre-extracted features from 7536 TV shows

as well as 10826 movies trailers. Based on the results obtained, the fusedLSTM method with the

softmax similarity kernel outperformed the other kernels. It is clear that this model learns the video

content well by capturing the temporal relationships in the frames, which contribute to the video

relevance prediction. Three models, namely a random forest regression on video pairs model, a deep

learning based regression model, and a neural network with deep linear discriminant analysis (LDA)

model, are proposed to solve this same problem [12]. Using simple distance metrics, the random forest

regression on video pairs model calculates the similarity between two given video-level feature vectors.

As soon as the best features are chosen, the probability of dissimilarity is found. The deep learning

based regression model consists of two networks that work in parallel where the first network has time

distributed dense layers and LSTM layers while the second network has only dense layers. Frame-level

features and video-level features are used as input to the first and second networks, respectively. These

two networks are followed by a final layer that concatenates their outputs and generates the probability

of the similarity between two videos using a fully connected layer. Lastly, the neural network with the

DeepLDA model consists of a deep neural network that has three fully connected layers and uses a
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modified version of LDA as a loss function. LDA is an algorithm that reduces the dimension of the

features by finding linear combination of these features that best explain the classes that they represent.

This model uses the video-level features as input. Similar to the fusedLSTM model, the three models

were tested on the dataset provided by the Hulu content based video relevance prediction (CBVRP)

challenge. It was found that the DeepLDA model outperformed the other two models as well as the

fusedLSTM model.

Although the performance of the video recommendation systems [12, 139, 143] using deep learning

visual features is promising, their outcome could be further improved by using content-based audio

features. Unlike the systems proposed in literature [12, 26, 139–143], which rely heavily on textual

features or only on visual features, a CB video recommendation model is proposed in [27], which

combines content-based visual and audio features from raw video and raw audio of the video, respect-

ively. These features are obtained using the Inception-v3 network trained on ImageNet dataset and

Visual Geometry Group (VGG)-inspired acoustic model with a modified version of residual neural

networks (ResNet)-50, respectively. Since these two networks were not trained for recommendation

task, the system uses semantics extracted from watch patterns and a feedforward network to fine-tune

for recommendations of the extracted visual and audio features. As mentioned, to further improve

the system performance, the information from two sets of features that are obtained from different

methods should be combined using a fusion strategy of multiple features [140–142]. This work

proposes two different network architectures where one uses early fusion, and the other uses late

fusion. The early fusion strategy used is the combination of the two input features, namely visual and

audio features just before fine-tuning them for recommendations. The late fusion strategy used is the

combination of the two input features by element-wise multiplication after fine-tuning them separately

for recommendation. It is found that the visual and audio features are better at representing videos

compared to only using visual features. This outcome is expected since fusing these two modalities

made the video representation perceptually complete. The reported results also show that the late

fusion outperforms early fusion. Lastly, the visual and audio features need to be used with metadata,

or as side information to a collaborative filtering system, in order to outperform a normal CF method

with sufficient user-item interactions (ratings).

It is evident from the results of the previous study [12, 26, 139–143], and other literature studies,

that the use of audio and visual features, extracted from the video content, provides the best overall

performance [27, 136]. However, due to the nature of CB video recommendation models, the quality
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of recommendation generated by them is limited. A CB video recommendation model ignores useful

CF information necessary to exploit quality judgements of other users and to help users discover new

interests [5, 135]. These shortcomings lead to over-specialisation and lower accuracy than CF methods

in both incomplete item cold-start and item warm-start scenarios [7, 145].

A few recent works [7, 14, 146, 147] propose a hybrid video recommendation system to address the

limitations mentioned above that are present in CB video recommendation systems, to provide more

effective recommendations of videos that may be relevant to users. Hybrid systems incorporate, as

stated in Section 2.5.3, both CF information and features extracted from the post-release textual

metadata of the videos or features extracted from the media embedded in the videos, or both. One

of the earliest works that proposed a hybrid recommendation system, which uses non-textual video

content features uses a factorisation machine (FM) algorithm [146]. FM is a combination of support

vector machine (SVM) with factorisation models [146]. As shown in Figure 2.9, the system includes

low-level visual features as complementary video content information to the model to improve its

recommendation accuracy.

Figure 2.9. Generic framework of video analysis system adapted from [146] where object and camera

motion features are extracted from a shot detected in the video. In addition, colour, as well as lighting

features, are extracted from keyframes extracted from the video.

The features shown in Figure 2.9 are used as input to the FM model to generate recommendations.

This model is assessed by using a dataset of 13 million ratings given by 182 000 users to 13 373

movie trailers that where downloaded from Youtube. The proposed model achieves an outstanding

recommendation accuracy compared to the same algorithm using genre as a feature descriptor for

the videos. Another hybrid approach proposed in literature extracts low-level visual features from
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the video keyframes using a pre-trained deep neural network (DNN) and MPEG-7 descriptor [147].

The keyframes are obtained by first segmenting the video into shots using histogram similarity with a

threshold set to 0.75, and then selecting a representative frame from each shot, which is typically the

middle frame. The MPEG-7 descriptor captures the stylistic properties of a video while the pre-trained

deep leaning network captures the objects in the video. MPEG-7 features are extracted from each

keyframe. These features include scalable colour descriptor, colour structure descriptor, colour layout

descriptor, edge histogram descriptor, homogeneous texture descriptor, and deep-learning features. The

latter includes activation values of the inner neurons of the pre-trained DNN. A single feature vector

that represents the entire video is obtained by using aggregation functions such as the minimum, mean,

median, and maximum of the MPEG-7 features as well as the deep-learning features. A low-level

correlation between the two sets of MPEG-7 features, and deep-learning features is exploited using

canonical correlation analysis (CCA). As explained in Section 2.4.1, CCA is a fusion method that

analyses and combines information of two sets of different features, which are extracted using different

methods in order to create a fixed-length descriptor that contains the maximised pairwise correlation

between them [146]. Top-n recommendation lists are generated by using the fixed-length descriptor

from the CCA as a piece of side information in a collective sparse linear method (cSLIM). This hybrid

method is a feature-enhanced CF, which assumes that a correlation exists between the user preferences

and the similarity between two videos, represented by the video-level descriptors. The performance of

the implemented system, as discussed in [146], was evaluated using the MovieLens 20 Million ratings

(20M) dataset. It computed the top-N recommendation lists precision, recall, F1, and MAP metrics.

The lengths of the recommendation lists investigated are n = 1,10 and 20. The proposed system is

compared to another hybrid system that uses genre and tags as side information. From the reported

results, it can be seen that MPEG-7 features provides better video recommendations compared to

the deep learning features, it also outperforms the genre and tag features. The best overall result is

provided by the combination of the deep learning features and MPEG-7. From the study in [147], it

can be concluded that the stylistics properties of a video, represented by the MPEG-7 features, are

more powerful than the object semantic properties, represented by the deep learning features, and that

fusion of these two features leads the best hybrid recommendations.

Even though these systems [146, 147] outperform a CB video recommendation model in incomplete

item cold-start and warm-start scenarios, they are not applicable in a complete new item cold-start

scenario [7]. In order to address this limitation, a hybrid recommendation system named collaborative-

filtering-enriched content-based filtering (CFeCBF) has recently been proposed [7]. This system is not
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limited to only visual features, but exploits audio features as well as the collaborative information. The

system uses aesthetic-visual features (AVFs), block-level audio features, deep learning visual features,

and i-vectors audio features as side information. AVFs are features associated with the aesthetics

and style of a video. In the proposed work, the colour-related, texture-related, and object-related

aesthetic-visual feature types are used. Block-level audio features capture the spectral, harmonic,

rhythmic, and tonal aspects of audio. They are extracted from larger audio segments. Deep learning

visual features represent the object’s semantic properties contained in a video. Unlike the approach in

[147] which uses features extracted from a pre-trained DNN, CFeCBF system extract these features

from a pre-trained CNN. I-vector features represent the amount that a short audio segment is shifted

from the average video clip in the acoustic feature space. Similar to the proposed cSLIM system [147]

that combines various visual features, the CCA is used for the fusion of different features to improve

the recommendations. The performance of the CFeCBF system is evaluated by executing unimodal

and multimodal experiments using the MovieLens-20M dataset where, for the multimodal experiments,

two features are fused using the CCA. Two categories metrics, namely accuracy metrics and beyond-

accuracy metrics are calculated. The beyond-accuracy metrics used assess the diversification and

catalogue coverage capabilities of the recommender system. As pointed out in Section 2.5.6.2, the

beyond accuracy metrics are equally important compared to accuracy metrics, due to the fact that

a recommender system may provide recommendation with high relevance, but may not facilitate

exploration of the catalogue. The results of the experiments show that in the visual category, deep

learning visual features outperform AVFs, while in the audio category block-level audio features

outperform i-vector audio features. However, when visual and audio best features are combined,

they are outperformed by the AVFs plus deep learning visual features combination with respect

to accuracy metrics. In contrast, the beyond-accuracy metrics results show that the deep learning

visual features plus block-level audio features exhibit the highest diversity. By carefully checking

the reported unimodal and multimodal pure CB results, it is worth noting that in terms of accuracy

metrics, surprisingly the implemented CCA fusion method does not lead to better results compared to

the best unimodal content feature result. This outcome can be attributed to the diverse performance

results among the different content features. Nevertheless, the CFeCBF model solves the new item

cold-start problem better than a pure CB model by exploiting the collaborative information to optimise

the content-based side of the algorithm. However, it has a few limitations. Firstly, it is dependent

on the quality and noisiness of the item’s content descriptors because it uses them to learn feature

weights. Secondly, it is not applicable to any scenario since it approximates a collaborative model and

collaborative models do not perform well when there are too few user-item interactions (incomplete
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item cold-start scenario). Thirdly, it is limited to the fusion of only two features and treats all features

the same (same weight). Lastly, it requires a gradual switch between the CFeCBF and CF model when

recommending new items since CF algorithms are able to outperform the proposed model as soon as a

few interactions for these items are available.

Finally, it can be seen from the study that proposed the CFeCBF model that it is challenging to achieve

superior performance in both item warm-start and cold-start scenarios [7, 27]. A linear model named

collaborative embedding regression (CER) is able to resolve this problem [14]. This model is a

weighted matrix factorisation (WMF)-based hybrid recommendation approach. It uses the implicit

feedback of users, along with high-level or low-level video content features extracted from videos, in

order to learn the user preferences and generate top-N recommendation lists. The high-level features

are captured from the plot and metadata of the videos. The low-level content features, namely MFCC,

SIFT, iDT and deep learning visual features are extracted from the audio and visual streams present

in the video. Similar to all recommender systems mentioned in this literature review, this system

requires a video-level descriptor that represents the whole video. The model uses this descriptor as

side information. The FV encoding method is used to perform the feature aggregation task. The

performance of the proposed model is compared with existing state-of-the-art recommender models,

namely WMF, collaborative topic regression (CTR), deepMusic (DPM), collaborative deep learning

(CDL), Bayesian personalised ranking (BPR), and visual Bayesian personalised ranking (VBPR)

using a processed MovieLens 10 million ratings dataset [14]. The CTR, DPM and CDL are weighted

matrix factorisation based recommender models while VBPR is a Bayesian personalised ranking based

recommender models [14]. The proposed fusion method is compared with different early and late

fusion methods, namely early fusion by content vector concatenation, early fusion by latent content

vector stacking, accuracy fusion, average fusion, ranking SVM, and ranking BPR. The proposed model

and fusion method is better than many hybrid recommendation systems and fusion techniques used for

comparison, according to the reported findings, because it achieves high recommendation accuracy

when the videos have or have not been rated by the users (item warm-start and cold-start scenarios). It

is also noted that there is not a major difference between the different non-textual video features in the

item warm-start scenario. On the other hand, the deep learning visual features outperform the other

low-level video content features in the item cold-start scenario. The priority-aware late fusion of all

video content features delivers the best overall result.

While recent CB recommender models have begun using deep learning features to capture the visual
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and aural video information perceived by the users, it is clear that hybrid recommender models still

rely heavily on hand-crafted features. The motivation behind the choice of hand-crafted features

in literature [21] is that, recommendations generated by hand-crafted features are easier to explain,

given their semantically meaningfulness. However, as stated in Section 2.2.2, when dealing with huge

datasets, hand-crafted features become unfeasible and this is the case for many real-world datasets,

such as the one used in the Hulu CBVRP challenge. There are also signs that deep learning features,

extracted from video frames, represents semantically interpretable information. This outcome is

supported by the advancement of visual explanations from deep learning networks. This finding is

shown in Figures 2.10 and 2.11.

Figure 2.10. Discriminative regions specific to each object class and scene class. These discriminative

regions are generated given an input image A to an object-centric CNN model and a scene-centric

CNN model. These models focus on different aspects present in the image, namely people and shelters,

as shown in image B and image C, respectively. (From [85], © 2019 IEEE)

Figure 2.11. Class discriminative regions specific to each action that is taking place in the images.

These discriminative regions are generated by an action-centric CNN model. The numbers at the top

of each image indicate the scores obtained by the model, with respect to the ground truth action class.

(From [66], © 2019 IEEE)

As can be seen from the figures above, the embeddings extracted from the last convolution layer of

each CNN model represent the class discriminative regions very well. These regions vary from model
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to model since each CNN model focuses on different elements presented in the image in order to

perform classification. In Figure 2.10, the discriminative regions shown in image B are generated by

an object-centric CNN model. It can be observed that this model focuses on the people present in the

image. On the other hand, the discriminative regions shown in image C of Figure 2.10, are generated

by a scene-centric CNN model. It is clear that, in contrast to the object-centric CNN model, this model

focuses on the image background instead. Additionally, Figure 2.11 shows the discriminative regions

generated by an action-centric CNN model. It can be seen that this model focuses on the action in the

image.

In summary, hybrid recommender systems that leverage CF information along with visual and audio

features have a higher recommendation quality in comparison to recommendations based on only audio

and visual features in a complete item cold-start scenario [7,14]. The quality of these recommendations

is also better than the quality of recommendations generated by CF methods based only on past user

interactions with the items in incomplete item cold-start and warm-start scenarios [14]. However, these

approaches limit themselves while solving the new item cold-start problem, since deep learning action

features and the correlation among object, scene, and audio deep learning features are not explored.

Thus there is a need to investigate and improve these hybrid video recommendation systems [7, 14]

such that they utilise all these features, in a comprehensive manner in order to fully exploit the

complementary information from them and enrich the recommendations.

2.6 CHAPTER SUMMARY

A detailed literature review of the video recommendation approaches that exploit video content to

achieve better overall performance was discussed in this chapter. This review begins with feature

extraction techniques that are commonly used for video content analyses in the video domain. A

video is typically represented by hand-crafted low-level features or deep-learning features that need

to be aggregated overtime to form a video-level descriptor. It can be seen from various studies that

deep-learning features outperform hand-crafted features in a number of video content analysis tasks,

such as action recognition. To further enhance the system’s performance, different studies in the video

domain have also highlighted the importance of feature fusion. Two fusion techniques are widely used,

namely early fusion and late fusion. Early fusion techniques normally deliver a better performance in

comparison to late fusion techniques because of their capability to obtain a truly multimedia feature

representation. These techniques are also more feasible in contrast to late fusion techniques since they

only require one training phase. Additionally, it is explained how the collaborative filtering technique,
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the content-based filtering technique, and the hybrid filtering technique work. The collaborative filtering

techniques suffer severely from the item cold-start problem, which is the problem that is tackled in

this dissertation. The content-based filtering techniques do not suffer from the item-cold start problem

given the way they work, but their performance is extremely low when the items switch from cold (no

ratings) to warm. The hybrid filtering techniques overcome the limitations of collaborative filtering

and content-based approaches, such as the cold-start and overspecialisation problems. Finally, the

video recommendation approaches that exploit the video content are discussed. Several recent studies

in the video recommendation domain show that audio and visual based features are preferred over the

text-based features in content-based video recommendation models. Visual based features are more

informative than a set of genre data. Therefore, models trained using visual features perform better

than models trained using only genre data. Similar to video classification tasks, the fusion of visual and

audio features delivers better performance than only using visual features to train a model. However,

using only these two features is not sufficient to outperform collaborative filtering models when the

videos do not have a small number of ratings. In order to overcome this shortcoming, hybrid approaches

which use visual and audio features in conjunction with collaborative information are proposed in

literature. These approaches show that when items have a good number of ratings (item warm-start),

the collaborative information helps the model to obtain comparable results to collaborative filtering

approaches. In addition, this information also allows hybrid models to outperform a content-based

model when the items do not have any ratings (item cold-start).
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3.1 CHAPTER OVERVIEW

In this chapter, the methods used to obtain the results to answer the research questions of this disserta-

tion, are described and discussed in detail. This required an investigation of the video recommendation

models, as well as the feature extraction, and the feature aggregation methods used in the recommend-

ation framework. It also involves the experimental setup used to investigate, evaluate, and compare

different features and video recommendation models in the item warm-start and cold-start scenarios.

In particular, the preparation of the data, the evaluation method, the evaluation metrics, and the experi-

mental framework are discussed. The fundamental assumption in this work is that visual and aural

features extracted from movie trailers are highly correlated with visual and aural features extracted

from full-length movies, which can therefore be used as an alternative [7,26]. This enables the analyses

of visual and audio content in videos to be computationally efficient. In general, movie trailers are

short previews of movies, created in a way to garner interest from the audience. Furthermore, feature

fusion methods to combine different features are explored and addressed. This includes additional

investigation of different early fusion methods in order to fully exploit the complementary information

from the various video features to enrich the recommendations.

3.2 PROBLEM DEFINITION

As described in section 1.2, the main objective of this research work is to generate top-N video

recommendations to users in the new item cold-start scenario given the users’ implicit feedback and

the video features. This task can be mathematically described as

fu : U× I −→ relevanceScore, (3.1)
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where U is a set of all users, I is a set of all items and fu is an utility function that measures the

relevance score of a set of items to a set of users. As has been already noted in section 2.5, there are

different techniques that can be used to estimate this utility function when using the user feedback data

and the features of the items. In this work, the new item cold-start problem is solved with the hybrid

approach.

3.3 RECOMMENDATION FRAMEWORK

3.3.1 Feature extraction

A video recommendation system generates recommendations given two scenarios, namely the item

warm-start and item cold-start scenarios [14]. Given an item warm-start scenario, the video recom-

mendation system can recommend the top-N videos to a target user using solely the users’ implicit

feedback (ratings). However, to recommend the top-N videos to a target user given an item cold-start

scenario, video content features should be extracted and used to improve recommendations. Users are

likely to prefer videos with similar visual and aural modalities to those that they have already liked. For

this reason, the video features must be perceptually complete and semantically meaningful to produce

a video representation that is well aligned with the way the user perceives it [148].

Perceptually complete means that at least one feature vector should be defined for each video component

from which a user experiences the video, namely the visual and sound components [148]. On the other

hand, being semantically meaningful means that the feature representations should provide meaningful

variance for the different videos in which it is possible to infer or assign meaning (semantics) that are

relevant to the target domain. With this in mind, object, scene, action and audio information contained

in the videos are represented by various deep learning features. Even though an in-depth explication of

CNNs are out of the scope of this work, a brief explanation of how CNNs represent the video frames

is provided in this section. This is important to better understand the video features generated by the

pre-trained CNN models chosen in this research work.

3.3.1.1 Deep learning features

The deep learning features used in this work are CNN embeddings generated by intermediate layers of

CNN models. These embeddings are chosen because they are more generalised and robust to noise as

opposed to features extracted from the final output layer [85, 117]. The visual-appearance information

contained in videos is represented by object-centric and scene-centric CNN embeddings. The motion

information is represented by action-centric CNN embeddings. Lastly, the audio information is
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represented by audio CNN embeddings. The feature extraction processes for each visual-appearance,

audio, and action deep learning features are discussed below.

A. Object features

The object information from videos is captured using the Obj(IN) model that is pre-trained on

the ImageNet dataset [83] for the task of object classification. This model is a ResNet-152

network [149] that receives as input images of size 224×224 pixels. The videos are decoded at

1 fps, and each video frame is resized to 224×224 pixels. The object-centric embeddings are

extracted from the last convolutional layer. This layer has 2048 dimensions. Thus, each video

frame is represented by a tensor with 2048 dimensions. The object-centric embeddings of the

last convolutional layer is a tensor. Global spatial average pooling is applied to transform it into

a fixed dimensional vector. Each vector contains the video content object features, which are

present in a frame.

B. Scene features

The scene where an action is taking place may provide relevant information that supports actions

with object interactions. In this work, the scene information from video frames is captured using

a DenseNet-161 model [150] pre-trained on Places365 dataset [84]. This model is a 2D CNN

network with 161 layers. It consists of an input layer of size 224×224. Thus, each frame is

first resized to this scale before it is passed to the model. Scene-centric embeddings of 2208

dimensions are extracted from the last global average pooling layer. Similar to the object-centric

embeddings, the scene-centric embeddings are extracted from videos decoded at 1fps, and global

spatial average pooling is used to transform the tensor into a vector. This vector contains video

content scene features, which represents related contextual information about a scene in a frame.

C. Action features

The action features are extracted from videos with pre-trained 3D CNN models. These features

capture the motion information in a video [15]. In particular, each video is decoded at 24

fps and the visual stream is used as input to the Action(IG), Action(KN), Action(UCF), and

Action(HMDB) models. The Action(IG) model is a R(2+1)D-34 32-frames model [93] that

is pre-trained on the IG-65m dataset [151], which includes 359 human action classes that are

identical to the action labels of the Kinetics dataset [15]. This model consists of 34 layers, where

33 layers are convolutional layers and the final layer is a fully-connected layer with softmax (i.e.

the classification layer). The input layer receives clips consisting of 32 consecutive RGB video

frames with size 112×112 pixels. Thus, if the clips obtained from the video are composed of
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video frames with different resolution, these frames need to be resized. The output size of the

last convolutional layer is 512. The embeddings generated by this layer is passed to a global

spatio-temporal average pooling layer and fed into a fully-connected layer with classification

layer that predicts the 359 action classes. The action-centric embeddings, generated by the

global spatio-temporal average pooling layer, are extracted and used as the video content action

features. They form a 512-dimensional descriptor for each clip of 32 consecutive 112× 112

pixel frames. The size of the features extracted for videos recorded at 24 fps, is T v×512, where

T v = 0.75 f eatures
second ×duration(s). For example, a 120-second video has 90 R(2+1)D-34 global

average pooled features with 512 dimensions.

The Action(KN) model is a network similar to the Action(IG) model, with the only difference

being the final layer size of 400 rather than 359. This dimension corresponds to 400 human

action classes of the kinetics dataset, since the network is pre-trained on the IG-65m dataset

and fine-tuned on the kinetics dataset. Similar to the Action(IG) model, the action-centric

embeddings generated by the Action(KN) model are extracted from the global spatio-temporal

average pooling layer.

Lastly, the Action(UCF) and Action(HMDB) models are both a ResNeXT-101 64-frames

network [152] pre-trained on the Kinetics dataset and fine-tuned on the UCF-101 and

the HMDB-51 datasets, respectively. The network consists of 101 layers where the last

convolutional layer is followed by a global average pooling layer and a fully-connected

layer with a classification layer. The classification layer of the Action(UCF) model has 101

dimensions that correspond to the total number of action classes in the UCF-101 dataset. On the

other hand, the Action(HMDB) model has a classification layer with 51 dimensions. The size

of the input layer is 3 channels× 64 frames× 112 pixels× 112 pixels. Therefore, a 64-frame

clip needs to be resized if it has a different resolution. For these two models, video frames are

decoded at 24fps and processed in clips of 64 consecutive frames. Hence, every single clip

spans approximately 2.67 seconds of the video. The frames are first resized to 112×112 pixels,

before passing to the models. The action-centric embeddings generated by the global average

pooling layer with 2048 dimensions, before the classification layer, are extracted and taken

as the action features. In this way, the features are extracted at 0.375 features per second. For

example, a 120-second video has 45 ResNeXt-101 global average pooled features.
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D. Audio features

Audio features are extracted from audio frames with a soundNet model and a VGGish model

[97]. The soundNet model is a 1D CNN network that consists of 8 convolutional layers and 3

max-pooling layers pre-trained with the supervision of object-centric and scene-centric VGG

networks [96]. The object-centric and scene-centric VGG networks are 2D CNN models pre-

trained on imageNet and Places datasets, respectively. These models are used to teach the

soundNet model to recognise concepts given sound. The architecture of the soundNet model is

presented in Figure 2.4. In contrast to the visual models, the output layer of this network is also

a convolutional layer. The input layer extracts sound features from raw audio waveform in the

range [-256, 256] and a sampling rate of 22 kHz. Therefore, requiring the audio stream to be

re-scaled and re-sampled if necessary. In this research, the audio embeddings generated by the

fifth pooling layer are chosen to represent the audio information from the videos. The dimension

of the embeddings is 256. These embeddings are chosen because of their state-of-the-art results

in action recognition and acoustic classification tasks.

The VGGish model is a 2D CNN network pre-trained on the YouTube-8m dataset for audio

classification [97]. This model is a modified VGG architecture. In order to extract sound

features using this model, the audio stream of each video has to be pre-processed. The raw

audio waveform is first downsampled to a 16 kHz mono signal with 16-bit resolution and re-

scaled to the range [-1.0, 1.0]. Next, the audio signal is divided into a sequence of successive

non-overlapping 0.96s audio segments of the original video, and subsequently converted from

time domain to frequency domain. The conversion is performed with a short-time Fourier

transform (STFT). This operation is computed using a periodic Hann window that receives as

input frames with size of 25 ms and stride of 10 ms. The resulting spectrogram is mapped to 64

log Mel-spectrogram bins which in turn gives patches of 96 audio-frames×64 bins. These log

Mel-spectrogram patches form the input to the VGGish model that maps them to 128-dimensional

audio embeddings. As a result, each VGGish feature vector represents approximately 0.96×24

frames of a 24 fps video. For this reason, the size of the audio-level features extracted from the

audio of a video is Ta×128 VGGish features, where Ta = duration(s)
0.96 .

3.3.1.2 Textual features

Aside from the video features extracted from the video content, textual metadata features provide a

good representation of the videos. Textual feature modality is the most used video representation in
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traditional CB or hybrid approaches for video recommendation. Although the main objective of this

research work is to investigate the effect of various visual and audio stimuli on user preferences, it is

worth exploiting textual features as complementary information of video description.

A set of genres of each motion picture are used as the only type of textual feature in this work. The

motivation behind this choice is that genre metadata is highly available in the domain and represent

relevant elements in motion picture [7]. In addition, taking into account that genres are high-level

semantics attributes of movies, when fused with non-textual content features they will probably remove

ambiguity which in turn should lead to an improvement in performance.

Given the genres provided in the meta-information of videos, the genre feature vector is encoded to an

D-dimensional binary vector, where D is the total number of unique genres. A bit value of 1 in the ith

column of the vector indicates that the corresponding genre describes the video, whereas a bit value of

0 indicates that the corresponding genre does not apply to the video.

The genre feature vector used in this work represent 19 genre labels from the metadata of the motion

picture, namely adventure, animation, children, comedy, fantasy, romance, drama, action, crime,

thriller, horror, sci-fi, mystery, IMAX, documentary, war, film-Noir, musical, and western. Thus, the

dimensionality of the genre feature vector for each video is 19 where each feature represents one of

the 19 annotated genres.

3.3.2 Feature aggregation

Six statistical feature aggregation methods are investigated, namely maximum, mean, median, variance,

median absolute deviation and interquartile range. These types of feature aggregation methods are

chosen due to their simplicity and low memory consumption. They have been used in various content-

based video analysis tasks that utilise deep learning features and obtained significantly better results

[7, 30, 104] compared to the state-of-the-art aggregation methods, namely FV and VLAD. One reason

behind the poor performance obtained using the state-of-the-art FV and VLAD approaches is that

they are limited by the curse of dimensionality [153]. FV and VLAD approaches collect an excessive

number of features extracted from video frames that turn out to be unuseful and consequently serve

as a degrading factor. As a result, the assumption that the larger the video-level descriptor the better,

does not necessarily hold. Recent multimedia recommendation studies are in line with this outcome as

well [154].
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Another reason worth mentioning, is that deep learning features have different distribution properties

and higher discriminative ability in contrast to hand-crafted features [155]. Consequently, FV and

VLAD approaches perform significantly worse when aggregating deep learning features [155,156]. On

the other hand, the FV and VLAD approaches perform well when aggregating hand-crafted features like

SIFT [109,155,157]. The cause of this outcome is that the embedding step of these approaches improve

the discriminative ability of the individual features. However, reduction techniques such as principal

component analysis (PCA) should be used to reduce the dimensionality of the descriptors.

Nevertheless, statistical feature aggregation methods are the methods chosen in recent datasets which

support the exploration of multimedia tasks and provide pre-computed state-of-the-art features that

represents video content [107]. In this research work, they are used to create the video-level descriptor

vectors by aggregating the deep learning feature vectors presented in Section 3.3.1, namely the object-

centric embeddings, scene-centric embeddings, action-centric embeddings, and the audio embeddings.

The six statistical feature aggregation methods are discussed in a bit more detail below,

1. Maximum: This method finds the maximum value of the individual feature values along each

frame-level and video-level feature. It is defined as

max(x) = maxF
i=1(xi), (3.2)

where x are the feature vectors and F is the total number of features.

2. Mean: This method computes the arithmetic mean of the individual feature values along the

frame-level and video-level features. It is defined as

mean(x) =
1
F

F

∑
i=1

xi. (3.3)

3. Median: The median aggregation method finds the middle feature of the individual feature

values along the frame-level and video-level features. It sorts the features in ascending order

and chooses the middle value if the total number of features is odd, otherwise it calculates the

average of the terms in the middle. This is defined as

median =


(F+1

2 )thterm, if F is odd,

( F
2 )

thterm+( F
2 +1)thterm

2 , if F is even.
(3.4)

4. Variance: Variance is a measure of the spread of a distribution. This aggregation method

computes the spread around the mean of the individual feature values along the frame-level and
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video-level features. It is defined as

var(x) = mean(| x−mean(x) |2). (3.5)

5. Median Absolute Deviation: Median absolute deviation (MAD) is a measure of dispersion,

and is more robust to outliers compared to the variance measure. This method aggregates the

individual feature values along the frame-level and video-level features by computing the median

over the absolute deviations from the median. It is defined as

MAD = median(| x−median(x) |). (3.6)

6. Interquartile Range: Interquartile range (IQR) is a robust measure of statistical dispersion,

which computes the difference between the third quartile and first quartile. This aggregation

method finds the first and third quartile of the individual feature values along the frame-level

and video-level features and computes their difference. It is defined as

IQR = Q3−Q1, (3.7)

where, given an even 2n or odd 2n+ 1 number of features, the first quartile Q1 and the third

quartile Q3 is calculated as

Q1 = median of the n smallest values,

Q3 = median of the n largest values.
(3.8)

Additionally, to further enhance the discrimination of the video-level feature vectors, it is used the

signed square root (SSR) normalisation followed by PCA on the raw features. SSR is executed in

order to weaken the dominant dimensions of each video-level feature vector, so that they do not

overshadow the other dimensions during the similarity computations [14]. This normalisation function

is defined as

SSR(x) = sign(x)×
√
|x|, (3.9)

where x is the video-level feature vectors and sign() is the function that captures the sign of each feature.

Moreover, PCA is applied to obtain features that are more discriminative and less redundant. Hence,

the number of principal components is equal to the original list of features to ensure that no information

is lost while covering maximum variance among them. Furthermore, each video-level feature vector is

scaled into a unit vector by applying L2-normalisation (L2-norm) given by Equation (3.10),

L2-norm(x) =
x
||x||2

, (3.10)
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where ||x||2 is the Euclidean norm of the video-level descriptors defined as ||x||2 =
√

∑
n
i=1(xi)2. This

is performed to ensure that each feature contributes approximately equally to the final similarity

measure [158].

3.3.3 Hybrid recommendation model

The objective of this work is to explore different features that capture the rich and diverse multimodal

information present in videos, which may influence the users’ preferences to a considerable extent [21],

thereby alleviating the new item cold-start problem. In addition, the recommendations in the item warm-

start scenario should not be unacceptably low. For this reason, the state-of-the-art CER model [14] is

chosen as it is a hybrid recommender model that could lead to the optimal recommendation performance

in the item warm-start and cold-start scenarios while using a wide variety of features.

The CER model is a model based on the weighted matrix factorisation method for implicit feedback

datasets where a large matrix is decomposed into smaller matrices to reduce the dimensions and learn

latent vectors that describe users and items. Latent vectors are composed of latent factors which

represent categories that are present in the data in a much lower dimensional space [159]. These vectors

are used to predict ratings that are missing in the original URM since every user have videos that they

have not watched before. These videos are recommended according to the predicted URM.

The matrix factorisation operation is shown graphically in Figure 3.1 below,

Figure 3.1. Matrix factorisation operation that decomposes the original URM in order to predict if a

user is going to like a video never watched before. The predicted URM is the dot product of user and

video matrix. Similar to the original URM, each row of the predicted URM represents each user, while

each column represents different videos.
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As can be seen in Figure 3.1, each user and video is represented by a latent vector that describes

their relation towards all the latent factors. These factors describes user tastes with respect to the

characteristics of the videos. As a result, the scalar product of the user and video latent vectors

represents a sense of how much the user likes the video in terms of the latent factors. These factors are

hidden factors that represent the user’s preference towards a specific video like genre and actors [159].

The CER model with a single type of video feature follows a rating generation process described [14]

below:

1. For each user u, generate a user latent vector ωu ∈ℜk×1 and an embedding matrix E ∈ℜd×k,

where

ωu ∼N(0,λ−1
υ Ik), (3.11)

E ∼N(0,λ−1
e Ik). (3.12)

2. For each video i, generate a content latent vector h′i ∈ ℜk×1 and a latent video offset vector

εi ∈ℜk×1, where

h′i = ET fi, (3.13)

εi ∼N(0,λ−1
v Ik), (3.14)

and then set the video latent vector as

hi = h′i + εi. (3.15)

3. For each user-video pair (u,i), generate the rating

rui ∼N(ωT
u hi,c−1

ui ), (3.16)

where k is the dimension of the latent vector, d is the dimension of the content feature, λυ is the

hyper-parameter for regularisation of the user latent vector, λe is the hyper-parameter for regularisation

of the embedding matrix, λv is the hyper-parameter for regularisation of the latent video offset vector,

Ik is the identity matrix, fi is the feature vector, and cui is the confidence parameter for the user-video

pair (u, i) defined as

cui =


1, if rui = 1,

0.01, if rui = 0,
(3.17)

where the values 1 and 0.01 of the confidence parameter were chosen following the good prediction

performance achieved by CTR and CDL models [14]. The regularisation hyper-parameters are the

parameters used to avoid over-fitting. Given these hyper-parameters, the CER model is trained by
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minimising the negative log-likelihood as follows:
m

∑
u=1

n

∑
i=1

cui

2
(ωT

u hi− rui)
2 +

λυ

2

m

∑
u=1

ω
T
u ωu +

λv

2

n

∑
i=1

(hi−ET fi)
T (hi−ET fi)+

λe

2
||E||2F , (3.18)

where ||.||F is the Frobenius norm, and then the optimal latent vectors for each user and video as well

as the embedding matrix are obtained as follows:

ωu← (HCuHT +λυ Ik)
−1HCuRu, (3.19)

hi← (WCiW T +λvIk)
−1(WCiRi +λvET fi), (3.20)

E← (λvFFT +λeId)
−1(λvFHT ), (3.21)

where H is the video latent matrix, W is the user latent matrix and F is the feature matrix. For each

user u, Cu is a diagonal matrix with cui, i = 1 . . . ,n as the diagonal elements and Ru is a vector with rui,

i = 1 . . . ,n as its elements. For each video i, Ci is a diagonal matrix with cui, u = 1 . . . ,m as the diagonal

elements and Ri is a vector with rui, u = 1 . . . ,m as its elements. After obtaining the optimal latent

vectors and the embedding matrix, the rating score for each user-video pair in the item warm-start

scenario and the new item cold-start scenario are predicted as:

r̂ui =


ωT

u (E
T fi + εi) = ωT

u hi, item warm-start scenario,

ωT
u ET fi, new item cold-start scenario,

(3.22)

where r̂ui is the estimated rating score given a user-video (u, i) pair. As mentioned in section 1.1.1, in

the new item cold-start scenario items lack any interaction. Therefore, no latent video offset (εi) is

observed for new items [14].

In this work, the CER model is trained using the optimal hyper-parameter set reported in the original

paper [14]. However, the original paper does not mention the number of epochs and the stopping

criteria used in the training step of the CER model. Therefore, in this work, the number of epochs is

selected using the early stopping technique [126]. This method decreases the risk of over-fitting and

also decreases training time.

The main limitation of the CER model is that it does not learn from multiple types of video content

features at once. Therefore, there is a need to investigate different fusion methods to leverage the

complementary information from the diverse range of features, explored in this work, to further enrich

the recommendations. According to existing work found in literature [27, 160], the combination of

video-level feature vectors should lead to higher recommendation quality in the new item cold-start

scenario in contrast to the use of a single feature modality.
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3.3.3.1 Improving CER model using matrix scaling

Recently, successful recommender models named EIGENREC [161] and hybridSVD [162] have shown

significant recommendation quality improvement using a simple scaling trick. These models are matrix

factorisation based top-n recommendation algorithms that apply singular value decomposition (SVD).

The scaling trick is a matrix scaling technique which regulates how the popularity of items affects the

predicted ratings. It is defined in [161] as

R̃ =∆ RDd−1, (3.23)

where R is the URM, D = diag{||r1||, ||r2||, . . . , ||rm||} is a diagonal matrix that contains Euclidean

norm scaling for a given scaling factor d of the columns ri of R and lastly R̃ is the modified

URM.

From Equation (3.23), it is clear that when d is 1, the standard model is obtained (URM is not modified).

However, when the scaling factor is varied, the sensitivity of the SVD based models to the popularity

of the items, is modified. Higher values of the parameter d increase the sensitivity to popular items,

while smaller values increase the sensitivity to rare items. This adjustment leads to a new model with a

latent space with different internal structure. It has been found that values slightly below 1 yield the

best top-N recommendation performance for EIGENREC and hybridSVD models [161, 162].

Therefore, enlightened by these new findings, an improved CER model is proposed where the matrix

scaling technique is used to enhance the performance of the CER model. The matrix scaling technique

is used to produce a scaled-CER model in addition to the original non-scaled CER model. This choice

is also supported given the fact that a value of 1 for the parameter d leads to the original non-scaled

CER model. As a result, this indicates that the original non-scaled CER model implicitly chooses this

value that leads to a model, which is extremely sensitive to the prior popularity of the items. Hence,

this implicit default choice inevitably hinders the potential of the CER model in both item warm-start

and cold-start scenarios. In this research work, using the matrix scaling technique, the confidence

parameter cui for the user-video pair (u, i) of the scaled-CER model is defined as

cui =


1×||ri||d−1, if rui = 1,

0.01, if rui = 0.
(3.24)

The optimal scaling factor hyper-parameter d is searched by optimising the quality of the scaled-

CER in terms of MAP@5 on the validation set. This measure is defined in Section 3.4.4.1. The

hyper-parameter optimisation is conducted on all cross-validation folds individually with Bayesian
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optimisation [7]. Bayesian optimisation selects the next set of hyper-parameters based on the results of

the hyper-parameter sets previously evaluated. Once the optimal scaling factor is found on each CV

fold, a single optimal scaling factor is selected corresponding to the best average MAP@5 result across

all folds. Recent studies [7, 163] have shown that Bayesian optimisation is an efficient method for

hyper-parameter tuning. The benefits of this method are a reduction in search time and better parameter

values compared to a random search or grid search parameter optimisation method.

3.3.4 Enhancing the video recommendation task by combining different modalities from video

content

Multimodal fusion can be a very important component in video recommendation systems where

improving the overall recommendation quality of the system is considered as one of its most essential

aspects. The feature fusion methods commonly used are late fusion and early fusion. Late fusion

combines prediction scores of each model in order to obtain a more accurate final set of results. As a

result, the main disadvantage of this method is the loss of complementary information represented

by different features. This information is important for the final estimation. In addition, late fusion is

computationally more expensive given the fact that it requires separate systems and a learning stage

for the combination [7].

On the other hand, early fusion obtains a truly multimedia feature representation. It exploits the

complementary information about various characteristics of a video at feature level. This in turn

improves the discriminability of the video representations. In contrast to the late fusion approach, the

early fusion approach only needs a single model and one learning stage. The video information is

represented by features from different modalities, namely visual, aural, and textual that are combined

into a single feature vector, before being fed to a machine learning algorithm. A recent study in video

retrieval tasks shows that early fusion of object, action, face, audio, scene, optical character recognition,

and text features allows the system to obtain a better similarity measure and therefore makes it capable

of more robust video retrieval [30]. An increase on the overall performance of the system is observed

when different features are cumulatively fused [30].

Inspired by the aforementioned findings, various early fusion methods are investigated to enrich the

recommendations. This is executed to fully exploit the complementary information from the various

feature representations extracted from the video content. Furthermore, this is also investigated to

determine whether early fusion would achieve a similar outcome, observed in recent video retrieval
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tasks [30, 164]. It is hypothesised that a video recommendation system, which uses videos represented

in a shared unified space by a diverse range of deep learning features (visual-appearance, audio

and motion), should further improve the quality of recommendations in the new item cold-start

scenario.

The early fusion approaches, investigated to combine information from multiple modalities are

the concatenation (concat) method, the summation (sum) method, and lastly the maximum (max)

method [85]. The concat method is a technique that merges different feature vectors to obtain one

large feature vector that represents the final video representation. As this feature vector contains

many features, it increases the training time. Formally, for each video feature vector f , if there are L

feature vectors of different modalities that are represented with fi ∈ Rdi , the concatenation operation is

defined as

f f = { f1, f2, . . . , fL}, (3.25)

where f f is the final multimodal video-level representation by fusing the different features that capture

visual-appearance, audio and motion information from videos as well as textual information from

their metadata. The final size of this representation is the sum of the dimensions of all feature vectors

denoted as d = ∑
L
i=1 di.

The second early fusion method exploited in this work is the sum method. This method adds different

feature vectors in order to obtain the final video representation. Given a set of L feature vectors with

the same size that represents each video modality separately, their summation is denoted as

f f =
L

∑
i=1

fi, (3.26)

where f f is the final multimodal representation with size d. As can be seen in Equation (3.26), the sum

fusion technique is only defined if all feature vectors have the same size. For cases where a feature

vector i of size di is greater than min(d1,d2, . . . ,di,dL), PCA is applied for feature reduction. The

number of features is reduced to the size of the smallest feature vector before performing the fusion

operation.

The last fusion technique investigated is the max fusion operation. This fusion method is similar to

the sum fusion method in terms of the final multimodal representation size, but differs in the way the

feature vectors are combined. The max fusion method selects the highest value of each feature from a
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set of L feature vectors with the same size as

f f = maxd
i=1( f i

1, f i
2, . . . , f i

L), (3.27)

where f f is the final video representation and d is the feature vector size. Similar to the sum fusion

method, PCA is applied as a dimension reduction step for all feature vectors greater than the smallest

feature dimension in the set of L feature vectors.

3.4 EXPERIMENTAL SETUP

In order to compare a set of candidate models to choose the best performing one, a methodology

of evaluation is necessary. This section firstly describes the dataset utilised in this research work.

Secondly, the feature analyses experimental approach performed to check if the features used in this

research are indeed semantically meaningful, are presented. Lastly, a description of the evaluation

methodology, used in the training and testing of the recommender algorithms, is provided.

3.4.1 Dataset description

A processed MovieLens-10M dataset [14] is used to test the hypotheses and answer the research

questions set out in this work. This dataset is a processed version of the publicly available MovieLens-

10M dataset. It contains 9,988,676 million binarized ratings given to 10,380 movies by 69,878 users,

and 10,380 movie trailers for each movie. The processed dataset also provides five cross-validation

folds where each fold is divided into three sets, namely a training set, an item warm-start test set,

and a new item cold-start test set. The item warm-start and cold-start test sets correspond to the item

warm-start and cold-start scenarios. The item warm-start test set contains items that have some of their

ratings in the training set, whereas the new item cold-start test set contains items that do not have any

ratings in the training set. Figure 3.2 shows how the warm and cold-start items present on these sets

were selected.
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Figure 3.2. URM split for training, and item warm-start and cold-start test sets. The red colour

represents the warm items and the blue colour represent the cold items. Subset A contains warm items

where some interactions indicated by black squares (cells) represent the interactions used to form the

item warm-start test set. The remaining interactions in this subset form the training set. Subset B

contains cold items with respect to the training set for which their interactions are used to form the

cold-start test set.

The red colour represents the warm items that are in a subset A and the blue colour represents the cold

items that are in a subset B. The black cells in subset A represent the interactions that are randomly

and uniformly chosen to form the warm-start test set. The remaining interactions in this subset are

used for training. Subset B represents the new item cold-start test set that contains items that do

not have interactions in the training set and warm-start test set. This set was built by randomly and

uniformly item-wise splitting the URM. In addition, the dataset also provides trailers of movies and

pre-computed 4,000-dimensional MFCC [14], MoSIFT [69] and iDT [71] feature vectors for each

movie trailer. These hand-crafted features are used as the video content feature baselines.

3.4.2 Feature analyses

In this research, video content features are used by the video recommender models to solve the item

cold-start problem. For this reason, it is necessary to have an experimental approach that analyses

these features. This is performed to check if the features form semantically meaningful representations

before being used to generate video recommendations.

As mentioned in Section 3.3.1, the video content features extracted in this work should be perceptually

complete and semantically meaningful. This is extremely important because users are stimulated by

video content in several ways. Hence, to generate high quality recommendation lists, well-defined

discriminative features are required.
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The video content feature representations chosen for this work are perceptually complete because

they capture the aural and visual aspects of the videos. However, given the semantic gap described in

Section 2.2.3, it is challenging to determine if the non-textual video content feature representations are

semantically meaningful until using them to perform recommendations. As a result, an experiment

is performed to visually and quantitatively analyse the video content representations before they are

utilised in the video rating estimation. This is executed to evaluate if the feature representations are

semantically meaningful in terms of their genres before generating recommendations.

The visualisation of the video content representations in the feature space is carried out using a uniform

manifold approximation and projection (UMAP) algorithm [165]. This algorithm is a non-linear

dimensionality reduction technique that operates with similar properties to t-distributed stochastic

neighbour embedding (t-SNE) [166], but significantly faster and better at capturing the global structure

of the data as well as preserving local neighbour relations. Therefore, like other dimensionality

reduction techniques, its objective is to transform the data from higher-dimensional feature space

to lower-dimensional feature space while preserving the relative distances between the data points.

Another big advantage of this technique is that it can be used for pre-processing like PCA [167] while

t-SNE does not have major use outside visualisations.

The quantitative analysis of the video content representations is performed using 16 movie sequels

and the Bhattacharyya distance between them [168]. The Bhattacharyya distance is a similarity

measure between two distributions [168]. This distance measurement is used to give an insight

into the performance of the feature aggregation methods prior to recommendations. The greater

the distance between the in-sequel-mean-distance and out-of-sequel-mean-distance, the better. The

in-sequel-mean-distance is the average distance between a movie and its sequel movies. The out-of-

sequel-mean-distance is the average distance from all movies in a sequel to all movies that are not part

of that sequel. This in turn provides a more quantitative feature analysis that supports the visual feature

analysis.

The measurements in-sequel-mean-distance and out-of-sequel-mean-distance are defined as fol-

lows

µin =
1
T ∑Din, (3.28)
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where Din is the in-sequel distances and T is the total number of in-sequel movies, and

µout =
1

M×T

M

∑
j

T

∑
i

Dout , (3.29)

where Dout is the out-of-sequel distances, and M is the total number of sequels−1. They are computed

in the 2-dimensional UMAP space. Since a distance measure is used as a metric, the video-level

descriptors have been normalised before applying UMAP and calculating their distances. This is

necessary to eliminate the scale difference between the features to have them on comparable scales

and thus improve the video similarity task.

The distance measure used is the Euclidean distance. It is chosen because it is simple and consistently

found to be efficient in numerous video-based similarity applications [79, 107, 169, 170]. The smaller

the distance between videos the higher their similarity. It is calculated as follows

D(x,y) =

√
n

∑
i=1

(xi− yi)2, (3.30)

where x and y are video-level descriptor vectors and n is the total number of video-level features.

Given the mean distance and standard deviation of the movie trailers in-sequel and out-of-sequel

for each feature aggregation method, the Bhattacharyya distance is calculated. This measurement is

mathematically described as

Dbh(Din,Dout) =
1
8
(µin−µout)

2[σ2
in +σ2

out

2
]−1

+
1
2

ln
( | (σ2

in+σ2
out)

2 |
σinσout

)
, (3.31)

where Din is the in-sequel distances, Dout is the out-of-sequel distances, µ and σ denotes their mean

and standard deviation, respectively.

Furthermore, the pre-extracted hand-crafted features described in Section 3.3.1 are also visualised in the

2-dimensional UMAP space. These features were combined using the state-of-the-art FV aggregation

method due to their distribution properties [14].

3.4.3 Evaluation method

The evaluation process is performed using the dataset described in Section 3.4.1. It is conducted, a five-

fold cross-validation (CV) experiment where the training set, and the item warm-start and cold-start test

sets occupy 60%, 20%, and 20% respectively. The training set data is only used for training a model.

In order to find the optimal hyper-parameter for the model, 10% of the data in the training set is used

for validation and the remaining 90% of the data is used solely for training. Validation is performed

during the training phase where results from different parameter settings are compared to select the

best performing one. When the optimal hyper-parameter has been found, the tuned model is evaluated
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using the warm-start and cold-start test sets. The optimal hyper-parameters used to evaluate the CER

model are λυ = 0.1 for the regularisation of the user latent vector, λv = 10 for the regularisation of the

latent video offset vector, λe = 1000 for the regularisation of the embedding matrix and k = 50 for the

dimension of the latent vectors. The optimal hyper-parameters used to evaluate the scaled-CER are

equal to the CER model with the addition of the scaling factor hyper-parameter d = 0.217.

3.4.4 Evaluation metrics

The performance of the video recommendation systems is evaluated in the experiments using

two metrics, namely accuracy and beyond-accuracy metrics [171]. These metrics are important

when evaluating video recommendation systems, since they complement each other. Accuracy

metrics evaluate the relevance of the recommendations. However, better user satisfaction beyond

relevance is not necessarily achieved with higher accuracy [163]. Beyond-accuracy metrics evaluate

the value that recommendations can generate to the user where the desire for variety is not ignored [171].

3.4.4.1 Accuracy metrics

In order to evaluate if the user enjoyed the videos recommended by the video recommendation system,

using the various video content features, the MAP and NDCG rank-aware top-N metrics are utilised.

These are discussed in more detail below:

1. MAP is the mean of the average precision at top-N recommendations (AP@N) over the whole

set of users in the test set. It calculates the overall precision of the recommender system by

measuring how many of the recommended items are in the set of true relevant items [7]. AP@N

is computed by obtaining the arithmetic mean of precision values of the relevant items at their

corresponding positions. This metric is chosen because it measures the rate of relevant items in

the recommendation list that users may like and therefore consumed, while considering relevant

items not in the recommendation list. It is an important metric if it is assumed that many users

will not scan the entire recommendation list, but instead they would only look at the top of the

recommendation list. This metric is defined as [7]

APu@N =
1

min(N,K)

N

∑
i=1

P@i · rel(i), (3.32)

MAP =
1
|U | ∑

uε|U |
APu, (3.33)
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where N is the length of the recommendation list, K is the total number of relevant items, P@i

is the precision at top i recommendations, rel(i) is a binary indicator which signals if the ith

recommended item is relevant or not, and |U | is the total number of users in the test set.

2. NDCG is a utility-based ranking measure which considers the order of recommended items in

the list [27]. It discounts the positions of the items recommended to a user [7]. This metric is

chosen because in a video streaming service, users may be willing to scan all the relevant videos

in the recommendation list from the beginning to the end. When the relevant videos appear at a

lower ranked position the utility of recommendations is slowly penalised, since videos that are

more useful for the user are highly relevant [171]. This metric also shows high robustness to

the changes of the MovieLens-10M dataset after pre-processing [172]. Assuming the predicted

rating values for the recommendations are sorted in descending order in the recommendation list

for user u, DCGu is defined as [7, 173]

DCGu@N =
N

∑
i=1

2ru,i−1
log2(i+1)

, (3.34)

where ru,i is the true rating of user u for the item ranked at position i. NDCG is the normalised

DCGu which is the ratio of DCGu to the ideal discounted cumulative gain (IDCGu), which is

the value that represents the ideal ranking for user u calculated using the ground-truth ranking

instead of the predicted one. This is computed as [7]

NDCGu =
DCGu

IDCGu
, (3.35)

where the overall NDCG is obtained by calculating the mean over the whole set of users in the

test set [7].

3.4.4.2 Beyond-accuracy metrics

Evaluating the recommendations generated using the various video content features, solely according

to accuracy, is not sufficient since the objective of a recommender system is not only restricted to

generate relevant recommendation lists to the users. Instead, the features should also cover the whole

set of preferences of the users, given the huge body of video data [174]. Beyond-accuracy metrics are

used to help assess the quality of the various video content features explored in this work by capturing

the coverage and diversity of recommendations. These metrics assess if the systems using these

features are able to leverage the whole catalogue instead of only a few highly popular items [7]. It also

assesses if the recommendation lists generated by the system for different users are being diversified.
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In this work, the video recommendation system using the various video content features is evaluated

using the following measures:

1. Intra-list diversity, which is a metric that measures the efficiency of the recommender to generate

recommendation lists that cover the entire set of preferences of the users [174]. It is chosen

because recommendation lists with similar items may not be of interest to the user [174]. It

is calculated by using the cosine similarity between the items recommended based on genre

features as [7, 174]

IntraL(L) =
∑iεL ∑ jεL\i(1− cossim(i, j))

|L| · (|L|−1)
, (3.36)

cossim(i, j) =
~fi ·~f j

||~fi|| ||~f j||
, (3.37)

where |L| is the length of the recommendation list L, cossim(i, j) is the cosine similarity between

items i and j, and ~fi, ~f j ∈ R|F | are the feature vectors of items i and j with |F | the number of

features, respectively. Recommendation lists that contain items which are very similar to one

another in terms of their genres obtain low values for this metric.

2. Inter-list diversity is a metric that measures the uniqueness of the recommendation lists for the

different users [175]. It is chosen because recommendation lists should be personalised according

to individual user preferences. This implies that the proposed video recommendation system

should not only provide recommendations that have high intra-list diversity but should also

provide unique recommendations for all users. If the system generates the same recommendation

list to all the users it will exhibit a very low inter-list diversity, implying that it is not able to

create personalised recommendation lists to each user [175]. Given the recommendation lists Lu

and Lv for two users u and v, this metric is calculated as follows [7]:

InterL(Lu,Lv) = 1− q(Lu,Lv)

|L|
, (3.38)

where |L| is the length of the recommendation lists and q(Lu,Lv) is the number of items that the

two recommendation lists have in common. In order to obtain the overall inter-list diversity, it is

necessary to average InterL(Lu,Lv) across all users in the test set, where u 6= v.

3. Item coverage of a recommender system is the percentage of items from the item catalogue that

get recommended [174]. This metric is chosen because it measures the proportion of items in
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the catalogue that have been recommended at least once over the number of potential items. If

a recommender system has low coverage it will limit the recommendations for the user thus

having a direct impact on business revenue of the system and the users’ satisfaction. This metric

is defined as [7, 174]

coverage =
|Î|
|I|

, (3.39)

where |I| is the total number of items in the test set catalogue and |Î| is the number of items in I

recommended at least once by the recommender system.

4. Shannon entropy is a measure that provides an overview of the recommender system as a

whole by measuring the distributional inequality of recommendations across all users [7]. This

metric is chosen to better understand the capability of each deep learning feature to generate

different video recommendations within a certain item coverage value over the whole set of

users. Shannon Entropy is defined as [7]

SE =−∑
iεI

rec(i)
rect

· lnrec(i)
rect

, (3.40)

where I is the set of items in the scenario being evaluated, rec(i) is the number of times item i

has been recommended across all users, and rect is the total number of recommendations. As

can be seen in this equation, the Shannon entropy has a value range between 0 and ln(n), which

is when one item is recommended many times and when n items are recommended with equal

frequency [171].

3.4.4.3 Summary of metrics

Table 3.1 summarises the aforementioned metrics that are used to evaluate the proposed improvements

for the video recommendation systems.

Table 3.1. Summary of the evaluation metrics

Metrics Description

Accuracy metrics

MAP@N

Overall precision of the recommender system

by measuring how many of the recommended items

are in the set of true relevant items.
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Table 3.1 continued from previous page

NDCG@N
Utility-based ranking measure that considers

the order of recommended items in the list.

Beyond-accuracy metrics

Intra-list

Diveristy

Measures the ability of the system to include items

that cover the user’s entire set of preferences.

Inter-list

Diveristy

Measures the different users recommendation

lists’ uniqueness.

Coverage
The number of items the recommendation model is

capable of recommending.

Shannon Entropy (SE)

Represents when one item is being frequently

recommended and when a set of items are recommended

for the same number of times.

When evaluating the system in terms of accuracy metrics, large values are desired, as they represent

video relevance with respect to the user preferences. On the other hand, moderate values are preferred

when evaluating the system in terms of beyond-accuracy metrics, aside from the coverage metric [176].

This is because in general, only a random recommender obtains the highest diversity and this comes at

the price of accuracy [7].

3.4.5 Baseline recommendation algorithms

In this research study, aside from the genre and hand-crafted video content feature baselines, a

popularity-based ranking model, called TopPopular (TopPop) [177], is also included to validate the

effectiveness of the scaled-CER model in the item warm-start scenario. In addition, a random recom-

mendation model is also included to verify the results. The models are described as follows:

1. Random recommender is a non-personalised model that generates a randomly ordered list of

videos in the item warm-start or cold-start scenarios. It is chosen to be used as a check for the

recommender system evaluation.

2. TopPop is a non-personalised model that recommends the top-N most popular items to all the

users and is a hard baseline to beat [177]. This model calculates the popularity of items by

counting the number of times the item is rated by the users. Thus, it only works in the item
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warm-start scenario. During inference, this model returns an ordered list of videos in descending

order of the global popularity rating.

3.5 CHAPTER SUMMARY

This chapter described the process of developing a recommendation framework. The different video

content feature modalities extracted as well as the feature aggregation methods, recommendation

models, and multimodal fusion techniques that are investigated in this research work were explained

in depth. The matrix scaling technique used to improve the recommendation quality of the hybrid

recommendation model was also discussed. In addition, the experimental setup used to assess the

performance of the various methods presented and the evaluation metrics utilised to compare and

analyse them were described in detail. In Chapter 4, the results of the experiments described in Section

3.4 are reported.
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4.1 CHAPTER OVERVIEW

This chapter presents the results of the experiments described in Chapter 3. Feature analyses are

conducted to determine whether different feature aggregation methods create semantically meaningful

video representations. Recommendation models are evaluated to assess the overall user satisfaction in

terms of relevance and beyond the relevance of the recommendations with respect to user preferences.

The findings are presented for the item warm-start and cold-start scenarios. In addition, different

fusion methods are evaluated and their performance is reported when combining the features that best

represent each video content information, namely visual-appearance, audio, and motion information.

Lastly, an ablation study is presented in order to understand the cumulative effect of all video content

features on recommendation quality. Note that in this research work, 5-fold cross-validation is used for

each evaluation metric. Thus, unless stated otherwise, the reported results for each recommendation

model were averaged over five splits.

4.2 FEATURE ANALYSES

Visual and quantitative feature analyses are conducted to determine how well each feature aggregation

method creates semantically meaningful video-level descriptors until being used by the recommenda-

tion models. As described in Section 3.4.2, the quality of the feature aggregation methods is evaluated

using the movie trailers in-sequel-mean-distance and movie trailers out-of-sequel-mean-distance.

These distance metrics are calculated in the 2-dimensional UMAP space where their distributions are

visualised, and in the original F-dimensional feature space where F is the total number of features.

Tables 4.1 - 4.16 and Figures 4.1 - 4.8 show the performance measurements and the distribution of

features obtained by the best feature aggregation method in the 2-dimensional UMAP space, respect-

ively. In addition, Figures 4.9 - 4.11 show the visual distribution of the hand-crafted features used

in this research work. For all figures, movie trailers are coloured according their genres and their
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shape is chosen according to their sequel. If the marker is not opaque, it means that the trailer is not

assigned to any sequel. The movie genres of the chosen sequels are action, crime, comedy, horror and

adventure, where the key difference between the action and adventure genres is the setting. Action

genre usually focus on the execution of the plot, instead of the plot itself while in adventure genre

typically, though not always, there is a search or quest for something set in a fantasy or exotic location

[178, 179]. The colour blue represents action movie trailers, sienna represents crime movie trailers,

green represents comedy movie trailers, red represents horror movie trailers and lastly dark salmon

represents adventure movie trailers. The visual and quantitative results for each video content feature

are presented in the sections below.

4.2.1 Object and scene features

In this section, the visualisation of the Obj(IN) and scene features, as well as quantitative measurements

of the feature aggregation methods, are presented.

Figure 4.1. Visualisation of the Obj(IN) video-level descriptors in the UMAP space obtained using the

maximum aggregation method. These descriptors represent movie trailers of different genres. They

are obtained using the maximum aggregation method. The figure indicates that genre clustering exists

and some movie trailers in the same sequel can be seen to be close to each other, for example Batman

and Halloween enclosed by rectangles.
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Table 4.1. Results for various feature aggregation methods in terms of Bhattacharyya distance. The

Bhattacharyya distance is calculated using the movie trailers in-sequel-mean-distance and movie trailers

out-of-sequel-mean-distance in the 2-dimensional UMAP space. The movie trailer’s information is

represented by Obj(IN) video-level descriptors. The feature aggregation method with the largest

distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.813 1.128 2.798 1.184 0.0912

Mean 2.223 1.638 2.996 1.315 0.0459

Median 2.337 1.687 3.257 1.435 0.0497

Variance 1.937 1.112 2.650 1.161 0.0497

MAD 1.796 1.366 2.710 1.193 0.0680

IQR 1.746 1.361 2.579 1.243 0.0531

Table 4.2. Quality of multiple feature aggregation methods in terms of Bhattacharyya distance in the

original Obj(IN) 2048-dimensional feature space. The feature aggregation method with the largest

distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.248 0.0989 1.374 0.0792 0.2609

Mean 1.081 0.2460 1.353 0.2110 0.1827

Median 1.089 0.2639 1.359 0.2242 0.1588

Variance 1.181 0.1451 1.364 0.1189 0.2493

MAD 1.145 0.2145 1.380 0.1542 0.2239

IQR 1.165 0.1833 1.380 0.1334 0.2492
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Figure 4.2. Visualisation of the scene-centric video-level descriptors in the UMAP space obtained

using the mean aggregation method. The figure reveals that several sets of the scene features have

similar semantics, since a number of movie trailers in the same sequel tend to be very close to each

other. For example Hostel, Toy Story and Spider-man enclosed by rectangles.

Table 4.3. Quality of multiple feature aggregation methods assessed in terms of Bhattacharyya distance

in the 2-dimensional UMAP space using the scene features from movie trailers. The feature aggregation

method with the largest distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 3.024 1.551 3.536 1.335 0.0212

Mean 2.811 1.860 3.603 1.543 0.0355

Median 3.019 1.849 3.755 1.564 0.0300

Variance 2.639 1.677 3.152 1.360 0.0250

MAD 2.707 1.883 3.317 1.461 0.0323

IQR 2.498 1.685 3.125 1.398 0.0292

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

75



CHAPTER 4 RESULTS

Table 4.4. Quality of multiple feature aggregation methods in terms of Bhattacharyya distance in

the original scene 2208-dimensional feature space. The feature aggregation method with the largest

distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.263 0.1211 1.386 0.1029 0.1563

Mean 1.155 0.2080 1.369 0.1692 0.1707

Median 1.170 0.2097 1.372 0.1619 0.1612

Variance 1.229 0.1474 1.380 0.1140 0.1821

MAD 1.233 0.1642 1.388 0.1226 0.1634

IQR 1.235 0.1601 1.387 0.1166 0.1730

4.2.2 Action features

Visualisation of the deep learning action-centric features as well as quantitative measurements of the

feature aggregation methods.
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Figure 4.3. Visualisation of the Action(IG) video-level descriptors in the UMAP space obtained using

interquartile range aggregation method. The figure suggests that action and horror movie trailers have

similar semantics with respect to their motion information. A number of comedy movie trailers (green)

are clearly separated from the action (blue) and horror movie trailers (red). Toy Story and Madagascar

sequels enclosed by a rectangle are close to each other, as expected since they are both animated

adventure films.

Table 4.5. Quality of different feature aggregation methods assessed in terms of Bhattacharyya distance

in the 2-dimensional UMAP space using the Action(IG) features from movie trailers. The feature

aggregation method with the largest distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.364 0.761 2.428 1.151 0.1904

Mean 1.531 1.095 2.995 1.594 0.1777

Median 1.886 1.187 3.345 1.572 0.1565

Variance 1.405 0.888 2.579 1.382 0.1750

MAD 1.470 0.825 2.673 1.314 0.2027

IQR 1.356 0.758 2.558 1.321 0.2291
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Table 4.6. Quality of different feature aggregation methods in terms of Bhattacharyya distance in the

original Action(IG) 512-dimensional feature space. The feature aggregation method with the largest

distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.255 0.0920 1.387 0.0876 0.2676

Mean 1.015 0.2107 1.332 0.2147 0.2763

Median 1.031 0.2211 1.337 0.2097 0.2538

Variance 1.187 0.1266 1.374 0.1116 0.3111

MAD 1.166 0.1600 1.377 0.1281 0.2781

IQR 1.186 0.1465 1.381 0.1158 0.2867

Figure 4.4. UMAP visualisation of the Action(KN) video-level descriptors produced by the variance

aggregation method. The figure indicates that the distribution of Action(KN) tend to cluster action

(blue) and horror (red) movies together. Some movie trailers in the same sequel are very close to each

other, suggesting that they are similar in terms of the actions that occur in the trailers. For example,

Batman, Scary movie, Father of the bride, Madagascar, and Toy Story enclosed by rectangles.
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Table 4.7. Quality of different feature aggregation methods assessed in terms of Bhattacharyya distance

in the 2-dimensional UMAP space using the Action(KN) features from movie trailers. The feature

aggregation method with the largest distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.994 0.906 2.075 0.892 0.0399

Mean 1.668 1.533 2.930 1.815 0.0776

Median 1.995 1.722 3.279 1.880 0.0654

Variance 1.190 0.669 2.267 1.217 0.2348

MAD 1.581 1.006 2.678 1.366 0.1276

IQR 1.401 0.835 2.517 1.334 0.1785

Table 4.8. Quality of different feature aggregation methods in terms of Bhattacharyya distance in the

original Action(KN) 512-dimensional feature space. The feature aggregation method with the largest

distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.255 0.0827 1.376 0.0774 0.2829

Mean 1.046 0.1861 1.340 0.1741 0.3346

Median 1.070 0.1930 1.348 0.1683 0.2989

Variance 1.186 0.1007 1.364 0.1018 0.3860

MAD 1.160 0.1427 1.367 0.1230 0.3077

IQR 1.190 0.1148 1.371 0.1060 0.3359
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Figure 4.5. Action(UCF) feature visualisation in the UMAP space obtained using interquartile range

aggregation method. Some movie trailers in the same sequels, such as American Pie enclosed by a

rectangle, as well as a large part of action (blue) and horror (red) movie genres are close to one another,

which suggests they have very similar actions in their narratives.

Table 4.9. Performance of multiple feature aggregation methods assessed in terms of Bhattacharyya

distance in the 2-dimensional UMAP space using the Action(UCF) features extracted from movie

trailers. The feature aggregation method with the largest distance between in-sequel and out-of-sequel

is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.349 0.833 2.210 1.016 0.1171

Mean 1.572 1.733 2.613 2.031 0.0444

Median 1.718 1.879 2.672 2.097 0.0316

Variance 1.350 0.798 2.238 1.218 0.1362

MAD 1.569 1.226 2.775 1.521 0.1067

IQR 1.371 0.753 2.334 1.238 0.1698
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Table 4.10. Performance of multiple feature aggregation methods in terms of Bhattacharyya distance

in the original Action(UCF) 2048-dimensional feature space. The feature aggregation method with the

largest distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.264 0.0707 1.377 0.0787 0.2872

Mean 1.103 0.1629 1.343 0.1677 0.2641

Median 1.125 0.1657 1.348 0.1610 0.2335

Variance 1.231 0.0731 1.374 0.0910 0.3860

MAD 1.207 0.1035 1.370 0.1130 0.2871

IQR 1.246 0.0721 1.379 0.0891 0.3506

Figure 4.6. Projection of various Action(HMDB) video-level descriptors in the UMAP space produced

by the variance feature aggregation method. The figure indicates that genre clustering exists. Movies

in different sequels and with dissimilar actions (comedy (green) and action (blue)) tend to be far apart

from movies in different sequels but with similar actions (horror (red) and action (blue)). This reveals

that similar semantics are being properly captured by the Action(HMDB) features.
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Table 4.11. Performance of multiple feature aggregation methods assessed in terms of Bhattacharyya

distance in the 2-dimensional UMAP space using the Action(HMDB) features extracted from movie

trailers. The feature aggregation method with the largest distance between in-sequel and out-of-sequel

is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.455 0.944 2.213 1.068 0.0744

Mean 2.684 1.901 2.684 1.901 0.0266

Median 2.073 2.069 2.766 1.838 0.0192

Variance 1.274 0.957 2.431 1.382 0.1514

MAD 1.803 1.881 2.589 1.697 0.0267

IQR 1.617 1.201 2.513 1.424 0.0650

Table 4.12. Performance of multiple feature aggregation methods in terms of Bhattacharyya distance

in the original Action(HMDB) 2048-dimensional feature space. The feature aggregation method with

the largest distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.258 0.0846 1.373 0.0833 0.2364

Mean 1.092 0.1884 1.324 0.1753 0.2038

Median 1.117 0.1853 1.331 0.1651 0.1904

Variance 1.217 0.1004 1.368 0.1001 0.2817

MAD 1.193 0.1293 1.358 0.1195 0.2206

IQR 1.225 0.1023 1.368 0.1004 0.2472

4.2.3 Deep learning sound features

Feature visualisation of the deep learning sound features as well as quantitative measurements of the

feature aggregation methods are presented here. In contrast to the visual deep learning features, the

audio deep learning features have been combined using only the feature aggregation methods that
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are a measure of location. These methods have been found to be robust to audio segments that are

less representative of the audio signal [180]. As a result, they form audio descriptors that are more

meaningful to describe the audio information which leads to state-of-the-art performance on audio

classification tasks [180].

Figure 4.7. UMAP visualisation of the VGGish video-level descriptors produced by the median feature

aggregation method. The figure presents very dense clustering for action (blue) and horror (red) movies,

while the comedy (green) movies are more spread out. Some action and horror movie trailers tend to

be close to one another.

Table 4.13. Performance of multiple feature aggregation methods assessed in terms of Bhattacharyya

distance in the 2-dimensional UMAP space using the VGGish features extracted from movie trailers.

The feature aggregation method with the largest distance between in-sequel and out-of-sequel is marked

in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 2.415 1.358 2.901 1.019 0.0407

Mean 1.981 1.407 2.953 1.612 0.0562

Median 1.845 1.260 2.784 1.439 0.0646
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Table 4.14. Performance of multiple feature aggregation methods in terms of Bhattacharyya distance

in the original VGGish 128-dimensional feature space. The feature aggregation method with the largest

distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.205 0.125 1.339 0.1339 0.1343

Mean 1.020 0.218 1.267 0.2514 0.1435

Median 1.041 0.210 1.274 0.2510 0.1358

Figure 4.8. UMAP visualisation of the soundNet video-level descriptors produced by the median

feature aggregation method. The figure presents a dense clustering pattern for comedy (green) movies,

while action (blue) and horror (red) movies are more spread-out. Some movies in the same sequel

(spider-man, saw) are close to each other while others are far apart (Batman, scary movie).
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Table 4.15. Performance of multiple feature aggregation methods assessed in terms of Bhattacharyya

distance in the 2-dimensional UMAP space using the soundNet features extracted from movie trailers.

The feature aggregation method with the largest distance between in-sequel and out-of-sequel is marked

in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 3.135 2.185 3.383 2.023 0.0032

Mean 2.191 1.202 2.577 1.044 0.0195

Median 2.241 1.215 2.856 1.200 0.0324

Table 4.16. Performance of multiple feature aggregation methods in terms of Bhattacharyya distance

in the original soundNet 256-dimensional feature space. The feature aggregation method with the

largest distance between in-sequel and out-of-sequel is marked in bold.

Feature

Aggregation
In-sequel Out-of-sequel

Bhattacharyya

Distance

Mean Std Mean Std

Maximum 1.321 0.119 1.366 0.1039 0.0250

Mean 1.150 0.246 1.320 0.2310 0.0647

Median 1.158 0.240 1.343 0.2402 0.0738

4.2.4 Hand-crafted features

Visualisation of the hand-crafted features, namely iDT, MoSIFT, and MFCC features in the UMAP

space are presented here.
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Figure 4.9. Visualisation of the movie trailers represented by iDT video-level descriptors in the UMAP

space. The figure shows that some horror (red) and action (blue) movie trailers are close to each other

in terms of their iDT features such as the movie sequel Hostel and Die Hard enclosed by rectangles.

However, in some movie sequels the movie trailers are further apart suggesting that they are not similar

in terms of iDT features, for example Halloween and Matrix movie sequels.

Figure 4.10. Visualisation of the movie trailers represented by MoSIFT video-level descriptors in the

UMAP space. The figure indicates that a number of action (blue) and comedy (green) movie trailers

are not similar in terms of MoSIFT features since they are in different locations. On the other hand,

various horror (red) movie trailers are close to each other.
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Figure 4.11. Visualisation of the movie trailers represented by MFCC video-level descriptors in the

UMAP feature space. The figure indicates that the movies when represented in terms of MFCC features

are quite diverse where genre clustering does not necessarily exists. However, few trailers in the same

sequel can be seen to be close to each other, as for example Batman enclosed by a rectangle.

4.3 RECOMMENDATION IN WARM-START SCENARIO

In this section, the performance of the baselines described in Section 3.4.5 as well as the performance

of the CER and scaled-CER models is reported, when using each feature presented in Section 3.3.1

on the content description of their systems. The quality of the recommendations produced by these

models is assessed in terms of accuracy and beyond-accuracy metrics. As described in Section 3.4.3,

the item warm-start scenario represents the case when some preference data for items in that scenario

have been used to train the video recommendation model. In this work, the videos in the catalogue

are sorted in descending order, based on the ratings estimated by the model being evaluated. Next,

the Top-n videos are chosen to be the first n videos in the recommendation list. The length n of the

recommendation list returned to each user is also known as the cut-off value.

Accuracy and beyond-accuracy metrics are calculated for 6 different cut-off values selected from {5,

10, 15, 20, 25, 30}. These values are chosen because the length of the recommendation lists equal to

one of these values is manageable and realistic for a user to obtain in a real-word application [14]. For

feature aggregation, only the results for the variant that led to the best performance are reported.
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4.3.1 Accuracy metrics

As mentioned in Section 3.4.4.1, it is important to assess the ability of the recommender models to

recommend relevant items. This is necessary to understand how effective they are in predicting the

preference scores of each user to the items in the catalogue. Given the value of n as outlined above, the

results of the experiments are presented below

Table 4.17. Results for the random, TopPop, CER, and scaled-CER recommender models with respect

to MAP in the item warm-start scenario. The performance of different video content features is

evaluated using the CER and scaled-CER recommender models. The best performance along the

respective metric is highlighted in bold.

Recommender models
Feature

Agg.
MAP@5 MAP@10 MAP@15 MAP@20 MAP@25 MAP@30

non-personalised

Random - 0.0004 0.0004 0.0004 0.0004 0.0005 0.0005

TopPop - 0.0684 0.0692 0.0716 0.0736 0.0755 0.0768

CER

Genres - 0.1101 0.1161 0.1224 0.1270 0.1305 0.1332

Obj(IN) Max 0.1110 0.1171 0.1233 0.1279 0.1314 0.1341

Action(IG) Var 0.1107 0.1169 0.1232 0.1278 0.1313 0.1340

Action(KN) Mad 0.1108 0.1168 0.1230 0.1276 0.1311 0.1338

Action(HMDB) Var 0.1113 0.1174 0.1236 0.1283 0.1318 0.1344

Action(UCF) Var 0.1115 0.1175 0.1237 0.1283 0.1318 0.1345

iDT Fv 0.1105 0.1165 0.1227 0.1273 0.1308 0.1335

MoSIFT Fv 0.1111 0.1171 0.1233 0.1280 0.1314 0.1341

Scene Var 0.1107 0.1167 0.1229 0.1275 0.1310 0.1336

MFCC Fv 0.1112 0.1170 0.1232 0.1278 0.1313 0.1339

SoundNet Mean 0.1100 0.1161 0.1224 0.1270 0.1305 0.1332

VGGish Mean 0.1105 0.1166 0.1227 0.1274 0.1309 0.1335

scaled-CER

Genres - 0.1531 0.1517 0.1562 0.1603 0.1638 0.1665

Obj(IN) Max 0.1536 0.1524 0.1568 0.1609 0.1644 0.1671

Action(IG) Var 0.1530 0.1517 0.1562 0.1604 0.1638 0.1665

Action(KN) Mad 0.1534 0.1521 0.1565 0.1606 0.1640 0.1668

Action(HMDB) Var 0.1533 0.1520 0.1564 0.1606 0.1640 0.1668

Action(UCF) Var 0.1535 0.1522 0.1566 0.1608 0.1642 0.1669

iDT Fv 0.1536 0.1523 0.1567 0.1609 0.1644 0.1671

MoSIFT Fv 0.1535 0.1522 0.1566 0.1608 0.1642 0.1670

Scene Var 0.1531 0.1518 0.1562 0.1603 0.1638 0.1665

MFCC Fv 0.1529 0.1517 0.1561 0.1603 0.1637 0.1664

SoundNet Mean 0.1532 0.1521 0.1565 0.1606 0.1641 0.1668

VGGish Mean 0.1531 0.1518 0.1563 0.1605 0.1639 0.1666
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Table 4.17 shows the performance of different recommender models in terms of MAP metrics. As

presented in this table, it includes experiments that evaluate non-personalised recommender models that

do not exploit video content features; experiments evaluating the CER model using genre, hand-crafted

and deep learning features; and finally, experiments evaluating the scaled-CER model, where the

CER model is improved through the use of a matrix scaling technique. In this last experiment, the

scaled-CER model uses the same set of video content features exploited in the previous experiments.

As can be seen in Table 4.17, the scaled-CER model obtained the best overall performance using

Obj(IN) features, and the random recommender model achieved the worst results.

Table 4.18. Results for the random, TopPop, CER, and scaled-CER recommender models with respect

to NDCG in the item warm-start scenario. The performance of different video content features is

evaluated using the CER and scaled-CER recommender models. The best performance across the same

metric is highlighted in bold.

Recommender models
Feature

Agg.
NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25 NDCG@30

non-personalised

Random - 0.0006 0.0009 0.0011 0.0013 0.0015 0.0017

TopPop - 0.0886 0.1147 0.1302 0.1412 0.1507 0.1580

CER

Genres - 0.1447 0.1856 0.2102 0.2274 0.2408 0.2515

Obj(IN) Max 0.1458 0.1867 0.2111 0.2285 0.2417 0.2523

Action(IG) Var 0.1453 0.1863 0.2108 0.2282 0.2416 0.2522

Action(KN) Mad 0.1454 0.1862 0.2108 0.2281 0.2414 0.2521

Action(HMDB) Var 0.1459 0.1869 0.2114 0.2287 0.2420 0.2526

Action(UCF) Var 0.1462 0.1871 0.2116 0.2290 0.2422 0.2529

iDT Fv 0.1450 0.1859 0.2102 0.2275 0.2409 0.2515

MoSIFT Fv 0.1457 0.1866 0.2110 0.2283 0.2415 0.2520

Scene Var 0.1452 0.1860 0.2104 0.2278 0.2410 0.2516

MFCC Fv 0.1459 0.1864 0.2108 0.2280 0.2413 0.2519

SoundNet Mean 0.1445 0.1856 0.2101 0.2275 0.2407 0.2513

VGGish Mean 0.1451 0.1860 0.2103 0.2276 0.2410 0.2517

scaled-CER

genres - 0.1841 0.2282 0.2538 0.2717 0.2853 0.2962

Obj(IN) Max 0.1846 0.2290 0.2546 0.2725 0.2861 0.2971

Action(IG) Var 0.1840 0.2282 0.2538 0.2718 0.2854 0.2962

Action(KN) Mad 0.1843 0.2287 0.2542 0.2722 0.2858 0.2966

Action(HMDB) Var 0.1843 0.2287 0.2543 0.2722 0.2859 0.2968

Action(UCF) Var 0.1845 0.2289 0.2545 0.2724 0.2859 0.2968

iDT Fv 0.1846 0.2290 0.2546 0.2726 0.2863 0.2971

MoSIFT Fv 0.1846 0.2289 0.2545 0.2724 0.2861 0.2970

Scene Var 0.1841 0.2284 0.2539 0.2716 0.2852 0.2961
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Table 4.18 continued from previous page

MFCC Fv 0.1840 0.2282 0.2538 0.2717 0.2854 0.2962

SoundNet Mean 0.1844 0.2288 0.2543 0.2722 0.2859 0.2968

VGGish Mean 0.1842 0.2284 0.2541 0.2721 0.2857 0.2966

Table 4.18 shows the performance of different recommender models in terms of NDCG metric.

The scaled-CER model obtained the best overall performance using iDT features, and the random

recommender model achieved the worst results.

4.3.2 Beyond-accuracy metrics

As stated in Section 3.4.4.2, when a minimum acceptable performance with regards to accuracy

metrics is obtained, it is equally important to assess the ability of the recommender models beyond

the relevance of the items they recommend. Thus, the beyond-accuracy metrics are computed for

recommendation lists of length equal to the one used in the accuracy metric measurements. Note that

given the unacceptably low performance of the random recommender model in terms of accuracy

metrics, the results for this model are not taken into account when determining the best results, however

they are still presented in grey for completeness. The results from the experiments are reported

below.

Table 4.19. Results for the TopPop, CER, and scaled-CER recommender models with respect to

intra-list diversity metric in the item warm-start scenario. The performance of different video content

features is evaluated using the CER and scaled-CER recommender models. The highest result across

the same metric is marked in bold. Please note that the random recommender model performance is

only shown for completeness given its poor performance in terms of accuracy metrics.

Recommender models
Feature

Agg.

Div.

IntraL
@5

Div.

IntraL
@10

Div.

IntraL
@15

Div.

IntraL
@20

Div.

IntraL
@25

Div.

IntraL
@30

non-personalised

Random - 0.5947 0.6694 0.6942 0.7066 0.7140 0.7189

TopPop - 0.6026 0.6419 0.6869 0.6899 0.6971 0.7079

CER

Genres - 0.4804 0.5659 0.5992 0.6178 0.6299 0.6383

Obj(IN) Max 0.4899 0.5749 0.6076 0.6256 0.6372 0.6455

Action(IG) Var 0.4883 0.5740 0.6067 0.6249 0.6366 0.6448

Action(KN) Mad 0.4894 0.5739 0.6065 0.6245 0.6364 0.6448

Action(HMDB) Var 0.4897 0.5746 0.6071 0.6250 0.6368 0.6451

Action(UCF) Var 0.4886 0.5736 0.6065 0.6246 0.6364 0.6447

iDT Fv 0.4901 0.5746 0.6073 0.6254 0.6372 0.6455

MoSIFT Fv 0.4905 0.5744 0.6070 0.6251 0.6368 0.6451
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Table 4.19 continued from previous page

Scene Var 0.4895 0.5744 0.6069 0.6251 0.6369 0.6452

MFCC Fv 0.4913 0.5753 0.6076 0.6256 0.6374 0.6458

SoundNet Mean 0.4907 0.5745 0.6069 0.6248 0.6367 0.6451

VGGish Mean 0.4897 0.5740 0.6063 0.6245 0.6364 0.6448

scaled-CER

Genres - 0.4707 0.5551 0.5883 0.6069 0.6191 0.6277

Obj(IN) Max 0.4777 0.5625 0.5953 0.6135 0.6254 0.6338

Action(IG) Var 0.4774 0.5624 0.5954 0.6138 0.6257 0.6342

Action(KN) Mad 0.4770 0.5623 0.5955 0.6139 0.6258 0.6342

Action(HMDB) Var 0.4776 0.5628 0.5957 0.6140 0.6260 0.6344

Action(UCF) Var 0.4768 0.5622 0.5951 0.6134 0.6254 0.6339

iDT Fv 0.4765 0.5620 0.5954 0.6140 0.6260 0.6346

MoSIFT Fv 0.4783 0.5631 0.5962 0.6146 0.6266 0.6351

Scene Var 0.4788 0.5626 0.5954 0.6136 0.6254 0.6337

MFCC Fv 0.4787 0.5638 0.5969 0.6152 0.6271 0.6355

SoundNet Mean 0.4782 0.5634 0.5964 0.6146 0.6264 0.6348

VGGish Mean 0.4777 0.5627 0.5957 0.6140 0.6258 0.6341

Table 4.19 shows the performance of different recommender models in terms of intra-list diversity

metric. The TopPop model obtained the highest intra-list diversity, and the scaled-CER model presents

a lower intra-list diversity compared to the CER model. The lowest results are obtained by the

scaled-CER model using genre features.

Table 4.20. Results for the TopPop, CER, and scaled-CER recommender models with respect to

inter-list diversity metric in the item warm-start scenario. The performance of different video content

features is evaluated using the CER and scaled-CER recommender models. The highest result across

the same metric is marked in bold. Please note that the random recommender model performance is

only shown for completeness given its poor performance in terms of accuracy metrics.

Recommender models
Feature

Agg.

Div.

InterL
@5

Div.

InterL
@10

Div.

InterL
@15

Div.

InterL
@20

Div.

InterL
@25

Div.

InterL
@30

non-personalised

Random - 0.9994 0.9988 0.9982 0.9976 0.9970 0.9964

TopPop - 0.2539 0.2140 0.1873 0.1692 0.1561 0.1454

CER

Genres - 0.9627 0.9443 0.9315 0.9213 0.9127 0.9052

Obj(IN) Max 0.9625 0.9441 0.9310 0.9207 0.9120 0.9045

Action(IG) Var 0.9616 0.9433 0.9305 0.9204 0.9118 0.9044

Action(KN) Mad 0.9626 0.9440 0.9311 0.9209 0.9124 0.9049

Action(HMDB) Var 0.9623 0.9438 0.9309 0.9207 0.9121 0.9046

Action(UCF) Var 0.9617 0.9435 0.9306 0.9204 0.9118 0.9043
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Table 4.20 continued from previous page

iDT Fv 0.9615 0.9432 0.9305 0.9204 0.9118 0.9044

MoSIFT Fv 0.9623 0.9439 0.9309 0.9208 0.9123 0.9049

Scene Var 0.9622 0.9440 0.9311 0.9209 0.9124 0.9049

MFCC Fv 0.9619 0.9437 0.9309 0.9208 0.9123 0.9049

SoundNet Mean 0.9610 0.9425 0.9296 0.9195 0.9109 0.9035

VGGish Mean 0.9617 0.9433 0.9305 0.9202 0.9115 0.9039

scaled-CER

Genres - 0.9479 0.9291 0.9168 0.9072 0.8992 0.8923

Obj(IN) Max 0.9478 0.9288 0.9163 0.9065 0.8984 0.8913

Action(IG) Var 0.9469 0.9277 0.9152 0.9056 0.8975 0.8905

Action(KN) Mad 0.9470 0.9279 0.9152 0.9054 0.8973 0.8902

Action(HMDB) Var 0.9455 0.9258 0.9132 0.9034 0.8954 0.8883

Action(UCF) Var 0.9471 0.9280 0.9156 0.9059 0.8978 0.8907

iDT Fv 0.9468 0.9279 0.9155 0.9058 0.8977 0.8906

MoSIFT Fv 0.9476 0.9286 0.9162 0.9064 0.8983 0.8912

Scene Var 0.9481 0.9292 0.9168 0.9071 0.8990 0.8920

MFCC Fv 0.9471 0.9279 0.9153 0.9055 0.8974 0.8903

SoundNet Mean 0.9465 0.9273 0.9148 0.9051 0.8969 0.8898

VGGish Mean 0.9469 0.9278 0.9152 0.9055 0.8973 0.8902

Table 4.20 shows the performance of different recommender models in terms of the inter-list diversity

metric. The CER model using genre features obtained the highest inter-list diversity, and the TopPop

model achieved the lowest inter-list diversity. All the variants of the CER model achieved results

higher than the scaled-CER model.

Table 4.21. Results for the TopPop, CER, and scaled-CER recommender models with respect to item

coverage in the item warm-start scenario. The performance of different video content features is

evaluated using the CER and scaled-CER recommender models. The highest result along the same

metric is highlighted in bold. Please note that the random recommender model performance is only

shown for completeness given its poor performance in terms of accuracy metrics.

Recommender models
Feature

Agg.

Item

Cov.
@5

Item

Cov.
@10

Item

Cov.
@15

Item

Cov.
@20

Item

Cov.
@25

Item

Cov.
@30

non-personalised

Random - 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

TopPop - 0.0030 0.0046 0.0061 0.0074 0.0088 0.0104

CER

Genres - 0.1568 0.1877 0.2092 0.2270 0.2424 0.2561

Obj(IN) Max 0.1540 0.1820 0.2007 0.2149 0.2271 0.2373

Action(IG) Var 0.1558 0.1835 0.2016 0.2160 0.2282 0.2387

Action(KN) Mad 0.1541 0.1824 0.2011 0.2150 0.2269 0.2373
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Table 4.21 continued from previous page

Action(HMDB) Var 0.1538 0.1818 0.1999 0.2139 0.2262 0.2364

Action(UCF) Var 0.1559 0.1824 0.1998 0.2138 0.2265 0.2373

iDT Fv 0.1542 0.1811 0.2001 0.2148 0.2261 0.2369

MoSIFT Fv 0.1543 0.1813 0.1999 0.2145 0.2257 0.2359

Scene Var 0.1548 0.1822 0.2007 0.2154 0.2274 0.2383

MFCC Fv 0.1539 0.1806 0.1995 0.2138 0.2259 0.2362

SoundNet Mean 0.1554 0.1833 0.2032 0.2175 0.2302 0.2407

VGGish Mean 0.1538 0.1817 0.2014 0.2167 0.2288 0.2396

scaled-CER

Genres - 0.1480 0.1935 0.2283 0.2598 0.2853 0.3096

Obj(IN) Max 0.1372 0.1771 0.2055 0.2287 0.2491 0.2669

Action(IG) Var 0.1404 0.1822 0.2101 0.2338 0.2552 0.2738

Action(KN) Mad 0.1380 0.1779 0.2068 0.2307 0.2515 0.2706

Action(HMDB) Var 0.1385 0.1791 0.2103 0.2330 0.2560 0.2746

Action(UCF) Var 0.1375 0.1774 0.2065 0.2301 0.2503 0.2686

iDT Fv 0.1361 0.1750 0.2040 0.2252 0.2455 0.2632

MoSIFT Fv 0.1365 0.1751 0.2025 0.2246 0.2437 0.2609

Scene Var 0.1398 0.1804 0.2092 0.2343 0.2552 0.2742

MFCC Fv 0.1375 0.1772 0.2051 0.2279 0.2487 0.2665

SoundNet Mean 0.1384 0.1802 0.2091 0.2321 0.2538 0.2718

VGGish Mean 0.1387 0.1806 0.2110 0.2348 0.2572 0.2759

Table 4.21 shows the performance of different recommender models in terms of item coverage. The

CER model using genre features obtained the best item coverage result for the cut-off value 5. However,

the scaled-CER model using genre features obtained the highest item coverage results for the cut-off

values 10, 15, 20, 25 and 30. The TopPop model achieved the lowest item coverage results across all

cut-off values.
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Table 4.22. Results for the TopPop, CER, and scaled-CER recommender models in terms of Shannon

entropy (SE) in the item warm-start scenario. The performance of different video content features is

evaluated using the CER and scaled-CER recommender models. The highest result along the same

metric is marked in bold. Please note that the random recommender model performance is only shown

for completeness given its poor performance in terms of accuracy metrics.

Recommender models
Feature

Agg.

Div.

SE
@5

Div.

SE
@10

Div.

SE
@15

Div.

SE
@20

Div.

SE
@25

Div.

SE
@30

non-personalised

Random - 12.9983 13.0091 13.0125 13.0142 13.0153 13.0161

TopPop - 2.9109 3.7900 4.3073 4.6797 4.9715 5.2109

CER

Genres - 8.0829 8.4004 8.6157 8.7802 8.9137 9.0273

Obj(IN) Max 8.0806 8.3943 8.6059 8.7693 8.9026 9.0152

Action(IG) Var 8.0791 8.3948 8.6102 8.7740 8.9078 9.0209

Action(KN) Mad 8.0801 8.3943 8.6079 8.7727 8.9066 9.0192

Action(HMDB) Var 8.0791 8.3944 8.6090 8.7733 8.9063 9.0186

Action(UCF) Var 8.0755 8.3912 8.6058 8.7703 8.9035 9.0162

iDT Fv 8.0725 8.3889 8.6051 8.7699 8.9032 9.0164

MoSIFT Fv 8.0755 8.3912 8.6062 8.7713 8.9060 9.0195

Scenes Max 8.0763 8.3930 8.6076 8.7718 8.9057 9.0184

MFCC Fv 8.0725 8.3918 8.6080 8.7730 8.9071 9.0198

SoundNet Mean 8.0627 8.3799 8.5958 8.7612 8.8954 9.0093

VGGish Mean 8.0673 8.3864 8.6009 8.7649 8.8971 9.0088

scaled-CER

Genres - 7.5366 8.0164 8.3193 8.5408 8.7156 8.8602

Obj(IN) Max 7.5225 7.9977 8.2966 8.5157 8.6888 8.8316

Action(IG) Var 7.4964 7.9771 8.2807 8.5025 8.6773 8.8209

Action(KN) Mad 7.4966 7.9751 8.2763 8.4977 8.6721 8.8164

Action(HMDB) Var 7.4668 7.9496 8.2552 8.4786 8.6547 8.7996

Action(UCF) Var 7.4988 7.9804 8.2841 8.5051 8.6792 8.8231

iDT Fv 7.5018 7.9839 8.2871 8.5081 8.6819 8.8252

MoSIFT Fv 7.5162 7.9940 8.2947 8.5137 8.6861 8.8288

Scenes Max 7.5295 8.0061 8.3052 8.5254 8.6980 8.8406

MFCC Fv 7.4987 7.9764 8.2777 8.4993 8.6735 8.8171

SoundNet Mean 7.4857 7.9671 8.2711 8.4937 8.6688 8.8128

VGGish Mean 7.4990 7.9776 8.2796 8.5004 8.6751 8.8190

Table 4.22 presents the results for various recommender models in terms of Shannon entropy. The

CER model using genre features obtained the highest Shannon entropy results, whereas TopPop model

achieved the lowest Shannon entropy results. The scaled-CER presents a lower Shannon entropy in

comparison to all the variants of the CER model.
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4.4 RECOMMENDATION IN COLD-START SCENARIO

In this section, the experiment results of the CER and scaled-CER models, as well as the baselines

in the item cold-start scenario are presented. The item cold-start scenario represents the case when

preference data for the items in the scenario is not known at all during the training. The results

obtained in this scenario are the main focus of this dissertation as they represent the ability of the

recommendation models to mitigate the new item cold-start problem. The experiments conducted

are essentially the same as the experiments performed in the item warm-start scenario, with the only

difference being the scenario that is investigated.

4.4.1 Accuracy metrics

The recommendation performance in terms of accuracy metrics for MAP and NDCG are presented

here.

Table 4.23. Results for the random, CER, and scaled-CER recommender models measured with respect

to MAP in the item cold-start scenario. The performance of different video content features is evaluated

using the CER and scaled-CER recommender models. The best performance across the same metric is

highlighted in bold.

Recommender models
Feature

Agg.
MAP@5 MAP@10 MAP@15 MAP@20 MAP@25 MAP@30

non-personalised

Random - 0.0016 0.0016 0.0017 0.0018 0.0019 0.0020

CER

Genres - 0.0099 0.0104 0.0112 0.0119 0.0125 0.0130

Obj(IN) Max 0.0159 0.0161 0.0170 0.0177 0.0183 0.0189

Action(IG) Var 0.0146 0.0144 0.0150 0.0156 0.0162 0.0166

Action(KN) Mad 0.0142 0.0142 0.0149 0.0155 0.0161 0.0165

Action(HMDB) Var 0.0136 0.0134 0.0140 0.0146 0.0151 0.0155

Action(UCF) Var 0.0143 0.0141 0.0147 0.0153 0.0159 0.0163

iDT Fv 0.0098 0.0097 0.0102 0.0106 0.0110 0.0114

MoSIFT Fv 0.0095 0.0093 0.0096 0.0100 0.0103 0.0106

Scene Var 0.0152 0.0150 0.0156 0.0162 0.0167 0.0172

MFCC Fv 0.0111 0.0112 0.0117 0.0122 0.0126 0.0129

SoundNet Mean 0.0093 0.0095 0.0101 0.0106 0.0111 0.0114

VGGish Mean 0.0134 0.0133 0.0139 0.0145 0.0150 0.0154

scaled-CER

Genres - 0.0113 0.0117 0.0125 0.0132 0.0138 0.0143

Obj(IN) Max 0.0178 0.0180 0.0188 0.0196 0.0203 0.0208

Action(IG) Var 0.0159 0.0155 0.0160 0.0166 0.0171 0.0176

Action(KN) Mad 0.0154 0.0153 0.0160 0.0166 0.0171 0.0176

Action(HMDB) Var 0.0137 0.0135 0.0140 0.0146 0.0151 0.0155
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Table 4.23 continued from previous page

Action(UCF) Var 0.0154 0.0152 0.0158 0.0165 0.0170 0.0174

iDT Fv 0.0114 0.0112 0.0117 0.0122 0.0126 0.0130

MoSIFT Fv 0.0105 0.0102 0.0105 0.0109 0.0113 0.0116

Scene Var 0.0162 0.0159 0.0165 0.0171 0.0176 0.0181

MFCC Fv 0.0116 0.0116 0.0121 0.0126 0.0130 0.0134

SoundNet Mean 0.0097 0.0099 0.0104 0.0110 0.0114 0.0118

VGGish Mean 0.0138 0.0138 0.0144 0.0150 0.0155 0.0160
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Table 4.24. Results for the random, CER, and scaled-CER recommender models measured with

respect to NDCG in the item cold-start scenario. The performance of different video content features is

evaluated using the CER and scaled-CER recommender models. The highest result along the respective

metric is marked in bold

Recommender models
Feature

Agg.
NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25 NDCG@30

non-personalised

Random - 0.0022 0.0035 0.0045 0.0054 0.0062 0.0070

CER

Genres - 0.0141 0.0213 0.0268 0.0314 0.0352 0.0386

Obj(IN) Max 0.0223 0.0307 0.0367 0.0417 0.0459 0.0497

Action(IG) Var 0.0201 0.0277 0.0331 0.0375 0.0413 0.0447

Action(KN) Mad 0.0196 0.0271 0.0327 0.0372 0.0410 0.0443

Action(HMDB) Var 0.0185 0.0258 0.0309 0.0353 0.0391 0.0424

Action(UCF) Var 0.0197 0.0272 0.0327 0.0371 0.0410 0.0443

iDT Fv 0.0137 0.0193 0.0234 0.0269 0.0299 0.0326

MoSIFT Fv 0.0131 0.0179 0.0215 0.0246 0.0272 0.0297

Scene Var 0.0210 0.0283 0.0334 0.0376 0.0412 0.0445

MFCC Fv 0.0155 0.0215 0.0258 0.0293 0.0323 0.0350

SoundNet Mean 0.0133 0.0188 0.0229 0.0263 0.0293 0.0319

VGGish Mean 0.0187 0.0257 0.0307 0.0348 0.0383 0.0414

scaled-CER

Genres - 0.0159 0.0236 0.0294 0.0341 0.0382 0.0416

Obj(IN) Max 0.0247 0.0339 0.0404 0.0455 0.0500 0.0538

Action(IG) Var 0.0215 0.0290 0.0345 0.0388 0.0426 0.0459

Action(KN) Mad 0.0212 0.0292 0.0350 0.0395 0.0433 0.0467

Action(HMDB) Var 0.0188 0.0260 0.0311 0.0353 0.0390 0.0422

Action(UCF) Var 0.0212 0.0291 0.0347 0.0393 0.0432 0.0466

iDT Fv 0.0157 0.0219 0.0264 0.0301 0.0333 0.0362

MoSIFT Fv 0.0143 0.0196 0.0234 0.0267 0.0295 0.0321

Scene Var 0.0221 0.0296 0.0350 0.0394 0.0430 0.0463

MFCC Fv 0.0163 0.0223 0.0266 0.0302 0.0333 0.0360

SoundNet Mean 0.0138 0.0195 0.0238 0.0274 0.0306 0.0335

VGGish Mean 0.0193 0.0267 0.0319 0.0361 0.0398 0.0430

Tables 4.23 and 4.24 show the results for various recommender models in terms of accuracy metrics.

The accuracy metrics under study are MAP and NDCG. As presented in these tables, the scaled-CER

model obtained the best overall performance using Obj(IN) features, whereas the random recommender

model achieved the worst results.
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4.4.2 Beyond-accuracy metrics

The cold-start evaluation using beyond-accuracy metrics is similar to the warm-start scenario. Notice

that considering the weak performance of the random recommender model with regards to accuracy

metrics, the results obtained by this model are not considered when determining the best results.

However, they are still presented in grey for completeness. The recommendation quality in the

cold-start scenario in terms of beyond-accuracy metrics are presented below:

Table 4.25. Results for the CER, and scaled-CER recommender models in terms of intra-list diversity

metric in the item cold-start scenario. The performance of different video content features is evaluated

using the CER and scaled-CER recommender models. The highest result across the same metric is

marked in bold. Please note that the random recommender model performance is only shown for

completeness given its poor performance in terms of accuracy metrics.

Recommender models
Feature

Agg.

Div.

IntraL
@5

Div.

IntraL
@10

Div.

IntraL
@15

Div.

IntraL
@20

Div.

IntraL
@25

Div.

IntraL
@30

non-personalised

Random - 0.5950 0.6693 0.6940 0.7064 0.7138 0.7187

CER

Genres - 0.2376 0.2926 0.3217 0.3434 0.3607 0.3742

Obj(IN) Max 0.4830 0.5572 0.5876 0.6058 0.6185 0.6283

Action(IG) Var 0.4740 0.5467 0.5757 0.5932 0.6057 0.6152

Action(KN) Mad 0.4705 0.5432 0.5728 0.5905 0.6032 0.6130

Action(HMDB) Var 0.4825 0.5573 0.5876 0.6056 0.6179 0.6271

Action(UCF) Var 0.4884 0.5661 0.5975 0.6156 0.6282 0.6376

iDT Fv 0.4976 0.5720 0.6015 0.6187 0.6303 0.6389

MoSIFT Fv 0.5352 0.6128 0.6441 0.6622 0.6742 0.6830

Scene Var 0.4949 0.5685 0.5978 0.6148 0.6266 0.6355

MFCC Fv 0.5450 0.6163 0.6418 0.6556 0.6645 0.6709

SoundNet Mean 0.5283 0.6012 0.6279 0.6425 0.6519 0.6587

VGGish Mean 0.4962 0.5691 0.5968 0.6123 0.6226 0.6300

scaled-CER

Genres - 0.2243 0.2787 0.3087 0.3309 0.3479 0.3611

Obj(IN) Max 0.4791 0.5519 0.5819 0.5999 0.6129 0.6228

Action(IG) Var 0.4711 0.5450 0.5751 0.5932 0.6058 0.6155

Action(KN) Mad 0.4650 0.5382 0.5681 0.5860 0.5989 0.6089

Action(HMDB) Var 0.4781 0.5540 0.5850 0.6033 0.6159 0.6254

Action(UCF) Var 0.4827 0.5608 0.5926 0.6112 0.6241 0.6338

iDT Fv 0.4874 0.5619 0.5919 0.6094 0.6214 0.6304

MoSIFT Fv 0.5308 0.6071 0.6379 0.6562 0.6683 0.6772

Scene Var 0.4868 0.5619 0.5919 0.6097 0.6219 0.6315

MFCC Fv 0.5417 0.6134 0.6390 0.6526 0.6613 0.6676

SoundNet Mean 0.5218 0.5946 0.6216 0.6364 0.6460 0.6530

VGGish Mean 0.4888 0.5620 0.5897 0.6052 0.6156 0.6234
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Table 4.26. Results for the CER, and scaled-CER recommender models in terms of inter-list diversity

metric in the item cold-start scenario. The performance of different video content features is evaluated

using the CER and scaled-CER recommender models. The highest result across the same metric is

marked in bold. Please note that the random recommender model performance is only shown for

completeness given its poor performance in terms of accuracy metrics.

Recommender models
Feature

Agg.

Div.

InterL
@5

Div.

InterL
@10

Div.

InterL
@15

Div.

InterL
@20

Div.

InterL
@25

Div.

InterL
@30

non-personalised

Random - 0.9976 0.9952 0.9928 0.9904 0.9880 0.9855

CER

Genres - 0.9612 0.9471 0.9365 0.9278 0.9205 0.9141

Obj(IN) Max 0.9790 0.9693 0.9618 0.9554 0.9496 0.9443

Action(IG) Var 0.9797 0.9703 0.9631 0.9569 0.9513 0.9461

Action(KN) Mad 0.9808 0.9719 0.9649 0.9589 0.9535 0.9485

Action(HMDB) Var 0.9826 0.9745 0.9681 0.9624 0.9574 0.9526

Action(UCF) Var 0.9800 0.9711 0.9641 0.9580 0.9526 0.9476

iDT Fv 0.9836 0.9756 0.9693 0.9637 0.9587 0.9540

MoSIFT Fv 0.9675 0.9564 0.9485 0.9422 0.9366 0.9315

Scene Var 0.9784 0.9695 0.9626 0.9567 0.9514 0.9465

MFCC Fv 0.9752 0.9662 0.9594 0.9537 0.9485 0.9438

SoundNet Mean 0.9777 0.9695 0.9631 0.9577 0.9528 0.9483

VGGish Mean 0.9823 0.9742 0.9678 0.9622 0.9571 0.9523

scaled-CER

Genres - 0.9675 0.9553 0.9456 0.9375 0.9308 0.9248

Obj(IN) Max 0.9766 0.9666 0.9589 0.9523 0.9464 0.9410

Action(IG) Var 0.9833 0.9753 0.9688 0.9632 0.9581 0.9533

Action(KN) Mad 0.9812 0.9727 0.9661 0.9603 0.9552 0.9504

Action(HMDB) Var 0.9831 0.9756 0.9696 0.9643 0.9596 0.9551

Action(UCF) Var 0.9799 0.9715 0.9649 0.9592 0.9540 0.9492

iDT Fv 0.9803 0.9718 0.9651 0.9592 0.9539 0.9490

MoSIFT Fv 0.9641 0.9527 0.9447 0.9381 0.9323 0.9271

Scene Var 0.9797 0.9714 0.9649 0.9593 0.9542 0.9495

MFCC Fv 0.9724 0.9632 0.9563 0.9503 0.9450 0.9402

SoundNet Mean 0.9748 0.9659 0.9591 0.9532 0.9479 0.9431

VGGish Mean 0.9806 0.9724 0.9659 0.9602 0.9551 0.9504
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Table 4.27. Results for the CER, and scaled-CER recommender models in terms of item coverage

metric in the item cold-start scenario. The performance of different video content features is evaluated

using the CER and scaled-CER recommender models. The highest result across the same metric is

marked in bold. Please note that the random recommender model performance is only shown for

completeness given its poor performance in terms of accuracy metrics.

Recommender models
Feature

Agg.

Item

Cov.
@5

Item

Cov.
@10

Item

Cov.
@15

Item

Cov.
@20

Item

Cov.
@25

Item

Cov.
@30

non-personalised

Random - 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

CER

Genres - 0.4577 0.5800 0.6382 0.6760 0.6919 0.7058

Obj(IN) Max 0.7851 0.8760 0.9215 0.9446 0.9597 0.9683

Action(IG) Var 0.8029 0.8822 0.9179 0.9375 0.9523 0.9621

Action(KN) Mad 0.7792 0.8636 0.8994 0.9207 0.9359 0.9472

Action(HMDB) Var 0.8306 0.8983 0.9322 0.9505 0.9626 0.9693

Action(UCF) Var 0.7757 0.8654 0.9098 0.9329 0.9483 0.9598

iDT Fv 0.8090 0.8925 0.9303 0.9540 0.9653 0.9722

MoSIFT Fv 0.5704 0.6986 0.7655 0.8129 0.8466 0.8714

Scene Var 0.7875 0.8736 0.9115 0.9350 0.9501 0.9610

MFCC Fv 0.7545 0.8509 0.9010 0.9307 0.9474 0.9589

SoundNet Mean 0.9139 0.9661 0.9832 0.9899 0.9946 0.9963

VGGish Mean 0.8777 0.9375 0.9615 0.9743 0.9818 0.9855

scaled-CER

Genres - 0.5136 0.6391 0.6803 0.7011 0.7198 0.7442

Obj(IN) Max 0.7332 0.8405 0.8899 0.9205 0.9415 0.9541

Action(IG) Var 0.8577 0.9269 0.9519 0.9661 0.9743 0.9801

Action(KN) Mad 0.7884 0.8697 0.9062 0.9253 0.9420 0.9530

Action(HMDB) Var 0.8440 0.9183 0.9470 0.9621 0.9730 0.9790

Action(UCF) Var 0.7642 0.8611 0.9041 0.9317 0.9500 0.9602

iDT Fv 0.7342 0.8369 0.8888 0.9191 0.9374 0.9494

MoSIFT Fv 0.4944 0.6173 0.7003 0.7497 0.7882 0.8167

Scene Var 0.7827 0.8705 0.9105 0.9336 0.9494 0.9611

MFCC Fv 0.6790 0.7949 0.8496 0.8883 0.9136 0.9308

SoundNet Mean 0.8863 0.9470 0.9709 0.9832 0.9889 0.9921

VGGish Mean 0.8656 0.9283 0.9561 0.9694 0.9773 0.9834

Tables 4.25-4.27 show the results for various recommender model in terms of beyond-accuracy metrics

for list diversity and item coverage. The list diversity metrics under study are intra-list and inter-list

diversity. The CER model using MFCC features achieved the highest intra-list diversity for cut-off

values 5 and 10. For cut-off values 15, 20, 25 and 30 the highest intra-list diversity are obtained by

MoSIFT features. In terms of inter-list diversity, the CER and scaled-CER models obtained similar
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results. For high cut-off values, the scaled-CER model achieved the best results using Action(HMDB).

On the other hand, the CER model using iDT features achieved the highest results for low cut-off

values. The highest results for item coverage have been achieved by the CER model using soundNet

features. The scaled-CER model using genre features obtained the lowest results for intra-list diversity,

while the CER model using genre features obtained the lowest results for inter-list diversity and item

coverage.

Table 4.28. Results for the CER, and scaled-CER recommender models in terms of Shannon entropy

metric in the item cold-start scenario. The performance of different video content features is evaluated

using the CER and scaled-CER recommender models. The highest result across the same metric is

marked in bold. Please note that the random recommender model performance is only shown for

completeness given its poor performance in terms of accuracy metrics.

Recommender models
Feature

Agg.

Div.

SE
@5

Div.

SE
@10

Div.

SE
@15

Div.

SE
@20

Div.

SE
@25

Div.

SE
@30

non-personalised

Random - 11.0136 11.0163 11.0172 11.0177 11.0179 11.0181

CER

Genres - 7.8355 8.3121 8.5849 8.7786 8.9342 9.0612

Obj(IN) Max 8.7835 9.1258 9.3267 9.4688 9.5778 9.6660

Action(IG) Var 8.9225 9.2410 9.4278 9.5603 9.6614 9.7437

Action(KN) Mad 8.9116 9.2494 9.4466 9.5831 9.6871 9.7716

Action(HMDB) Var 9.0500 9.3815 9.5716 9.7040 9.8047 9.8850

Action(UCF) Var 8.8602 9.2095 9.4132 9.5550 9.6640 9.7520

iDT Fv 9.0538 9.3805 9.5686 9.6999 9.8004 9.8801

MoSIFT Fv 8.1329 8.6010 8.8799 9.0784 9.2285 9.3488

Scene Var 8.8372 9.1921 9.3987 9.5438 9.6542 9.7426

MFCC Fv 8.6740 9.0791 9.3151 9.4771 9.5995 9.6971

SoundNet Mean 9.0182 9.3816 9.5854 9.7258 9.8318 9.9162

VGGish Mean 9.1818 9.4903 9.6664 9.7864 9.8774 9.9498

scaled-CER

Genres - 8.0557 8.5078 8.7664 8.9529 9.1036 9.2270

Obj(IN) Max 8.6569 9.0267 9.2425 9.3942 9.5110 9.6058

Action(IG) Var 9.1571 9.4576 9.6278 9.7483 9.8398 9.9143

Action(KN) Mad 8.9553 9.3004 9.4975 9.6342 9.7392 9.8232

Action(HMDB) Var 9.1299 9.4644 9.6537 9.7830 9.8808 9.9591

Action(UCF) Var 8.8733 9.2397 9.4483 9.5943 9.7039 9.7923

iDT Fv 8.8032 9.1743 9.3868 9.5336 9.6448 9.7340

MoSIFT Fv 7.9336 8.4393 8.7381 8.9500 9.1104 9.2389

Scene Var 8.8951 9.2568 9.4651 9.6096 9.7195 9.8077

MFCC Fv 8.4761 8.9175 9.1700 9.3441 9.4762 9.5810

SoundNet Mean 8.8617 9.2421 9.4580 9.6071 9.7203 9.8108

VGGish Mean 9.1073 9.4363 9.6207 9.7472 9.8432 9.9195
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Table 4.28 shows the results for various recommender models in terms of Shannon entropy. As can be

seen in the table, the CER and scaled-CER models obtained comparable results. The highest results

have been achieved by the CER model using the VGGish features and the scaled-CER model using the

Action(HMDB) features. The CER model using the genre features obtained the lowest results.

4.5 EVALUATION OF DIFFERENT FUSION METHODS

The evaluation of different fusion methods is performed in the item cold-start scenario. The goal of

this experiment is to address the following problem: how to improve the recommendations of newly

added videos further, given videos represented by multiple features, such as visual-appearance, audio,

and action features. The experiment is based on the combination of the most accurate deep learning

feature modalities, namely visual-appearance, audio, and action features, reported in Section 4.4. The

scaled-CER model is used to evaluate the fusion methods described in Section 3.3.4. This model is

chosen due to the outstanding overall performance presented in Section 4.4. The best single video

content feature is used as a unimodal baseline to determine whether a fusion method really improves

the recommendation quality.

Table 4.29. Results of different fusion methods in terms of MAP metric using the best visual-

appearance, audio, and action features. The highest result along the respective metric is marked

in bold.

Features
Feature

Fusion
MAP@5 MAP@10 MAP@15 MAP@20 MAP@25 MAP@30

Obj(IN) - 0.0178 0.0180 0.0188 0.0196 0.0203 0.0208

Obj(IN) + VGGish concat 0.0215 0.0214 0.0223 0.0231 0.0238 0.0244

Obj(IN) + VGGish sum 0.0144 0.0143 0.0148 0.0154 0.0159 0.0164

Obj(IN) + VGGish max 0.0122 0.0121 0.0126 0.0130 0.0134 0.0137

Obj(IN) + VGGish + Action(IG) concat 0.0234 0.0232 0.0241 0.0249 0.0257 0.0263

Obj(IN) + VGGish + Action(IG) sum 0.0111 0.0113 0.0119 0.0125 0.0130 0.0134

Obj(IN) + VGGish + Action(IG) max 0.0086 0.0087 0.0091 0.0096 0.0099 0.0102
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Table 4.30. Results of different fusion methods in terms of NDCG metric using the best visual-

appearance, audio, and action features. The highest result along the respective metric is marked in

bold.

Features
Feature

Fusion
NDCG@5 NDCG@10 NDCG@15 NDCG@20 NDCG@25 NDCG@30

Obj(IN) - 0.0247 0.0339 0.0404 0.0455 0.0500 0.0538

Obj(IN) + VGGish concat 0.0295 0.0395 0.0464 0.0521 0.0568 0.0609

Obj(IN) + VGGish sum 0.0201 0.0276 0.0328 0.0371 0.0407 0.0439

Obj(IN) + VGGish max 0.0171 0.0228 0.0268 0.0300 0.0329 0.0354

Obj(IN) + VGGish + Action(IG) concat 0.0318 0.0423 0.0496 0.0554 0.0603 0.0646

Obj(IN) + VGGish + Action(IG) sum 0.0156 0.0226 0.0277 0.0318 0.0354 0.0386

Obj(IN) + VGGish + Action(IG) max 0.0123 0.0173 0.0210 0.0241 0.0268 0.0292

Tables 4.29 and 4.30 show the results of different feature fusion methods with respect to accuracy

metrics. The accuracy metrics under study are MAP and NDCG. The concatenation method obtained

the best overall performance when combining Obj(IN), VGGish and Action(IG) features, whilst the

maximum method that combines these same features obtained the worst results.

Table 4.31. Results of different fusion methods in terms of intra-list diversity metric using the best

visual-appearance, audio, and action features. The best result along the respective metric is marked in

bold.

Features
Feature

Fusion

Div.

IntraL
@5

Div.

IntraL
@10

Div.

IntraL
@15

Div.

IntraL
@20

Div.

IntraL
@25

Div.

IntraL
@30

Obj(IN) - 0.4791 0.5519 0.5819 0.5999 0.6129 0.6228

Obj(IN) + VGGish concat 0.4594 0.5345 0.5654 0.5837 0.5967 0.6068

Obj(IN) + VGGish sum 0.5012 0.5727 0.6004 0.6163 0.6269 0.6349

Obj(IN) + VGGish max 0.5227 0.5940 0.6197 0.6338 0.6430 0.6497

Obj(IN) + VGGish + Action(IG) concat 0.4534 0.5272 0.5578 0.5766 0.5900 0.6006

Obj(IN) + VGGish + Action(IG) sum 0.4869 0.5605 0.5900 0.6072 0.6190 0.6277

Obj(IN) + VGGish + Action(IG) max 0.5137 0.5884 0.6177 0.6350 0.6465 0.6547
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Table 4.32. Results of different fusion methods in terms of inter-list diversity metric using the best

visual-appearance, audio, and action features. The best result along the respective metric is marked in

bold.

Features
Feature

Fusion

Div.

InterL
@5

Div.

InterL
@10

Div.

InterL
@15

Div.

InterL
@20

Div.

InterL
@25

Div.

InterL
@30

Obj(IN) - 0.9766 0.9666 0.9589 0.9523 0.9464 0.9410

Obj(IN) + VGGish concat 0.9767 0.9681 0.9616 0.9559 0.9507 0.9459

Obj(IN) + VGGish sum 0.9764 0.9664 0.9588 0.9523 0.9464 0.9411

Obj(IN) + VGGish max 0.9745 0.9657 0.9587 0.9526 0.9472 0.9422

Obj(IN) + VGGish + Action(IG) concat 0.9777 0.9694 0.9630 0.9574 0.9523 0.9475

Obj(IN) + VGGish + Action(IG) sum 0.9791 0.9706 0.9638 0.9580 0.9526 0.9476

Obj(IN) + VGGish + Action(IG) max 0.9768 0.9675 0.9603 0.9540 0.9484 0.9433

Table 4.33. Results of different fusion methods in terms of item coverage metric using the best

visual-appearance, audio, and action features. The best result along the respective metric is marked in

bold.

Features
Feature

Fusion

Item

Cov.
@5

Item

Cov.
@10

Item

Cov.
@15

Item

Cov.
@20

Item

Cov.
@25

Item

Cov.
@30

Obj(IN) - 0.7332 0.8405 0.8899 0.9205 0.9415 0.9541

Obj(IN) + VGGish concat 0.8540 0.9262 0.9552 0.9716 0.9800 0.9866

Obj(IN) + VGGish sum 0.7661 0.8614 0.9056 0.9326 0.9470 0.9583

Obj(IN) + VGGish max 0.7293 0.8343 0.8858 0.9176 0.9374 0.9513

Obj(IN) + VGGish + Action(IG) concat 0.8655 0.9336 0.9597 0.9740 0.9831 0.9880

Obj(IN) + VGGish + Action(IG) sum 0.8101 0.8955 0.9355 0.9561 0.9687 0.9773

Obj(IN) + VGGish + Action(IG) max 0.6967 0.8096 0.8674 0.9032 0.9247 0.9414

Tables 4.31-4.33 show the results of different feature fusion methods with respect to beyond-accuracy

metrics for list diversity and item coverage. The list diversity metrics under study are intra-list and

inter-list diversity. For intra-list diversity, the max method combining Obj(IN) and VGGish features

obtained the highest results utilising recommendation lists of length equal to 5, 10, and 15. However,

for recommendation lists of length equal to 15, 25, and 30, the highest results are achieved by the max

method when combining Obj(IN), VGGish and Action(IN) features. The lowest results for intra-list

diversity is obtained by the concat method when combining Obj(IN), VGGish, and Action(IG) features.

For inter-list diversity, the sum method combining Obj(IN), VGGish and Action(IG) features achieved
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the highest results, while the max method when fusing Obj(IN) and VGGish obtained the lowest results

for cut-off values 5, 10 and 15. The sum method fusing the same set of features obtained the lowest

results for cut-off value 25, followed by the baseline Obj(IN) features. For cut-off value 30, the baseline

Obj(IN) obtained the lowest inter-list diversity result followed by the sum method fusing Obj(IN) and

VGGish features. In terms of item coverage, the concat method when fusing Obj(IN), VGGish and

Action(IG) features, achieved the highest results, whereas the max method when fusing these same

three types of features obtained the lowest results.

Table 4.34. Results of different fusion methods in terms of Shannon entropy (SE) using the best

visual-appearance, audio, and action features. The best result along the respective metric is marked in

bold.

Features
Feature

Fusion

Div.

SE
@5

Div.

SE
@10

Div.

SE
@15

Div.

SE
@20

Div.

SE
@25

Div.

SE
@30

Obj(IN) - 8.6569 9.0267 9.2425 9.3942 9.5110 9.6058

Obj(IN) + VGGish concat 8.9131 9.2799 9.4868 9.6278 9.7337 9.8176

Obj(IN) + VGGish sum 8.7458 9.1144 9.3273 9.4749 9.5860 9.6754

Obj(IN) + VGGish max 8.6516 9.0670 9.3001 9.4591 9.5805 9.6776

Obj(IN) + VGGish + Action(IG) concat 8.9552 9.3153 9.5163 9.6545 9.7577 9.8403

Obj(IN) + VGGish + Action(IG) sum 8.9218 9.2806 9.4826 9.6219 9.7265 9.8093

Obj(IN) + VGGish + Action(IG) max 8.6260 9.0289 9.2581 9.4175 9.5384 9.6366

Tables 4.34 show the results of the various feature fusion methods in terms of Shannon entropy. Overall,

the concat method combining Obj(IN), VGGish and Action(IG) features achieved the highest results

for Shannon entropy, while the lowest results are attained by the unimodal baseline followed by the

max method combining Obj(IN), VGGish and Action(IG) features.

4.6 ABLATION STUDY

In this experiment, the cumulative effect of each video content feature to the overall recommendation

quality is explored. The main goal is to empirically assess the importance of using a diverse range

of video content features while taking full advantage of the available features in the item cold-start

scenario. Thus, the experiment is performed by combining all the video content features explored in

this research work. Two experiments were conducted, including one with only non-textual features

and another with non-textual features and genre features.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

105



CHAPTER 4 RESULTS

The study is only based on the scaled-CER model using the concatenation fusion method, due to the

outstanding overall performance shown in the previous experiments. The recommendation quality is

measured in terms of MAP and item coverage, in order to gain an understanding of the extent to what

the video recommendation system is able to explore the catalogue with high precision.

Table 4.35. Ablation study of the importance of all non-textual video content features explored in this

work in the overall recommendation quality in terms of MAP and item coverage. The best result across

the respective metric is highlighted in bold. Prev. denotes the features used in the previous row.

Features MAP@5
Item

Coverage
@5 MAP@15

Item

Coverage
@15 MAP@30

Item

Coverage
@30

Obj(IN) 0.0178 0.7332 0.0188 0.8899 0.0208 0.9541

Prev. + VGGish 0.0215 0.8540 0.0223 0.9552 0.0244 0.9866

Prev. + Action(IG) 0.0234 0.8655 0.0241 0.9597 0.0263 0.9880

Prev. + Scene 0.0245 0.8456 0.0252 0.9503 0.0275 0.9827

Prev. + Action(KN) 0.0251 0.8487 0.0257 0.9471 0.0280 0.9817

Prev. + Action(UCF) 0.0248 0.8711 0.0251 0.9622 0.0273 0.9880

Prev. + Action(HMDB) 0.0252 0.8611 0.0256 0.9553 0.0280 0.9843

Prev. + SoundNet 0.0251 0.8569 0.0257 0.9566 0.0281 0.9866

Prev. + MFCC 0.0254 0.8750 0.0259 0.9617 0.0282 0.9882

Prev. + iDT 0.0262 0.8631 0.0267 0.9561 0.0291 0.9855

Prev. + MoSIFT 0.0267 0.8339 0.0273 0.9454 0.0297 0.9799
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Table 4.36. Ablation study of the importance of all non-textual video content features and genre

features in the overall recommendation quality in terms of MAP and item coverage. The best result

across the respective metric is highlighted in bold. Prev. denotes the features used in the previous row.

The box around the (Prev. + iDT) row highlights the highest MAP results for cut-off values 5 and 15

obtained in this work.

Features MAP@5
Item

Coverage
@5 MAP@15

Item

Coverage
@15 MAP@30

Item

Coverage
@30

Obj(IN) 0.0178 0.7332 0.0188 0.8899 0.0208 0.9541

Prev. + VGGish 0.0215 0.8540 0.0223 0.9552 0.0244 0.9866

Prev. + Action(IG) 0.0234 0.8655 0.0241 0.9597 0.0263 0.9880

Prev. + Genres 0.0291 0.7180 0.0297 0.8806 0.0325 0.9493

Prev. + Scene 0.0298 0.7677 0.0303 0.9142 0.0331 0.9682

Prev. + Action(KN) 0.0309 0.7898 0.0312 0.9269 0.0339 0.9770

Prev. + Action(UCF) 0.0333 0.7631 0.0335 0.9082 0.0364 0.9656

Prev. + Action(HMDB) 0.0341 0.7539 0.0344 0.9032 0.0374 0.9643

Prev. + SoundNet 0.0343 0.7981 0.0345 0.9296 0.0374 0.9756

Prev. + MFCC 0.0362 0.7609 0.0366 0.9153 0.0397 0.9717

Prev. + iDT 0.0365 0.7975 0.0366 0.9301 0.0396 0.9774

Prev. + MoSIFT 0.0360 0.8141 0.0361 0.9404 0.0391 0.9807

4.7 CHAPTER SUMMARY

The results of the video recommendation system implemented in this research work were presented

in this chapter. Various video-level descriptors have been visualised to check whether they capture

meaningful semantics. The performance of the various feature aggregation methods is measured in

both the 2-dimensional UMAP feature space as well as in the original feature dimensional space. All

the video content features, feature aggregation methods, and fusion techniques were compared against

one another. The best performing ones were selected for subsequent experiments. It is found that the

scaled-CER model outperforms the CER model with respect to accuracy metrics in both the warm-start

and cold-start scenarios. Furthermore, when combining the Obj(IN), VGGish and Action(IG) features

using the concatenation, sum and max fusion strategies, the concatenation method obtained the best

MAP, NDCG and item coverage results. Finally, the results of the ablation study demonstrated that

apart from one hand-crafted feature (MoSIFT features), all the other types of features are necessary to

achieve the highest performance observed in this research work in terms of accuracy. In Chapter 5, the

results presented in this chapter are carefully analysed and discussed.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

107



CHAPTER 5 DISCUSSION

5.1 CHAPTER OVERVIEW

The results of the experiments presented in Chapter 4 are analysed and discussed in detail in this

chapter. Each video recommendation model and video content feature used in the recommendation

framework is addressed to fully understand its strengths and weaknesses in each scenario.

5.2 FEATURE ANALYSIS

Figures 4.1 - 4.11 visually highlight the distances between movie trailers given their genres. The

correctness of the clustering patterns are clearly visible using this visual representation. It is obvious

that 2-UMAP components correctly represent any movie trailer, since correct clustering of different

genres occurs. Although the clustering of genres shown in these figures may not be effective for

tasks like genre classification, it is worth remembering that a movie is usually represented by multiple

genres and not by a single genre. From Figures 4.1 - 4.11, it can be seen that some movies in the

same sequel tend to be close to each other in UMAP space. This suggests that even though the movie

trailers are represented by non-textual features that are not semantic at first glance, the genre and

sequel that describe these video-level representations are semantically associated. For example, in

Figure 4.1, the video-level descriptors, which represent some movie trailers in the Batman sequel, are

close to each other. These descriptors are semantically related because they reflect Batman movies.

They also belong to the same genre, namely action genre. The clustering of these Batman movies

indicate that some Batman movie trailers have very similar visual aesthetics. In addition, it can be

seen, in Figure 4.9 to 4.11, that this remarkable clustering pattern is also present in the hand-crafted

action and sound distributions for other movie sequels. This result is understandable because a movie

sequel is a continuation narrative of the already existing movie. These findings clearly indicate that

the non-textual features used in this research work capture different meaningful semantics before the

recommendation stage.
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Movie trailers are also represented by to the type of video feature. For this reason, movie trailers in

the same sequel can be very close to each other in one UMAP feature space, showing movie trailers

in terms of their visual modality, but can be further apart in another visualisation, showing movie

trailers in terms of their aural modality. This observation is evident in the Madagascar film series.

As can be seen in Figure 4.3 and 4.7, the Madagascar film series are very similar to each other in

terms of their visual content, but differ in terms of their audio content. Furthermore, it is interesting to

observe in Figures 4.3 to 4.5 that a distinctive global structure for each action-centric deep learning

feature reduced to 2-UMAP components. This indicates that, even though some 3D-CNNs used to

extract action-centric features have been pre-trained on the IG-65M or Kinetics datasets, each network

generates action-centric features that focus on different actions learnt by fine-tuning on the Kinetics,

UCF-101, or HMDB-51 datasets.

Beyond the visual observations, the quality of the feature aggregation methods used in this research

work is assessed in terms of Bhattacharyya distance. This distance metric is measured in 2-dimensional

UMAP space and the original F-dimensional feature space. These results are reported in Tables 4.1

to 4.16. It is noted that for certain video features, the best performing feature aggregation method is

the same when the Bhattacharyya distance is measured in 2-dimensional UMAP space and when it

is measured in the original feature space. As shown in Tables 4.1 and 4.2 for the Obj(IN) features,

the most effective feature aggregation is the maximum method for both 2-dimensional UMAP space

and original 2048-dimensional feature space. The highest performing feature aggregation method

for the Action(KN) features and Action(HMDB) features is the variance method as reported in Table

4.7 and 4.8, and Table 4.11 and 4.12, respectively. For the soundNet features, as seen in Table 4.15

and 4.16, the median feature aggregation method outperforms the other aggregation methods. All

these results suggest that 2-UMAP components can, to some extent, capture the variation in the data

properly. This observation is consistent with the visualisation of the features referred to in Figure 4.1,

4.4, 4.6 and 4.8. However, it should be recalled that non-local distances are not well preserved when

only 2-UMAP components are used. As a consequence, for certain video features when UMAP feature

reduction is not applied, the best feature aggregation method is not the same as when UMAP feature

reduction is applied. This is seen in the results obtained for the scene, Action(IG), Action(UCF) and

VGGish features. Nevertheless, for visual features the feature aggregation methods, which measure the

spread of a distribution, achieve better performance compared to feature aggregation methods that are

a measure of location. In addition, it should be pointed out that, for all video features, the in-sequel

and out-of-sequel similarities and differences within each feature aggregation method is retained since
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the in-sequel-mean-distance is lower than the out-of-sequel-mean-distance.

5.3 PERFORMANCE ANALYSIS: WARM-START SCENARIO

5.3.1 Accuracy metrics

As can be seen in Table 4.17 and 4.18, the CER model obtained the highest results in terms of MAP

and NDCG at all cut-off values when using the Action(UCF) features, while the lowest results are

obtained using genre, scene, and soundNet features. It can also be observed that the CER model

exhibits similar performance across all types of video content features. This outcome is similar to

[14] and suggests that in the item warm-start scenario, the interactions collected for the items are very

important in order to obtain outstanding results, and that the additional video content features help

predictive performance of items with very few interactions. The importance of items prior ratings is

clearer when looking at the performance of the TopPop and scaled-CER models. The TopPop model

obtained better performance than the random model, by recommending only the top popular items to

users. The scaled-CER model obtained improved results over the CER model. The scaled-CER model

obtained the best overall performance compared to any CER model variant, by using the matrix scaling

technique presented in Section 3.3.3.1. Different from the CER model, the scaled-CER model achieved

the best results in terms of MAP using the Obj(IN) features. In terms of NDCG, the scaled-CER model

achieves the best performance using the iDT features.

The performance gains of the scaled-CER model using Obj(IN) features, over the CER model using

Action(UCF) features in terms of MAP@5 and MAP@30 are 37.7% and 24.2%, respectively. In

terms of NDCG@5 and NDCG@30, the scaled-CER model using iDT features outperforms the CER

model using Action(UCF) by 26.2% and 17.4%, respectively. These outcomes clearly show that in the

item warm-start scenario, the item content descriptor is not as important as the ratings of the items.

Moreover, the results clearly illustrate the effectiveness of the matrix scaling technique, where the

scaled-CER recommender model presents the best capability to generate recommendation lists that

contain relevant items at the top positions. In addition, similar to the CER model, the scaled-CER

model presents similar results along with the different types of video content features. However, the

difference between the results is insignificant after proper scaling.

Nevertheless, by a closer inspection of the scaled-CER model variants, it can be seen that the state-

of-the-art iDT feature vectors is the best baseline video content feature and outperforms almost all

deep learning features, with the only exception being the Obj(IN), Action(HMDB), and Action(UCF)
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features at certain cut-off values. The VGGish and soundNet features outperform the hand-crafted

MFCC features. However, as pointed out above, the difference between the results of any type of

video content feature is not significant. In addition, it is worth pointing out that for each model as

the cut-off value increases, MAP and NDCG results also increase. This is as expected, because the

likelihood of one of them to be a true label increases with the number of items being recommended.

This means that more correctly predicted videos are obtained. Furthermore, it is also noted that most

deep learning video content features, when used by the hybrid recommender models, achieved the best

performance using a feature aggregation variant that is consistent with the quantitative feature analysis

outcome presented in Section 5.2. This indicates that video recommendation systems, which use these

feature aggregation methods, can simplify the task of selection of the best performing statistical feature

aggregation method, by using movie sequels and the Bhattacharyya distance.

5.3.2 Beyond accuracy metrics

From the results summarised in Table 4.19 to 4.22, it can be seen that the random recommender

model, used for sanity checks, achieved the highest results for all diversity metrics as well as for

the item coverage metric. This outcome was expected since a random recommender model, as the

name suggests, recommends items at random which therefore leads to high diversity and absolute

coverage of the item catalogue. However, as seen in Tables 4.17 and 4.18, high diversity comes at an

unacceptable cost of accuracy, since this model obtained results close to 0 with regards to accuracy

metrics. Thus, while the generated recommendation lists are greatly diversified, these lists are not

of interest to the user, since they do not contain relevant items. For this reason, this section does

not analyse the beyond-accuracy results of random recommender models further, as it achieved an

unacceptable low performance in terms of accuracy metrics.

When observing the intra-list diversity results presented in Table 4.19, it can be seen that scaled-CER

presents a lower intra-list diversity compared to CER and TopPop. This outcome was expected because

it is known that an inherent trade-off exists between accuracy and beyond-accuracy metrics [181].

The matrix scaling technique used by the scaled-CER model brings great improvements in terms of

accuracy metrics at the cost of intra-list diversity. One possible solution to improve this outcome

in terms of intra-list diversity would be to implement a re-ranking technique. This technique would

select a video with relevance score above a certain threshold to be part of the recommendation list by

considering both its score and its genre-dissimilarity. The video’s score and genre would be compared

to the videos already in the list if the list is not empty. Another possible solution would be to optimise
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the model with a many-objective evolutionary algorithm [182, 183] which optimise the accuracy of the

model as well as its intra-list diversity simultaneously.

Moreover, by a closer inspection of the video content features, the scaled-CER using genre features

obtained the lowest results compared to other scaled-CER variants. This outcome was expected

because genre features are used to calculate this metric. The results suggest that the model is generating

recommendation lists with many videos of the same genre. In addition, similar to accuracy metric

results, the intra-list diversity results improve with an increase in size of the recommendation list.

In terms of inter-list diversity, it can be seen in Table 4.20 that the TopPop model achieved the

lowest results. This suggests that the recommendation lists being generated for the users have a high

number of items which are similar to one another across lists. This outcome was expected because

recommendations provided by TopPop model are not personalised for each user and, as the name

suggests, the model only recommends popular items. The inter-list diversity results of the scaled-CER

model is lower than the CER model results. The CER model using genre features achieved the best

results. However, the scaled-CER model obtained values greater than 88% and 90% for high cut-off

and small cut-off values, respectively. Moreover, as discussed in Section 5.3.1, the scaled-CER model

achieved a noticeable improvement over the CER model with regards to accuracy metrics. This means

that the scaled-CER model recommends a high number of items that are relevant to the users, without

compromising a lot of its diversification capabilities. In addition, unlike the intra-list diversity results,

as the recommendation list increases the inter-list diversity decreases for all other models. This was

expected since recommendation lists with a cut-off value equal to the total number of items in the

catalogue should contain all items across lists, leading an inter-list diversity value of 0.

The results for item coverage is presented in Table 4.21. As expected, TopPop model obtained the

lowest results. This outcome is due to the model recommending only popular items to users. It is

interesting to note that for all cut-off values, except 5, the highest results for item coverage were

obtained by the scaled-CER model. This outcome is in line with the main purpose of the scaling factor,

which is to increase the sensitivity of the model to rare items. However, the increase in item coverage

is accompanied by less diverse recommendation lists. In addition, it is equally important to determine

the magnitude to which the models are trying to recommend different items within a certain coverage

value. This is performed by calculating the Shannon entropy. It can be observed in Table 4.22 that

TopPop model provides recommendations that are easy to guess. For CER and scaled-CER models, it
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is interesting to see that their recommendations are hard to guess, in contrast to TopPop model. These

results confirm the outcome observed with regards to inter-list diversity, where TopPop model obtained

the lowest performance. The CER model using genre features obtained the highest results. However,

this variant of the CER model, obtained the worst performance in terms of accuracy metrics compared

to other CER variants.

Furthermore, it is interesting to note that the scaled-CER model using Obj(IN) features did not obtain

the lowest results in terms of beyond-accuracy metrics since this model obtained the best performance

in terms of accuracy metrics. In addition, similar to accuracy metric results, the beyond-accuracy

results for the CER and scaled-CER models are similar for the various video content features along

with the respective cut-off values.

5.4 PERFORMANCE ANALYSIS: COLD-START SCENARIO

5.4.1 Accuracy metrics

In terms of accuracy metrics, it is observed in the Table 4.23 and 4.24 that in contrast to the item

warm-start scenario, the CER and scaled-CER models in the cold-start scenario exhibit results that

are more varied across different types of video content features. This suggests that these models

are relying more on the features to generate recommendations, and that each type of video content

feature discriminates the user preferences differently. Similar to the item warm-start scenario, the

scaled-CER model achieved the highest results with regards to all the accuracy metrics and a noticeable

improvement over the CER model is observed. This outcome also shows the effectiveness of the

matrix scaling technique in the item cold-start scenario, which is able to improve the performance of

different types of features. It suggests that the collaborative information learnt with the item popularity

sensitivity adjustment along with video content features is very important to recommend cold items

with high precision. It can be observed that the scaled-CER, using MFCC features, is the best baseline

with regards to the cut-off value 5 across the MAP and NDCG metrics. However, with regards to the

other cut-off values, the best baseline is the genre features. The best overall performance is obtained

by Obj(IN) features, which outperform the MFCC features by 53.4% and 51.5% in terms of MAP@5

and NDCG@5, respectively. In terms of MAP@15, MAP@30, NDCG@15, and NDCG@30, the

Obj(IN) features outperform genre features by 50.4%, 45.4%, 37.4%, and 29.3%, respectively. These

results indicate that the scaled-CER model, using Obj(IN) features in its content descriptor, provides

considerable better recommendations that are placed at the top of the recommendation list, compared

to the genre and hand-crafted features. In addition, the model is able to recommend more relevant
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items as the recommendation list gets longer.

It is interesting to note that action-centric deep learning features present noticeably better performance,

compared to the hand-crafted MoSIFT features and state-of-the-art hand-crafted iDT features, across

all accuracy metrics. The best action features, with regards to MAP across different cut-off values,

is Action(IG) followed by Action(KN), Action(UCF), and Action(HMDB). However, Action(KN)

followed by Action(UCF) is slightly better than Action(IG) with regards to NDCG for cut-off values

greater than 5. Nevertheless, Action(IG) provides highly relevant recommendations at the top of the

recommendation list, given its performance for the top-5 cut-off experiments. This performance is

highly desirable especially when many users do not scan the entire recommendation list, and when a

service provider sends personalised newsletter video recommendations to their users to alleviate the

new item cold-start problem. That being said, these results are very promising since it shows that the

motion information captured by deep learning features lead to better recommendations compared to

the hand-crafted iDT and MoSIFT features in terms of accuracy metrics.

On the other hand, the performance obtained by the hand-crafted MFCC features is better than one

acoustic-centric deep learning feature, namely soundNet features. However, scaled-CER model using

VGGish features outperforms MFCC features. This confirms the success of deep learning features in

the video recommendation context in terms of accuracy metrics. In addition, it should also be noted

that, except for soundNet features, all the deep learning features explored in this work outperforms

genre features, which emphasises the importance of using non-textual features extracted from videos

to improve cold item recommendations.

Lastly, as expected the non-personalised model, namely random recommender, is the worst model

among all accuracy metrics. It obtained an extremely low performance, which suggests that the

recommendations do not match the preferences of the users. This is understandable since the re-

commendations provided by the random model are not personalised, and the items are randomly

recommended.

5.4.2 Beyond accuracy metrics

Similar to the item warm-start scenario, it can be seen from the results presented in Table 4.25 to

4.28, that the random model obtained the highest values for all diversity metrics and item coverage, as

expected. However, this model provides poor recommendations to users according to its performance
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in terms of accuracy metrics. In addition, recommending items that match the preferences of the users

in the item warm-start scenario, while greatly improving the recommendation of new items, is perhaps

the most important objective of a designer. Moreover, maximising the beyond-accuracy performance

of a certain recommender system is only promising when a minimum acceptable performance, with

regards to accuracy metrics, has been obtained. For this reason, the beyond-accuracy results of the

random model are not analysed further in this section.

Overall, the CER model obtained the highest results for almost all four metrics with the exception

being the InterL@20, InterL@25, InterL@30, SE@25, and SE@30. However, these results come

at the cost of accuracy. The lowest results are obtained using the genre features. In contrast to the

item warm-start scenario, in the item cold-start scenario, the scaling factor of the scaled-CER model

does not lead to the highest results with regards to item coverage. The scaling factor only increases

the item coverage of the genre, Action(IG), and Action(HMDB) features. It is interesting to see that

this increase comes with an increase in inter-list diversity and Shannon entropy, but with a slight

decrease in intra-list diversity. This means that the number of items that are recommended equally often

increased; however, the number of recommendations of the same genre also increased. In addition,

it is important to note that the action-centric deep learning features present a better item coverage

with recommendations that are harder to guess in comparison to the hand-crafted iDT and MoSIFT

features, without compromising recommendation accuracy. A similar outcome is observed for the deep

learning audio features compared to MFCC features. Furthermore, it is also worth mentioning that

the best visual-appearance, action, and audio features in terms of MAP and NDCG, namely Obj(IN),

Action(IG), and VGGish features, obtained item coverage results in the range of 0.7332 to 0.8656

for the smallest cut-off value, and 0.9541 to 0.9834 for the highest cut-off value. These results are

promising and suggest that the scaled-CER model is able to recommend more than 95% of cold items

and these items are highly relevant to users.

5.5 PERFORMANCE ANALYSIS: FUSION METHODS

From Table 4.29 and 4.30, it can be seen that the sum and max fusion methods are not able to

outperform the Obj(IN) features baseline with regards to MAP and NDCG metrics across all cut-off

values. An interesting observation is that the sum of Obj(IN) and VGGish features leads to better

recommendation accuracy compared to VGGish features alone (Table 4.23 and 4.24). A noticeable

drop in performance is observed when the Action(IG) features are combined with Obj(IN) and VGGish

features using the two aforementioned fusion methods. This outcome suggests that the shared latent
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space created by the sum and max fusion methods are not suitable for the scaled-CER model since the

complementary video information encoded in the Action(IG), Obj(IN), and VGGish features are not

learnt properly. On the other hand, the concat fusion method outperforms the baseline, and the sum

and max fusion methods, with regards to all accuracy metrics across all cut-off values. The concat

of Obj(IN) and VGGish features significantly improve upon the Obj(IN) performance by 20.7% and

19.4% for the lowest cut-off value (5), along the MAP and NDCG metrics, respectively. For the highest

cut-off value (30) the increase over the baseline is 17.3% for MAP, and 13.1% for NDCG. In addition,

different from the sum and max fusion methods, the concat of Action(IG), Obj(IN) and VGGish features

presents a significant positive effect in the overall recommendation performance. More precisely, the

recommendation accuracy in terms of MAP@5 and MAP@30 increased by 8.8%, and 7.7% over the

concat of Obj(IN), and VGGish features, respectively. In terms of NDCG@5 and NDCG@30, the

recommendation accuracy increased by 7.7% and 6.0%, respectively. These results suggest that the

shared latent space created by the concat fusion method is more discriminative, thus leading to better

recommendation accuracy. VGGish features complement the recommendation accuracy. In addition,

Action(IG) features combined with Obj(IN) and VGGish features create video representations that

are highly predictive of user preferences. This means that the content present in the videos are better

described. As a result, enhanced recommendations are provided.

In terms of beyond-accuracy metrics, it can be observed in Table 4.31 that the outstanding performance

achieved by the concat of Obj(IN), VGGish and Action(IG) features with regards to accuracy metrics

comes with a decrease in intra-list diversity. The concat fusion of these three features did not obtain

intra-list diversity results higher than the baseline, but the difference is between 3.6% and 5.6%.

Surprisingly, noticeable performance improvements can be seen in Table 4.32 to 4.34 for the concat

of Obj(IN), VGGish, and Action(IG) features with regards to inter-list diversity, item coverage, and

Shannon entropy. These improvements do not come at the expense of recommendation accuracy. The

results are promising and indicate that the complementariness of Obj(IN), VGGish, and Action(IG)

features considers more items on the catalogue. These items are given a better chance of being

recommended, leading to recommendations that are more equally spread out throughout all cold

items.
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5.6 ABLATION STUDY

From Table 4.35, it is interesting to observe that scene features bring an increase in recommendation

accuracy, but with a drop in item coverage when combined with the three main features, namely

Obj(IN), VGGish, and Action(IG). On the other hand, Action(UCF) features provide an increase in

item coverage, but with a decrease in recommendation accuracy when combined with the three main

features, scene and Action(KN) features. These outcomes demonstrate the trade-off between MAP and

item coverage, as seen in the previous experiments. Similar to VGGish and Action(IG) features, MFCC

features provide an improvement in MAP and item coverage. This demonstrates the complementary

role of MFCC features when they are combined with deep learning features and especially deep

learning audio features. Which means that, although VGGish and soundNet features represent the

audio from the video, this audio has some information that is not captured by these features, including

deep learning visual appearance and action features. The MFCC features capture this additional

information, which results in better discriminative video descriptors, as seen by the improvements in

MAP and item coverage. These descriptors are highly predictive of the user preferences leading to a

wide range of relevant video recommendations.

Moreover, a significant improvement in recommendation accuracy is observed when all non-textual

features are combined, compared to only using a single feature, or only using the three main features,

as performed in the previous experiment. The high performance comes with the inherent trade-off

between accuracy and beyond-accuracy metrics. There is a noticeable negative effect in item coverage,

especially when MoSIFT features are combined. In addition, it is compelling to see that fusing hand-

crafted features with deep learning features results in more precise recommendations by exploiting the

complementary information available in the hand-crafted feature set. This means that the discriminative

power of the deep learning features is strengthened with the valuable information captured by the

hand-crafted features.

Furthermore, looking at Table 4.36, the overall outcome is quite different when genre features are

combined with the various non-textual features. It can be observed that genre features provide a

big improvement in recommendation accuracy in contrast to scene features, when considering Table

4.35. The genre features complement the recommendation accuracy of the non-textual features

effectively. This improvement comes with a decrease in item coverage which is worse than the

unimodal Obj(IN)) features. Apart from MoSIFT features, a drop in recommendation accuracy is

not noted when combining the other features. This outcome implies that genre features probably
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remove ambiguity from the non-textual features, which in turn lead to an improvement in MAP, while

sacrificing item coverage. This was expected because each non-textual content feature vector was

fused with genres, which describe high-level concepts of a movie, thus creating a more discriminative

semantically meaningful content descriptor. When the iDT features are combined with all the other

video content features (Prev. + iDT), MAP results are obtained that are slightly above the combination

of all the types of video features (Prev. + MoSIFT) for cut-off values 5 and 15. These MAP results are

the highest achieved for the respective cut-off values in this research work. The addition of MoSIFT

features provides a noticeable increase in item coverage for all cut-off values. This means that MoSIFT

features provide a good balance between MAP and item coverage when combined with the other

features explored in this work.

Nevertheless, the combination of all the various video content features provides recommendations that

are very precise. However, about 18.59% of the total number of cold items are never recommended

to a user for the lowest cut-off value. For cut-off values 15 and 30, more than 94% of cold items are

recommended to users meaning that the descriptors obtained from the combination of all the features

are highly predictive of the user preferences, leading to a wide range of relevant video recommendations.

This shows the strong correlation between the deep learning features, hand-crafted features, and genre

features in the overall recommendation quality.
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WORK

6.1 CONCLUSION

This research has presented the development of a video recommendation framework that uses multiple

video content features to solve the new item cold-start problem. Various deep learning features,

extracted from the multi-modal, extremely high dimensional information from videos are used to

enhance the quality of recommendations. The features capture visual-appearance, audio, and motion

information from the media contained in the videos. Their distribution are visually and quantitatively

analysed to determine if they are semantically meaningful before the recommendation task. It is found

that using only two UMAP components is not enough to find the best performing feature aggregation

method before the recommendation task, in terms of Bhattacharyya distance. However, two UMAP

components are useful from a visualisation point of view, since they can be used to distinguish between

movies in-sequel and out-of-sequel.

Moreover, a comparison between different video recommendation models is performed using various

video content features. This research work proposes an improvement for the CER recommender model

using a known matrix scaling technique. The proposed improved model is named the scaled-CER

model. This model is sensitive to rare items by scaling the collaborative information before training.

The scaled-CER model obtained the best recommendation accuracy in the item warm-start and cold-

start scenarios. An improvement in item coverage in the item warm-start scenario upon the CER model

is also observed. Furthermore, different fusion methods are investigated to effectively combine the

features before training the model to improve the recommendation quality in terms of accuracy and

beyond-accuracy metrics. The best fusion method was found to be the concat method.
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From the results presented in Chapter 4, the research questions posed in this study are answered as

follows:

• Research Question 1:

"Can the combination of the visual-appearance, audio, and action-related features, which

capture the visual, aural and motion information contained in the videos, provide better

video recommendation, with respect to accuracy and beyond accuracy metrics, than the

visual-appearance and audio features, which only capture visual and aural information?"

As the results of the experiments suggested, the fusion of visual-appearance, audio,

and action features provide more accurate personalised video recommendations to users when

compared to the fusion of only visual and audio features. Apart from intra-list diversity measure,

an improvement upon the fusion of visual and audio features is also observed for all the other

beyond-accuracy measures. This means that the recommender is able to explore the catalogue

of videos better while, generating relevant video recommendations. This also results in new

videos being given a better chance of being recommended, which leads to recommendations that

are more equally spread out throughout all new videos.

• Research Question 2:

"What motion information from videos is the most predictive of users’ video preferences

in new item cold-start scenarios?"

The motion information captured by action-centric deep learning features, extracted

with 3D-CNNs, is better than hand-crafted action features. They lead to better recommendation

accuracy and item coverage, with more balanced recommendations. For this reason, it can

be concluded that the success of 3D-CNN features on tasks like action recognition and video

classification also occur in the video recommendation context.

• Research Question 3:

"To what extent can the combination of hand-crafted features, deep learning features,

and textual features maximise the video recommendation performance?"

The results of the ablation study demonstrated that, apart from one hand-crafted fea-
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ture (MoSIFT features), all types of features, namely textual, hand-crafted, and deep learning

features are necessary to achieve the highest performance observed in this study in terms of

accuracy metrics. The results also showed that textual features, namely the genre features are

the most important features in the overall result, since the largest improvement is observed when

they are combined with the other features. However, the high precision comes with a decrease

in item coverage, but this coverage is still well above the unimodal feature baseline (Obj(IN)

features).

6.2 FUTURE WORK

As future work, it will be worth evaluating the features used in this research study in terms of user

quality perception. This could assist in the better tuning of video recommendation system in industrial

applications and in the creation of high quality recommendation explanations to increase trust in the

system. In addition, it would be worth investigating the correlation between multimedia features,

electronic programming guide (EPG) information and the user feedback gathered from the use of the

remote control. The end goal would be to enhance existing recommender systems in this domain to

provide more significant TV program recommendations to users that lead to a decrease in the use of

the remote control, while improving their experience.
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